1
|
Imierska M, Zabielski P, Roszczyc-Owsiejczuk K, Pogodzińska K, Błachnio-Zabielska A. Impact of reduced hepatic ceramide levels in high-fat diet mice on glucose metabolism. J Nutr Biochem 2024:109785. [PMID: 39427846 DOI: 10.1016/j.jnutbio.2024.109785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 09/27/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Dysregulation of insulin action in hepatocytes, common in obesity, significantly contributes to insulin resistance, type 2 diabetes, and metabolic syndrome. Previous research highlights ceramides' role in these conditions. This study explores the impact of ceramides by silencing the serine palmitoyltransferase (Sptlc2) gene, crucial for the initial ceramide biosynthesis, using hydrodynamic gene delivery. Male C57BL/6 mice were randomly divided into three groups: one on a low-fat diet (LFD) receiving scrambled shRNA plasmids, another on a high-fat diet (HFD) with scrambled shRNA plasmids, and a third on HFD with a plasmid targeting Sptlc2. Analyses included RT-PCR for gene expression, western blot for protein levels, and UHPLC/MS/MS for lipid profiling. Glucose metabolism was evaluated via oral glucose tolerance tests, homeostatic model assessment of insulin resistance, and glucose-6-phosphate analysis. Results showed that HFD induces insulin resistance by inhibiting insulin signaling and increasing active lipid levels in hepatocytes. Sptlc2 silencing reduced ceramide accumulation, improving insulin signaling and glucose metabolism. Notably, ceramide synthesis inhibition did not significantly affect other lipid levels, highlighting ceramide's critical role in hepatic insulin resistance.
Collapse
Affiliation(s)
- Monika Imierska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Mickiewicza 2c, 15-089 Bialystok, Poland.
| | - Piotr Zabielski
- Department of Medical Biology, Medical University of Bialystok, Mickiewicza 2c, 15-089 Bialystok, Poland.
| | - Kamila Roszczyc-Owsiejczuk
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Mickiewicza 2c, 15-089 Bialystok, Poland.
| | - Karolina Pogodzińska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Mickiewicza 2c, 15-089 Bialystok, Poland.
| | - Agnieszka Błachnio-Zabielska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Mickiewicza 2c, 15-089 Bialystok, Poland.
| |
Collapse
|
2
|
Shay JES, Yilmaz ÖH. Dietary and metabolic effects on intestinal stem cells in health and disease. Nat Rev Gastroenterol Hepatol 2024:10.1038/s41575-024-00980-7. [PMID: 39358589 DOI: 10.1038/s41575-024-00980-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 10/04/2024]
Abstract
Diet and nutritional metabolites exhibit wide-ranging effects on health and disease partly by altering tissue composition and function. With rapidly rising rates of obesity, there is particular interest in how obesogenic diets influence tissue homeostasis and risk of tumorigenesis; epidemiologically, these diets have a positive correlation with various cancers, including colorectal cancer. The gastrointestinal tract is a highly specialized, continuously renewing tissue with a fundamental role in nutrient uptake and is, in turn, influenced by diet composition and host metabolic state. Intestinal stem cells are found at the base of the intestinal crypt and can generate all mature lineages that comprise the intestinal epithelium and are uniquely influenced by host diet, metabolic by-products and energy dynamics. Similarly, tumour growth and metabolism can also be shaped by nutrient availability and host diet. In this Review, we discuss how different diets and metabolic changes influence intestinal stem cells in homeostatic and pathological conditions, as well as tumorigenesis. We also discuss how dietary changes and composition affect the intestinal epithelium and its surrounding microenvironment.
Collapse
Affiliation(s)
- Jessica E S Shay
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ömer H Yilmaz
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
| |
Collapse
|
3
|
Fitzgerald VK, Lutsiv T, McGinley JN, Neil ES, Playdon MC, Thompson HJ. Common Bean Suppresses Hepatic Ceramide Metabolism in a Mouse Model of Metabolic Dysfunction-Associated Steatotic Liver Disease. Nutrients 2024; 16:3196. [PMID: 39339796 PMCID: PMC11434909 DOI: 10.3390/nu16183196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/30/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: The incidence of metabolic dysfunction-associated steatotic liver disease (MASLD), a condition linked to the ongoing obesity pandemic, is rapidly increasing worldwide. In turn, its multifactorial etiology is consistently associated with low dietary quality. Changing dietary macronutrient and phytochemical quality via incorporating cooked common bean into an obesogenic diet formulation has measurable health benefits on the occurrence of both obesity and hepatic steatosis in C57BL/6 mice. Methods: A cohort of C57BL/6 mice were randomized into experimental diets containing multiple dietary concentrations of common bean. The primary endpoint of this study was comparing metabolomic analyses from liver and plasma of different treatment groups. Additionally, RNA sequencing and protein expression analysis via nanocapillary immunoelectrophoresis were used to elucidate signaling mediators involved. Results: Herein, global metabolomic profiling of liver and plasma identified sphingolipids as a lipid subcategory on which bean consumption exerted significant effects. Of note, C16 and C18 ceramides were significantly decreased in bean-fed animals. Hepatic RNAseq data revealed patterns of transcript expression of genes involved in sphingolipid metabolism that were consistent with metabolite profiles. Conclusions: Bean incorporation into an otherwise obesogenic diet induces effects on synthesis, biotransformation, and degradation of sphingolipids that inhibit the accumulation of ceramide species that exert pathological activity. These effects are consistent with a mechanistic role for altered sphingolipid metabolism in explaining how bean inhibits the development of MASLD.
Collapse
Affiliation(s)
- Vanessa K Fitzgerald
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523, USA
| | - Tymofiy Lutsiv
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523, USA
| | - John N McGinley
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523, USA
| | - Elizabeth S Neil
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523, USA
| | - Mary C Playdon
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
| | - Henry J Thompson
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
4
|
Velagapudi S, Karsai G, Karsai M, Mohammed SA, Montecucco F, Liberale L, Lee H, Carbone F, Adami GF, Yang K, Crucet M, Stein S, Paneni F, Lapikova-Bryhinska T, Jang HD, Kraler S, Vdovenko D, Züllig RA, Camici GG, Kim HS, Laaksonen R, Gerber PA, Hornemann T, Akhmedov A, Lüscher TF. Inhibition of de novo ceramide synthesis by sirtuin-1 improves beta-cell function and glucose metabolism in type 2 diabetes. Cardiovasc Res 2024; 120:1265-1278. [PMID: 38739545 DOI: 10.1093/cvr/cvae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/03/2024] [Accepted: 03/26/2024] [Indexed: 05/16/2024] Open
Abstract
AIMS Obesity and type 2 diabetes (T2D) are major risk factors for cardiovascular (CV) diseases. Dysregulated pro-apoptotic ceramide synthesis reduces β-cell insulin secretion, thereby promoting hyperglycaemic states that may manifest as T2D. Pro-apoptotic ceramides modulate insulin sensitivity and glucose tolerance while being linked to poor CV outcomes. Sirtuin-1 (SIRT1) is a NAD + -dependent deacetylase that protects against pancreatic β-cell dysfunction; however, systemic levels are decreased in obese-T2D mice and may promote pro-apoptotic ceramide synthesis and hyperglycaemia. Herein, we aimed to assess the effects of restoring circulating SIRT1 levels to prevent metabolic imbalance in obese and diabetic mice. METHODS AND RESULTS Circulating SIRT1 levels were reduced in obese-diabetic mice (db/db) as compared to age-matched non-diabetic db/+ controls. Restoration of SIRT1 plasma levels with recombinant murine SIRT1 for 4 weeks prevented body weight gain and improved glucose tolerance, insulin sensitivity, and vascular function in mice models of obesity and T2D. Untargeted lipidomics revealed that SIRT1 restored insulin secretory function of β-cells by reducing synthesis and accumulation of pro-apoptotic ceramides. Molecular mechanisms involved direct binding to and deacetylation of Toll-like receptor 4 (TLR4) by SIRT1 in β-cells, thereby decreasing the rate-limiting enzymes of sphingolipid synthesis SPTLC1/2 via AKT/NF-κB. Among patients with T2D, those with high baseline plasma levels of SIRT1 prior to metabolic surgery displayed restored β-cell function (HOMA2-β) and were more likely to have T2D remission during follow-up. CONCLUSION Acetylation of TLR4 promotes β-cell dysfunction via ceramide synthesis in T2D, which is blunted by systemic SIRT1 replenishment. Hence, restoration of systemic SIRT1 may provide a novel therapeutic strategy to counteract toxic ceramide synthesis and mitigate CV complications of T2D.
Collapse
Affiliation(s)
- Srividya Velagapudi
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
| | - Gergely Karsai
- Institute of Clinical Chemistry, University Hospital Zürich, Zürich, Switzerland
| | - Maria Karsai
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zürich and University of Zürich, Zürich, Switzerland
| | - Shafeeq A Mohammed
- Department of Cardiology, Center for Translational and Experimental Cardiology (CTEC), Zurich University Hospital and University of Zürich, Zürich, Switzerland
| | - Fabrizio Montecucco
- Department of Internal Medicine, First Clinic of Internal Medicine, University of Genoa School of Medicine, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, Genoa, Italy
| | - Luca Liberale
- Department of Internal Medicine, First Clinic of Internal Medicine, University of Genoa School of Medicine, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, Genoa, Italy
| | - Hwan Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Federico Carbone
- Department of Internal Medicine, First Clinic of Internal Medicine, University of Genoa School of Medicine, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, Genoa, Italy
| | - Giovanni Francesco Adami
- Department of Internal Medicine, First Clinic of Internal Medicine, University of Genoa School of Medicine, Genoa, Italy
| | - Kangmin Yang
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
| | - Margot Crucet
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
| | - Sokrates Stein
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
| | - Franceso Paneni
- Department of Cardiology, Center for Translational and Experimental Cardiology (CTEC), Zurich University Hospital and University of Zürich, Zürich, Switzerland
| | | | - Hyun-Duk Jang
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Simon Kraler
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
| | - Daria Vdovenko
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
| | - Richard Arnold Züllig
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zürich and University of Zürich, Zürich, Switzerland
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
| | - Hyo-Soo Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Reijo Laaksonen
- Zora Biosciences and Finnish Cardiovascular Research Center, Finland Medical School, Tampere University, Tampere, Finland
| | - Philipp A Gerber
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zürich and University of Zürich, Zürich, Switzerland
| | - Thorsten Hornemann
- Institute of Clinical Chemistry, University Hospital Zürich, Zürich, Switzerland
| | - Alexander Akhmedov
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
- Royal Brompton and Harefield Hospitals, Imperial College and King's College, London, United Kingdom
| |
Collapse
|
5
|
Geng R, Guo J, Lao Y, Kang SG, Huang K, Tong T. Chronic UVB exposure induces hepatic injury in mice: Mechanistic insights from integrated multi-omics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124933. [PMID: 39265770 DOI: 10.1016/j.envpol.2024.124933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/28/2024] [Accepted: 09/08/2024] [Indexed: 09/14/2024]
Abstract
Chronic UVB exposure poses a significant threat to both skin and visceral health. In recent years, the adverse role of chronic UVB exposure in liver health has been suggested but not fully elucidated. This study aims to comprehensively investigate the effects of chronic UVB exposure on liver health in male SKH-1 hairless mice and clarify potential mechanisms through multi-omics approaches. The findings suggested that 10-week chronic skin exposure to UVB not only triggers hepatic inflammation and oxidative stress but also, more importantly, results in lipid metabolism abnormalities in the liver. Hepatic transcriptomic analysis revealed significant alterations in various signaling pathways and physiological processes associated with inflammation, oxidative stress, and lipid metabolism. Further lipidomic analysis illustrated significant changes in the metabolism of glycerolipids, sphingolipids, and glycerophospholipids in the liver following chronic UVB exposure. The 16S rRNA sequencing analysis indicated that chronic UVB exposure disrupts the structure and function of the microbiota. In search of potential mechanisms used by the microbiome to regulate the hepatic disease morphology, we filtered mouse fecal supernatants and cultured the supernatants with HepG2 cells. Fecal supernatant from UVB-exposed mice induced increased secretion of the inflammatory cytokine IL-8, accumulation of MDA, reduced SOD activity, and decreased lipid content in normal hepatic cells. In summary, skin chronic exposure to UVB induces multiple liver injuries and gut microbiota dysbiosis in mice and gut microbiota metabolites may be one of the contributing factors to hepatic injury caused by chronic UVB exposure. These discoveries deepen the comprehension of the health risks associated with chronic UVB exposure.
Collapse
Affiliation(s)
- Ruixuan Geng
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, 100083, China; Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China
| | - Jingya Guo
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, 100083, China; Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China
| | - Yujie Lao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, 100083, China; Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China
| | - Seong-Gook Kang
- Department of Food Engineering and Solar Salt Research Center, Mokpo National University, Muangun, 58554, Republic of Korea
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, 100083, China; Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China
| | - Tao Tong
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, 100083, China; Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China.
| |
Collapse
|
6
|
Jia W, Yuan J, Zhang J, Li S, Lin W, Cheng B. Bioactive sphingolipids as emerging targets for signal transduction in cancer development. Biochim Biophys Acta Rev Cancer 2024; 1879:189176. [PMID: 39233263 DOI: 10.1016/j.bbcan.2024.189176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Sphingolipids, crucial components of cellular membranes, play a vital role in maintaining cellular structure and signaling integrity. Disruptions in sphingolipid metabolism are increasingly implicated in cancer development. Key bioactive sphingolipids, such as ceramides, sphingosine-1-phosphate (S1P), ceramide-1-phosphate (C1P), and glycosphingolipids, profoundly impact tumor biology. They influence the behavior of tumor cells, stromal cells, and immune cells, affecting tumor aggressiveness, angiogenesis, immune modulation, and extracellular matrix remodeling. Furthermore, abnormal expression of sphingolipids and their metabolizing enzymes modulates the secretion of tumor-derived extracellular vesicles (TDEs), which are key players in creating an immunosuppressive tumor microenvironment, remodeling the extracellular matrix, and facilitating oncogenic signaling within in situ tumors and distant pre-metastatic niches (PMNs). Understanding the role of sphingolipids in the biogenesis of tumor-derived extracellular vesicles (TDEs) and their bioactive contents can pave the way for new biomarkers in cancer diagnosis and prognosis, ultimately enhancing comprehensive tumor treatment strategies.
Collapse
Affiliation(s)
- Wentao Jia
- Department of General Practice, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China
| | - Jiaying Yuan
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jinbo Zhang
- Department of Pharmacy, Tianjin Rehabilitation and Recuperation Center, Joint Logistics Support Force, Tianjin 300000, China
| | - Shu Li
- Department of Gastroenterology, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201900, China
| | - Wanfu Lin
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| | - Binbin Cheng
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| |
Collapse
|
7
|
Weber-Stout M, Nicholson RJ, Dumaguit CDC, Holland WL, Summers SA. Ceramide microdomains: the major influencers of the sphingolipid media platform. Biochem Soc Trans 2024; 52:1765-1776. [PMID: 39082976 DOI: 10.1042/bst20231395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Like 'influencers' who achieve fame and power through social media, ceramides are low abundance members of communication platforms that have a mighty impact on their surroundings. Ceramide microdomains form within sphingolipid-laden lipid rafts that confer detergent resistance to cell membranes and serve as important signaling hubs. In cells exposed to excessive amounts of saturated fatty acids (e.g. in obesity), the abundance of ceramide-rich microdomains within these rafts increases, leading to concomitant alterations in cellular metabolism and survival that contribute to cardiometabolic disease. In this mini-review, we discuss the evidence supporting the formation of these ceramide microdomains and describe the spectrum of harmful ceramide-driven metabolic actions under the context of an evolutionary theory. Moreover, we discuss the proximal 'followers' of these ceramide media stars that account for the diverse intracellular actions that allow them to influence obesity-linked disease.
Collapse
Affiliation(s)
- Mariah Weber-Stout
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, U.S.A
| | - Rebekah J Nicholson
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, U.S.A
| | - Carlos Dave C Dumaguit
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, U.S.A
| | - William L Holland
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, U.S.A
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, U.S.A
| |
Collapse
|
8
|
Roszczyc-Owsiejczuk K, Zabielski P, Imierska M, Pogodzińska K, Sadowska P, Błachnio-Zabielska A. Downregulation of CerS4 Instead of CerS2 in Liver Effectively Alleviates Hepatic Insulin Resistance in HFD Male Mice. Endocrinology 2024; 165:bqae118. [PMID: 39233348 DOI: 10.1210/endocr/bqae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/27/2024] [Accepted: 09/04/2024] [Indexed: 09/06/2024]
Abstract
OBJECTIVE Consumption of a high-fat diet (HFD) induces insulin resistance (IRes), significantly affecting the maintenance of normal glucose homeostasis. Nevertheless, despite decades of extensive research, the mechanisms and pathogenesis of IRes remain incomplete. Recent studies have primarily explored lipid intermediates such as diacylglycerol (DAG), given a limited knowledge about the role of ceramide (Cer), which is a potential mediator of the IRes in the liver. METHODS In order to investigate the role of Cer produced by CerS2 and CerS4 for the purpose of inducing the hepatic IRes, we utilized a unique in vivo model employing shRNA-mediated hydrodynamic gene delivery in the liver of HFD-fed C57BL/6J mice. RESULTS Downregulation of CerS4 instead of CerS2 reduced specific liver Cers, notably C18:0-Cer and C24:0-Cer, as well as acylcarnitine levels. It concurrently promoted glycogen accumulation, leading to enhanced insulin sensitivity and glucose homeostasis. CONCLUSION Those findings demonstrate that CerS4 downregulating lowers fasting blood glucose levels and mitigates the HFD-induced hepatic IRes. It suggests that inhibiting the CerS4-mediated C18:0-Cer synthesis holds a promise to effectively address insulin resistance in obesity.
Collapse
Affiliation(s)
- Kamila Roszczyc-Owsiejczuk
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Piotr Zabielski
- Department of Medical Biology, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Monika Imierska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Karolina Pogodzińska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Patrycja Sadowska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Agnieszka Błachnio-Zabielska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, 15-222 Bialystok, Poland
| |
Collapse
|
9
|
Mah MSM, Cao E, Anderson D, Escott A, Tegegne S, Gracia G, Schmitz J, Brodesser S, Zaph C, Creek DJ, Hong J, Windsor JA, Phillips ARJ, Trevaskis NL, Febbraio MA, Turpin-Nolan SM. High-fat feeding drives the intestinal production and assembly of C 16:0 ceramides in chylomicrons. SCIENCE ADVANCES 2024; 10:eadp2254. [PMID: 39178255 PMCID: PMC11343029 DOI: 10.1126/sciadv.adp2254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/19/2024] [Indexed: 08/25/2024]
Abstract
Consumption of a diet rich in saturated fat increases lipid absorption from the intestine, assembly into chylomicrons, and delivery to metabolic tissues via the lymphatic and circulatory systems. Accumulation of ceramide lipids, composed of sphingosine and a fatty acid, in metabolic tissues contributes to the pathogenesis of cardiovascular diseases, type 2 diabetes mellitus and cancer. Using a mesenteric lymph duct cannulated rat model, we showed that ceramides are generated by the intestine and assembled into chylomicrons, which are transported via the mesenteric lymphatic system. A lipidomic screen of intestinal-derived chylomicrons identified a diverse range of fatty acid, sphingolipid, and glycerolipid species that have not been previously detected in chylomicrons, including the metabolically deleterious C16:0 ceramide that increased in response to high-fat feeding in rats and human high-lipid meal replacement enteral feeding. In conclusion, high-fat feeding increases the export of intestinal-derived C16:0 ceramide in chylomicrons, identifying a potentially unknown mechanism through which ceramides are transported systemically to contribute to metabolic dysfunction.
Collapse
Affiliation(s)
- Michael SM Mah
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Enyuan Cao
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Dovile Anderson
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Alistair Escott
- Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- HBP/Upper GI Unit, Department of General Surgery, Auckland City Hospital, Auckland, New Zealand
| | - Surafel Tegegne
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Gracia Gracia
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Joel Schmitz
- Max Planck Institute for Metabolism and Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Cologne, Germany
| | - Susanne Brodesser
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cluster of Excellence Cellular Stress Responses in Aging associated Diseases (CECAD), Cologne, Germany
| | - Colby Zaph
- Biomedical Discovery Institute, Monash University, Melbourne, Australia
| | - Darren J. Creek
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Jiwon Hong
- Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - John A. Windsor
- Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- HBP/Upper GI Unit, Department of General Surgery, Auckland City Hospital, Auckland, New Zealand
| | - Anthony RJ Phillips
- Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Natalie L. Trevaskis
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Mark A. Febbraio
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Sarah M. Turpin-Nolan
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
10
|
Huang W, Wang H, Shen Z, Wang X, Yu X. Association between TyG index and risk of carotid atherosclerosis in NAFLD patients: a retrospective cohort study. Front Endocrinol (Lausanne) 2024; 15:1448359. [PMID: 39229376 PMCID: PMC11368734 DOI: 10.3389/fendo.2024.1448359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/01/2024] [Indexed: 09/05/2024] Open
Abstract
Background The TyG index, or triglyceride-glucose index, is primarily used as a marker to assess insulin resistance and metabolic health. It increases mortality risk in patients with NAFLD, atherosclerosis, ischemic stroke, or heart failure. However, its association with Carotid Atherosclerosis (CAS) risk in NAFLD patients remains uncertain. Methods This retrospective cohort study enrolled 739 individuals who participated comprehensive health evaluations at a large public hospital in Yangzhou, China, between January 2021 and December 2023. Among them, 436 were men and 303 were women, and their mean (SD) age was 51.53 ± 11.46 years. The individuals were categorized into three tertiles (Q1, Q2, and Q3), according to the baseline TyG index. Our investigation focused on exploring the correlativity between the TyG and the occurrence of CAS utilizing Cox regression and RCS analyses. Results During a 3-year follow-up period, 199 patients developed CAS (cumulative incidence rate: 26.93%). A statistical model, adjusted for age, gender, BMI, and other confounders indicated that the HR (95%CI) values for CAS risk in the Q2 and Q3 groups were 3.11(1.87-5.17) and 4.51(2.69-7.56), respectively, with P-values <0.001 for both groups. A sensitivity analysis confirmed these results. Kaplan-Meier survival analysis revealed that CAS risk varied across the groups (P non-linear < 0.05). Conclusion In individuals diagnosed as NAFLD, the possibility for CAS escalates with the elevation of the TyG value. Therefore, the TyG index is an effective marker for assessing the risk of CAS within this demographic. Large-sample prospective studies are needed to confirm this conclusion in the future.
Collapse
Affiliation(s)
- Wei Huang
- Health Management Center, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Hua Wang
- Department of Trauma Surgery, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Zhimei Shen
- Health Management Center, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Xu Wang
- Department of Trauma Surgery, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Xiaosong Yu
- Department of General Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
11
|
Caturano A, Galiero R, Vetrano E, Sardu C, Rinaldi L, Russo V, Monda M, Marfella R, Sasso FC. Insulin-Heart Axis: Bridging Physiology to Insulin Resistance. Int J Mol Sci 2024; 25:8369. [PMID: 39125938 PMCID: PMC11313400 DOI: 10.3390/ijms25158369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Insulin signaling is vital for regulating cellular metabolism, growth, and survival pathways, particularly in tissues such as adipose, skeletal muscle, liver, and brain. Its role in the heart, however, is less well-explored. The heart, requiring significant ATP to fuel its contractile machinery, relies on insulin signaling to manage myocardial substrate supply and directly affect cardiac muscle metabolism. This review investigates the insulin-heart axis, focusing on insulin's multifaceted influence on cardiac function, from metabolic regulation to the development of physiological cardiac hypertrophy. A central theme of this review is the pathophysiology of insulin resistance and its profound implications for cardiac health. We discuss the intricate molecular mechanisms by which insulin signaling modulates glucose and fatty acid metabolism in cardiomyocytes, emphasizing its pivotal role in maintaining cardiac energy homeostasis. Insulin resistance disrupts these processes, leading to significant cardiac metabolic disturbances, autonomic dysfunction, subcellular signaling abnormalities, and activation of the renin-angiotensin-aldosterone system. These factors collectively contribute to the progression of diabetic cardiomyopathy and other cardiovascular diseases. Insulin resistance is linked to hypertrophy, fibrosis, diastolic dysfunction, and systolic heart failure, exacerbating the risk of coronary artery disease and heart failure. Understanding the insulin-heart axis is crucial for developing therapeutic strategies to mitigate the cardiovascular complications associated with insulin resistance and diabetes.
Collapse
Affiliation(s)
- Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (E.V.); (C.S.); (R.M.)
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (E.V.); (C.S.); (R.M.)
| | - Erica Vetrano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (E.V.); (C.S.); (R.M.)
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (E.V.); (C.S.); (R.M.)
| | - Luca Rinaldi
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy;
| | - Vincenzo Russo
- Department of Biology, College of Science and Technology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA;
- Division of Cardiology, Department of Medical Translational Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Marcellino Monda
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (E.V.); (C.S.); (R.M.)
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (E.V.); (C.S.); (R.M.)
| |
Collapse
|
12
|
Zhu Q, Chen S, Funcke JB, Straub LG, Lin Q, Zhao S, Joung C, Zhang Z, Kim DS, Li N, Gliniak CM, Lee C, Cebrian-Serrano A, Pedersen L, Halberg N, Gordillo R, Kusminski CM, Scherer PE. PAQR4 regulates adipocyte function and systemic metabolic health by mediating ceramide levels. Nat Metab 2024; 6:1347-1366. [PMID: 38961186 DOI: 10.1038/s42255-024-01078-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/06/2024] [Indexed: 07/05/2024]
Abstract
PAQR4 is an orphan receptor in the PAQR family with an unknown function in metabolism. Here, we identify a critical role of PAQR4 in maintaining adipose tissue function and whole-body metabolic health. We demonstrate that expression of Paqr4 specifically in adipocytes, in an inducible and reversible fashion, leads to partial lipodystrophy, hyperglycaemia and hyperinsulinaemia, which is ameliorated by wild-type adipose tissue transplants or leptin treatment. By contrast, deletion of Paqr4 in adipocytes improves healthy adipose remodelling and glucose homoeostasis in diet-induced obesity. Mechanistically, PAQR4 regulates ceramide levels by mediating the stability of ceramide synthases (CERS2 and CERS5) and, thus, their activities. Overactivation of the PQAR4-CERS axis causes ceramide accumulation and impairs adipose tissue function through suppressing adipogenesis and triggering adipocyte de-differentiation. Blocking de novo ceramide biosynthesis rescues PAQR4-induced metabolic defects. Collectively, our findings suggest a critical function of PAQR4 in regulating cellular ceramide homoeostasis and targeting PAQR4 offers an approach for the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Qingzhang Zhu
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shiuhwei Chen
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jan-Bernd Funcke
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Leon G Straub
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qian Lin
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shangang Zhao
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Division of Endocrinology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Chanmin Joung
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhuzhen Zhang
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dae-Seok Kim
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Na Li
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christy M Gliniak
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Charlotte Lee
- Center for Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alberto Cebrian-Serrano
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Line Pedersen
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Nils Halberg
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Ruth Gordillo
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christine M Kusminski
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
13
|
Wilkerson JL, Tatum SM, Holland WL, Summers SA. Ceramides are fuel gauges on the drive to cardiometabolic disease. Physiol Rev 2024; 104:1061-1119. [PMID: 38300524 PMCID: PMC11381030 DOI: 10.1152/physrev.00008.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/02/2024] Open
Abstract
Ceramides are signals of fatty acid excess that accumulate when a cell's energetic needs have been met and its nutrient storage has reached capacity. As these sphingolipids accrue, they alter the metabolism and survival of cells throughout the body including in the heart, liver, blood vessels, skeletal muscle, brain, and kidney. These ceramide actions elicit the tissue dysfunction that underlies cardiometabolic diseases such as diabetes, coronary artery disease, metabolic-associated steatohepatitis, and heart failure. Here, we review the biosynthesis and degradation pathways that maintain ceramide levels in normal physiology and discuss how the loss of ceramide homeostasis drives cardiometabolic pathologies. We highlight signaling nodes that sense small changes in ceramides and in turn reprogram cellular metabolism and stimulate apoptosis. Finally, we evaluate the emerging therapeutic utility of these unique lipids as biomarkers that forecast disease risk and as targets of ceramide-lowering interventions that ameliorate disease.
Collapse
Affiliation(s)
- Joseph L Wilkerson
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Sean M Tatum
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - William L Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
14
|
Portincasa P, Khalil M, Mahdi L, Perniola V, Idone V, Graziani A, Baffy G, Di Ciaula A. Metabolic Dysfunction-Associated Steatotic Liver Disease: From Pathogenesis to Current Therapeutic Options. Int J Mol Sci 2024; 25:5640. [PMID: 38891828 PMCID: PMC11172019 DOI: 10.3390/ijms25115640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
The epidemiological burden of liver steatosis associated with metabolic diseases is continuously growing worldwide and in all age classes. This condition generates possible progression of liver damage (i.e., inflammation, fibrosis, cirrhosis, hepatocellular carcinoma) but also independently increases the risk of cardio-metabolic diseases and cancer. In recent years, the terminological evolution from "nonalcoholic fatty liver disease" (NAFLD) to "metabolic dysfunction-associated fatty liver disease" (MAFLD) and, finally, "metabolic dysfunction-associated steatotic liver disease" (MASLD) has been paralleled by increased knowledge of mechanisms linking local (i.e., hepatic) and systemic pathogenic pathways. As a consequence, the need for an appropriate classification of individual phenotypes has been oriented to the investigation of innovative therapeutic tools. Besides the well-known role for lifestyle change, a number of pharmacological approaches have been explored, ranging from antidiabetic drugs to agonists acting on the gut-liver axis and at a systemic level (mainly farnesoid X receptor (FXR) agonists, PPAR agonists, thyroid hormone receptor agonists), anti-fibrotic and anti-inflammatory agents. The intrinsically complex pathophysiological history of MASLD makes the selection of a single effective treatment a major challenge, so far. In this evolving scenario, the cooperation between different stakeholders (including subjects at risk, health professionals, and pharmaceutical industries) could significantly improve the management of disease and the implementation of primary and secondary prevention measures. The high healthcare burden associated with MASLD makes the search for new, effective, and safe drugs a major pressing need, together with an accurate characterization of individual phenotypes. Recent and promising advances indicate that we may soon enter the era of precise and personalized therapy for MASLD/MASH.
Collapse
Affiliation(s)
- Piero Portincasa
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| | - Laura Mahdi
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| | - Valeria Perniola
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| | - Valeria Idone
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
- Aboca S.p.a. Società Agricola, 52037 Sansepolcro, Italy
| | - Annarita Graziani
- Institut AllergoSan Pharmazeutische Produkte Forschungs- und Vertriebs GmbH, 8055 Graz, Austria;
| | - Gyorgy Baffy
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
- Section of Gastroenterology, Department of Medicine, VA Boston Healthcare System, Boston, MA 02132, USA
| | - Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| |
Collapse
|
15
|
Schwärzler J, Grabherr F, Grander C, Adolph TE, Tilg H. The pathophysiology of MASLD: an immunometabolic perspective. Expert Rev Clin Immunol 2024; 20:375-386. [PMID: 38149354 DOI: 10.1080/1744666x.2023.2294046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/08/2023] [Indexed: 12/28/2023]
Abstract
INTRODUCTION Metabolic-associated liver diseases have emerged pandemically across the globe and are clinically related to metabolic disorders such as obesity and type 2 diabetes. The new nomenclature and definition (i.e. metabolic dysfunction-associated steatotic liver disease - MASLD; metabolic dysfunction-associated steatohepatitis - MASH) reflect the nature of these complex systemic disorders, which are characterized by inflammation, gut dysbiosis and metabolic dysregulation. In this review, we summarize recent advantages in understanding the pathophysiology of MASLD, which we parallel to emerging therapeutic concepts. AREAS COVERED We summarize the pathophysiologic concepts of MASLD and its transition to MASH and subsequent advanced sequelae of diseases. Furthermore, we highlight how dietary constituents, microbes and associated metabolites, metabolic perturbations, and immune dysregulation fuel lipotoxicity, hepatic inflammation, liver injury, insulin resistance, and systemic inflammation. Deciphering the intricate pathophysiologic processes that contribute to the development and progression of MASLD is essential to develop targeted therapeutic approaches to combat this escalating burden for health-care systems. EXPERT OPINION The rapidly increasing prevalence of metabolic dysfunction-associated steatotic liver disease challenges health-care systems worldwide. Understanding pathophysiologic traits is crucial to improve the prevention and treatment of this disorder and to slow progression into advanced sequelae such as cirrhosis and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Julian Schwärzler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Felix Grabherr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Grander
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
16
|
Bae JC, Wander PL, Lemaitre RN, Fretts AM, Sitlani CM, Bui HH, Thomas MK, Leonetti D, Fujimoto WY, Boyko EJ, Utzschneider KM. Associations of plasma sphingolipids with measures of insulin sensitivity, β-cell function, and incident diabetes in Japanese Americans. Nutr Metab Cardiovasc Dis 2024; 34:633-641. [PMID: 38161124 PMCID: PMC10922320 DOI: 10.1016/j.numecd.2023.10.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND AND AIMS To prospectively investigate associations of plasma sphingolipids with insulin sensitivity, β-cell function, and incident diabetes in the Japanese American Community Diabetes Study. METHODS AND RESULTS Baseline plasma samples from adults without diabetes (n = 349; mean age 56.7 years, 51 % men) were assayed for circulating ceramide and sphingomyelin species. Adjusted regression models examined cross-sectional and longitudinal associations with insulin sensitivity (HOMA2-%S), β-cell function (oral disposition index: DIo) and with incident diabetes over 5 years follow-up. Concentrations of four species (Ceramide C16:0, C18:0, C20:0, and C22:0) were inversely associated with HOMA2-%S at baseline (all P values < 0.05, Q values < 0.05) and change in HOMA2-%S over 5 years (all P values < 0.05, Q values < 0.05). No sphingolipids were associated with baseline or change in DIo. Of the four species associated with HOMA2-%S, only Ceramide C18:0 was significantly and positively associated with incident diabetes (RR/1SD 1.44, 95 % CI 1.10-1.80, P = 0.006, Q = 0.024). The association of plasma Ceramide C18:0 with the risk of diabetes was partially mediated by change in HOMA2-%S between baseline and 5 years (mediation proportion: 61.5 %, 95 % CI 21.1%-212.5 %). CONCLUSION Plasma Ceramide C18:0 was associated with higher risk of incident diabetes which was partially mediated through a decrease in insulin sensitivity between baseline and five years. Circulating Ceramide C18:0 could be a potential biomarker for identifying those at risk of developing diabetes.
Collapse
Affiliation(s)
- Ji Cheol Bae
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, South Korea
| | - Pandora L Wander
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
| | - Rozenn N Lemaitre
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Amanda M Fretts
- Department of Epidemiology, University of Washington, Seattle, WA, United States
| | - Colleen M Sitlani
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Hai H Bui
- Eli Lilly and Company, Indianapolis, IN, United States
| | | | - Donna Leonetti
- Department of Anthropology, University of Washington, Seattle, WA, United States
| | - Wilfred Y Fujimoto
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Edward J Boyko
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States; Department of Medicine, University of Washington, Seattle, WA, United States
| | - Kristina M Utzschneider
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States; Department of Medicine, University of Washington, Seattle, WA, United States.
| |
Collapse
|
17
|
Mourad S, Abdualkader AM, Li X, Jani S, Ceddia RB, Al Batran R. A high-fat diet supplemented with medium-chain triglycerides ameliorates hepatic steatosis by reducing ceramide and diacylglycerol accumulation in mice. Exp Physiol 2024; 109:350-364. [PMID: 38192209 PMCID: PMC10988743 DOI: 10.1113/ep091545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is projected to be the most common chronic liver disease worldwide and is closely linked to obesity, insulin resistance and type 2 diabetes. Currently, no pharmacological treatments are available to treat NAFLD, and lifestyle modification, including dietary interventions, is the only remedy. Therefore, we conducted a study to determine whether supplementation with medium-chain triglycerides (MCTs), containing a mixture of C8 and C10 (60/40), attenuates NAFLD in obese and insulin-resistant mice. To achieve that, we fed C57BL/6 male mice a high-fat diet (HFD) for 12 weeks to induce obesity and hepatic steatosis, after which obese mice were assigned randomly either to remain on the HFD or to transition to an HFD supplemented with MCTs (HFD + MCTs) or a low-fat diet (LFD) for 6 weeks as another dietary intervention model. Another group of mice was kept on an LFD throughout the study and used as a lean control group. Obese mice that transitioned to HFD + MCTs exhibited improvement in glucose and insulin tolerance tests, and the latter improvement was independent of changes in adiposity when compared with HFD-fed mice. Additionally, supplementation with MCTs significantly reduced hepatic steatosis, improved liver enzymes and decreased hepatic expression of inflammation-related genes to levels similar to those observed in obese mice transitioned to an LFD. Importantly, HFD + MCTs markedly lowered hepatic ceramide and diacylglycerol content and prevented protein kinase C-ε translocation to the plasma membrane. Our study demonstrated that supplementation with MCTs formulated mainly from C8 and C10 effectively ameliorated NAFLD in obese mice.
Collapse
Affiliation(s)
- Stephanie Mourad
- Faculty of PharmacyUniversité de MontréalMontréalQuebecCanada
- Montreal Diabetes Research CenterMontréalQuebecCanada
- Cardiometabolic Health, Diabetes and Obesity Research NetworkMontréalQuebecCanada
| | - Abdualrahman Mohammed Abdualkader
- Faculty of PharmacyUniversité de MontréalMontréalQuebecCanada
- Montreal Diabetes Research CenterMontréalQuebecCanada
- Cardiometabolic Health, Diabetes and Obesity Research NetworkMontréalQuebecCanada
| | - Xiaobei Li
- Faculty of PharmacyUniversité de MontréalMontréalQuebecCanada
- Montreal Diabetes Research CenterMontréalQuebecCanada
- Cardiometabolic Health, Diabetes and Obesity Research NetworkMontréalQuebecCanada
| | - Shailee Jani
- Muscle Health Research Center, School of Kinesiology and Health ScienceYork UniversityNorth YorkOntarioCanada
| | - Rolando B. Ceddia
- Muscle Health Research Center, School of Kinesiology and Health ScienceYork UniversityNorth YorkOntarioCanada
| | - Rami Al Batran
- Faculty of PharmacyUniversité de MontréalMontréalQuebecCanada
- Montreal Diabetes Research CenterMontréalQuebecCanada
- Cardiometabolic Health, Diabetes and Obesity Research NetworkMontréalQuebecCanada
| |
Collapse
|
18
|
Zhao Y, Zhao H, Li L, Yu S, Liu M, Jiang L. Ceramide on the road to insulin resistance and immunometabolic disorders in transition dairy cows: driver or passenger? Front Immunol 2024; 14:1321597. [PMID: 38274826 PMCID: PMC10808295 DOI: 10.3389/fimmu.2023.1321597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Dairy cows must undergo profound metabolic and endocrine adaptations during their transition period to meet the nutrient requirements of the developing fetus, parturition, and the onset of lactation. Insulin resistance in extrahepatic tissues is a critical component of homeorhetic adaptations in periparturient dairy cows. However, due to increased energy demands at calving that are not followed by a concomitant increase in dry matter intake, body stores are mobilized, and the risk of metabolic disorders dramatically increases. Sphingolipid ceramides involved in multiple vital biological processes, such as proliferation, differentiation, apoptosis, and inflammation. Three typical pathways generate ceramide, and many factors contribute to its production as part of the cell's stress response. Based on lipidomic profiling, there has generally been an association between increased ceramide content and various disease outcomes in rodents. Emerging evidence shows that ceramides might play crucial roles in the adaptive metabolic alterations accompanying the initiation of lactation in dairy cows. A series of studies also revealed a negative association between circulating ceramides and systemic insulin sensitivity in dairy cows experiencing severe negative energy balance. Whether ceramide acts as a driver or passenger in the metabolic stress of periparturient dairy cows is an unknown but exciting topic. In the present review, we discuss the potential roles of ceramides in various metabolic dysfunctions and the impacts of their perturbations. We also discuss how this novel class of bioactive sphingolipids has drawn interest in extrahepatic tissue insulin resistance and immunometabolic disorders in transition dairy cows. We also discuss the possible use of ceramide as a new biomarker for predicting metabolic diseases in cows and highlight the remaining problems.
Collapse
Affiliation(s)
| | | | | | | | | | - Linshu Jiang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
19
|
Li Z, Zheng D, Zhang T, Ruan S, Li N, Yu Y, Peng Y, Wang D. The roles of nuclear receptors in cholesterol metabolism and reverse cholesterol transport in nonalcoholic fatty liver disease. Hepatol Commun 2024; 8:e0343. [PMID: 38099854 PMCID: PMC10727660 DOI: 10.1097/hc9.0000000000000343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/28/2023] [Indexed: 12/18/2023] Open
Abstract
As the most prevalent chronic liver disease globally, NAFLD encompasses a pathological process that ranges from simple steatosis to NASH, fibrosis, cirrhosis, and HCC, closely associated with numerous extrahepatic diseases. While the initial etiology was believed to be hepatocyte injury caused by lipid toxicity from accumulated triglycerides, recent studies suggest that an imbalance of cholesterol homeostasis is of greater significance. The role of nuclear receptors in regulating liver cholesterol homeostasis has been demonstrated to be crucial. This review summarizes the roles and regulatory mechanisms of nuclear receptors in the 3 main aspects of cholesterol production, excretion, and storage in the liver, as well as their cross talk in reverse cholesterol transport. It is hoped that this review will offer new insights and theoretical foundations for the study of the pathogenesis and progression of NAFLD and provide new research directions for extrahepatic diseases associated with NAFLD.
Collapse
|
20
|
Carobbio S, Pellegrinelli V, Vidal-Puig A. Adipose Tissue Dysfunction Determines Lipotoxicity and Triggers the Metabolic Syndrome: Current Challenges and Clinical Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:231-272. [PMID: 39287854 DOI: 10.1007/978-3-031-63657-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The adipose tissue organ is organised as distinct anatomical depots located all along the body axis, and it is constituted of three different types of adipocytes: white, beige and brown, which are integrated with vascular, immune, neural, and extracellular stroma cells. These distinct adipocytes serve different specialised functions. The main function of white adipocytes is to ensure healthy storage of excess nutrients/energy and its rapid mobilisation to supply the demand of energy imposed by physiological cues in other organs, whereas brown and beige adipocytes are designed for heat production through uncoupling lipid oxidation from energy production. The concerted action of the three types of adipocytes/tissues ensures an optimal metabolic status. However, when one or several of these adipose depots become dysfunctional because of sustained lipid/nutrient overload, then insulin resistance and associated metabolic complications ensue. These metabolic alterations close a vicious cycle that negatively affects the adipose tissue functionality and compromises global metabolic homeostasis. Optimising white adipose tissue expandability and ensuring its functional metabolic flexibility and/or promoting brown/beige mediated thermogenic activity are complementary strategies that counteract obesity and its associated lipotoxic metabolic effects. However, the development of these therapeutic approaches requires a deep understanding of adipose tissue in all broad aspects. In this chapter, we will discuss the characteristics of the different adipose tissue depots with respect to origins and precursors recruitment, plasticity, cellular composition, and expandability capacity potential as well as molecular and metabolic characteristic signatures in both physiological and pathophysiological conditions. Current antilipotoxic strategies for future clinical application are also discussed in this chapter.
Collapse
Affiliation(s)
- Stefania Carobbio
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- Centro de Investigación Principe Felipe, Valencia, Spain.
| | - Vanessa Pellegrinelli
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- Centro de Investigación Principe Felipe, Valencia, Spain.
| |
Collapse
|
21
|
Syed-Abdul MM. Lipid Metabolism in Metabolic-Associated Steatotic Liver Disease (MASLD). Metabolites 2023; 14:12. [PMID: 38248815 PMCID: PMC10818604 DOI: 10.3390/metabo14010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Metabolic-associated steatotic liver disease (MASLD) is a cluster of pathological conditions primarily developed due to the accumulation of ectopic fat in the hepatocytes. During the severe form of the disease, i.e., metabolic-associated steatohepatitis (MASH), accumulated lipids promote lipotoxicity, resulting in cellular inflammation, oxidative stress, and hepatocellular ballooning. If left untreated, the advanced form of the disease progresses to fibrosis of the tissue, resulting in irreversible hepatic cirrhosis or the development of hepatocellular carcinoma. Although numerous mechanisms have been identified as significant contributors to the development and advancement of MASLD, altered lipid metabolism continues to stand out as a major factor contributing to the disease. This paper briefly discusses the dysregulation in lipid metabolism during various stages of MASLD.
Collapse
Affiliation(s)
- Majid Mufaqam Syed-Abdul
- Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, ON M5G 1L7, Canada
| |
Collapse
|
22
|
Jeon S, Scorletti E, Dempsey J, Buyco D, Lin C, Saiman Y, Bayen S, Harkin J, Martin J, Hooks R, Ogretmen B, Argemi J, Melo L, Bataller R, Carr RM. Ceramide synthase 6 (CerS6) is upregulated in alcohol-associated liver disease and exhibits sex-based differences in the regulation of energy homeostasis and lipid droplet accumulation. Mol Metab 2023; 78:101804. [PMID: 37714377 PMCID: PMC10561121 DOI: 10.1016/j.molmet.2023.101804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023] Open
Abstract
OBJECTIVE Alcohol-associated liver disease (ALD) is the leading cause of liver-related mortality worldwide. Current strategies to manage ALD focus largely on advanced stage disease, however, metabolic changes such as glucose intolerance are apparent at the earliest stage of alcoholic steatosis and increase the risk of disease progression. Ceramides impair insulin signaling and accumulate in ALD, and metabolic pathways involving ceramide synthase 6 (CerS6) are perturbed in ALD during hepatic steatosis. In this study, we aimed to investigate the role of CerS6 in ALD development and the relevance of CerS6 to human ALD. METHODS C57BL/6 WT and CerS6 KO mice of both sexes were fed either a Lieber-DeCarli control (CON) or 15% ethanol (EtOH) diet for six weeks. In vivo metabolic tests including glucose and insulin tolerance tests (GTT and ITT) and energy expenditure were performed. The mice were euthanized, and serum and liver lipids and liver histology were examined. For in vitro studies, CerS6 was deleted in human hepatocytes, VL17A and cells were incubated with EtOH and/or C16:0-ceramides. RNAseq analysis was performed in livers from mice and human patients with different stages of ALD and diseased controls. RESULTS After six weeks on an EtOH diet, CerS6 KO mice had reduced body weight, food intake, and %fat mass compared to WT mice. Energy expenditure increased in both male and female KO mice, however, was only statistically significant in male mice. In response to EtOH, WT mice developed mild hepatic steatosis, while steatosis was ameliorated in KO mice as determined by H&E and ORO staining. KO mice showed significantly decreased long-chain ceramide species, especially C16:0-ceramides, in the serum and liver tissues compared to WT mice. CerS6 deletion decreased serum TG and NEFA only in male not female mice. CerS6 deletion improved glucose tolerance and insulin resistance in EtOH-fed mice of both sexes. RNAseq analysis revealed that 74 genes are significantly upregulated and 66 genes are downregulated by CerS6 deletion in EtOH-fed male mice, with key network pathways including TG biosynthetic process, positive regulation of lipid localization, and fat cell differentiation. Similar to RNAseq results, absence of CerS6 significantly decreased mRNA expression of lipid droplet associated proteins in EtOH-fed mice. In vitro, EtOH stimulation significantly increased PLIN2 protein expression in VL17A cells while CerS6 deletion inhibited EtOH-mediated PLIN2 upregulation. C16:0-ceramide treatment significantly increased PLIN2 protein expression compared to CON. Notably, progression of ALD in humans was associated with increased hepatic CerS6 expression. CONCLUSIONS Our findings demonstrate that CerS6 deletion improves glucose homeostasis in alcohol-fed mice and exhibits sex-based differences in the attenuation of EtOH-induced weight gain and hepatic steatosis. Additionally, we unveil that CerS6 plays a major role as a regulator of lipid droplet biogenesis in alcohol-induced intra-hepatic lipid droplet formation, identifying it as a putative target for early ALD management.
Collapse
Affiliation(s)
- Sookyoung Jeon
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA, USA; Department of Food Science & Nutrition and the Korean Institute of Nutrition, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Eleonora Scorletti
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph Dempsey
- Division of Gastroenterology, University of Washington, Seattle, WA, USA
| | - Delfin Buyco
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA, USA
| | - Chelsea Lin
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA, USA
| | - Yedidya Saiman
- Department of Medicine, Section of Hepatology, Lewis Katz School of Medicine Temple University, Philadelphia, PA, USA
| | - Susovon Bayen
- Division of Gastroenterology, University of Washington, Seattle, WA, USA
| | - Julia Harkin
- Division of Gastroenterology, University of Washington, Seattle, WA, USA
| | - Jasmin Martin
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA, USA
| | - Royce Hooks
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA, USA
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Josepmaria Argemi
- Center for Liver Diseases, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Luma Melo
- Center for Liver Diseases, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Ramon Bataller
- Center for Liver Diseases, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Rotonya M Carr
- Division of Gastroenterology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
23
|
Hammerschmidt P, Steculorum SM, Bandet CL, Del Río-Martín A, Steuernagel L, Kohlhaas V, Feldmann M, Varela L, Majcher A, Quatorze Correia M, Klar RFU, Bauder CA, Kaya E, Porniece M, Biglari N, Sieben A, Horvath TL, Hornemann T, Brodesser S, Brüning JC. CerS6-dependent ceramide synthesis in hypothalamic neurons promotes ER/mitochondrial stress and impairs glucose homeostasis in obese mice. Nat Commun 2023; 14:7824. [PMID: 38016943 PMCID: PMC10684560 DOI: 10.1038/s41467-023-42595-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/17/2023] [Indexed: 11/30/2023] Open
Abstract
Dysregulation of hypothalamic ceramides has been associated with disrupted neuronal pathways in control of energy and glucose homeostasis. However, the specific ceramide species promoting neuronal lipotoxicity in obesity have remained obscure. Here, we find increased expression of the C16:0 ceramide-producing ceramide synthase (CerS)6 in cultured hypothalamic neurons exposed to palmitate in vitro and in the hypothalamus of obese mice. Conditional deletion of CerS6 in hypothalamic neurons attenuates high-fat diet (HFD)-dependent weight gain and improves glucose metabolism. Specifically, CerS6 deficiency in neurons expressing pro-opiomelanocortin (POMC) or steroidogenic factor 1 (SF-1) alters feeding behavior and alleviates the adverse metabolic effects of HFD feeding on insulin sensitivity and glucose tolerance. POMC-expressing cell-selective deletion of CerS6 prevents the diet-induced alterations of mitochondrial morphology and improves cellular leptin sensitivity. Our experiments reveal functions of CerS6-derived ceramides in hypothalamic lipotoxicity, altered mitochondrial dynamics, and ER/mitochondrial stress in the deregulation of food intake and glucose metabolism in obesity.
Collapse
Affiliation(s)
- Philipp Hammerschmidt
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Sophie M Steculorum
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Max Planck Institute for Metabolism Research, Research Group Neurocircuit Wiring and Function, Cologne, Germany
- National Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Cécile L Bandet
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Almudena Del Río-Martín
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Lukas Steuernagel
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Vivien Kohlhaas
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Marvin Feldmann
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Luis Varela
- Yale Center for Molecular and Systems Metabolism, Department of Comparative Medicine, Yale University School of Medicine, 310 Cedar St., BML 330, New Haven, CT, 06520, USA
- Laboratory of Glia-Neuron Interactions in the Control of Hunger. Achucarro Basque Center for Neuroscience, Leioa, 48940, Spain
- Ikerbasque-Basque Foundation for Science, Bilbao, 48013, Spain
| | - Adam Majcher
- Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
- Institute of Clinical Chemistry, University Hospital, Zürich, Switzerland
| | - Marta Quatorze Correia
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
| | - Rhena F U Klar
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
| | - Corinna A Bauder
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Ecem Kaya
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Marta Porniece
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Nasim Biglari
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Anna Sieben
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Tamas L Horvath
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Yale Center for Molecular and Systems Metabolism, Department of Comparative Medicine, Yale University School of Medicine, 310 Cedar St., BML 330, New Haven, CT, 06520, USA
- Laboratory of Glia-Neuron Interactions in the Control of Hunger. Achucarro Basque Center for Neuroscience, Leioa, 48940, Spain
- Ikerbasque-Basque Foundation for Science, Bilbao, 48013, Spain
| | - Thorsten Hornemann
- Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
- Institute of Clinical Chemistry, University Hospital, Zürich, Switzerland
| | - Susanne Brodesser
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Jens C Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany.
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
- National Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany.
| |
Collapse
|
24
|
Zhao Y, Xiong W, Li C, Zhao R, Lu H, Song S, Zhou Y, Hu Y, Shi B, Ge J. Hypoxia-induced signaling in the cardiovascular system: pathogenesis and therapeutic targets. Signal Transduct Target Ther 2023; 8:431. [PMID: 37981648 PMCID: PMC10658171 DOI: 10.1038/s41392-023-01652-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 11/21/2023] Open
Abstract
Hypoxia, characterized by reduced oxygen concentration, is a significant stressor that affects the survival of aerobic species and plays a prominent role in cardiovascular diseases. From the research history and milestone events related to hypoxia in cardiovascular development and diseases, The "hypoxia-inducible factors (HIFs) switch" can be observed from both temporal and spatial perspectives, encompassing the occurrence and progression of hypoxia (gradual decline in oxygen concentration), the acute and chronic manifestations of hypoxia, and the geographical characteristics of hypoxia (natural selection at high altitudes). Furthermore, hypoxia signaling pathways are associated with natural rhythms, such as diurnal and hibernation processes. In addition to innate factors and natural selection, it has been found that epigenetics, as a postnatal factor, profoundly influences the hypoxic response and progression within the cardiovascular system. Within this intricate process, interactions between different tissues and organs within the cardiovascular system and other systems in the context of hypoxia signaling pathways have been established. Thus, it is the time to summarize and to construct a multi-level regulatory framework of hypoxia signaling and mechanisms in cardiovascular diseases for developing more therapeutic targets and make reasonable advancements in clinical research, including FDA-approved drugs and ongoing clinical trials, to guide future clinical practice in the field of hypoxia signaling in cardiovascular diseases.
Collapse
Affiliation(s)
- Yongchao Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Weidong Xiong
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China
| | - Chaofu Li
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Ranzun Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Shuai Song
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - You Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Yiqing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
| | - Bei Shi
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| | - Junbo Ge
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
25
|
Denimal D, Béland-Bonenfant S, Pais-de-Barros JP, Rouland A, Bouillet B, Duvillard L, Vergès B, Petit JM. Plasma ceramides are associated with MRI-based liver fat content but not with noninvasive scores of liver fibrosis in patients with type 2 diabetes. Cardiovasc Diabetol 2023; 22:310. [PMID: 37940926 PMCID: PMC10634084 DOI: 10.1186/s12933-023-02049-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND There is growing evidence that ceramides play a significant role in the onset and progression of non-alcoholic fatty liver disease (NAFLD), a highly prevalent condition in patients with type 2 diabetes associated with hepatic and cardiovascular events. However, the relationship between plasma ceramide levels and NAFLD severity in type 2 diabetes remains unclear. The main purpose of the present study was to investigate whether circulating levels of ceramides in patients with type 2 diabetes are associated with liver steatosis assessed by the highly accurate magnetic resonance imaging proton density fat fraction (MRI-PDFF). The secondary objective was to assess the relationship between plasma ceramides and noninvasive scores of liver fibrosis. METHODS In this cross-sectional single-center study, plasma concentrations of 7 ceramides were measured by liquid chromatography-mass spectrometry in 255 patients with type 2 diabetes (GEPSAD cohort). Liver fat content was assessed by MRI-PDFF, and noninvasive scores of liver fibrosis (i.e. Fibrosis-4 index, NAFLD Fibrosis Score, FibroTest® and Fibrotic NASH Index) were calculated. A validation cohort of 80 patients with type 2 diabetes was also studied (LIRA-NAFLD cohort). RESULTS Liver steatosis, defined as a liver fat content > 5.56%, was found in 62.4 and 82.5% of individuals with type 2 diabetes in the GEPSAD and LIRA-NAFLD cohorts, respectively. In GEPSAD, MRI-PDFF-measured liver fat content was positively associated with plasma levels of total ceramides (r = 0.232, p = 0.0002), and 18:0, 20:0, 22:0 and 24:0 ceramides in univariate analysis (p ≤ 0.0003 for all). In multivariate analysis, liver fat content remained significantly associated with total ceramides (p = 0.001), 18:0 (p = 0.006), 22:0 (p = 0.0009) and 24:0 ceramides (p = 0.0001) in GEPSAD, independently of age, diabetes duration, body mass index and dyslipidemia. Overall, similar relationship between plasma ceramides and liver fat content was observed in the LIRA-NAFLD validation cohort. No significant association was found between plasma ceramides and noninvasive scores of fibrosis after adjustment for age in both cohorts. CONCLUSIONS Plasma ceramide levels are associated with liver steatosis in patients with type 2 diabetes, independently of traditional risk factors for NAFLD. The independent association between plasma ceramides and liver steatosis adds new insights regarding the relationship between ceramides and NAFLD in type 2 diabetes.
Collapse
Affiliation(s)
- Damien Denimal
- University of Burgundy, INSERM LNC UMR1231, Dijon, F-21000, France.
- Department of Biochemistry, CHU Dijon Bourgogne, Dijon, F-21079, France.
| | - Sarah Béland-Bonenfant
- University of Burgundy, INSERM LNC UMR1231, Dijon, F-21000, France
- Department of Endocrinology and Diabetology, CHU Dijon Bourgogne, Dijon, F-21000, France
| | | | - Alexia Rouland
- University of Burgundy, INSERM LNC UMR1231, Dijon, F-21000, France
- Department of Endocrinology and Diabetology, CHU Dijon Bourgogne, Dijon, F-21000, France
| | - Benjamin Bouillet
- University of Burgundy, INSERM LNC UMR1231, Dijon, F-21000, France
- Department of Endocrinology and Diabetology, CHU Dijon Bourgogne, Dijon, F-21000, France
| | - Laurence Duvillard
- University of Burgundy, INSERM LNC UMR1231, Dijon, F-21000, France
- Department of Biochemistry, CHU Dijon Bourgogne, Dijon, F-21079, France
| | - Bruno Vergès
- University of Burgundy, INSERM LNC UMR1231, Dijon, F-21000, France
- Department of Endocrinology and Diabetology, CHU Dijon Bourgogne, Dijon, F-21000, France
| | - Jean-Michel Petit
- University of Burgundy, INSERM LNC UMR1231, Dijon, F-21000, France
- Department of Endocrinology and Diabetology, CHU Dijon Bourgogne, Dijon, F-21000, France
| |
Collapse
|
26
|
Revelo X, Fredrickson G, Florczak K, Barrow F, Dietsche K, Wang H, Parthiban P, Almutlaq R, Adeyi O, Herman A, Bartolomucci A, Staley C, Jahansouz C, Williams J, Mashek D, Ikramuddin S. Hepatic lipid-associated macrophages mediate the beneficial effects of bariatric surgery against MASH. RESEARCH SQUARE 2023:rs.3.rs-3446960. [PMID: 37961666 PMCID: PMC10635378 DOI: 10.21203/rs.3.rs-3446960/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
For patients with obesity and metabolic syndrome, bariatric procedures such as vertical sleeve gastrectomy (VSG) have a clear benefit in ameliorating metabolic dysfunction-associated steatohepatitis (MASH). While the effects of bariatric surgeries have been mainly attributed to nutrient restriction and malabsorption, whether immuno-modulatory mechanisms are involved remains unclear. Here we report that VSG ameliorates MASH progression in a weight loss-independent manner. Single-cell RNA sequencing revealed that hepatic lipid-associated macrophages (LAMs) expressing the triggering receptor expressed on myeloid cells 2 (TREM2) increase their lysosomal activity and repress inflammation in response to VSG. Remarkably, TREM2 deficiency in mice ablates the reparative effects of VSG, suggesting that TREM2 is required for MASH resolution. Mechanistically, TREM2 prevents the inflammatory activation of macrophages and is required for their efferocytotic function. Overall, our findings indicate that bariatric surgery improves MASH through a reparative process driven by hepatic LAMs, providing insights into the mechanisms of disease reversal that may result in new therapies and improved surgical interventions.
Collapse
|
27
|
Liu Y, Wang D, Liu YP. Metabolite profiles of diabetes mellitus and response to intervention in anti-hyperglycemic drugs. Front Endocrinol (Lausanne) 2023; 14:1237934. [PMID: 38027178 PMCID: PMC10644798 DOI: 10.3389/fendo.2023.1237934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) has become a major health problem, threatening the quality of life of nearly 500 million patients worldwide. As a typical multifactorial metabolic disease, T2DM involves the changes and interactions of various metabolic pathways such as carbohydrates, amino acid, and lipids. It has been suggested that metabolites are not only the endpoints of upstream biochemical processes, but also play a critical role as regulators of disease progression. For example, excess free fatty acids can lead to reduced glucose utilization in skeletal muscle and induce insulin resistance; metabolism disorder of branched-chain amino acids contributes to the accumulation of toxic metabolic intermediates, and promotes the dysfunction of β-cell mitochondria, stress signal transduction, and apoptosis. In this paper, we discuss the role of metabolites in the pathogenesis of T2DM and their potential as biomarkers. Finally, we list the effects of anti-hyperglycemic drugs on serum/plasma metabolic profiles.
Collapse
Affiliation(s)
| | | | - Yi-Ping Liu
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|
28
|
Makki BE, Rahman S. Alzheimer's Disease in Diabetic Patients: A Lipidomic Prospect. Neuroscience 2023; 530:79-94. [PMID: 37652288 DOI: 10.1016/j.neuroscience.2023.08.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/04/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
Diabetes Mellitus (DM) and Alzheimer's disease (AD) have been two of the most common chronic diseases affecting people worldwide. Type 2 DM (T2DM) is a metabolic disease depicted by insulin resistance, dyslipidemia, and chronic hyperglycemia while AD is a neurodegenerative disease marked by Amyloid β (Aβ) accumulation, neurofibrillary tangles aggregation, and tau phosphorylation. Various clinical, epidemiological, and lipidomics studies have linked those diseases claiming shared pathological pathways raising the assumption that diabetic patients are at an increased risk of developing AD later in their lives. Insulin resistance is the tipping point beyond where advanced glycation end (AGE) products and free radicals are produced leading to oxidative stress and lipid peroxidation. Additionally, different types of lipids are playing a crucial role in the development and the relationship between those diseases. Lipidomics, an analysis of lipid structure, formation, and interactions, evidently exhibits these lipid changes and their direct and indirect effect on Aβ synthesis, insulin resistance, oxidative stress, and neuroinflammation. In this review, we have discussed the pathophysiology of T2DM and AD, the interconnecting pathological pathways they share, and the lipidomics where different lipids such as cholesterol, phospholipids, sphingolipids, and sulfolipids contribute to the underlying features of both diseases. Understanding their role can be beneficial for diagnostic purposes or introducing new drugs to counter AD.
Collapse
Affiliation(s)
| | - Sarah Rahman
- School of Medicine, Tehran University of Medical Sciences, Iran
| |
Collapse
|
29
|
Jiang X, Hu R, Huang Y, Xu Y, Zheng Z, Shi Y, Miao J, Liu Y. Fructose aggravates copper-deficiency-induced non-alcoholic fatty liver disease. J Nutr Biochem 2023; 119:109402. [PMID: 37311490 PMCID: PMC11186518 DOI: 10.1016/j.jnutbio.2023.109402] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 05/28/2023] [Accepted: 06/07/2023] [Indexed: 06/15/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD), is the most common cause of chronic liver disease, affecting 24% of the global population. Accumulating evidence demonstrates that copper deficiency (CuD) is implicated in the development of NAFLD, besides, high fructose consumption by promoting inflammation contributes to NAFLD. However, how CuD and/or fructose (Fru) causes NAFLD is not clearly delineated. The present study aims to investigate the role of CuD and/or fructose supplement on hepatic steatosis and hepatic injury. We established a CuD rat model by feeding weaning male Sprague-Dawley rats for 4 weeks with CuD diet. Fructose was supplemented in drinking water. We found the promoting role of CuD or Fructose (Fru) in the progress of NAFLD, which was aggravated by combination of the two. Furthermore, we presented the alteration of hepatic lipid profiles (including content, composition, and saturation), especially ceramide (Cer), cardiolipin (CL), phosphatidylcholine (PC) and phosphatidylethanolamine (PE) was closely associated with CuD and/or Fru fed induced-NAFLD in rat models. In conclusion, insufficient copper intake or excessive fructose supplement resulted in adverse effects on the hepatic lipid profile, and fructose supplement causes a further hepatic injury in CuD-induced NAFLD, which illuminated a better understanding of NAFLD.
Collapse
Affiliation(s)
- Xin Jiang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R. China
| | - Ruixiang Hu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Jinan University, Guangzhou, P.R. China
| | - Yipu Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R. China
| | - Yi Xu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R. China
| | - Zhirui Zheng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R. China
| | - Yuansen Shi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R. China
| | - Ji Miao
- Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
| | - Yun Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R. China.
| |
Collapse
|
30
|
Ali-Berrada S, Guitton J, Tan-Chen S, Gyulkhandanyan A, Hajduch E, Le Stunff H. Circulating Sphingolipids and Glucose Homeostasis: An Update. Int J Mol Sci 2023; 24:12720. [PMID: 37628901 PMCID: PMC10454113 DOI: 10.3390/ijms241612720] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Sphingolipids are a family of lipid molecules produced through different pathways in mammals. Sphingolipids are structural components of membranes, but in response to obesity, they are implicated in the regulation of various cellular processes, including inflammation, apoptosis, cell proliferation, autophagy, and insulin resistance which favors dysregulation of glucose metabolism. Of all sphingolipids, two species, ceramides and sphingosine-1-phosphate (S1P), are also found abundantly secreted into the bloodstream and associated with lipoproteins or extracellular vesicles. Plasma concentrations of these sphingolipids can be altered upon metabolic disorders and could serve as predictive biomarkers of these diseases. Recent important advances suggest that circulating sphingolipids not only serve as biomarkers but could also serve as mediators in the dysregulation of glucose homeostasis. In this review, advances of molecular mechanisms involved in the regulation of ceramides and S1P association to lipoproteins or extracellular vesicles and how they could alter glucose metabolism are discussed.
Collapse
Affiliation(s)
- Sarah Ali-Berrada
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; (S.A.-B.); (S.T.-C.); (A.G.)
- Institut Hospitalo-Universitaire ICAN, 75013 Paris, France
| | - Jeanne Guitton
- Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, CNRS UMR 9197, 91400 Saclay, France;
| | - Sophie Tan-Chen
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; (S.A.-B.); (S.T.-C.); (A.G.)
- Institut Hospitalo-Universitaire ICAN, 75013 Paris, France
| | - Anna Gyulkhandanyan
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; (S.A.-B.); (S.T.-C.); (A.G.)
- Institut Hospitalo-Universitaire ICAN, 75013 Paris, France
| | - Eric Hajduch
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; (S.A.-B.); (S.T.-C.); (A.G.)
- Institut Hospitalo-Universitaire ICAN, 75013 Paris, France
| | - Hervé Le Stunff
- Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, CNRS UMR 9197, 91400 Saclay, France;
| |
Collapse
|
31
|
Shao Y, Chen S, Han L, Liu J. Pharmacotherapies of NAFLD: updated opportunities based on metabolic intervention. Nutr Metab (Lond) 2023; 20:30. [PMID: 37415199 DOI: 10.1186/s12986-023-00748-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/22/2023] [Indexed: 07/08/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease that is becoming increasingly prevalent, and it ranges from simple steatosis to cirrhosis. However, there is still a lack of pharmacotherapeutic strategies approved by the Food and Drug Administration, which results in a higher risk of death related to carcinoma and cardiovascular complications. Of note, it is well established that the pathogenesis of NAFLD is tightly associated with whole metabolic dysfunction. Thus, targeting interconnected metabolic conditions could present promising benefits to NAFLD, according to a number of clinical studies. Here, we summarize the metabolic characteristics of the development of NAFLD, including glucose metabolism, lipid metabolism and intestinal metabolism, and provide insight into pharmacological targets. In addition, we present updates on the progresses in the development of pharmacotherapeutic strategies based on metabolic intervention globally, which could lead to new opportunities for NAFLD drug development.
Collapse
Affiliation(s)
- Yaodi Shao
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Suzhen Chen
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Liu Han
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Junli Liu
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
32
|
Wang G, Hong X, Yu J, Zhang Y, Li Y, Li Z, Zhu Z, Yuan S, Zhang X, Wang S, Zhu F, Wang Y, Wu C, Su P, Shen T. Enhancing de novo ceramide synthesis induced by bisphenol A exposure aggravates metabolic derangement during obesity. Mol Metab 2023; 73:101741. [PMID: 37225016 PMCID: PMC10250932 DOI: 10.1016/j.molmet.2023.101741] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023] Open
Abstract
OBJECTIVE Exposure to bisphenol A (BPA) has been shown to increase the prevalence of obesity and its related insulin resistance (IR). Ceramide is a sphingolipid known to facilitate the production of proinflammatory cytokines and subsequently exacerbate inflammation and IR during the progression of obesity. Here, we investigated the effects of BPA exposure on ceramide de novo synthesis and whether increased ceramides aggravate adipose tissue (AT) inflammation and obesity-related IR. METHODS A population-based case-control study was conducted to explore the relationship between BPA exposure and IR and the potential role of ceramide in AT in obesity. Next, we used mice reared on a normal chow diet (NCD) or a high-fat diet (HFD) to verify the results from the population study and then investigated the role of ceramides in low-level BPA exposure with HFD-induced IR and AT inflammation in mice treated with or without myriocin (an inhibitor of the rate-limiting enzyme in de novo ceramide synthesis). RESULTS BPA levels are higher in obese individuals and are significantly associated with AT inflammation and IR. Specific subtypes of ceramides mediated the associations between BPA and obesity, obesity-related IR and AT inflammation in the obesity group. In animal experiments, BPA exposure facilitated ceramide accumulation in AT, activated PKCζ, promoted AT inflammation, increased the expression and secretion of proinflammatory cytokines via the JNK/NF-κB pathway, and lowered insulin sensitivity by disrupting IRS1-PI3K-AKT signaling in mice fed a HFD. Myriocin suppressed BPA-induced AT inflammation and IR. CONCLUSION These findings indicate that BPA aggravates obesity-induced IR, which is partly via increased de novo synthesis of ceramides and subsequent promotion of AT inflammation. Ceramide synthesis could be a potential target for the prevention of environmental BPA exposure-related metabolic diseases.
Collapse
Affiliation(s)
- Gengfu Wang
- School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Xu Hong
- School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Jia Yu
- School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Yuheng Zhang
- School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Yuting Li
- School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Zuo Li
- School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Zhiyuan Zhu
- School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Shaoyun Yuan
- School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Xiaofei Zhang
- School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Sheng Wang
- Center for Scientific Research of Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Fuhai Zhu
- Second Affiliated Hospital, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Yong Wang
- Second Affiliated Hospital, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Changhao Wu
- Department of Biochemistry and Physiology, Faculty of Heath & Medical Sciences, University of Surrey, Surrey, Guildford, UK.
| | - Puyu Su
- School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China.
| | - Tong Shen
- School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China.
| |
Collapse
|
33
|
Li D, Tian L, Nan P, Zhang J, Zheng Y, Jia X, Gong Y, Wu Z. CerS6 triggered by high glucose activating the TLR4/IKKβ pathway regulates ferroptosis of LO2 cells through mitochondrial oxidative stress. Mol Cell Endocrinol 2023; 572:111969. [PMID: 37230220 DOI: 10.1016/j.mce.2023.111969] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 05/27/2023]
Abstract
Lipid metabolism disorders and mitochondrial dysfunction contribute to the progression of diabetes and chronic liver disease (CLD). Ferroptosis, as a form of cell death centered on reactive oxygen species (ROS) accumulation and lipid peroxidation, is closely related to mitochondrial dysfunction. However, whether there exists mechanistic links between these processes remains unknown. Here, to explore the molecular mechanism of diabetes complicated with CLD, we showed that high glucose could restrain the activity of antioxidant enzymes, promote mitochondrial ROS (mtROS) production, and induce a state of oxidative stress in the mitochondria of human normal liver (LO2) cells. We demonstrated that high glucose induced ferroptosis and promoted the development of CLD, which was reversed by the ferroptosis inhibitor Ferrostatin-1 (Fer-1). In addition, the mitochondria-targeting antioxidant Mito-TEMPO was used to intervene LO2 cells in high-glucose culture, and ferroptosis was found to be inhibited, whereas markers of liver injury and fibrosis improved. Furthermore, high glucose could promote ceramide synthetase 6 (CerS6) synthesis through the TLR4/IKKβ pathway. The knockout of CerS6 in LO2 cells showed that mitochondrial oxidative stress was attenuated, ferroptosis was inhibited, and markers of liver injury and fibrosis were ameliorated. In contrast, the overexpression of CerS6 in LO2 cells showed the opposite changes and these changes were inhibited by Mito-TEMPO. In short, we positioned the study of lipid metabolism to a specific enzyme CerS6, with a high degree of specificity. Our findings revealed the mechanism by which the mitochondria act as a bridge linking CerS6 and ferroptosis, confirming that under high glucose conditions, CerS6 promotes ferroptosis through mitochondrial oxidative stress, eventually leading to CLD.
Collapse
Affiliation(s)
- Dan Li
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Ling Tian
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Ping Nan
- Department of Obster & Gynecol, Shengli Oilfield Central Hospital, 31 Jinan Road, Dongying, 257000, Shandong, China
| | - Jun Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Yin Zheng
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Xinxin Jia
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Yihui Gong
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Zhongming Wu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Shandong Institute of Endocrine & Metabolic Diseases, Shandong First Medical University, Jinan, Shandong, 250021, China.
| |
Collapse
|
34
|
Rigamonti AE, Dei Cas M, Caroli D, De Col A, Cella SG, Paroni R, Sartorio A. Identification of a Specific Plasma Sphingolipid Profile in a Group of Normal-Weight and Obese Subjects: A Novel Approach for a "Biochemical" Diagnosis of Metabolic Syndrome? Int J Mol Sci 2023; 24:ijms24087451. [PMID: 37108620 PMCID: PMC10138812 DOI: 10.3390/ijms24087451] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Metabolic syndrome is nosographically defined by using clinical diagnostic criteria such as those of the International Diabetes Federation (IDF) ones, including visceral adiposity, blood hypertension, insulin resistance and dyslipidemia. Due to the pathophysiological implications of the cardiometabolic risk of the obese subject, sphingolipids, measured in the plasma, might be used to biochemically support the diagnosis of metabolic syndrome. A total of 84 participants, including normal-weight (NW) and obese subjects without (OB-SIMET-) and with (OB-SIMET+) metabolic syndrome, were included in the study, and sphingolipidomics, including ceramides (Cer), dihydroceramides (DHCer), hexosyl-ceramides (HexCer), lactosyl-ceramides (LacCer), sphingomyelins (SM) and GM3 ganglosides families, and sphingosine-1-phosphate (S1P) and its congeners, was performed in plasma. Only total DHCers and S1P were significantly higher in OB-SIMET+ than NW subjects (p < 0.05), while total Cers decreased in both obese groups, though statistical significance was reached only in OB-SIMET- (vs. NW) subjects (p < 0.05). When considering the comparisons of the single sphingolipid species in the obese groups (OB-SIMET- or OB-SIMET+) vs. NW subjects, Cer 24:0 was significantly decreased (p < 0.05), while Cer 24:1, DHCer 16:0, 18:0, 18:1 and 24:1, and SM 18:0, 18:1 and 24:1 were significantly increased (p < 0.05). Furthermore, taking into account the same groups for comparison, HexCer 22:0 and 24:0, and GM3 22:0 and 24:0 were significantly decreased (p < 0.05), while HexCer 24:1 and S1P were significantly increased (p < 0.05). After having analyzed all data via a PLS-DA-based approach, the subsequent determination of the VIP scores evidenced the existence of a specific cluster of 15 sphingolipids endowed with a high discriminating performance (i.e., VIP score > 1.0) among the three groups, including DHCer 18:0, DHCer 24:1, Cer 18:0, HexCer 22:0, GM3 24:0, Cer C24:1, SM 18:1, SM 18:0, DHCer 18:1, HexCer 24:0, SM 24:1, S1P, SM 16:0, HexCer 24:1 and LacCer 22:0. After having run a series of multiple linear regressions, modeled by inserting each sphingolipid having a VIP score > 1.0 as a dependent variable, and waist circumference (WC), systolic/diastolic blood pressures (SBP/DBP), homeostasis model assessment-estimated insulin resistance (HOMA-IR), high-density lipoprotein (HDL), triglycerides (TG) (surrogates of IDF criteria) and C-reactive protein (CRP) (a marker of inflammation) as independent variables, WC was significantly associated with DHCer 18:0, DHCer 24:1, Cer 18:0, HexCer 22:0, Cer 24:1, SM 18:1, and LacCer 22:0 (p < 0.05); SBP with Cer 18:0, Cer 24:1, and SM 18:0 (p < 0.05); HOMA-IR with DHCer 18:0, DHCer 24:1, Cer 18:0, Cer 24:1, SM 18:1, and SM 18:0 (p < 0.05); HDL with HexCer 22:0, and HexCer 24:0 (p < 0.05); TG with DHCer 18:1, DHCer 24:1, SM 18:1, and SM 16:0 (p < 0.05); CRP with DHCer 18:1, and SP1 (p < 0.05). In conclusion, a cluster of 15 sphingolipid species is able to discriminate, with high performance, NW, OB-SIMET- and OB-SIMET+ groups. Although (surrogates of) the IDF diagnostic criteria seem to predict only partially, but congruently, the observed sphingolipid signature, sphingolipidomics might represent a promising "biochemical" support for the clinical diagnosis of metabolic syndrome.
Collapse
Affiliation(s)
- Antonello E Rigamonti
- Department of Clinical Sciences and Community Health, University of Milan, 20129 Milan, Italy
| | - Michele Dei Cas
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Diana Caroli
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-Endocrinological Research, 28824 Piancavallo-Verbania, Italy
| | - Alessandra De Col
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-Endocrinological Research, 28824 Piancavallo-Verbania, Italy
| | - Silvano G Cella
- Department of Clinical Sciences and Community Health, University of Milan, 20129 Milan, Italy
| | - Rita Paroni
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Alessandro Sartorio
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-Endocrinological Research, 28824 Piancavallo-Verbania, Italy
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-Endocrinological Research, 20145 Milan, Italy
| |
Collapse
|
35
|
Klemetti MM, Alahari S, Post M, Caniggia I. Distinct Changes in Placental Ceramide Metabolism Characterize Type 1 and 2 Diabetic Pregnancies with Fetal Macrosomia or Preeclampsia. Biomedicines 2023; 11:932. [PMID: 36979912 PMCID: PMC10046505 DOI: 10.3390/biomedicines11030932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/30/2023] Open
Abstract
Disturbances of lipid metabolism are typical in diabetes. Our objective was to characterize and compare placental sphingolipid metabolism in type 1 (T1D) and 2 (T2D) diabetic pregnancies and in non-diabetic controls. Placental samples from T1D, T2D, and control pregnancies were processed for sphingolipid analysis using tandem mass spectrometry. Western blotting, enzyme activity, and immunofluorescence analyses were used to study sphingolipid regulatory enzymes. Placental ceramide levels were lower in T1D and T2D compared to controls, which was associated with an upregulation of the ceramide degrading enzyme acid ceramidase (ASAH1). Increased placental ceramide content was found in T1D complicated by preeclampsia. Similarly, elevated ceramides were observed in T1D and T2D pregnancies with poor glycemic control. The protein levels and activity of sphingosine kinases (SPHK) that produce sphingoid-1-phosphates (S1P) were highest in T2D. Furthermore, SPHK levels were upregulated in T1D and T2D pregnancies with fetal macrosomia. In vitro experiments using trophoblastic JEG3 cells demonstrated increased SPHK expression and activity following glucose and insulin treatments. Specific changes in the placental sphingolipidome characterize T1D and T2D placentae depending on the type of diabetes and feto-maternal complications. Increased exposure to insulin and glucose is a plausible contributor to the upregulation of the SPHK-S1P-axis in diabetic placentae.
Collapse
Affiliation(s)
- Miira M. Klemetti
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5T 3H7, Canada
- Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, 00029 HUS Helsinki, Finland
| | - Sruthi Alahari
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5T 3H7, Canada
| | - Martin Post
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Isabella Caniggia
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5T 3H7, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Obstetrics & Gynecology, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
36
|
Tian A, Sun Z, Zhang M, Li J, Pan X, Chen P. Associations between dietary fatty acid patterns and non-alcoholic fatty liver disease in typical dietary population: A UK biobank study. Front Nutr 2023; 10:1117626. [PMID: 36824175 PMCID: PMC9942598 DOI: 10.3389/fnut.2023.1117626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/19/2023] [Indexed: 02/10/2023] Open
Abstract
Background and Aims Dietary fatty acid composition is associated with non-alcoholic fatty liver disease (NAFLD). Few evidence had identified a clear role of dietary fatty acid composition of typical diet in NAFLD. We aimed to investigate the relationship between dietary patterns and NAFLD in populations with typical diets and to explore the effect of fatty acid composition in dietary patterns on NAFLD. Methods Principal component analysis was used to identify 4 dietary patterns in UK Biobank participants. Logistic regression was used to estimate the association between dietary patterns and NAFLD. Mediation analysis was performed to evaluate the extent to which the relationship between dietary patterns and NAFLD was explained by dietary fatty acid combinations, as surrogated by serum fatty acids measured by nuclear magnetic resonance. Results A dietary fatty acid pattern (DFP1) characterized by "PUFA enriched vegetarian" was negatively associated with NAFLD risk. Serum fatty acids were significantly associated with DFP1 and NAFLD. Mediation analysis showed SFA (27.8%, p < 0.001), PUFA (25.1%, p < 0.001), ω-6 PUFA (14.3%, p < 0.001), LA (15.6%, p < 0.001) and DHA (10%, p < 0.001) had a significant indirect effect on the association between DFP1 and NAFLD. A dietary pattern characterized by "PUFA enriched carnivore" (DFP2) was not associated with NAFLD risk. Conclusion A "PUFA enriched vegetarian" dietary pattern with increased LA and DHA, may be beneficial for the treatment or prevention of NAFLD, while a "PUFA enriched carnivore" dietary pattern may not be harmful to NAFLD.
Collapse
Affiliation(s)
- Aowen Tian
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China,Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Zewen Sun
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Miaoran Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China,Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Jiuling Li
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China,Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Xingchen Pan
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China,Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Peng Chen
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China,Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China,Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China,*Correspondence: Peng Chen, ✉
| |
Collapse
|
37
|
Kim E, Jeon S. The Impact of Phytochemicals in Obesity-Related Metabolic Diseases: Focus on Ceramide Metabolism. Nutrients 2023; 15:703. [PMID: 36771408 PMCID: PMC9920427 DOI: 10.3390/nu15030703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/02/2023] Open
Abstract
The prevalence of obesity and related metabolic diseases has increased dramatically worldwide. As obesity progresses, various lipid species accumulate in ectopic tissues. Amongst them, ceramides-a deleterious sphingolipid species-accumulate and cause lipotoxicity and metabolic disturbances. Dysregulated ceramide metabolism appears to be a key feature in the pathogenesis of obesity-related metabolic diseases. Notably, dietary modification might have an impact on modulating ceramide metabolism. Phytochemicals are plant-derived compounds with various physiological properties, which have been shown to protect against obesity-related metabolic diseases. In this review, we aim to examine the impact of a myriad of phytochemicals and their dietary sources in altering ceramide deposition and ceramide-related metabolism from in vitro, in vivo, and human clinical/epidemiological studies. This review discusses how numerous phytochemicals are able to alleviate ceramide-induced metabolic defects and reduce the risk of obesity-related metabolic diseases via diverse mechanisms.
Collapse
Affiliation(s)
| | - Sookyoung Jeon
- Department of Food Science and Nutrition and the Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Gangwon-do, Republic of Korea
| |
Collapse
|
38
|
Zhu C, Huai Q, Zhang X, Dai H, Li X, Wang H. Insights into the roles and pathomechanisms of ceramide and sphigosine-1-phosphate in nonalcoholic fatty liver disease. Int J Biol Sci 2023; 19:311-330. [PMID: 36594091 PMCID: PMC9760443 DOI: 10.7150/ijbs.78525] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/12/2022] [Indexed: 11/24/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), as one of the main causes of chronic liver disease worldwide, encompasses a spectrum of liver conditions that are not caused by other etiology, such as overt alcohol consumption, from simple steatosis to more aggressive non-alcoholic steatohepatitis (NASH) that involves liver inflammation and fibrosis, and to the lethal cirrhosis that may result in liver cancer and liver failure. The molecular mechanisms governing the transition from steatosis to NASH remain not fully understood, but the hepatic lipidome is extensively altered in the setting of steatosis and steatohepatitis, which also correlate with disease progression. With the tremendous advancement in the field of lipidomics in last two decades, a better understanding of the specific role of sphingolipids in fatty liver disease has taken shape. Among the numerous lipid subtypes that accumulate, ceramides are particularly impactful. On the one hand, excessive ceramides deposition in the liver cause hepatic steatosis. On the other hand, ceramides as lipotoxic lipid have significant effects on hepatic inflammation, apoptosis and insulin resistance that contribute to NAFLD. In this review, we summarize and evaluate current understanding of the multiple roles of ceramides in the onset of fatty liver disease and the pathogenic mechanisms underlying their effects, and we also discuss recent advances and challenges in pharmacological interventions targeting ceramide metabolism for the treatment of NAFLD.
Collapse
Affiliation(s)
- Cheng Zhu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qian Huai
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xu Zhang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hanren Dai
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiaolei Li
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
39
|
Wei R, Ning R, Han C, Wei S, Teng Y, Li L, Liu H, Hu S, Kang B, Xu H. Lipidomics analysis reveals new insights into the goose fatty liver formation. Poult Sci 2022; 102:102428. [PMID: 36586388 PMCID: PMC9811251 DOI: 10.1016/j.psj.2022.102428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/31/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
Our previous study described the mechanism of goose fatty liver formation from cell culture and transcriptome. However, how lipidome of goose liver response to overfeeding is unclear. In this study, we used the same batch of geese (control group and corn flour overfeeding group) to explore the lipidome changes and underlying metabolic mechanisms of goose fatty liver formation. Liquid chromatography-mass spectrometry (LC-MS) was provided to lipidome detection. Liver lipidomics profiles analysis was performed by principal component analysis (PCA), partial least squares-discriminant analysis (PLS-DA) and orthogonal partial least squares-discriminant analysis (OPLS-DA), different lipids were identified and annotated, and the enriched metabolic pathways were showed. The results of PCA, PLS-DA, and OPLS-DA displayed a clear separation and discrimination between control group and corn flour overfeeding group. Two hundred and fifty-one different lipids were yielded, which were involved in triglyceride (TG), diglyceride (DG), phosphatidic acids (PA), phosphatidylinositols (PI), phosphatidylethanolamines (PE), phosphatidylcholines (PC), lyso-phosphatidylcholines (LPC), monogalactosylmonoacylglycerol (MGMG), sphingolipids (SM), ceramides (Cer), and hexaglycosylceramides (Hex1Cer). Different lipids were enriched in glycerophospholipid metabolism, glycerolipid metabolism, phosphatidylinositol signaling system, inositol phosphate metabolism, glycosylphosphatidylinositol (GPI)-anchor biosynthesis and sphingolipid metabolism. In conclusion, this is the first report describing the goose fatty liver formation from lipidomics, this study might provide some insights into the underlying glucolipid metabolism disorders in the process of fatty liver formation.
Collapse
Affiliation(s)
- Rongxue Wei
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Rong Ning
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Chunchun Han
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China.
| | - Shouhai Wei
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Yongqiang Teng
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Liang Li
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Hehe Liu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Shengqiang Hu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Bo Kang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Hengyong Xu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| |
Collapse
|
40
|
Crewe C, Chen S, Bu D, Gliniak CM, Wernstedt Asterholm I, Yu XX, Joffin N, de Souza CO, Funcke JB, Oh DY, Varlamov O, Robino JJ, Gordillo R, Scherer PE. Deficient Caveolin-1 Synthesis in Adipocytes Stimulates Systemic Insulin-Independent Glucose Uptake via Extracellular Vesicles. Diabetes 2022; 71:2496-2512. [PMID: 35880782 PMCID: PMC9750943 DOI: 10.2337/db22-0035] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/20/2022] [Indexed: 01/11/2023]
Abstract
Caveolin-1 (cav1) is an important structural and signaling component of plasma membrane invaginations called caveolae and is abundant in adipocytes. As previously reported, adipocyte-specific ablation of the cav1 gene (ad-cav1 knockout [KO] mouse) does not result in elimination of the protein, as cav1 protein traffics to adipocytes from neighboring endothelial cells. However, this mouse is a functional KO because adipocyte caveolar structures are depleted. Compared with controls, ad-cav1KO mice on a high-fat diet (HFD) display improved whole-body glucose clearance despite complete loss of glucose-stimulated insulin secretion, blunted insulin-stimulated AKT activation in metabolic tissues, and partial lipodystrophy. The cause is increased insulin-independent glucose uptake by white adipose tissue (AT) and reduced hepatic gluconeogenesis. Furthermore, HFD-fed ad-cav1KO mice display significant AT inflammation, fibrosis, mitochondrial dysfunction, and dysregulated lipid metabolism. The glucose clearance phenotype of the ad-cav1KO mice is at least partially mediated by AT small extracellular vesicles (AT-sEVs). Injection of control mice with AT-sEVs from ad-cav1KO mice phenocopies ad-cav1KO characteristics. Interestingly, AT-sEVs from ad-cav1KO mice propagate the phenotype of the AT to the liver. These data indicate that ad-cav1 is essential for healthy adaptation of the AT to overnutrition and prevents aberrant propagation of negative phenotypes to other organs by EVs.
Collapse
Affiliation(s)
- Clair Crewe
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO
- Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Shiuhwei Chen
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Dawei Bu
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Christy M. Gliniak
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Ingrid Wernstedt Asterholm
- Department of Physiology (Metabolic Physiology Research Unit), Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Xin Xin Yu
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Nolwenn Joffin
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Camila O. de Souza
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jan-Bernd Funcke
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Da Young Oh
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Oleg Varlamov
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR
| | - Jacob J. Robino
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR
| | - Ruth Gordillo
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Philipp E. Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
41
|
Chakrabarty S, Bui Q, Badeanlou L, Hester K, Chun J, Ruf W, Ciaraldi TP, Samad F. S1P/S1PR3 signalling axis protects against obesity-induced metabolic dysfunction. Adipocyte 2022; 11:69-83. [PMID: 35094654 PMCID: PMC8803104 DOI: 10.1080/21623945.2021.2021700] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that interacts via 5 G-protein coupled receptors, S1PR1-5, to regulate signalling pathways critical to biological processes including cell growth, immune cell trafficking, and inflammation.We demonstrate that in Type 2 diabetic (T2D) subjects, plasma S1P levels significantly increased in response to the anti-diabetic drug, rosiglitazone, and, S1P levels correlated positively with measures of improved glucose homeostasis. In HFD-induced obese C57BL/6 J mice S1PR3 gene expression was increased in adipose tissues (AT) and liver compared with low fat diet (LFD)-fed counterparts. On a HFD, weight gain was similar in both S1PR3-/- mice and WT littermates; however, HFD-fed S1PR3-/- mice exhibited a phenotype of partial lipodystrophy, exacerbated insulin resistance and glucose intolerance. This worsened metabolic phenotype of HFD-fed S1PR3-/- mice was mechanistically linked with increased adipose inflammation, adipose macrophage and T-cell accumulation, hepatic inflammation and hepatic steatosis. In 3T3-L1 preadipocytes S1P increased adipogenesis and S1P-S1PR3 signalling regulated the expression of PPARγ, suggesting a novel role for this signalling pathway in the adipogenic program. These results reveal an anti-diabetic role for S1P, and, that S1P-S1PR3 signalling in the adipose and liver defends against excessive inflammation and steatosis to maintain metabolic homeostasis at key regulatory pathways.
Collapse
Affiliation(s)
- Sagarika Chakrabarty
- Department of Cell Biology, San Diego Biomedical Research Institute, San Diego, CA, USA
| | - Quyen Bui
- Department of Cell Biology, San Diego Biomedical Research Institute, San Diego, CA, USA
| | - Leylla Badeanlou
- Department of Cell Biology, San Diego Biomedical Research Institute, San Diego, CA, USA
| | - Kelly Hester
- Department of Cell Biology, San Diego Biomedical Research Institute, San Diego, CA, USA
| | - Jerold Chun
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Wolfram Ruf
- Department of Immunology and Microbiology, Scripps Research, La Jolla, Ca and Center for Thrombosis and Hemostasis, University Medical Center, Mainz, Germany
| | - Theodore P Ciaraldi
- Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Fahumiya Samad
- Department of Cell Biology, San Diego Biomedical Research Institute, San Diego, CA, USA
| |
Collapse
|
42
|
Tilg H, Adolph TE, Trauner M. Gut-liver axis: Pathophysiological concepts and clinical implications. Cell Metab 2022; 34:1700-1718. [PMID: 36208625 DOI: 10.1016/j.cmet.2022.09.017] [Citation(s) in RCA: 207] [Impact Index Per Article: 103.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/17/2022] [Accepted: 09/16/2022] [Indexed: 02/07/2023]
Abstract
Bidirectional crosstalk along the gut-liver axis controls gastrointestinal health and disease and exploits environmental and host mediators. Nutrients, microbial antigens, metabolites, and bile acids regulate metabolism and immune responses in the gut and liver, which reciprocally shape microbial community structure and function. Perturbation of such host-microbe interactions is observed in a variety of experimental liver diseases and is facilitated by an impaired intestinal barrier, which is fueling hepatic inflammation and disease progression. Clinical evidence describes perturbation of the gut-liver crosstalk in non-alcoholic fatty liver disease, alcoholic liver disease, and primary sclerosing cholangitis. In liver cirrhosis, a common sequela of these diseases, the intestinal microbiota and microbial pathogen-associated molecular patterns constitute liver inflammation and clinical complications, such as hepatic encephalopathy. Understanding the intricate metabolic interplay between the gut and liver in health and disease opens an avenue for targeted therapies in the future, which is probed in controlled clinical trials.
Collapse
Affiliation(s)
- Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University, Innsbruck, Austria.
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University, Innsbruck, Austria
| | - Michael Trauner
- Division of Gastroenterology & Hepatology, Department of Internal Medicine III, Medical University, Vienna, Austria
| |
Collapse
|
43
|
Sharma A, Krick B, Li Y, Summers SA, Playdon MC, Welt C. The Use of Ceramides to Predict Metabolic Response to Metformin in Women With PCOS. J Endocr Soc 2022; 6:bvac131. [PMID: 36249411 PMCID: PMC9557973 DOI: 10.1210/jendso/bvac131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Indexed: 01/26/2023] Open
Abstract
Context Polycystic ovarian syndrome (PCOS) is a complex disorder in which metabolic abnormalities are associated with reproductive dysfunction. Women with PCOS have increased ceramide concentrations. Previous studies demonstrated that treating metabolic abnormalities of PCOS with metformin improved glucose effectiveness after 12 weeks. Objective We evaluated whether, in women with PCOS, lower baseline ceramide, diacylglycerol (DAG), and triacylglycerol (TAG) concentrations were associated with improved metabolic response to metformin. Methods Women (n = 29), aged 29 ± 5 years and diagnosed with PCOS by the NIH criteria underwent an intravenous glucose tolerance test (IVGTT) before and after 12-week treatment with metformin (1500 mg per day). Metabolic responders were defined by improved glucose effectiveness, specifically, the ability of glucose to stimulate uptake and suppress production, after metformin treatment. Results Twelve weeks of metformin resulted in weight loss (-1.7 ± 2.6 kg, P < 0.01) and a reduction in BMI (-0.6 ± 0.9 kg/m2, P < 0.01) with no change in HbA1c. The concentrations of Cer(d18:1/22:0), Cer(d18:1/24:0), total ceramides, total Cer(d16:0), total Cer(d18:2), DAG, dihydrosphingomyelin (DHSM), and TAG decreased after metformin treatment (P < 0.05). Baseline total Cer(d16:0) concentration <204.1 pmol/mL was 82% sensitive (AUC 0.72, P = 0.03) and total DHSM concentration <32237 pmol/mL was 100% specific (AUC 0.73, P = 0.03) in predicting improved metabolic response to metformin, as measured by IVGTT. Conclusion Lower total Cer(16:0) and DHSM concentrations are associated with a beneficial metabolic response to metformin in women with PCOS. Based on the known association between higher ceramide levels and type 2 diabetes, the data suggest that metformin improves metabolic parameters in women with mild metabolic derangements.
Collapse
Affiliation(s)
- Anu Sharma
- Division of Endocrinology, Metabolism and Diabetes, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Benjamin Krick
- Cancer Control and Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Ying Li
- Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Scott A Summers
- Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, UT, USA.,Diabetes and Metabolism Research Center, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Mary C Playdon
- Cancer Control and Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT, USA.,Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, UT, USA.,Diabetes and Metabolism Research Center, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Corrine Welt
- Division of Endocrinology, Metabolism and Diabetes, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
44
|
Yu A, Cable C, Sharma S, Shihan MH, Mattis AN, Mileva I, Hannun YA, Duwaerts CC, Chen JY. Targeting acid ceramidase ameliorates fibrosis in mouse models of non-alcoholic steatohepatitis. Front Med (Lausanne) 2022; 9:881848. [PMID: 36275798 PMCID: PMC9582277 DOI: 10.3389/fmed.2022.881848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common cause of liver disease worldwide, and is characterized by the accumulation of fat in the liver. Non-alcoholic steatohepatitis (NASH), an advanced form of NAFLD, is a leading cause of liver transplantation. Fibrosis is the histologic feature most associated with liver-related morbidity and mortality in patients with NASH, and treatment options remain limited. In previous studies, we discovered that acid ceramidase (aCDase) is a potent antifibrotic target using human hepatic stellate cells (HSCs) and models of hepatic fibrogenesis. Using two dietary mouse models, we demonstrate that depletion of aCDase in HSC reduces fibrosis without worsening metabolic features of NASH, including steatosis, inflammation, and insulin resistance. Consistently, pharmacologic inhibition of aCDase ameliorates fibrosis but does not alter metabolic parameters. The findings suggest that targeting aCDase is a viable therapeutic option to reduce fibrosis in patients with NASH.
Collapse
Affiliation(s)
- Amy Yu
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Carson Cable
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Sachin Sharma
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Mahbubul H. Shihan
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Aras N. Mattis
- Department of Pathology, University of California, San Francisco, San Francisco, CA, United States
- The Liver Center, University of California, San Francisco, San Francisco, CA, United States
| | - Izolda Mileva
- Department of Medicine and Biochemistry and the Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, United States
| | - Yusuf A. Hannun
- Department of Medicine and Biochemistry and the Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, United States
| | - Caroline C. Duwaerts
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- The Liver Center, University of California, San Francisco, San Francisco, CA, United States
| | - Jennifer Y. Chen
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- The Liver Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
45
|
Nicholson RJ, Norris MK, Poss AM, Holland WL, Summers SA. The Lard Works in Mysterious Ways: Ceramides in Nutrition-Linked Chronic Disease. Annu Rev Nutr 2022; 42:115-144. [PMID: 35584813 PMCID: PMC9399075 DOI: 10.1146/annurev-nutr-062220-112920] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Diet influences onset, progression, and severity of several chronic diseases, including heart failure, diabetes, steatohepatitis, and a subset of cancers. The prevalence and clinical burden of these obesity-linked diseases has risen over the past two decades. These metabolic disorders are driven by ectopic lipid deposition in tissues not suited for fat storage, leading to lipotoxic disruption of cell function and survival. Sphingolipids such as ceramides are among the most deleterious and bioactive metabolites that accrue, as they participate in selective insulin resistance, dyslipidemia, oxidative stress and apoptosis. This review discusses our current understanding of biochemical pathways controlling ceramide synthesis, production and action; influences of diet on ceramide levels; application of circulating ceramides as clinical biomarkers of metabolic disease; and molecular mechanisms linking ceramides to altered metabolism and survival of cells. Development of nutritional or pharmacological strategies to lower ceramides could have therapeutic value in a wide range of prevalent diseases.
Collapse
Affiliation(s)
- Rebekah J. Nicholson
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, Utah, USA,Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, Utah, USA
| | - Marie K. Norris
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, Utah, USA,Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, Utah, USA
| | - Annelise M. Poss
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, Utah, USA,Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, Utah, USA
| | - William L. Holland
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, Utah, USA,Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, Utah, USA
| | - Scott A. Summers
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, Utah, USA,Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
46
|
Jani S, Da Eira D, Stefanovic M, Ceddia RB. The ketogenic diet prevents steatosis and insulin resistance by reducing lipogenesis, diacylglycerol accummulation, and PKC activity in male rat liver. J Physiol 2022; 600:4137-4151. [PMID: 35974660 DOI: 10.1113/jp283552] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/10/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The accumulation of diacylglycerol (DAG), ceramides and inflammation are key factors that cause insulin resistance and nonalcoholic fatty liver (NAFLD). This study provides evidence that a ketogenic diet (KD) rich in fat and devoid of carbohydrate reduced DAG content and preserved insulin signalling in the liver. The KD shifted metabolism away from lipogenesis by enhancing genes involved in mitochondrial biogenesis and fatty acid oxidations in the liver. The KD also promoted the production of beneficial very long-chain ceramides instead of potentially harmful long-chain ceramides. Through multiple mechanisms, the KD exerted anti-steatogenic and insulin-sensitizing effects in the liver, which supports the use of this dietary intervention to treat NAFLD. ABSTRACT Obesity-associated insulin resistance plays a major role in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). The accumulation of diacylglycerol (DAG), ceramides and inflammation are key factors that cause NAFLD. In recent years, the ketogenic diet (KD) has emerged as an effective non-pharmacological intervention for the treatment of NAFLD and other obesity-related metabolic disorders. What remains undetermined is how the KD affects DAG and ceramides content and insulin sensitivity in the liver. Thus, this research was designed to assess these variables, as well as glucose and fat metabolism and markers of inflammation in livers of rats exposed for 8 weeks to one of the following diets: standard chow (SC), obesogenic high-fat, sucrose-enriched diet (HFS), or a KD. Despite having a higher fat content than the HFS diet, the KD did not cause steatosis and preserved hepatic insulin signalling. The KD reduced DAG content and protein kinase C epsilon (PKCε) activity, but markedly increased liver ceramides content. However, whereas the KD increased ceramide synthase 2 (CerS2) expression, it suppressed CerS6 expression, an effect that promoted the production of beneficial very long-chain ceramides instead of harmful long-chain ceramides. The KD also enhanced the liver expression of key genes involved in mitochondrial biogenesis and fatty acid oxidation (Pgc-1α and Fgf21), suppressed inflammatory genes (Tnfα, Nf-kb, Tlr4, and Il6), and shifted substrate away from de-novo lipogenesis. Thus, through multiple mechanisms the KD exerted anti-steatogenic and insulin-sensitizing effects in the liver, which supports the use of this dietary intervention to treat NAFLD. Abstract figure legend This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shailee Jani
- Muscle Health Research Center - School of Kinesiology and Health Science, York University, North York, ON, Canada
| | - Daniel Da Eira
- Muscle Health Research Center - School of Kinesiology and Health Science, York University, North York, ON, Canada
| | - Mateja Stefanovic
- Muscle Health Research Center - School of Kinesiology and Health Science, York University, North York, ON, Canada
| | - Rolando B Ceddia
- Muscle Health Research Center - School of Kinesiology and Health Science, York University, North York, ON, Canada
| |
Collapse
|
47
|
Yu XD, Wang JW. Ceramide de novo synthesis in non-alcoholic fatty liver disease: Pathogenic mechanisms and therapeutic perspectives. Biochem Pharmacol 2022; 202:115157. [PMID: 35777449 DOI: 10.1016/j.bcp.2022.115157] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, and its advanced form non-alcoholic steatohepatitis (NASH) may progress to cirrhosis and hepatocellular carcinoma. Ceramides have been shown to exacerbate NAFLD development through enhancing insulin resistance, reactive oxygen species production, liver steatosis, lipotoxicity and hepatocyte apoptosis, and eventually causing hepatic inflammation and fibrosis. Emerging evidence indicates that ceramide production in NAFLD is predominantly attributed to activation of the de novo synthesis pathway of ceramides in hepatocytes. More importantly, pharmacological modulation of ceramide de novo synthesis in preclinical studies seems efficacious for the treatment of NAFLD. In this review, we provide an overview of the pathogenic mechanisms of ceramides in NAFLD, discuss recent advances and challenges in pharmacological interventions targeting ceramide de novo synthesis, and propose some research directions in the field.
Collapse
Affiliation(s)
- Xiao-Dong Yu
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Cardiovascular Research Institute (CVRI), National University Heart Centre Singapore (NUHCS), Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
48
|
Li M, Chi X, Wang Y, Setrerrahmane S, Xie W, Xu H. Trends in insulin resistance: insights into mechanisms and therapeutic strategy. Signal Transduct Target Ther 2022; 7:216. [PMID: 35794109 PMCID: PMC9259665 DOI: 10.1038/s41392-022-01073-0] [Citation(s) in RCA: 186] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 02/06/2023] Open
Abstract
The centenary of insulin discovery represents an important opportunity to transform diabetes from a fatal diagnosis into a medically manageable chronic condition. Insulin is a key peptide hormone and mediates the systemic glucose metabolism in different tissues. Insulin resistance (IR) is a disordered biological response for insulin stimulation through the disruption of different molecular pathways in target tissues. Acquired conditions and genetic factors have been implicated in IR. Recent genetic and biochemical studies suggest that the dysregulated metabolic mediators released by adipose tissue including adipokines, cytokines, chemokines, excess lipids and toxic lipid metabolites promote IR in other tissues. IR is associated with several groups of abnormal syndromes that include obesity, diabetes, metabolic dysfunction-associated fatty liver disease (MAFLD), cardiovascular disease, polycystic ovary syndrome (PCOS), and other abnormalities. Although no medication is specifically approved to treat IR, we summarized the lifestyle changes and pharmacological medications that have been used as efficient intervention to improve insulin sensitivity. Ultimately, the systematic discussion of complex mechanism will help to identify potential new targets and treat the closely associated metabolic syndrome of IR.
Collapse
Affiliation(s)
- Mengwei Li
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaowei Chi
- Development Center for Medical Science & Technology National Health Commission of the People's Republic of China, 100044, Beijing, China
| | - Ying Wang
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | | | - Wenwei Xie
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | - Hanmei Xu
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, 210009, China.
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
49
|
Contribution of specific ceramides to obesity-associated metabolic diseases. Cell Mol Life Sci 2022; 79:395. [PMID: 35789435 PMCID: PMC9252958 DOI: 10.1007/s00018-022-04401-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 12/04/2022]
Abstract
Ceramides are a heterogeneous group of bioactive membrane sphingolipids that play specialized regulatory roles in cellular metabolism depending on their characteristic fatty acyl chain lengths and subcellular distribution. As obesity progresses, certain ceramide molecular species accumulate in metabolic tissues and cause cell-type-specific lipotoxic reactions that disrupt metabolic homeostasis and lead to the development of cardiometabolic diseases. Several mechanisms for ceramide action have been inferred from studies in vitro, but only recently have we begun to better understand the acyl chain length specificity of ceramide-mediated signaling in the context of physiology and disease in vivo. New discoveries show that specific ceramides affect various metabolic pathways and that global or tissue-specific reduction in selected ceramide pools in obese rodents is sufficient to improve metabolic health. Here, we review the tissue-specific regulation and functions of ceramides in obesity, thus highlighting the emerging concept of selectively inhibiting production or action of ceramides with specific acyl chain lengths as novel therapeutic strategies to ameliorate obesity-associated diseases.
Collapse
|
50
|
Varre JV, Holland WL, Summers SA. You aren't IMMUNE to the ceramides that accumulate in cardiometabolic disease. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159125. [PMID: 35218934 PMCID: PMC9050903 DOI: 10.1016/j.bbalip.2022.159125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 02/14/2022] [Indexed: 02/06/2023]
Abstract
Obesity leads to persistent increases in immune responses that contribute to cardiometabolic pathologies such as diabetes and cardiovascular disease. Pro-inflammatory macrophages infiltrate the expanding fat mass, which leads to increased production of cytokines such as tumor necrosis factor-alpha. Moreover, saturated fatty acids enhance signaling through the toll-like receptors involved in innate immunity. Herein we discuss the evidence that ceramides-which are intermediates in the biosynthetic pathway that produces sphingolipids-are essential intermediates that link these inflammatory signals to impaired tissue function. We discuss the mechanisms linking these immune insults to ceramide production and review the numerous ceramide actions that alter cellular metabolism, induce oxidative stress, and stimulate apoptosis. Lastly, we evaluate the correlation of ceramides in humans with inflammation-linked cardiometabolic disease and discuss preclinical studies which suggest that ceramide-lowering interventions may be an effective strategy to treat or prevent such maladies.
Collapse
Affiliation(s)
- Joseph V Varre
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 94108, United States of America
| | - William L Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 94108, United States of America
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 94108, United States of America.
| |
Collapse
|