1
|
Gruber T, Lechner F, Krieger JP, García-Cáceres C. Neuroendocrine gut-brain signaling in obesity. Trends Endocrinol Metab 2025; 36:42-54. [PMID: 38821753 DOI: 10.1016/j.tem.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 06/02/2024]
Abstract
The past decades have witnessed the rise and fall of several, largely unsuccessful, therapeutic attempts to bring the escalating obesity pandemic to a halt. Looking back to look ahead, the field has now put its highest hopes in translating insights from how the gastrointestinal (GI) tract communicates with the brain to calibrate behavior, physiology, and metabolism. A major focus of this review is to summarize the latest advances in comprehending the neuroendocrine aspects of this so-called 'gut-brain axis' and to explore novel concepts, cutting-edge technologies, and recent paradigm-shifting experiments. These exciting insights continue to refine our understanding of gut-brain crosstalk and are poised to promote the development of additional therapeutic avenues at the dawn of a new era of antiobesity therapeutics.
Collapse
Affiliation(s)
- Tim Gruber
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49506, USA; Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49506, USA; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.
| | - Franziska Lechner
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
| | - Jean-Philippe Krieger
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich-Vetsuisse, 8057 Zurich, Switzerland; Institute of Neuroscience and Physiology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Cristina García-Cáceres
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, 80336 Munich, Germany.
| |
Collapse
|
2
|
Quinones D, Barrow M, Seidler K. Investigating the Impact of Ashwagandha and Meditation on Stress Induced Obesogenic Eating Behaviours. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2025; 44:68-88. [PMID: 39254702 DOI: 10.1080/27697061.2024.2401054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/30/2024] [Accepted: 09/01/2024] [Indexed: 09/11/2024]
Abstract
Obesity has been identified as a rapidly rising pandemic within the developed world, potentially increasing the risks of type 2 diabetes and cardiovascular disease. Various studies have identified a positive association between stress, elevated cortisol levels and obesity. Mechanisms of the stress response lead to hyperpalatable food preference and increased appetite through the activation of the HPA axis, elevated cortisol and the resulting interactions with the dopaminergic system, neuropeptide Y, ghrelin, leptin and insulin. The methodology of this review involved a Systematic Search of the Literature with a Critical Appraisal of papers considering ashwagandha, mediation and mindfulness in relation to mechanisms of the stress response. It incorporated 12 searches yielding 330 hits. A total of 51 studies met the inclusion criteria and were critically appraised with ARRIVE, SIGN50 and Strobe checklists. Data from the 51 studies was extracted, coded into key themes and summarized in a narrative analysis. Thematic analysis identified 4 key themes related to ashwagandha and 2 key themes related to meditation. Results provide an overview of evidence assessing the efficacy of ashwagandha and meditation in relation to weight loss interventions by supporting the stress response and the pathways highlighted. Results of Clinical studies indicate that ashwagandha supports weight loss through reduced stress, cortisol and food cravings. Pre-clinical studies also suggest that ashwagandha possesses the capacity to regulate food intake by improving leptin and insulin sensitivity and reducing addictive behaviors through dopamine regulation. Clinical studies on meditation indicate it may enhance a weight loss protocol by reducing the stress response, cortisol release and blood glucose and improving eating behaviors.
Collapse
Affiliation(s)
- Daniel Quinones
- CNELM (Centre for Nutrition Education and Lifestyle Management), Wokingham, Berkshire, UK
| | - Michelle Barrow
- CNELM (Centre for Nutrition Education and Lifestyle Management), Wokingham, Berkshire, UK
| | - Karin Seidler
- CNELM (Centre for Nutrition Education and Lifestyle Management), Wokingham, Berkshire, UK
| |
Collapse
|
3
|
Hormay E, László B, Szabó I, Mintál K, Berta B, Ollmann T, Péczely L, Nagy B, Tóth A, László K, Lénárd L, Karádi Z. Dopamine-Sensitive Anterior Cingulate Cortical Glucose-Monitoring Neurons as Potential Therapeutic Targets for Gustatory and Other Behavior Alterations. Biomedicines 2024; 12:2803. [PMID: 39767710 PMCID: PMC11672934 DOI: 10.3390/biomedicines12122803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Background: The anterior cingulate cortex (ACC) is known for its involvement in various regulatory functions, including in the central control of feeding. Activation of local elements of the central glucose-monitoring (GM) neuronal network appears to be indispensable in these regulatory processes. Destruction of these type 2 glucose transporter protein (GLUT2)-equipped chemosensory cells results in multiple feeding-associated functional alterations. Methods: In order to examine this complex symptomatology, (1) dopamine sensitivity was studied in laboratory rats by means of the single-neuron-recording multibarreled microelectrophoretic technique, and (2) after local bilateral microinjection of the selective type 2 glucose transporter proteindemolishing streptozotocin (STZ), open-field, elevated plus maze, two-bottle and taste reactivity tests were performed. Results: A high proportion of the anterior cingulate cortical neurons changed their firing rate in response to microelectrophoretic administration of D-glucose, thus verifying them as local elements of the central glucose-monitoring network. Approximately 20% of the recorded cells displayed activity changes in response to microelectrophoretic application of dopamine, and almost 50% of the glucose-monitoring units here proved to be dopamine-sensitive. Moreover, taste stimulation experiments revealed even higher (80%) gustatory sensitivity dominance of these chemosensory cells. The anterior cingulate cortical STZ microinjections resulted in extensive behavioral and taste-associated functional deficits. Conclusions: The present findings provided evidence for the selective loss of glucose-monitoring neurons in the anterior cingulate cortex leading to motivated behavioral and gustatory alterations. This complex dataset also underlines the varied significance of the type 2 glucose transporter protein-equipped, dopamine-sensitive glucose-monitoring neurons as potential therapeutic targets. These units appear to be indispensable in adaptive control mechanisms of the homeostatic-motivational-emotional-cognitive balance for the overall well-being of the organism.
Collapse
Affiliation(s)
- Edina Hormay
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary; (B.L.); (B.B.); (T.O.); (Z.K.)
- Medical and Engineering Multidisciplinary Cellular Bioimpedance Research Group, Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary
| | - Bettina László
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary; (B.L.); (B.B.); (T.O.); (Z.K.)
| | - István Szabó
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary; (B.L.); (B.B.); (T.O.); (Z.K.)
| | - Kitti Mintál
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary; (B.L.); (B.B.); (T.O.); (Z.K.)
- Medical and Engineering Multidisciplinary Cellular Bioimpedance Research Group, Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary
| | - Beáta Berta
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary; (B.L.); (B.B.); (T.O.); (Z.K.)
| | - Tamás Ollmann
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary; (B.L.); (B.B.); (T.O.); (Z.K.)
| | - László Péczely
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary; (B.L.); (B.B.); (T.O.); (Z.K.)
| | - Bernadett Nagy
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary; (B.L.); (B.B.); (T.O.); (Z.K.)
| | - Attila Tóth
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary; (B.L.); (B.B.); (T.O.); (Z.K.)
- Medical and Engineering Multidisciplinary Cellular Bioimpedance Research Group, Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary
| | - Kristóf László
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary; (B.L.); (B.B.); (T.O.); (Z.K.)
| | - László Lénárd
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary; (B.L.); (B.B.); (T.O.); (Z.K.)
| | - Zoltán Karádi
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary; (B.L.); (B.B.); (T.O.); (Z.K.)
- Medical and Engineering Multidisciplinary Cellular Bioimpedance Research Group, Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary
| |
Collapse
|
4
|
Kaya E, Wegienka E, Akhtarzandi-Das A, Do H, Eban-Rothschild A, Rothschild G. Food intake enhances hippocampal sharp wave-ripples. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617304. [PMID: 39416018 PMCID: PMC11482785 DOI: 10.1101/2024.10.08.617304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Effective regulation of energy metabolism is critical for survival. Metabolic control involves various nuclei within the hypothalamus, which receive information about the body's energy state and coordinate appropriate responses to maintain homeostasis, such as thermogenesis, pancreatic insulin secretion, and food-seeking behaviors. It has recently been found that the hippocampus, a brain region traditionally associated with memory and spatial navigation, is also involved in metabolic regulation. Specifically, hippocampal sharp wave ripples (SWRs), which are high-frequency neural oscillations supporting memory consolidation and foraging decisions, have been shown to influence peripheral glucose metabolism. However, whether SWRs are enhanced by recent feeding-when the need for glucose metabolism increases, and if so, whether feeding-dependent modulation of SWRs is communicated to other brain regions involved in metabolic regulation, remains unknown. To address these gaps, we recorded SWRs from the dorsal CA1 region of the hippocampus of mice during sleep sessions before and after consumption of meals of varying caloric values. We found that SWRs occurring during sleep are significantly enhanced following food intake, with the magnitude of enhancement being dependent on the caloric content of the meal. This pattern occurred under both food-deprived and ad libitum feeding conditions. Moreover, we demonstrate that GABAergic neurons in the lateral hypothalamus, which are known to regulate food intake, exhibit a robust SWR-triggered increase in activity. These findings identify the satiety state as a factor modulating SWRs and sugg-est that hippocampal-lateral hypothalamic communication is a potential mechanism by which SWRs could modulate peripheral metabolism and food intake.
Collapse
Affiliation(s)
- Ekin Kaya
- Department of Psychology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Evan Wegienka
- Department of Psychology, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Hanh Do
- Department of Psychology, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Gideon Rothschild
- Department of Psychology, University of Michigan, Ann Arbor, MI, 48109, USA
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
5
|
Egan JM. Physiological Integration of Taste and Metabolism. N Engl J Med 2024; 390:1699-1710. [PMID: 38718360 DOI: 10.1056/nejmra2304578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Affiliation(s)
- Josephine M Egan
- From the Diabetes Section, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore
| |
Collapse
|
6
|
Zaupa M, Nagaraj N, Sylenko A, Baier H, Sawamiphak S, Filosa A. The Calmodulin-interacting peptide Pcp4a regulates feeding state-dependent behavioral choice in zebrafish. Neuron 2024; 112:1150-1164.e6. [PMID: 38295792 DOI: 10.1016/j.neuron.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 10/06/2023] [Accepted: 01/02/2024] [Indexed: 04/06/2024]
Abstract
Animals constantly need to judge the valence of an object in their environment: is it potential food or a threat? The brain makes fundamental decisions on the appropriate behavioral strategy by integrating external information from sensory organs and internal signals related to physiological needs. For example, a hungry animal may take more risks than a satiated one when deciding to approach or avoid an object. Using a proteomic profiling approach, we identified the Calmodulin-interacting peptide Pcp4a as a key regulator of foraging-related decisions. Food intake reduced abundance of protein and mRNA of pcp4a via dopamine D2-like receptor-mediated repression of adenylate cyclase. Accordingly, deleting the pcp4a gene made zebrafish larvae more risk averse in a binary decision assay. Strikingly, neurons in the tectum became less responsive to prey-like visual stimuli in pcp4a mutants, thus biasing the behavior toward avoidance. This study pinpoints a molecular mechanism modulating behavioral choice according to internal state.
Collapse
Affiliation(s)
- Margherita Zaupa
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13092 Berlin, Germany; Freie Universität Berlin, Institute for Biology, 14195 Berlin, Germany
| | - Nagarjuna Nagaraj
- Biochemistry Core Facility, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Anna Sylenko
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13092 Berlin, Germany; Freie Universität Berlin, Institute for Biology, 14195 Berlin, Germany
| | - Herwig Baier
- Max Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| | - Suphansa Sawamiphak
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13092 Berlin, Germany
| | - Alessandro Filosa
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13092 Berlin, Germany.
| |
Collapse
|
7
|
Gao L, Hu S, Yang D, Wang L, Togo J, Wu Y, Li B, Li M, Wang G, Zhang X, Li L, Xu Y, Mazidi M, Couper E, Whittington-Davies A, Niu C, Speakman JR. The hedonic overdrive model best explains high-fat diet-induced obesity in C57BL/6 mice. Obesity (Silver Spring) 2024; 32:733-742. [PMID: 38410048 DOI: 10.1002/oby.23991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/05/2023] [Accepted: 12/20/2023] [Indexed: 02/28/2024]
Abstract
OBJECTIVE High-fat diets cause obesity in male mice; however, the underlying mechanisms remain controversial. Here, three contrasting ideas were assessed: hedonic overdrive, reverse causality, and passive overconsumption models. METHODS A total of 12 groups of 20 individually housed 12-week-old C57BL/6 male mice were exposed to 12 high-fat diets with varying fat content from 40% to 80% (by calories), protein content from 5% to 30%, and carbohydrate content from 8.4% to 40%. Body weight and food intake were monitored for 30 days after 7 days at baseline on a standard low-fat diet. RESULTS After exposure to the diets, energy intake increased first, and body weight followed later. Intake then declined. The peak energy intake was dependent on both dietary protein and carbohydrate, but not the dietary fat and energy density, whereas the rate of decrease in intake was only related to dietary protein. On high-fat diets, the weight of food intake declined, but despite this average reduction of 14.4 g in food intake, they consumed, on average, 357 kJ more energy than at baseline. CONCLUSIONS The hedonic overdrive model fit the data best. The other two models were not supported.
Collapse
Affiliation(s)
- Lin Gao
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sumei Hu
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Dengbao Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Lu Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jacques Togo
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yingga Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Baoguo Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Min Li
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Guanlin Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xueying Zhang
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Li Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yanchao Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Moshen Mazidi
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Elspeth Couper
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Chaoqun Niu
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - John R Speakman
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
- Institute of Public Health Sciences, China Medical University, Shenyang, China
| |
Collapse
|
8
|
Borrego-Ruiz A, Borrego JJ. Human gut microbiome, diet, and mental disorders. Int Microbiol 2024:10.1007/s10123-024-00518-6. [PMID: 38561477 DOI: 10.1007/s10123-024-00518-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024]
Abstract
Diet is one of the most important external factor shaping the composition and metabolic activities of the gut microbiome. The gut microbiome plays a crucial role in host health, including immune system development, nutrients metabolism, and the synthesis of bioactive molecules. In addition, the gut microbiome has been described as critical for the development of several mental disorders. Nutritional psychiatry is an emerging field of research that may provide a link between diet, microbial function, and brain health. In this study, we have reviewed the influence of different diet types, such as Western, Mediterranean, vegetarian, and ketogenic, on the gut microbiota composition and function, and their implication in various neuropsychiatric and psychological disorders.
Collapse
Affiliation(s)
- Alejandro Borrego-Ruiz
- Departamento de Psicología Social y de las Organizaciones, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Juan J Borrego
- Departamento de Microbiología, Universidad de Málaga. Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina BIONAND, Málaga, Spain.
| |
Collapse
|
9
|
Johansson J, Ericsson M, Axelsson J, Bjerkén SA, Virel A, Karalija N. Amphetamine-induced dopamine release in rat: Whole-brain spatiotemporal analysis with [ 11C]raclopride and positron emission tomography. J Cereb Blood Flow Metab 2024; 44:434-445. [PMID: 37882727 PMCID: PMC10870964 DOI: 10.1177/0271678x231210128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/06/2023] [Accepted: 10/01/2023] [Indexed: 10/27/2023]
Abstract
Whole-brain mapping of drug effects are needed to understand the neural underpinnings of drug-related behaviors. Amphetamine administration is associated with robust increases in striatal dopamine (DA) release. Dopaminergic terminals are, however, present across several associative brain regions, which may contribute to behavioral effects of amphetamine. Yet the assessment of DA release has been restricted to a few brain regions of interest. The present work employed positron emission tomography (PET) with [11C]raclopride to investigate regional and temporal characteristics of amphetamine-induced DA release across twenty sessions in adult female Sprague Dawley rats. Amphetamine was injected intravenously (2 mg/kg) to cause displacement of [11C]raclopride binding from DA D2-like receptors, assessed using temporally sensitive pharmacokinetic PET model (lp-ntPET). We show amphetamine-induced [11C]raclopride displacement in the basal ganglia, and no changes following saline injections. Peak occupancy was highest in nucleus accumbens, followed by caudate-putamen and globus pallidus. Importantly, significant amphetamine-induced displacement was also observed in several extrastriatal regions, and specifically in thalamus, insula, orbitofrontal cortex, and secondary somatosensory area. For these, peak occupancy occurred later and was lower as compared to the striatum. Collectively, these findings demonstrate distinct amphetamine-induced DA responses across the brain, and that [11C]raclopride-PET can be employed to detect such spatiotemporal differences.
Collapse
Affiliation(s)
- Jarkko Johansson
- Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | | | - Jan Axelsson
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Department of Radiation Sciences, Radiation Physics, Umeå University, Umeå, Sweden
| | - Sara af Bjerkén
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Ana Virel
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Nina Karalija
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
10
|
McDougle M, de Araujo A, Singh A, Yang M, Braga I, Paille V, Mendez-Hernandez R, Vergara M, Woodie LN, Gour A, Sharma A, Urs N, Warren B, de Lartigue G. Separate gut-brain circuits for fat and sugar reinforcement combine to promote overeating. Cell Metab 2024; 36:393-407.e7. [PMID: 38242133 DOI: 10.1016/j.cmet.2023.12.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 09/25/2023] [Accepted: 12/11/2023] [Indexed: 01/21/2024]
Abstract
Food is a powerful natural reinforcer that guides feeding decisions. The vagus nerve conveys internal sensory information from the gut to the brain about nutritional value; however, the cellular and molecular basis of macronutrient-specific reward circuits is poorly understood. Here, we monitor in vivo calcium dynamics to provide direct evidence of independent vagal sensing pathways for the detection of dietary fats and sugars. Using activity-dependent genetic capture of vagal neurons activated in response to gut infusions of nutrients, we demonstrate the existence of separate gut-brain circuits for fat and sugar sensing that are necessary and sufficient for nutrient-specific reinforcement. Even when controlling for calories, combined activation of fat and sugar circuits increases nigrostriatal dopamine release and overeating compared with fat or sugar alone. This work provides new insights into the complex sensory circuitry that mediates motivated behavior and suggests that a subconscious internal drive to consume obesogenic diets (e.g., those high in both fat and sugar) may impede conscious dieting efforts.
Collapse
Affiliation(s)
- Molly McDougle
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA; Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, USA; Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Alan de Araujo
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA; Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, USA
| | - Arashdeep Singh
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA; Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, USA; Monell Chemical Senses Center, Philadelphia, PA, USA; Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Mingxin Yang
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA; Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, USA; Monell Chemical Senses Center, Philadelphia, PA, USA; Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Isadora Braga
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA; Monell Chemical Senses Center, Philadelphia, PA, USA; Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Vincent Paille
- Monell Chemical Senses Center, Philadelphia, PA, USA; Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA; UMR1280 Physiopathologie des adaptations nutritionnelles, INRAE, Institut des maladies de l'appareil digestif, Université de Nantes, Nantes, France
| | - Rebeca Mendez-Hernandez
- Monell Chemical Senses Center, Philadelphia, PA, USA; Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Macarena Vergara
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA; Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, USA
| | - Lauren N Woodie
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA, USA
| | - Abhishek Gour
- Department of Pharmaceutics, University of Florida, Gainesville, FL, USA
| | - Abhisheak Sharma
- Department of Pharmaceutics, University of Florida, Gainesville, FL, USA
| | - Nikhil Urs
- Department of Pharmacology, University of Florida, Gainesville, FL, USA
| | - Brandon Warren
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Guillaume de Lartigue
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA; Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, USA; Monell Chemical Senses Center, Philadelphia, PA, USA; Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Rego MLM, Leslie E, Capra BT, Helder M, Yu W, Katz B, Davy KP, Hedrick VE, Davy BM, DiFeliceantonio AG. The influence of ultra-processed food consumption on reward processing and energy intake: Background, design, and methods of a controlled feeding trial in adolescents and young adults. Contemp Clin Trials 2023; 135:107381. [PMID: 37935307 PMCID: PMC10872704 DOI: 10.1016/j.cct.2023.107381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/18/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND The greatest age-related weight gain occurs in the early/mid-20s. Overall dietary quality among adolescents and emerging adults (age 18-25) is poor, with ultra-processed foods (UPF) representing more than two-thirds of adolescents' total energy intake (i.e., 68%). UPF consumption may impact cognitive and neurobiological factors that influence dietary decision-making and energy intake (EI). To date, no research has addressed this in this population. METHODS Participants aged 18-25 will undergo two 14-day controlled feeding periods (81% UPF, 0% UPF) using a randomly assigned crossover design, with a 4-week washout between conditions. Brain response to a UPF-rich milkshake, as well as behavioral measures of executive function, will be evaluated before and after each diet. Following each diet, measurements include ad libitum buffet meal EI, food selection, eating rate, and eating in the absence of hunger (EAH). Prior to initiating recruitment, controlled diet menus, buffet, and EAH snacks were developed and evaluated for palatability. Sensory and texture attributes of buffet and EAH snack foods were also evaluated. RESULTS Overall diet palatability was rated "like very much" (8)/"like moderately"(7) (UPF: 7.6 ± 1.0; Non-UPF: 6.8 ± 1.5). Subjective hardness rating (range = 1-9 [1 = soft, 9 = hard] was similar between UPF and Non-UPF buffet and snack items (UPF:4.22 ± 2.19, Non-UPF: 4.70 ± 2.03), as was the objective measure of hardness (UPF: 2874.33 ± 2497.06 g, Non-UPF: 2243.32 ± 1700.51 g). CONCLUSIONS Findings could contribute to an emerging neurobiological understanding of the effects of UPF consumption including energy overconsumption and weight gain among individuals at a critical developmental stage.
Collapse
Affiliation(s)
- Maria L M Rego
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, USA.
| | - Emma Leslie
- Fralin Biomedical Research Institute, Virginia Tech, USA
| | - Bailey T Capra
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, USA
| | - Mckenna Helder
- Department of Food Science and Technology, Virginia Tech, USA
| | - Wenjing Yu
- Fralin Biomedical Research Institute, Virginia Tech, USA
| | - Benjamin Katz
- Department of Human Development and Family Science, Virginia Tech, USA
| | - Kevin P Davy
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, USA
| | - Valisa E Hedrick
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, USA
| | - Brenda M Davy
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, USA
| | - Alexandra G DiFeliceantonio
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, USA; Fralin Biomedical Research Institute, Virginia Tech, USA
| |
Collapse
|
12
|
Ruf A, Neubauer AB, Koch ED, Ebner-Priemer U, Reif A, Matura S. Microtemporal Dynamics of Dietary Intake, Physical Activity, and Impulsivity in Adult Attention-Deficit/Hyperactivity Disorder: Ecological Momentary Assessment Study Within Nutritional Psychiatry. JMIR Ment Health 2023; 10:e46550. [PMID: 37590053 PMCID: PMC10472180 DOI: 10.2196/46550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/24/2023] [Accepted: 06/17/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Increasing attention is being paid to lifestyle factors, such as nutrition and physical activity (PA), as potential complementary treatment options in attention-deficit/hyperactivity disorder (ADHD). Previous research indicates that sugar and saturated fat intake may be linked to increased impulsivity, a core symptom of ADHD, whereas protein intake and PA may be related to reduced impulsivity. However, most studies rely on cross-sectional data that lack microtemporal resolution and ecological validity, wherefore questions of microtemporal dynamics (eg, is the consumption of foods high in sugar associated with increased impulsivity within minutes or hours?) remain largely unanswered. Ecological momentary assessment (EMA) has the potential to bridge this gap. OBJECTIVE This study is the first to apply EMA to assess microtemporal associations among macronutrient intake, PA, and state impulsivity in the daily life of adults with and without ADHD. METHODS Over a 3-day period, participants reported state impulsivity 8 times per day (signal-contingent), recorded food and drink intake (event-contingent), and wore an accelerometer. Multilevel 2-part models were used to study the association among macronutrient intake, PA, and the probability to be impulsive as well as the intensity of impulsivity (ADHD: n=36; control: n=137). RESULTS No association between macronutrient intake and state impulsivity was found. PA was not related to the intensity of impulsivity but to a higher probability to be impulsive (ADHD: β=-.09, 95% CI -0.14 to -0.04; control: β=-.03, 95% CI -0.05 to -0.01). No evidence was found that the combined intake of saturated fat and sugar amplified the increase in state impulsivity and that PA alleviated the positive association between sugar or fat intake and state impulsivity. CONCLUSIONS Important methodological considerations are discussed that can contribute to the optimization of future EMA protocols. EMA research in the emerging field of nutritional psychiatry is still in its infancy; however, EMA is a highly promising and innovative approach as it offers insights into the microtemporal dynamics of psychiatric symptomology, dietary intake, and PA in daily life.
Collapse
Affiliation(s)
- Alea Ruf
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Andreas B Neubauer
- DIPF | Leibniz Institute for Research and Information in Education, Frankfurt, Germany
- Center for Research on Individual Development and Adaptive Education of Children at Risk (IDeA), Frankfurt, Germany
| | - Elena D Koch
- Mental mHealth Lab, Institute of Sports and Sports Science, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Ulrich Ebner-Priemer
- Mental mHealth Lab, Institute of Sports and Sports Science, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Silke Matura
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| |
Collapse
|
13
|
Hanssen R, Rigoux L, Kuzmanovic B, Iglesias S, Kretschmer AC, Schlamann M, Albus K, Edwin Thanarajah S, Sitnikow T, Melzer C, Cornely OA, Brüning JC, Tittgemeyer M. Liraglutide restores impaired associative learning in individuals with obesity. Nat Metab 2023; 5:1352-1363. [PMID: 37592007 PMCID: PMC10447249 DOI: 10.1038/s42255-023-00859-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 07/07/2023] [Indexed: 08/19/2023]
Abstract
Survival under selective pressure is driven by the ability of our brain to use sensory information to our advantage to control physiological needs. To that end, neural circuits receive and integrate external environmental cues and internal metabolic signals to form learned sensory associations, consequently motivating and adapting our behaviour. The dopaminergic midbrain plays a crucial role in learning adaptive behaviour and is particularly sensitive to peripheral metabolic signals, including intestinal peptides, such as glucagon-like peptide 1 (GLP-1). In a single-blinded, randomized, controlled, crossover basic human functional magnetic resonance imaging study relying on a computational model of the adaptive learning process underlying behavioural responses, we show that adaptive learning is reduced when metabolic sensing is impaired in obesity, as indexed by reduced insulin sensitivity (participants: N = 30 with normal insulin sensitivity; N = 24 with impaired insulin sensitivity). Treatment with the GLP-1 receptor agonist liraglutide normalizes impaired learning of sensory associations in men and women with obesity. Collectively, our findings reveal that GLP-1 receptor activation modulates associative learning in people with obesity via its central effects within the mesoaccumbens pathway. These findings provide evidence for how metabolic signals can act as neuromodulators to adapt our behaviour to our body's internal state and how GLP-1 receptor agonists work in clinics.
Collapse
Affiliation(s)
- Ruth Hanssen
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Policlinic for Endocrinology, Diabetology and Preventive Medicine (PEPD), University of Cologne, Cologne, Germany
| | - Lionel Rigoux
- Max Planck Institute for Metabolism Research, Cologne, Germany
| | | | - Sandra Iglesias
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Alina C Kretschmer
- Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany
| | - Marc Schlamann
- Faculty of Medicine and University Hospital Cologne, Institute for Diagnostic and Interventional Radiology, University of Cologne, Cologne, Germany
| | - Kerstin Albus
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Sharmili Edwin Thanarajah
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Tamara Sitnikow
- Faculty of Medicine and University Hospital Cologne, Policlinic for Endocrinology, Diabetology and Preventive Medicine (PEPD), University of Cologne, Cologne, Germany
| | - Corina Melzer
- Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Oliver A Cornely
- Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln), University of Cologne, Cologne, Germany
| | - Jens C Brüning
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Policlinic for Endocrinology, Diabetology and Preventive Medicine (PEPD), University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Marc Tittgemeyer
- Max Planck Institute for Metabolism Research, Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
14
|
Dunn JP, Lamichhane B, Smith GI, Garner A, Wallendorf M, Hershey T, Klein S. Dorsal striatal response to taste is modified by obesity and insulin resistance. Obesity (Silver Spring) 2023; 31:2065-2075. [PMID: 37475685 PMCID: PMC10767984 DOI: 10.1002/oby.23799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 07/22/2023]
Abstract
OBJECTIVE In preclinical models, insulin resistance in the dorsal striatum (DS) contributes to overeating. Although human studies support the concept of central insulin resistance, they have not investigated its effect on consummatory reward-induced brain activity. METHODS Taste-induced activation was assessed in the caudate and putamen of the DS with blood oxygen level-dependent (BOLD) functional magnetic resonance imaging. Three phenotypically distinct groups were studied: metabolically healthy lean, metabolically healthy obesity, and metabolically unhealthy obesity (MUO; presumed to have central insulin resistance). Participants with MUO also completed a weight loss intervention followed by a second functional magnetic resonance imaging session. RESULTS The three groups were significantly different at baseline consistent with the design. The metabolically healthy lean group had a primarily positive BOLD response, the MUO group had a primarily negative BOLD response, and the metabolically healthy obesity group had a response in between the two other groups. Food craving was predicted by taste-induced activation. After weight loss in the MUO group, taste-induced activation increased in the DS. CONCLUSIONS These data support the hypothesis that insulin resistance and obesity contribute to aberrant responses to taste in the DS, which is only partially attenuated by weight loss. Aberrant responses to food exposure may be a barrier to weight loss.
Collapse
Affiliation(s)
- Julia P. Dunn
- VA St. Louis Health Care System, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Bidhan Lamichhane
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Gordon I. Smith
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Amy Garner
- VA St. Louis Health Care System, St. Louis, Missouri, USA
| | - Michael Wallendorf
- Division of Biostatistics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Tamara Hershey
- Departments of Psychiatry and Radiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Samuel Klein
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
15
|
Bini J. The historical progression of positron emission tomography research in neuroendocrinology. Front Neuroendocrinol 2023; 70:101081. [PMID: 37423505 PMCID: PMC10530506 DOI: 10.1016/j.yfrne.2023.101081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
The rapid and continual development of a number of radiopharmaceuticals targeting different receptor, enzyme and small molecule systems has fostered Positron Emission Tomography (PET) imaging of endocrine system actions in vivo in the human brain for several decades. PET radioligands have been developed to measure changes that are regulated by hormone action (e.g., glucose metabolism, cerebral blood flow, dopamine receptors) and actions within endocrine organs or glands such as steroids (e.g., glucocorticoids receptors), hormones (e.g., estrogen, insulin), and enzymes (e.g., aromatase). This systematic review is targeted to the neuroendocrinology community that may be interested in learning about positron emission tomography (PET) imaging for use in their research. Covering neuroendocrine PET research over the past half century, researchers and clinicians will be able to answer the question of where future research may benefit from the strengths of PET imaging.
Collapse
Affiliation(s)
- Jason Bini
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States.
| |
Collapse
|
16
|
van Galen KA, Schrantee A, Ter Horst KW, la Fleur SE, Booij J, Constable RT, Schwartz GJ, DiLeone RJ, Serlie MJ. Brain responses to nutrients are severely impaired and not reversed by weight loss in humans with obesity: a randomized crossover study. Nat Metab 2023:10.1038/s42255-023-00816-9. [PMID: 37308722 DOI: 10.1038/s42255-023-00816-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/04/2023] [Indexed: 06/14/2023]
Abstract
Post-ingestive nutrient signals to the brain regulate eating behaviour in rodents, and impaired responses to these signals have been associated with pathological feeding behaviour and obesity. To study this in humans, we performed a single-blinded, randomized, controlled, crossover study in 30 humans with a healthy body weight (females N = 12, males N = 18) and 30 humans with obesity (females N = 18, males N = 12). We assessed the effect of intragastric glucose, lipid and water (noncaloric isovolumetric control) infusions on the primary endpoints cerebral neuronal activity and striatal dopamine release, as well as on the secondary endpoints plasma hormones and glucose, hunger scores and caloric intake. To study whether impaired responses in participants with obesity would be partially reversible with diet-induced weight loss, imaging was repeated after 10% diet-induced weight loss. We show that intragastric glucose and lipid infusions induce orosensory-independent and preference-independent, nutrient-specific cerebral neuronal activity and striatal dopamine release in lean participants. In contrast, participants with obesity have severely impaired brain responses to post-ingestive nutrients. Importantly, the impaired neuronal responses are not restored after diet-induced weight loss. Impaired neuronal responses to nutritional signals may contribute to overeating and obesity, and ongoing resistance to post-ingestive nutrient signals after significant weight loss may in part explain the high rate of weight regain after successful weight loss.
Collapse
Affiliation(s)
- Katy A van Galen
- Amsterdam UMC, location AMC, Department of Radiology and Nuclear Medicine, Amsterdam, the Netherlands
| | - Anouk Schrantee
- Amsterdam UMC, location AMC, Department of Radiology and Nuclear Medicine, Amsterdam, the Netherlands
| | - Kasper W Ter Horst
- Amsterdam University Medical Centers (UMC), location AMC, Department of Endocrinology and Metabolism and Amsterdam Gastroenterology Metabolism Endocrinology Institute, Amsterdam, the Netherlands
| | - Susanne E la Fleur
- Amsterdam University Medical Centers (UMC), location AMC, Department of Endocrinology and Metabolism and Amsterdam Gastroenterology Metabolism Endocrinology Institute, Amsterdam, the Netherlands
- Amsterdam UMC, location AMC, Department of Clinical Chemistry, Laboratory of Endocrinology, Amsterdam, the Netherlands
| | - Jan Booij
- Amsterdam UMC, location AMC, Department of Radiology and Nuclear Medicine, Amsterdam, the Netherlands
| | - R Todd Constable
- Yale University School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, CT, USA
| | - Gary J Schwartz
- Albert Einstein College of Medicine, Fleischer Institute for Diabetes and Metabolism, Bronx, NY, USA
| | - Ralph J DiLeone
- Yale University School of Medicine, Department of Psychiatry, New Haven, CT, USA
| | - Mireille J Serlie
- Amsterdam University Medical Centers (UMC), location AMC, Department of Endocrinology and Metabolism and Amsterdam Gastroenterology Metabolism Endocrinology Institute, Amsterdam, the Netherlands.
- Yale University School of Medicine, Department of Endocrinology, New Haven, CT, USA.
| |
Collapse
|
17
|
Carnell S, Steele KE, Thapaliya G, Kuwubara H, Aghababian A, Papantoni A, Nandi A, Brašić JR, Moran TH, Wong DF. Milkshake Acutely Stimulates Dopamine Release in Ventral and Dorsal Striatum in Healthy-Weight Individuals and Patients with Severe Obesity Undergoing Bariatric Surgery: A Pilot Study. Nutrients 2023; 15:2671. [PMID: 37375579 PMCID: PMC10302648 DOI: 10.3390/nu15122671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The overconsumption of palatable energy-dense foods drives obesity, but few human studies have investigated dopamine (DA) release in response to the consumption of a palatable meal, a putative mediator of excess intake in obesity. We imaged [11C]raclopride in the brain with positron emission tomography (PET) to assess striatal dopamine (DA) receptor binding pre- and post-consumption of a highly palatable milkshake (250 mL, 420 kcal) in 11 females, 6 of whom had severe obesity, and 5 of whom had healthy-weight. Those with severe obesity underwent assessments pre- and 3 months post-vertical sleeve gastrectomy (VSG). Our results demonstrated decreased post- vs. pre-meal DA receptor binding in the ventral striatum (p = 0.032), posterior putamen (p = 0.012), and anterior caudate (p = 0.018), consistent with meal-stimulated DA release. Analysis of each group separately suggested that results in the caudate and putamen were disproportionately driven by meal-associated changes in the healthy-weight group. Baseline (pre-meal) DA receptor binding was lower in severe obesity than in the healthy-weight group. Baseline DA receptor binding and DA release did not change from pre- to post-surgery. The results of this small pilot study suggest that milkshake acutely stimulates DA release in the ventral and dorsal striatum. This phenomenon likely contributes to the overconsumption of highly palatable foods in the modern environment.
Collapse
Affiliation(s)
- Susan Carnell
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (G.T.); (A.A.); (A.P.)
| | - Kimberley E. Steele
- Johns Hopkins Center for Bariatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA;
| | - Gita Thapaliya
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (G.T.); (A.A.); (A.P.)
| | - Hiroto Kuwubara
- Section of High Resolution Brain Positron Emission Tomography Imaging, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (H.K.); (A.N.); (J.R.B.)
| | - Anahys Aghababian
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (G.T.); (A.A.); (A.P.)
| | - Afroditi Papantoni
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (G.T.); (A.A.); (A.P.)
| | - Ayon Nandi
- Section of High Resolution Brain Positron Emission Tomography Imaging, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (H.K.); (A.N.); (J.R.B.)
| | - James R. Brašić
- Section of High Resolution Brain Positron Emission Tomography Imaging, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (H.K.); (A.N.); (J.R.B.)
| | - Timothy H. Moran
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| | - Dean F. Wong
- Mallinckrodt Institute of Radiology, Departments of Radiology, Psychiatry, Neurology, Neuroscience, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA;
| |
Collapse
|
18
|
de Araujo AM, Braga I, Leme G, Singh A, McDougle M, Smith J, Vergara M, Yang M, Lin M, Khoshbouei H, Krause E, de Oliveira AG, de Lartigue G. Asymmetric control of food intake by left and right vagal sensory neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539627. [PMID: 37214924 PMCID: PMC10197596 DOI: 10.1101/2023.05.08.539627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We investigated the lateralization of gut-innervating vagal sensory neurons and their roles in feeding behavior. Using genetic, anatomical, and behavioral analyses, we discovered a subset of highly lateralized vagal sensory neurons with distinct sensory responses to intestinal stimuli. Our results demonstrated that left vagal sensory neurons (LNG) are crucial for distension-induced satiety, while right vagal sensory neurons (RNG) mediate preference for nutritive foods. Furthermore, these lateralized neurons engage different central circuits, with LNG neurons recruiting brain regions associated with energy balance and RNG neurons activating areas related to salience, memory, and reward. Altogether, our findings unveil the diverse roles of asymmetrical gut-vagal-brain circuits in feeding behavior, offering new insights for potential therapeutic interventions targeting vagal nerve stimulation in metabolic and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Alan Moreira de Araujo
- Monell Chemical Sense Center, Philadelphia, PA, USA
- Dept. Neuroscience, University of Pennsylvania, Philadelphia, USA
- Dept of Pharmacodynamics, University of Florida, Gainesville, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, USA
| | - Isadora Braga
- Monell Chemical Sense Center, Philadelphia, PA, USA
- Dept. Neuroscience, University of Pennsylvania, Philadelphia, USA
- Dept of Pharmacodynamics, University of Florida, Gainesville, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, USA
| | - Gabriel Leme
- Dept of Pharmacodynamics, University of Florida, Gainesville, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, USA
| | - Arashdeep Singh
- Monell Chemical Sense Center, Philadelphia, PA, USA
- Dept. Neuroscience, University of Pennsylvania, Philadelphia, USA
- Dept of Pharmacodynamics, University of Florida, Gainesville, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, USA
| | - Molly McDougle
- Monell Chemical Sense Center, Philadelphia, PA, USA
- Dept. Neuroscience, University of Pennsylvania, Philadelphia, USA
- Dept of Pharmacodynamics, University of Florida, Gainesville, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, USA
| | - Justin Smith
- Dept of Pharmacodynamics, University of Florida, Gainesville, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, USA
| | - Macarena Vergara
- Dept of Pharmacodynamics, University of Florida, Gainesville, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, USA
| | - Mingxing Yang
- Monell Chemical Sense Center, Philadelphia, PA, USA
- Dept. Neuroscience, University of Pennsylvania, Philadelphia, USA
- Dept of Pharmacodynamics, University of Florida, Gainesville, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, USA
| | - M Lin
- Dept of Neuroscience, University of Florida, Gainesville, USA
| | - H Khoshbouei
- Dept of Neuroscience, University of Florida, Gainesville, USA
| | - Eric Krause
- Dept of Pharmacodynamics, University of Florida, Gainesville, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, USA
| | - Andre G de Oliveira
- Dept of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Guillaume de Lartigue
- Monell Chemical Sense Center, Philadelphia, PA, USA
- Dept. Neuroscience, University of Pennsylvania, Philadelphia, USA
- Dept of Pharmacodynamics, University of Florida, Gainesville, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, USA
| |
Collapse
|
19
|
de Wouters d'Oplinter A, Verce M, Huwart SJP, Lessard-Lord J, Depommier C, Van Hul M, Desjardins Y, Cani PD, Everard A. Obese-associated gut microbes and derived phenolic metabolite as mediators of excessive motivation for food reward. MICROBIOME 2023; 11:94. [PMID: 37106463 PMCID: PMC10142783 DOI: 10.1186/s40168-023-01526-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 03/20/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Excessive hedonic consumption is one of the main drivers for weight gain. Identifying contributors of this dysregulation would help to tackle obesity. The gut microbiome is altered during obesity and regulates host metabolism including food intake. RESULTS By using fecal material transplantation (FMT) from lean or obese mice into recipient mice, we demonstrated that gut microbes play a role in the regulation of food reward (i.e., wanting and learning processes associated with hedonic food intake) and could be responsible for excessive motivation to obtain sucrose pellets and alterations in dopaminergic and opioid markers in reward-related brain areas. Through untargeted metabolomic approach, we identified the 3-(3'-hydroxyphenyl)propanoic acid (33HPP) as highly positively correlated with the motivation. By administrating 33HPP in mice, we revealed its effects on food reward. CONCLUSIONS Our data suggest that targeting the gut microbiota and its metabolites would be an interesting therapeutic strategy for compulsive eating, preventing inappropriate hedonic food intake. Video Abstract.
Collapse
Affiliation(s)
- Alice de Wouters d'Oplinter
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute (WELRI), avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Marko Verce
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute (WELRI), avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Sabrina J P Huwart
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute (WELRI), avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Jacob Lessard-Lord
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Clara Depommier
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute (WELRI), avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Matthias Van Hul
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute (WELRI), avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute (WELRI), avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Amandine Everard
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium.
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute (WELRI), avenue Pasteur, 6, 1300, Wavre, Belgium.
| |
Collapse
|
20
|
Brown RM, James MH. Binge eating, overeating and food addiction: Approaches for examining food overconsumption in laboratory rodents. Prog Neuropsychopharmacol Biol Psychiatry 2023; 123:110717. [PMID: 36623582 PMCID: PMC10162020 DOI: 10.1016/j.pnpbp.2023.110717] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Overeating ranges in severity from casual overindulgence to an overwhelming drive to consume certain foods. At its most extreme, overeating can manifest as clinical diagnoses such as binge eating disorder or bulimia nervosa, yet subclinical forms of overeating such as emotional eating or uncontrolled eating can still have a profoundly negative impact on health and wellbeing. Although rodent models cannot possibly capture the full spectrum of disordered overeating, studies in laboratory rodents have substantially progressed our understanding of the neurobiology of overconsumption. These experimental approaches range from simple food-exposure protocols that promote binge-like eating and the development of obesity, to more complex operant procedures designed to examine distinct 'addiction-like' endophenotypes for food. This review provides an overview of these experimental approaches, with the view to providing a comprehensive resource for preclinical investigators seeking to utilize behavioural models for studying the neural systems involved in food overconsumption.
Collapse
Affiliation(s)
- Robyn M Brown
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC, Australia; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.
| | - Morgan H James
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, NJ, USA; Brain Health Institute, Rutgers University, NJ, USA.
| |
Collapse
|
21
|
Rodriguez M, Kross E. Sensory emotion regulation. Trends Cogn Sci 2023; 27:379-390. [PMID: 36805103 DOI: 10.1016/j.tics.2023.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/17/2023]
Abstract
Decades of evidence reveal intimate links between sensation and emotion. Yet, discussion of sensory experiences as tools that promote emotion regulation is largely absent from current theorizing on this topic. Here, we address this gap by integrating evidence from social-personality, clinical, cognitive-neuroscience, and animal research to highlight the role of sensation as a tool that can be harnessed to up- or downregulate emotion. Further, we review evidence implicating sensation as a rapid and relatively effortless emotion regulation modality and highlight future research directions. Notably, we emphasize the need to examine the duration of sensory emotion regulation effects, the moderating role of individual and cultural differences, and how sensory strategies interact with other strategies.
Collapse
Affiliation(s)
- Micaela Rodriguez
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA.
| | - Ethan Kross
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA; Ross School of Business, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
22
|
Actions and Consequences of Insulin in the Striatum. Biomolecules 2023; 13:biom13030518. [PMID: 36979453 PMCID: PMC10046598 DOI: 10.3390/biom13030518] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/14/2023] Open
Abstract
Insulin crosses the blood–brain barrier to enter the brain from the periphery. In the brain, insulin has well-established actions in the hypothalamus, as well as at the level of mesolimbic dopamine neurons in the midbrain. Notably, insulin also acts in the striatum, which shows abundant expression of insulin receptors (InsRs) throughout. These receptors are found on interneurons and striatal projections neurons, as well as on glial cells and dopamine axons. A striking functional consequence of insulin elevation in the striatum is promoting an increase in stimulated dopamine release. This boosting of dopamine release involves InsRs on cholinergic interneurons, and requires activation of nicotinic acetylcholine receptors on dopamine axons. Opposing this dopamine-enhancing effect, insulin also increases dopamine uptake through the action of insulin at InsRs on dopamine axons. Insulin acts on other striatal cells as well, including striatal projection neurons and astrocytes that also influence dopaminergic transmission and striatal function. Linking these cellular findings to behavior, striatal insulin signaling is required for the development of flavor–nutrient learning, implicating insulin as a reward signal in the brain. In this review, we discuss these and other actions of insulin in the striatum, including how they are influenced by diet and other physio-logical states.
Collapse
|
23
|
Santoro M, Fadda P, Klephan KJ, Hull C, Teismann P, Platt B, Riedel G. Neurochemical, histological, and behavioral profiling of the acute, sub-acute, and chronic MPTP mouse model of Parkinson's disease. J Neurochem 2023; 164:121-142. [PMID: 36184945 PMCID: PMC10098710 DOI: 10.1111/jnc.15699] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/25/2022] [Accepted: 09/30/2022] [Indexed: 02/04/2023]
Abstract
Parkinson's disease (PD) is a heterogeneous multi-systemic disorder unique to humans characterized by motor and non-motor symptoms. Preclinical experimental models of PD present limitations and inconsistent neurochemical, histological, and behavioral readouts. The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD is the most common in vivo screening platform for novel drug therapies; nonetheless, behavioral endpoints yielded amongst laboratories are often discordant and inconclusive. In this study, we characterized neurochemically, histologically, and behaviorally three different MPTP mouse models of PD to identify translational traits reminiscent of PD symptomatology. MPTP was intraperitoneally (i.p.) administered in three different regimens: (i) acute-four injections of 20 mg/kg of MPTP every 2 h; (ii) sub-acute-one daily injection of 30 mg/kg of MPTP for 5 consecutive days; and (iii) chronic-one daily injection of 4 mg/kg of MPTP for 28 consecutive days. A series of behavioral tests were conducted to assess motor and non-motor behavioral changes including anxiety, endurance, gait, motor deficits, cognitive impairment, circadian rhythm and food consumption. Impairments in balance and gait were confirmed in the chronic and acute models, respectively, with the latter showing significant correlation with lesion size. The sub-acute model, by contrast, presented with generalized hyperactivity. Both, motor and non-motor changes were identified in the acute and sub-acute regime where habituation to a novel environment was significantly reduced. Moreover, we report increased water and food intake across all three models. Overall, the acute model displayed the most severe lesion size, while across the three models striatal dopamine content (DA) did not correlate with the behavioral performance. The present study demonstrates that detection of behavioral changes following MPTP exposure is challenging and does not correlate with the dopaminergic lesion extent.
Collapse
Affiliation(s)
- Matteo Santoro
- Institute of Medical SciencesUniversity of AberdeenAberdeenUK
- Present address:
Department of Neurosurgery, School of MedicineStanford UniversityPalo AltoCaliforniaUSA
| | - Paola Fadda
- Department of NeuroscienceUniversity of CagliariCagliariItaly
| | - Katie J. Klephan
- Newcastle UniversitySchool of Biomedical, Nutritional, and Sport SciencesNewcastle upon TyneUK
- Present address:
AccuRXLondonLondonUK
| | - Claire Hull
- Institute of Medical SciencesUniversity of AberdeenAberdeenUK
| | - Peter Teismann
- Institute of Medical SciencesUniversity of AberdeenAberdeenUK
| | - Bettina Platt
- Institute of Medical SciencesUniversity of AberdeenAberdeenUK
| | - Gernot Riedel
- Institute of Medical SciencesUniversity of AberdeenAberdeenUK
| |
Collapse
|
24
|
Ribeiro G, Torres S, Fernandes AB, Camacho M, Branco TL, Martins SS, Raimundo A, Oliveira-Maia AJ. Enhanced sweet taste perception in obesity: Joint analysis of gustatory data from multiple studies. Front Nutr 2022; 9:1028261. [PMID: 36606228 PMCID: PMC9807659 DOI: 10.3389/fnut.2022.1028261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction While sweet taste perception is a potential determinant of feeding behavior in obesity, the supporting evidence is inconsistent and is typically associated with methodological limitations. Notably, possible associations between sweet taste perception and measures of food reward remain undetermined. Materials and methods We conducted a cross-sectional analysis comparing 246 individuals with severe obesity and 174 healthy volunteers using a validated method for taste perception assessment. We included gustatory variables, namely intensity and pleasantness ratings of sour, salt, sweet, and bitter tastants, and taste thresholds assessed by electrogustometry. Reward-related feeding behavior, including hedonic hunger, food addiction, feeding behavior traits, and acceptance of foods and alcohol, was evaluated using self-rated scales for comparison with gustatory measures. Result In logistic regressions adjusted for age, gender, educational level, and research center, we found that a greater likelihood of belonging to the obesity group was associated with higher sweet intensity ratings (OR = 1.4, P = 0.01), hedonic hunger, food addiction symptoms, restrained and emotional eating (1.7 < OR ≤ 4.6, all P ≤ 0.001), and lower alcohol acceptance (OR = 0.6, P = 0.0002). Using principal component analysis, we found that while hedonic hunger, food addiction, and emotional eating were strongly interrelated, they were not associated with sweet intensity perception that, in turn, had a closer relationship with alcohol acceptance and restrained eating. Conclusion We found that individuals with obesity report higher sweet taste intensity ratings than healthy controls. Furthermore, while psychological measures of reward-related feeding behavior assess a common construct, sweet intensity perception may represent a different obesity-related dimension.
Collapse
Affiliation(s)
- Gabriela Ribeiro
- Champalimaud Research and Clinical Centre, Champalimaud Foundation, Lisbon, Portugal,Lisbon Academic Medical Centre PhD Program, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Sandra Torres
- Faculdade de Psicologia e de Ciências da Educação, Universidade do Porto, Porto, Portugal,Centro de Psicologia da Universidade do Porto, Porto, Portugal
| | - Ana B. Fernandes
- Champalimaud Research and Clinical Centre, Champalimaud Foundation, Lisbon, Portugal,NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Marta Camacho
- Champalimaud Research and Clinical Centre, Champalimaud Foundation, Lisbon, Portugal
| | - Teresa L. Branco
- Exercise and Health Laboratory, CIPER, Faculdade de Medicina da Universidade de Lisboa, Cruz Quebrada, Portugal
| | - Sandra S. Martins
- Universidade Europeia, Lisbon, Portugal,Instituto de Saúde Ambiental (ISAMB), Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Armando Raimundo
- Departamento de Desporto e Saúde, Escola de Saúde e Desenvolvimento Humano, Universidade de Évora, Évora, Portugal,Comprehensive Health Research Centre (CHRC), Universidade de Évora, Évora, Portugal
| | - Albino J. Oliveira-Maia
- Champalimaud Research and Clinical Centre, Champalimaud Foundation, Lisbon, Portugal,NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisbon, Portugal,*Correspondence: Albino J. Oliveira-Maia,
| | | |
Collapse
|
25
|
Hanßen R, Schiweck C, Aichholzer M, Reif A, Edwin Thanarajah S. Food reward and its aberrations in obesity. Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2022.101224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
26
|
Sun J, Wang Y, Liu P, Wang Y. Memristor Neural Network Circuit Based on Operant Conditioning With Immediacy and Satiety. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:1095-1105. [PMID: 36264735 DOI: 10.1109/tbcas.2022.3216112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Most of the operant conditioning only consider the basic theory, but the influencing factors such as immediacy and satiety are ignored. In this paper, a memristor neural network circuit based on operant conditioning with immediacy and satiety is proposed. The designed circuit is mainly composed of voltage control modules, synapse modules and promotion-suppression modules. The various processes of operant conditioning theory are realized. The relationship between positive reward and negative punishment is implemented through promotion-suppression modules and synapse modules. The influence of immediacy on operant conditioning is achieved through voltage control module. The effect of satiety on operant conditioning is discussed using memristive non-volatility. The study of operant conditioning may provide a reference for smarter brain-like nerves.
Collapse
|
27
|
Kelly AL, Baugh ME, Oster ME, DiFeliceantonio AG. The impact of caloric availability on eating behavior and ultra-processed food reward. Appetite 2022; 178:106274. [PMID: 35963586 PMCID: PMC9749763 DOI: 10.1016/j.appet.2022.106274] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/07/2022] [Accepted: 08/07/2022] [Indexed: 12/19/2022]
Abstract
The food environment has changed rapidly and dramatically in the last 50 years. While industrial food processing has increased the safety and stability of the food supply, a rapid expansion in the scope and scale of food processing in the 1980's has resulted in a market dominated by ultra-processed foods. Here, we use the NOVA definition of category 4 ultra-processed foods (UPFs) as they make up around 58% of total calories consumed in the US and 66% of calories in US children. UPFs are formulated from ingredients with no or infrequent culinary use, contain additives, and have a long shelf-life, spending long periods in contact with packaging materials, allowing for the absorption of compounds from those materials. The full implications of this dietary shift to UPFs on human health and disease outcomes are difficult, if not impossible, to quantify. However, UPF consumption is linked with various forms of cancer, increased cardiovascular disease, and increased all-cause mortality. Understanding food choice is, therefore, a critical problem in health research. Although many factors influence food choice, here we focus on the properties of the foods themselves. UPFs are generally treated as food, not as the highly refined, industrialized substances that they are, whose properties and components must be studied. Here, we examine one property of UPFs, that they deliver useable calories rapidly as a potential factor driving UPF overconsumption. First, we explore evidence that UPFs deliver calories more rapidly. Next, we examine the role of the gut-brain axis and its interplay with canonical reward systems, and last, we describe how speed affects both basic learning processes and drugs of abuse.
Collapse
Affiliation(s)
- Amber L Kelly
- Fralin Biomedical Research Institute at Virginia Tech Carilion, USA
| | | | - Mary E Oster
- Fralin Biomedical Research Institute at Virginia Tech Carilion, USA
| | - Alexandra G DiFeliceantonio
- Fralin Biomedical Research Institute at Virginia Tech Carilion, USA; Center for Health Behaviors Research; Department of Human Nutrition Foods and Exercise at Virginia Tech, USA.
| |
Collapse
|
28
|
Guerrero-Hreins E, Foldi CJ, Oldfield BJ, Stefanidis A, Sumithran P, Brown RM. Gut-brain mechanisms underlying changes in disordered eating behaviour after bariatric surgery: a review. Rev Endocr Metab Disord 2022; 23:733-751. [PMID: 34851508 DOI: 10.1007/s11154-021-09696-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/12/2021] [Indexed: 02/07/2023]
Abstract
Bariatric surgery results in long-term weight loss and an improved metabolic phenotype due to changes in the gut-brain axis regulating appetite and glycaemia. Neuroendocrine alterations associated with bariatric surgery may also influence hedonic aspects of eating by inducing changes in taste preferences and central reward reactivity towards palatable food. However, the impact of bariatric surgery on disordered eating behaviours (e.g.: binge eating, loss-of-control eating, emotional eating and 'addictive eating'), which are commonly present in people with obesity are not well understood. Increasing evidence suggests gut-derived signals, such as appetitive hormones, bile acid profiles, microbiota concentrations and associated neuromodulatory metabolites, can influence pathways in the brain implicated in food intake, including brain areas involved in sensorimotor, reward-motivational, emotional-arousal and executive control components of food intake. As disordered eating prevalence is a key mediator of weight-loss success and patient well-being after bariatric surgery, understanding how changes in the gut-brain axis contribute to disordered eating incidence and severity after bariatric surgery is crucial to better improve treatment outcomes in people with obesity.
Collapse
Affiliation(s)
- Eva Guerrero-Hreins
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Melbourne, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia
| | - Claire J Foldi
- Department of Physiology, Monash University, Clayton, Melbourne, Australia
- Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, Australia
| | - Brian J Oldfield
- Department of Physiology, Monash University, Clayton, Melbourne, Australia
- Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, Australia
| | - Aneta Stefanidis
- Department of Physiology, Monash University, Clayton, Melbourne, Australia
- Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, Australia
| | - Priya Sumithran
- Department of Medicine (St Vincent's), University of Melbourne, Melbourne, Australia
- Department of Endocrinology, Austin Health, Melbourne, Australia
| | - Robyn M Brown
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Melbourne, Australia.
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia.
| |
Collapse
|
29
|
Involvement of the ghrelin system in the maintenance and reinstatement of cocaine-motivated behaviors: a role of adrenergic action at peripheral β1 receptors. Neuropsychopharmacology 2022; 47:1449-1460. [PMID: 34923576 PMCID: PMC9206024 DOI: 10.1038/s41386-021-01249-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/22/2021] [Accepted: 11/28/2021] [Indexed: 12/30/2022]
Abstract
Cocaine addiction is a significant medical and public concern. Despite decades of research effort, development of pharmacotherapy for cocaine use disorder remains largely unsuccessful. This may be partially due to insufficient understanding of the complex biological mechanisms involved in the pathophysiology of this disorder. In the present study, we show that: (1) elevation of ghrelin by cocaine plays a critical role in maintenance of cocaine self-administration and cocaine-seeking motivated by cocaine-conditioned stimuli; (2) acquisition of cocaine-taking behavior is associated with the acquisition of stimulatory effects of cocaine by cocaine-conditioned stimuli on ghrelin secretion, and with an upregulation of ghrelin receptor mRNA levels in the ventral tegmental area (VTA); (3) blockade of ghrelin signaling by pretreatment with JMV2959, a selective ghrelin receptor antagonist, dose-dependently inhibits reinstatement of cocaine-seeking triggered by either cocaine or yohimbine in behaviorally extinguished animals with a history of cocaine self-administration; (4) JMV2959 pretreatment also inhibits brain stimulation reward (BSR) and cocaine-potentiated BSR maintained by optogenetic stimulation of VTA dopamine neurons in DAT-Cre mice; (5) blockade of peripheral adrenergic β1 receptors by atenolol potently attenuates the elevation in circulating ghrelin induced by cocaine and inhibits cocaine self-administration and cocaine reinstatement triggered by cocaine. These findings demonstrate that the endogenous ghrelin system plays an important role in cocaine-related addictive behaviors and suggest that manipulating and targeting this system may be viable for mitigating cocaine use disorder.
Collapse
|
30
|
Cortical D1 and D2 dopamine receptor availability modulate methylphenidate-induced changes in brain activity and functional connectivity. Commun Biol 2022; 5:514. [PMID: 35637272 PMCID: PMC9151821 DOI: 10.1038/s42003-022-03434-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/02/2022] [Indexed: 11/08/2022] Open
Abstract
Dopamine signaling plays a critical role in shaping brain functional network organization and behavior. Prominent theories suggest the relative expression of D1- to D2-like dopamine receptors shapes excitatory versus inhibitory signaling, with broad consequences for cognition. Yet it remains unknown how the balance between cortical D1R versus D2R signaling coordinates the activity and connectivity of functional networks in the human brain. To address this, we collected three PET scans and two fMRI scans in 36 healthy adults (13 female/23 male; average age 43 ± 12 years), including a baseline D1R PET scan and two sets of D2R PET scans and fMRI scans following administration of either 60 mg oral methylphenidate or placebo (two separate days, blinded, order counterbalanced). The drug challenge allowed us to assess how pharmacologically boosting dopamine levels alters network organization and behavior in association with D1R-D2R ratios across the brain. We found that the relative D1R-D2R ratio was significantly greater in high-level association cortices than in sensorimotor cortices. After stimulation with methylphenidate compared to placebo, brain activity (as indexed by the fractional amplitude of low frequency fluctuations) increased in association cortices and decreased in sensorimotor cortices. Further, within-network resting state functional connectivity strength decreased more in sensorimotor than association cortices following methylphenidate. Finally, in association but not sensorimotor cortices, the relative D1R-D2R ratio (but not the relative availability of D1R or D2R alone) was positively correlated with spatial working memory performance, and negatively correlated with age. Together, these data provide a framework for how dopamine-boosting drugs like methylphenidate alter brain function, whereby regions with relatively higher inhibitory D2R (i.e., sensorimotor cortices) tend to have greater decreases in brain activity and connectivity compared to regions with relatively higher excitatory D1R (i.e., association cortices). They also support the importance of a balanced interaction between D1R and D2R in association cortices for cognitive function and its degradation with aging. Joint PET and MRI analyses of cortical D1 and D2 dopamine receptors in healthy adults provide a framework for understanding how dopamine-boosting drugs alter brain function.
Collapse
|
31
|
Oren S, Tittgemeyer M, Rigoux L, Schlamann M, Schonberg T, Kuzmanovic B. Neural Encoding of Food and Monetary Reward Delivery. Neuroimage 2022; 257:119335. [PMID: 35643268 DOI: 10.1016/j.neuroimage.2022.119335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/18/2022] Open
Abstract
Different types of rewards such as food and money can similarly drive our behavior owing to shared brain processes encoding their subjective value. However, while the value of money is abstract and needs to be learned, the value of food is rooted in the innate processing of sensory properties and nutritional utilization. Yet, the actual consumption of food and the receipt of money have never been directly contrasted in the same experiment, questioning what unique neural processes differentiate those reward types. To fill this gap, we examined the distinct and common neural responses to the delivery of food and monetary rewards during fMRI. In a novel experimental approach, we parametrically manipulated the subjective value of food and monetary rewards by modulating the quantities of administered palatable milkshake and monetary gains. The receipt of increasing amounts of milkshake and money recruited the ventral striatum and the ventromedial prefrontal cortex, previously associated with value encoding. Notably, the consumption and the subsequent evaluation of increasing quantities of milkshake relative to money revealed an extended recruitment of brain regions related to taste, somatosensory processing, and salience. Moreover, we detected a decline of reward encoding in the ventral tegmental area, nucleus accumbens, and vmPFC, indicating that these regions may be susceptible to time-dependent effects upon accumulation of food and money rewards. Relative to monetary gains, the consumption and evaluation of palatable milkshakes engaged complex neural processing over and above value tracking, emphasizing the critical contribution of taste and other sensory properties to the processing of food rewards. Furthermore, our results highlight the need to closely monitor metabolic states and neural responses to the accumulation of rewards to pinpoint the mechanisms underlying time-dependent dynamics of reward-related processing.
Collapse
Affiliation(s)
- Shiran Oren
- Sagol School of Neuroscience, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel; Translational Neurocircuitry Group, Max Planck Institute for Metabolism Research, Gleuelerstr. 50, Cologne 50931, Germany
| | - Marc Tittgemeyer
- Translational Neurocircuitry Group, Max Planck Institute for Metabolism Research, Gleuelerstr. 50, Cologne 50931, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Lionel Rigoux
- Translational Neurocircuitry Group, Max Planck Institute for Metabolism Research, Gleuelerstr. 50, Cologne 50931, Germany
| | - Marc Schlamann
- Institute for Diagnostic and Interventional Radiology, University Hospital Cologne, Kerpenerstr. 62, Cologne 50937, Germany
| | - Tom Schonberg
- Sagol School of Neuroscience, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel; Department of Neurobiology, The George S. Wise Faculty of Life Sciences, P.O. Box 39040, Tel Aviv 6997801, Israel
| | - Bojana Kuzmanovic
- Translational Neurocircuitry Group, Max Planck Institute for Metabolism Research, Gleuelerstr. 50, Cologne 50931, Germany.
| |
Collapse
|
32
|
Watts AG, Kanoski SE, Sanchez-Watts G, Langhans W. The physiological control of eating: signals, neurons, and networks. Physiol Rev 2022; 102:689-813. [PMID: 34486393 PMCID: PMC8759974 DOI: 10.1152/physrev.00028.2020] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
During the past 30 yr, investigating the physiology of eating behaviors has generated a truly vast literature. This is fueled in part by a dramatic increase in obesity and its comorbidities that has coincided with an ever increasing sophistication of genetically based manipulations. These techniques have produced results with a remarkable degree of cell specificity, particularly at the cell signaling level, and have played a lead role in advancing the field. However, putting these findings into a brain-wide context that connects physiological signals and neurons to behavior and somatic physiology requires a thorough consideration of neuronal connections: a field that has also seen an extraordinary technological revolution. Our goal is to present a comprehensive and balanced assessment of how physiological signals associated with energy homeostasis interact at many brain levels to control eating behaviors. A major theme is that these signals engage sets of interacting neural networks throughout the brain that are defined by specific neural connections. We begin by discussing some fundamental concepts, including ones that still engender vigorous debate, that provide the necessary frameworks for understanding how the brain controls meal initiation and termination. These include key word definitions, ATP availability as the pivotal regulated variable in energy homeostasis, neuropeptide signaling, homeostatic and hedonic eating, and meal structure. Within this context, we discuss network models of how key regions in the endbrain (or telencephalon), hypothalamus, hindbrain, medulla, vagus nerve, and spinal cord work together with the gastrointestinal tract to enable the complex motor events that permit animals to eat in diverse situations.
Collapse
Affiliation(s)
- Alan G Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Scott E Kanoski
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Graciela Sanchez-Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, Eidgenössische Technische Hochschule-Zürich, Schwerzenbach, Switzerland
| |
Collapse
|
33
|
Campos A, Port JD, Acosta A. Integrative Hedonic and Homeostatic Food Intake Regulation by the Central Nervous System: Insights from Neuroimaging. Brain Sci 2022; 12:431. [PMID: 35447963 PMCID: PMC9032173 DOI: 10.3390/brainsci12040431] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/11/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
Food intake regulation in humans is a complex process controlled by the dynamic interaction of homeostatic and hedonic systems. Homeostatic regulation is controlled by appetitive signals from the gut, adipose tissue, and the vagus nerve, while conscious and unconscious reward processes orchestrate hedonic regulation. On the one hand, sight, smell, taste, and texture perception deliver potent food-related feedback to the central nervous system (CNS) and influence brain areas related to food reward. On the other hand, macronutrient composition stimulates the release of appetite signals from the gut, which are translated in the CNS into unconscious reward processes. This multi-level regulation process of food intake shapes and regulates human ingestive behavior. Identifying the interface between hormones, neurotransmitters, and brain areas is critical to advance our understanding of conditions like obesity and develop better therapeutical interventions. Neuroimaging studies allow us to take a glance into the central nervous system (CNS) while these processes take place. This review focuses on the available neuroimaging evidence to describe this interaction between the homeostatic and hedonic components in human food intake regulation.
Collapse
Affiliation(s)
- Alejandro Campos
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| | - John D. Port
- Department of Diagnostic Radiology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Andres Acosta
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| |
Collapse
|
34
|
Hanssen R, Thanarajah SE, Tittgemeyer M, Brüning JC. Obesity - A Matter of Motivation? Exp Clin Endocrinol Diabetes 2022; 130:290-295. [PMID: 35181879 PMCID: PMC9286865 DOI: 10.1055/a-1749-4852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Excessive food intake and reduced physical activity have long been established as
primary causes of obesity. However, the underlying mechanisms causing this
unhealthy behavior characterized by heightened motivation for food but not for
physical effort are unclear. Despite the common unjustified stigmatization that
obesity is a result of laziness and lack of discipline, it is becoming
increasingly clear that high-fat diet feeding and obesity cause alterations in
brain circuits that are critical for the control of motivational behavior. In this mini-review, we provide a comprehensive overview of incentive motivation,
its neural encoding in the dopaminergic mesolimbic system as well as its
metabolic modulation with a focus on derangements of incentive motivation in
obesity. We further discuss the emerging field of metabolic interventions to
counteract motivational deficits and their potential clinical implications.
Collapse
Affiliation(s)
- Ruth Hanssen
- Max Planck Institute for Metabolism Research, Cologne, Germany.,Policlinic for Endocrinology, Diabetology and Preventive Medicine (PEPD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Sharmili E Thanarajah
- Max Planck Institute for Metabolism Research, Cologne, Germany.,Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Marc Tittgemeyer
- Max Planck Institute for Metabolism Research, Cologne, Germany.,Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD), Cologne, Germany
| | - Jens C Brüning
- Max Planck Institute for Metabolism Research, Cologne, Germany.,Policlinic for Endocrinology, Diabetology and Preventive Medicine (PEPD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD), Cologne, Germany
| |
Collapse
|
35
|
Reichenbach A, Clarke RE, Stark R, Lockie SH, Mequinion M, Dempsey H, Rawlinson S, Reed F, Sepehrizadeh T, DeVeer M, Munder AC, Nunez-Iglesias J, Spanswick D, Mynatt R, Kravitz AV, Dayas CV, Brown R, Andrews ZB. Metabolic sensing in AgRP neurons integrates homeostatic state with dopamine signalling in the striatum. eLife 2022; 11:72668. [PMID: 35018884 PMCID: PMC8803314 DOI: 10.7554/elife.72668] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/11/2022] [Indexed: 11/17/2022] Open
Abstract
Agouti-related peptide (AgRP) neurons increase motivation for food, however, whether metabolic sensing of homeostatic state in AgRP neurons potentiates motivation by interacting with dopamine reward systems is unexplored. As a model of impaired metabolic-sensing, we used the AgRP-specific deletion of carnitine acetyltransferase (Crat) in mice. We hypothesised that metabolic sensing in AgRP neurons is required to increase motivation for food reward by modulating accumbal or striatal dopamine release. Studies confirmed that Crat deletion in AgRP neurons (KO) impaired ex vivo glucose-sensing, as well as in vivo responses to peripheral glucose injection or repeated palatable food presentation and consumption. Impaired metabolic-sensing in AgRP neurons reduced acute dopamine release (seconds) to palatable food consumption and during operant responding, as assessed by GRAB-DA photometry in the nucleus accumbens, but not the dorsal striatum. Impaired metabolic-sensing in AgRP neurons suppressed radiolabelled 18F-fDOPA accumulation after ~30 min in the dorsal striatum but not the nucleus accumbens. Impaired metabolic sensing in AgRP neurons suppressed motivated operant responding for sucrose rewards during fasting. Thus, metabolic-sensing in AgRP neurons is required for the appropriate temporal integration and transmission of homeostatic hunger-sensing to dopamine signalling in the striatum.
Collapse
Affiliation(s)
| | - Rachel E Clarke
- Department of Physiology, Monash University, Clayton, Australia
| | - Romana Stark
- Department of Physiology, Monash University, Clayton, Australia
| | - Sarah H Lockie
- Department of Physiology, Monash University, Clayton, Australia
| | | | - Harry Dempsey
- Department of Physiology, Monash University, Clayton, Australia
| | - Sasha Rawlinson
- Department of Physiology, Monash University, Clayton, Australia
| | - Felicia Reed
- Department of Physiology, Monash University, Clayton, Australia
| | - Tara Sepehrizadeh
- Monash Biomedical Imaging Facility, Monash University, Clayton, Australia
| | - Michael DeVeer
- Monash Biomedical Imaging Facility, Monash University, Clayton, Australia
| | - Astrid C Munder
- Department of Physiology, Monash University, Clayton, Australia
| | - Juan Nunez-Iglesias
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
| | - David Spanswick
- Department of Physiology, Monash University, Clayton, Australia
| | - Randall Mynatt
- Gene Nutrient Interactions Laboratory, Pennington Biomedical Research Center, Baton Rouge, United States
| | - Alexxai V Kravitz
- Departments of Psychiatry, Washington University in St. Louis, Saint Louis, United States
| | - Christopher V Dayas
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia
| | - Robyn Brown
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Australia
| | - Zane B Andrews
- Department of Physiology, Monash University, Clayton, Australia
| |
Collapse
|
36
|
Plassmann H, Schelski DS, Simon M, Koban L. How we decide what to eat: Toward an interdisciplinary model of gut-brain interactions. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2022; 13:e1562. [PMID: 33977675 PMCID: PMC9286667 DOI: 10.1002/wcs.1562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 11/12/2022]
Abstract
Everyday dietary decisions have important short-term and long-term consequences for health and well-being. How do we decide what to eat, and what physiological and neurobiological systems are involved in those decisions? Here, we integrate findings from thus-far separate literatures: (a) the cognitive neuroscience of dietary decision-making, and (b) growing evidence of gut-brain interactions and especially influences of the gut microbiome on diet and health outcomes. We review findings that suggest that dietary decisions and food consumption influence nutrient sensing, homeostatic signaling in the gut, and the composition of the gut microbiome. In turn, the microbiome can influence host health and behavior. Through reward signaling pathways, the microbiome could potentially affect food and drink decisions. Such bidirectional links between gut microbiome and the brain systems underlying dietary decision-making may lead to self-reinforcing feedback loops that determine long-term dietary patterns, body mass, and health outcomes. This article is categorized under: Economics > Individual Decision-Making Psychology > Brain Function and Dysfunction Psychology > Reasoning and Decision Making.
Collapse
Affiliation(s)
- Hilke Plassmann
- Marketing AreaINSEADFontainebleauFrance
- Paris Brain Institute (ICM)INSERM U 1127, CNRS UMR 7225, Sorbonne UniversitéParisFrance
| | - Daniela Stephanie Schelski
- Center for Economics and NeuroscienceUniversity of BonnBonnGermany
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical CenterBonnGermany
| | - Marie‐Christine Simon
- Institute of Nutrition and Food Science (IEL), Nutrition and Microbiota, University of BonnBonnGermany
| | - Leonie Koban
- Marketing AreaINSEADFontainebleauFrance
- Paris Brain Institute (ICM)INSERM U 1127, CNRS UMR 7225, Sorbonne UniversitéParisFrance
| |
Collapse
|
37
|
Livneh Y, Andermann ML. Cellular activity in insular cortex across seconds to hours: Sensations and predictions of bodily states. Neuron 2021; 109:3576-3593. [PMID: 34582784 PMCID: PMC8602715 DOI: 10.1016/j.neuron.2021.08.036] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/17/2021] [Accepted: 08/26/2021] [Indexed: 02/09/2023]
Abstract
Our wellness relies on continuous interactions between our brain and body: different organs relay their current state to the brain and are regulated, in turn, by descending visceromotor commands from our brain and by actions such as eating, drinking, thermotaxis, and predator escape. Human neuroimaging and theoretical studies suggest a key role for predictive processing by insular cortex in guiding these efforts to maintain bodily homeostasis. Here, we review recent studies recording and manipulating cellular activity in rodent insular cortex at timescales from seconds to hours. We argue that consideration of these findings in the context of predictive processing of future bodily states may reconcile several apparent discrepancies and offer a unifying, heuristic model for guiding future work.
Collapse
Affiliation(s)
- Yoav Livneh
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Mark L Andermann
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
38
|
Striatal Dopamine Transporter Availability Is Not Associated with Food Craving in Lean and Obese Humans; a Molecular Imaging Study. Brain Sci 2021; 11:brainsci11111428. [PMID: 34827426 PMCID: PMC8615750 DOI: 10.3390/brainsci11111428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022] Open
Abstract
Brain dopamine signaling is essential for the motivation to eat, and obesity is associated with altered dopaminergic signaling and increased food craving. We used molecular neuroimaging to explore whether striatal dopamine transporter (DAT) availability is associated with craving as measured with the General Food Craving Questionnaire-Trait (G-FCQ-T). We here show that humans with obesity (n = 34) experienced significantly more craving for food compared with lean subjects (n = 32), but food craving did not correlate significantly with striatal DAT availability as assessed with 123I-FP-CIT single-photon emission computed tomography. We conclude that food craving is increased in obesity, but the scores for food craving are not related to changes in striatal DAT availability.
Collapse
|
39
|
Sarangi M, Dus M. Crème de la Créature: Dietary Influences on Behavior in Animal Models. Front Behav Neurosci 2021; 15:746299. [PMID: 34658807 PMCID: PMC8511460 DOI: 10.3389/fnbeh.2021.746299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
In humans, alterations in cognitive, motivated, and affective behaviors have been described with consumption of processed diets high in refined sugars and saturated fats and with high body mass index, but the causes, mechanisms, and consequences of these changes remain poorly understood. Animal models have provided an opportunity to answer these questions and illuminate the ways in which diet composition, especially high-levels of added sugar and saturated fats, contribute to brain physiology, plasticity, and behavior. Here we review findings from invertebrate (flies) and vertebrate models (rodents, zebrafish) that implicate these diets with changes in multiple behaviors, including eating, learning and memory, and motivation, and discuss limitations, open questions, and future opportunities.
Collapse
Affiliation(s)
| | - Monica Dus
- Department of Molecular, Cellular, and Developmental Biology, The University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
40
|
Kullmann S, Blum D, Jaghutriz BA, Gassenmaier C, Bender B, Häring HU, Reischl G, Preissl H, la Fougère C, Fritsche A, Reimold M, Heni M. Central Insulin Modulates Dopamine Signaling in the Human Striatum. J Clin Endocrinol Metab 2021; 106:2949-2961. [PMID: 34131733 DOI: 10.1210/clinem/dgab410] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Activity in the dopaminergic pathways of the brain is highly sensitive to body weight and metabolic states. Animal studies show that dopamine neurons are important targets for the metabolic hormone insulin with abolished effects in the insulin-resistant state, leading to increases in body weight and food intake. In humans, the influence of central acting insulin on dopamine and effects of their interplay are still elusive. RESEARCH DESIGN AND METHODS We investigated whether central administered insulin influences dopaminergic activity in striatal regions and whole-brain neural activity. Using a positron emission tomography (PET)/magnetic resonance imaging (MRI) hybrid scanner, we simultaneously performed [11C]-raclopride-PET and resting-state functional MRI in 10 healthy normal-weight men after application of intranasal insulin or placebo on 2 separate days in a randomized, placebo-controlled, blinded, crossover trial. RESULTS In response to central insulin compared with placebo administration, we observed greater [11C]-raclopride binding potential in the bilateral ventral and dorsal striatum. This suggests an insulin-induced reduction in synaptic dopamine levels. Resting-state striatal activity was lower 15 and 30 minutes after nasal insulin compared with placebo. Functional connectivity of the mesocorticolimbic circuitry associated with differences in dopamine levels: individuals with a stronger insulin-induced effect on dopamine levels showed a stronger increase in functional connectivity 45 minutes after intranasal insulin. CONCLUSIONS This study indicates that central insulin modulates dopaminergic tone in the striatum, which may affect regional brain activity and connectivity. Our results deepen the understanding of the insulin-dopamine interaction and the complex network that underlies the regulation of whole-body metabolism.
Collapse
Affiliation(s)
- Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Dominik Blum
- Department of Nuclear Medicine and Clinical Molecular Imaging, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Benjamin Assad Jaghutriz
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Christoph Gassenmaier
- Department of Internal Medicine, Division of Hematology, Oncology, Clinical Immunology and Rheumatology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Benjamin Bender
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Tübingen, Germany
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Gerald Reischl
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Department of Pharmacy and Biochemistry, Institute of Pharmaceutical Sciences, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Christian la Fougère
- Department of Nuclear Medicine and Clinical Molecular Imaging, Eberhard-Karls-University Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Germany
| | - Andreas Fritsche
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Matthias Reimold
- Department of Nuclear Medicine and Clinical Molecular Imaging, Eberhard-Karls-University Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Germany
| | - Martin Heni
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
41
|
Berland C, Small DM, Luquet S, Gangarossa G. Dietary lipids as regulators of reward processes: multimodal integration matters. Trends Endocrinol Metab 2021; 32:693-705. [PMID: 34148784 DOI: 10.1016/j.tem.2021.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/08/2021] [Accepted: 05/24/2021] [Indexed: 02/03/2023]
Abstract
The abundance of energy-dense and palatable diets in the modern food environment tightly contributes to the obesity pandemic. The reward circuit participates to the regulation of body homeostasis by integrating energy-related signals with neural substrates encoding cognitive and motivational components of feeding behaviors. Obesity and lipid-rich diets alter dopamine (DA) transmission leading to reward dysfunctions and food overconsumption. Recent reports indicate that dietary lipids can act, directly and indirectly, as functional modulators of the DA circuit. This raises the possibility that nutritional or genetic conditions affecting 'lipid sensing' mechanisms might lead to maladaptations of the DA system. Here, we discuss the most recent findings connecting dietary lipid sensing with DA signaling and its multimodal influence on circuits regulating food-reward processes.
Collapse
Affiliation(s)
- Chloé Berland
- Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France; Department of Medicine, The Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA
| | - Dana M Small
- Department of Psychiatry, and the Modern Diet and Physiology Research Center, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Serge Luquet
- Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France.
| | | |
Collapse
|
42
|
Hong J, Bo T, Xi L, Xu X, He N, Zhan Y, Li W, Liang P, Chen Y, Shi J, Li D, Yan F, Gu W, Wang W, Liu R, Wang J, Wang Z, Ning G. Reversal of Functional Brain Activity Related to Gut Microbiome and Hormones After VSG Surgery in Patients With Obesity. J Clin Endocrinol Metab 2021; 106:e3619-e3633. [PMID: 33950216 PMCID: PMC8372652 DOI: 10.1210/clinem/dgab297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Indexed: 12/19/2022]
Abstract
CONTEXT Vertical sleeve gastrectomy (VSG) is becoming a prioritized surgical intervention for obese individuals; however, the brain circuits that mediate its effective control of food intake and predict surgical outcome remain largely unclear. OBJECTIVE We investigated VSG-correlated alterations of the gut-brain axis. METHODS In this observational cohort study, 80 patients with obesity were screened. A total of 36 patients together with 26 normal-weight subjects were enrolled and evaluated using the 21-item Three-Factor Eating Questionnaire (TFEQ), MRI scanning, plasma intestinal hormone analysis, and fecal sample sequencing. Thirty-two patients underwent VSG treatment and 19 subjects completed an average of 4-month follow-up evaluation. Data-driven regional homogeneity (ReHo) coupled with seed-based connectivity analysis were used to quantify VSG-related brain activity. Longitudinal alterations of body weight, eating behavior, brain activity, gastrointestinal hormones, and gut microbiota were detected and subjected to repeated measures correlation analysis. RESULTS VSG induced significant functional changes in the right putamen (PUT.R) and left supplementary motor area, both of which correlated with weight loss and TFEQ scores. Moreover, postprandial levels of active glucagon-like peptide-1 (aGLP-1) and Ghrelin were associated with ReHo of PUT.R; meanwhile, relative abundance of Clostridia increased by VSG was associated with improvements in aGLP-1 secretion, PUT.R activity, and weight loss. Importantly, VSG normalized excessive functional connectivities with PUT.R, among which baseline connectivity between PUT.R and right orbitofrontal cortex was related to postoperative weight loss. CONCLUSION VSG causes correlated alterations of gut-brain axis, including Clostridia, postprandial aGLP-1, PUT.R activity, and eating habits. Preoperative connectivity of PUT.R may represent a potential predictive marker of surgical outcome in patients with obesity.
Collapse
Affiliation(s)
- Jie Hong
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of Chinese Health Commission, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China
| | - Tingting Bo
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liuqing Xi
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of Chinese Health Commission, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China
| | | | - Naying He
- Department of Radiology, Ruijin Hospital, SJTUSM, Shanghai 200025, China
| | - Yafeng Zhan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanyu Li
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of Chinese Health Commission, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China
| | - Peiwen Liang
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of Chinese Health Commission, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China
| | - Yufei Chen
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of Chinese Health Commission, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China
| | - Juan Shi
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of Chinese Health Commission, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China
| | - Danjie Li
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of Chinese Health Commission, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, SJTUSM, Shanghai 200025, China
| | - Weiqiong Gu
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of Chinese Health Commission, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China
| | - Weiqing Wang
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of Chinese Health Commission, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China
| | - Ruixin Liu
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of Chinese Health Commission, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China
| | - Jiqiu Wang
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of Chinese Health Commission, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China
| | - Zheng Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China
| | - Guang Ning
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of Chinese Health Commission, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China
| |
Collapse
|
43
|
Lu HY, Lorenc ES, Zhu H, Kilmarx J, Sulzer J, Xie C, Tobler PN, Watrous AJ, Orsborn AL, Lewis-Peacock J, Santacruz SR. Multi-scale neural decoding and analysis. J Neural Eng 2021; 18. [PMID: 34284369 PMCID: PMC8840800 DOI: 10.1088/1741-2552/ac160f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 07/20/2021] [Indexed: 12/15/2022]
Abstract
Objective. Complex spatiotemporal neural activity encodes rich information related to behavior and cognition. Conventional research has focused on neural activity acquired using one of many different measurement modalities, each of which provides useful but incomplete assessment of the neural code. Multi-modal techniques can overcome tradeoffs in the spatial and temporal resolution of a single modality to reveal deeper and more comprehensive understanding of system-level neural mechanisms. Uncovering multi-scale dynamics is essential for a mechanistic understanding of brain function and for harnessing neuroscientific insights to develop more effective clinical treatment. Approach. We discuss conventional methodologies used for characterizing neural activity at different scales and review contemporary examples of how these approaches have been combined. Then we present our case for integrating activity across multiple scales to benefit from the combined strengths of each approach and elucidate a more holistic understanding of neural processes. Main results. We examine various combinations of neural activity at different scales and analytical techniques that can be used to integrate or illuminate information across scales, as well the technologies that enable such exciting studies. We conclude with challenges facing future multi-scale studies, and a discussion of the power and potential of these approaches. Significance. This roadmap will lead the readers toward a broad range of multi-scale neural decoding techniques and their benefits over single-modality analyses. This Review article highlights the importance of multi-scale analyses for systematically interrogating complex spatiotemporal mechanisms underlying cognition and behavior.
Collapse
Affiliation(s)
- Hung-Yun Lu
- The University of Texas at Austin, Biomedical Engineering, Austin, TX, United States of America
| | - Elizabeth S Lorenc
- The University of Texas at Austin, Psychology, Austin, TX, United States of America.,The University of Texas at Austin, Institute for Neuroscience, Austin, TX, United States of America
| | - Hanlin Zhu
- Rice University, Electrical and Computer Engineering, Houston, TX, United States of America
| | - Justin Kilmarx
- The University of Texas at Austin, Mechanical Engineering, Austin, TX, United States of America
| | - James Sulzer
- The University of Texas at Austin, Mechanical Engineering, Austin, TX, United States of America.,The University of Texas at Austin, Institute for Neuroscience, Austin, TX, United States of America
| | - Chong Xie
- Rice University, Electrical and Computer Engineering, Houston, TX, United States of America
| | - Philippe N Tobler
- University of Zurich, Neuroeconomics and Social Neuroscience, Zurich, Switzerland
| | - Andrew J Watrous
- The University of Texas at Austin, Neurology, Austin, TX, United States of America
| | - Amy L Orsborn
- University of Washington, Electrical and Computer Engineering, Seattle, WA, United States of America.,University of Washington, Bioengineering, Seattle, WA, United States of America.,Washington National Primate Research Center, Seattle, WA, United States of America
| | - Jarrod Lewis-Peacock
- The University of Texas at Austin, Psychology, Austin, TX, United States of America.,The University of Texas at Austin, Institute for Neuroscience, Austin, TX, United States of America
| | - Samantha R Santacruz
- The University of Texas at Austin, Biomedical Engineering, Austin, TX, United States of America.,The University of Texas at Austin, Institute for Neuroscience, Austin, TX, United States of America
| |
Collapse
|
44
|
Obesity and dietary fat influence dopamine neurotransmission: exploring the convergence of metabolic state, physiological stress, and inflammation on dopaminergic control of food intake. Nutr Res Rev 2021; 35:236-251. [PMID: 34184629 DOI: 10.1017/s0954422421000196] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aim of this review is to explore how metabolic changes induced by diets high in saturated fat (HFD) affect nucleus accumbens (NAc) dopamine neurotransmission and food intake, and to explore how stress and inflammation influence this process. Recent evidence linked diet-induced obesity and HFD with reduced dopamine release and reuptake. Altered dopamine neurotransmission could disrupt satiety circuits between NAc dopamine terminals and projections to the hypothalamus. The NAc directs learning and motivated behaviours based on homeostatic needs and psychological states. Therefore, impaired dopaminergic responses to palatable food could contribute to weight gain by disrupting responses to food cues or stress, which impacts type and quantity of food consumed. Specifically, saturated fat promotes neuronal resistance to anorectic hormones and activation of immune cells that release proinflammatory cytokines. Insulin has been shown to regulate dopamine neurotransmission by enhancing satiety, but less is known about effects of diet-induced stress. Therefore, changes to dopamine signalling due to HFD warrant further examination to characterise crosstalk of cytokines with endocrine and neurotransmitter signals. A HFD promotes a proinflammatory environment that may disrupt neuronal endocrine function and dopamine signalling that could be exacerbated by the hypothalamic-pituitary-adrenal and κ-opioid receptor stress systems. Together, these adaptive changes may dysregulate eating by changing NAc dopamine during hedonic versus homeostatic food intake. This could drive palatable food cravings during energy restriction and hinder weight loss. Understanding links between HFD and dopamine neurotransmission will inform treatment strategies for diet-induced obesity and identify molecular candidates for targeted therapeutics.
Collapse
|
45
|
von Molitor E, Riedel K, Krohn M, Hafner M, Rudolf R, Cesetti T. Sweet Taste Is Complex: Signaling Cascades and Circuits Involved in Sweet Sensation. Front Hum Neurosci 2021; 15:667709. [PMID: 34239428 PMCID: PMC8258107 DOI: 10.3389/fnhum.2021.667709] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022] Open
Abstract
Sweetness is the preferred taste of humans and many animals, likely because sugars are a primary source of energy. In many mammals, sweet compounds are sensed in the tongue by the gustatory organ, the taste buds. Here, a group of taste bud cells expresses a canonical sweet taste receptor, whose activation induces Ca2+ rise, cell depolarization and ATP release to communicate with afferent gustatory nerves. The discovery of the sweet taste receptor, 20 years ago, was a milestone in the understanding of sweet signal transduction and is described here from a historical perspective. Our review briefly summarizes the major findings of the canonical sweet taste pathway, and then focuses on molecular details, about the related downstream signaling, that are still elusive or have been neglected. In this context, we discuss evidence supporting the existence of an alternative pathway, independent of the sweet taste receptor, to sense sugars and its proposed role in glucose homeostasis. Further, given that sweet taste receptor expression has been reported in many other organs, the physiological role of these extraoral receptors is addressed. Finally, and along these lines, we expand on the multiple direct and indirect effects of sugars on the brain. In summary, the review tries to stimulate a comprehensive understanding of how sweet compounds signal to the brain upon taste bud cells activation, and how this gustatory process is integrated with gastro-intestinal sugar sensing to create a hedonic and metabolic representation of sugars, which finally drives our behavior. Understanding of this is indeed a crucial step in developing new strategies to prevent obesity and associated diseases.
Collapse
Affiliation(s)
- Elena von Molitor
- Institute of Molecular and Cell Biology, Hochschule Mannheim, Mannheim, Germany
| | | | | | - Mathias Hafner
- Institute of Molecular and Cell Biology, Hochschule Mannheim, Mannheim, Germany
| | - Rüdiger Rudolf
- Institute of Molecular and Cell Biology, Hochschule Mannheim, Mannheim, Germany.,Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Tiziana Cesetti
- Institute of Molecular and Cell Biology, Hochschule Mannheim, Mannheim, Germany
| |
Collapse
|
46
|
Abstract
Appropriate food intake requires exquisite coordination between the gut and the brain. Indeed, it has long been known that gastrointestinal signals communicate with the brain to promote or inhibit feeding behavior. Recent advances in the ability to monitor and manipulate neural activity in awake, behaving rodents has facilitated important discoveries about how gut signaling influences neural activity and feeding behavior. This review emphasizes recent studies that have advanced our knowledge of gut-brain signaling and food intake control, with a focus on how gut signaling influences in vivo neural activity in animal models. Moving forward, dissecting the complex pathways and circuits that transmit nutritive signals from the gut to the brain will reveal fundamental principles of energy balance, ultimately enabling new treatment strategies for diseases rooted in body weight control.
Collapse
Affiliation(s)
- Amber L Alhadeff
- Monell Chemical Senses Center, Philadelphia, PA, USA
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
47
|
Anticipatory human subthalamic area beta-band power responses to dissociable tastes correlate with weight gain. Neurobiol Dis 2021; 154:105348. [PMID: 33781923 PMCID: PMC9208339 DOI: 10.1016/j.nbd.2021.105348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/24/2021] [Accepted: 03/24/2021] [Indexed: 11/22/2022] Open
Abstract
The availability of enticing sweet, fatty tastes is prevalent in the modern diet and contribute to overeating and obesity. In animal models, the subthalamic area plays a role in mediating appetitive and consummatory feeding behaviors, however, its role in human feeding is unknown. We used intraoperative, subthalamic field potential recordings while participants (n = 5) engaged in a task designed to provoke responses of taste anticipation and receipt. Decreased subthalamic beta-band (15-30 Hz) power responses were observed for both sweet-fat and neutral tastes. Anticipatory responses to taste-neutral cues started with an immediate decrease in beta-band power from baseline followed by an early beta-band rebound above baseline. On the contrary, anticipatory responses to sweet-fat were characterized by a greater and sustained decrease in beta-band power. These activity patterns were topographically specific to the subthalamic nucleus and substantia nigra. Further, a neural network trained on this beta-band power signal accurately predicted (AUC ≥ 74%) single trials corresponding to either taste. Finally, the magnitude of the beta-band rebound for a neutral taste was associated with increased body mass index after starting deep brain stimulation therapy. We provide preliminary evidence of discriminatory taste encoding within the subthalamic area associated with control mechanisms that mediate appetitive and consummatory behaviors.
Collapse
|
48
|
Lin C, Inoue M, Li X, Bosak NP, Ishiwatari Y, Tordoff MG, Beauchamp GK, Bachmanov AA, Reed DR. Genetics of mouse behavioral and peripheral neural responses to sucrose. Mamm Genome 2021; 32:51-69. [PMID: 33713179 DOI: 10.1007/s00335-021-09858-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/08/2021] [Indexed: 01/04/2023]
Abstract
Mice of the C57BL/6ByJ (B6) strain have higher consumption of sucrose, and stronger peripheral neural responses to it, than do mice of the 129P3/J (129) strain. To identify quantitative trait loci (QTLs) responsible for this strain difference and to evaluate the contribution of peripheral taste responsiveness to individual differences in sucrose intake, we produced an intercross (F2) of 627 mice, measured their sucrose consumption in two-bottle choice tests, recorded the electrophysiological activity of the chorda tympani nerve elicited by sucrose in a subset of F2 mice, and genotyped the mice with DNA markers distributed in every mouse chromosome. We confirmed a sucrose consumption QTL (Scon2, or Sac) on mouse chromosome (Chr) 4, harboring the Tas1r3 gene, which encodes the sweet taste receptor subunit TAS1R3 and affects both behavioral and neural responses to sucrose. For sucrose consumption, we also detected five new main-effect QTLs, Scon6 (Chr2), Scon7 (Chr5), Scon8 (Chr8), Scon3 (Chr9), and Scon9 (Chr15), and an epistatically interacting QTL pair Scon4 (Chr1) and Scon3 (Chr9). No additional QTLs for the taste nerve responses to sucrose were detected besides Scon2 (Tas1r3) on Chr4. Identification of the causal genes and variants for these sucrose consumption QTLs may point to novel mechanisms beyond peripheral taste sensitivity that could be harnessed to control obesity and diabetes.
Collapse
Affiliation(s)
- Cailu Lin
- Monell Chemical Senses Center, Philadelphia, PA, USA
| | - Masashi Inoue
- Monell Chemical Senses Center, Philadelphia, PA, USA.,Laboratory of Cellular Neurobiology, School of Life Science, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo, Japan
| | - Xia Li
- Monell Chemical Senses Center, Philadelphia, PA, USA.,Sonora Quest Laboratories, Phoenix, AZ, USA
| | | | - Yutaka Ishiwatari
- Monell Chemical Senses Center, Philadelphia, PA, USA.,Ajinomoto Co., Inc., Tokyo, Japan
| | | | | | - Alexander A Bachmanov
- Monell Chemical Senses Center, Philadelphia, PA, USA. .,GlaxoSmithKline, Collegeville, PA, USA.
| | | |
Collapse
|
49
|
Mora MR, Dando R. The sensory properties and metabolic impact of natural and synthetic sweeteners. Compr Rev Food Sci Food Saf 2021; 20:1554-1583. [PMID: 33580569 DOI: 10.1111/1541-4337.12703] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/12/2020] [Accepted: 12/13/2020] [Indexed: 12/11/2022]
Abstract
The global rise in obesity, type II diabetes, and other metabolic disorders in recent years has been attributed in part to the overconsumption of added sugars. Sugar reduction strategies often rely on synthetic and naturally occurring sweetening compounds to achieve their goals, with popular synthetic sweeteners including saccharin, cyclamate, acesulfame potassium, aspartame, sucralose, neotame, alitame, and advantame. Natural sweeteners can be further partitioned into nutritive, including polyols, rare sugars, honey, maple syrup, and agave, and nonnutritive, which include steviol glycosides and rebaudiosides, luo han guo (monk fruit), and thaumatin. We choose the foods we consume largely on their sensory properties, an area in which these sugar substitutes often fall short. Here, we discuss the most popular synthetic and natural sweeteners, with the goal of providing an understanding of differences in the sensory profiles of these sweeteners versus sucrose, that they are designed to replace, essential for the effectiveness of sugar reduction strategies. In addition, we break down the influence of these sweeteners on metabolism, and present results from a large survey of consumers' opinions on these sweeteners. Consumer interest in clean label foods has driven a move toward natural sweeteners; however, neither natural nor synthetic sweeteners are metabolically inert. Identifying sugar replacements that not only closely imitate the sensory profile of sucrose but also exert advantageous effects on body weight and metabolism is critical in successfully the ultimate goals of reducing added sugar in the average consumer's diet. With so many options for sucrose replacement available, consumer opinion and cost, which vary widely with suagr replacements, will also play a vital role in which sweeteners are successful in widespread adoption.
Collapse
Affiliation(s)
- Margaux R Mora
- Department of Food Science, Cornell University, Ithaca, New York
| | - Robin Dando
- Department of Food Science, Cornell University, Ithaca, New York
| |
Collapse
|
50
|
Hanssen R, Kretschmer AC, Rigoux L, Albus K, Edwin Thanarajah S, Sitnikow T, Melzer C, Cornely OA, Brüning JC, Tittgemeyer M. GLP-1 and hunger modulate incentive motivation depending on insulin sensitivity in humans. Mol Metab 2021; 45:101163. [PMID: 33453418 PMCID: PMC7859312 DOI: 10.1016/j.molmet.2021.101163] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/22/2020] [Accepted: 01/08/2021] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE To regulate food intake, our brain constantly integrates external cues, such as the incentive value of a potential food reward, with internal state signals, such as hunger feelings. Incentive motivation refers to the processes that translate an expected reward into the effort spent to obtain the reward; the magnitude and probability of a reward involved in prompting motivated behaviour are encoded by the dopaminergic (DA) midbrain and its mesoaccumbens DA projections. This type of reward circuity is particularly sensitive to the metabolic state signalled by peripheral mediators, such as insulin or glucagon-like peptide 1 (GLP-1). While in rodents the modulatory effect of metabolic state signals on motivated behaviour is well documented, evidence of state-dependent modulation and the role of incentive motivation underlying overeating in humans is lacking. METHODS In a randomised, placebo-controlled, crossover design, 21 lean (body mass index [BMI] < 25 kg/m2) and 16 obese (BMI³ 30 kg/m2) volunteer participants received either liraglutide as a GLP-1 analogue or placebo on two separate testing days. Incentive motivation was measured using a behavioural task in which participants were required to exert physical effort using a handgrip to win different amounts of food and monetary rewards. Hunger levels were measured using visual analogue scales; insulin, glucose, and systemic insulin resistance as assessed by the homeostasis model assessment of insulin resistance (HOMA-IR) were quantified at baseline. RESULTS In this report, we demonstrate that incentive motivation increases with hunger in lean humans (F(1,42) = 5.31, p = 0.026, β = 0.19) independently of incentive type (food and non-food reward). This effect of hunger is not evident in obese humans (F(1,62) = 1.93, p = 0.17, β = -0.12). Motivational drive related to hunger is affected by peripheral insulin sensitivity (two-way interaction, F(1, 35) = 6.23, p = 0.017, β = -0.281). In humans with higher insulin sensitivity, hunger increases motivation, while poorer insulin sensitivity dampens the motivational effect of hunger. The GLP-1 analogue application blunts the interaction effect of hunger on motivation depending on insulin sensitivity (three-way interaction, F(1, 127) = 5.11, p = 0.026); no difference in motivated behaviour could be found between humans with normal or impaired insulin sensitivity under GLP-1 administration. CONCLUSION We report a differential effect of hunger on motivation depending on insulin sensitivity. We further revealed the modulatory role of GLP-1 in adaptive, motivated behaviour in humans and its interaction with peripheral insulin sensitivity and hunger. Our results suggest that GLP-1 might restore dysregulated processes of midbrain DA function and hence motivational behaviour in insulin-resistant humans.
Collapse
Affiliation(s)
- Ruth Hanssen
- Max Planck Institute for Metabolism Research, Gleueler Str. 50, 50931, Cologne, Germany; Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEPD), University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany.
| | - Alina Chloé Kretschmer
- Max Planck Institute for Metabolism Research, Gleueler Str. 50, 50931, Cologne, Germany; Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEPD), University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Lionel Rigoux
- Max Planck Institute for Metabolism Research, Gleueler Str. 50, 50931, Cologne, Germany
| | - Kerstin Albus
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany; Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Sharmili Edwin Thanarajah
- Max Planck Institute for Metabolism Research, Gleueler Str. 50, 50931, Cologne, Germany; Department of Psychiatry, Psychosomatic Medicine, and Psychotherapy, University Hospital Frankfurt, Heinrich-Hoffmann-Strasse 10, 60528, Frankfurt am Main, Germany
| | - Tamara Sitnikow
- Max Planck Institute for Metabolism Research, Gleueler Str. 50, 50931, Cologne, Germany
| | - Corina Melzer
- Max Planck Institute for Metabolism Research, Gleueler Str. 50, 50931, Cologne, Germany
| | - Oliver A Cornely
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany; University of Cologne Faculty of Medicine, University Hospital Cologne Chair Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Joseph-Stelzmann-Straße 26, 50931, Cologne, Germany; Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany; Clinical Trials Centre Cologne (ZKS Köln), University Hospital Cologne, Gleueler Str. 269, 50935 Cologne, Germany
| | - Jens C Brüning
- Max Planck Institute for Metabolism Research, Gleueler Str. 50, 50931, Cologne, Germany; Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEPD), University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany
| | - Marc Tittgemeyer
- Max Planck Institute for Metabolism Research, Gleueler Str. 50, 50931, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany
| |
Collapse
|