1
|
Wang X, Li J, Nie J, Huang W, Tang J, Peng Y, Gao Y, Lu R. IL-33 protects retinal structure and function via mTOR/S6 signaling pathway in optic nerve crush. Exp Eye Res 2024; 248:110121. [PMID: 39401556 DOI: 10.1016/j.exer.2024.110121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/17/2024] [Accepted: 10/08/2024] [Indexed: 10/20/2024]
Abstract
This study demonstrated the functions and molecular mechanisms of the IL-33/ST2 axis in experimental optic neuropathy. C57BL/6J mice were used to establish an optic nerve crush (ONC) model. ONC mice were administered with IL-33 intraperitoneal injection, with PBS vehicle as control. Immunofluorescence, quantitative RT-PCR, and western blot techniques were utilized to assess the expression of the IL-33/ST2 axis. The electroretinography (ERG), optical coherence tomography (OCT), H&E, and luxol fast blue were used to assess the structural and functional changes. Western blot was employed to detect the activation of the mTOR/S6 pathway. The IL-33 expression level in the inner nuclear layer of the retina in ONC mice reached its peak on day 3, accompanied by a significant increase in IL-33 receptor ST2 expression. IL-33 treatment promoted the survival of retinal ganglion cells, restored the thickness of inner retina layer (IRL), alleviated the demyelination of the optic nerve, and recovered the decreased amplitude of b-wave in ONC mice. Furthermore, administration of IL-33 activated the mTOR/S6 signaling pathway in RGCs, which was significantly suppressed in the ONC condition. This study indicated that boosting the IL-33/ST2/mTOR/S6 pathway can protect against structural and functional damage to the retina and optic nerve induced by ONC. As a result, the IL-33/ST2 axis holds potential as a therapeutic option for treating various optic neuropathies.
Collapse
Affiliation(s)
- Xinyue Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Jinmiao Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Jiahe Nie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Weifeng Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Junjie Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yue Peng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yang Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Rong Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| |
Collapse
|
2
|
Silver SV, Tucker KJ, Vickman RE, Lanman NA, Semmes OJ, Alvarez NS, Popovics P. Characterization of prostate macrophage heterogeneity, foam cell markers, and CXCL17 upregulation in a mouse model of steroid hormone imbalance. Sci Rep 2024; 14:21029. [PMID: 39251671 PMCID: PMC11383972 DOI: 10.1038/s41598-024-71137-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/26/2024] [Indexed: 09/11/2024] Open
Abstract
Benign prostatic hyperplasia (BPH) is a prevalent age-related condition often characterized by debilitating urinary symptoms. Its etiology is believed to stem from hormonal imbalance, particularly an elevated estradiol-to-testosterone ratio and chronic inflammation. Our previous studies using a mouse steroid hormone imbalance model identified a specific increase in macrophages that migrated and accumulated in the prostate lumen where they differentiated into lipid-laden foam cells in mice implanted with testosterone and estradiol pellets, but not in sham animals. The current study focused on further characterizing the cellular heterogeneity of the prostate in this model as well as identifying the specific transcriptomic signature of the recruited foam cells. Moreover, we aimed to identify epithelia-derived signals that drive macrophage infiltration and luminal translocation. Male C57BL/6J mice were implanted with slow-release testosterone and estradiol pellets (T + E2) or sham surgery was performed and the ventral prostates were harvested two weeks later for scRNA-seq analysis. We identified Ear2 + and Cd72 + macrophages that were elevated in response to steroid hormone imbalance, whereas a Mrc1 + resident macrophage population did not change. In addition, an Spp1 + foam cell cluster was almost exclusively found in T + E2 mice. Further markers of foam cells were also identified, including Gpnmb and Trem2, and GPNMB was confirmed as a novel histological marker with immunohistochemistry. Foam cells were also shown to express known pathological factors Vegf, Tgfb1, Ccl6, Cxcl16 and Mmp12. Intriguingly, a screen for chemokines identified the upregulation of epithelia-derived Cxcl17, a known monocyte attractant, in T + E2 prostates suggesting that it might be responsible for the elevated macrophage number as well as their translocation to the lumen. Our study identified macrophage subsets that responded to steroid hormone imbalance as well as further confirmed a potential pathological role of luminal foam cells in the prostate. These results underscore a potential pathological role of the identified prostate foam cells and suggests CXCL17-mediated macrophage migration as a critical initiating event.
Collapse
Affiliation(s)
- Samara V Silver
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Kayah J Tucker
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Renee E Vickman
- Department of Surgery, Endeavor Health, An Academic Affiliate of the University of Chicago Pritzker School of Medicine, Evanston, IL, USA
| | - Nadia A Lanman
- Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - O John Semmes
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Nehemiah S Alvarez
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Petra Popovics
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23507, USA.
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, USA.
| |
Collapse
|
3
|
Al-Talib M, Dimonte S, Humphreys IR. Mucosal T-cell responses to chronic viral infections: Implications for vaccine design. Cell Mol Immunol 2024; 21:982-998. [PMID: 38459243 PMCID: PMC11364786 DOI: 10.1038/s41423-024-01140-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/31/2024] [Indexed: 03/10/2024] Open
Abstract
Mucosal surfaces that line the respiratory, gastrointestinal and genitourinary tracts are the major interfaces between the immune system and the environment. Their unique immunological landscape is characterized by the necessity of balancing tolerance to commensal microorganisms and other innocuous exposures against protection from pathogenic threats such as viruses. Numerous pathogenic viruses, including herpesviruses and retroviruses, exploit this environment to establish chronic infection. Effector and regulatory T-cell populations, including effector and resident memory T cells, play instrumental roles in mediating the transition from acute to chronic infection, where a degree of viral replication is tolerated to minimize immunopathology. Persistent antigen exposure during chronic viral infection leads to the evolution and divergence of these responses. In this review, we discuss advances in the understanding of mucosal T-cell immunity during chronic viral infections and how features of T-cell responses develop in different chronic viral infections of the mucosa. We consider how insights into T-cell immunity at mucosal surfaces could inform vaccine strategies: not only to protect hosts from chronic viral infections but also to exploit viruses that can persist within mucosal surfaces as vaccine vectors.
Collapse
Affiliation(s)
- Mohammed Al-Talib
- Systems Immunity University Research Institute/Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
- Bristol Medical School, University of Bristol, 5 Tyndall Avenue, Bristol, BS8 1UD, UK
| | - Sandra Dimonte
- Systems Immunity University Research Institute/Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Ian R Humphreys
- Systems Immunity University Research Institute/Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK.
| |
Collapse
|
4
|
Pang J, Shi Y, Peng D, Cui L, Xu Y, Wang W, Hu Y, Yang Y, Wang J, Qin X, Zhang Y, Meng H, Wang D, Bai G, Yuan H, Liu J, Lv Z, Li Y, Cui Y, Wang W, Huang K, Corrigan CJ, Wang W, Chen Y, Ying S. Bacterial antigens and asthma: a comparative study of common respiratory pathogenic bacteria. J Asthma 2024; 61:1089-1102. [PMID: 38478043 DOI: 10.1080/02770903.2024.2330063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 02/18/2024] [Accepted: 03/08/2024] [Indexed: 03/23/2024]
Abstract
Objective: In a previous study we have shown that, in the presence of interleukin (IL)-33, repeated, per-nasal challenge of murine airways with Streptococcus pneumoniae (S. pneumoniae) organisms induces human asthma-like airways inflammation. It is not clear, however, whether this effect is unique or manifest in response to other common respiratory pathogens.Methods: To explore this, airways of BALB/c mice were repeatedly challenged per-nasally with formaldehyde-inactivated bacterial bodies in the presence or absence of murine recombinant IL-33. Serum concentrations of S.pneumoniae, Moraxella catarrhalis (M.catarrhalis) and Haemophilus influenzae (H.influenzae) lysates-specific IgE were measured in patients with asthma and control subjects.Results: We showed that in the presence of IL-33, repeated, per-nasal airways exposure to the bodies of these bacteria induced airways hyperresponsiveness (AHR) in the experimental mice. This was accompanied by cellular infiltration into bronchoalveolar lavage fluid (BALF), eosinophilic infiltration and mucous hypertrophy of the lung tissue, with elevated local expression of some type 2 cytokines and elevated, specific IgG and IgE in the serum. The precise characteristics of the inflammation evoked by exposure to each bacterial species were distinguishable.Conclusions: These results suggest that in the certain circumstances, inhaled or commensal bacterial body antigens of both Gram-positive (S. pneumoniae) and Gram-negative (M. catarrhalis and H. influenzae) respiratory tract bacteria may initiate type 2 inflammation typical of asthma in the airways. In addition, we demonstrated that human asthmatic patients manifest elevated serum concentrations of M.catarrhalis- and H.influenzae-specific IgE.
Collapse
Affiliation(s)
- Jie Pang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yifan Shi
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Dan Peng
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Lele Cui
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yingjie Xu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wenjing Wang
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yue Hu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yiran Yang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jingjing Wang
- Department of Laboratory Animal Sciences, Capital Medical University, Beijing, China
| | - Xiaofeng Qin
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yue Zhang
- Fifth School of Clinical Medicine, Peking University, Beijing, China
| | - Hao Meng
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Dan Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ge Bai
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Huihui Yuan
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jie Liu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhe Lv
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yan Li
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing Institute of Otorhinolaryngology, Key Laboratory of Otorhinolaryngology Head and Neck Surgery, Ministry of Education, Beijing Key Laboratory of Nasal Diseases, Beijing, China
| | - Ye Cui
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wenjun Wang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University & Beijing Institute of Respiratory Medicine, Beijing, China
| | - Kewu Huang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University & Beijing Institute of Respiratory Medicine, Beijing, China
| | - Chris J Corrigan
- Division of Asthma, Allergy & Lung Biology, MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, London, UK
| | - Wei Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yan Chen
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Sun Ying
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Gupta A, Schiel V, Bhattacharya R, Eftekharian K, Xia A, Santa Maria PL. Chemokine Receptor CCR2 Is Protective toward Outer Hair Cells in Chronic Suppurative Otitis Media. Immunohorizons 2024; 8:688-694. [PMID: 39264736 PMCID: PMC11447675 DOI: 10.4049/immunohorizons.2400064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/14/2024] Open
Abstract
Chronic suppurative otitis media (CSOM) is a neglected disease that afflicts 330 million people worldwide and is the most common cause of permanent hearing loss among children in the developing world. Previously, we discovered that outer hair cell (OHC) loss occurred in the basal turn of the cochlea and that macrophages are the major immune cells associated with OHC loss in CSOM. Macrophage-associated cytokines are upregulated. Specifically, CCL-2, an important member of the MCP family, is elevated over time following middle ear infection. CCR2 is a common receptor of the MCP family and the unique receptor of CCL2. CCR2 knockout mice (CCR2-/-) have been used extensively in studies of monocyte activation in neurodegenerative diseases. In the present study, we investigated the effect of CCR2 deletion on the cochlear immune response and OHC survival in CSOM. The OHC survival rate was 84 ± 12.5% in the basal turn of CCR2+/+ CSOM cochleae, compared with was 63 ± 19.9% in the basal turn of CCR2-/- CSOM cochleae (p ≤ 0.05). Macrophage numbers were significantly reduced in CCR2-/- CSOM cochleae compared with CCR2+/+ CSOM cochleae (p ≤ 0.001). In addition, CCL7 was upregulated, whereas IL-33 was downregulated, in CCR2-/- CSOM cochleae. Finally, the permeability of the blood-labyrinth barrier in the stria vascularis remained unchanged in CCR2-/- CSOM compared with CCR2+/+ CSOM. Taken together, the data suggest that CCR2 plays a protective role through cochlear macrophages in the CSOM cochlea.
Collapse
MESH Headings
- Animals
- Female
- Male
- Mice
- Chemokine CCL2/metabolism
- Chemokine CCL2/genetics
- Chronic Disease
- Cochlea/metabolism
- Cochlea/pathology
- Cochlea/immunology
- Disease Models, Animal
- Hair Cells, Auditory, Outer/metabolism
- Hair Cells, Auditory, Outer/pathology
- Macrophages/immunology
- Macrophages/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Otitis Media, Suppurative/immunology
- Receptors, CCR2/metabolism
- Receptors, CCR2/genetics
Collapse
Affiliation(s)
- Ankur Gupta
- Department of Otolaryngology - Head and Neck Surgery, School of Medicine, Stanford University, Palo Alto, CA
| | - Viktoria Schiel
- Department of Otolaryngology - Head and Neck Surgery, School of Medicine, Stanford University, Palo Alto, CA
| | - Ritwija Bhattacharya
- Department of Otolaryngology - Head and Neck Surgery, School of Medicine, Stanford University, Palo Alto, CA
| | - Kourosh Eftekharian
- Department of Otolaryngology - Head and Neck Surgery, School of Medicine, Stanford University, Palo Alto, CA
| | - Anping Xia
- Department of Otolaryngology - Head and Neck Surgery, School of Medicine, Stanford University, Palo Alto, CA
| | - Peter L Santa Maria
- Department of Otolaryngology - Head and Neck Surgery, School of Medicine, Stanford University, Palo Alto, CA
| |
Collapse
|
6
|
Rabe KF, Martinez FJ, Bhatt SP, Kawayama T, Cosio BG, Mroz RM, Boomsma MM, Goulaouic H, Nivens MC, Djandji M, Soler X, Liu Y, Kosloski MP, Xu CR, Amin N, Staudinger H, Lederer DJ, Abdulai RM. AERIFY-1/2: two phase 3, randomised, controlled trials of itepekimab in former smokers with moderate-to-severe COPD. ERJ Open Res 2024; 10:00718-2023. [PMID: 39319046 PMCID: PMC11417606 DOI: 10.1183/23120541.00718-2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/08/2024] [Indexed: 09/26/2024] Open
Abstract
Background Accumulating data implicate interleukin (IL)-33, a proinflammatory cytokine released locally upon epithelial cell damage, in the pathogenesis of COPD. In a phase 2 study, itepekimab, a human monoclonal antibody against IL-33, reduced exacerbations and improved lung function in a subgroup analysis of former smokers with COPD with an acceptable safety profile. Methods The study designs of AERIFY-1 and AERIFY-2 are described in this article. Discussion The primary objective of AERIFY-1/2 (NCT04701983/NCT04751487), two phase 3 randomised, double-blind, placebo-controlled trials, is to assess the efficacy and safety of itepekimab versus placebo in a population of former smokers with moderate-to-severe COPD over up to 52 weeks. An additional secondary population of current smokers are being enrolled in AERIFY-2. These two studies will enrol patients (aged 40-85 years) with COPD and chronic bronchitis who had ≥2 moderate or ≥ 1 severe exacerbations within the previous year despite standard-of-care triple or double background therapy. All participants are required to have ≥10-pack-year smoking history, and ≥6 months since smoking cessation for former smokers. The primary end-point is the annualised rate of moderate or severe acute exacerbation of COPD. Secondary end-points include change from baseline in pre- and post-bronchodilator forced expiratory volume in 1 s, and annualised frequency of severe exacerbations. Symptomatic end-points include Evaluating Respiratory Symptoms in COPD and St. George's Respiratory Questionnaire, safety and anti-drug antibody responses.
Collapse
Affiliation(s)
- Klaus F. Rabe
- LungenClinic Grosshansdorf, Airway Research Center North, Grosshansdorf, Germany
- Christian-Albrechts University of Kiel, Airway Research Center North, Kiel, Germany
- German Center for Lung Research, Grosshansdorf, Germany
| | | | - Surya P. Bhatt
- University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Borja G. Cosio
- Hospital Universitario Son Espases-IdISBa-CIBERES, Palma de Mallorca, Spain
| | | | | | | | | | | | - Xavier Soler
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | | | | | | | - Nikhil Amin
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | | | | | | |
Collapse
|
7
|
Danto SI, Tsamandouras N, Reddy P, Gilbert SA, Mancuso JY, Page K, Beebe JS, Peeva E, Vincent MS. Exploratory pharmacodynamics and efficacy of PF-06817024 in a Phase 1 study of patients with chronic rhinosinusitis and atopic dermatitis. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2024; 20:46. [PMID: 39215351 PMCID: PMC11365161 DOI: 10.1186/s13223-024-00894-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/23/2024] [Indexed: 09/04/2024]
Abstract
PF-06817024 is a humanized antibody against interleukin-33 that has the potential to inhibit type 2 inflammation. An exploratory analysis of the pharmacodynamics and clinical effects of single and repeat doses of PF-06817024 was assessed in patients with chronic rhinosinusitis with nasal polyps (CRSwNP) and patients with moderate-to-severe atopic dermatitis (AD), respectively, as part of a Phase 1, first-in-human study. Rhinosinusitis symptoms were improved, and nasal polyps were decreased in size following treatment with PF-06817024 in patients with CRSwNP. In patients with AD, PF-06817024, in aggregate, reduced disease severity and improved symptoms, as demonstrated by greater percentage decrease from baseline in Eczema Area and Severity Index (EASI) scores and reduced pruritus numerical rating scores, compared with placebo. The efficacy in AD appeared to be bimodal with a sub-group of participants exhibiting high levels of improvement (EASI75 and EASI90) for a sustained period of time after dosing. In patients with CRSwNP, a consistent trend of decrease in eosinophil levels was observed in the PF-06817024 group, compared with placebo. Further research would be needed to confirm the clinical benefit and safety of PF-06817024 as a treatment for allergic diseases. Trial registration ClinicalTrials.gov, NCT02743871. Registered 15 April 2016, https://clinicaltrials.gov/study/NCT02743871?term=NCT02743871&rank=1 .
Collapse
Affiliation(s)
| | | | - Padma Reddy
- Pfizer Inc, 1 Portland Street, Cambridge, MA, 02151, USA
| | | | | | - Karen Page
- Pfizer Inc, 1 Portland Street, Cambridge, MA, 02151, USA
| | - Jean S Beebe
- Pfizer Inc, 1 Portland Street, Cambridge, MA, 02151, USA
| | - Elena Peeva
- Pfizer Inc, 1 Portland Street, Cambridge, MA, 02151, USA
| | | |
Collapse
|
8
|
Barchi A, Mandarino FV, Yacoub MR, Albarello L, Massimino L, Savarino EV, Ungaro F, Passaretti S, Masclee GMC, Danese S, Bredenoord AJ, Vespa E. From Pathogenesis to Treatment: Targeting Type-2 Inflammation in Eosinophilic Esophagitis. Biomolecules 2024; 14:1080. [PMID: 39334846 PMCID: PMC11429508 DOI: 10.3390/biom14091080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Eosinophilic esophagitis (EoE) is a chronic inflammatory disorder of the esophagus. EoE shares a common pathogenetic mechanism with other chronic disorders pertaining to the type 2 inflammatory spectrum, such as atopic dermatitis (AD), allergic rhinitis (AR), asthma, and chronic rhinosinusitis with nasal polyps (CRSwNP). The recent advancements in EoE pathogenesis understanding have unveiled new molecular targets implied within the "atopic march" picture as well as specific to EoE. These discoveries have led to the clinical evaluation of several novel drugs (monoclonal antibodies and immune modulators), specifically aimed at the modulation of Th2 inflammation. In this comprehensive review, we have focused on the subtle mechanisms of type 2 inflammatory disorders, highlighting the similarities and differences with EoE, taking a deeper look into the evolving field of biologic therapies, already approved or under current investigation.
Collapse
Affiliation(s)
- Alberto Barchi
- Gastroenterology and Digestive Endoscopy, Motility Unit, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
- Gastroenterology & Hepatology, Amsterdam University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Francesco Vito Mandarino
- Gastroenterology and Digestive Endoscopy, Motility Unit, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
| | - Mona-Rita Yacoub
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Luca Albarello
- Pathology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Luca Massimino
- Gastroenterology and Digestive Endoscopy, Motility Unit, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
| | - Edoardo Vincenzo Savarino
- Department of Surgery, Oncology, and Gastroenterology, University of Padua, 35128 Padua, Italy
- Gastroenterology Unit, Azienda Ospedale Università di Padova, 35128 Padua, Italy
| | - Federica Ungaro
- Gastroenterology and Digestive Endoscopy, Motility Unit, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
| | - Sandro Passaretti
- Gastroenterology and Digestive Endoscopy, Motility Unit, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
| | - Gwen M C Masclee
- Gastroenterology & Hepatology, Amsterdam University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Silvio Danese
- Gastroenterology and Digestive Endoscopy, Motility Unit, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
- Faculty of Medicine, Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Albert J Bredenoord
- Gastroenterology & Hepatology, Amsterdam University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Edoardo Vespa
- Gastroenterology and Digestive Endoscopy, Motility Unit, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
| |
Collapse
|
9
|
Vihlborg P, Lundberg O, Pettersson-Pablo P, Johansson N, Bryngelsson IL, Stjernbrandt A, Graff P. Blood biomarkers for occupational hand-arm vibration exposure. Toxicol Ind Health 2024; 40:432-440. [PMID: 38743488 DOI: 10.1177/07482337241253996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Hand-arm vibration is a common occupational exposure that causes neurological impairment, myalgia, and vibration-induced Raynaud's phenomena or vibration white fingers (VWF). The pathological mechanism is largely unknown, though several mechanisms have been proposed, involving both immunological vascular damage and defective neural responses. The aim of this study was to test whether the substances interleukin-33 (IL-33), macrophage-derived chemokine (MDC), interleukin-10 (IL-10), endothelin-1 (ET-1), C-C motif chemokine ligand 20 (CCL20), calcitonin, and thromboxane (TXA2) changed before and after occupational hand-arm vibration exposure. 38 full-time shift workers exposed to hand-arm vibration were recruited. All the participants underwent medical examinations regarding symptoms of Raynaud's phenomena. In 29 of the participants, the concentration of IL-33, MDC, IL-10, ET-1, CCL20, calcitonin, and TXA2 was measured before and after a workday. There was a significant increase in ET-1 and calcitonin concentration and a decrease in the CCL20 concentration after the work shift in all participants. In the group suffering from VWF, but not in the non-VWF group, MDC was statistically significantly lower before the work shift (p = .023). The VWF group also showed a significant increase in MDC after the work shift. Exposure to occupational hand-arm vibration is associated with changes in ET-1, calcitonin, and MDC concentration in subjects suffering from vibration white fingers, suggesting a role of these biomarkers in the pathophysiology of this condition.
Collapse
Affiliation(s)
- Per Vihlborg
- Department of Geriatrics, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Oscar Lundberg
- Department of Occupational and Environmental Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Paul Pettersson-Pablo
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University Hospital, Örebro, Sweden
| | - Niclas Johansson
- Department of Occupational and Environmental Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Ing-Liss Bryngelsson
- Department of Occupational and Environmental Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Ophthalmology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Albin Stjernbrandt
- Section of Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Pål Graff
- Department of Chemical Work Environment, National Institute of Occupational Health (STAMI), Oslo, Norway
| |
Collapse
|
10
|
Cecrdlova E, Krupickova L, Fialova M, Novotny M, Tichanek F, Svachova V, Mezerova K, Viklicky O, Striz I. Insights into IL-1 family cytokines in kidney allograft transplantation: IL-18BP and free IL-18 as emerging biomarkers. Cytokine 2024; 180:156660. [PMID: 38801805 DOI: 10.1016/j.cyto.2024.156660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/15/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
Proinflammatory cytokines and their inhibitors are involved in the regulation of multiple immune reactions including response to transplanted organs. In this prospective study, we evaluated changes in serum concentrations of six IL-1 family cytokines (IL-1 alpha, IL-1 beta, IL-1RA, IL-18, IL-18BP, and IL-36 beta) in 138 kidney allograft recipients and 48 healthy donors. Samples were collected before transplantation and then after one week, three months and one year, additional sera were obtained at the day of biopsy positive for acute rejection. We have shown, that concentrations of proinflammatory members of the IL-1 family (IL-1β, IL-18, IL-36 β) and anti-inflammatory IL-18BP decreased immediately after the transplantation. The decline of serum IL-1RA and IL-1α was not observed in subjects with acute rejection. IL-18, including specifically its free form, is the only cytokine which increase serum concentrations in the period between one week and three months in both groups of patients without upregulation of its inhibitor, IL-18BP. Serum concentrations of calculated free IL-18 were upregulated in the acute rejection group at the time of acute rejection. We conclude that IL-1 family cytokines are involved mainly in early phases of the response to kidney allograft. Serum concentrations of free IL-18 and IL-18BP represent possible biomarkers of acute rejection, and targeting IL-18 might be of therapeutic value.
Collapse
Affiliation(s)
- E Cecrdlova
- Institute for Clinical and Experimental Medicine, Department of Clinical and Transplant Immunology, Prague, Czech Republic
| | - L Krupickova
- Institute for Clinical and Experimental Medicine, Department of Clinical and Transplant Immunology, Prague, Czech Republic
| | - M Fialova
- Institute for Clinical and Experimental Medicine, Department of Clinical and Transplant Immunology, Prague, Czech Republic
| | - M Novotny
- Institute for Clinical and Experimental Medicine, Transplant Center, Department of Nephrology, Prague, Czech Republic
| | - F Tichanek
- Institute for Clinical and Experimental Medicine, Department of Data Science, Prague, Czech Republic
| | - V Svachova
- Institute for Clinical and Experimental Medicine, Department of Clinical and Transplant Immunology, Prague, Czech Republic
| | - K Mezerova
- Institute for Clinical and Experimental Medicine, Department of Clinical and Transplant Immunology, Prague, Czech Republic
| | - O Viklicky
- Institute for Clinical and Experimental Medicine, Transplant Center, Department of Nephrology, Prague, Czech Republic
| | - I Striz
- Institute for Clinical and Experimental Medicine, Department of Clinical and Transplant Immunology, Prague, Czech Republic.
| |
Collapse
|
11
|
Zhang Z, Chen X, Meng Y, Jiang J, Wu L, Chen T, Pan H, Jiao Z, Du L, Man C, Chen S, Wang F, Gao H, Chen Q. Up-Regulation of S100A8 and S100A9 in Pulmonary Immune Response Induced by a Mycoplasma capricolum subsp. capricolum HN-B Strain. Animals (Basel) 2024; 14:2064. [PMID: 39061526 PMCID: PMC11274312 DOI: 10.3390/ani14142064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Mycoplasma capricolum subsp. capricolum (Mcc), a member of the Mycoplasma mycoides cluster, has a negative impact on the goat-breeding industry. However, little is known about the pathogenic mechanism of Mcc. This study infected mice using a previously isolated strain, Mcc HN-B. Hematoxylin and eosin staining, RNA sequencing, bioinformatic analyses, RT-qPCR, and immunohistochemistry were performed on mouse lung tissues. The results showed that 235 differentially expressed genes (DEGs) were identified. GO and KEGG enrichment analyses suggested that the DEGs were mainly associated with immune response, defensive response to bacteria, NF-kappa B signaling pathway, natural killer cell-mediated cytotoxicity, and T cell receptor signaling pathway. RT-qPCR verified the expression of Ccl5, Cd4, Cd28, Il2rb, Lck, Lat, Ptgs2, S100a8, S100a9, and Il-33. The up-regulation of S100A8 and S100A9 at the protein level was confirmed by immunohistochemistry. Moreover, RT-qPCR assays on Mcc HN-B-infected RAW264.7 cells also showed that the expression of S100a8 and S100a9 was elevated. S100A8 and S100A9 not only have diagnostic value in Mcc infection but also hold great significance in clarifying the pathogenic mechanism of Mcc. This study preliminarily elucidates the mechanism of Mcc HN-B-induced lung injury and provides a theoretical basis for further research on Mcc-host interactions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Hongyan Gao
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Z.Z.); (X.C.); (Y.M.); (J.J.); (L.W.); (T.C.); (H.P.); (Z.J.); (L.D.); (C.M.); (S.C.); (F.W.)
| | - Qiaoling Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Z.Z.); (X.C.); (Y.M.); (J.J.); (L.W.); (T.C.); (H.P.); (Z.J.); (L.D.); (C.M.); (S.C.); (F.W.)
| |
Collapse
|
12
|
Ertel A, Anderegg U, Franz S, Saalbach A. Dermal White Adipose Tissue-Derived Il-33 Regulates Il-4/13 Expression in Myeloid Cells during Inflammation. J Invest Dermatol 2024:S0022-202X(24)01862-1. [PMID: 38909842 DOI: 10.1016/j.jid.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/25/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024]
Abstract
Effective tissue response to infection and injury essentially relies on the fine-tuned induction and subsequent resolution of inflammation. Recent research highlighted multiple functions of dermal white adipose tissue (dWAT) beyond its traditional role as an energy reservoir. However, in contrast to other fat depots, there are only limited data about putative immune-regulatory functions of dWAT. Therefore, we investigated the impact of dWAT in the control of an acute skin inflammation. Skin inflammation triggers the activation of dWAT. In turn, soluble mediators of activated dWAT stimulate the expression of numerous genes controlling skin inflammation, including the T helper 2 cell cytokines Il4 and Il13, in myeloid cells in vitro. Consistently, myeloid cells isolated from inflamed skin showed a significant upregulation of Il-4/13 expression compared with those isolated from healthy skin. Mechanistically, we demonstrate that IL-33 released from activated dWAT is responsible for IL-4/13 stimulation in myeloid cells. Interestingly, obesity attenuates IL-33 secretion in dWAT during inflammation, resulting in decreased Il-4 and Il-13 expressions in myeloid cells. Our data reveal an IL-33-IL-4/13 signaling cascade initiated from dWAT in a T helper 2-independent context of inflammation that may contribute to limitation of inflammation. This cascade seems to be disturbed in individuals with obesity with prolonged inflammation.
Collapse
Affiliation(s)
- Anastasia Ertel
- Department of Dermatology, Venereology and Allergology, University of Leipzig Medical Center, Leipzig, Germany
| | - Ulf Anderegg
- Department of Dermatology, Venereology and Allergology, University of Leipzig Medical Center, Leipzig, Germany
| | - Sandra Franz
- Department of Dermatology, Venereology and Allergology, University of Leipzig Medical Center, Leipzig, Germany
| | - Anja Saalbach
- Department of Dermatology, Venereology and Allergology, University of Leipzig Medical Center, Leipzig, Germany.
| |
Collapse
|
13
|
Ruan J, Tian Q, Li S, Zhou X, Sun Q, Wang Y, Xiao Y, Li M, Chang K, Yi X. The IL-33-ST2 axis plays a vital role in endometriosis via promoting epithelial-mesenchymal transition by phosphorylating β-catenin. Cell Commun Signal 2024; 22:318. [PMID: 38858740 PMCID: PMC11163813 DOI: 10.1186/s12964-024-01683-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/27/2024] [Indexed: 06/12/2024] Open
Abstract
OBJECTIVES Interleukin 33 (IL-33) is a crucial inflammatory factor that functions as an alarm signal in endometriosis (EMs). Epithelial-mesenchymal transition (EMT), a process related to inflammatory signals, intracellular reactive oxygen species (ROS) production, and lipid peroxidation, have been proposed as potential mechanisms that contribute to the development and progression of EMs. IL-33 is highly upregulated in the ectopic milieu. Moreover, ectopic endometrial cells constitutively express interleukin-33 receptor ST2 (IL-33R). However, the role of IL-33/ST2 in the EMT of EMs remains largely unknown. In this study, we aimed to mechanistically determine the role of IL-33/ST2 in EMs-associated fibrosis. MATERIALS AND METHODS We established a non-lethal oxidative stress model to explore the conditions that trigger IL-33 induction. We performed α-smooth muscle actin (α-SMA) protein detection, cell counting kit-8 (CCK-8) assays, and scratch assays to analyze the impact of IL-33 on primary endometrial stromal cells (ESCs) proliferation and invasion. Clinical samples from patients with or without EMs were subjected to immunohistochemical (IHC) and and immunofluorescence(IF) staining to assess the clinical relevance of IL-33 receptor ST2 and EMT-related proteins. Furthermore, we used the ectopic human endometrial epithelial cell line 12Z and normal human epithelial cell line EEC to evaluate the effects of IL-33 on Wnt/β-catenin signaling. The effect of IL-33 on EMT-associated fibrosis was validated in vivo by intraperitoneal injections of IL-33 and antiST2. RESULTS We observed that ectopic milieu, characterized by ROS, TGF-β1, and high level of estrogen, triggers the secretion of IL-33 from ectopic ESCs. Ectopic endometrial lesions exhibited higher level of fibrotic characteristics and ST2 expression than that in the normal endometrium. Exogenous recombinant human (rhIL-33) enhanced ESC migration and survival. Similarly, 12Z cells displayed a higher degree of EMT characteristics with elevated expression of CCN4 and Fra-1, downstream target genes of the WNT/β-catenin pathway, than that observed in EECs. Conversely, blocking IL-33 with neutralizing antibodies, knocking down ST2 or β-catenin with siRNA, and β-catenin dephosphorylation abolished its effects on EMT promotion. In vivo validation demonstrated that IL-33 significantly promotes EMs-related fibrosis through the activation of Wnt/β-catenin signaling. CONCLUSION Our data strongly support the vital role of the IL-33/ST2 pathway in EMs-associated fibrosis and emphasize the importance of the EMT in the pathophysiology of fibrosis. Targeting the IL-33/ST2/Wnt/β-catenin axis may hold promise as a feasible therapeutic approach for controlling fibrosis in EMs.
Collapse
Affiliation(s)
- Jingyao Ruan
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, 419# Fangxie Road, Shanghai, 200011, China
| | - Qi Tian
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, 419# Fangxie Road, Shanghai, 200011, China
| | - Siting Li
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, 419# Fangxie Road, Shanghai, 200011, China
| | - Xiaoyu Zhou
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, 419# Fangxie Road, Shanghai, 200011, China
| | - Qianzhi Sun
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, 419# Fangxie Road, Shanghai, 200011, China
| | - Yuning Wang
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, 419# Fangxie Road, Shanghai, 200011, China
| | - Yinping Xiao
- Department of Pathology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Mingqing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Kaikai Chang
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, 419# Fangxie Road, Shanghai, 200011, China.
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China.
| | - Xiaofang Yi
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, 419# Fangxie Road, Shanghai, 200011, China.
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China.
| |
Collapse
|
14
|
Schmitt P, Duval A, Camus M, Lefrançais E, Roga S, Dedieu C, Ortega N, Bellard E, Mirey E, Mouton-Barbosa E, Burlet-Schiltz O, Gonzalez-de-Peredo A, Cayrol C, Girard JP. TL1A is an epithelial alarmin that cooperates with IL-33 for initiation of allergic airway inflammation. J Exp Med 2024; 221:e20231236. [PMID: 38597952 PMCID: PMC11010340 DOI: 10.1084/jem.20231236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/07/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
Epithelium-derived cytokines or alarmins, such as interleukin-33 (IL-33) and thymic stromal lymphopoietin (TSLP), are major players in type 2 immunity and asthma. Here, we demonstrate that TNF-like ligand 1A (TL1A) is an epithelial alarmin, constitutively expressed in alveolar epithelium at steady state in both mice and humans, which cooperates with IL-33 for early induction of IL-9high ILC2s during the initiation of allergic airway inflammation. Upon synergistic activation by IL-33 and TL1A, lung ILC2s acquire a transient IL-9highGATA3low "ILC9" phenotype and produce prodigious amounts of IL-9. A combination of large-scale proteomic analyses, lung intravital microscopy, and adoptive transfer of ILC9 cells revealed that high IL-9 expression distinguishes a multicytokine-producing state-of-activated ILC2s with an increased capacity to initiate IL-5-dependent allergic airway inflammation. Similar to IL-33 and TSLP, TL1A is expressed in airway basal cells in healthy and asthmatic human lungs. Together, these results indicate that TL1A is an epithelium-derived cytokine and an important cofactor of IL-33 in the airways.
Collapse
Affiliation(s)
- Pauline Schmitt
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), Toulouse, France
| | - Anais Duval
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), Toulouse, France
| | - Mylène Camus
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), Toulouse, France
| | - Emma Lefrançais
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), Toulouse, France
| | - Stéphane Roga
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), Toulouse, France
| | - Cécile Dedieu
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), Toulouse, France
| | - Nathalie Ortega
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), Toulouse, France
| | - Elisabeth Bellard
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), Toulouse, France
| | - Emilie Mirey
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), Toulouse, France
| | - Emmanuelle Mouton-Barbosa
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), Toulouse, France
| | - Anne Gonzalez-de-Peredo
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), Toulouse, France
| | - Corinne Cayrol
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), Toulouse, France
| | - Jean-Philippe Girard
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), Toulouse, France
| |
Collapse
|
15
|
Saikumar Jayalatha AK, Ketelaar ME, Hesse L, Badi YE, Zounemat-Kermani N, Brouwer S, Dijk NF, van den Berge M, Guryev V, Sayers I, Vonk JE, Adcock IM, Koppelman GH, Nawijn MC. IL-33 induced gene expression in activated Th2 effector cells is dependent on IL-1RL1 haplotype and asthma status. Eur Respir J 2024; 63:2400005. [PMID: 38843913 PMCID: PMC11187316 DOI: 10.1183/13993003.00005-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 04/22/2024] [Indexed: 06/22/2024]
Abstract
Asthma is a heterogeneous respiratory disease caused by the interaction between environmental and genetic factors [1]. The IL-33 and IL-1RL1 genes are strongly associated with childhood-onset and type-2 high asthma, and the asthma risk alleles amplify interleukin (IL)-33 pathway activity [2]. Environmental factors, such as allergens and viral infections, trigger bronchial epithelial cells to release IL-33, which can activate signalling by binding to the IL-1RL1/IL-1RAcP receptor complex [3], and contribute to hyper-responsiveness, remodelling and chronic type 2 inflammation of the airways [4]. IL-33 response in Th2 cells is specific to asthma and represents a high risk haplotype, highlighting its role in airway wall cells. Yet, its detection is challenging in bulk asthma transcriptomes due to the scarcity of effector Th2 cells. https://bit.ly/3WhuMbo
Collapse
Affiliation(s)
- Akshaya Keerthi Saikumar Jayalatha
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Department of Pathology and Medical Biology, Groningen, The Netherlands
- Shared first authorship
| | - Marlies E Ketelaar
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Beatrix Children's Hospital, Department of Pediatric Pulmonology and Pediatric Allergology, Groningen, The Netherlands
- Shared first authorship
| | - Laura Hesse
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Department of Pathology and Medical Biology, Groningen, The Netherlands
- Shared first authorship
| | - Yusef E Badi
- National Heart and Lung Institute, Department of Respiratory Cell and Molecular Biology, Imperial College London, London, UK
| | - Nazanin Zounemat-Kermani
- National Heart and Lung Institute, Department of Respiratory Cell and Molecular Biology, Imperial College London, London, UK
| | - Sharon Brouwer
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - Nicole F Dijk
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Beatrix Children's Hospital, Department of Pediatric Pulmonology and Pediatric Allergology, Groningen, The Netherlands
| | - Maarten van den Berge
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Department of Pulmonary Diseases, Groningen, The Netherlands
| | - Victor Guryev
- University of Groningen, GRIAC Research Institute and European Research Institute for the Biology of Ageing, Groningen, The Netherlands
| | - Ian Sayers
- Centre for Respiratory Research, NIHR Biomedical Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Judith E Vonk
- University of Groningen, University Medical Center Groningen, GRIAC Research institute, Department of Epidemiology, Groningen, The Netherlands
| | - Ian M Adcock
- National Heart and Lung Institute, Department of Respiratory Cell and Molecular Biology, Imperial College London, London, UK
| | - Gerard H Koppelman
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Beatrix Children's Hospital, Department of Pediatric Pulmonology and Pediatric Allergology, Groningen, The Netherlands
| | - Martijn C Nawijn
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Department of Pathology and Medical Biology, Groningen, The Netherlands
| |
Collapse
|
16
|
Roy S, Roy S, Halder S, Jana K, Ukil A. Leishmania exploits host cAMP/EPAC/calcineurin signaling to induce an IL-33-mediated anti-inflammatory environment for the establishment of infection. J Biol Chem 2024; 300:107366. [PMID: 38750790 PMCID: PMC11208913 DOI: 10.1016/j.jbc.2024.107366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 06/10/2024] Open
Abstract
Host anti-inflammatory responses are critical for the progression of visceral leishmaniasis, and the pleiotropic cytokine interleukin (IL)-33 was found to be upregulated in infection. Here, we documented that IL-33 induction is a consequence of elevated cAMP-mediated exchange protein activated by cAMP (EPAC)/calcineurin-dependent signaling and essential for the sustenance of infection. Leishmania donovani-infected macrophages showed upregulation of IL-33 and its neutralization resulted in decreased parasite survival and increased inflammatory responses. Infection-induced cAMP was involved in IL-33 production and of its downstream effectors PKA and EPAC, only the latter was responsible for elevated IL-33 level. EPAC initiated Rap-dependent phospholipase C activation, which triggered the release of intracellular calcium followed by calcium/calmodulin complex formation. Screening of calmodulin-dependent enzymes affirmed involvement of the phosphatase calcineurin in cAMP/EPAC/calcium/calmodulin signaling-induced IL-33 production and parasite survival. Activated calcineurin ensured nuclear localization of the transcription factors, nuclear factor of activated T cell 1 and hypoxia-inducible factor 1 alpha required for IL-33 transcription, and we further confirmed this by chromatin immunoprecipitation assay. Administering specific inhibitors of nuclear factor of activated T cell 1 and hypoxia-inducible factor 1 alpha in BALB/c mouse model of visceral leishmaniasis decreased liver and spleen parasite burden along with reduction in IL-33 level. Splenocyte supernatants of inhibitor-treated infected mice further documented an increase in tumor necrosis factor alpha and IL-12 level with simultaneous decrease of IL-10, thereby indicating an overall disease-escalating effect of IL-33. Thus, this study demonstrates that cAMP/EPAC/calcineurin signaling is crucial for the activation of IL-33 and in effect creates anti-inflammatory responses, essential for infection.
Collapse
Affiliation(s)
- Souravi Roy
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | - Shalini Roy
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | - Satyajit Halder
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Anindita Ukil
- Department of Biochemistry, University of Calcutta, Kolkata, India.
| |
Collapse
|
17
|
Park JH, Mortaja M, Son HG, Zhao X, Sloat LM, Azin M, Wang J, Collier MR, Tummala KS, Mandinova A, Bardeesy N, Semenov YR, Mino-Kenudson M, Demehri S. Statin prevents cancer development in chronic inflammation by blocking interleukin 33 expression. Nat Commun 2024; 15:4099. [PMID: 38816352 PMCID: PMC11139893 DOI: 10.1038/s41467-024-48441-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 04/24/2024] [Indexed: 06/01/2024] Open
Abstract
Chronic inflammation is a major cause of cancer worldwide. Interleukin 33 (IL-33) is a critical initiator of cancer-prone chronic inflammation; however, its induction mechanism by environmental causes of chronic inflammation is unknown. Herein, we demonstrate that Toll-like receptor (TLR)3/4-TBK1-IRF3 pathway activation links environmental insults to IL-33 induction in the skin and pancreas inflammation. An FDA-approved drug library screen identifies pitavastatin to effectively suppress IL-33 expression by blocking TBK1 membrane recruitment/activation through the mevalonate pathway inhibition. Accordingly, pitavastatin prevents chronic pancreatitis and its cancer sequela in an IL-33-dependent manner. The IRF3-IL-33 axis is highly active in chronic pancreatitis and its associated pancreatic cancer in humans. Interestingly, pitavastatin use correlates with a significantly reduced risk of chronic pancreatitis and pancreatic cancer in patients. Our findings demonstrate that blocking the TBK1-IRF3-IL-33 signaling axis suppresses cancer-prone chronic inflammation. Statins present a safe and effective prophylactic strategy to prevent chronic inflammation and its cancer sequela.
Collapse
Affiliation(s)
- Jong Ho Park
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Anatomy, School of Medicine, Keimyung University, Daegu, South Korea
| | - Mahsa Mortaja
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Heehwa G Son
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Xutu Zhao
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lauren M Sloat
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Marjan Azin
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jun Wang
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael R Collier
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Krishna S Tummala
- Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Quantitative Biosciences, Merck Research Laboratories, Boston, MA, USA
| | - Anna Mandinova
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Nabeel Bardeesy
- Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Yevgeniy R Semenov
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, USA
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Shadmehr Demehri
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Lu C, Deng S, Liu Y, Yang S, Qin D, Zhang L, Wang RR, Zhang Y. Inhibition of macrophage MAPK/NF-κB pathway and Th2 axis by mangiferin ameliorates MC903-induced atopic dermatitis. Int Immunopharmacol 2024; 133:112038. [PMID: 38621336 DOI: 10.1016/j.intimp.2024.112038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/05/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024]
Abstract
Available online Atopic dermatitis (AD) is a chronic, persistent inflammatory skin disease characterized by eczema-like lesions and itching. Although topical steroids have been reported for treating AD, they are associated with adverse effects. Thus, safer medications are needed for those who cannot tolerate these agents for long periods. Mangiferin (MAN) is a flavonoid widely found in many herbs, with significant anti-inflammatory and immunomodulatory activities. However, the potential modulatory effects and mechanisms of MAN in treating Th2 inflammation in AD are unknown. In the present study, we reported that MAN could reduce inflammatory cell infiltration and scratching at the lesion site by decreasing MC903-induced levels of Th2-type cytokines, Histamine, thymic stromal lymphopoietin, Leukotriene B4, and immunoglobulin E. The mechanism may be related to reductions in MAPK and NF-κB-associated protein phosphorylation by macrophages. The results suggested that MAN may be a promising therapeutic agent for AD.
Collapse
Affiliation(s)
- Cheng Lu
- School of Chinese Materia Medica,Yunnan University of Chinese Medicine, Kunming 650500, China
| | - ShiJun Deng
- School of Chinese Materia Medica,Yunnan University of Chinese Medicine, Kunming 650500, China
| | - YanJiao Liu
- School of Chinese Materia Medica,Yunnan University of Chinese Medicine, Kunming 650500, China
| | - ShengJin Yang
- School of Chinese Materia Medica,Yunnan University of Chinese Medicine, Kunming 650500, China
| | - DingMei Qin
- School of Chinese Materia Medica,Yunnan University of Chinese Medicine, Kunming 650500, China
| | - LiJuan Zhang
- School of Basic Medical, Yunnan University of Chinese Medicine, Kunming, China
| | - Rui-Rui Wang
- School of Chinese Materia Medica,Yunnan University of Chinese Medicine, Kunming 650500, China.
| | - Yi Zhang
- School of Chinese Materia Medica,Yunnan University of Chinese Medicine, Kunming 650500, China.
| |
Collapse
|
19
|
Fields JK, Gyllenbäck EJ, Bogacz M, Obi J, Birkedal GS, Sjöström K, Maravillas K, Grönberg C, Rattik S, Kihn K, Flowers M, Smith AK, Hansen N, Fioretos T, Huyhn C, Liberg D, Deredge D, Sundberg EJ. Antibodies targeting the shared cytokine receptor IL-1 receptor accessory protein invoke distinct mechanisms to block all cytokine signaling. Cell Rep 2024; 43:114099. [PMID: 38636519 DOI: 10.1016/j.celrep.2024.114099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/24/2024] [Accepted: 03/27/2024] [Indexed: 04/20/2024] Open
Abstract
Interleukin-1 (IL-1)-family cytokines are potent modulators of inflammation, coordinating a vast array of immunological responses across innate and adaptive immune systems. Dysregulated IL-1-family cytokine signaling, however, is involved in a multitude of adverse health effects, such as chronic inflammatory conditions, autoimmune diseases, and cancer. Within the IL-1 family of cytokines, six-IL-1α, IL-1β, IL-33, IL-36α, IL-36β, and IL-36γ-require the IL-1 receptor accessory protein (IL-1RAcP) as their shared co-receptor. Common features of cytokine signaling include redundancy of signaling pathways, sharing of cytokines and receptors, pleiotropy of the cytokines themselves, and multifaceted immune responses. Accordingly, targeting multiple cytokines simultaneously is an emerging therapeutic strategy and can provide advantages over targeting a single cytokine pathway. Here, we show that two monoclonal antibodies, CAN10 and 3G5, which target IL-1RAcP for broad blockade of all associated cytokines, do so through distinct mechanisms and provide therapeutic opportunities for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- James K Fields
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | | | - Marek Bogacz
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Juliet Obi
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | | | | | - Kino Maravillas
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | - Kyle Kihn
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Maria Flowers
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ally K Smith
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Nils Hansen
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Thoas Fioretos
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Chau Huyhn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Daniel Deredge
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Eric J Sundberg
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
20
|
Yang L, He H, Guo XK, Wang J, Wang W, Li D, Liang S, Shao F, Liu W, Hu X. Intraepithelial mast cells drive gasdermin C-mediated type 2 immunity. Immunity 2024; 57:1056-1070.e5. [PMID: 38614091 DOI: 10.1016/j.immuni.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/31/2023] [Accepted: 03/19/2024] [Indexed: 04/15/2024]
Abstract
A specialized population of mast cells residing within epithelial layers, currently known as intraepithelial mast cells (IEMCs), was originally observed over a century ago, yet their physiological functions have remained enigmatic. In this study, we unveil an unexpected and crucial role of IEMCs in driving gasdermin C-mediated type 2 immunity. During helminth infection, αEβ7 integrin-positive IEMCs engaged in extensive intercellular crosstalk with neighboring intestinal epithelial cells (IECs). Through the action of IEMC-derived proteases, gasdermin C proteins intrinsic to the epithelial cells underwent cleavage, leading to the release of a critical type 2 cytokine, interleukin-33 (IL-33). Notably, mast cell deficiency abolished the gasdermin C-mediated immune cascade initiated by epithelium. These findings shed light on the functions of IEMCs, uncover a previously unrecognized phase of type 2 immunity involving mast cell-epithelial cell crosstalk, and advance our understanding of the cellular mechanisms underlying gasdermin C activation.
Collapse
Affiliation(s)
- Liu Yang
- Institute for Immunology, Tsinghua University, Beijing, China; School of Basic Medical Sciences, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Beijing, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China
| | - Huabin He
- National Institute of Biological Sciences, Beijing, China
| | - Xue-Kun Guo
- Chinese Institutes for Medical Research, Beijing, China
| | - Jiali Wang
- Institute for Immunology, Tsinghua University, Beijing, China; School of Basic Medical Sciences, Tsinghua University, Beijing, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China
| | - Wenwen Wang
- Institute for Immunology, Tsinghua University, Beijing, China; School of Basic Medical Sciences, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Beijing, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China
| | - Da Li
- National Institute of Biological Sciences, Beijing, China
| | - Shaonan Liang
- Institute for Immunology, Tsinghua University, Beijing, China; School of Basic Medical Sciences, Tsinghua University, Beijing, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China
| | - Feng Shao
- National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Wanli Liu
- Institute for Immunology, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Beijing, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China; School of Life Sciences, Tsinghua University, Beijing, China; The State Key Laboratory of Membrane Biology, Beijing, China
| | - Xiaoyu Hu
- Institute for Immunology, Tsinghua University, Beijing, China; School of Basic Medical Sciences, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Beijing, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China; The State Key Laboratory of Membrane Biology, Beijing, China.
| |
Collapse
|
21
|
Su PA, Ma MC, Wu WB, Wang JJ, Du WY. IL-33 Enhances the Total Production of IgG, IgG1, and IgG3 in Angiostrongylus cantonensis-Infected Mice. Trop Med Infect Dis 2024; 9:111. [PMID: 38787044 PMCID: PMC11125625 DOI: 10.3390/tropicalmed9050111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
The purpose of this study is to clarify the role of IL-33 in the immune response to angiostrongyliasis, especially in terms of antibody production and isotype switching. In our experiment, C57BL/6 mice were each infected with 35 infectious larvae and were divided into groups that received an intraperitoneal injection of IL-33, anti-IL-33 monoclonal antibody (mAb), or anti-ST2 mAb 3 days post-infection (dpi) and were subsequently administered booster shots at 5-day intervals with the same dose. Serum samples from each group were collected weekly for ELISA assays. The levels of total IgG, IgG1, and IgG3 were significantly increased in A. cantonensis-infected mice that were treated with IL-33, and the levels decreased significantly in infected groups treated with anti-IL-33 or anti-ST2 mAb. These results suggest that IL-33 may play a critical role in the pathogenesis of human angiostrongyliasis and could be useful for understanding protective immunity against this parasitic infection.
Collapse
Affiliation(s)
- Po-An Su
- Internal Medicine, Infection Department, Chi Mei Hospital, Tainan 71004, Taiwan;
| | - Ming-Chieh Ma
- School of Medicine, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (M.-C.M.); (W.-B.W.); (J.-J.W.)
| | - Wen-Bin Wu
- School of Medicine, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (M.-C.M.); (W.-B.W.); (J.-J.W.)
| | - Jiun-Jr Wang
- School of Medicine, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (M.-C.M.); (W.-B.W.); (J.-J.W.)
| | - Wen-Yuan Du
- School of Medicine, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (M.-C.M.); (W.-B.W.); (J.-J.W.)
| |
Collapse
|
22
|
Danto SI, Tsamandouras N, Reddy P, Gilbert S, Mancuso J, Page K, Peeva E, Vincent MS, Beebe JS. Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of PF-06817024 in Healthy Participants, Participants with Chronic Rhinosinusitis with Nasal Polyps, and Participants with Atopic Dermatitis: A Phase 1, Randomized, Double-Blind, Placebo-Controlled Study. J Clin Pharmacol 2024; 64:529-543. [PMID: 37772436 DOI: 10.1002/jcph.2360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 09/05/2023] [Indexed: 09/30/2023]
Abstract
PF-06817024 is a high affinity, humanized antibody that binds interleukin-33, a proinflammatory type 2 cytokine, and thereby has the potential to inhibit downstream type 2 inflammation. This Phase 1, randomized, placebo-controlled study was conducted in 3 parts to evaluate the safety, tolerability, pharmacokinetics (PK), immunogenicity, and pharmacodynamics of escalating single and limited repeat PF-06817024 doses in healthy participants (Part 1), a single dose of PF-06817024 in participants with chronic rhinosinusitis with nasal polyps (Part 2), and repeat doses of PF-06817024 in participants with moderate to severe atopic dermatitis (atoptic dermatitis; Part 3). PF-06817024 was generally well tolerated in all participant populations. Most participants experienced a treatment-emergent adverse event (healthy participants, 78.4% and 100%; participants with chronic rhinosinusitis with nasal polyps, 90.9% and 88.9%; and participants with atoptic dermatitis, 60.0% and 62.5% in the PF-06817024 and placebo groups, respectively). No substantial deviations from dose proportionality were observed for single intravenous doses of 10-1000 mg, indicating linear PK in healthy participants. Mean terminal half-life ranged from 83 to 94 days after single intravenous administration in healthy participants and was similar to that observed after administration in the studied patient populations. Incidences of antidrug antibodies in the studied populations were 10.8%, 9.1%, and 5.0% for healthy participants, participants with chronic rhinosinusitis with nasal polyps, and participants with atoptic dermatitis, respectively. In addition, dose-dependent increases were observed in total serum interleukin-33 levels of treated participants, indicating target engagement. Overall, the PK and safety profile of PF-06817024 supports further investigation of the drug as a potential treatment for allergic diseases.
Collapse
|
23
|
Ranjitkar S, Krajewski D, Garcia C, Tedeschi C, Polukort SH, Rovatti J, Mire M, Blesso CN, Jellison E, Schneider SS, Ryan JJ, Mathias CB. IL-10 Differentially Promotes Mast Cell Responsiveness to IL-33, Resulting in Enhancement of Type 2 Inflammation and Suppression of Neutrophilia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1407-1419. [PMID: 38497670 PMCID: PMC11018500 DOI: 10.4049/jimmunol.2300884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/26/2024] [Indexed: 03/19/2024]
Abstract
Mast cells (MCs) play critical roles in the establishment of allergic diseases. We recently demonstrated an unexpected, proinflammatory role for IL-10 in regulating MC responses. IL-10 enhanced MC activation and promoted IgE-dependent responses during food allergy. However, whether these effects extend to IgE-independent stimuli is not clear. In this article, we demonstrate that IL-10 plays a critical role in driving IL-33-mediated MC responses. IL-10 stimulation enhanced MC expansion and degranulation, ST2 expression, IL-13 production, and phospho-relA upregulation in IL-33-treated cells while suppressing TNF-α. These effects were partly dependent on endogenous IL-10 and further amplified in MCs coactivated with both IL-33 and IgE/Ag. IL-10's divergent effects also extended in vivo. In a MC-dependent model of IL-33-induced neutrophilia, IL-10 treatment enhanced MC responsiveness, leading to suppression of neutrophils and decreased TNF-α. In contrast, during IL-33-induced type 2 inflammation, IL-10 priming exacerbated MC activity, resulting in MC recruitment to various tissues, enhanced ST2 expression, induction of hypothermia, recruitment of eosinophils, and increased MCPT-1 and IL-13 levels. Our data elucidate an important role for IL-10 as an augmenter of IL-33-mediated MC responses, with implications during both allergic diseases and other MC-dependent disorders. IL-10 induction is routinely used as a prognostic marker of disease improvement. Our data suggest instead that IL-10 can enhance ST2 responsiveness in IL-33-activated MCs, with the potential to both aggravate or suppress disease severity depending on the inflammatory context.
Collapse
Affiliation(s)
- Saurav Ranjitkar
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269
| | - Dylan Krajewski
- Department of Pharmaceutical and Administrative Sciences, Western New England University, Springfield, MA 01119
| | - Chelsea Garcia
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269
| | - Caitlin Tedeschi
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269
| | - Stephanie H. Polukort
- Department of Pharmaceutical and Administrative Sciences, Western New England University, Springfield, MA 01119
| | - Jeffrey Rovatti
- Department of Pharmaceutical and Administrative Sciences, Western New England University, Springfield, MA 01119
| | - Mohamed Mire
- Department of Pharmaceutical and Administrative Sciences, Western New England University, Springfield, MA 01119
| | | | - Evan Jellison
- Department of Immunology, University of Connecticut, Farmington, CT 06030
| | - Sallie S. Schneider
- Pioneer Valley Life Sciences Institute, Baystate Medical Center, Springfield, MA 01199
| | - John J. Ryan
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Clinton B. Mathias
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269
| |
Collapse
|
24
|
Silver SV, Tucker KJ, Vickman RE, Lanman NA, Semmes OJ, Alvarez NS, Popovics P. PROSTATE CELL HETEROGENEITY AND CXCL17 UPREGULATION IN MOUSE STEROID HORMONE IMBALANCE. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590980. [PMID: 38712029 PMCID: PMC11071464 DOI: 10.1101/2024.04.24.590980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Benign prostatic hyperplasia (BPH) is a prevalent age-related condition often characterized by debilitating urinary symptoms. Its etiology is believed to stem from hormonal imbalance, particularly an elevated estradiol-to-testosterone ratio and chronic inflammation. Our previous studies using a mouse steroid hormone imbalance model identified a specific increase in macrophages that migrate and accumulate in the prostate lumen where they differentiate into lipid-laden foam cells in mice implanted with testosterone and estradiol pellets, but not in sham animals. The current study focused on further characterizing the cellular heterogeneity of the prostate in this model as well as identifying the specific transcriptomic signature of the recruited foam cells. Moreover, we aimed to identify the epithelia-derived signals that drive macrophage infiltration and luminal translocation. Male C57BL/6J mice were implanted with slow-release testosterone and estradiol pellets (T+E2) and harvested the ventral prostates two weeks later for scRNA-seq analysis, or performed sham surgery. We identified Ear2+ and Cd72+ macrophages that were elevated in response to steroid hormone imbalance, whereas a Mrc1+ resident macrophage population did not change. In addition, an Spp1+ foam cell cluster was almost exclusively found in T+E2 mice. Further markers of foam cells were also identified, including Gpnmb and Trem2, and GPNMB was confirmed as a novel histological marker with immunohistochemistry. Foam cells were also shown to express known pathological factors Vegf, Tgfb1, Ccl6, Cxcl16 and Mmp12. Intriguingly, a screen for chemokines identified the upregulation of epithelial-derived Cxcl17, a known monocyte attractant, in T+E2 prostates suggesting that it might be responsible for the elevated macrophage number as well as their translocation to the lumen. Our study identified macrophage subsets that respond to steroid hormone imbalance as well as further confirmed a potential pathological role of luminal foam cells in the prostate. These results underscore a pathological role of the identified prostate foam cells and suggests CXCL17-mediated macrophage migration as a critical initiating event.
Collapse
Affiliation(s)
- Samara V. Silver
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA
| | - Kayah J. Tucker
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA
| | - Renee E Vickman
- Department of Surgery, Endeavor Health, an Academic Affiliate of the University of Chicago Pritzker School of Medicine, Evanston, IL, USA
| | - Nadia A. Lanman
- Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - O John Semmes
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA
| | - Nehemiah S. Alvarez
- Department of Surgery, Endeavor Health, an Academic Affiliate of the University of Chicago Pritzker School of Medicine, Evanston, IL, USA
| | - Petra Popovics
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA
| |
Collapse
|
25
|
Carroll SL, Pasare C, Barton GM. Control of adaptive immunity by pattern recognition receptors. Immunity 2024; 57:632-648. [PMID: 38599163 PMCID: PMC11037560 DOI: 10.1016/j.immuni.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
One of the most significant conceptual advances in immunology in recent history is the recognition that signals from the innate immune system are required for induction of adaptive immune responses. Two breakthroughs were critical in establishing this paradigm: the identification of dendritic cells (DCs) as the cellular link between innate and adaptive immunity and the discovery of pattern recognition receptors (PRRs) as a molecular link that controls innate immune activation as well as DC function. Here, we recount the key events leading to these discoveries and discuss our current understanding of how PRRs shape adaptive immune responses, both indirectly through control of DC function and directly through control of lymphocyte function. In this context, we provide a conceptual framework for how variation in the signals generated by PRR activation, in DCs or other cell types, can influence T cell differentiation and shape the ensuing adaptive immune response.
Collapse
Affiliation(s)
- Shaina L Carroll
- Division of Immunology & Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA USA
| | - Chandrashekhar Pasare
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH USA
| | - Gregory M Barton
- Division of Immunology & Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720 USA.
| |
Collapse
|
26
|
Wang X, Shields C, Tardo G, Peacock G, Hester E, Anderson M, Williams JM, Cornelius DC. IL-33 supplementation improves uterine artery resistance and maternal hypertension in response to placental ischemia. Am J Physiol Heart Circ Physiol 2024; 326:H1006-H1016. [PMID: 38363211 PMCID: PMC11279736 DOI: 10.1152/ajpheart.00045.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 02/17/2024]
Abstract
Preeclampsia (PE), a leading cause of maternal/fetal morbidity and mortality, is a hypertensive pregnancy disorder with end-organ damage that manifests after 20 wk of gestation. PE is characterized by chronic immune activation and endothelial dysfunction. Clinical studies report reduced IL-33 signaling in PE. We use the Reduced Uterine Perfusion Pressure (RUPP) rat model, which mimics many PE characteristics including reduced IL-33, to identify mechanisms mediating PE pathophysiology. We hypothesized that IL-33 supplementation would improve blood pressure (BP), inflammation, and oxidative stress (ROS) during placental ischemia. We implanted intraperitoneal mini-osmotic pumps infusing recombinant rat IL-33 (1 µg/kg/day) into normal pregnant (NP) and RUPP rats from gestation day 14 to 19. We found that IL-33 supplementation in RUPP rats reduces maternal blood pressure and improves the uterine artery resistance index (UARI). In addition to physiological improvements, we found decreased circulating and placental cytolytic Natural Killer cells (cNKs) and decreased circulating, placental, and renal TH17s in IL-33-treated RUPP rats. cNK cell cytotoxic activity also decreased in IL-33-supplemented RUPP rats. Furthermore, renal ROS and placental preproendothelin-1 (PPET-1) decreased in RUPP rats treated with IL-33. These findings demonstrate a role for IL-33 in controlling vascular function and maternal BP during pregnancy by decreasing inflammation, renal ROS, and PPET-1 expression. These data suggest that IL-33 may have therapeutic potential in managing PE.NEW & NOTEWORTHY Though decreased IL-33 signaling has been clinically associated with PE, the mechanisms linking this signaling pathway to overall disease pathophysiology are not well understood. This study provides compelling evidence that mechanistically links reduced IL-33 with the inflammatory response and vascular dysfunction observed in response to placental ischemia, such as in PE. Data presented in this study submit the IL-33 signaling pathway as a possible therapeutic target for the treatment of PE.
Collapse
Affiliation(s)
- Xi Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Corbin Shields
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Geilda Tardo
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Greg Peacock
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Emily Hester
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Marissa Anderson
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Jan M Williams
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Denise C Cornelius
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi, United States
| |
Collapse
|
27
|
Colón DF, Wanderley CW, Turato WM, Borges VF, Franchin M, Castanheira FVS, Nascimento D, Prado D, Haruo Fernandes de Lima M, Volpon LC, Kavaguti SK, Carlotti AP, Carmona F, Franklin BS, Cunha TM, Alves-Filho JC, Cunha FQ. Paediatric sepsis survivors are resistant to sepsis-induced long-term immune dysfunction. Br J Pharmacol 2024; 181:1308-1323. [PMID: 37990806 DOI: 10.1111/bph.16286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 07/19/2023] [Accepted: 08/17/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND AND PURPOSE Sepsis-surviving adult individuals commonly develop immunosuppression and increased susceptibility to secondary infections, an outcome mediated by the axis IL-33/ILC2s/M2 macrophages/Tregs. Nonetheless, the long-term immune consequences of paediatric sepsis are indeterminate. We sought to investigate the role of age in the genesis of immunosuppression following sepsis. EXPERIMENTAL APPROACH Here, we compared the frequency of Tregs, the activation of the IL-33/ILC2s axis in M2 macrophages and the DNA methylation of epithelial lung cells from post-septic infant and adult mice. Likewise, sepsis-surviving mice were inoculated intranasally with Pseudomonas aeruginosa or by subcutaneous inoculation of the B16 melanoma cell line. Finally, blood samples from sepsis-surviving patients were collected and the concentration of IL-33 and Tregs frequency were assessed. KEY RESULTS In contrast to 6-week-old mice, 2-week-old mice were resistant to secondary infection and did not show impairment in tumour controls upon melanoma challenge. Mechanistically, increased IL-33 levels, Tregs expansion, and activation of ILC2s and M2-macrophages were observed in 6-week-old but not 2-week-old post-septic mice. Moreover, impaired IL-33 production in 2-week-old post-septic mice was associated with increased DNA methylation in lung epithelial cells. Notably, IL-33 treatment boosted the expansion of Tregs and induced immunosuppression in 2-week-old mice. Clinically, adults but not paediatric post-septic patients exhibited higher counts of Tregs and seral IL-33 levels. CONCLUSION AND IMPLICATIONS These findings demonstrate a crucial and age-dependent role for IL-33 in post-sepsis immunosuppression. Thus, a better understanding of this process may lead to differential treatments for adult and paediatric sepsis.
Collapse
Affiliation(s)
- David F Colón
- Center of Research in Inflammatory Diseases (CRID), University of São Paulo, Ribeirão Preto, Brazil
- Departments of Biochemistry and Immunology, University of São Paulo, Ribeirão Preto, Brazil
| | - Carlos W Wanderley
- Center of Research in Inflammatory Diseases (CRID), University of São Paulo, Ribeirão Preto, Brazil
- Department of Pharmacology, University of São Paulo, Ribeirão Preto, Brazil
| | - Walter M Turato
- Center of Research in Inflammatory Diseases (CRID), University of São Paulo, Ribeirão Preto, Brazil
| | - Vanessa F Borges
- Center of Research in Inflammatory Diseases (CRID), University of São Paulo, Ribeirão Preto, Brazil
- Department of Pharmacology, University of São Paulo, Ribeirão Preto, Brazil
| | - Marcelo Franchin
- School of Dentistry, Alfenas Federal University, Alfenas, Brazil
| | | | - Daniele Nascimento
- Center of Research in Inflammatory Diseases (CRID), University of São Paulo, Ribeirão Preto, Brazil
- Departments of Biochemistry and Immunology, University of São Paulo, Ribeirão Preto, Brazil
| | - Douglas Prado
- Center of Research in Inflammatory Diseases (CRID), University of São Paulo, Ribeirão Preto, Brazil
- Department of Pharmacology, University of São Paulo, Ribeirão Preto, Brazil
| | - Mikhael Haruo Fernandes de Lima
- Center of Research in Inflammatory Diseases (CRID), University of São Paulo, Ribeirão Preto, Brazil
- Departments of Biochemistry and Immunology, University of São Paulo, Ribeirão Preto, Brazil
| | - Leila C Volpon
- Department of Pediatrics, University of São Paulo, Ribeirão Preto, Brazil
| | - Silvia K Kavaguti
- Department of Pediatrics, University of São Paulo, Ribeirão Preto, Brazil
| | - Ana P Carlotti
- Physiology & Pharmacology Calgary, University of Calgary, Calgary, Canada
| | - Fabio Carmona
- Department of Pediatrics, University of São Paulo, Ribeirão Preto, Brazil
| | - Bernardo S Franklin
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Thiago M Cunha
- Center of Research in Inflammatory Diseases (CRID), University of São Paulo, Ribeirão Preto, Brazil
- Department of Pharmacology, University of São Paulo, Ribeirão Preto, Brazil
| | - Jose Carlos Alves-Filho
- Center of Research in Inflammatory Diseases (CRID), University of São Paulo, Ribeirão Preto, Brazil
- Departments of Biochemistry and Immunology, University of São Paulo, Ribeirão Preto, Brazil
| | - Fernando Q Cunha
- Center of Research in Inflammatory Diseases (CRID), University of São Paulo, Ribeirão Preto, Brazil
- Department of Pharmacology, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
28
|
Zhu K, Jin Y, Zhao Y, He A, Wang R, Cao C. Proteomic scrutiny of nasal microbiomes: implications for the clinic. Expert Rev Proteomics 2024; 21:169-179. [PMID: 38420723 DOI: 10.1080/14789450.2024.2323983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
INTRODUCTION The nasal cavity is the initial site of the human respiratory tract and is one of the habitats where microorganisms colonize. The findings from a growing number of studies have shown that the nasal microbiome is an important factor for human disease and health. 16S rRNA sequencing and metagenomic next-generation sequencing (mNGS) are the most commonly used means of microbiome evaluation. Among them, 16S rRNA sequencing is the primary method used in previous studies of nasal microbiomes. However, neither 16S rRNA sequencing nor mNGS can be used to analyze the genes specifically expressed by nasal microorganisms and their functions. This problem can be addressed by proteomic analysis of the nasal microbiome. AREAS COVERED In this review, we summarize current advances in research on the nasal microbiome, introduce the methods for proteomic evaluation of the nasal microbiome, and focus on the important roles of proteomic evaluation of the nasal microbiome in the diagnosis and treatment of related diseases. EXPERT OPINION The detection method for microbiome-expressed proteins is known as metaproteomics. Metaproteomic analysis can help us dig deeper into the nasal microbiomes and provide new targets and ideas for clinical diagnosis and treatment of many nasal dysbiosis-related diseases.
Collapse
Affiliation(s)
- Ke Zhu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yan Jin
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Department of Respiratory and Critical Care Medicine, Municipal Hospital Affiliated to Taizhou University, Taizhou, China
| | - Yun Zhao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Andong He
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Ran Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chao Cao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
29
|
Delrue C, Speeckaert R, Delanghe JR, Speeckaert MM. Breath of fresh air: Investigating the link between AGEs, sRAGE, and lung diseases. VITAMINS AND HORMONES 2024; 125:311-365. [PMID: 38997169 DOI: 10.1016/bs.vh.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Advanced glycation end products (AGEs) are compounds formed via non-enzymatic reactions between reducing sugars and amino acids or proteins. AGEs can accumulate in various tissues and organs and have been implicated in the development and progression of various diseases, including lung diseases. The receptor of advanced glycation end products (RAGE) is a receptor that can bind to advanced AGEs and induce several cellular processes such as inflammation and oxidative stress. Several studies have shown that both AGEs and RAGE play a role in the pathogenesis of lung diseases, such as chronic obstructive pulmonary disease, asthma, idiopathic pulmonary fibrosis, cystic fibrosis, and acute lung injury. Moreover, the soluble form of the receptor for advanced glycation end products (sRAGE) has demonstrated its ability to function as a decoy receptor, possessing beneficial characteristics such as anti-inflammatory, antioxidant, and anti-fibrotic properties. These qualities make it an encouraging focus for therapeutic intervention in managing pulmonary disorders. This review highlights the current understanding of the roles of AGEs and (s)RAGE in pulmonary diseases and their potential as biomarkers and therapeutic targets for preventing and treating these pathologies.
Collapse
Affiliation(s)
- Charlotte Delrue
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium
| | | | - Joris R Delanghe
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Marijn M Speeckaert
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium; Research Foundation-Flanders (FWO), Brussels, Belgium.
| |
Collapse
|
30
|
Wachtendorf S, Jonin F, Ochel A, Heinrich F, Westendorf AM, Tiegs G, Neumann K. The ST2 + Treg/amphiregulin axis protects from immune-mediated hepatitis. Front Immunol 2024; 15:1351405. [PMID: 38571949 PMCID: PMC10987816 DOI: 10.3389/fimmu.2024.1351405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/29/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction The alarmin IL-33 has been implicated in the pathology of immune-mediated liver diseases. IL-33 activates regulatory T cells (Tregs) and type 2 innate lymphoid cells (ILC2s) expressing the IL-33 receptor ST2. We have previously shown that endogenous IL-33/ST2 signaling activates ILC2s that aggravate liver injury in murine immune-mediated hepatitis. However, treatment of mice with exogenous IL-33 before induction of hepatitis ameliorated disease severity. Since IL-33 induces expression of amphiregulin (AREG) crucial for Treg function, we investigated the immunoregulatory role of the ST2+ Treg/AREG axis in immune-mediated hepatitis. Methods C57BL/6, ST2-deficient (Il1rl1-/-) and Areg-/- mice received concanavalin A to induce immune-mediated hepatitis. Foxp3Cre+ x ST2fl/fl mice were pre-treated with IL-33 before induction of immune-mediated hepatitis. Treg function was assessed by adoptive transfer experiments and suppression assays. The effects of AREG and IL-33 on ST2+ Tregs and ILC2s were investigated in vitro. Immune cell phenotype was analyzed by flow cytometry. Results and discussion We identified IL-33-responsive ST2+ Tregs as an effector Treg subset in the murine liver, which was highly activated in immune-mediated hepatitis. Lack of endogenous IL-33 signaling in Il1rl1-/- mice aggravated disease pathology. This was associated with reduced Treg activation. Adoptive transfer of exogenous IL-33-activated ST2+ Tregs before induction of hepatitis suppressed inflammatory T-cell responses and ameliorated disease pathology. We further showed increased expression of AREG by hepatic ST2+ Tregs and ILC2s in immune-mediated hepatitis. Areg-/- mice developed more severe liver injury, which was associated with enhanced ILC2 activation and less ST2+ Tregs in the inflamed liver. Exogenous AREG suppressed ILC2 cytokine expression and enhanced ST2+ Treg activation in vitro. In addition, Tregs from Areg-/- mice were impaired in their capacity to suppress CD4+ T-cell activation in vitro. Moreover, application of exogenous IL-33 before disease induction did not protect Foxp3Cre+ x ST2fl/fl mice lacking ST2+ Tregs from immune-mediated hepatitis. In summary, we describe an immunoregulatory role of the ST2+ Treg/AREG axis in immune-mediated hepatitis, in which AREG suppresses the activation of hepatic ILC2s while maintaining ST2+ Tregs and reinforcing their immunosuppressive capacity in liver inflammation.
Collapse
Affiliation(s)
- Selina Wachtendorf
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fitriasari Jonin
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Aaron Ochel
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian Heinrich
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Astrid M. Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Gisa Tiegs
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katrin Neumann
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
31
|
Lenz B, Ehrens A, Ajendra J, Risch F, Gal J, Neumann AL, Reichwald JJ, Strutz W, McSorley HJ, Martin C, Hoerauf A, Hübner MP. Repeated sensitization of mice with microfilariae of Litomosoides sigmodontis induces pulmonary eosinophilia in an IL-33-dependent manner. PLoS Pathog 2024; 20:e1012071. [PMID: 38457461 PMCID: PMC10954174 DOI: 10.1371/journal.ppat.1012071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 03/20/2024] [Accepted: 02/24/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Eosinophilia is a hallmark of helminth infections and eosinophils are essential in the protective immune responses against helminths. Nevertheless, the distinct role of eosinophils during parasitic filarial infection, allergy and autoimmune disease-driven pathology is still not sufficiently understood. In this study, we established a mouse model for microfilariae-induced eosinophilic lung disease (ELD), a manifestation caused by eosinophil hyper-responsiveness within the lung. METHODS Wild-type (WT) BALB/c mice were sensitized with dead microfilariae (MF) of the rodent filarial nematode Litomosoides sigmodontis three times at weekly intervals and subsequently challenged with viable MF to induce ELD. The resulting immune response was compared to non-sensitized WT mice as well as sensitized eosinophil-deficient dblGATA mice using flow cytometry, lung histology and ELISA. Additionally, the impact of IL-33 signaling on ELD development was investigated using the IL-33 antagonist HpARI2. RESULTS ELD-induced WT mice displayed an increased type 2 immune response in the lung with increased frequencies of eosinophils, alternatively activated macrophages and group 2 innate lymphoid cells, as well as higher peripheral blood IgE, IL-5 and IL-33 levels in comparison to mice challenged only with viable MF or PBS. ELD mice had an increased MF retention in lung tissue, which was in line with an enhanced MF clearance from peripheral blood. Using eosinophil-deficient dblGATA mice, we demonstrate that eosinophils are essentially involved in driving the type 2 immune response and retention of MF in the lung of ELD mice. Furthermore, we demonstrate that IL-33 drives eosinophil activation in vitro and inhibition of IL-33 signaling during ELD induction reduces pulmonary type 2 immune responses, eosinophil activation and alleviates lung lacunarity. In conclusion, we demonstrate that IL-33 signaling is essentially involved in MF-induced ELD development. SUMMARY Our study demonstrates that repeated sensitization of BALB/c mice with L. sigmodontis MF induces pulmonary eosinophilia in an IL-33-dependent manner. The newly established model recapitulates the characteristic features known to occur during eosinophilic lung diseases (ELD) such as human tropical pulmonary eosinophilia (TPE), which includes the retention of microfilariae in the lung tissue and induction of pulmonary eosinophilia and type 2 immune responses. Our study provides compelling evidence that IL-33 drives eosinophil activation during ELD and that blocking IL-33 signaling using HpARI2 reduces eosinophil activation, eosinophil accumulation in the lung tissue, suppresses type 2 immune responses and mitigates the development of structural damage to the lung. Consequently, IL-33 is a potential therapeutic target to reduce eosinophil-mediated pulmonary pathology.
Collapse
Affiliation(s)
- Benjamin Lenz
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Alexandra Ehrens
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Jesuthas Ajendra
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Frederic Risch
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Joséphine Gal
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Equipe Parasites et Protistes Libres, Muséum National d’Histoire Naturelle, CNRS; CP52, Paris, France
| | - Anna-Lena Neumann
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Julia J. Reichwald
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Wiebke Strutz
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Henry J. McSorley
- Division of Cell Signaling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Coralie Martin
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Equipe Parasites et Protistes Libres, Muséum National d’Histoire Naturelle, CNRS; CP52, Paris, France
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Marc P. Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| |
Collapse
|
32
|
Grunwald C, Krętowska-Grunwald A, Adamska-Patruno E, Kochanowicz J, Kułakowska A, Chorąży M. The Role of Selected Interleukins in the Development and Progression of Multiple Sclerosis-A Systematic Review. Int J Mol Sci 2024; 25:2589. [PMID: 38473835 PMCID: PMC10932438 DOI: 10.3390/ijms25052589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Multiple sclerosis is a disabling inflammatory disorder of the central nervous system characterized by demyelination and neurodegeneration. Given that multiple sclerosis remains an incurable disease, the management of MS predominantly focuses on reducing relapses and decelerating the progression of both physical and cognitive decline. The continuous autoimmune process modulated by cytokines seems to be a vital contributing factor to the development and relapse of multiple sclerosis. This review sought to summarize the role of selected interleukins in the pathogenesis and advancement of MS. Patients with MS in the active disease phase seem to exhibit an increased serum level of IL-2, IL-4, IL-6, IL-13, IL-17, IL-21, IL-22 and IL-33 compared to healthy controls and patients in remission, while IL-10 appears to have a beneficial impact in preventing the progression of the disease. Despite being usually associated with proinflammatory activity, several studies have additionally recognized a neuroprotective role of IL-13, IL-22 and IL-33. Moreover, selected gene polymorphisms of IL-2R, IL-4, IL-6, IL-13 and IL-22 were identified as a possible risk factor related to MS development. Treatment strategies of multiple sclerosis that either target or utilize these cytokines seem rather promising, but more comprehensive research is necessary to gain a clearer understanding of how these cytokines precisely affect MS development and progression.
Collapse
Affiliation(s)
- Cezary Grunwald
- Department of Neurology, Medical University of Bialystok, Marii Skłodowskiej-Curie 24A, 15-276 Białystok, Poland; (J.K.); (A.K.)
| | - Anna Krętowska-Grunwald
- Department of Pediatric Oncology and Hematology, Medical University of Bialystok, Jerzego Waszyngtona 17, 15-274 Białystok, Poland;
| | - Edyta Adamska-Patruno
- Clinical Research Center, Medical University of Bialystok, Marii Skłodowskiej-Curie 24A, 15-276 Białystok, Poland;
| | - Jan Kochanowicz
- Department of Neurology, Medical University of Bialystok, Marii Skłodowskiej-Curie 24A, 15-276 Białystok, Poland; (J.K.); (A.K.)
| | - Alina Kułakowska
- Department of Neurology, Medical University of Bialystok, Marii Skłodowskiej-Curie 24A, 15-276 Białystok, Poland; (J.K.); (A.K.)
| | - Monika Chorąży
- Department of Neurology, Medical University of Bialystok, Marii Skłodowskiej-Curie 24A, 15-276 Białystok, Poland; (J.K.); (A.K.)
| |
Collapse
|
33
|
Tamamoto-Mochizuki C, Santoro D, Saridomikelakis MN, Eisenschenk MNC, Hensel P, Pucheu-Haston C. Update on the role of cytokines and chemokines in canine atopic dermatitis. Vet Dermatol 2024; 35:25-39. [PMID: 37485553 DOI: 10.1111/vde.13192] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/02/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND Cytokines and chemokines play central roles in the pathogenesis of canine atopic dermatitis (cAD). Numerous studies have been published and provide new insights into their roles in cAD. OBJECTIVES To summarise the research updates on the role of cytokines and chemokines in the pathogenesis of cAD since the last review by the International Committee on Allergic Diseases of Animals in 2015. MATERIAL AND METHODS Online citation databases, abstracts and proceedings from international meetings on cytokines and chemokines relevant to cAD that had been published between 2015 and 2022 were reviewed. RESULTS Advances in technologies have allowed the simultaneous analysis of a broader range of cytokines and chemokines, which revealed an upregulation of a multipolar immunological axis (Th1, Th2, Th17 and Th22) in cAD. Most studies focused on specific cytokines, which were proposed as potential novel biomarkers and/or therapeutic targets for cAD, such as interleukin-31. Most other cytokines and chemokines had inconsistent results, perhaps as a consequence of their varied involvement in the pathogenesis of different endotypes of cAD. CONCLUSIONS AND CLINICAL RELEVANCE Inconsistent results for many cytokines and chemokines illustrate the difficulty of studying the complex cytokine and chemokine networks in cAD, and highlight the need for more comprehensive and structured studies in the future.
Collapse
Affiliation(s)
- Chie Tamamoto-Mochizuki
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Domenico Santoro
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | | | | | | | - Cherie Pucheu-Haston
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
34
|
Breloer M, Linnemann L. Strongyloides ratti infection in mice: immune response and immune modulation. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220440. [PMID: 38008111 PMCID: PMC10676808 DOI: 10.1098/rstb.2022.0440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/09/2023] [Indexed: 11/28/2023] Open
Abstract
Strongyloides ratti is a natural parasite of wild rats and most laboratory mouse strains are also fully permissive. The infection can be divided into three distinct phases: the tissue migration of the infective third stage larvae during the first two days, the early intestinal establishment of S. ratti parasites molting to adults on days three to six and the later intestinal parasitic phase until the end of infection. Immunocompetent mice terminate the S. ratti infection after one month and are semi-resistant to a second infection. Employing the powerful tools of mouse immunology has facilitated a detailed analysis of the initiation, execution and regulation of the immune response to S. ratti. Here we review the information collected to date on the protective immune response to migrating S. ratti larvae in tissues and to adult parasites in the intestine. We show that depending on the phase of infection, a site-specific portfolio of immune effector mechanisms is required for infection control. In addition, we summarize the strategies employed by S. ratti to evade the immune system and survive long enough in its host to replicate despite an effective immune response. Selected murine studies using the closely related Strongyloides venezuelensis will be discussed. This article is part of the Theo Murphy meeting issue 'Strongyloides: omics to worm-free populations'.
Collapse
Affiliation(s)
- Minka Breloer
- Section of Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg 20359, Germany
- Department of Biology, University of Hamburg, Hamburg 20156, Germany
| | - Lara Linnemann
- Section of Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg 20359, Germany
| |
Collapse
|
35
|
Schneider AK, Domingos-Pereira S, Cesson V, Polak L, Fallon PG, Zhu J, Roth B, Nardelli-Haefliger D, Derré L. Type 2 innate lymphoid cells are not involved in mouse bladder tumor development. Front Immunol 2024; 14:1335326. [PMID: 38283350 PMCID: PMC10820705 DOI: 10.3389/fimmu.2023.1335326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/20/2023] [Indexed: 01/30/2024] Open
Abstract
Therapies for bladder cancer patients are limited by side effects and failures, highlighting the need for novel targets to improve disease management. Given the emerging evidence highlighting the key role of innate lymphoid cell subsets, especially type 2 innate lymphoid cells (ILC2s), in shaping the tumor microenvironment and immune responses, we investigated the contribution of ILC2s in bladder tumor development. Using the orthotopic murine MB49 bladder tumor model, we found a strong enrichment of ILC2s in the bladder under steady-state conditions, comparable to that in the lung. However, as tumors grew, we observed an increase in ILC1s but no changes in ILC2s. Targeting ILC2s by blocking IL-4/IL-13 signaling pathways, IL-5, or IL-33 receptor, or using IL-33-deficient or ILC2-deficient mice, did not affect mice survival following bladder tumor implantation. Overall, these results suggest that ILC2s do not contribute significantly to bladder tumor development, yet further investigations are required to confirm these results in bladder cancer patients.
Collapse
Affiliation(s)
- Anna K. Schneider
- Urology Research Unit and Urology Biobank, Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Sonia Domingos-Pereira
- Urology Research Unit and Urology Biobank, Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Valérie Cesson
- Urology Research Unit and Urology Biobank, Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Lenka Polak
- Urology Research Unit and Urology Biobank, Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Padraic G. Fallon
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Beat Roth
- Urology Research Unit and Urology Biobank, Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Denise Nardelli-Haefliger
- Urology Research Unit and Urology Biobank, Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Laurent Derré
- Urology Research Unit and Urology Biobank, Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| |
Collapse
|
36
|
Amer OE, Sabico S, Khattak MNK, Alnaami AM, Saadawy GM, Al-Daghri NM. Circulating Interleukins-33 and -37 and Their Associations with Metabolic Syndrome in Arab Adults. Int J Mol Sci 2024; 25:699. [PMID: 38255771 PMCID: PMC10815042 DOI: 10.3390/ijms25020699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Interleukins (ILs) are a group of cytokines known to have immunomodulatory effects; they include ILs-33 and -37 whose emerging roles in the pathogenesis of metabolic syndrome (MetS) remain under investigated. In this study, we compared circulating IL-33 and IL-37 in Arab adults with and without MetS to determine its associations with MetS components. A total of 417 Saudi participants (151 males, 266 females; mean age ± SD 41.3 ± 9.0 years; mean body mass index ± SD 30.7 ± 6.3 kg/m2) were enrolled and screened for MetS using the ATP III criteria. Anthropometrics and fasting blood samples were taken for the assessment of fasting glucose and lipids. Circulating levels of IL-33 and IL-37 were measured using commercially available assays. The results showed higher levels of serum IL-33 and IL-37 in participants with MetS than those without (IL-33, 3.34 3.42 (2.3-3.9) vs. (1-3.9), p = 0.057; IL-37, 5.1 (2.2-8.3) vs. 2.9 (2.1-6.1), p = 0.01). Additionally, having elevated levels of IL-33 was a risk factor for hypertension, low HDL-c, and hypertriglyceridemia. A stratification of the participants according to sex showed that males had higher IL-33 levels than females [3.7 (3.0-4.1) vs. 3.15 (1.4-3.8), p < 0.001], while females had higher levels of IL-37 than males [3.01 (2.2-7.0) vs. 2.9 (2.1-5.6), p = 0.06]. In conclusion, the presence of MetS substantially alters the expression of ILs-33 and -37. IL-33 in particular can be potentially used as a therapeutic target to prevent MetS progression. Longitudinal and interventional studies are warranted to confirm present findings.
Collapse
Affiliation(s)
| | | | | | | | | | - Nasser M. Al-Daghri
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
37
|
Saikumar Jayalatha AK, Jonker MR, Carpaij OA, van den Berge M, Affleck KX, Koppelman GH, Nawijn MC. Lack of a transcriptional response of primary bronchial epithelial cells from patients with asthma and controls to IL-33. Am J Physiol Lung Cell Mol Physiol 2024; 326:L65-L70. [PMID: 38050688 DOI: 10.1152/ajplung.00298.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 12/06/2023] Open
Abstract
IL-33 and IL-1RL1 are well-replicated asthma genes that act in a single pathway toward type-2 immune responses. IL-33 is expressed by basal epithelial cells, and the release of IL-33 upon epithelial damage can activate innate lymphoid cells, T helper-2 cells, basophilic granulocytes, and mast cells through a receptor complex containing IL-1RL1. However, it is unknown how bronchial epithelial cells respond to IL-33, and whether this response is increased in the disease. We aimed to characterize the IL-33-driven transcriptomic changes in cultured primary bronchial epithelial cells from patients with asthma and healthy controls. Primary bronchial epithelial cells (PBECs) were obtained by bronchial brushing from six healthy control for air-liquid interface (ALI) cultures, whereas we selected eight healthy controls and seven patients with asthma for epithelial organoid cultures. We then stimulated the cultures for 24 h with recombinant IL-33 (rhIL33) at various concentrations with 1, 10, and 50 ng/mL for the ALI cultures and 20 ng/mL and 100 ng/mL for the organoid cultures, followed by RNA-sequencing and differential gene expression analysis. We did not detect any genome-wide significant differentially expressed genes after stimulation of PBECs with IL-33, irrespective of growth in three-dimensional (3-D) epithelial organoids or after differentiation in ALI cultures. These results were identical between PBECs obtained from patients with asthma or from healthy control subjects. We detected very low levels of IL-1RL1 gene expression in these airway epithelial cell cultures. We conclude that bronchial epithelial cells do not have a transcriptional response to IL-33, independent of their differentiation state. Hence, the airway epithelium acts as a source of IL-33 but does not seem to contribute to the response upon release of the alarmin after epithelial damage.NEW & NOTEWORTHY The IL-33/IL-1RL1 pathway stands as a formidable genetic predisposition for asthma, with ongoing clinical developments of various drugs designed to mitigate its influence in patients with asthma. The absence of a transcriptomic reaction to IL-33 within the bronchial epithelium holds significance in the pursuit of identifying biomarkers that can aid in pinpointing those individuals who would derive the greatest benefit from therapies targeting the IL-33 pathway.
Collapse
Affiliation(s)
- Akshaya Keerthi Saikumar Jayalatha
- Laboratory of Experimental Pulmonology and Inflammation Research (EXPIRE), Department of Pathology and Medical Biology, GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marnix R Jonker
- Laboratory of Experimental Pulmonology and Inflammation Research (EXPIRE), Department of Pathology and Medical Biology, GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Orestes A Carpaij
- Department of Pulmonary Diseases, GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Maarten van den Berge
- Department of Pulmonary Diseases, GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Karen X Affleck
- Immunology Research Unit, GlaxoSmithkline, Stevenage, United Kingdom
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergology, GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Martijn C Nawijn
- Laboratory of Experimental Pulmonology and Inflammation Research (EXPIRE), Department of Pathology and Medical Biology, GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
38
|
Zhou Y, Xu Z, Liu Z. Role of IL-33-ST2 pathway in regulating inflammation: current evidence and future perspectives. J Transl Med 2023; 21:902. [PMID: 38082335 PMCID: PMC10714644 DOI: 10.1186/s12967-023-04782-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Interleukin (IL)-33 is an alarmin of the IL-1 superfamily localized to the nucleus of expressing cells, such as endothelial cells, epithelial cells, and fibroblasts. In response to cellular damage or stress, IL-33 is released and activates innate immune responses in some immune and structural cells via its receptor interleukin-1 receptor like-1 (IL-1RL1 or ST2). Recently, IL-33 has become a hot topic of research because of its role in pulmonary inflammation. The IL-33-ST2 signaling pathway plays a pro-inflammatory role by activating the type 2 inflammatory response, producing type 2 cytokines and chemokines. Elevated levels of IL-33 and ST2 have been observed in chronic pulmonary obstructive disease (COPD). Notably, IL-33 is present in COPD induced by cigarette smoke or acute inflammations. The role of IL-33 in sepsis is becoming increasingly prominent, and understanding its significance in the treatment of sepsis associated with high mortality is critical. In addition to its pro-inflammatory effects, the IL-33-ST2 axis appears to play a role in bacterial clearance and tissue repair. In this review, we focused on the role of the IL-33-ST2 axis in sepsis, asthma, and COPD and summarized the therapeutic targets associated with this axis, providing a basis for future treatment.
Collapse
Affiliation(s)
- Yilu Zhou
- Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhendong Xu
- Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Zhiqiang Liu
- Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
39
|
Porfire (Irimia) IM, Berindan-Neagoe I, Budisan L, Leucuta DC, Gata A, Minoiu AC, Georgescu BA, Covaliu BF, Albu S. Tissue Interleukin-33: A Novel Potential Regulator of Innate Immunity and Biomarker of Disease Severity in Chronic Rhinosinusitis with Nasal Polyps. J Clin Med 2023; 12:7537. [PMID: 38137606 PMCID: PMC10743505 DOI: 10.3390/jcm12247537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Chronic rhinosinusitis with nasal polyps (CRSwNP) is a disease of real interest for researchers due to its heterogenicity and complex pathophysiological mechanisms. Identification of the factors that ensure success after treatment represents one of the main challenges in CRSwNP research. No consensus in this direction has been reached so far. Biomarkers for poor outcomes have been noted, but nonetheless, their prognostic value has not been extensively investigated, and needs to be sought. We aimed to evaluate the correlation between potential prognostic predictors for recalcitrant disease in patients with CRSwNP. METHODS The study group consisted of CRSwNP patients who underwent surgical treatment and nasal polyp (NP) tissue sampling. The preoperative workup included Lund-Mackay assessment, nasal endoscopy, eosinophil blood count, asthma, and environmental allergy questionnaire. Postoperatively, in subjects with poor outcomes, imagistic osteitis severity was evaluated, and IL-33 expression was measured. RESULTS IL-33 expression in NP was positively and significantly correlated with postoperative osteitis on CT scans (p = 0.01). Furthermore, high osteitis CT scores were related to high blood eosinophilia (p = 0.01). A positive strong correlation was found between postoperative osteitis and the Lund-Mackay preoperative score (p = 0.01), as well as the nasal endoscopy score (p = 0.01). CONCLUSIONS Our research analyzed the levels of polyp IL-33, relative to blood eosinophilia, overall disease severity score, and osteitis severity, in patients with CRSwNP. These variables are prognostic predictors for poor outcomes and recalcitrant disease. Considering the importance of bone involvement in CRSwNP, this research aims to provide a better insight into the correlations of osteitis with clinical and biological factors.
Collapse
Affiliation(s)
- Ioana Maria Porfire (Irimia)
- IInd Department of Otorhinolaryngology, ‘Iuliu Hatieganu’ University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (I.B.-N.); (L.B.)
| | - Livia Budisan
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (I.B.-N.); (L.B.)
| | - Daniel-Corneliu Leucuta
- Medical Informatics and Biostatistics Department, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400349 Cluj-Napoca, Romania;
| | - Anda Gata
- IInd Department of Otorhinolaryngology, ‘Iuliu Hatieganu’ University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Aurelian Costin Minoiu
- Diagnostical and Interventional Radiology Department, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | | | - Bogdan Florin Covaliu
- IVth Department of Community Medicine, ‘Iuliu Hatieganu’ University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Silviu Albu
- IInd Department of Otorhinolaryngology, ‘Iuliu Hatieganu’ University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| |
Collapse
|
40
|
Chatterton C, Romero R, Jung E, Gallo DM, Suksai M, Diaz-Primera R, Erez O, Chaemsaithong P, Tarca AL, Gotsch F, Bosco M, Chaiworapongsa T. A biomarker for bacteremia in pregnant women with acute pyelonephritis: soluble suppressor of tumorigenicity 2 or sST2. J Matern Fetal Neonatal Med 2023; 36:2183470. [PMID: 36997168 DOI: 10.1080/14767058.2023.2183470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
Objective: Sepsis is a leading cause of maternal death, and its diagnosis during the golden hour is critical to improve survival. Acute pyelonephritis in pregnancy is a risk factor for obstetrical and medical complications, and it is a major cause of sepsis, as bacteremia complicates 15-20% of pyelonephritis episodes in pregnancy. The diagnosis of bacteremia currently relies on blood cultures, whereas a rapid test could allow timely management and improved outcomes. Soluble suppression of tumorigenicity 2 (sST2) was previously proposed as a biomarker for sepsis in non-pregnant adults and children. This study was designed to determine whether maternal plasma concentrations of sST2 in pregnant patients with pyelonephritis can help to identify those at risk for bacteremia.Study design: This cross-sectional study included women with normal pregnancy (n = 131) and pregnant women with acute pyelonephritis (n = 36). Acute pyelonephritis was diagnosed based on a combination of clinical findings and a positive urine culture. Patients were further classified according to the results of blood cultures into those with and without bacteremia. Plasma concentrations of sST2 were determined by a sensitive immunoassay. Non-parametric statistics were used for analysis.Results: The maternal plasma sST2 concentration increased with gestational age in normal pregnancies. Pregnant patients with acute pyelonephritis had a higher median (interquartile range) plasma sST2 concentration than those with a normal pregnancy [85 (47-239) ng/mL vs. 31 (14-52) ng/mL, p < .001]. Among patients with pyelonephritis, those with a positive blood culture had a median plasma concentration of sST2 higher than that of patients with a negative blood culture [258 (IQR: 75-305) ng/mL vs. 83 (IQR: 46-153) ng/mL; p = .03]. An elevated plasma concentration of sST2 ≥ 215 ng/mL had a sensitivity of 73% and a specificity of 95% (area under the receiver operating characteristic curve, 0.74; p = .003) with a positive likelihood ratio of 13.8 and a negative likelihood ratio of 0.3 for the identification of patients who had a positive blood culture.Conclusion: sST2 is a candidate biomarker to identify bacteremia in pregnant women with pyelonephritis. Rapid identification of these patients may optimize patient care.
Collapse
Affiliation(s)
- Carolyn Chatterton
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
- Detroit Medical Center, Detroit, MI, USA
| | - Eunjung Jung
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Dahiana M Gallo
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Gynecology and Obstetrics, Universidad del Valle, Cali, Colombia
| | - Manaphat Suksai
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ramiro Diaz-Primera
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Offer Erez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Soroka University Medical Center, Beer Sheva, Israel
| | - Piya Chaemsaithong
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Adi L Tarca
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, USA
| | - Francesca Gotsch
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Mariachiara Bosco
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Tinnakorn Chaiworapongsa
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
41
|
Capelle CM, Ciré S, Hedin F, Hansen M, Pavelka L, Grzyb K, Kyriakis D, Hunewald O, Konstantinou M, Revets D, Tslaf V, Marques TM, Gomes CPC, Baron A, Domingues O, Gomez M, Zeng N, Betsou F, May P, Skupin A, Cosma A, Balling R, Krüger R, Ollert M, Hefeng FQ. Early-to-mid stage idiopathic Parkinson's disease shows enhanced cytotoxicity and differentiation in CD8 T-cells in females. Nat Commun 2023; 14:7461. [PMID: 37985656 PMCID: PMC10662447 DOI: 10.1038/s41467-023-43053-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/31/2023] [Indexed: 11/22/2023] Open
Abstract
Neuroinflammation in the brain contributes to the pathogenesis of Parkinson's disease (PD), but the potential dysregulation of peripheral immunity has not been systematically investigated for idiopathic PD (iPD). Here we showed an elevated peripheral cytotoxic immune milieu, with more terminally-differentiated effector memory (TEMRA) CD8 T, CD8+ NKT cells and circulating cytotoxic molecules in fresh blood of patients with early-to-mid iPD, especially females, after analyzing > 700 innate and adaptive immune features. This profile, also reflected by fewer CD8+FOXP3+ T cells, was confirmed in another subcohort. Co-expression between cytotoxic molecules was selectively enhanced in CD8 TEMRA and effector memory (TEM) cells. Single-cell RNA-sequencing analysis demonstrated the accelerated differentiation within CD8 compartments, enhanced cytotoxic pathways in CD8 TEMRA and TEM cells, while CD8 central memory (TCM) and naïve cells were already more-active and transcriptionally-reprogrammed. Our work provides a comprehensive map of dysregulated peripheral immunity in iPD, proposing candidates for early diagnosis and treatments.
Collapse
Affiliation(s)
- Christophe M Capelle
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, 2 Av. de Université, L-4365, Esch-sur-Alzette, Luxembourg
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8049, Zurich, Switzerland
| | - Séverine Ciré
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
- Eligo Bioscience, 111 Av. de France, 75013, Paris, France
| | - Fanny Hedin
- National Cytometry Platform, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
| | - Maxime Hansen
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Av. du Swing, L-4367, Belvaux, Luxembourg
- Parkinson Research Clinic, Centre Hospitalier de Luxembourg (CHL), 4 Rue Nicolas Ernest Barblé, L-1210, Luxembourg, Luxembourg
| | - Lukas Pavelka
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Av. du Swing, L-4367, Belvaux, Luxembourg
- Parkinson Research Clinic, Centre Hospitalier de Luxembourg (CHL), 4 Rue Nicolas Ernest Barblé, L-1210, Luxembourg, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), 1A-B Rue Thomas Edison, L-1445, Strassen, Luxembourg
| | - Kamil Grzyb
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Av. du Swing, L-4367, Belvaux, Luxembourg
| | - Dimitrios Kyriakis
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Av. du Swing, L-4367, Belvaux, Luxembourg
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029-5674, USA
| | - Oliver Hunewald
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
| | - Maria Konstantinou
- National Cytometry Platform, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
| | - Dominique Revets
- National Cytometry Platform, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
| | - Vera Tslaf
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, 2 Av. de Université, L-4365, Esch-sur-Alzette, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), 1A-B Rue Thomas Edison, L-1445, Strassen, Luxembourg
| | - Tainá M Marques
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), 1A-B Rue Thomas Edison, L-1445, Strassen, Luxembourg
| | - Clarissa P C Gomes
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Av. du Swing, L-4367, Belvaux, Luxembourg
| | - Alexandre Baron
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
| | - Olivia Domingues
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
| | - Mario Gomez
- National Cytometry Platform, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
| | - Ni Zeng
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, 2 Av. de Université, L-4365, Esch-sur-Alzette, Luxembourg
| | - Fay Betsou
- Integrated Biobank of Luxembourg (IBBL), Luxembourg Institute of Health (LIH), 1 Rue Louis Rech, L-3555, Dudelange, Luxembourg
- CRBIP, Institut Pasteur, Université Paris Cité, Paris, France
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Av. du Swing, L-4367, Belvaux, Luxembourg
| | - Alexander Skupin
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Av. du Swing, L-4367, Belvaux, Luxembourg
- Department of Physics and Material Science, University of Luxembourg, 162a Av. de la Faïencerie, L-1511, Luxembourg, Luxembourg
- Department of Neurosciences, University California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92093-0662, USA
| | - Antonio Cosma
- National Cytometry Platform, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
| | - Rudi Balling
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Av. du Swing, L-4367, Belvaux, Luxembourg
- Institute of Molecular Psychiatry, University of Bonn, Venusberg-Campus 1, D-53127, Bonn, Germany
| | - Rejko Krüger
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Av. du Swing, L-4367, Belvaux, Luxembourg
- Parkinson Research Clinic, Centre Hospitalier de Luxembourg (CHL), 4 Rue Nicolas Ernest Barblé, L-1210, Luxembourg, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), 1A-B Rue Thomas Edison, L-1445, Strassen, Luxembourg
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg.
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis (ORCA), University of Southern Denmark, Odense, 5000C, Denmark.
| | - Feng Q Hefeng
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg.
- Data Integration and Analysis Unit, Luxembourg Institute of Health (LIH), L-1445, Strassen, Luxembourg.
| |
Collapse
|
42
|
O'Grady SM, Kita H. ATP functions as a primary alarmin in allergen-induced type 2 immunity. Am J Physiol Cell Physiol 2023; 325:C1369-C1386. [PMID: 37842751 PMCID: PMC10861152 DOI: 10.1152/ajpcell.00370.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
Environmental allergens that interact with the airway epithelium can activate cellular stress pathways that lead to the release of danger signals known as alarmins. The mechanisms of alarmin release are distinct from damage-associated molecular patterns (DAMPs), which typically escape from cells after loss of plasma membrane integrity. Oxidative stress represents a form of allergen-induced cellular stress that stimulates oxidant-sensing mechanisms coupled to pathways, which facilitate alarmin mobilization and efflux across the plasma membrane. In this review, we highlight examples of alarmin release and discuss their roles in the initiation of type 2 immunity and allergic airway inflammation. In addition, we discuss the concept of alarmin amplification, where "primary" alarmins, which are directly released in response to a specific cellular stress, stimulate additional signaling pathways that lead to secretion of "secondary" alarmins that include proinflammatory cytokines, such as IL-33, as well as genomic and mitochondrial DNA that coordinate or amplify type 2 immunity. Accordingly, allergen-evoked cellular stress can elicit a hierarchy of alarmin signaling responses from the airway epithelium that trigger local innate immune reactions, impact adaptive immunity, and exacerbate diseases including asthma and other chronic inflammatory conditions that affect airway function.
Collapse
Affiliation(s)
- Scott M O'Grady
- Department of Animal Science, University of Minnesota, St. Paul, Minnesota, United States
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, United States
| | - Hirohito Kita
- Division of Allergy, Asthma and Immunology, Mayo Clinic, Scottsdale, Arizona, United States
| |
Collapse
|
43
|
Liu L, Zheng W, Qian H, Zhao Z, Tian L, Song Y, Lei X, Zhao Z, Xue X, Zheng X. Over-expression of IL-33 enhances rabies virus early antigen presentations and cellular immune responses in mice. Int Immunopharmacol 2023; 124:111005. [PMID: 37804656 DOI: 10.1016/j.intimp.2023.111005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 10/09/2023]
Abstract
Human inactivated rabies virus (RABV) vaccines have been widely used worldwide over 30 years. The mechanisms of humoral immunity elicited by previously reported rabies candidate vaccines have been fully investigated, but little is known about the cellular immunity profiles. Herein, the recombinant RABV rLBNSE-IL-33 overexpressing the mouse interleukin-33 (IL-33) proliferated well in Neuro-2a cells and had no effects with the parent virus on growth kinetic in vitro and viral pathogenicity in mice. The rLBNSE-IL-33 experienced more antigen presentations by MHC-II on DCs and activated more CD4+ T cells which helped recruit more CD19+CD40+ B cells in blood and promote rapid and robust IgG1 antibodies responses at initial infection stage compared with the parent rLBNSE strain. Simultaneously, the rLBNSE-IL-33 were also presented by MHC-I to CD8+ T cells which contributed to produce high levels of IgG2a. The rLBNSE-IL-33 elicited significantly high levels of RABV-specific IFN-γ secreting memory CD4+ T cells, more RABV-specific IL-4 and IFN-γ secreting memory CD8+ T cells in spleens at early infection stage in mice. Altogether, overexpression of IL-33 in rLBNSE-IL-33 enhanced early antigen presentation, markedly promote CD4+, memory CD4+ and CD8+ T cells-mediated responses and provided a 100 % protection from lethal RABV challenge in mice. These findings provided an alternative novel therapy and vaccine strategy in future.
Collapse
Affiliation(s)
- Lele Liu
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong, China; Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Wenwen Zheng
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong, China; Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Hua Qian
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong, China
| | - Zhongxin Zhao
- Department of Laboratory Medicine, Linyi People's Hospital, Linyi, Shandong 276002, China
| | - Li Tian
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yanyan Song
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiaoying Lei
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zhongpeng Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Xianghong Xue
- Divisions of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
| | - Xuexing Zheng
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong, China; Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
44
|
Salvioli S, Basile MS, Bencivenga L, Carrino S, Conte M, Damanti S, De Lorenzo R, Fiorenzato E, Gialluisi A, Ingannato A, Antonini A, Baldini N, Capri M, Cenci S, Iacoviello L, Nacmias B, Olivieri F, Rengo G, Querini PR, Lattanzio F. Biomarkers of aging in frailty and age-associated disorders: State of the art and future perspective. Ageing Res Rev 2023; 91:102044. [PMID: 37647997 DOI: 10.1016/j.arr.2023.102044] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
According to the Geroscience concept that organismal aging and age-associated diseases share the same basic molecular mechanisms, the identification of biomarkers of age that can efficiently classify people as biologically older (or younger) than their chronological (i.e. calendar) age is becoming of paramount importance. These people will be in fact at higher (or lower) risk for many different age-associated diseases, including cardiovascular diseases, neurodegeneration, cancer, etc. In turn, patients suffering from these diseases are biologically older than healthy age-matched individuals. Many biomarkers that correlate with age have been described so far. The aim of the present review is to discuss the usefulness of some of these biomarkers (especially soluble, circulating ones) in order to identify frail patients, possibly before the appearance of clinical symptoms, as well as patients at risk for age-associated diseases. An overview of selected biomarkers will be discussed in this regard, in particular we will focus on biomarkers related to metabolic stress response, inflammation, and cell death (in particular in neurodegeneration), all phenomena connected to inflammaging (chronic, low-grade, age-associated inflammation). In the second part of the review, next-generation markers such as extracellular vesicles and their cargos, epigenetic markers and gut microbiota composition, will be discussed. Since recent progresses in omics techniques have allowed an exponential increase in the production of laboratory data also in the field of biomarkers of age, making it difficult to extract biological meaning from the huge mass of available data, Artificial Intelligence (AI) approaches will be discussed as an increasingly important strategy for extracting knowledge from raw data and providing practitioners with actionable information to treat patients.
Collapse
Affiliation(s)
- Stefano Salvioli
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | | | - Leonardo Bencivenga
- Department of Translational Medical Sciences, University of Naples Federico II, Napoli, Italy
| | - Sara Carrino
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Maria Conte
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Sarah Damanti
- IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milano, Italy
| | - Rebecca De Lorenzo
- IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milano, Italy
| | - Eleonora Fiorenzato
- Parkinson's Disease and Movement Disorders Unit, Center for Rare Neurological Diseases (ERN-RND), Department of Neurosciences, University of Padova, Padova, Italy
| | - Alessandro Gialluisi
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy; EPIMED Research Center, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Assunta Ingannato
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Angelo Antonini
- Parkinson's Disease and Movement Disorders Unit, Center for Rare Neurological Diseases (ERN-RND), Department of Neurosciences, University of Padova, Padova, Italy; Center for Neurodegenerative Disease Research (CESNE), Department of Neurosciences, University of Padova, Padova, Italy
| | - Nicola Baldini
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Miriam Capri
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Simone Cenci
- IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milano, Italy
| | - Licia Iacoviello
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy; EPIMED Research Center, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy; Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, University of Naples Federico II, Napoli, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Scientific Institute of Telese Terme, Telese Terme, Italy
| | | | | |
Collapse
|
45
|
Jia Z, Guo M, Ge X, Chen F, Lei P. IL-33/ST2 Axis: A Potential Therapeutic Target in Neurodegenerative Diseases. Biomolecules 2023; 13:1494. [PMID: 37892176 PMCID: PMC10605306 DOI: 10.3390/biom13101494] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Interleukin 33 (IL-33) belongs to the IL-1 family and is localized in the nucleus. IL-33 is primarily composed of three distinct domains, namely the N-terminal domain responsible for nuclear localization, the intermediate sense protease domain, and the C-terminal cytokine domain. Its specific receptor is the suppression of tumorigenicity 2 (ST2), which is detected in serum-stimulated fibroblasts and oncogenes. While most other cytokines are actively produced in cells, IL-33 is passively produced in response to tissue damage or cell necrosis, thereby suggesting its role as an alarm following cell infection, stress, or trauma. IL-33 plays a crucial role in congenital and acquired immunity, which assists in the response to environmental stress and maintains tissue homeostasis. IL-33/ST2 interaction further produces many pro-inflammatory cytokines. Moreover, IL-33 is crucial for central nervous system (CNS) homeostasis and the pathogenic mechanisms underlying CNS degenerative disorders. The present work summarizes the structure of IL-33, its fundamental activities, and its role in immunoregulation and neurodegenerative diseases. Therefore, this work proposes that IL-33 may play a role in the pathogenic mechanism of diseases and can be used in the development of treatment strategies.
Collapse
Affiliation(s)
- Zexi Jia
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China; (Z.J.); (X.G.)
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Mengtian Guo
- Department of Internal Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100054, China;
| | - Xintong Ge
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China; (Z.J.); (X.G.)
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Fanglian Chen
- Tianjin Neurological Institute, Tianjin 300052, China
| | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China; (Z.J.); (X.G.)
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
46
|
Mok MY, Luo CY, Huang FP, Kong WY, Chan GCF. IL-33 Orchestrated the Interaction and Immunoregulatory Functions of Alternatively Activated Macrophages and Regulatory T Cells In Vitro. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1134-1143. [PMID: 37566486 DOI: 10.4049/jimmunol.2300191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023]
Abstract
Our group has previously demonstrated elevated serum-soluble ST2 in patients with active systemic lupus erythematosus, suggesting a role of IL-33 in the underlying pathogenesis. However, inconsistent results have been reported on the effect of exogenous IL-33 on murine lupus activity, which may be mediated by concerted actions of various immune cells in vivo. This study aimed to examine the function of IL-33 on macrophage polarization and regulatory T cells (Treg) and their interactive effects in the lupus setting by in vitro coculture experiments of macrophages and T cells that were performed in the presence or absence of IL-33-containing medium. Compared to IL-4-polarized bone marrow-derived macrophages (BMDM) from MRL/MpJ mice, adding IL-33 enhanced mRNA expression of markers of alternatively activated macrophages, including CD206 and Arg1. IL-33 and IL-4 copolarized BMDM produced higher TGF-β but not IL-6 upon inflammatory challenge. These BMDM induced an increase in the Foxp3+CD25+ Treg population in cocultured allogeneic T cells from MRL/MpJ and predisease MRL/lpr mice. These copolarized BMDM also showed an enhanced suppressive effect on T cell proliferation with reduced IFN-γ and IL-17 release but increased TGF-β production. In the presence of TGF-β and IL-2, IL-33 also directly promoted inducible Treg that expressed a high level of CD25 and more sustained Foxp3. Unpolarized BMDM cocultured with these Treg displayed higher phagocytosis. In conclusion, TGF-β was identified as a key cytokine produced by IL-4 and IL-33 copolarized alternatively activated macrophages and the induced Treg, which may contribute to a positive feedback loop potentiating the immunoregulatory functions of IL-33.
Collapse
Affiliation(s)
- Mo Yin Mok
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Cai Yun Luo
- Department of Pediatrics and Adolescent Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Fang Ping Huang
- Department of Pathology, University of Hong Kong, Hong Kong SAR, China
| | - Wing Yin Kong
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Godfrey Chi Fung Chan
- Department of Pediatrics and Adolescent Medicine, University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
47
|
Duan S, Wang J, Lou X, Chen D, Shi P, Jiang H, Wang Z, Li W, Qian F. A novel anti-IL-33 antibody recognizes an epitope FVLHN of IL-33 and has a therapeutic effect on inflammatory diseases. Int Immunopharmacol 2023; 122:110578. [PMID: 37423158 DOI: 10.1016/j.intimp.2023.110578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/19/2023] [Accepted: 06/24/2023] [Indexed: 07/11/2023]
Abstract
As a crucial member of the Interleukin-1 (IL-1) family, IL-33 plays an indispensable role in modulating inflammatory responses. Here, we developed an effective anti-human IL-33 monoclonal antibody (mAb) named 5H8. Importantly, we have identified an epitope (FVLHN) of IL-33 protein as a recognition sequence for 5H8, which plays an important role in mediating the biological activity of IL-33. We observed that 5H8 significantly suppressed IL-33-induced IL-6 expression in bone marrow cells and mast cells in a dose-dependent manner in vitro. Furthermore, 5H8 effectively relievedHDM-induced asthma and PR8-induced acute lung injury in vivo. These findings indicate that targeting the FVLHN epitope is critical for inhibiting IL-33 function. In addition, wedetected that the Tm value of 5H8 was 66.47℃ and the KD value was 173.0 pM, which reflected that 5H8 had good thermal stability and high affinity. Taken together, our data suggest that our newly developed 5H8 antibody has potential as a therapeutic antibody for treating inflammatory diseases.
Collapse
Affiliation(s)
- Shixin Duan
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jun Wang
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China; Xiamen Innovax Biotech Co, Xiamen, Fujian 361005, PR China
| | - Xinyi Lou
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Dongxin Chen
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Peiyunfeng Shi
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Hongchao Jiang
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Zhiming Wang
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Wen Li
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Feng Qian
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
48
|
Cassano A, Chong AS, Alegre ML. Tregs in transplantation tolerance: role and therapeutic potential. FRONTIERS IN TRANSPLANTATION 2023; 2:1217065. [PMID: 38993904 PMCID: PMC11235334 DOI: 10.3389/frtra.2023.1217065] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/14/2023] [Indexed: 07/13/2024]
Abstract
CD4+ Foxp3+ regulatory T cells (Tregs) are indispensable for preventing autoimmunity, and they play a role in cancer and transplantation settings by restraining immune responses. In this review, we describe evidence for the importance of Tregs in the induction versus maintenance of transplantation tolerance, discussing insights into mechanisms of Treg control of the alloimmune response. Further, we address the therapeutic potential of Tregs as a clinical intervention after transplantation, highlighting engineered CAR-Tregs as well as expansion of donor and host Tregs.
Collapse
Affiliation(s)
- Alexandra Cassano
- Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Anita S. Chong
- Department of Surgery, University of Chicago, Chicago, IL, United States
| | - Maria-Luisa Alegre
- Department of Medicine, University of Chicago, Chicago, IL, United States
| |
Collapse
|
49
|
Arakelian L, Lion J, Churlaud G, Bargui R, Thierry B, Mutabazi E, Bruneval P, Alberdi AJ, Doliger C, Veyssiere M, Larghero J, Mooney N. Endothelial CD34 expression and regulation of immune cell response in-vitro. Sci Rep 2023; 13:13512. [PMID: 37598252 PMCID: PMC10439936 DOI: 10.1038/s41598-023-40622-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023] Open
Abstract
Endothelial cells cover the lining of different blood vessels and lymph nodes, and have major functions including the transport of blood, vessel homeostasis, inflammatory responses, control of transendothelial migration of circulating cells into the tissues, and formation of new blood vessels. Therefore, understanding these cells is of major interest. The morphological features, phenotype and function of endothelial cells varies according to the vascular bed examined. The sialomucin, CD34, is widely used as an endothelial marker. However, CD34 is differentially expressed on endothelial cells in different organs and in pathological conditions. Little is known about regulation of endothelial CD34 expression or function. Expression of CD34 is also strongly regulated in-vitro in endothelial cell models, including human umbilical vein endothelial cells (HUVEC) and endothelial colony forming cells (ECFC). We have therefore analysed the expression and function of CD34 by comparing CD34high and CD34low endothelial cell subpopulations. Transcriptomic analysis showed that CD34 gene and protein expressions are highly correlated, that CD34high cells proliferate less but express higher levels of IL-33 and Angiopoietin 2, compared with CD34low cells. Higher secretion levels of IL-33 and Angiopoietin 2 by CD34high HUVECs was confirmed by ELISA. Finally, when endothelial cells were allowed to interact with peripheral blood mononuclear cells, CD34high endothelial cells activated stronger proliferation of regulatory T lymphocytes (Tregs) compared to CD34low cells whereas expansion of other CD4+-T cell subsets was equivalent. These results suggest that CD34 expression by endothelial cells in-vitro associates with their ability to proliferate and with an immunogenic ability that favours the tolerogenic response.
Collapse
Affiliation(s)
- Lousineh Arakelian
- Human Immunology, Pathophysiology, Immunotherapy, Inserm UMR 976, Paris, France.
- Université Paris Cité, Paris, France.
- CIC de Biothérapies CBT 501, Paris, France.
- Unité de Thérapie Cellulaire, AP-HP, Hôpital Saint-Louis, Paris, France.
| | - Julien Lion
- Human Immunology, Pathophysiology, Immunotherapy, Inserm UMR 976, Paris, France
- Université Paris Cité, Paris, France
| | - Guillaume Churlaud
- AP-HP, Hôpital Saint-Louis, Centre MEARY de Thérapie Cellulaire et Génique, 75010, Paris, France
| | - Rezlene Bargui
- Human Immunology, Pathophysiology, Immunotherapy, Inserm UMR 976, Paris, France
- Université Paris Cité, Paris, France
| | - Briac Thierry
- Human Immunology, Pathophysiology, Immunotherapy, Inserm UMR 976, Paris, France
- Université Paris Cité, Paris, France
- Service d'ORL Pédiatrique, AP-HP, Hôpital Universitaire Necker, 75015, Paris, France
| | - Evelyne Mutabazi
- Human Immunology, Pathophysiology, Immunotherapy, Inserm UMR 976, Paris, France
- Université Paris Cité, Paris, France
| | - Patrick Bruneval
- Service de Cardiologie, Hôpital Européen Georges Pompidou, 75015, Paris, France
| | - Antonio José Alberdi
- UMS Saint-Louis US53/UAR2030, Université Paris Cité - INSERM - CNRS, Institut de Recherche Saint Louis, Paris, France
| | - Christelle Doliger
- UMS Saint-Louis US53/UAR2030, Université Paris Cité - INSERM - CNRS, Institut de Recherche Saint Louis, Paris, France
| | - Maëva Veyssiere
- Human Immunology, Pathophysiology, Immunotherapy, Inserm UMR 976, Paris, France
- Université Paris Cité, Paris, France
| | - Jérôme Larghero
- Human Immunology, Pathophysiology, Immunotherapy, Inserm UMR 976, Paris, France
- Université Paris Cité, Paris, France
- CIC de Biothérapies CBT 501, Paris, France
- Unité de Thérapie Cellulaire, AP-HP, Hôpital Saint-Louis, Paris, France
- AP-HP, Hôpital Saint-Louis, Centre MEARY de Thérapie Cellulaire et Génique, 75010, Paris, France
| | - Nuala Mooney
- Human Immunology, Pathophysiology, Immunotherapy, Inserm UMR 976, Paris, France
- Université Paris Cité, Paris, France
| |
Collapse
|
50
|
Horner E, Lord JM, Hazeldine J. The immune suppressive properties of damage associated molecular patterns in the setting of sterile traumatic injury. Front Immunol 2023; 14:1239683. [PMID: 37662933 PMCID: PMC10469493 DOI: 10.3389/fimmu.2023.1239683] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Associated with the development of hospital-acquired infections, major traumatic injury results in an immediate and persistent state of systemic immunosuppression, yet the underlying mechanisms are poorly understood. Detected in the circulation in the minutes, days and weeks following injury, damage associated molecular patterns (DAMPs) are a heterogeneous collection of proteins, lipids and DNA renowned for initiating the systemic inflammatory response syndrome. Suggesting additional immunomodulatory roles in the post-trauma immune response, data are emerging implicating DAMPs as potential mediators of post-trauma immune suppression. Discussing the results of in vitro, in vivo and ex vivo studies, the purpose of this review is to summarise the emerging immune tolerising properties of cytosolic, nuclear and mitochondrial-derived DAMPs. Direct inhibition of neutrophil antimicrobial activities, the induction of endotoxin tolerance in monocytes and macrophages, and the recruitment, activation and expansion of myeloid derived suppressor cells and regulatory T cells are examples of some of the immune suppressive properties assigned to DAMPs so far. Crucially, with studies identifying the molecular mechanisms by which DAMPs promote immune suppression, therapeutic strategies that prevent and/or reverse DAMP-induced immunosuppression have been proposed. Approaches currently under consideration include the use of synthetic polymers, or the delivery of plasma proteins, to scavenge circulating DAMPs, or to treat critically-injured patients with antagonists of DAMP receptors. However, as DAMPs share signalling pathways with pathogen associated molecular patterns, and pro-inflammatory responses are essential for tissue regeneration, these approaches need to be carefully considered in order to ensure that modulating DAMP levels and/or their interaction with immune cells does not negatively impact upon anti-microbial defence and the physiological responses of tissue repair and wound healing.
Collapse
Affiliation(s)
- Emily Horner
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Janet M. Lord
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Jon Hazeldine
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| |
Collapse
|