1
|
Bukatova S, Bacova Z, Osacka J, Bakos J. Mini review of molecules involved in altered postnatal neurogenesis in autism. Int J Neurosci 2024; 134:1429-1443. [PMID: 37815399 DOI: 10.1080/00207454.2023.2269304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/06/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
The neurobiology of autism is complex, but emerging research points to potential abnormalities and alterations in neurogenesis. The aim of the present review is to describe the advances in the understanding of the role of selected neurotrophins, neuropeptides, and other compounds secreted by neuronal cells in the processes of postnatal neurogenesis in conjunction with autism. We characterize the fundamental mechanisms of neuronal cell proliferation, generation of major neuronal cell types with special emphasis on neurogenic niches - the subventricular zone and hippocampal areas. We also discuss changes in intracellular calcium levels and calcium-dependent transcription factors in the context of the regulation of neurogenesis and cell fate determination. To sum up, this review provides specific insight into the known association between alterations in the function of the entire spectrum of molecules involved in neurogenesis and the etiology of autism pathogenesis.
Collapse
Affiliation(s)
- Stanislava Bukatova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zuzana Bacova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jana Osacka
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jan Bakos
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Faculty of Medicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|
2
|
Gallman K, Rastogi A, North O, O'Gorman M, Hutton P, Lloyd E, Warren WC, Kowalko JE, Duboue ER, Rohner N, Keene AC. Postprandial Sleep in Short-Sleeping Mexican Cavefish. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:1084-1096. [PMID: 39539086 PMCID: PMC11579814 DOI: 10.1002/jez.2880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Interactions between sleep and feeding behaviors are critical for adaptive fitness. Diverse species suppress sleep when food is scarce to increase the time spent foraging. Postprandial sleep, an increase in sleep time following a feeding event, has been documented in vertebrate and invertebrate animals. While interactions between sleep and feeding appear to be highly conserved, the evolution of postprandial sleep in response to changes in food availability remains poorly understood. Multiple populations of the Mexican cavefish, Astyanax mexicanus, have independently evolved sleep loss and increased food consumption compared to surface-dwelling fish of the same species, providing the opportunity to investigate the evolution of interactions between sleep and feeding. Here, we investigate the effects of feeding on sleep in larval and adult surface fish, and in two parallelly evolved cave populations of A. mexicanus. Larval surface and cave populations of A. mexicanus increase sleep immediately following a meal, providing the first evidence of postprandial sleep in a fish model. The amount of sleep was not correlated to meal size and occurred independently of feeding time. In contrast to larvae, postprandial sleep was not detected in adult surface or cavefish, which can survive for months without food. Together, these findings reveal that postprandial sleep is present in multiple short-sleeping populations of cavefish, suggesting sleep-feeding interactions are retained despite the evolution of sleep loss. These findings raise the possibility that postprandial sleep is critical for energy conservation and survival in larvae that are highly sensitive to food deprivation.
Collapse
Affiliation(s)
- Kathryn Gallman
- Department of BiologyTexas A&M UniversityCollege StationTexasUSA
| | - Aakriti Rastogi
- Department of BiologyTexas A&M UniversityCollege StationTexasUSA
| | - Owen North
- Department of BiologyTexas A&M UniversityCollege StationTexasUSA
| | - Morgan O'Gorman
- Department of BiologyTexas A&M UniversityCollege StationTexasUSA
| | - Pierce Hutton
- Department of BiologyTexas A&M UniversityCollege StationTexasUSA
| | - Evan Lloyd
- Department of BiologyTexas A&M UniversityCollege StationTexasUSA
| | | | - Johanna E. Kowalko
- Department of Biological SciencesLehigh UniversityBethlehemPennsylvaniaUSA
| | - Erik R. Duboue
- Harriet Wilkes Honors CollegeFlorida Atlantic UniversityJupiterFloridaUSA
| | - Nicolas Rohner
- Stowers Institute for Medical ResearchKansas CityMissouriUSA
| | - Alex C. Keene
- Department of BiologyTexas A&M UniversityCollege StationTexasUSA
| |
Collapse
|
3
|
Mace K, Zimmerman A, Chesi A, Doldur-Balli F, Kim H, Almeraya Del Valle E, Pack AI, Grant SFA, Kayser MS. Cross-species evidence for a developmental origin of adult hypersomnia with loss of synaptic adhesion molecules beat-Ia/CADM2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.615048. [PMID: 39386457 PMCID: PMC11463363 DOI: 10.1101/2024.09.25.615048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Idiopathic hypersomnia (IH) is a poorly-understood sleep disorder characterized by excessive daytime sleepiness despite normal nighttime sleep. Combining human genomics with behavioral and mechanistic studies in fish and flies, we uncover a role for beat-Ia/CADM2 , synaptic adhesion molecules of the immunoglobulin superfamily, in excessive sleepiness. Neuronal knockdown of Drosophila beat-Ia results in sleepy flies and loss of the vertebrate ortholog of beat-Ia , CADM2 , results in sleepy fish. We delineate a developmental function for beat-Ia in synaptic elaboration of neuropeptide F (NPF) neurites projecting to the suboesophageal zone (SEZ) of the fly brain. Brain connectome and experimental evidence demonstrate these NPF outputs synapse onto a subpopulation of SEZ GABAergic neurons to stabilize arousal. NPF is the Drosophila homolog of vertebrate neuropeptide Y (NPY), and an NPY receptor agonist restores sleep to normal levels in zebrafish lacking CADM2 . These findings point towards NPY modulation as a treatment target for human hypersomnia.
Collapse
|
4
|
Valente R, Cordeiro M, Pinto B, Machado A, Alves F, Sousa-Pinto I, Ruivo R, Castro LFC. Alterations of pleiotropic neuropeptide-receptor gene couples in Cetacea. BMC Biol 2024; 22:186. [PMID: 39218857 PMCID: PMC11367936 DOI: 10.1186/s12915-024-01984-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Habitat transitions have considerable consequences in organism homeostasis, as they require the adjustment of several concurrent physiological compartments to maintain stability and adapt to a changing environment. Within the range of molecules with a crucial role in the regulation of different physiological processes, neuropeptides are key agents. Here, we examined the coding status of several neuropeptides and their receptors with pleiotropic activity in Cetacea. RESULTS Analysis of 202 mammalian genomes, including 41 species of Cetacea, exposed an intricate mutational landscape compatible with gene sequence modification and loss. Specifically for Cetacea, in the 12 genes analysed we have determined patterns of loss ranging from species-specific disruptive mutations (e.g. neuropeptide FF-amide peptide precursor; NPFF) to complete erosion of the gene across the cetacean stem lineage (e.g. somatostatin receptor 4; SSTR4). CONCLUSIONS Impairment of some of these neuromodulators may have contributed to the unique energetic metabolism, circadian rhythmicity and diving response displayed by this group of iconic mammals.
Collapse
Affiliation(s)
- Raul Valente
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, S/N, Portugal
- FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre, Porto, Portugal
| | - Miguel Cordeiro
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, S/N, Portugal
| | - Bernardo Pinto
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, S/N, Portugal
- FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre, Porto, Portugal
| | - André Machado
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, S/N, Portugal
- FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre, Porto, Portugal
| | - Filipe Alves
- MARE - Marine and Environmental Sciences Centre, Funchal, Madeira, Portugal
- ARNET - Aquatic Research Network, ARDITI, Funchal, Madeira, Portugal
| | - Isabel Sousa-Pinto
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, S/N, Portugal
- FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre, Porto, Portugal
| | - Raquel Ruivo
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, S/N, Portugal.
| | - L Filipe C Castro
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, S/N, Portugal.
- FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre, Porto, Portugal.
| |
Collapse
|
5
|
Wang H, Nagarajan P, Winkler T, Bentley A, Miller C, Kraja A, Schwander K, Lee S, Wang W, Brown M, Morrison J, Giri A, O'Connell J, Bartz T, de las Fuentes L, Gudmundsdottir V, Guo X, Harris S, Huang Z, Kals M, Kho M, Lefevre C, Luan J, Lyytikäinen LP, Mangino M, Milaneschi Y, Palmer N, Rao V, Rauramaa R, Shen B, Stadler S, Sun Q, Tang J, Thériault S, van der Graaf A, van der Most P, Wang Y, Weiss S, Westerman K, Yang Q, Yasuharu T, Zhao W, Zhu W, Altschul D, Ansari MAY, Anugu P, Argoty-Pantoja A, Arzt M, Aschard H, Attia J, Bazzano L, Breyer M, Brody J, Cade B, Chen HH, Chen YDI, Chen Z, de Vries P, Dimitrov L, Do A, Du J, Dupont C, Edwards T, Evans M, Faquih T, Felix S, Fisher-Hoch S, Floyd J, Graff M, Charles Gu C, Gu D, Hairston K, Hanley A, Heid I, Heikkinen S, Highland H, Hood M, Kähönen M, Karvonen-Gutierrez C, Kawaguchi T, Kazuya S, Tanika K, Komulainen P, Levy D, Lin H, Liu P, Marques-Vidal P, McCormick J, Mei H, Meigs J, Menni C, Nam K, Nolte I, Pacheco N, Petty L, Polikowsky H, Province M, Psaty B, Raffield L, Raitakari O, Rich S, Riha R, Risch L, Risch M, Ruiz-Narvaez E, Scott R, Sitlani C, Smith J, Sofer T, Teder-Laving M, Völker U, Vollenweider P, Wang G, van Dijk KWI, Wilson O, Xia R, Yao J, Young K, Zhang R, Zhu X, Below J, Böger C, Conen D, Cox S, Dörr M, Feitosa M, Fox E, Franceschini N, Gharib S, Gudnason V, Harlow S, He J, Holliday E, Kutalik Z, Lakka T, Lawlor D, Lee S, Lehtimäki T, Li C, Liu CT, Mägi R, Matsuda F, Morrison A, Penninx BWJH, Peyser P, Rotter J, Snieder H, Spector T, Wagenknecht L, Wareham N, Zonderman A, North K, Fornage M, Hung A, Manning A, Gauderman W, Chen H, Munroe P, Rao D, van Heemst D, Redline S, Noordam R. A Large-Scale Genome-Wide Study of Gene-Sleep Duration Interactions for Blood Pressure in 811,405 Individuals from Diverse Populations. RESEARCH SQUARE 2024:rs.3.rs-4163414. [PMID: 39070651 PMCID: PMC11276021 DOI: 10.21203/rs.3.rs-4163414/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Although both short and long sleep duration are associated with elevated hypertension risk, our understanding of their interplay with biological pathways governing blood pressure remains limited. To address this, we carried out genome-wide cross-population gene-by-short-sleep and long-sleep duration interaction analyses for three blood pressure traits (systolic, diastolic, and pulse pressure) in 811,405 individuals from diverse population groups. We discover 22 novel gene-sleep duration interaction loci for blood pressure, mapped to 23 genes. Investigating these genes' functional implications shed light on neurological, thyroidal, bone metabolism, and hematopoietic pathways that necessitate future investigation for blood pressure management that caters to sleep health lifestyle. Non-overlap between short sleep (12) and long sleep (10) interactions underscores the plausible nature of distinct influences of both sleep duration extremes in cardiovascular health. Several of our loci are specific towards a particular population background or sex, emphasizing the importance of addressing heterogeneity entangled in gene-environment interactions, when considering precision medicine design approaches for blood pressure management.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Michael Brown
- The University of Texas Health Science Center at Houston
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Nicholette Palmer
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai
| | | | | | | | | | - Quan Sun
- University of North Carolina, USA
| | | | | | | | | | | | - Stefan Weiss
- University Medicine Greifswald & University of Greifswald
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Sami Heikkinen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio Campus
| | | | | | | | | | | | | | | | | | | | | | | | | | - Joseph McCormick
- The University of Texas Health Science Center at Houston (UTHealth) School of Public Health
| | - Hao Mei
- University of Mississippi Medical Center
| | | | | | | | - Ilja Nolte
- University of Groningen, University Medical Center Groningen
| | | | | | | | | | | | | | - Olli Raitakari
- Turku University Hospital and Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku
| | | | | | | | | | | | - Rodney Scott
- University of Newcastle and the Hunter Medical Research Institute
| | | | | | | | | | | | | | | | | | | | - Rui Xia
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jiang He
- Tulane University School of Public Health and Tropical Medicine
| | | | | | | | | | | | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University
| | - Changwei Li
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | | | | | | | | | | | - Patricia Peyser
- Department of Epidemiology, School of Public Health, University of Michigan
| | - Jerome Rotter
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center
| | | | | | | | | | | | | | - Myriam Fornage
- 1. Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center
- 2. Human Genetics Center, Department of Epidemiology, School of Public Health
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Gallman K, Rastogi A, North O, O'Gorman M, Hutton P, Lloyd E, Warren W, Kowalko JE, Duboue ER, Rohner N, Keene AC. Postprandial sleep in short-sleeping Mexican cavefish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.03.602003. [PMID: 39005273 PMCID: PMC11244998 DOI: 10.1101/2024.07.03.602003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Interaction between sleep and feeding behaviors are critical for adaptive fitness. Diverse species suppress sleep when food is scarce to increase the time spent foraging. Post-prandial sleep, an increase in sleep time following a feeding event, has been documented in vertebrate and invertebrate animals. While interactions between sleep and feeding appear to be highly conserved, the evolution of postprandial sleep in response to changes in food availability remains poorly understood. Multiple populations of the Mexican cavefish, Astyanax mexicanus, have independently evolved sleep loss and increased food consumption compared to surface-dwelling fish of the same species, providing the opportunity to investigate the evolution of interactions between sleep and feeding. Here, we investigate effects of feeding on sleep in larval and adult surface fish, and two parallelly evolved cave populations of A. mexicanus. Larval surface and cave populations of A. mexicanus increase sleep immediately following a meal, providing the first evidence of postprandial sleep in a fish model. The amount of sleep was not correlated to meal size and occurred independently of feeding time. In contrast to larvae, postprandial sleep was not detected in adult surface or cavefish, that can survive for months without food. Together, these findings reveal that postprandial sleep is present in multiple short-sleeping populations of cavefish, suggesting sleep-feeding interactions are retained despite the evolution of sleep loss. These findings raise the possibility that postprandial sleep is critical for energy conservation and survival in larvae that are highly sensitive to food deprivation.
Collapse
Affiliation(s)
- Kathryn Gallman
- Department of Biology, Texas A&M University, College Station, TX 77840
| | - Aakriti Rastogi
- Department of Biology, Texas A&M University, College Station, TX 77840
| | - Owen North
- Department of Biology, Texas A&M University, College Station, TX 77840
| | - Morgan O'Gorman
- Department of Biology, Texas A&M University, College Station, TX 77840
| | - Pierce Hutton
- Department of Biology, Texas A&M University, College Station, TX 77840
| | - Evan Lloyd
- Department of Biology, Texas A&M University, College Station, TX 77840
| | - Wes Warren
- Department of Genomics, University of Missouri, Columbia, MO 65201
| | - Johanna E Kowalko
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | | | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | - Alex C Keene
- Department of Biology, Texas A&M University, College Station, TX 77840
| |
Collapse
|
7
|
Jia X, Lu K, Liang X. Neuropeptide Y receptor Y8b ( npy8br) regulates feeding and digestion in Japanese medaka ( Oryzias latipes) larvae: evidence from gene knockout. J Zhejiang Univ Sci B 2024; 25:605-616. [PMID: 39011680 PMCID: PMC11254682 DOI: 10.1631/jzus.b2300312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/05/2023] [Indexed: 07/13/2024]
Abstract
Neuropeptide Y receptor Y8 (NPY8R) is a fish-specific receptor with two subtypes, NPY8AR and NPY8BR. Changes in expression levels during physiological processes or in vivo regulation after ventricular injection suggest that NPY8BR plays an important role in feeding regulation; this has been found in only a few fish, at present. In order to better understand the physiological function of npy8br, especially in digestion, we used clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) technology to generate npy8br-/- Japanese medaka (Oryzias latipes). We found that the deletion of npy8br in medaka larvae affected their feeding and digestion ability, ultimately affecting their growth. Specifically, npy8br deficiency in medaka larvae resulted in decreased feed intake and decreased expression levels of orexigenic genes (npy and agrp). npy8br-/- medaka larvae fed for 10 d (10th day of feeding) still had incompletely digested brine shrimp (Artemia nauplii) in the digestive tract 8 h after feeding, the messenger RNA (mRNA) expression levels of digestion-related genes (amy, lpl, ctra, and ctrb) were significantly decreased, and the activity of amylase, trypsin, and lipase also significantly decreased. The deletion of npy8br in medaka larvae inhibited the growth and significantly decreased the expression of growth-related genes (gh and igf1). Hematoxylin and eosin (H&E) sections of intestinal tissue showed that npy8br-/- medaka larvae had damaged intestine, thinned intestinal wall, and shortened intestinal villi. So far, this is the first npy8br gene knockout model established in fish and the first demonstration that npy8br plays an important role in digestion.
Collapse
Affiliation(s)
- Xiaodan Jia
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Ke Lu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Xufang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China.
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China.
| |
Collapse
|
8
|
Terzi A, Ngo KJ, Mourrain P. Phylogenetic conservation of the interdependent homeostatic relationship of sleep regulation and redox metabolism. J Comp Physiol B 2024; 194:241-252. [PMID: 38324048 PMCID: PMC11233307 DOI: 10.1007/s00360-023-01530-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 02/08/2024]
Abstract
Sleep is an essential and evolutionarily conserved process that affects many biological functions that are also strongly regulated by cellular metabolism. The interdependence between sleep homeostasis and redox metabolism, in particular, is such that sleep deprivation causes redox metabolic imbalances in the form of over-production of ROS. Likewise (and vice versa), accumulation of ROS leads to greater sleep pressure. Thus, it is theorized that one of the functions of sleep is to act as the brain's "antioxidant" at night by clearing oxidation built up from daily stress of the active day phase. In this review, we will highlight evidence linking sleep homeostasis and regulation to redox metabolism by discussing (1) the bipartite role that sleep-wake neuropeptides and hormones have in redox metabolism through comparing cross-species cellular and molecular mechanisms, (2) the evolutionarily metabolic changes that accompanied the development of sleep loss in cavefish, and finally, (3) some of the challenges of uncovering the cellular mechanism underpinning how ROS accumulation builds sleep pressure and cellularly, how this pressure is cleared.
Collapse
Affiliation(s)
- Aslihan Terzi
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Keri J Ngo
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Philippe Mourrain
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
- INSERM 1024, Ecole Normale Supérieure, Paris, France.
| |
Collapse
|
9
|
Nagarajan P, Winkler TW, Bentley AR, Miller CL, Kraja AT, Schwander K, Lee S, Wang W, Brown MR, Morrison JL, Giri A, O’Connell JR, Bartz TM, de las Fuentes L, Gudmundsdottir V, Guo X, Harris SE, Huang Z, Kals M, Kho M, Lefevre C, Luan J, Lyytikäinen LP, Mangino M, Milaneschi Y, Palmer ND, Rao V, Rauramaa R, Shen B, Stadler S, Sun Q, Tang J, Thériault S, van der Graaf A, van der Most PJ, Wang Y, Weiss S, Westerman KE, Yang Q, Yasuharu T, Zhao W, Zhu W, Altschul D, Ansari MAY, Anugu P, Argoty-Pantoja AD, Arzt M, Aschard H, Attia JR, Bazzanno L, Breyer MA, Brody JA, Cade BE, Chen HH, Ida Chen YD, Chen Z, de Vries PS, Dimitrov LM, Do A, Du J, Dupont CT, Edwards TL, Evans MK, Faquih T, Felix SB, Fisher-Hoch SP, Floyd JS, Graff M, Gu C, Gu D, Hairston KG, Hanley AJ, Heid IM, Heikkinen S, Highland HM, Hood MM, Kähönen M, Karvonen-Gutierrez CA, Kawaguchi T, Kazuya S, Kelly TN, Komulainen P, Levy D, Lin HJ, Liu PY, Marques-Vidal P, McCormick JB, Mei H, Meigs JB, Menni C, Nam K, Nolte IM, Pacheco NL, Petty LE, Polikowsky HG, Province MA, Psaty BM, Raffield LM, Raitakari OT, Rich SS, Riha RL, Risch L, Risch M, Ruiz-Narvaez EA, Scott RJ, Sitlani CM, Smith JA, Sofer T, Teder-Laving M, Völker U, Vollenweider P, Wang G, van Dijk KW, Wilson OD, Xia R, Yao J, Young KL, Zhang R, Zhu X, Below JE, Böger CA, Conen D, Cox SR, Dörr M, Feitosa MF, Fox ER, Franceschini N, Gharib SA, Gudnason V, Harlow SD, He J, Holliday EG, Kutalik Z, Lakka TA, Lawlor DA, Lee S, Lehtimäki T, Li C, Liu CT, Mägi R, Matsuda F, Morrison AC, Penninx BWJH, Peyser PA, Rotter JI, Snieder H, Spector TD, Wagenknecht LE, Wareham NJ, Zonderman AB, North KE, Fornage M, Hung AM, Manning AK, Gauderman J, Chen H, Munroe PB, Rao DC, van Heemst D, Redline S, Noordam R, Wang H. A Large-Scale Genome-Wide Study of Gene-Sleep Duration Interactions for Blood Pressure in 811,405 Individuals from Diverse Populations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.07.24303870. [PMID: 38496537 PMCID: PMC10942520 DOI: 10.1101/2024.03.07.24303870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Although both short and long sleep duration are associated with elevated hypertension risk, our understanding of their interplay with biological pathways governing blood pressure remains limited. To address this, we carried out genome-wide cross-population gene-by-short-sleep and long-sleep duration interaction analyses for three blood pressure traits (systolic, diastolic, and pulse pressure) in 811,405 individuals from diverse population groups. We discover 22 novel gene-sleep duration interaction loci for blood pressure, mapped to genes involved in neurological, thyroidal, bone metabolism, and hematopoietic pathways. Non-overlap between short sleep (12) and long sleep (10) interactions underscores the plausibility of distinct influences of both sleep duration extremes in cardiovascular health. With several of our loci reflecting specificity towards population background or sex, our discovery sheds light on the importance of embracing granularity when addressing heterogeneity entangled in gene-environment interactions, and in therapeutic design approaches for blood pressure management.
Collapse
Affiliation(s)
- Pavithra Nagarajan
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Thomas W Winkler
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Amy R Bentley
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, US National Institutes of Health, Bethesda, MD, USA
| | - Clint L Miller
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesvil le, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville ,VA, USA
| | - Aldi T Kraja
- University of Mississippi Medical Center, Jackson, MS, USA
| | - Karen Schwander
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Songmi Lee
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Wenyi Wang
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Michael R Brown
- Human Genetics Center, Department of Epidemiology, University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | - John L Morrison
- Division of Biostatistics, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Ayush Giri
- Division of Quantitative Sciences, Department of Obstetrics & Gynecology, Vanderbilt University Medical Center, Nashville, TN, USA
- Biomedical Laboratory Research and Development, Tennessee Valley Healthcare System (626), Department of Veterans Affairs/ Nashville, TN, USA
| | - Jeffrey R O’Connell
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Traci M Bartz
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Lisa de las Fuentes
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine in St. Louis, MO, USA
- Center for Biostatistics and Data Science, Institute for Informatics, Data Science, and Biostatistics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Valborg Gudmundsdottir
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, Department of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Sarah E Harris
- Department of Psychology, The University of Edinburgh, Edinburgh, UK
| | - Zhijie Huang
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, US
| | - Mart Kals
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Minjung Kho
- Graduate School of Data Science, Seoul National University, Seoul, South Korea
| | - Christophe Lefevre
- Department of Data Sciences, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jian’an Luan
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Finnish Cardiovascular Research Center - Tampere, Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere, Finland
| | - Massimo Mangino
- Department of Twin Research, King’s College London, London, UK
- National Heart & Lung Institute, Cardiovascular Genomics and Precision Medicine, Imperial College London, London, UK
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam UMC/Vrije universiteit, Amsterdam, Netherlands
- GGZ inGeest, Amsterdam, Netherlands
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Varun Rao
- Division of Nephrology, Department of Medicine, University of Illinois Chicago, Chicago, USA
| | - Rainer Rauramaa
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Botong Shen
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Stefan Stadler
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Quan Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jingxian Tang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Sébastien Thériault
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Quebec City, Qc, Canada
| | - Adriaan van der Graaf
- Statistical Genetics Group, Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Peter J van der Most
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Yujie Wang
- Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stefan Weiss
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Kenneth E Westerman
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Mongan Institute, Massachusetts General Hospital, Boston, MA, USA
| | - Qian Yang
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Tabara Yasuharu
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka, Japan
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Wei Zhao
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Wanying Zhu
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Drew Altschul
- Department of Psychology, The University of Edinburgh, Edinburgh, UK
| | - Md Abu Yusuf Ansari
- Department of Data Science, University of Mississippi Medical Center, Jackson, MS, USA
| | - Pramod Anugu
- Jackson Heart Study, University of Mississippi Medical Center, Jackson, MS, USA
| | - Anna D Argoty-Pantoja
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Michael Arzt
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Hugues Aschard
- Department of Computational Biology, F-75015 Paris, France Institut Pasteur, Université Paris Cité, Paris, France
- Department of Epidemiology, Harvard TH School of Public Health, Boston, MA, USA
| | - John R Attia
- School of Medicine and Public Health, College of Health Medicine and Wellbeing, University of Newcastle, New Lambton Heights, NSW, Australia
| | - Lydia Bazzanno
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, US
| | - Max A Breyer
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Brian E Cade
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Hung-hsin Chen
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Zekai Chen
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | - Latchezar M Dimitrov
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Anh Do
- Center for Biostatistics and Data Science, Institute for Informatics, Data Science, and Biostatistics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Jiawen Du
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Charles T Dupont
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Todd L Edwards
- Biomedical Laboratory Research and Development, Tennessee Valley Healthcare System (626), Department of Veterans Affairs/ Nashville, TN, USA
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, US A
| | - Michele K Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Tariq Faquih
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Stephan B Felix
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Cardiology, Pneumology, Infectious Diseases, Intensive Care Medicine, Department of Internal Medicine B, Un iversity Medicine Greifswald, Greifswald, Germany
| | - Susan P Fisher-Hoch
- School of Public Health, The University of Texas Health Science Center at Houston (UTHealth), Brownsville, TX, USA
| | - James S Floyd
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Mariaelisa Graff
- Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Charles Gu
- Center for Biostatistics and Data Science, Institute for Informatics, Data Science, and Biostatistics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Dongfeng Gu
- Shenzhen Key Laboratory of Cardiovascular Health and Precision Medicine, Southern University of Science an d Technology, Shenzhen, China
| | - Kristen G Hairston
- Department of Endocrinology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Anthony J Hanley
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Iris M Heid
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Sami Heikkinen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Kuopio
| | - Heather M Highland
- Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michelle M Hood
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Mika Kähönen
- Finnish Cardiovascular Research Center - Tampere, Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere, Finland
- Department of Clinical Physiology, Tampere University Hospital, Tampere, Finland
| | | | - Takahisa Kawaguchi
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Setoh Kazuya
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka, Japan
| | - Tanika N Kelly
- Division of Nephrology, Department of Medicine, University of Illinois Chicago, Chicago, USA
| | | | - Daniel Levy
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Henry J Lin
- The Institute for Translational Genomics and Population Sciences, Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Peter Y Liu
- The Institute for Translational Genomics and Population Sciences, Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Pedro Marques-Vidal
- Department of Medicine, Internal Medicine, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Joseph B McCormick
- School of Public Health, The University of Texas Health Science Center at Houston (UTHealth), Brownsville, TX, USA
| | - Hao Mei
- Department of Data Science, University of Mississippi Medical Center, Jackson, MS, USA
| | - James B Meigs
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Cristina Menni
- Department of Twin Research, King’s College London, London, UK
| | - Kisung Nam
- Graduate School of Data Science, Seoul National University, Seoul, South Korea
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Natasha L Pacheco
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Lauren E Petty
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hannah G Polikowsky
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael A Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Olli T Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, and Department of Clinical Physiology and Nuclear Medicine, University of Turku, and Turku University Hospital, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Renata L Riha
- Department of Sleep Medicine, The University of Edinburgh, Edinburgh, UK
| | - Lorenz Risch
- Faculty of Medical Sciences , Institute for Laboratory Medicine, Private University in the Principality of Liecht enstein, Vaduz, Liechtenstein
- Center of Laboratory Medicine, Institute of Clinical Chemistry, University of Bern and Inselspital, Bern, Switze rland
| | - Martin Risch
- Central Laboratory, Cantonal Hospital Graubünden, Chur, Switzerland
- Medical Laboratory, Dr. Risch Anstalt, Vaduz, Liechtenstein
| | | | - Rodney J Scott
- School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, University of Newcastle, New Lambton Heights, NSW, Australia
| | - Colleen M Sitlani
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jennifer A Smith
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Tamar Sofer
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- CardioVascular Institute (CVI), Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Maris Teder-Laving
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Peter Vollenweider
- Department of Medicine, Internal Medicine, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Guanchao Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ko Willems van Dijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
- Department of Internal Medicine, Division of Endocrinology, Leiden, Netherlands
| | - Otis D Wilson
- Biomedical Laboratory Research and Development, Tennessee Valley Healthcare System (626), Department of Veterans Affairs/ Nashville, TN, USA
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rui Xia
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Kristin L Young
- Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ruiyuan Zhang
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, US
| | - Xiaofeng Zhu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jennifer E Below
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Carsten A Böger
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
- Department of Nephrology and Rheumatology, Kliniken Südostbayern, Traunstein, Germany
- KfH Kidney Centre Traunstein, Traunstein, Germany
| | - David Conen
- Population Health Research Institute, Medicine, McMaster University, Hamilton, On, Canada
| | - Simon R Cox
- Department of Psychology, The University of Edinburgh, Edinburgh, UK
| | - Marcus Dörr
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Cardiology, Pneumology, Infectious Diseases, Intensive Care Medicine, Department of Internal Medicine B, Un iversity Medicine Greifswald, Greifswald, Germany
| | - Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Ervin R Fox
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Nora Franceschini
- Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sina A Gharib
- Pulmonary, Critical Care and Sleep Medicine, Medicine, University of Washington, Seattle, WA, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, Department of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Sioban D Harlow
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, US
- Tulane University Translational Sciences Institute, New Orleans, LA , USA
| | - Elizabeth G Holliday
- School of Medicine and Public Health, College of Health Medicine and Wellbeing, University of Newcastle, New Lambton Heights, NSW, Australia
| | - Zoltan Kutalik
- Statistical Genetics Group, Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland
| | - Timo A Lakka
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Kuopio
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Seunggeun Lee
- Graduate School of Data Science, Seoul National University, Seoul, South Korea
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Finnish Cardiovascular Research Center - Tampere, Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere, Finland
| | - Changwei Li
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, US
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Reedik Mägi
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | - Brenda WJH Penninx
- Department of Psychiatry, Amsterdam UMC/Vrije universiteit, Amsterdam, Netherlands
- GGZ inGeest, Amsterdam, Netherlands
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Tim D Spector
- Department of Twin Research, King’s College London, London, UK
| | - Lynne E Wagenknecht
- Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Kari E North
- Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
- Human Genetics Center, Department of Epidemiology, University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | | | - Adriana M Hung
- Biomedical Laboratory Research and Development, Tennessee Valley Healthcare System (626), Department of Veterans Affairs/ Nashville, TN, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Alisa K Manning
- Clinical and Translational Epidemiology Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Metabolism Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - James Gauderman
- Division of Biostatistics, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Han Chen
- Human Genetics Center, Department of Epidemiology, University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Patricia B Munroe
- Clinical Pharmacology and Precision Medicine, Queen Mary University of London, London, UK
| | - Dabeeru C Rao
- Center for Biostatistics and Data Science, Institute for Informatics, Data Science, and Biostatistics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Diana van Heemst
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Lei den, Netherlands
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Lei den, Netherlands
| | - Heming Wang
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Iacono D, Hatch K, Murphy EK, Post J, Cole RN, Perl DP, Day RM. Proteomic changes in the hippocampus of large mammals after total-body low dose radiation. PLoS One 2024; 19:e0296903. [PMID: 38427613 PMCID: PMC10906861 DOI: 10.1371/journal.pone.0296903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/19/2023] [Indexed: 03/03/2024] Open
Abstract
There is a growing interest in low dose radiation (LDR) to counteract neurodegeneration. However, LDR effects on normal brain have not been completely explored yet. Recent analyses showed that LDR exposure to normal brain tissue causes expression level changes of different proteins including neurodegeneration-associated proteins. We assessed the proteomic changes occurring in radiated vs. sham normal swine brains. Due to its involvement in various neurodegenerative processes, including those associated with cognitive changes after high dose radiation exposure, we focused on the hippocampus first. We observed significant proteomic changes in the hippocampus of radiated vs. sham swine after LDR (1.79Gy). Mass spectrometry results showed 190 up-regulated and 120 down-regulated proteins after LDR. Western blotting analyses confirmed increased levels of TPM1, TPM4, PCP4 and NPY (all proteins decreased in various neurodegenerative processes, with NPY and PCP4 known to be neuroprotective) in radiated vs. sham swine. These data support the use of LDR as a potential beneficial tool to interfere with neurodegenerative processes and perhaps other brain-related disorders, including behavioral disorders.
Collapse
Affiliation(s)
- Diego Iacono
- DoD/USU Brain Tissue Repository & Neuropathology Program, Uniformed Services University (USU), Bethesda, Maryland, United States of America
- Department of Neurology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, Maryland, United States of America
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, Maryland, United States of America
- Neuroscience Program, Department of Anatomy, Physiology and Genetics (APG), F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, Maryland, United States of America
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. (HJF), Bethesda, Maryland, United States of America
- Neurodegeneration Disorders Clinic, National Institute of Neurological Disorders and Stroke, NINDS, NIH, Bethesda, Maryland, United States of America
| | - Kathleen Hatch
- DoD/USU Brain Tissue Repository & Neuropathology Program, Uniformed Services University (USU), Bethesda, Maryland, United States of America
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, Maryland, United States of America
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. (HJF), Bethesda, Maryland, United States of America
| | - Erin K. Murphy
- DoD/USU Brain Tissue Repository & Neuropathology Program, Uniformed Services University (USU), Bethesda, Maryland, United States of America
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, Maryland, United States of America
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. (HJF), Bethesda, Maryland, United States of America
| | - Jeremy Post
- Mass Spectrometry and Proteomics, Department of Biological Chemistry, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Robert N. Cole
- Mass Spectrometry and Proteomics, Department of Biological Chemistry, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Daniel P. Perl
- DoD/USU Brain Tissue Repository & Neuropathology Program, Uniformed Services University (USU), Bethesda, Maryland, United States of America
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, Maryland, United States of America
| | - Regina M. Day
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University (USU), Bethesda, Maryland, United States of America
| |
Collapse
|
11
|
Demirci E, Tastepe N, Ozmen S, Kilic E. The Role of BDNF and NPY Levels, Effects of Behavioral Systems and Emotion Regulation on Internet Addiction in Adolescents. Psychiatr Q 2023; 94:605-616. [PMID: 37610629 DOI: 10.1007/s11126-023-10046-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 08/24/2023]
Abstract
Internet addiction (IA), one of the behavioral addictions, is also related to impulsivity. Although studies on its etiology and risks continue, the number of studies is limited. In this study, we aimed to assess the roles of behavioral systems, emotional regulation (ER), and impulsivity in the development of IA in adolescents and also to assess the relationship between all these clinical parameters and brain-derived neurotrophic factor (BDNF) and neuropeptide Y (NPY). Forty-two adolescents with IA and 30 healthy controls (ages 12 -17) were included in the study. Self-reported measures included the Internet Addiction Scale. (IAS), Behavioral Activation and Behavioral Inhibition Scale (BAS/BIS), Barratt. Impulsiveness Scale-11 (BIS-11), and Difficulties in Emotion Regulation Scale-16 (DERS-16) were used for the assessment of the participants. The levels of plasma brain BDNF and NPY were evaluated with the ELISA method. BAS/BIS subscale scores, BIS-11, and DERS-16 scale total scores were found to be statistically significantly higher, while BDNF and NPY levels were found to be lower in adolescents with IA compared to the healthy controls. IA severity was not found to correlate with both BDNF and NPY. IA was found to be more related to BIS than to BAS. There is a need for further studies evaluating developmental features and possible diagnostic biomarkers that may be associated with IA in adolescents.
Collapse
Affiliation(s)
- Esra Demirci
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, University of Erciyes, Kayseri, 38039, Turkey.
| | - Neslihan Tastepe
- Department of Child and Adolescent Psychiatry, Amasya Sabuncuoglu Serefeddin Training and Research Hospital, Amasya, Turkey
| | - Sevgi Ozmen
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, University of Erciyes, Kayseri, 38039, Turkey
| | - Eser Kilic
- Department of Biochemistry, Faculty of Medicine, University of Erciyes, Kayseri, Turkey
| |
Collapse
|
12
|
Collier AD, Abdulai AR, Leibowitz SF. Utility of the Zebrafish Model for Studying Neuronal and Behavioral Disturbances Induced by Embryonic Exposure to Alcohol, Nicotine, and Cannabis. Cells 2023; 12:2505. [PMID: 37887349 PMCID: PMC10605371 DOI: 10.3390/cells12202505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
It is estimated that 5% of pregnant women consume drugs of abuse during pregnancy. Clinical research suggests that intake of drugs during pregnancy, such as alcohol, nicotine and cannabis, disturbs the development of neuronal systems in the offspring, in association with behavioral disturbances early in life and an increased risk of developing drug use disorders. After briefly summarizing evidence in rodents, this review focuses on the zebrafish model and its inherent advantages for studying the effects of embryonic exposure to drugs of abuse on behavioral and neuronal development, with an emphasis on neuropeptides known to promote drug-related behaviors. In addition to stimulating the expression and density of peptide neurons, as in rodents, zebrafish studies demonstrate that embryonic drug exposure has marked effects on the migration, morphology, projections, anatomical location, and peptide co-expression of these neurons. We also describe studies using advanced methodologies that can be applied in vivo in zebrafish: first, to demonstrate a causal relationship between the drug-induced neuronal and behavioral disturbances and second, to discover underlying molecular mechanisms that mediate these effects. The zebrafish model has great potential for providing important information regarding the development of novel and efficacious therapies for ameliorating the effects of early drug exposure.
Collapse
Affiliation(s)
| | | | - Sarah F. Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
13
|
Barlow IL, Mackay E, Wheater E, Goel A, Lim S, Zimmerman S, Woods I, Prober DA, Rihel J. The zebrafish mutant dreammist implicates sodium homeostasis in sleep regulation. eLife 2023; 12:RP87521. [PMID: 37548652 PMCID: PMC10406431 DOI: 10.7554/elife.87521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023] Open
Abstract
Sleep is a nearly universal feature of animal behaviour, yet many of the molecular, genetic, and neuronal substrates that orchestrate sleep/wake transitions lie undiscovered. Employing a viral insertion sleep screen in larval zebrafish, we identified a novel gene, dreammist (dmist), whose loss results in behavioural hyperactivity and reduced sleep at night. The neuronally expressed dmist gene is conserved across vertebrates and encodes a small single-pass transmembrane protein that is structurally similar to the Na+,K+-ATPase regulator, FXYD1/Phospholemman. Disruption of either fxyd1 or atp1a3a, a Na+,K+-ATPase alpha-3 subunit associated with several heritable movement disorders in humans, led to decreased night-time sleep. Since atpa1a3a and dmist mutants have elevated intracellular Na+ levels and non-additive effects on sleep amount at night, we propose that Dmist-dependent enhancement of Na+ pump function modulates neuronal excitability to maintain normal sleep behaviour.
Collapse
Affiliation(s)
- Ida L Barlow
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Eirinn Mackay
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Emily Wheater
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Aimee Goel
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Sumi Lim
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Steve Zimmerman
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | | | - David A Prober
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Jason Rihel
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| |
Collapse
|
14
|
Kawabe M, Nishida T, Takahashi R, Inui A, Shiozaki K. Comparative study of the effects of the three kinds of Kampo-hozai: Ninjinyoeito, Hochuekkito, and Juzentaihoto on anxious and low sociability behavior using NPY-knockout zebrafish. Front Pharmacol 2023; 14:1168229. [PMID: 37324500 PMCID: PMC10267730 DOI: 10.3389/fphar.2023.1168229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023] Open
Abstract
Ninjinyoeito, Hochuekkito, and Juzentaihoto are the three types of Kampo-hozai used to support the treatment of various diseases by energizing patients through improved mental health. While Kampo-hozais are clinically used to improve mental energy decline, a comparison between their effects on neuropsychiatric symptoms like anxiety and sociability and the strength of their effects has not been conducted. Therefore, this study compared the effects of Ninjinyoeito, Hochuekkito, and Juzentaihoto on psychiatric symptoms using neuropeptide Y knockout (NPY-KO) zebrafish, a suitable animal model for anxiety and low sociability. Neuropeptide Y knockout zebrafish were fed a Ninjinyoeito, Hochuekkito, or Juzentaihoto-supplemented diet for 4 days. Then, sociability was analyzed using a three-Chambers test and anxiety-like behavior was evaluated using the cold stress and novel tank tests. The results showed that Ninjinyoeito treatment improved the low sociability of neuropeptide Y knockout, while Hochuekkito and Juzentaihoto did not. Neuropeptide Y knockout exhibited anxiety-like behaviors, such as freezing and swimming in the wall area under cold stress, but Ninjinyoeito treatment improved these behaviors. However, these anxiety-like behaviors were not improved by Hochuekkito and Juzentaihoto. Ninjinyoeito treatment also improved anxiety-like behaviors of neuropeptide Y knockout in the novel tank test. However, no improvement was shown in the Hochuekkito and Juzentaihoto groups. This trend was also confirmed in the low water stress test using wild-type zebrafish. This study exhibits that among the three types of Kampo-hozai, Ninjinyoeito is the most effective in psychiatric disorders associated with anxiety and low sociability.
Collapse
Affiliation(s)
- Momoko Kawabe
- Course of Biological Science and Technology, The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
- Pharmacological Department of Herbal Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Takumi Nishida
- Department of Food Life Sciences, Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - Ryuji Takahashi
- Kampo Research Laboratories, Kracie Pharma Ltd., Toyama, Japan
| | - Akio Inui
- Pharmacological Department of Herbal Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Kazuhiro Shiozaki
- Course of Biological Science and Technology, The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
- Department of Food Life Sciences, Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
15
|
Yasmin N, Collier AD, Karatayev O, Abdulai AR, Yu B, Fam M, Khalizova N, Leibowitz SF. Subpopulations of hypocretin/orexin neurons differ in measures of their cell proliferation, dynorphin co-expression, projections, and response to embryonic ethanol exposure. Sci Rep 2023; 13:8448. [PMID: 37231149 PMCID: PMC10213024 DOI: 10.1038/s41598-023-35432-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
Numerous studies in animals demonstrate that embryonic exposure to ethanol (EtOH) at low-moderate doses stimulates neurogenesis and increases the number of hypothalamic neurons expressing the peptide, hypocretin/orexin (Hcrt). A recent study in zebrafish showed that this effect on the Hcrt neurons in the anterior hypothalamus (AH) is area specific, evident in the anterior (aAH) but not posterior (pAH) part of this region. To understand specific factors that may determine the differential sensitivity to EtOH of these Hcrt subpopulations, we performed additional measures in zebrafish of their cell proliferation, co-expression of the opioid dynorphin (Dyn), and neuronal projections. In association with the increase in Hcrt neurons in the aAH but not pAH, EtOH significantly increased only in the aAH the proliferation of Hcrt neurons and their number lacking Dyn co-expression. The projections of these subpopulations differed markedly in their directionality, with those from the pAH primarily descending to the locus coeruleus and those from the aAH ascending to the subpallium, and they were both stimulated by EtOH, which induced specifically the most anterior subpallium-projecting Hcrt neurons to become ectopically expressed beyond the aAH. These differences between the Hcrt subpopulations suggest they are functionally distinct in their regulation of behavior.
Collapse
Affiliation(s)
- Nushrat Yasmin
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Adam D Collier
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Olga Karatayev
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Abdul R Abdulai
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Boyi Yu
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Milisia Fam
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Nailya Khalizova
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Sarah F Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
16
|
Yasmin N, Collier AD, Abdulai AR, Karatayev O, Yu B, Fam M, Leibowitz SF. Role of Chemokine Cxcl12a in Mediating the Stimulatory Effects of Ethanol on Embryonic Development of Subpopulations of Hypocretin/Orexin Neurons and Their Projections. Cells 2023; 12:1399. [PMID: 37408233 PMCID: PMC10216682 DOI: 10.3390/cells12101399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 07/07/2023] Open
Abstract
Studies in zebrafish and rats show that embryonic ethanol exposure at low-moderate concentrations stimulates hypothalamic neurons expressing hypocretin/orexin (Hcrt) that promote alcohol consumption, effects possibly involving the chemokine Cxcl12 and its receptor Cxcr4. Our recent studies in zebrafish of Hcrt neurons in the anterior hypothalamus (AH) demonstrate that ethanol exposure has anatomically specific effects on Hcrt subpopulations, increasing their number in the anterior AH (aAH) but not posterior AH (pAH), and causes the most anterior aAH neurons to become ectopically expressed further anterior in the preoptic area (POA). Using tools of genetic overexpression and knockdown, our goal here was to determine whether Cxcl12a has an important function in mediating the specific effects of ethanol on these Hcrt subpopulations and their projections. The results demonstrate that the overexpression of Cxcl12a has stimulatory effects similar to ethanol on the number of aAH and ectopic POA Hcrt neurons and the long anterior projections from ectopic POA neurons and posterior projections from pAH neurons. They also demonstrate that knockdown of Cxcl12a blocks these effects of ethanol on the Hcrt subpopulations and projections, providing evidence supporting a direct role of this specific chemokine in mediating ethanol's stimulatory effects on embryonic development of the Hcrt system.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sarah F. Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
17
|
Ma HT, Zhang HC, Zuo ZF, Liu YX. Heterogeneous organization of Locus coeruleus: An intrinsic mechanism for functional complexity. Physiol Behav 2023; 268:114231. [PMID: 37172640 DOI: 10.1016/j.physbeh.2023.114231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/06/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Locus coeruleus (LC) is a small nucleus located deep in the brainstem that contains the majority of central noradrenergic neurons, which provide the primary source of noradrenaline (NA) throughout the entire central nervous system (CNS).The release of neurotransmitter NA is considered to modulate arousal, sensory processing, attention, aversive and adaptive stress responses as well as high-order cognitive function and memory, with the highly ramified axonal arborizations of LC-NA neurons sending wide projections to the targeted brain areas. For over 30 years, LC was thought to be a homogeneous nucleus in structure and function due to the widespread uniform release of NA by LC-NA neurons and simultaneous action in several CNS regions, such as the prefrontal cortex, hippocampus, cerebellum, and spinal cord. However, recent advances in neuroscience tools have revealed that LC is probably not so homogeneous as we previous thought and exhibits heterogeneity in various aspects. Accumulating studies have shown that the functional complexity of LC may be attributed to its heterogeneity in developmental origin, projection patterns, topography distribution, morphology and molecular organization, electrophysiological properties and sex differences. This review will highlight the heterogeneity of LC and its critical role in modulating diverse behavioral outcomes.
Collapse
Affiliation(s)
- Hai-Tao Ma
- Department of Neurobiology, School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, 121000, China; Department of Neurobiology, School of Basic Medicine, Capital Medical University, Beijing, 100069, China.
| | - Hao-Chen Zhang
- Department of Neurobiology, School of Basic Medicine, Capital Medical University, Beijing, 100069, China
| | - Zhong-Fu Zuo
- Department of Human Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121000, China
| | - Ying-Xue Liu
- Department of Human Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121000, China.
| |
Collapse
|
18
|
Bedbrook CN, Nath RD, Nagvekar R, Deisseroth K, Brunet A. Rapid and precise genome engineering in a naturally short-lived vertebrate. eLife 2023; 12:e80639. [PMID: 37191291 PMCID: PMC10188113 DOI: 10.7554/elife.80639] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
The African turquoise killifish is a powerful vertebrate system to study complex phenotypes at scale, including aging and age-related disease. Here, we develop a rapid and precise CRISPR/Cas9-mediated knock-in approach in the killifish. We show its efficient application to precisely insert fluorescent reporters of different sizes at various genomic loci in order to drive cell-type- and tissue-specific expression. This knock-in method should allow the establishment of humanized disease models and the development of cell-type-specific molecular probes for studying complex vertebrate biology.
Collapse
Affiliation(s)
- Claire N Bedbrook
- Department of Genetics, Stanford UniversityStanfordUnited States
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Ravi D Nath
- Department of Genetics, Stanford UniversityStanfordUnited States
| | - Rahul Nagvekar
- Department of Genetics, Stanford UniversityStanfordUnited States
| | - Karl Deisseroth
- Department of Bioengineering, Stanford UniversityStanfordUnited States
- Department of Psychiatry and Behavioral Sciences, Stanford UniversityStanfordUnited States
- Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Anne Brunet
- Department of Genetics, Stanford UniversityStanfordUnited States
- Glenn Laboratories for the Biology of Aging at StanfordStanfordUnited States
- Wu Tsai Neurosciences Institute, Stanford UniversityStanfordUnited States
| |
Collapse
|
19
|
Ceceli AO, Huang Y, Gaudreault PO, McClain NE, King SG, Kronberg G, Brackett A, Hoberman GN, Gray JH, Garland EL, Alia-Klein N, Goldstein RZ. Recovery of inhibitory control prefrontal cortex function in inpatients with heroin use disorder: a 15-week longitudinal fMRI study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.28.23287864. [PMID: 37034753 PMCID: PMC10081400 DOI: 10.1101/2023.03.28.23287864] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Importance Heroin addiction and related mortality impose a devastating toll on society, with little known about the neurobiology of this disease or its treatment. Poor inhibitory control is a common manifestation of prefrontal cortex (PFC) impairments in addiction, and its potential recovery following treatment is largely unknown in heroin (or any drug) addiction. Objective To study inhibitory control brain activity in iHUD and HC, before and after 15 weeks of inpatient treatment in the former. Design A longitudinal cohort study (11/2020-03/2022) where iHUD and HC underwent baseline and follow-up fMRI scans. Average follow-up duration: 15 weeks. Setting The iHUD and HC were recruited from treatment facilities and surrounding neighborhoods, respectively. Participants Twenty-six iHUD [40.6±10.1 years; 7 (29.2%) women] and 24 age-/sex-matched HC [41.1±9.9 years; 9 (37.5%) women]. Intervention Following the baseline scan, inpatient iHUD continued to participate in a medically-assisted program for an average of 15 weeks (abstinence increased from an initial 183±236 days by 65±82 days). The HC were scanned at similar time intervals. Main Outcomes and Measures Behavioral performance as measured by the stop-signal response time (SSRT), target detection sensitivity (d', proportion of hits in go vs. false-alarms in stop trials), and brain activity (blood-oxygen level dependent signal differences) during successful vs. failed stops in the stop signal task. Results As we previously reported, at time 1 and as compared to HC, iHUD exhibited similar SSRT but impaired d' [t(38.7)=2.37, p=.023], and lower anterior and dorsolateral PFC (aPFC, dlPFC) activity (p<.001). Importantly, at time 2, there were significant gains in aPFC and dlPFC activity in the iHUD (group*session interaction, p=.002); the former significantly correlated with increases in d' specifically in iHUD (p=.012). Conclusions and Relevance Compared to HC, the aPFC and dlPFC impairments in the iHUD at time 1 were normalized at time 2, which was associated with individual differences in improvements in target detection sensitivity. For the first time in any drug addiction, these results indicate a treatment-mediated inhibitory control brain activity recovery. These neurobehavioral results highlight the aPFC and dlPFC as targets for intervention with a potential to enhance self-control recovery in heroin addiction.
Collapse
Affiliation(s)
- Ahmet O. Ceceli
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1230, New York, NY 10029
| | - Yuefeng Huang
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1230, New York, NY 10029
| | - Pierre-Olivier Gaudreault
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1230, New York, NY 10029
| | - Natalie E. McClain
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1230, New York, NY 10029
| | - Sarah G. King
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1065, New York, NY 10029
| | - Greg Kronberg
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1230, New York, NY 10029
| | - Amelia Brackett
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1230, New York, NY 10029
| | - Gabriela N. Hoberman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1230, New York, NY 10029
| | - John H. Gray
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1230, New York, NY 10029
| | - Eric L. Garland
- Center on Mindfulness and Integrative Health Intervention Development (C-MIIND), University of Utah, 395 S. 1500 East, Salt Lake City, UT 84108, USA
- College of Social Work, University of Utah, Goodwill Humanitarian Building, 395 S.1500 East, Salt Lake City, UT 84108, USA
| | - Nelly Alia-Klein
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1230, New York, NY 10029
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1065, New York, NY 10029
| | - Rita Z. Goldstein
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1230, New York, NY 10029
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1065, New York, NY 10029
| |
Collapse
|
20
|
Meléndez-Fernández OH, Liu JA, Nelson RJ. Circadian Rhythms Disrupted by Light at Night and Mistimed Food Intake Alter Hormonal Rhythms and Metabolism. Int J Mol Sci 2023; 24:3392. [PMID: 36834801 PMCID: PMC9963929 DOI: 10.3390/ijms24043392] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/10/2023] Open
Abstract
Availability of artificial light and light-emitting devices have altered human temporal life, allowing 24-hour healthcare, commerce and production, and expanding social life around the clock. However, physiology and behavior that evolved in the context of 24 h solar days are frequently perturbed by exposure to artificial light at night. This is particularly salient in the context of circadian rhythms, the result of endogenous biological clocks with a rhythm of ~24 h. Circadian rhythms govern the temporal features of physiology and behavior, and are set to precisely 24 h primarily by exposure to light during the solar day, though other factors, such as the timing of meals, can also affect circadian rhythms. Circadian rhythms are significantly affected by night shift work because of exposure to nocturnal light, electronic devices, and shifts in the timing of meals. Night shift workers are at increased risk for metabolic disorder, as well as several types of cancer. Others who are exposed to artificial light at night or late mealtimes also show disrupted circadian rhythms and increased metabolic and cardiac disorders. It is imperative to understand how disrupted circadian rhythms alter metabolic function to develop strategies to mitigate their negative effects. In this review, we provide an introduction to circadian rhythms, physiological regulation of homeostasis by the suprachiasmatic nucleus (SCN), and SCN-mediated hormones that display circadian rhythms, including melatonin and glucocorticoids. Next, we discuss circadian-gated physiological processes including sleep and food intake, followed by types of disrupted circadian rhythms and how modern lighting disrupts molecular clock rhythms. Lastly, we identify how disruptions to hormones and metabolism can increase susceptibility to metabolic syndrome and risk for cardiovascular diseases, and discuss various strategies to mitigate the harmful consequences associated with disrupted circadian rhythms on human health.
Collapse
|
21
|
Stress resilience is established during development and is regulated by complement factors. Cell Rep 2023; 42:111973. [PMID: 36640352 DOI: 10.1016/j.celrep.2022.111973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/21/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023] Open
Abstract
Individuals in a population respond differently to stressful situations. While resilient individuals recover efficiently, others are susceptible to the same stressors. However, it remains challenging to determine if resilience is established as a trait during development or acquired later in life. Using a behavioral paradigm in zebrafish larvae, we show that resilience is a stable and heritable trait, which is determined and exhibited early in life. Resilient larvae show unique stress-induced transcriptional response, and larvae with mutations in resilience-associated genes, such as neuropeptide Y and miR218, are less resilient. Transcriptome analysis shows that resilient larvae downregulate multiple factors of the innate immune complement cascade in response to stress. Perturbation of critical complement factors leads to an increase in resilience. We conclude that resilience is established as a stable trait early during development and that neuropeptides and the complement pathway play positive and negative roles in determining resilience, respectively.
Collapse
|
22
|
Ramos A, Granzotto N, Kremer R, Boeder AM, de Araújo JFP, Pereira AG, Izídio GS. Hunting for Genes Underlying Emotionality in the Laboratory Rat: Maps, Tools and Traps. Curr Neuropharmacol 2023; 21:1840-1863. [PMID: 36056863 PMCID: PMC10514530 DOI: 10.2174/1570159x20666220901154034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/13/2022] [Accepted: 07/28/2022] [Indexed: 11/22/2022] Open
Abstract
Scientists have systematically investigated the hereditary bases of behaviors since the 19th century, moved by either evolutionary questions or clinically-motivated purposes. The pioneer studies on the genetic selection of laboratory animals had already indicated, one hundred years ago, the immense complexity of analyzing behaviors that were influenced by a large number of small-effect genes and an incalculable amount of environmental factors. Merging Mendelian, quantitative and molecular approaches in the 1990s made it possible to map specific rodent behaviors to known chromosome regions. From that point on, Quantitative Trait Locus (QTL) analyses coupled with behavioral and molecular techniques, which involved in vivo isolation of relevant blocks of genes, opened new avenues for gene mapping and characterization. This review examines the QTL strategy applied to the behavioral study of emotionality, with a focus on the laboratory rat. We discuss the challenges, advances and limitations of the search for Quantitative Trait Genes (QTG) playing a role in regulating emotionality. For the past 25 years, we have marched the long journey from emotionality-related behaviors to genes. In this context, our experiences are used to illustrate why and how one should move forward in the molecular understanding of complex psychiatric illnesses. The promise of exploring genetic links between immunological and emotional responses are also discussed. New strategies based on humans, rodents and other animals (such as zebrafish) are also acknowledged, as they are likely to allow substantial progress to be made in the near future.
Collapse
Affiliation(s)
- André Ramos
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Natalli Granzotto
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Rafael Kremer
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Developmental and Cellular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Ariela Maína Boeder
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Julia Fernandez Puñal de Araújo
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Developmental and Cellular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Aline Guimarães Pereira
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Developmental and Cellular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Geison Souza Izídio
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Developmental and Cellular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| |
Collapse
|
23
|
Kawabe M, Nishida T, Horita C, Ikeda A, Takahashi R, Inui A, Shiozaki K. Ninjinyoeito improves social behavior disorder in neuropeptide Y deficient zebrafish. Front Pharmacol 2022; 13:905711. [PMID: 36034826 PMCID: PMC9411948 DOI: 10.3389/fphar.2022.905711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Sociability is an essential component of the linkage structure in human and other vertebrate communication. Low sociability is defined as a poor social approach, including social withdrawal and apathy, and is implicated in a variety of psychiatric disorders. Ninjinyoeito (NYT), a traditional Japanese herbal medicine, has been used in the medical field. This study aimed to determine the effect of NYT on low sociality in NPY-KO zebrafish. NPY-KO zebrafish were fed a 3% NYT-supplemented diet for 4 days and subjected to behavioral tests. In the mirror test, NPY-KO zebrafish fed a control diet showed avoidance behavior toward their mirror counterparts. In contrast, the treatment of NPY-KO zebrafish with NYT significantly increased their interaction with their counterparts in the mirror. In addition, a 3-chambers test was conducted to confirm the effect of NYT on the low sociality of NPY-KO zebrafish. NPY-KO zebrafish fed the control diet showed less interaction with fish chambers, while NYT treatment increased the interaction. Phosphorylation of ERK, a marker of neuronal activity, was significantly reduced in the whole brain of NYT-fed NPY-KO zebrafish, compared to the control diet. NYT treatment significantly suppressed hypothalamic-pituitary-adrenal-related genes (gr, pomc, and crh) and sympathetic-adrenal-medullary-related genes (th1, th2, and cck) in NPY-KO zebrafish. NYT administration significantly reduced mRNA levels of gad1b compared to the control diet, suggesting the involvement of GABAergic neurons in NYT-induced improvement of low sociability. Furthermore, the expression of CREB was suppressed when NPY-KO zebrafish were fed NYT. Next, we attempted to identify the effective herb responsible for the NYT-induced improvement of low sociability. NPY-KO zebrafish were fed an experimental diet containing the target herb for 4 days, and its effect on sociability was evaluated using the 3-chambers test. Results showed that Cinnamon Bark and Polygala Root treatments significantly increased time spent in the fish tank area compared to the control diet, while the other 10 herbs did not. We confirmed that these two herbs suppressed the activity of HPA-, SAM-, and GABAergic neurons, as well as NYT-treated zebrafish, accompanied by downregulation of CREB signaling. This study suggests the potential use of NYT as a drug for sociability disorders.
Collapse
Affiliation(s)
- Momoko Kawabe
- Course of Biological Science and Technology, The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Takumi Nishida
- Department of Food Life Sciences, Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - Chihoko Horita
- Department of Food Life Sciences, Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - Asami Ikeda
- Course of Biological Science and Technology, The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Ryuji Takahashi
- Kampo Research Laboratories, Kracie Pharma Ltd., Toyama, Japan
| | - Akio Inui
- Pharmacological Department of Herbal Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Kazuhiro Shiozaki
- Course of Biological Science and Technology, The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
- Department of Food Life Sciences, Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
- *Correspondence: Kazuhiro Shiozaki,
| |
Collapse
|
24
|
Ko T, Murakami H, Kamikouchi A, Ishimoto H. Biogenic action of Lactobacillus plantarum SBT2227 promotes sleep in Drosophila melanogaster. iScience 2022; 25:104626. [PMID: 35811846 PMCID: PMC9257349 DOI: 10.1016/j.isci.2022.104626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/25/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022] Open
Abstract
Lactic acid bacteria (LAB) influence multiple aspects of host brain function via the production of active metabolites in the gut, which is known as the pre/probiotic action. However, little is known about the biogenic effects of LAB on host brain function. Here, we reported that the Lactobacillus plantarum SBT2227 promoted sleep in Drosophila melanogaster. Administration of SBT2227 primarily increased the amount of sleep and decreased sleep latency at the beginning of night-time. The sleep-promoting effects of SBT2227 were independent of the existing gut flora. Furthermore, heat treatment or mechanical crushing of SBT2227 did not suppress the sleep-promoting effects, indicative of biogenic action. Transcriptome analysis and RNAi mini-screening for gut-derived peptide hormones revealed the requirement of neuropeptide F, a homolog of the mammalian neuropeptide Y, for the action of SBT2227. These biogenic effects of SBT2227 on the host sleep provide new insights into the interaction between the brain and gut bacteria. Lactobacillus plantarum SBT2227 promotes sleep at the onset of nighttime Existing intestinal microbes do not affect the SBT2227 sleep effect Heat-stable intracellular/intramembrane components are candidates for active substances Neuropeptide F is required for the sleep-promoting effect of SBT2227
Collapse
|
25
|
Gu L, Yu Q, Shen Y, Wang Y, Xu Q, Zhang H. The role of monoaminergic neurons in modulating respiration during sleep and the connection with SUDEP. Biomed Pharmacother 2022; 150:112983. [PMID: 35453009 DOI: 10.1016/j.biopha.2022.112983] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/04/2022] [Accepted: 04/14/2022] [Indexed: 11/25/2022] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death among epilepsy patients, occurring even more frequently in cases with anti-epileptic drug resistance. Despite some advancements in characterizing SUDEP, the underlying mechanism remains incompletely understood. This review summarizes the latest advances in our understanding of the pathogenic mechanisms of SUDEP, in order to identify possible targets for the development of new strategies to prevent SUDEP. Based on our previous research along with the current literature, we focus on the role of sleep-disordered breathing (SDB) and its related neural mechanisms to consider the possible roles of monoaminergic neurons in the modulation of respiration during sleep and the occurrence of SUDEP. Overall, this review suggests that targeting the monoaminergic neurons is a promising approach to preventing SUDEP. The proposed roles of SDB and related monoaminergic neural mechanisms in SUDEP provide new insights for explaining the pathogenesis of SUDEP.
Collapse
Affiliation(s)
- LeYuan Gu
- Department of Anesthesiology, The Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China; Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Qian Yu
- Department of Anesthesiology, The Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China; Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yue Shen
- Department of Anesthesiology, The Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China; Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - YuLing Wang
- Department of Anesthesiology, The Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China; Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Qing Xu
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - HongHai Zhang
- Department of Anesthesiology, The Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China; Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310006, China.
| |
Collapse
|
26
|
Roles of Neuropeptides in Sleep-Wake Regulation. Int J Mol Sci 2022; 23:ijms23094599. [PMID: 35562990 PMCID: PMC9103574 DOI: 10.3390/ijms23094599] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/31/2022] [Accepted: 04/19/2022] [Indexed: 12/04/2022] Open
Abstract
Sleep and wakefulness are basic behavioral states that require coordination between several brain regions, and they involve multiple neurochemical systems, including neuropeptides. Neuropeptides are a group of peptides produced by neurons and neuroendocrine cells of the central nervous system. Like traditional neurotransmitters, neuropeptides can bind to specific surface receptors and subsequently regulate neuronal activities. For example, orexin is a crucial component for the maintenance of wakefulness and the suppression of rapid eye movement (REM) sleep. In addition to orexin, melanin-concentrating hormone, and galanin may promote REM sleep. These results suggest that neuropeptides play an important role in sleep–wake regulation. These neuropeptides can be divided into three categories according to their effects on sleep–wake behaviors in rodents and humans. (i) Galanin, melanin-concentrating hormone, and vasoactive intestinal polypeptide are sleep-promoting peptides. It is also noticeable that vasoactive intestinal polypeptide particularly increases REM sleep. (ii) Orexin and neuropeptide S have been shown to induce wakefulness. (iii) Neuropeptide Y and substance P may have a bidirectional function as they can produce both arousal and sleep-inducing effects. This review will introduce the distribution of various neuropeptides in the brain and summarize the roles of different neuropeptides in sleep–wake regulation. We aim to lay the foundation for future studies to uncover the mechanisms that underlie the initiation, maintenance, and end of sleep–wake states.
Collapse
|
27
|
Tran S, Prober DA. Validation of Candidate Sleep Disorder Risk Genes Using Zebrafish. Front Mol Neurosci 2022; 15:873520. [PMID: 35465097 PMCID: PMC9021570 DOI: 10.3389/fnmol.2022.873520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/14/2022] [Indexed: 12/31/2022] Open
Abstract
Sleep disorders and chronic sleep disturbances are common and are associated with cardio-metabolic diseases and neuropsychiatric disorders. Several genetic pathways and neuronal mechanisms that regulate sleep have been described in animal models, but the genes underlying human sleep variation and sleep disorders are largely unknown. Identifying these genes is essential in order to develop effective therapies for sleep disorders and their associated comorbidities. To address this unmet health problem, genome-wide association studies (GWAS) have identified numerous genetic variants associated with human sleep traits and sleep disorders. However, in most cases, it is unclear which gene is responsible for a sleep phenotype that is associated with a genetic variant. As a result, it is necessary to experimentally validate candidate genes identified by GWAS using an animal model. Rodents are ill-suited for this endeavor due to their poor amenability to high-throughput sleep assays and the high costs associated with generating, maintaining, and testing large numbers of mutant lines. Zebrafish (Danio rerio), an alternative vertebrate model for studying sleep, allows for the rapid and cost-effective generation of mutant lines using the CRISPR/Cas9 system. Numerous zebrafish mutant lines can then be tested in parallel using high-throughput behavioral assays to identify genes whose loss affects sleep. This process identifies a gene associated with each GWAS hit that is likely responsible for the human sleep phenotype. This strategy is a powerful complement to GWAS approaches and holds great promise to identify the genetic basis for common human sleep disorders.
Collapse
Affiliation(s)
| | - David A. Prober
- Division of Biology and Biological Engineering, Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
28
|
Central and Peripheral NPY Age-Related Regulation: A Comparative Analysis in Fish Translational Models. Int J Mol Sci 2022; 23:ijms23073839. [PMID: 35409198 PMCID: PMC8998975 DOI: 10.3390/ijms23073839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
NPY is among the most abundant neuropeptides in vertebrate brain and is primarily involved in the regulation of food intake. The NPY system is also associated with the aging process showing beneficial effects on neuronal survival via autophagy modulation. Here, we explore the age-related regulation of NPY in the brain and foregut of the shortest- and longest-lived fish species, Nothobranchius furzeri and Danio rerio, respectively. These two research models, despite some similarities, display profound biological differences making them attractive vertebrates to elucidate the mechanisms underlying the regulation of neuropeptide synthesis and function. It is noteworthy that in both fish species only Npya has been identified, while in the other teleosts two classes of NPY (Npya and Npyb) have been annotated. Our findings document that in both species: (i) NPY is centrally regulated; (ii) NPY levels increase in the brain during aging; (iii) NPY is localized in the enteroendocrine cells as well as in the myenteric plexus and drastically decreases in old animals. According to our data, the age-related regulation in the gut resembles that described in other vertebrate species while the increased levels in the brain offer the unique possibility to explore the role of NPY in model organisms to develop future experimental and translatable approaches.
Collapse
|
29
|
Locus Coeruleus in Non-Mammalian Vertebrates. Brain Sci 2022; 12:brainsci12020134. [PMID: 35203898 PMCID: PMC8870555 DOI: 10.3390/brainsci12020134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/08/2022] [Accepted: 01/15/2022] [Indexed: 11/30/2022] Open
Abstract
The locus coeruleus (LC) is a vertebrate-specific nucleus and the primary source of norepinephrine (NE) in the brain. This nucleus has conserved properties across species: highly homogeneous cell types, a small number of cells but extensive axonal projections, and potent influence on brain states. Comparative studies on LC benefit greatly from its homogeneity in cell types and modularity in projection patterns, and thoroughly understanding the LC-NE system could shed new light on the organization principles of other more complex modulatory systems. Although studies on LC are mainly focused on mammals, many of the fundamental properties and functions of LC are readily observable in other vertebrate models and could inform mammalian studies. Here, we summarize anatomical and functional studies of LC in non-mammalian vertebrate classes, fish, amphibians, reptiles, and birds, on topics including axonal projections, gene expressions, homeostatic control, and modulation of sensorimotor transformation. Thus, this review complements mammalian studies on the role of LC in the brain.
Collapse
|
30
|
Lu Y, Shi C, Jin X, He J, Yin Z. Domestication of farmed fish via the attenuation of stress responses mediated by the hypothalamus-pituitary-inter-renal endocrine axis. Front Endocrinol (Lausanne) 2022; 13:923475. [PMID: 35937837 PMCID: PMC9353172 DOI: 10.3389/fendo.2022.923475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/29/2022] [Indexed: 12/13/2022] Open
Abstract
Human-directed domestication of terrestrial animals traditionally requires thousands of years for breeding. The most prominent behavioral features of domesticated animals include reduced aggression and enhanced tameness relative to their wild forebears, and such behaviors improve the social tolerance of domestic animals toward both humans and crowds of their own species. These behavioral responses are primarily mediated by the hypothalamic-pituitary-adrenal (inter-renal in fish) (HPA/I) endocrine axis, which is involved in the rapid conversion of neuronal-derived perceptual information into hormonal signals. Over recent decades, growing evidence implicating the attenuation of the HPA/I axis during the domestication of animals have been identified through comprehensive genomic analyses of the paleogenomic datasets of wild progenitors and their domestic congeners. Compared with that of terrestrial animals, domestication of most farmed fish species remains at early stages. The present review focuses on the application of HPI signaling attenuation to accelerate the domestication and genetic breeding of farmed fish. We anticipate that deeper understanding of HPI signaling and its implementation in the domestication of farmed fish will benefit genetic breeding to meet the global demands of the aquaculture industry.
Collapse
Affiliation(s)
- Yao Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Chuang Shi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Xia Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jiangyan He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhan Yin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
- *Correspondence: Zhan Yin,
| |
Collapse
|
31
|
Lee D, Oikonomou G, Prober D. Large-scale Analysis of Sleep in Zebrafish. Bio Protoc 2022; 12:e4313. [DOI: 10.21769/bioprotoc.4313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/18/2021] [Accepted: 12/01/2021] [Indexed: 11/02/2022] Open
|
32
|
Tolås I, Kalananthan T, Gomes AS, Lai F, Norland S, Murashita K, Rønnestad I. Regional Expression of npy mRNA Paralogs in the Brain of Atlantic Salmon ( Salmo salar, L.) and Response to Fasting. Front Physiol 2021; 12:720639. [PMID: 34512390 PMCID: PMC8427667 DOI: 10.3389/fphys.2021.720639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/28/2021] [Indexed: 12/18/2022] Open
Abstract
Neuropeptide Y (NPY) is known as a potent orexigenic signal in vertebrates, but its role in Atlantic salmon has not yet been fully established. In this study, we identified three npy paralogs, named npya1, npya2, and npyb, in the Atlantic salmon genome. In silico analysis revealed that these genes are well conserved across the vertebrate’s lineage and the mature peptide sequences shared at least 77% of identity with the human homolog. We analyzed mRNA expression of npy paralogs in eight brain regions of Atlantic salmon post-smolt, and the effect of 4 days of fasting on the npy expression level. Results show that npya1 was the most abundant paralog, and was predominantly expressed in the telencephalon, followed by the midbrain and olfactory bulb. npya2 mRNA was highly abundant in hypothalamus and midbrain, while npyb was found to be highest expressed in the telencephalon, with low mRNA expression levels detected in all the other brain regions. 4 days of fasting resulted in a significant (p < 0.05) decrease of npya1 mRNA expression in the olfactory bulb, increased npya2 mRNA expression in the midbrain and decreased npyb mRNA expression in the pituitary. In the hypothalamus, the vertebrate appetite center, expression of the npy paralogs was not significantly affected by feeding status. However, we observed a trend of increased npya2 mRNA expression (p = 0.099) following 4 days of fasting. Altogether, our findings provide a solid basis for further research on appetite and energy metabolism in Atlantic salmon.
Collapse
Affiliation(s)
- Ingvill Tolås
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | | | - Ana S Gomes
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Floriana Lai
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Sissel Norland
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Koji Murashita
- Physiological Function Division, Aquaculture Research Department, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Tamaki, Japan
| | - Ivar Rønnestad
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
33
|
Webb JM, Fu YH. Recent advances in sleep genetics. Curr Opin Neurobiol 2021; 69:19-24. [PMID: 33360546 PMCID: PMC8217384 DOI: 10.1016/j.conb.2020.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/27/2020] [Accepted: 11/15/2020] [Indexed: 12/14/2022]
Abstract
Sleep regulation has a strong genetic component. In this review, we highlight the recent advances in sleep genetics from knockout, point mutation, and GWAS studies. We overview specific genetic effects on REM versus NREM sleep as well as how the implicated genes fall in broad functional categories. Furthermore, we elucidate how genes affect different aspects of sleep including sleep duration, sleep consolidation, recovery sleep, and the circadian timing of sleep, demonstrating that genetic studies can be powerful in understanding how the body regulates sleep.
Collapse
Affiliation(s)
- John M Webb
- Department of Neurology, Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, CA 94143, USA
| | - Ying-Hui Fu
- Department of Neurology, Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
34
|
Corradi L, Filosa A. Neuromodulation and Behavioral Flexibility in Larval Zebrafish: From Neurotransmitters to Circuits. Front Mol Neurosci 2021; 14:718951. [PMID: 34335183 PMCID: PMC8319623 DOI: 10.3389/fnmol.2021.718951] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/25/2021] [Indexed: 11/13/2022] Open
Abstract
Animals adapt their behaviors to their ever-changing needs. Internal states, such as hunger, fear, stress, and arousal are important behavioral modulators controlling the way an organism perceives sensory stimuli and reacts to them. The translucent zebrafish larva is an ideal model organism for studying neuronal circuits regulating brain states, owning to the possibility of easy imaging and manipulating activity of genetically identified neurons while the animal performs stereotyped and well-characterized behaviors. The main neuromodulatory circuits present in mammals can also be found in the larval zebrafish brain, with the advantage that they contain small numbers of neurons. Importantly, imaging and behavioral techniques can be combined with methods for generating targeted genetic modifications to reveal the molecular underpinnings mediating the functions of such circuits. In this review we discuss how studying the larval zebrafish brain has contributed to advance our understanding of circuits and molecular mechanisms regulating neuromodulation and behavioral flexibility.
Collapse
Affiliation(s)
- Laura Corradi
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Alessandro Filosa
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| |
Collapse
|
35
|
Kawabe M, Hayashi A, Komatsu M, Inui A, Shiozaki K. Ninjinyoeito improves anxiety behavior in neuropeptide Y deficient zebrafish. Neuropeptides 2021; 87:102136. [PMID: 33721592 DOI: 10.1016/j.npep.2021.102136] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/09/2021] [Accepted: 03/03/2021] [Indexed: 10/22/2022]
Abstract
Anxiety induced by excess mental or physical stress is deeply involved in the onset of human psychiatric diseases such as depression, bipolar disorder, and panic disorder. Recently, Kampo medicines have received focus as antidepressant drugs for clinical use because of their synergistic and additive effects. Thus, we evaluated the anxiolytic activity of Ninjinyoeito (NYT) using neuropeptide Y-knockout (NPY-KO) zebrafish that exhibit severe anxiety responses to acute stress. Adult NPY-KO zebrafish were fed either a 3% NYT-supplemented or normal diet (i.e., the control diet) for four days and were then examined via behavioral tests. After short-term cold stress (10 °C, 2 s) was applied, control-fed NPY-KO zebrafish exhibited anxiety behaviors such as freezing, erratic movement, and increased swimming time along the tank wall. On the other hand, NYT-fed NPY-KO zebrafish significantly suppressed these anxiety behaviors, accompanied by a downregulation of tyrosine hydroxylase levels and phosphorylation of extracellular signal-regulated kinases in the brain. To understand the responsible component(s) in NYT, twelve kinds of herbal medicines that composed NYT were tested in behavioral trials with the zebrafish. Among them, nine significantly reduced freezing behavior in NPY-KO zebrafish. In particular, Schisandra fruit induced the most potent effect on abnormal zebrafish behavior, even in the lower amount (0.3% equivalent to NYT), followed by Atractylodes rhizome and Cinnamon bark. Subsequently, four lignans uniquely found in Schisandra fruit (i.e., gomisin A, gomisin N, schizandrin, and schizandrin B) were investigated for their anxiolytic activity in NPY-KO zebrafish. As a result, schizandrin was identified as a responsible compound in the anxiolytic effect of NYT. These results suggest that NYT has a positive effect on mental stress-induced anxiety and may be a promising therapeutic for psychiatric diseases.
Collapse
Affiliation(s)
- Momoko Kawabe
- Department of Food Life Science, Faculty of Fisheries, Kagoshima University, Kagoshima, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Akito Hayashi
- Department of Food Life Science, Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - Masaharu Komatsu
- Department of Food Life Science, Faculty of Fisheries, Kagoshima University, Kagoshima, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Akio Inui
- Department of Pharmacological Sciences of Herbal Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Kazuhiro Shiozaki
- Department of Food Life Science, Faculty of Fisheries, Kagoshima University, Kagoshima, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan.
| |
Collapse
|
36
|
Khoury S, Wang QP, Parisien M, Gris P, Bortsov AV, Linnstaedt SD, McLean SA, Tungate AS, Sofer T, Lee J, Louie T, Redline S, Kaunisto MA, Kalso EA, Munter HM, Nackley AG, Slade GD, Smith SB, Zaykin DV, Fillingim RB, Ohrbach R, Greenspan JD, Maixner W, Neely GG, Diatchenko L. Multi-ethnic GWAS and meta-analysis of sleep quality identify MPP6 as a novel gene that functions in sleep center neurons. Sleep 2021; 44:zsaa211. [PMID: 33034629 PMCID: PMC7953222 DOI: 10.1093/sleep/zsaa211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 08/28/2020] [Indexed: 11/14/2022] Open
Abstract
Poor sleep quality can have harmful health consequences. Although many aspects of sleep are heritable, the understandings of genetic factors involved in its physiology remain limited. Here, we performed a genome-wide association study (GWAS) using the Pittsburgh Sleep Quality Index (PSQI) in a multi-ethnic discovery cohort (n = 2868) and found two novel genome-wide loci on chromosomes 2 and 7 associated with global sleep quality. A meta-analysis in 12 independent cohorts (100 000 individuals) replicated the association on chromosome 7 between NPY and MPP6. While NPY is an important sleep gene, we tested for an independent functional role of MPP6. Expression data showed an association of this locus with both NPY and MPP6 mRNA levels in brain tissues. Moreover, knockdown of an orthologue of MPP6 in Drosophila melanogaster sleep center neurons resulted in decreased sleep duration. With convergent evidence, we describe a new locus impacting human variability in sleep quality through known NPY and novel MPP6 sleep genes.
Collapse
Affiliation(s)
- Samar Khoury
- The Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
| | - Qiao-Ping Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Guangzhou, China
| | - Marc Parisien
- The Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
| | - Pavel Gris
- The Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
| | - Andrey V Bortsov
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University, Durham, NC
| | - Sarah D Linnstaedt
- Institute for Trauma Recovery and Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Samuel A McLean
- Institute for Trauma Recovery and Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Andrew S Tungate
- Institute for Trauma Recovery and Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Tamar Sofer
- Department of Medicine, Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Jiwon Lee
- Department of Medicine, Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Tin Louie
- Department of Biostatistics, University of Washington, Seattle, WA
| | - Susan Redline
- Department of Medicine, Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Mari Anneli Kaunisto
- Department of Diagnostics and Therapeutics, University of Helsinki, Helsinki, Finland
| | - Eija A Kalso
- Department of Diagnostics and Therapeutics, University of Helsinki, Helsinki, Finland
| | | | - Andrea G Nackley
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University, Durham, NC
| | - Gary D Slade
- School of dentistry, University of North Carolina Chapel Hill, Chapel Hill, NC
| | - Shad B Smith
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University, Durham, NC
| | - Dmitri V Zaykin
- Biostatistics and Computational Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | | | - Richard Ohrbach
- Department of Oral Diagnostic Services, University at Buffalo, Buffalo, NY
| | - Joel D Greenspan
- Department of Neural and Pain Sciences, Brotman Facial Pain Clinic, School of Dentistry and Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD
| | - William Maixner
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University, Durham, NC
| | - G Gregory Neely
- The Dr. John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life & Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Luda Diatchenko
- The Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
| |
Collapse
|
37
|
Joo W, Vivian MD, Graham BJ, Soucy ER, Thyme SB. A Customizable Low-Cost System for Massively Parallel Zebrafish Behavioral Phenotyping. Front Behav Neurosci 2021; 14:606900. [PMID: 33536882 PMCID: PMC7847893 DOI: 10.3389/fnbeh.2020.606900] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/10/2020] [Indexed: 01/09/2023] Open
Abstract
High-throughput behavioral phenotyping is critical to genetic or chemical screening approaches. Zebrafish larvae are amenable to high-throughput behavioral screening because of their rapid development, small size, and conserved vertebrate brain architecture. Existing commercial behavioral phenotyping systems are expensive and not easily modified for new assays. Here, we describe a modular, highly adaptable, and low-cost system. Along with detailed assembly and operation instructions, we provide data acquisition software and a robust, parallel analysis pipeline. We validate our approach by analyzing stimulus response profiles in larval zebrafish, confirming prepulse inhibition phenotypes of two previously isolated mutants, and highlighting best practices for growing larvae prior to behavioral testing. Our new design thus allows rapid construction and streamlined operation of many large-scale behavioral setups with minimal resources and fabrication expertise, with broad applications to other aquatic organisms.
Collapse
Affiliation(s)
- William Joo
- Biozentrum, University of Basel, Basel, Switzerland
| | - Michael D. Vivian
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Brett J. Graham
- Center for Brain Science, Harvard University, Cambridge, MA, United States
| | - Edward R. Soucy
- Center for Brain Science, Harvard University, Cambridge, MA, United States
| | - Summer B. Thyme
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
38
|
Su CK. State-dependent modulation of sympathetic firing by α 1-adrenoceptors requires constitutive PKC activity in the neonatal rat spinal cord. Auton Neurosci 2020; 227:102688. [PMID: 32502943 DOI: 10.1016/j.autneu.2020.102688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/10/2020] [Accepted: 05/15/2020] [Indexed: 01/02/2023]
Abstract
The central adrenergic and noradrenergic neurotransmitter systems diffusively affect the operation of the spinal neural network and dynamically gauge central sympathetic outflow. Using in vitro splanchnic nerve-thoracic spinal cord preparations as an experimental model, this study examined the intraspinal α1-adrenoceptor-meidated modulation of sympathetic firing behaviors. Several sympathetic single-fiber activities were simultaneously recorded. Application of phenylephrine (Phe, an α1-adrenoceptor agonist) increased, decreased or did not affect spontaneous firing. A log-log plot of the change ratios of the average firing rates (AFR) versus their basal AFR displays a linear data distribution. Thus, the heterogeneity in α1-adrenoceptor-mediated responses is well described by a power law function. Phe-induced power-law firing modulation (plFM) was sensitive to prazosin (Prz, an α1-adrenoceptor antagonist). Heparin (Hep, a competitive IP3 receptor blocker) and chelerythrine (Che, a protein kinase C inhibitor) also caused plFM. Phe-induced plFM persisted in the presence of Hep; however, it was occluded by Che pretreatment. Pair-wise analysis of single-fiber activities revealed synchronous sympathetic discharges. Application of Phe, Hep or Che suppressed synchronous discharges in fiber pairs with apparent correlated firing (ACF) and induced or potentiated synchronous discharges in those without or with minimal ACF. Thus, the basal activities of the sympathetic preganglionic neurons participate in determining the responses mediated by the activation of α1-adrenoceptors. This deterministic factor, which is intrinsic to spinal neural networks, helps the supraspinal adrenergic and noradrenergic systems differentially control their widely distributed neural targets.
Collapse
Affiliation(s)
- Chun-Kuei Su
- Department of Biotechnology, College of Life Science, Zhaoqing University, Zhaoqing, Guangdong, China; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, ROC.
| |
Collapse
|
39
|
Abstract
Research over the last 20 years has firmly established the existence of sleep states across the animal kingdom. Work in non-mammalian animal models such as nematodes, fruit flies, and zebrafish has now uncovered many evolutionarily conserved aspects of sleep physiology and regulation, including shared circuit architecture, homeostatic and circadian control elements, and principles linking sleep physiology to function. Non-mammalian sleep research is now shedding light on fundamental aspects of the genetic and neuronal circuit regulation of sleep, with direct implications for the understanding of how sleep is regulated in mammals.
Collapse
Affiliation(s)
- Declan G. Lyons
- Department of Cell and Developmental Biology, University College London, United Kingdom, WC1E 6BT
| | - Jason Rihel
- Department of Cell and Developmental Biology, University College London, United Kingdom, WC1E 6BT
| |
Collapse
|
40
|
|
41
|
Yang L, Yang Y, Yuan J, Sun Y, Dai J, Su B. Transcriptomic Landscape of von Economo Neurons in Human Anterior Cingulate Cortex Revealed by Microdissected-Cell RNA Sequencing. Cereb Cortex 2020; 29:838-851. [PMID: 30535007 PMCID: PMC6319179 DOI: 10.1093/cercor/bhy286] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Indexed: 01/19/2023] Open
Abstract
The von Economo neurons (VENs) are specialized large bipolar projection neurons with restricted distribution in the human brain, and they are far more abundant in humans than in non-human primates. However, VEN functions remain elusive due to the difficulty of isolating VENs and dissecting their connections in the brain. Here, we combined laser-capture-microdissection with RNA sequencing to describe the transcriptomic profile of VENs from human anterior cingulate cortex (ACC). Using pyramidal neurons as reference cells, we identified 344 genes with VEN-associated expression differences, including 215 higher and 129 lower expression genes. Functional enrichment and protein–protein interaction network analyses showed that these genes with VEN-associated expression differences are involved in VEN morphogenesis and functions, such as dendrite branching and axon myelination, and many of them are associated with human social-emotional disorders. With the use of in situ hybridization and immunohistochemistry assays, we validated four novel VEN markers (VAT1L, CHST8, LYPD1, and SULF2). Collectively, we generated a full-spectrum expression profile of VENs from human ACC, greatly enlarging the pool of genes with VEN-associated expression differences that can help researchers to understand the role of VENs in normal and disordered human brains.
Collapse
Affiliation(s)
- Lixin Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Yandong Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jiamiao Yuan
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yan Sun
- Chinese Brain Bank Center, South-Central University for Nationalities, Wuhan, China
| | - Jiapei Dai
- Chinese Brain Bank Center, South-Central University for Nationalities, Wuhan, China
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
42
|
Neuropeptide Y deficiency induces anxiety-like behaviours in zebrafish (Danio rerio). Sci Rep 2020; 10:5913. [PMID: 32246073 PMCID: PMC7125123 DOI: 10.1038/s41598-020-62699-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/11/2020] [Indexed: 01/01/2023] Open
Abstract
Neuropeptide Y (NPY) controls energy homeostasis including orexigenic actions in mammalians and non-mammalians. Recently, NPY has attracted attention as a mediator of emotional behaviour and psychosomatic diseases. However, its functions are not fully understood. We established npy gene-deficient (NPY-KO) zebrafish (Danio rerio) to assess the relationship between NPY and emotional behaviours. The NPY-KO zebrafish exhibited similar growth, but pomc and avp mRNA levels in the brain were higher as compared to wild-type fish. NPY-KO zebrafish exhibited several anxiety-like behaviours, such as a decrease in social interaction in mirror test and decreased locomotion in black-white test. The acute cold stress-treated NPY-KO zebrafish exhibited anxiety-like behaviours such as remaining stationary and swimming along the side of the tank in the mirror test. Moreover, expression levels of anxiety-associated genes (orx and cck) and catecholamine production (gr, mr, th1 and th2) were significantly higher in NPY-KO zebrafish than in wild-type fish. We demonstrated that NPY-KO zebrafish have an anxiety phenotype and a stress-vulnerability like NPY-KO mice, whereby orx and/or catecholamine signalling may be involved in the mechanism actions.
Collapse
|
43
|
Abstract
Sleep is a ubiquitous and complex behavior in both its manifestation and regulation. Despite its essential role in maintaining optimal performance, health, and well-being, the genetic mechanisms underlying sleep remain poorly understood. Here, we review the forward genetic approaches undertaken in the last four years to elucidate the genes and gene pathways affecting sleep and its regulation. Despite an increasing number of studies and mining large databases, a coherent picture on “sleep” genes has yet to emerge. We highlight the results achieved by using unbiased genetic screens mainly in humans, mice, and fruit flies with an emphasis on normal sleep and make reference to lessons learned from the circadian field.
Collapse
Affiliation(s)
- Maxime Jan
- Centre for Integrative Genomics, University of Lausanne, Lausanne, 1015, Switzerland
| | - Bruce F O'Hara
- Department of Biology, University of Kentucky, Lexington, 40515, USA
| | - Paul Franken
- Centre for Integrative Genomics, University of Lausanne, Lausanne, 1015, Switzerland
| |
Collapse
|
44
|
Influence of scarring moxibustion on serum melatonin and neuropeptide Y expressions in the insomnia model rats 瘢痕灸对失眠模型大鼠血清褪黑素及神经肽Y含量表达影响的研究. WORLD JOURNAL OF ACUPUNCTURE-MOXIBUSTION 2020. [DOI: 10.1016/j.wjam.2020.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
45
|
Li SB, de Lecea L. The hypocretin (orexin) system: from a neural circuitry perspective. Neuropharmacology 2020; 167:107993. [PMID: 32135427 DOI: 10.1016/j.neuropharm.2020.107993] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/23/2020] [Accepted: 02/05/2020] [Indexed: 12/11/2022]
Abstract
Hypocretin/orexin neurons are distributed restrictively in the hypothalamus, a brain region known to orchestrate diverse functions including sleep, reward processing, food intake, thermogenesis, and mood. Since the hypocretins/orexins were discovered more than two decades ago, extensive studies have accumulated concrete evidence showing the pivotal role of hypocretin/orexin in diverse neural modulation. New method of viral-mediated tracing system offers the possibility to map the monosynaptic inputs and detailed anatomical connectivity of Hcrt neurons. With the development of powerful research techniques including optogenetics, fiber-photometry, cell-type/pathway specific manipulation and neuronal activity monitoring, as well as single-cell RNA sequencing, the details of how hypocretinergic system execute functional modulation of various behaviors are coming to light. In this review, we focus on the function of neural pathways from hypocretin neurons to target brain regions. Anatomical and functional inputs to hypocretin neurons are also discussed. We further briefly summarize the development of pharmaceutical compounds targeting hypocretin signaling. This article is part of the special issue on Neuropeptides.
Collapse
Affiliation(s)
- Shi-Bin Li
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA, 94305, USA.
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA, 94305, USA.
| |
Collapse
|
46
|
Levitas-Djerbi T, Sagi D, Lebenthal-Loinger I, Lerer-Goldshtein T, Appelbaum L. Neurotensin Enhances Locomotor Activity and Arousal and Inhibits Melanin-Concentrating Hormone Signaling. Neuroendocrinology 2020; 110:35-49. [PMID: 31030196 DOI: 10.1159/000500590] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/28/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Hypothalamic neurotensin (Nts)-secreting neurons regulate fundamental physiological processes including metabolism and feeding. However, the role of Nts in modulation of locomotor activity, sleep, and arousal is unclear. We previously identified and characterized Nts neurons in the zebrafish hypothalamus. MATERIALS AND METHODS In order to study the role of Nts, nts mutant (nts-/-), and overexpressing zebrafish were generated. RESULTS The expression of both nts mRNA and Nts protein was reduced during the night in wild-type zebrafish. Behavioral assays revealed that locomotor activity was decreased during both day and night, while sleep was increased exclusively during the nighttime in nts-/- larvae. Likewise, inducible overexpression of Nts increased arousal in hsp70:Gal4/uas:Nts larvae. Furthermore, the behavioral response to light-to-dark transitions was reduced in nts-/- larvae. In order to elucidate potential contenders that may mediate Nts action on these behaviors, we profiled the transcriptome of 6 dpf nts-/- larvae. Among other genes, the expression levels of melanin-concentrating hormone receptor 1b were increased in nts-/- larvae. Furthermore, a portion of promelanin-concentrating hormone 1 (pmch1) and pmch2 neurons expressed the nts receptor. In addition, expression of the the two zebrafish melanin-concentrating hormone (Mch) orthologs, Mch1 and Mch2, was increased in nts-/- larvae. CONCLUSION These results show that the Nts and Mch systems interact and modulate locomotor activity and arousal.
Collapse
Affiliation(s)
- Talia Levitas-Djerbi
- The Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Dana Sagi
- The Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | | | - Tali Lerer-Goldshtein
- The Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Lior Appelbaum
- The Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel,
- The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel,
| |
Collapse
|
47
|
Kelly M, Collin S, Hemmi J, Lesku J. Evidence for Sleep in Sharks and Rays: Behavioural, Physiological, and Evolutionary Considerations. BRAIN, BEHAVIOR AND EVOLUTION 2019; 94:37-50. [DOI: 10.1159/000504123] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 11/19/2022]
Abstract
Sleep is widespread across the animal kingdom. However, most comparative sleep data exist for terrestrial vertebrates, with much less known about sleep in amphibians, bony fishes, and invertebrates. There is an absence of knowledge on sleep in cartilaginous fishes. Sharks and rays are amongst the earliest vertebrates, and may hold clues to the evolutionary history of sleep and sleep states found in more derived animals, such as mammals and birds. Here, we review the literature concerning activity patterns, sleep behaviour, and electrophysiological evidence for sleep in cartilaginous (and bony) fishes following an exhaustive literature search that found more than 80 relevant studies in laboratory and field environments. Evidence for sleep in sharks and rays that respire without swimming is preliminary; evidence for sleep in continuously swimming fishes is currently absent. We discuss ways in which the latter group might sleep concurrent with sustained movement, and conclude with suggestions for future studies in order to provide more comprehensive data on when, how, and why sharks and rays sleep.
Collapse
|
48
|
Lee DA, Liu J, Hong Y, Lane JM, Hill AJ, Hou SL, Wang H, Oikonomou G, Pham U, Engle J, Saxena R, Prober DA. Evolutionarily conserved regulation of sleep by epidermal growth factor receptor signaling. SCIENCE ADVANCES 2019; 5:eaax4249. [PMID: 31763451 PMCID: PMC6853770 DOI: 10.1126/sciadv.aax4249] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 09/17/2019] [Indexed: 05/03/2023]
Abstract
The genetic bases for most human sleep disorders and for variation in human sleep quantity and quality are largely unknown. Using the zebrafish, a diurnal vertebrate, to investigate the genetic regulation of sleep, we found that epidermal growth factor receptor (EGFR) signaling is necessary and sufficient for normal sleep levels and is required for the normal homeostatic response to sleep deprivation. We observed that EGFR signaling promotes sleep via mitogen-activated protein kinase/extracellular signal-regulated kinase and RFamide neuropeptide signaling and that it regulates RFamide neuropeptide expression and neuronal activity. Consistent with these findings, analysis of a large cohort of human genetic data from participants of European ancestry revealed that common variants in genes within the EGFR signaling pathway are associated with variation in human sleep quantity and quality. These results indicate that EGFR signaling and its downstream pathways play a central and ancient role in regulating sleep and provide new therapeutic targets for sleep disorders.
Collapse
Affiliation(s)
- Daniel A. Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Justin Liu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Young Hong
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jacqueline M. Lane
- Center for Genomic Medicine and Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
| | - Andrew J. Hill
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sarah L. Hou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Heming Wang
- Center for Genomic Medicine and Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
| | - Grigorios Oikonomou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Uyen Pham
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jae Engle
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Richa Saxena
- Center for Genomic Medicine and Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital and Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - David A. Prober
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
49
|
Volkoff H. Fish as models for understanding the vertebrate endocrine regulation of feeding and weight. Mol Cell Endocrinol 2019; 497:110437. [PMID: 31054868 DOI: 10.1016/j.mce.2019.04.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/17/2019] [Accepted: 04/24/2019] [Indexed: 12/17/2022]
Abstract
The frequencies of eating disorders and obesity have increased worldwide in recent years. Their pathophysiologies are still unclear, but recent evidence suggests that they might be related to changes in endocrine and neural factors that regulate feeding and energy homeostasis. In order to develop efficient therapeutic drugs, a more thorough knowledge of the neuronal circuits and mechanisms involved is needed. Although to date, rodents have mostly been used models in the area of neuroscience and neuroendocrinology, an increasing number of studies use non-mammalian vertebrates, in particular fish, as model systems. Fish present several advantages over mammalian models and they share genetic and physiological homology to mammals with close similarities in the mechanisms involved in the neural and endocrine regulation of appetite. This review briefly describes the regulation of feeding in two model species, goldfish and zebrafish, how this regulation compares to that in mammals, and how these fish could be used for studies on endocrine regulation of eating and weight and its dysregulations.
Collapse
Affiliation(s)
- Helene Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada.
| |
Collapse
|
50
|
Soto R, Goetting DL, Van Buskirk C. NPR-1 Modulates Plasticity in C. elegans Stress-Induced Sleep. iScience 2019; 19:1037-1047. [PMID: 31522115 PMCID: PMC6745490 DOI: 10.1016/j.isci.2019.08.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/22/2019] [Accepted: 08/27/2019] [Indexed: 12/15/2022] Open
Abstract
Sleep is beneficial yet antagonistic to critical functions such as foraging and escape, and we aim to understand how these competing drives are functionally integrated. C. elegans, which lives in reduced oxygen environments, engages in developmentally timed sleep (DTS) during larval stage transitions and engages in stress-induced sleep (SIS) during recovery from damaging conditions. Although DTS and SIS use distinct mechanisms to coordinate multiple sleep-associated behaviors, we show that movement quiescence in these sleep states is similarly integrated with the competing drive to avoid oxygen. Furthermore, by manipulating oxygen to deprive animals of SIS, we observe sleep rebound in a wild C. elegans isolate, indicating that sleep debt accrues during oxygen-induced SIS deprivation. Our work suggests that multiple sleep states adopt a common, highly plastic effector of movement quiescence that is suppressed by aversive stimuli and responsive to homeostatic sleep pressure, providing a limited window of opportunity for escape.
Collapse
Affiliation(s)
- Rony Soto
- Department of Biology, California State University Northridge, Northridge, CA 91330, USA
| | - Desiree L Goetting
- Department of Biology, California State University Northridge, Northridge, CA 91330, USA
| | - Cheryl Van Buskirk
- Department of Biology, California State University Northridge, Northridge, CA 91330, USA.
| |
Collapse
|