1
|
Brook B, Checkervarty AK, Barman S, Sweitzer C, Bosco AN, Sherman AC, Baden LR, Morrocchi E, Sanchez-Schmitz G, Palma P, Nanishi E, O'Meara TR, McGrath ME, Frieman MB, Soni D, van Haren SD, Ozonoff A, Diray-Arce J, Steen H, Dowling DJ, Levy O. The BNT162b2 mRNA vaccine demonstrates reduced age-associated T H1 support in vitro and in vivo. iScience 2024; 27:111055. [PMID: 39569372 PMCID: PMC11576392 DOI: 10.1016/j.isci.2024.111055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 07/05/2024] [Accepted: 09/24/2024] [Indexed: 11/22/2024] Open
Abstract
mRNA vaccines demonstrate impaired immunogenicity and durability in vulnerable older populations. We hypothesized that human in vitro modeling and proteomics could elucidate age-specific mRNA vaccine actions. BNT162b2-stimulation changed the plasma proteome of blood samples from young (18-50Y) and older adult (≥60Y) participants, assessed by mass spectrometry, proximity extension assay, and multiplex. Young adult up-regulation (e.g., PSMC6, CPN1) contrasted reduced induction in older adults (e.g., TPM4, APOF, APOC2, CPN1, PI16). 30-85% lower TH1-polarizing cytokines and chemokines were induced in elderly blood (e.g., IFNγ, CXCL10). Analytes lower in older adult samples included human in vivo mRNA immunogenicity biomarkers (e.g., IFNγ, CXCL10, CCL4, IL-1RA). BNT162b2 also demonstrated reduced CD4+ TH1 responses in aged vs. young adult mice. Our study demonstrates the utility of human in vitro platforms modeling age-specific mRNA vaccine immunogenicity, highlights impaired support of TH1 polarization in older adults, and provides a rationale for precision mRNA vaccine adjuvantation to induce greater immunogenicity.
Collapse
Affiliation(s)
- Byron Brook
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Abhinav Kumar Checkervarty
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Prevention of Organ Failure (PROOF) Centre of Excellence, St Paul's Hospital, University of British Columbia, Vancouver, BC V6Z 2K5, Canada
- UBC Centre for Heart Lung Innovation, Providence Research, St Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Soumik Barman
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Cali Sweitzer
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Anna-Nicole Bosco
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Amy C Sherman
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Lindsey R Baden
- Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Elena Morrocchi
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Guzman Sanchez-Schmitz
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Paolo Palma
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
- Department of Systems Medicine- Chair of Pediatrics, University of Rome, 00133 Tor Vergata, Italy
| | - Etsuro Nanishi
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Timothy R O'Meara
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Marisa E McGrath
- Center for Pathogen Research, Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Matthew B Frieman
- Center for Pathogen Research, Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Dheeraj Soni
- Global Investigative Toxicology, Preclinical Safety, Sanofi, Cambridge, MA 02142, USA
| | - Simon D van Haren
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Al Ozonoff
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA
| | - Joann Diray-Arce
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Hanno Steen
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - David J Dowling
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Ofer Levy
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
2
|
Mennini M, Piccirillo M, Furio S, Valitutti F, Ferretti A, Strisciuglio C, De Filippo M, Parisi P, Peroni DG, Di Nardo G, Ferrari F. Probiotics and other adjuvants in allergen-specific immunotherapy for food allergy: a comprehensive review. FRONTIERS IN ALLERGY 2024; 5:1473352. [PMID: 39450374 PMCID: PMC11499231 DOI: 10.3389/falgy.2024.1473352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
This review delves into the potential of manipulating the microbiome to enhance oral tolerance in food allergy, focusing on food allergen-specific immunotherapy (FA-AIT) and the use of adjuvants, with a significant emphasis on probiotics. FA-AIT, including oral (OIT), sublingual (SLIT), and epicutaneous (EPIT) immunotherapy, has shown efficacy in desensitizing patients and achieving sustained unresponsiveness (SU). However, the long-term effectiveness and safety of FA-AIT are still under investigation. Probiotics, particularly strains of Lactobacillus, play a crucial role in enhancing immune tolerance by promoting regulatory T cells (Tregs) and modulating cytokine profiles. These probiotics can induce semi-mature dendritic cells, enhance CD40 expression, inhibit IL-4 and IL-5, and promote IL-10 and TGF-β, thus contributing to mucosal defense and immunological tolerance. Clinical trials combining probiotics with FA-AIT have demonstrated improved desensitization rates and immune tolerance in food-allergic patients. For example, the combination of Lactobacillus rhamnosus with peanut OIT resulted in a significantly higher rate of SU compared to the placebo group, along with notable immune changes such as reduced peanut-specific IgE and increased IgG4 levels. The review also explores other adjuvants in FA-AIT, such as biologic drugs, which target specific immune pathways to improve treatment outcomes. Additionally, nanoparticles and herbal therapies like food allergy herbal formula 2 (FAHF-2) are discussed for their potential to enhance allergen delivery and immunogenicity, reduce adverse events, and improve desensitization. In conclusion, integrating probiotics and other adjuvants into FA-AIT protocols could significantly enhance the safety and efficacy of FA-AIT, leading to better patient outcomes and quality of life.
Collapse
Affiliation(s)
- Maurizio Mennini
- Pediatric Unit, NESMOS Department, Sant’Andrea University Hospital, Sapienza University of Rome, Rome, Italy
| | - Marisa Piccirillo
- Pediatric Unit, NESMOS Department, Sant’Andrea University Hospital, Sapienza University of Rome, Rome, Italy
| | - Silvia Furio
- Pediatric Unit, NESMOS Department, Sant’Andrea University Hospital, Sapienza University of Rome, Rome, Italy
| | - Francesco Valitutti
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Alessandro Ferretti
- Pediatric Unit, NESMOS Department, Sant’Andrea University Hospital, Sapienza University of Rome, Rome, Italy
| | - Caterina Strisciuglio
- Department of Woman, Child and General and Specialist Surgery, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Maria De Filippo
- Department of Maternal Infantile and Urological Sciences, AOU Policlinico Umberto I, Rome, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Pasquale Parisi
- Pediatric Unit, NESMOS Department, Sant’Andrea University Hospital, Sapienza University of Rome, Rome, Italy
| | - Diego Giampietro Peroni
- Section of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giovanni Di Nardo
- Pediatric Unit, NESMOS Department, Sant’Andrea University Hospital, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
3
|
Adiga V, Bindhu H, Ahmed A, Chetan Kumar N, Tripathi H, D’Souza G, Dias M, Shivalingaiah S, Rao S, K N S, Hawrylowicz C, Dwarkanath P, Vyakarnam A. Immune profiling reveals umbilical cord blood mononuclear cells from South India display an IL-8 dominant, CXCL-10 deficient polyfunctional monocyte response to pathogen-associated molecular patterns that is distinct from adult blood cells. Clin Exp Immunol 2024; 217:263-278. [PMID: 38695079 PMCID: PMC11310697 DOI: 10.1093/cei/uxae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/28/2024] [Accepted: 05/14/2024] [Indexed: 08/10/2024] Open
Abstract
Neonate responses to pathogen-associated molecular patterns (PAMPS) differ from adults; such understanding is poor in Indian neonates, despite recognized significant infectious risk. Immune profiling analysis was undertaken of 10 secreted mediators contextualized with cellular source induced by six PAMPs in umbilical cord (CB; n = 21) and adult-blood (PBMC; n = 14) from a tertiary care hospital in South India. Differential cytokine expression analysis (minimum log2-fold difference; adj P-value < 0.05) identified bacterial PAMPs induced higher concentrations of IL-1β, IL-10, TNF-α in adults versus IL-8, GM-CSF, IFN-γ, and IL-2 in CB. CB responded to poly I:C and SARS-CoV-2 lysate with a dominant IL-8 response, whereas in PBMC, CXCL-10 dominated poly I:C, but not SARS-CoV-2, responses, highlighting potential IL-8 importance, in the absence of Type I Interferons, in antiviral CB immunity. Candida albicans was the only PAMP to uniformly induce higher secretion of effectors in CB. The predominant source of IL-8/IL-6/TNF-α/IL-1β in both CB and PBMC was polyfunctional monocytes and IFN-γ/IL-2/IL-17 from innate lymphocytes. Correlation matrix analyses revealed IL-8 to be the most differentially regulated, correlating positively in CB versus negatively in PBMC with IL-6, GM-CSF, IFN-γ, IL-2, consistent with more negatively regulated cytokine modules in adults, potentially linked to higher anti-inflammatory IL-10. Cord and adult blood from India respond robustly to PAMPs with unique effector combinations. These data provide a strong foundation to monitor, explore, mechanisms that regulate such immunity during the life course, an area of significant global health importance given infection-related infant mortality incidence.
Collapse
Affiliation(s)
- Vasista Adiga
- Human Immunology Laboratory, Division of Infectious Diseases, St. John’s Research Institute, Bangalore, Karnataka, India
- Department of Biotechnology, PES University, Bangalore, Karnataka, India
| | - Hima Bindhu
- Human Immunology Laboratory, Division of Infectious Diseases, St. John’s Research Institute, Bangalore, Karnataka, India
| | - Asma Ahmed
- Human Immunology Laboratory, Division of Infectious Diseases, St. John’s Research Institute, Bangalore, Karnataka, India
| | - Nirutha Chetan Kumar
- Human Immunology Laboratory, Division of Infectious Diseases, St. John’s Research Institute, Bangalore, Karnataka, India
| | - Himanshu Tripathi
- Human Immunology Laboratory, Division of Infectious Diseases, St. John’s Research Institute, Bangalore, Karnataka, India
| | - George D’Souza
- Department of Pulmonary Medicine, St. John’s Medical College, Bangalore, India
| | - Mary Dias
- Division of Infectious Diseases, St. John’s Research Institute, Bangalore, Karnataka, India
| | | | - Srishti Rao
- Division of Infectious Diseases, St. John’s Research Institute, Bangalore, Karnataka, India
| | - Shanti K N
- Department of Biotechnology, PES University, Bangalore, Karnataka, India
| | - Catherine Hawrylowicz
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Science & Medicine, King’s College, London, UK
| | - Pratibha Dwarkanath
- Division of Nutrition, St. John’s Research Institute, Bangalore, Karnataka, India
| | - Annapurna Vyakarnam
- Human Immunology Laboratory, Division of Infectious Diseases, St. John’s Research Institute, Bangalore, Karnataka, India
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Science & Medicine, King’s College, London, UK
| |
Collapse
|
4
|
Thomas S, Pak J, Doss-Gollin S, Ryff K, Beijnen E, Pedersen GK, Christensen D, Levy O, van Haren SD. Human In vitro Modeling Identifies Adjuvant Combinations that Unlock Antigen Cross-presentation and Promote T-helper 1 Development in Newborns, Adults and Elders. J Mol Biol 2024; 436:168446. [PMID: 38242283 PMCID: PMC10922990 DOI: 10.1016/j.jmb.2024.168446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/08/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
Adjuvants are vaccine components that can boost the type, magnitude, breadth, and durability of an immune response. We have previously demonstrated that certain adjuvant combinations can act synergistically to enhance and shape immunogenicity including promotion of Th1 and cytotoxic T-cell development. These combinations also promoted protective immunity in vulnerable populations such as newborns. In this study, we employed combined antigen-specific human in vitro models to identify adjuvant combinations that could synergistically promote the expansion of vaccine-specific CD4+ cells, induce cross-presentation on MHC class I, resulting in antigen-specific activation of CD8+ cells, and direct the balance of immune response to favor the production of Th1-promoting cytokines. A screen of 78 adjuvant combinations identified several T cell-potentiating adjuvant combinations. Remarkably, a combination of TLR9 and STING agonists (CpG + 2,3-cGAMP) promoted influenza-specific CD4+ and CD8+ T cell activation and selectively favored production of Th1-polarizing cytokines TNF and IL-12p70 over co-regulated cytokines IL-6 and IL-12p40, respectively. Phenotypic reprogramming towards cDC1-type dendritic cells by CpG + 2,3-cGAMP was also observed. Finally, we characterized the molecular mechanism of this adjuvant combination including the ability of 2,3-cGAMP to enhance DC expression of TLR9 and the dependency of antigen-presenting cell activation on the Sec22b protein important to endoplasmic reticulum-Golgi vesicle trafficking. The identification of the adjuvant combination CpG + 2,3-cGAMP may therefore prove key to the future development of vaccines against respiratory viral infections tailored for the functionally distinct immune systems of vulnerable populations such as older adults and newborns.
Collapse
Affiliation(s)
- Sanya Thomas
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Jensen Pak
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Simon Doss-Gollin
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Kevin Ryff
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Elisabeth Beijnen
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Gabriel K Pedersen
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark; Department of Immunology and Microbiology, University of Copenhagen, Denmark
| | - Dennis Christensen
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Ofer Levy
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA; Broad Institute of MIT & Harvard, Cambridge, MA, USA
| | - Simon D van Haren
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Morrocchi E, van Haren S, Palma P, Levy O. Modeling human immune responses to vaccination in vitro. Trends Immunol 2024; 45:32-47. [PMID: 38135599 DOI: 10.1016/j.it.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023]
Abstract
The human immune system is a complex network of coordinated components that are crucial for health and disease. Animal models, commonly used to study immunomodulatory agents, are limited by species-specific differences, low throughput, and ethical concerns. In contrast, in vitro modeling of human immune responses can enable species- and population-specific mechanistic studies and translational development within the same study participant. Translational accuracy of in vitro models is enhanced by accounting for genetic, epigenetic, and demographic features such as age, sex, and comorbidity. This review explores various human in vitro immune models, considers evidence that they may resemble human in vivo responses, and assesses their potential to accelerate and de-risk vaccine discovery and development.
Collapse
Affiliation(s)
- Elena Morrocchi
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, Rome, Italy; Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA
| | - Simon van Haren
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Paolo Palma
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, Rome, Italy; Chair of Pediatrics, Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy.
| | - Ofer Levy
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
6
|
Doss-Gollin S, Thomas S, Brook B, Abedi K, Lebas C, Auderset F, Lugo-Rodriguez Y, Sanchez-Schmitz G, Dowling DJ, Levy O, van Haren SD. Human in vitro modeling of adjuvant formulations demonstrates enhancement of immune responses to SARS-CoV-2 antigen. NPJ Vaccines 2023; 8:163. [PMID: 37884538 PMCID: PMC10603059 DOI: 10.1038/s41541-023-00759-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
Adjuvants can enhance vaccine immunogenicity, but their mechanism of action is often incompletely understood, hampering rapid applicability for pandemic vaccines. Herein, we characterized the cellular and molecular activity of adjuvant formulations available for pre-clinical evaluation, including several developed for global open access. We applied four complementary human in vitro platforms to assess individual and combined adjuvants in unformulated, oil-in-water, and liposomal delivery platforms. Liposomal co-formulation of MPLA and QS-21 was most potent in promoting dendritic cell maturation, selective production of Th1-polarizing cytokines, and activation of SARS-CoV-2 Spike-specific CD4+ and CD8+ T cells in a co-culture assay. Select formulations also significantly enhanced Spike antigen-specific humoral immunity in vivo. This study confirms the utility of the cumulative use of human in vitro tools to predict adjuvanticity potential. Thus, human in vitro modeling may advance public health by accelerating the development of affordable and scalable adjuvants for vaccines tailored to vulnerable populations.
Collapse
Affiliation(s)
- Simon Doss-Gollin
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Sanya Thomas
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Byron Brook
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Kimia Abedi
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Célia Lebas
- Vaccine Formulation Institute, 1228 Plan-les-Ouates, Geneva, Switzerland
| | - Floriane Auderset
- Vaccine Formulation Institute, 1228 Plan-les-Ouates, Geneva, Switzerland
| | | | - Guzman Sanchez-Schmitz
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - David J Dowling
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Ofer Levy
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Simon D van Haren
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, 02115, USA.
- Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
7
|
El Bissati K, Krishack PA, Zhou Y, Weber CR, Lykins J, Jankovic D, Edelblum KL, Fraczek L, Grover H, Chentoufi AA, Singh G, Reardon C, Dubey JP, Reed S, Alexander J, Sidney J, Sette A, Shastri N, McLeod R. CD4 + T Cell Responses to Toxoplasma gondii Are a Double-Edged Sword. Vaccines (Basel) 2023; 11:1485. [PMID: 37766162 PMCID: PMC10535856 DOI: 10.3390/vaccines11091485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/26/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
CD4+ T cells have been found to play critical roles in the control of both acute and chronic Toxoplasma infection. Previous studies identified a protective role for the Toxoplasma CD4+ T cell-eliciting peptide AS15 (AVEIHRPVPGTAPPS) in C57BL/6J mice. Herein, we found that immunizing mice with AS15 combined with GLA-SE, a TLR-4 agonist in emulsion adjuvant, can be either helpful in protecting male and female mice at early stages against Type I and Type II Toxoplasma parasites or harmful (lethal with intestinal, hepatic, and spleen pathology associated with a storm of IL6). Introducing the universal CD4+ T cell epitope PADRE abrogates the harmful phenotype of AS15. Our findings demonstrate quantitative and qualitative features of an effective Toxoplasma-specific CD4+ T cell response that should be considered in testing next-generation vaccines against toxoplasmosis. Our results also are cautionary that individual vaccine constituents can cause severe harm depending on the company they keep.
Collapse
Affiliation(s)
- Kamal El Bissati
- Institute of Molecular Engineering, University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Paulette A. Krishack
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA; (P.A.K.); (C.R.W.); (G.S.); (C.R.)
| | - Ying Zhou
- Department of Ophthalmology and Visual Sciences, University of Chicago, Chicago, IL 60637, USA; (Y.Z.); (J.L.); (L.F.); (R.M.)
| | - Christopher R. Weber
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA; (P.A.K.); (C.R.W.); (G.S.); (C.R.)
| | - Joseph Lykins
- Department of Ophthalmology and Visual Sciences, University of Chicago, Chicago, IL 60637, USA; (Y.Z.); (J.L.); (L.F.); (R.M.)
- Department of Emergency Medicine, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02215, USA
| | - Dragana Jankovic
- Immunoparasitology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Karen L. Edelblum
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Center for Immunity and Inflammation, Laboratory Medicine, Department of Pathology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Laura Fraczek
- Department of Ophthalmology and Visual Sciences, University of Chicago, Chicago, IL 60637, USA; (Y.Z.); (J.L.); (L.F.); (R.M.)
| | - Harshita Grover
- Division of Immunology and Pathogenesis, Department of Molecular and Cellular Biology, University of California, Berkeley, CA 94720, USA; (H.G.); (N.S.)
| | - Aziz A. Chentoufi
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa;
| | - Gurminder Singh
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA; (P.A.K.); (C.R.W.); (G.S.); (C.R.)
| | - Catherine Reardon
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA; (P.A.K.); (C.R.W.); (G.S.); (C.R.)
| | - J. P. Dubey
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
| | - Steve Reed
- Infectious Diseases Research Institute, 1616 Eastlake Ave E #400, Seattle, WA 98102, USA;
| | - Jeff Alexander
- PaxVax, 3985-A Sorrento Valley Blvd, San Diego, CA 92121, USA;
| | - John Sidney
- La Jolla Institute of Allergy and Immunology, 9420 Athena Cir, La Jolla, CA 92037, USA; (J.S.); (A.S.)
| | - Alessandro Sette
- La Jolla Institute of Allergy and Immunology, 9420 Athena Cir, La Jolla, CA 92037, USA; (J.S.); (A.S.)
| | - Nilabh Shastri
- Division of Immunology and Pathogenesis, Department of Molecular and Cellular Biology, University of California, Berkeley, CA 94720, USA; (H.G.); (N.S.)
| | - Rima McLeod
- Department of Ophthalmology and Visual Sciences, University of Chicago, Chicago, IL 60637, USA; (Y.Z.); (J.L.); (L.F.); (R.M.)
| |
Collapse
|
8
|
Pascucci GR, Morrocchi E, Pighi C, Rotili A, Neri A, Medri C, Olivieri G, Sanna M, Rasi G, Persaud D, Chahroudi A, Lichterfeld M, Nastouli E, Cancrini C, Amodio D, Rossi P, Cotugno N, Palma P. How CD4 + T Cells Transcriptional Profile Is Affected by Culture Conditions: Towards the Design of Optimal In Vitro HIV Reactivation Assays. Biomedicines 2023; 11:888. [PMID: 36979867 PMCID: PMC10045592 DOI: 10.3390/biomedicines11030888] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/15/2023] [Accepted: 02/25/2023] [Indexed: 03/16/2023] Open
Abstract
Most of the current assays directed at the investigation of HIV reactivation are based on cultures of infected cells such as Peripheral Blood Mononuclear Cells (PBMCs) or isolated CD4+ T cells, stimulated in vitro with different activator molecules. The culture media in these in vitro tests lack many age- and donor-specific immunomodulatory components normally found within the autologous plasma. This triggered our interest in understanding the impact that different matrices and cell types have on T cell transcriptional profiles following in vitro culture and stimulation. METHODS Unstimulated or stimulated CD4+ T cells of three young adults with perinatal HIV-infection were isolated from PBMCs before or after culture in RPMI medium or autologous plasma. Transcriptomes were sequenced using Oxford Nanopore technologies. RESULTS Transcriptional profiles revealed the activation of similar pathways upon stimulation in both media with a higher magnitude of TCR cascade activation in CD4+ lymphocytes cultured in RPMI. CONCLUSIONS These results suggest that for studies aiming at quantifying the magnitude of biological mechanisms under T cell activation, the autologous plasma could better approximate the in vivo environment. Conversely, if the study aims at defining qualitative aspects, then RPMI culture could provide more evident results.
Collapse
Affiliation(s)
- Giuseppe Rubens Pascucci
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Elena Morrocchi
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
| | - Chiara Pighi
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
| | - Arianna Rotili
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Alessia Neri
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
| | - Chiara Medri
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
| | - Giulio Olivieri
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Marco Sanna
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
| | - Gianmarco Rasi
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Deborah Persaud
- Department of Pediatric Infectious Diseases, School of Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ann Chahroudi
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA 30322, USA
- Center for Childhood Infections and Vaccines, Children’s Healthcare of Atlanta and Emory University, Atlanta, GA 30322, USA
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Eleni Nastouli
- Department of Infection, Immunity and Inflammation, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Caterina Cancrini
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
| | - Donato Amodio
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
| | - Paolo Rossi
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Nicola Cotugno
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Paolo Palma
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| |
Collapse
|
9
|
Beijnen EMS, Odumade OA, Haren SDV. Molecular Determinants of the Early Life Immune Response to COVID-19 Infection and Immunization. Vaccines (Basel) 2023; 11:vaccines11030509. [PMID: 36992093 DOI: 10.3390/vaccines11030509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/11/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023] Open
Abstract
Clinical manifestations from primary COVID infection in children are generally less severe as compared to adults, and severe pediatric cases occur predominantly in children with underlying medical conditions. However, despite the lower incidence of disease severity, the burden of COVID-19 in children is not negligible. Throughout the course of the pandemic, the case incidence in children has substantially increased, with estimated cumulative rates of SARS-CoV-2 infection and COVID-19 symptomatic illness in children comparable to those in adults. Vaccination is a key approach to enhance immunogenicity and protection against SARS-CoV-2. Although the immune system of children is functionally distinct from that of other age groups, vaccine development specific for the pediatric population has mostly been limited to dose-titration of formulations that were developed primarily for adults. In this review, we summarize the literature pertaining to age-specific differences in COVID-19 pathogenesis and clinical manifestation. In addition, we review molecular distinctions in how the early life immune system responds to infection and vaccination. Finally, we discuss recent advances in development of pediatric COVID-19 vaccines and provide future directions for basic and translational research in this area.
Collapse
Affiliation(s)
- Elisabeth M S Beijnen
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Oludare A Odumade
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatrics, Division of Medicine Critical Care, Boston Children's Hospital, Boston, MA 02115, USA
| | - Simon D van Haren
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
10
|
Manches O, Um K, Boudier A, Maddouri Y, Lyon-Caen S, Bayat S, Slama R, Philippat C, Siroux V, Chaperot L. Maternal imprinting and determinants of neonates' immune function in the SEPAGES mother-child cohort. Front Immunol 2023; 14:1136749. [PMID: 37081891 PMCID: PMC10111372 DOI: 10.3389/fimmu.2023.1136749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/13/2023] [Indexed: 04/22/2023] Open
Abstract
Introduction Immune function in pregnancy is influenced by host-specific and environmental factors. This may impact fetal immune development, but the link between maternal and neonatal immune function is still poorly characterized. Here, we investigate the relationship between maternal and neonatal immune function, and identify factors affecting the association between maternal and child cytokine secretion. Methods In the French prospective cohort SEPAGES, blood samples were obtained from pregnant women (n=322) at gestational week 20 ± 4 and from their child at birth (n=156). Maternal and cord blood cytokine and chemokine (CK) levels were measured at baseline in all subjects and after T cell or dendritic cell activation with phytohemagglutinin or R848 (in total 29 and 27 measures in maternal and cord blood samples, respectively). Associations between environmental, individual factors and CK level were estimated by linear regression modeling. The maternal-cord blood CK relations were assessed by Pearson correlation and regression models. Results We observed that pregnant women and neonates displayed specific CK secretion profiles in the innate and adaptive compartments at baseline and upon activation. Activation of T cells in cord blood induced high levels of IL-2, but low levels of IFNγ, IL-13 or IL-10, in comparison to maternal blood samples. Elsewhere, neonatal innate immune responses were characterized by low production of IFNα, while productions of IL-1β, IL-6, IL-8, IL-10 and TNFα were higher than maternal responses. Strong correlations were observed between most CK after activation in maternal and cord blood samples. Strikingly, a statistical association between global mother and child cytokine profiles was evidenced. Correlations were observed between some individual CK of pregnant women and their children, both at baseline (MCP1, RANTES) and after activation with R848 (IL-6, IL-8 and IL-10). We looked for factors which could influence cytokine secretion in maternal or cord blood, and found that leucocyte counts, maternal age, pre-conception BMI, smoking and season were associated with the levels of several CK in mothers or children. Discussion Our study reveals in utero immune imprinting influencing immune responses in infants, opening the way to investigate the mechanisms responsible for this imprinting. Whether such influences have long lasting effects on children health warrants further investigation.
Collapse
Affiliation(s)
- Olivier Manches
- EFS, Recherche et Développement, Grenoble, France
- Université Grenoble-Alpes, INSERM U1209, CNRS UMR, Institute for Advanced Biosciences, Grenoble, France
| | - Khémary Um
- EFS, Recherche et Développement, Grenoble, France
- Université Grenoble-Alpes, INSERM U1209, CNRS UMR, Institute for Advanced Biosciences, Grenoble, France
| | - Anne Boudier
- Université Grenoble-Alpes, INSERM U1209, CNRS UMR, Institute for Advanced Biosciences, Grenoble, France
- Department of Pulmonology and Physiology, CHU Grenoble-Alpes, Grenoble, France
| | - Yasmina Maddouri
- EFS, Recherche et Développement, Grenoble, France
- Université Grenoble-Alpes, INSERM U1209, CNRS UMR, Institute for Advanced Biosciences, Grenoble, France
| | - Sarah Lyon-Caen
- Université Grenoble-Alpes, INSERM U1209, CNRS UMR, Institute for Advanced Biosciences, Grenoble, France
| | - Sam Bayat
- Department of Pulmonology and Physiology, CHU Grenoble-Alpes, Grenoble, France
| | - Rémy Slama
- Université Grenoble-Alpes, INSERM U1209, CNRS UMR, Institute for Advanced Biosciences, Grenoble, France
| | - Claire Philippat
- Université Grenoble-Alpes, INSERM U1209, CNRS UMR, Institute for Advanced Biosciences, Grenoble, France
| | - Valérie Siroux
- Université Grenoble-Alpes, INSERM U1209, CNRS UMR, Institute for Advanced Biosciences, Grenoble, France
| | - Laurence Chaperot
- EFS, Recherche et Développement, Grenoble, France
- Université Grenoble-Alpes, INSERM U1209, CNRS UMR, Institute for Advanced Biosciences, Grenoble, France
- *Correspondence: Laurence Chaperot,
| |
Collapse
|
11
|
Development of a TLR7/8 agonist adjuvant formulation to overcome early life hyporesponsiveness to DTaP vaccination. Sci Rep 2022; 12:16860. [PMID: 36258023 PMCID: PMC9579132 DOI: 10.1038/s41598-022-20346-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/12/2022] [Indexed: 12/02/2022] Open
Abstract
Infection is the most common cause of mortality early in life, yet the broad potential of immunization is not fully realized in this vulnerable population. Most vaccines are administered during infancy and childhood, but in some cases the full benefit of vaccination is not realized in-part. New adjuvants are cardinal to further optimize current immunization approaches for early life. However, only a few classes of adjuvants are presently incorporated in vaccines approved for human use. Recent advances in the discovery and delivery of Toll-like receptor (TLR) agonist adjuvants have provided a new toolbox for vaccinologists. Prominent among these candidate adjuvants are synthetic small molecule TLR7/8 agonists. The development of an effective infant Bordetella pertussis vaccine is urgently required because of the resurgence of pertussis in many countries, contemporaneous to the switch from whole cell to acellular vaccines. In this context, TLR7/8 adjuvant based vaccine formulation strategies may be a promising tool to enhance and accelerate early life immunity by acellular B. pertussis vaccines. In the present study, we optimized (a) the formulation delivery system, (b) structure, and (c) immunologic activity of novel small molecule imidazoquinoline TLR7/8 adjuvants towards human infant leukocytes, including dendritic cells. Upon immunization of neonatal mice, this TLR7/8 adjuvant overcame neonatal hyporesponsiveness to acellular pertussis vaccination by driving a T helper (Th)1/Th17 biased T cell- and IgG2c-skewed humoral response to a licensed acellular vaccine (DTaP). This potent immunization strategy may represent a new paradigm for effective immunization against pertussis and other pathogens in early life.
Collapse
|
12
|
Dowling DJ, Levy O. A Precision Adjuvant Approach to Enhance Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Vaccines Optimized for Immunologically Distinct Vulnerable Populations. Clin Infect Dis 2022; 75:S30-S36. [PMID: 35512145 PMCID: PMC9129145 DOI: 10.1093/cid/ciac342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Indexed: 01/19/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused significant mortality, especially among older adults whose distinct immune system reflects immunosenescence. Multiple SARS-CoV-2 vaccines have received emergency use authorization and/or licensure from the US Food and Drug Administration and throughout the world. However, their deployment has heighted significant limitations, such by age-dependent immunogenicity, requirements for multiple vaccine doses, refrigeration infrastructure that is not universally available, as well as waning immunity. Thus, there was, and continues to be a need for continued innovation during the pandemic given the desire for dose-sparing, formulations stable at more readily achievable temperatures, need for robust immunogenicity in vulnerable populations, and development of safe and effective pediatric vaccines. In this context, optimal SARS-CoV-2 vaccines may ultimately rely on inclusion of adjuvants as they can potentially enhance protection of vulnerable populations and provide dose-sparing effects enabling single shot protection.
Collapse
Affiliation(s)
- David J Dowling
- Precision Vaccines Program
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Ofer Levy
- Precision Vaccines Program
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
13
|
Jain A, Mittal S, Tripathi LP, Nussinov R, Ahmad S. Host-pathogen protein-nucleic acid interactions: A comprehensive review. Comput Struct Biotechnol J 2022; 20:4415-4436. [PMID: 36051878 PMCID: PMC9420432 DOI: 10.1016/j.csbj.2022.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 12/02/2022] Open
Abstract
Recognition of pathogen-derived nucleic acids by host cells is an effective host strategy to detect pathogenic invasion and trigger immune responses. In the context of pathogen-specific pharmacology, there is a growing interest in mapping the interactions between pathogen-derived nucleic acids and host proteins. Insight into the principles of the structural and immunological mechanisms underlying such interactions and their roles in host defense is necessary to guide therapeutic intervention. Here, we discuss the newest advances in studies of molecular interactions involving pathogen nucleic acids and host factors, including their drug design, molecular structure and specific patterns. We observed that two groups of nucleic acid recognizing molecules, Toll-like receptors (TLRs) and the cytoplasmic retinoic acid-inducible gene (RIG)-I-like receptors (RLRs) form the backbone of host responses to pathogen nucleic acids, with additional support provided by absent in melanoma 2 (AIM2) and DNA-dependent activator of Interferons (IFNs)-regulatory factors (DAI) like cytosolic activity. We review the structural, immunological, and other biological aspects of these representative groups of molecules, especially in terms of their target specificity and affinity and challenges in leveraging host-pathogen protein-nucleic acid interactions (HP-PNI) in drug discovery.
Collapse
Affiliation(s)
- Anuja Jain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shikha Mittal
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173234, India
| | - Lokesh P. Tripathi
- National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
- Riken Center for Integrative Medical Sciences, Tsurumi, Yokohama, Kanagawa, Japan
| | - Ruth Nussinov
- Computational Structural Biology Section, Basic Science Program, Frederick National, Laboratory for Cancer Research, Frederick, MD 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Israel
| | - Shandar Ahmad
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
14
|
van Haren SD, Pedersen GK, Kumar A, Ruckwardt TJ, Moin S, Moore IN, Minai M, Liu M, Pak J, Borriello F, Doss-Gollin S, Beijnen EMS, Ahmed S, Helmel M, Andersen P, Graham BS, Steen H, Christensen D, Levy O. CAF08 adjuvant enables single dose protection against respiratory syncytial virus infection in murine newborns. Nat Commun 2022; 13:4234. [PMID: 35918315 PMCID: PMC9346114 DOI: 10.1038/s41467-022-31709-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/30/2022] [Indexed: 11/09/2022] Open
Abstract
Respiratory syncytial virus is a leading cause of morbidity and mortality in children, due in part to their distinct immune system, characterized by impaired induction of Th 1 immunity. Here we show application of cationic adjuvant formulation CAF08, a liposomal vaccine formulation tailored to induce Th 1 immunity in early life via synergistic engagement of Toll-like Receptor 7/8 and the C-type lectin receptor Mincle. We apply quantitative phosphoproteomics to human dendritic cells and reveal a role for Protein Kinase C-δ for enhanced Th1 cytokine production in neonatal dendritic cells and identify signaling events resulting in antigen cross-presentation. In a murine in vivo model a single immunization at birth with CAF08-adjuvanted RSV pre-fusion antigen protects newborn mice from RSV infection by induction of antigen-specific CD8+ T-cells and Th1 cells. Overall, we describe a pediatric adjuvant formulation and characterize its mechanism of action providing a promising avenue for development of early life vaccines against RSV and other respiratory viral pathogens.
Collapse
Affiliation(s)
- Simon D van Haren
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| | - Gabriel K Pedersen
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Azad Kumar
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tracy J Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Syed Moin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ian N Moore
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mahnaz Minai
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mark Liu
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Jensen Pak
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Francesco Borriello
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Generate Biomedicines, Cambridge, MA, USA
| | - Simon Doss-Gollin
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Elisabeth M S Beijnen
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Saima Ahmed
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Michaela Helmel
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Peter Andersen
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hanno Steen
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Dennis Christensen
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Boston, MA, USA
| |
Collapse
|
15
|
Chew K, Lee B, van Haren SD, Nanishi E, O’Meara T, Splaine JB, DeLeon M, Soni D, Seo HS, Dhe-Paganon S, Ozonoff A, Smith JA, Levy O, Dowling DJ. Adjuvant Discovery via a High Throughput Screen using Human Primary Mononuclear Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.06.17.496630. [PMID: 35860217 PMCID: PMC9298130 DOI: 10.1101/2022.06.17.496630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Motivation Vaccines are a key biomedical intervention to prevent the spread of infectious diseases, but their efficacy can be limited by insufficient immunogenicity and nonuniform reactogenic profiles. Adjuvants are molecules that potentiate vaccine responses by inducing innate immune activation. However, there are a limited number of adjuvants in approved vaccines, and current approaches for preclinical adjuvant discovery and development are inefficient. To enhance adjuvant identification, we developed a protocol based on in vitro screening of human primary leukocytes. Summary We describe a methodology utilizing high-throughput and high-content screening for novel adjuvant candidates that was used to screen a library of ~2,500 small molecules via a 384-well quantitative combined cytokine and flow cytometry immunoassay in primary human peripheral blood mononuclear cells (PBMCs) from 4 healthy adult study participants. Hits were identified based on their induction of soluble cytokine (TNF, IFNg and IL-10) secretion and PBMC maturation (CD 80/86, Ox40, and HLA-DR) in at least two of the four donors screened. From an initial set of 197 compounds identified using these biomarkers-an 8.6% hit rate-we downselected to five scaffolds that demonstrated robust efficacy and potency in vitro and evaluated the top hit, vinblastine sulfate, for adjuvanticity in vivo. Vinblastine sulfate significantly enhanced murine humoral responses to recombinant SARS-CoV-2 spike protein, including a four-fold enhancement of IgG titer production when compared to treatment with the spike antigen alone. Overall, we outline a methodology for discovering immunomodulators with adjuvant potential via high-throughput screening of PBMCs in vitro that yielded a lead compound with in vivo adjuvanticity.
Collapse
Affiliation(s)
- Katherine Chew
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
| | - Branden Lee
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
| | - Simon D. van Haren
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Etsuro Nanishi
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Timothy O’Meara
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
| | | | - Maria DeLeon
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
| | - Dheeraj Soni
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Al Ozonoff
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT & Harvard, Cambridge, MA, USA
| | - Jennifer A. Smith
- ICCB-Longwood Screening Facility, Harvard Medical School, Boston, MA, USA
| | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT & Harvard, Cambridge, MA, USA
| | - David J. Dowling
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Designing AbhiSCoVac - A single potential vaccine for all ‘corona culprits’: Immunoinformatics and immune simulation approaches. J Mol Liq 2022; 351:118633. [PMID: 35125571 PMCID: PMC8801591 DOI: 10.1016/j.molliq.2022.118633] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 12/12/2022]
|
17
|
Yang JX, Tseng JC, Yu GY, Luo Y, Huang CYF, Hong YR, Chuang TH. Recent Advances in the Development of Toll-like Receptor Agonist-Based Vaccine Adjuvants for Infectious Diseases. Pharmaceutics 2022; 14:pharmaceutics14020423. [PMID: 35214155 PMCID: PMC8878135 DOI: 10.3390/pharmaceutics14020423] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Vaccines are powerful tools for controlling microbial infections and preventing epidemic diseases. Efficient inactive, subunit, or viral-like particle vaccines usually rely on a safe and potent adjuvant to boost the immune response to the antigen. After a slow start, over the last decade there has been increased developments on adjuvants for human vaccines. The development of adjuvants has paralleled our increased understanding of the molecular mechanisms for the pattern recognition receptor (PRR)-mediated activation of immune responses. Toll-like receptors (TLRs) are a group of PRRs that recognize microbial pathogens to initiate a host’s response to infection. Activation of TLRs triggers potent and immediate innate immune responses, which leads to subsequent adaptive immune responses. Therefore, these TLRs are ideal targets for the development of effective adjuvants. To date, TLR agonists such as monophosphoryl lipid A (MPL) and CpG-1018 have been formulated in licensed vaccines for their adjuvant activity, and other TLR agonists are being developed for this purpose. The COVID-19 pandemic has also accelerated clinical research of vaccines containing TLR agonist-based adjuvants. In this paper, we reviewed the agonists for TLR activation and the molecular mechanisms associated with the adjuvants’ effects on TLR activation, emphasizing recent advances in the development of TLR agonist-based vaccine adjuvants for infectious diseases.
Collapse
Affiliation(s)
- Jing-Xing Yang
- Immunology Research Center, National Health Research Institutes, Miaoli 35053, Taiwan; (J.-X.Y.); (J.-C.T.)
| | - Jen-Chih Tseng
- Immunology Research Center, National Health Research Institutes, Miaoli 35053, Taiwan; (J.-X.Y.); (J.-C.T.)
| | - Guann-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan;
| | - Yunping Luo
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China;
| | - Chi-Ying F. Huang
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
| | - Yi-Ren Hong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Tsung-Hsien Chuang
- Immunology Research Center, National Health Research Institutes, Miaoli 35053, Taiwan; (J.-X.Y.); (J.-C.T.)
- Department of Life Sciences, National Central University, Taoyuan City 32001, Taiwan
- Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: ; Tel.: +886-37-246166 (ext. 37611)
| |
Collapse
|
18
|
Lu Z, Laing ED, Pena DaMata J, Pohida K, Tso MS, Samuels EC, Epsi NJ, Dorjbal B, Lake C, Richard SA, Maves RC, Lindholm DA, Rozman JS, English C, Huprikar N, Mende K, Colombo RE, Colombo CJ, Broder CC, Ganesan A, Lanteri CA, Agan BK, Tribble D, Simons MP, Dalgard CL, Blair PW, Chenoweth J, Pollett SD, Snow AL, Burgess TH, Malloy AMW. Durability of SARS-CoV-2-Specific T-Cell Responses at 12 Months Postinfection. J Infect Dis 2021; 224:2010-2019. [PMID: 34673956 PMCID: PMC8672777 DOI: 10.1093/infdis/jiab543] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/19/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Characterizing the longevity and quality of cellular immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enhances understanding of coronavirus disease 2019 (COVID-19) immunity that influences clinical outcomes. Prior studies suggest SARS-CoV-2-specific T cells are present in peripheral blood 10 months after infection. Analysis of the function, durability, and diversity of cellular response long after natural infection, over a range of ages and disease phenotypes, is needed to identify preventative and therapeutic interventions. METHODS We identified participants in our multisite longitudinal, prospective cohort study 12 months after SARS-CoV-2 infection representing a range of disease severity. We investigated function, phenotypes, and frequency of T cells specific for SARS-CoV-2 using intracellular cytokine staining and spectral flow cytometry, and compared magnitude of SARS-CoV-2-specific antibodies. RESULTS SARS-CoV-2-specific antibodies and T cells were detected 12 months postinfection. Severe acute illness was associated with higher frequencies of SARS-CoV-2-specific CD4 T cells and antibodies at 12 months. In contrast, polyfunctional and cytotoxic T cells responsive to SARS-CoV-2 were identified in participants over a wide spectrum of disease severity. CONCLUSIONS SARS-CoV-2 infection induces polyfunctional memory T cells detectable at 12 months postinfection, with higher frequency noted in those who experienced severe disease.
Collapse
Affiliation(s)
- Zhongyan Lu
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, Maryland, USA
| | - Eric D Laing
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Jarina Pena DaMata
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, Maryland, USA
| | - Katherine Pohida
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Marana S Tso
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Emily C Samuels
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, Maryland, USA
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Nusrat J Epsi
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Batsukh Dorjbal
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, Maryland, USA
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Camille Lake
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, Maryland, USA
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Stephanie A Richard
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Ryan C Maves
- Naval Medical Center San Diego, San Diego, California, USA
| | - David A Lindholm
- Brooke Army Medical Center, Joint Base San Antonio-Fort Sam Houston, San Antonio, Texas, USA
| | - Julia S Rozman
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Caroline English
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Nikhil Huprikar
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Katrin Mende
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Brooke Army Medical Center, Joint Base San Antonio-Fort Sam Houston, San Antonio, Texas, USA
| | - Rhonda E Colombo
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Madigan Army Medical Center, Tacoma, Washington, USA
| | | | - Christopher C Broder
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Anuradha Ganesan
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Charlotte A Lanteri
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Brian K Agan
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - David Tribble
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Mark P Simons
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Clifton L Dalgard
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Paul W Blair
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, Maryland, USA
- Austere Environments Consortium for Enhanced Sepsis Outcomes, Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Josh Chenoweth
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, Maryland, USA
- Austere Environments Consortium for Enhanced Sepsis Outcomes, Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Simon D Pollett
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Andrew L Snow
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Timothy H Burgess
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Allison M W Malloy
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
19
|
England R, Pak J, Liu M, Rao S, Ozonoff A, Levy O, van Haren SD. Human Blood Plasma Shapes Distinct Neonatal TLR-Mediated Dendritic Cell Activation via Expression of the MicroRNA Let-7g. Immunohorizons 2021; 5:246-256. [PMID: 33931496 DOI: 10.4049/immunohorizons.2000081] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/19/2021] [Indexed: 11/19/2022] Open
Abstract
The newborn innate immune system is characterized as functionally distinct, resulting in impaired proinflammatory responses to many stimuli and a bias toward Th2 development. Although the magnitude of impairment can be partially overcome, for instance through activation of TLR7/8 in newborn dendritic cells, the newborn innate response remains distinct from that of adults. Using human in vitro modeling of newborn and adult dendritic cells, we investigated the role of extracellular and intracellular regulators in driving age-specific responses to TLR7/8 stimulation. MicroRNA expression profiling and plasma switch experiments identified Let-7g as a novel regulator of newborn innate immunity. Activation-induced expression of Let-7g in monocyte-derived dendritic cells (MoDCs) is driven by newborn plasma and reduces expression of costimulatory receptors CD86, MHC class I, and CCR7 and secretion of IFN-α and sCD40L. Conversely, an increase in secretion of the Th2-polarizing cytokine IL-12p40 is observed. Overexpression of Let-7g in adult MoDCs resulted in the same observations. Small interfering RNA-mediated ablation of Let-7g levels in newborn MoDCs resulted in an adult-like phenotype. In conclusion, this study reveals for the first time (to our knowledge) that age-specific differences in human plasma induce the microRNA Let-7g as a key mediator of the newborn innate immune phenotype. These observations shed new light on the mechanisms of immune ontogeny and may inform approaches to discover age-specific immunomodulators, such as adjuvants.
Collapse
Affiliation(s)
- Ross England
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA
- Harvard Medical School, Boston, MA; and
| | - Jensen Pak
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA
- Harvard Medical School, Boston, MA; and
| | - Mark Liu
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA
- Harvard Medical School, Boston, MA; and
| | - Shun Rao
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA
- Harvard Medical School, Boston, MA; and
| | - Al Ozonoff
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA
- Harvard Medical School, Boston, MA; and
| | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA
- Harvard Medical School, Boston, MA; and
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Simon D van Haren
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA;
- Harvard Medical School, Boston, MA; and
| |
Collapse
|
20
|
Abstract
CpG Oligonucleotides (ODN) are immunomodulatory synthetic oligonucleotides specifically designed to stimulate Toll-like receptor 9. TLR9 is expressed on human plasmacytoid dendritic cells and B cells and triggers an innate immune response characterized by the production of Th1 and pro-inflammatory cytokines. This chapter reviews recent progress in understanding the mechanism of action of CpG ODN and provides an overview of human clinical trial results using CpG ODN to improve vaccines for the prevention/treatment of cancer, allergy, and infectious disease.
Collapse
Affiliation(s)
| | | | - Dennis M Klinman
- National Cancer Institute, NIH, Frederick, MD, USA.
- Leitman Klinman Consulting, Potomac, MD, USA.
| |
Collapse
|
21
|
Lirussi D, Weissmann SF, Ebensen T, Nitsche-Gloy U, Franz HBG, Guzmán CA. Cyclic Di-Adenosine Monophosphate: A Promising Adjuvant Candidate for the Development of Neonatal Vaccines. Pharmaceutics 2021; 13:pharmaceutics13020188. [PMID: 33535570 PMCID: PMC7912751 DOI: 10.3390/pharmaceutics13020188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/18/2022] Open
Abstract
Underdeveloped immunity during the neonatal age makes this period one of the most dangerous during the human lifespan, with infection-related mortality being one of the highest of all age groups. It is also discussed that vaccination during this time window may result in tolerance rather than in productive immunity, thus raising concerns about the overall vaccine-mediated protective efficacy. Cyclic di-nucleotides (CDN) are bacterial second messengers that are rapidly sensed by the immune system as a danger signal, allowing the utilization of these molecules as potent activators of the immune response. We have previously shown that cyclic di-adenosine monophosphate (CDA) is a potent and versatile adjuvant capable of promoting humoral and cellular immunity. We characterize here the cytokine profiles elicited by CDA in neonatal cord blood in comparison with other promising neonatal adjuvants, such as the imidazoquinoline resiquimod (R848), which is a synthetic dual TLR7 and TLR8 agonist. We observed superior activity of CDA in eliciting T helper 1 (Th1) and T follicular helper (TfH) cytokines in cells from human cord blood when compared to R848. Additional in vivo studies in mice showed that neonatal priming in a three-dose vaccination schedule is beneficial when CDA is used as a vaccine adjuvant. Humoral antibody titers were significantly higher in mice that received a neonatal prime as compared to those that did not. This effect was absent when using other adjuvants that were reported as suitable for neonatal vaccination. The biological significance of this immune response was assessed by a challenge with a genetically modified influenza H1N1 PR8 virus. The obtained results confirmed that CDA performed better than any other adjuvant tested. Altogether, our results suggest that CDA is a potent adjuvant in vitro on human cord blood, and in vivo in newborn mice, and thus a suitable candidate for the development of neonatal vaccines.
Collapse
Affiliation(s)
- Darío Lirussi
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany; (S.F.W.); (C.A.G.)
- Correspondence: (D.L.); (T.E.); Tel.: +49-531-61814607 (T.E.); Fax: +49-531-618414699 (T.E.)
| | - Sebastian Felix Weissmann
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany; (S.F.W.); (C.A.G.)
| | - Thomas Ebensen
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany; (S.F.W.); (C.A.G.)
- Correspondence: (D.L.); (T.E.); Tel.: +49-531-61814607 (T.E.); Fax: +49-531-618414699 (T.E.)
| | - Ursula Nitsche-Gloy
- Women’s Clinic, Hospital Marienstift GmbH, Helmstedter Strasse 35, 38102 Braunschweig, Germany;
| | - Heiko B. G. Franz
- Department of Obstetrics and Gynecology, Women’s Clinic, Braunschweig Central Hospital, Celler Strasse 38, 38114 Braunschweig, Germany;
| | - Carlos A. Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany; (S.F.W.); (C.A.G.)
| |
Collapse
|
22
|
Beijnen EMS, van Haren SD. Vaccine-Induced CD8 + T Cell Responses in Children: A Review of Age-Specific Molecular Determinants Contributing to Antigen Cross-Presentation. Front Immunol 2020; 11:607977. [PMID: 33424857 PMCID: PMC7786054 DOI: 10.3389/fimmu.2020.607977] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
Infections are most common and most severe at the extremes of age, the young and the elderly. Vaccination can be a key approach to enhance immunogenicity and protection against pathogens in these vulnerable populations, who have a functionally distinct immune system compared to other age groups. More than 50% of the vaccine market is for pediatric use, yet to date vaccine development is often empiric and not tailored to molecular distinctions in innate and adaptive immune activation in early life. With modern vaccine development shifting from whole-cell based vaccines to subunit vaccines also comes the need for formulations that can elicit a CD8+ T cell response when needed, for example, by promoting antigen cross-presentation. While our group and others have identified many cellular and molecular determinants of successful activation of antigen-presenting cells, B cells and CD4+ T cells in early life, much less is known about the ontogeny of CD8+ T cell induction. In this review, we summarize the literature pertaining to the frequency and phenotype of newborn and infant CD8+ T cells, and any evidence of induction of CD8+ T cells by currently licensed pediatric vaccine formulations. In addition, we review the molecular determinants of antigen cross-presentation on MHC I and successful CD8+ T cell induction and discuss potential distinctions that can be made in children. Finally, we discuss recent advances in development of novel adjuvants and provide future directions for basic and translational research in this area.
Collapse
Affiliation(s)
- Elisabeth M. S. Beijnen
- Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, Netherlands
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Simon D. van Haren
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW The gradual replacement of inactivated whole cell and live attenuated vaccines with subunit vaccines has generally reduced reactogenicity but in many cases also immunogenicity. Although only used when necessary, adjuvants can be key to vaccine dose/antigen-sparing, broadening immune responses to variable antigens, and enhancing immunogenicity in vulnerable populations with distinct immunity. Licensed vaccines contain an increasing variety of adjuvants, with a growing pipeline of adjuvanted vaccines under development. RECENT FINDINGS Most adjuvants, including Alum, Toll-like receptor agonists and oil-in-water emulsions, activate innate immunity thereby altering the quantity and quality of an adaptive immune response. Adjuvants activate leukocytes, and induce mediators (e.g., cytokines, chemokines, and prostaglandin-E2) some of which are biomarkers for reactogenicity, that is, induction of local/systemic side effects. Although there have been safety concerns regarding a hypothetical risk of adjuvants inducing auto-immunity, such associations have not been established. As immune responses vary by population (e.g., age and sex), adjuvant research now incorporates principles of precision medicine. Innovations in adjuvant research include use of human in vitro models, immuno-engineering, novel delivery systems, and systems biology to identify biomarkers of safety and adjuvanticity. SUMMARY Adjuvants enhance vaccine immunogenicity and can be associated with reactogenicity. Novel multidisciplinary approaches hold promise to accelerate and de-risk targeted adjuvant discovery and development. VIDEO ABSTRACT: http://links.lww.com/MOP/A53.
Collapse
Affiliation(s)
- Etsuro Nanishi
- Precision Vaccines Program
- Division of Infectious Diseases, Boston Children's Hospital
- Harvard Medical School, Boston
| | - David J. Dowling
- Precision Vaccines Program
- Division of Infectious Diseases, Boston Children's Hospital
- Harvard Medical School, Boston
| | - Ofer Levy
- Precision Vaccines Program
- Division of Infectious Diseases, Boston Children's Hospital
- Harvard Medical School, Boston
- Broad Institute of MIT & Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
24
|
Gestal MC, Johnson HM, Harvill ET. Immunomodulation as a Novel Strategy for Prevention and Treatment of Bordetella spp. Infections. Front Immunol 2019; 10:2869. [PMID: 31921136 PMCID: PMC6923730 DOI: 10.3389/fimmu.2019.02869] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022] Open
Abstract
Well-adapted pathogens have evolved to survive the many challenges of a robust immune response. Defending against all host antimicrobials simultaneously would be exceedingly difficult, if not impossible, so many co-evolved organisms utilize immunomodulatory tools to subvert, distract, and/or evade the host immune response. Bordetella spp. present many examples of the diversity of immunomodulators and an exceptional experimental system in which to study them. Recent advances in this experimental system suggest strategies for interventions that tweak immunity to disrupt bacterial immunomodulation, engaging more effective host immunity to better prevent and treat infections. Here we review advances in the understanding of respiratory pathogens, with special focus on Bordetella spp., and prospects for the use of immune-stimulatory interventions in the prevention and treatment of infection.
Collapse
Affiliation(s)
- Monica C Gestal
- Department of Infectious Diseases, College of Veterinary Sciences, University of Georgia, Athens, GA, United States
| | - Hannah M Johnson
- Department of Infectious Diseases, College of Veterinary Sciences, University of Georgia, Athens, GA, United States
| | - Eric T Harvill
- Department of Infectious Diseases, College of Veterinary Sciences, University of Georgia, Athens, GA, United States
| |
Collapse
|
25
|
Kumova OK, Fike AJ, Thayer JL, Nguyen LT, Mell JC, Pascasio J, Stairiker C, Leon LG, Katsikis PD, Carey AJ. Lung transcriptional unresponsiveness and loss of early influenza virus control in infected neonates is prevented by intranasal Lactobacillus rhamnosus GG. PLoS Pathog 2019; 15:e1008072. [PMID: 31603951 PMCID: PMC6808501 DOI: 10.1371/journal.ppat.1008072] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 10/23/2019] [Accepted: 09/05/2019] [Indexed: 12/11/2022] Open
Abstract
Respiratory viral infections contribute substantially to global infant losses and disproportionately affect preterm neonates. Using our previously established neonatal murine model of influenza infection, we demonstrate that three-day old mice are exceptionally sensitive to influenza virus infection and exhibit high mortality and viral load. Intranasal pre- and post-treatment of neonatal mice with Lactobacillus rhamnosus GG (LGG), an immune modulator in respiratory viral infection of adult mice and human preterm neonates, considerably improves neonatal mice survival after influenza virus infection. We determine that both live and heat-killed intranasal LGG are equally efficacious in protection of neonates. Early in influenza infection, neonatal transcriptional responses in the lung are delayed compared to adults. These responses increase by 24 hours post-infection, demonstrating a delay in the kinetics of the neonatal anti-viral response. LGG pretreatment improves immune gene transcriptional responses during early infection and specifically upregulates type I IFN pathways. This is critical for protection, as neonatal mice intranasally pre-treated with IFNβ before influenza virus infection are also protected. Using transgenic mice, we demonstrate that the protective effect of LGG is mediated through a MyD88-dependent mechanism, specifically via TLR4. LGG can improve both early control of virus and transcriptional responsiveness and could serve as a simple and safe intervention to protect neonates.
Collapse
Affiliation(s)
- Ogan K. Kumova
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Adam J. Fike
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Jillian L. Thayer
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Linda T. Nguyen
- Pediatrics, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Joshua Chang Mell
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Judy Pascasio
- Pathology, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Christopher Stairiker
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States of America
- Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Leticia G. Leon
- Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Peter D. Katsikis
- Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Alison J. Carey
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States of America
- Pediatrics, Drexel University College of Medicine, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
26
|
Pietrasanta C, Pugni L, Ronchi A, Bottino I, Ghirardi B, Sanchez-Schmitz G, Borriello F, Mosca F, Levy O. Vascular Endothelium in Neonatal Sepsis: Basic Mechanisms and Translational Opportunities. Front Pediatr 2019; 7:340. [PMID: 31456998 PMCID: PMC6700367 DOI: 10.3389/fped.2019.00340] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/30/2019] [Indexed: 12/27/2022] Open
Abstract
Neonatal sepsis remains a major health issue worldwide, especially for low-birth weight and premature infants, with a high risk of death and devastating sequelae. Apart from antibiotics and supportive care, there is an unmet need for adjunctive treatments to improve the outcomes of neonatal sepsis. Strong and long-standing research on adult patients has shown that vascular endothelium is a key player in the pathophysiology of sepsis and sepsis-associated organ failure, through a direct interaction with pathogens, leukocytes, platelets, and the effect of soluble circulating mediators, in part produced by endothelial cells themselves. Despite abundant evidence that the neonatal immune response to sepsis is distinct from that of adults, comparable knowledge on neonatal vascular endothelium is much more limited. Neonatal endothelial cells express lower amounts of adhesion molecules compared to adult ones, and present a reduced capacity to neutralize reactive oxygen species. Conversely, available evidence on biomarkers of endothelial damage in neonates is not as robust as in adult patients, and endothelium-targeted therapeutic opportunities for neonatal sepsis are almost unexplored. Here, we summarize current knowledge on the structure of neonatal vascular endothelium, its interactions with neonatal immune system and possible endothelium-targeted diagnostic and therapeutic tools for neonatal sepsis. Furthermore, we outline areas of basic and translational research worthy of further study, to shed light on the role of vascular endothelium in the context of neonatal sepsis.
Collapse
Affiliation(s)
- Carlo Pietrasanta
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neonatal Intensive Care Unit, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States
| | - Lorenza Pugni
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neonatal Intensive Care Unit, Milan, Italy
| | - Andrea Ronchi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neonatal Intensive Care Unit, Milan, Italy
| | - Ilaria Bottino
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neonatal Intensive Care Unit, Milan, Italy
| | - Beatrice Ghirardi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neonatal Intensive Care Unit, Milan, Italy
| | - Guzman Sanchez-Schmitz
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Francesco Borriello
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States.,Division of Immunology, Boston Children's Hospital, Boston, MA, United States.,Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organisation Center of Excellence, Naples, Italy
| | - Fabio Mosca
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neonatal Intensive Care Unit, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States.,Broad Institute of MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
27
|
Queenan AM, Dowling DJ, Cheng WK, Faé K, Fernandez J, Flynn PJ, Joshi S, Brightman SE, Ramirez J, Serroyen J, Wiertsema S, Fortanier A, van den Dobbelsteen G, Levy O, Poolman J. Increasing FIM2/3 antigen-content improves efficacy of Bordetella pertussis vaccines in mice in vivo without altering vaccine-induced human reactogenicity biomarkers in vitro. Vaccine 2018; 37:80-89. [PMID: 30478007 DOI: 10.1016/j.vaccine.2018.11.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/30/2018] [Accepted: 11/12/2018] [Indexed: 01/17/2023]
Abstract
Current acellular-pertussis (aP) vaccines appear inadequate for long-term pertussis control because of short-lived efficacy and the increasing prevalence of pertactin-negative isolates which may negatively impact vaccine efficacy. In this study, we added fimbriae (FIM)2 and FIM3 protein to licensed 2-, 3- or 5-component aP vaccines (Pentavac®, Boostrix®, Adacel®, respectively) to assess whether an aP vaccine with enhanced FIM content demonstrates enhanced efficacy. Vaccine-induced protection was assessed in an intranasal mouse challenge model. In addition, potential reactogenicity was measured by biomarkers in a human whole blood assay (WBA) in vitro and benchmarked the responses against licensed whole cell pertussis (wP) and aP vaccines including Easyfive®, Pentavac® and Pentacel®. The results show that commercial vaccines demonstrated reduced efficacy against pertactin-negative versus pertactin-positive strains. However, addition of higher amounts of FIM2/3 to aP vaccines reduced lung colonization and increased vaccine efficacy against a pertactin-negative strain in a dose-dependent manner. Improvements in efficacy were similar for FIM2 and FIM3-expressing strains. Increasing the amount of FIM2/3 proteins in aP formulations did not alter vaccine-induced biomarkers of potential reactogenicity including prostaglandin E2, cytokines and chemokines in human newborn cord and adult peripheral blood tested in vitro. These results suggest that increasing the quantity of FIM proteins in current pertussis vaccine formulations may further enhance vaccine efficacy against B. pertussis infection without increasing the reactogenicity of the vaccine.
Collapse
Affiliation(s)
| | - David J Dowling
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Wing Ki Cheng
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Kellen Faé
- Janssen Vaccines and Prevention, Leiden 2333CN, the Netherlands
| | | | - Peter J Flynn
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Sweta Joshi
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Spencer E Brightman
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Juan Ramirez
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Jan Serroyen
- Janssen Vaccines and Prevention, Leiden 2333CN, the Netherlands
| | - Selma Wiertsema
- Janssen Vaccines and Prevention, Leiden 2333CN, the Netherlands
| | | | | | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute of MIT & Harvard, USA.
| | - Jan Poolman
- Janssen Vaccines and Prevention, Leiden 2333CN, the Netherlands
| |
Collapse
|
28
|
Johnson-Weaver BT, Staats HF, Burks AW, Kulis MD. Adjuvanted Immunotherapy Approaches for Peanut Allergy. Front Immunol 2018; 9:2156. [PMID: 30319619 PMCID: PMC6167456 DOI: 10.3389/fimmu.2018.02156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/31/2018] [Indexed: 12/27/2022] Open
Abstract
Food allergies are a growing public health concern with an estimated 8% of US children affected. Peanut allergies are also on the rise and often do not spontaneously resolve, leaving individuals at-risk for potentially life-threatening anaphylaxis throughout their lifetime. Currently, two forms of peanut immunotherapy, oral immunotherapy (OIT) and epicutaneous immunotherapy (EPIT), are in Phase III clinical trials and have shown promise to induce desensitization in many subjects. However, there are several limitations with OIT and EPIT, such as allergic side effects, daily dosing requirements, and the infrequent outcome of long-term tolerance. Next-generation therapies for peanut allergy should aim to overcome these limitations, which may be achievable with adjuvanted immunotherapy. An adjuvant can be defined as anything that enhances, accelerates, or modifies an immune response to a particular antigen. Adjuvants may allow for lower doses of antigen to be given leading to decreased side effects; may only need to be administered every few weeks or months rather than daily exposures; and may induce a long-lasting protective effect. In this review article, we highlight examples of adjuvants and formulations that have shown pre-clinical efficacy in treating peanut allergy.
Collapse
Affiliation(s)
| | - Herman F Staats
- Department of Pathology, Duke University School of Medicine, Durham, NC, United States.,Department of Immunology, Duke University School of Medicine, Durham, NC, United States.,Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - A Wesley Burks
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,University of North Carolina Food Allergy Initiative, Chapel Hill, NC, United States
| | - Michael D Kulis
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,University of North Carolina Food Allergy Initiative, Chapel Hill, NC, United States
| |
Collapse
|
29
|
Freyne B, Donath S, Germano S, Gardiner K, Casalaz D, Robins-Browne RM, Amenyogbe N, Messina NL, Netea MG, Flanagan KL, Kollmann T, Curtis N. Neonatal BCG Vaccination Influences Cytokine Responses to Toll-like Receptor Ligands and Heterologous Antigens. J Infect Dis 2018; 217:1798-1808. [PMID: 29415180 PMCID: PMC11491830 DOI: 10.1093/infdis/jiy069] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 02/01/2018] [Indexed: 04/13/2024] Open
Abstract
Background BCG vaccination is associated with a reduction in all-cause infant mortality in high-mortality settings. The underlying mechanisms remain uncertain, but long-term modulation of the innate immune response (trained immunity) may be involved. Methods Whole-blood specimens, collected 7 days after randomization from 212 neonates enrolled in a randomized trial of neonatal BCG vaccination, were stimulated with killed pathogens and Toll-like receptor (TLR) ligands to interrogate cytokine responses. Results BCG-vaccinated infants had increased production of interleukin 6 (IL-6) in unstimulated samples and decreased production of interleukin 1 receptor antagonist, IL-6, and IL-10 and the chemokines macrophage inflammatory protein 1α (MIP-1α), MIP-1β, and monocyte chemoattractant protein 1 (MCP-1) following stimulation with peptidoglycan (TLR2) and R848 (TLR7/8). BCG-vaccinated infants also had decreased MCP-1 responses following stimulation with heterologous pathogens. Sex and maternal BCG vaccination status interacted with neonatal BCG vaccination. Conclusions Neonatal BCG vaccination influences cytokine responses to TLR ligands and heterologous pathogens. This effect is characterized by decreased antiinflammatory cytokine and chemokine responses in the context of higher levels of IL-6 in unstimulated samples. This supports the hypothesis that BCG vaccination modulates the innate immune system. Further research is warranted to determine whether there is an association between these findings and the beneficial nonspecific (heterologous) effects of BCG vaccine on all-cause mortality.
Collapse
Affiliation(s)
- Bridget Freyne
- Infectious Diseases and Microbiology Group, Parkville, Australia
- Department of Paediatrics, Parkville, Australia
| | - Susan Donath
- Clinical Epidemiology and Biostatistics Unit, Murdoch Children’s Research Institute, Parkville, Australia
- Department of Paediatrics, Parkville, Australia
| | - Susan Germano
- Infectious Diseases and Microbiology Group, Parkville, Australia
| | - Kaya Gardiner
- Infectious Diseases and Microbiology Group, Parkville, Australia
| | - Dan Casalaz
- Department of Paediatrics, Mercy Hospital for Women, Heidelberg, Australia
| | - Roy M Robins-Browne
- Infectious Diseases and Microbiology Group, Parkville, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Nelly Amenyogbe
- Department of Experimental Medicine, University of British Columbia, Vancouver, Canada
- Division of Infectious Diseases, Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Nicole L Messina
- Infectious Diseases and Microbiology Group, Parkville, Australia
- Department of Paediatrics, Parkville, Australia
| | - Mihai G Netea
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Katie L Flanagan
- School of Medicine, University of Tasmania, Launceston Australia
- Department of Immunology and Pathology, Monash University, Clayton, Australia
| | - Tobias Kollmann
- Department of Experimental Medicine, University of British Columbia, Vancouver, Canada
- Division of Infectious Diseases, Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Nigel Curtis
- Infectious Diseases and Microbiology Group, Parkville, Australia
- Department of Paediatrics, Parkville, Australia
- Infectious Diseases Unit, The Royal Children’s Hospital Melbourne, Parkville, Australia
| |
Collapse
|
30
|
Scheid A, Borriello F, Pietrasanta C, Christou H, Diray-Arce J, Pettengill MA, Joshi S, Li N, Bergelson I, Kollmann T, Dowling DJ, Levy O. Adjuvant Effect of Bacille Calmette-Guérin on Hepatitis B Vaccine Immunogenicity in the Preterm and Term Newborn. Front Immunol 2018; 9:29. [PMID: 29416539 PMCID: PMC5787546 DOI: 10.3389/fimmu.2018.00029] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 01/04/2018] [Indexed: 01/21/2023] Open
Abstract
Immunization is key to protecting term and preterm infants from a heightened risk of infection. However, preterm immunity is distinct from that of the term, limiting its ability to effectively respond to vaccines routinely given at birth, such as hepatitis B vaccine (HBV). As part of the Expanded Program on Immunization, HBV is often given together with the live-attenuated vaccine Bacille Calmette-Guérin (BCG), known to activate multiple pattern-recognition receptors. Of note, some clinical studies suggest BCG can enhance efficacy of other vaccines in term newborns. However, little is known about whether BCG can shape Th-polarizing cytokine responses to HBV nor the age-dependency of such effects, including whether they may extend to the preterm. To characterize the effects of BCG on HBV immunogenicity, we studied individual and combined administration of these vaccines to cord newborn and adult human whole blood and mononuclear cells in vitro and to neonatal and adult mice in vivo. Compared to either BCG or HBV alone, (BCG + HBV) synergistically enhanced in vitro whole blood production of IL-1β, while (BCG + HBV) also promoted production of several cytokines/chemokines in all age groups, age-specific enhancement included IL-12p70 in the preterm and GM-CSF in the preterm and term. In human mononuclear cells, (BCG + HBV) enhanced mRNA expression of several genes including CSF2, which contributed to clustering of genes by vaccine treatment via principle component analysis. To assess the impact of BCG on HBV immunization, mice of three different age groups were immunized subcutaneously with, BCG, HBV, (BCG + HBV) into the same site; or BCG and HBV injected into separate sites. Whether injected into a separate site or at the same site, co-administration of BCG with HBV significantly enhanced anti-HBV IgG titers in mice immunized on day of life-0 or -7, respectively, but not in adult mice. In summary, our data demonstrate that innate and adaptive vaccine responses of preterm and term newborns are immunologically distinct. Furthermore, BCG or "BCG-like" adjuvants should be further studied as a promising adjuvantation approach to enhance immunogenicity of vaccines to protect these vulnerable populations.
Collapse
Affiliation(s)
- Annette Scheid
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- Department of Medicine, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| | - Francesco Borriello
- Department of Medicine, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- WAO Center of Excellence, Naples, Italy
| | - Carlo Pietrasanta
- Department of Medicine, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Neonatal Intensive Care Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| | - Helen Christou
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA, United States
| | - Joann Diray-Arce
- Department of Medicine, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| | - Matthew A. Pettengill
- Department of Medicine, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| | - Sweta Joshi
- Department of Medicine, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Ning Li
- Department of Medicine, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Medical Eli Lilly, Shanghai, China
| | - Ilana Bergelson
- Department of Medicine, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Tobias Kollmann
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, British Columbia Children’s Hospital, Vancouver, BC, Canada
| | - David J. Dowling
- Department of Medicine, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Ofer Levy
- Department of Medicine, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| |
Collapse
|
31
|
Dietz RM, Wright CJ. Oxidative stress diseases unique to the perinatal period: A window into the developing innate immune response. Am J Reprod Immunol 2017; 79:e12787. [PMID: 29194835 DOI: 10.1111/aji.12787] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 10/31/2017] [Indexed: 12/15/2022] Open
Abstract
The innate immune system has evolved to play an integral role in the normally developing lung and brain. However, in response to oxidative stress, innate immunity, mediated by specific cellular and molecular programs and signaling, contributes to pathology in these same organ systems. Despite opposing drivers of oxidative stress, namely hyperoxia in neonatal lung injury and hypoxia/ischemia in neonatal brain injury, similar pathways-including toll-like receptors, NFκB and MAPK cascades-have been implicated in tissue damage. In this review, we consider recent insights into the innate immune response to oxidative stress in both neonatal and adult models to better understand hyperoxic lung injury and hypoxic-ischemic brain injury across development and aging. These insights support the development of targeted immunotherapeutic strategies to address the challenge of harnessing the innate immune system in oxidative stress diseases of the neonate.
Collapse
Affiliation(s)
- Robert M Dietz
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| |
Collapse
|
32
|
Effect of endotoxin and alum adjuvant vaccine on peanut allergy. J Allergy Clin Immunol 2017; 141:791-794.e8. [PMID: 28927819 DOI: 10.1016/j.jaci.2017.07.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 06/23/2017] [Accepted: 07/10/2017] [Indexed: 11/23/2022]
|
33
|
Protecting the Newborn and Young Infant from Infectious Diseases: Lessons from Immune Ontogeny. Immunity 2017; 46:350-363. [PMID: 28329702 DOI: 10.1016/j.immuni.2017.03.009] [Citation(s) in RCA: 277] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/20/2016] [Accepted: 03/06/2017] [Indexed: 12/14/2022]
Abstract
Infections in the first year of life are common and often severe. The newborn host demonstrates both quantitative and qualitative differences to the adult in nearly all aspects of immunity, which at least partially explain the increased susceptibility to infection. Here we discuss how differences in susceptibility to infection result not out of a state of immaturity, but rather reflect adaptation to the particular demands placed on the immune system in early life. We review the mechanisms underlying host defense in the very young, and discuss how specific developmental demands increase the risk of particular infectious diseases. In this context, we discuss how this plasticity, i.e. the capacity to adapt to demands encountered in early life, also provides the potential to leverage protection of the young against infection and disease through a number of interventions.
Collapse
|
34
|
El Bissati K, Zhou Y, Paulillo SM, Raman SK, Karch CP, Roberts CW, Lanar DE, Reed S, Fox C, Carter D, Alexander J, Sette A, Sidney J, Lorenzi H, Begeman IJ, Burkhard P, McLeod R. Protein nanovaccine confers robust immunity against Toxoplasma. NPJ Vaccines 2017; 2:24. [PMID: 29263879 PMCID: PMC5627305 DOI: 10.1038/s41541-017-0024-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 11/08/2022] Open
Abstract
We designed and produced a self-assembling protein nanoparticle. This self-assembling protein nanoparticle contains five CD8+ HLA-A03-11 supertypes-restricted epitopes from antigens expressed during Toxoplasma gondii's lifecycle, the universal CD4+ T cell epitope PADRE, and flagellin as a scaffold and TLR5 agonist. These CD8+ T cell epitopes were separated by N/KAAA spacers and optimized for proteasomal cleavage. Self-assembling protein nanoparticle adjuvanted with TLR4 ligand-emulsion GLA-SE were evaluated for their efficacy in inducing IFN-γ responses and protection of HLA-A*1101 transgenic mice against T. gondii. Immunization, using self-assembling protein nanoparticle-GLA-SE, activated CD8+ T cells to produce IFN-γ. Self-assembling protein nanoparticle-GLA-SE also protected HLA-A*1101 transgenic mice against subsequent challenge with Type II parasites. Hence, combining CD8+ T cell-eliciting peptides and PADRE into a multi-epitope protein that forms a nanoparticle, administered with GLA-SE, leads to efficient presentation by major histocompatibility complex Class I and II molecules. Furthermore, these results suggest that activation of TLR4 and TLR5 could be useful for development of vaccines that elicit T cells to prevent toxoplasmosis in humans.
Collapse
Affiliation(s)
- Kamal El Bissati
- Departments of OVS, The University of Chicago, 5841S Maryland Ave, Chicago, IL 60637 USA
| | - Ying Zhou
- Departments of OVS, The University of Chicago, 5841S Maryland Ave, Chicago, IL 60637 USA
| | | | | | - Christopher P. Karch
- Institute of Materials Science and Department of Molecular and Cell Biology, University of Connecticut, 97 North Eagleville Road, Storrs, CT 06269 USA
| | - Craig W. Roberts
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE UK
| | - David E. Lanar
- Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD 20910 USA
| | - Steve Reed
- Infectious Diseases Research Institute, 1616 Eastlake Ave E #400, Seattle, WA 98102 USA
| | - Chris Fox
- Infectious Diseases Research Institute, 1616 Eastlake Ave E #400, Seattle, WA 98102 USA
| | - Darrick Carter
- Infectious Diseases Research Institute, 1616 Eastlake Ave E #400, Seattle, WA 98102 USA
| | - Jeff Alexander
- PaxVax, 3985-A Sorrento Valley Blvd, San Diego, CA 92121 USA
| | - Alessandro Sette
- La Jolla Institute of Allergy and Immunology, 9420 Athena Cir, La Jolla, CA 92037 USA
| | - John Sidney
- La Jolla Institute of Allergy and Immunology, 9420 Athena Cir, La Jolla, CA 92037 USA
| | - Hernan Lorenzi
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD 20850 USA
| | - Ian J. Begeman
- Departments of OVS, The University of Chicago, 5841S Maryland Ave, Chicago, IL 60637 USA
| | - Peter Burkhard
- Alpha-O Peptides AG, Lörracherstrasse 50, 4125 Riehen, Switzerland
- Institute of Materials Science and Department of Molecular and Cell Biology, University of Connecticut, 97 North Eagleville Road, Storrs, CT 06269 USA
| | - Rima McLeod
- Departments of OVS, The University of Chicago, 5841S Maryland Ave, Chicago, IL 60637 USA
- Pediatrics (Infectious Diseases), The University of Chicago, 5841S Maryland Ave, Chicago, IL 60637 USA
| |
Collapse
|
35
|
Kratochvil S, McKay PF, Kopycinski JT, Bishop C, Hayes PJ, Muir L, Pinder CL, Cizmeci D, King D, Aldon Y, Wines BD, Hogarth PM, Chung AW, Kent SJ, Held K, Geldmacher C, Dally L, Santos NS, Cole T, Gilmour J, Fidler S, Shattock RJ. A Phase 1 Human Immunodeficiency Virus Vaccine Trial for Cross-Profiling the Kinetics of Serum and Mucosal Antibody Responses to CN54gp140 Modulated by Two Homologous Prime-Boost Vaccine Regimens. Front Immunol 2017; 8:595. [PMID: 28596770 PMCID: PMC5442169 DOI: 10.3389/fimmu.2017.00595] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/05/2017] [Indexed: 12/24/2022] Open
Abstract
A key aspect to finding an efficacious human immunodeficiency virus (HIV) vaccine is the optimization of vaccine schedules that can mediate the efficient maturation of protective immune responses. In the present study, we investigated the effect of alternate booster regimens on the immune responses to a candidate HIV-1 clade C CN54gp140 envelope protein, which was coadministered with the TLR4-agonist glucopyranosyl lipid A-aqueous formulation. Twelve study participants received a common three-dose intramuscular priming series followed by a final booster at either 6 or 12 months. The two homologous prime-boost regimens were well tolerated and induced CN54gp140-specific responses that were observed in both the systemic and mucosal compartments. Levels of vaccine-induced IgG-subclass antibodies correlated significantly with FcγR engagement, and both vaccine regimens were associated with strikingly similar patterns in antibody titer and FcγR-binding profiles. In both groups, identical changes in the antigen (Ag)-specific IgG-subclass fingerprint, leading to a decrease in IgG1 and an increase in IgG4 levels, were modulated by booster injections. Here, the dissection of immune profiles further supports the notion that prime-boost strategies are essential for the induction of diverse Ag-specific HIV-1 responses. The results reported here clearly demonstrate that identical responses were effectively and safely induced by both vaccine regimens, indicating that an accelerated 6-month regimen could be employed for the rapid induction of immune responses against CN54gp140 with no apparent impact on the overall quality of the induced immune response. (This study has been registered at http://ClinicalTrials.gov under registration no. NCT01966900.)
Collapse
Affiliation(s)
| | | | | | - Cynthia Bishop
- Flow Cytometry Core Facility, Biomedical Research Centre, Guy's Hospital, London, UK
| | | | - Luke Muir
- Imperial College London, Medicine, London, UK
| | | | | | | | - Yoann Aldon
- Imperial College London, Medicine, London, UK
| | | | | | - Amy W Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC, Australia.,Melbourne Sexual Health Centre, Department of Infectious Diseases, Alfred Health, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Kathrin Held
- Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich (LMU), Munich, Germany
| | - Christof Geldmacher
- Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich (LMU), Munich, Germany
| | - Len Dally
- Emmes Corporation, Rockville, MD, USA
| | - Nelson S Santos
- NIHR/Wellcome Trust Imperial Clinical Research Facility Hammersmith Hospital, Imperial College London, London, UK
| | - Tom Cole
- NIHR/Wellcome Trust Imperial Clinical Research Facility Hammersmith Hospital, Imperial College London, London, UK
| | | | | | | |
Collapse
|
36
|
Abstract
Adjuvant properties of bacterial cell wall components like MPLA (monophosphoryl lipid A) are well described and have gained FDA approval for use in vaccines such as Cervarix. MPLA is the product of chemically modified lipooligosaccharide (LOS), altered to diminish toxic proinflammatory effects while retaining adequate immunogenicity. Despite the virtually unlimited number of potential sources among bacterial strains, the number of useable compounds within this promising class of adjuvants are few. We have developed bacterial enzymatic combinatorial chemistry (BECC) as a method to generate rationally designed, functionally diverse lipid A. BECC removes endogenous or introduces exogenous lipid A-modifying enzymes to bacteria, effectively reprogramming the lipid A biosynthetic pathway. In this study, BECC is applied within an avirulent strain of Yersinia pestis to develop structurally distinct LOS molecules that elicit differential Toll-like receptor 4 (TLR4) activation. Using reporter cell lines that measure NF-κB activation, BECC-derived molecules were screened for the ability to induce a lower proinflammatory response than Escherichia coli LOS. Their structures exhibit varied, dose-dependent, TLR4-driven NF-κB activation with both human and mouse TLR4 complexes. Additional cytokine secretion screening identified molecules that induce levels of tumor necrosis factor alpha (TNF-α) and interleukin-8 (IL-8) comparable to the levels induced by phosphorylated hexa-acyl disaccharide (PHAD). The lead candidates demonstrated potent immunostimulation in mouse splenocytes, human primary blood mononuclear cells (PBMCs), and human monocyte-derived dendritic cells (DCs). This newly described system allows directed programming of lipid A synthesis and has the potential to generate a diverse array of TLR4 agonist candidates.IMPORTANCE There is an urgent need to develop effective vaccines against infectious diseases that continue to be major causes of morbidity and mortality worldwide. Making effective vaccines requires selecting an adjuvant to strengthen an appropriate and protective immune response. This work describes a practical method, bacterial enzymatic combinatorial chemistry (BECC), for generating functionally diverse molecules for adjuvant use. These molecules were analyzed in cell culture for their ability to initiate immune stimulatory activity. Several of the assays described herein show promising in vitro cytokine production and costimulatory molecule expression results, suggesting that the BECC molecules may be useful in future vaccine preparations.
Collapse
|
37
|
Dowling DJ, Scott EA, Scheid A, Bergelson I, Joshi S, Pietrasanta C, Brightman S, Sanchez-Schmitz G, Van Haren SD, Ninković J, Kats D, Guiducci C, de Titta A, Bonner DK, Hirosue S, Swartz MA, Hubbell JA, Levy O. Toll-like receptor 8 agonist nanoparticles mimic immunomodulating effects of the live BCG vaccine and enhance neonatal innate and adaptive immune responses. J Allergy Clin Immunol 2017; 140:1339-1350. [PMID: 28343701 PMCID: PMC5667586 DOI: 10.1016/j.jaci.2016.12.985] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/15/2016] [Accepted: 12/07/2016] [Indexed: 12/22/2022]
Abstract
Background Newborns display distinct immune responses, leaving them vulnerable to infections and impairing immunization. Targeting newborn dendritic cells (DCs), which integrate vaccine signals into adaptive immune responses, might enable development of age-specific vaccine formulations to overcome suboptimal immunization. Objective Small-molecule imidazoquinoline Toll-like receptor (TLR) 8 agonists robustly activate newborn DCs but can result in reactogenicity when delivered in soluble form. We used rational engineering and age- and species-specific modeling to construct and characterize polymer nanocarriers encapsulating a TLR8 agonist, allowing direct intracellular release after selective uptake by DCs. Methods Chemically similar but morphologically distinct nanocarriers comprised of amphiphilic block copolymers were engineered for targeted uptake by murine DCs in vivo, and a range of TLR8 agonist–encapsulating polymersome formulations were then synthesized. Novel 96-well in vitro assays using neonatal human monocyte-derived DCs and humanized TLR8 mouse bone marrow–derived DCs enabled benchmarking of the TLR8 agonist–encapsulating polymersome formulations against conventional adjuvants and licensed vaccines, including live attenuated BCG vaccine. Immunogenicity of the TLR8 agonist adjuvanted antigen 85B (Ag85B)/peptide 25–loaded BCG-mimicking nanoparticle formulation was evaluated in vivo by using humanized TLR8 neonatal mice. Results Although alum-adjuvanted vaccines induced modest costimulatory molecule expression, limited TH-polarizing cytokine production, and significant cell death, BCG induced a robust adult-like maturation profile of neonatal DCs. Remarkably, TLR8 agonist polymersomes induced not only newborn DC maturation profiles similar to those induced by BCG but also stronger IL-12p70 production. On subcutaneous injection to neonatal mice, the TLR8 agonist–adjuvanted Ag85B peptide 25 formulation was comparable with BCG in inducing Ag85B-specific CD4+ T-cell numbers. Conclusion TLR8 agonist–encapsulating polymersomes hold substantial potential for early-life immunization against intracellular pathogens. Overall, our study represents a novel approach for rational design of early-life vaccines.
Collapse
Affiliation(s)
- David J Dowling
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass.
| | - Evan A Scott
- Department of Biomedical Engineering, Northwestern University, Evanston, Ill.
| | - Annette Scheid
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass; Division of Newborn Medicine, Floating Hospital for Children, Tufts Medical Center, Boston, Mass; Precision Vaccine Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, Mass
| | - Ilana Bergelson
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, Mass
| | - Sweta Joshi
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, Mass; Precision Vaccine Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, Mass
| | - Carlo Pietrasanta
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass; Neonatal Intensive Care Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy; Precision Vaccine Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, Mass
| | - Spencer Brightman
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, Mass; Precision Vaccine Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, Mass
| | - Guzman Sanchez-Schmitz
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass; Precision Vaccine Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, Mass
| | - Simon D Van Haren
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass; Precision Vaccine Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, Mass
| | - Jana Ninković
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass
| | - Dina Kats
- Department of Biomedical Engineering, Northwestern University, Evanston, Ill
| | | | - Alexandre de Titta
- Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Daniel K Bonner
- Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sachiko Hirosue
- Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Melody A Swartz
- Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Institute for Molecular Engineering, University of Chicago, Chicago, Ill
| | - Jeffrey A Hubbell
- Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Institute for Molecular Engineering, University of Chicago, Chicago, Ill
| | - Ofer Levy
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass; Precision Vaccine Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, Mass.
| |
Collapse
|
38
|
Dowling DJ, Sanders H, Cheng WK, Joshi S, Brightman S, Bergelson I, Pietrasanta C, van Haren SD, van Amsterdam S, Fernandez J, van den Dobbelsteen GPJM, Levy O. A Meningococcal Outer Membrane Vesicle Vaccine Incorporating Genetically Attenuated Endotoxin Dissociates Inflammation from Immunogenicity. Front Immunol 2016; 7:562. [PMID: 28008331 PMCID: PMC5143884 DOI: 10.3389/fimmu.2016.00562] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/22/2016] [Indexed: 01/04/2023] Open
Abstract
Background Group B Neisseria meningitidis, an endotoxin-producing Gram-negative bacterium, causes the highest incidence of group B meningococcus (MenB) disease in the first year of life. The Bexsero vaccine is indicated in Europe from 8 weeks of age. Endotoxin components of outer membrane vesicles (OMVs) or soluble lipopolysaccharide (LPS) represent a potential source of inflammation and residual reactogenicity. The purpose of this study was to compare novel candidate MenB vaccine formulations with licensed vaccines, including Bexsero, using age-specific human in vitro culture systems. Methods OMVs from wild type- and inactivated lpxL1 gene mutant-N. meningitidis strains were characterized in human neonatal and adult in vitro whole blood assays and dendritic cell (DC) arrays. OMVs were benchmarked against licensed vaccines, including Bexsero and whole cell pertussis formulations, with respect to Th-polarizing cytokine and prostaglandin E2 production, as well as cell surface activation markers (HLA-DR, CD86, and CCR7). OMV immunogenicity was assessed in mice. Results ΔlpxLI native OMVs (nOMVs) demonstrated significantly less cytokine induction in human blood and DCs than Bexsero and most of the other pediatric vaccines (e.g., PedvaxHib, EasyFive, and bacillus Calmette–Guérin) tested. Despite a much lower inflammatory profile in vitro than Bexsero, ΔlpxLI nOMVs still had moderate DC maturing ability and induced robust anti-N. meningitidis antibody responses after murine immunization. Conclusion A meningococcal vaccine comprised of attenuated LPS-based OMVs with a limited inflammatory profile in vitro induces robust antigen-specific immunogenicity in vivo.
Collapse
Affiliation(s)
- David J Dowling
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Holly Sanders
- Janssen Vaccines and Prevention B.V. , Leiden , Netherlands
| | - Wing Ki Cheng
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Precision Vaccine Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Sweta Joshi
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA; Precision Vaccine Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Spencer Brightman
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA; Precision Vaccine Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Ilana Bergelson
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital , Boston, MA , USA
| | - Carlo Pietrasanta
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Precision Vaccine Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA; Neonatal Intensive Care Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Simon D van Haren
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Precision Vaccine Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | | | | | | | - Ofer Levy
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Precision Vaccine Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| |
Collapse
|
39
|
Malloy AMW, Ruckwardt TJ, Morabito KM, Lau-Kilby AW, Graham BS. Pulmonary Dendritic Cell Subsets Shape the Respiratory Syncytial Virus-Specific CD8+ T Cell Immunodominance Hierarchy in Neonates. THE JOURNAL OF IMMUNOLOGY 2016; 198:394-403. [PMID: 27895172 DOI: 10.4049/jimmunol.1600486] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 10/31/2016] [Indexed: 01/25/2023]
Abstract
Young infants are generally more susceptible to viral infections and experience more severe disease than do adults. CD8+ T cells are important for viral clearance, and although often ineffective in neonates they can be protective when adequately stimulated. Using a murine CB6F1/J hybrid model of respiratory syncytial virus (RSV) infection, we previously demonstrated that the CD8+ T cell immunodominance hierarchy to two RSV-derived epitopes, KdM282-90 and DbM187-195, was determined by the age at infection. To determine whether age-dependent RSV-specific CD8+ T cell responses could be modified through enhanced innate signaling, we used TLR4 or TLR9 agonist treatment at the time of infection, which remarkably changed the neonatal codominant response to an adult-like KdM282-90 CD8+ T cell immunodominant response. This shift was associated with an increase in the number of conventional dendritic cells, CD11b+ and CD103+ dendritic cells, in the lung-draining lymph node, as well as increased expression of the costimulatory molecule CD86. The magnitude of the KdM282-90 CD8+ T cell response in TLR agonist-treated neonates could be blocked with Abs against CD80 and CD86. These studies demonstrate the age-dependent function of conventional dendritic cells, their role in determining immunodominance hierarchy, and epitope-specific CD8+ T cell requirements for costimulation, all of which influence the immune response magnitude. The unique impact of TLR agonists on neonatal T cell responses is important to consider for RSV vaccines designed for young infants.
Collapse
Affiliation(s)
- Allison M W Malloy
- Laboratory of Neonatal Infection and Immunity, Department of Pediatrics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814; and .,Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Tracy J Ruckwardt
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Kaitlyn M Morabito
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Annie W Lau-Kilby
- Laboratory of Neonatal Infection and Immunity, Department of Pediatrics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814; and
| | - Barney S Graham
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
40
|
El Bissati K, Chentoufi AA, Krishack PA, Zhou Y, Woods S, Dubey JP, Vang L, Lykins J, Broderick KE, Mui E, Suzuki Y, Sa Q, Bi S, Cardona N, Verma SK, Fraczek L, Reardon CA, Sidney J, Alexander J, Sette A, Vedvick T, Fox C, Guderian JA, Reed S, Roberts CW, McLeod R. Adjuvanted multi-epitope vaccines protect HLA-A*11:01 transgenic mice against Toxoplasma gondii. JCI Insight 2016; 1:e85955. [PMID: 27699241 DOI: 10.1172/jci.insight.85955] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We created and tested multi-epitope DNA or protein vaccines with TLR4 ligand emulsion adjuvant (gluco glucopyranosyl lipid adjuvant in a stable emulsion [GLA-SE]) for their ability to protect against Toxoplasma gondii in HLA transgenic mice. Our constructs each included 5 of our best down-selected CD8+ T cell-eliciting epitopes, a universal CD4+ helper T lymphocyte epitope (PADRE), and a secretory signal, all arranged for optimal MHC-I presentation. Their capacity to elicit immune and protective responses was studied using immunization of HLA-A*11:01 transgenic mice. These multi-epitope vaccines increased memory CD8+ T cells that produced IFN-γ and protected mice against parasite burden when challenged with T. gondii. Endocytosis of emulsion-trapped protein and cross presentation of the antigens must account for the immunogenicity of our adjuvanted protein. Thus, our work creates an adjuvanted platform assembly of peptides resulting in cross presentation of CD8+ T cell-eliciting epitopes in a vaccine that prevents toxoplasmosis.
Collapse
Affiliation(s)
- Kamal El Bissati
- Department of Opthalmology and Visual Science; and Department of Pediatrics, Infectious Diseases Division (RM), The University of Chicago, Chicago, Illinois, USA
| | - Aziz A Chentoufi
- Pathology and Clinical Laboratory Medicine, Department of Immunology, King Fahad Medical City, Riyadh, Saudi Arabia
| | | | - Ying Zhou
- Department of Opthalmology and Visual Science; and Department of Pediatrics, Infectious Diseases Division (RM), The University of Chicago, Chicago, Illinois, USA
| | - Stuart Woods
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Jitender P Dubey
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, Maryland, USA
| | - Lo Vang
- PaxVax Inc., San Diego, California, USA
| | - Joseph Lykins
- Department of Opthalmology and Visual Science; and Department of Pediatrics, Infectious Diseases Division (RM), The University of Chicago, Chicago, Illinois, USA
| | - Kate E Broderick
- Department of Research and Development, Inovio Pharmaceuticals, Blue Bell, Pennsylvania, USA
| | - Ernest Mui
- Department of Opthalmology and Visual Science; and Department of Pediatrics, Infectious Diseases Division (RM), The University of Chicago, Chicago, Illinois, USA
| | - Yasuhiro Suzuki
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Qila Sa
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Stephanie Bi
- Department of Opthalmology and Visual Science; and Department of Pediatrics, Infectious Diseases Division (RM), The University of Chicago, Chicago, Illinois, USA
| | - Nestor Cardona
- Department of Opthalmology and Visual Science; and Department of Pediatrics, Infectious Diseases Division (RM), The University of Chicago, Chicago, Illinois, USA
| | - Shiv K Verma
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, Maryland, USA
| | - Laura Fraczek
- Department of Opthalmology and Visual Science; and Department of Pediatrics, Infectious Diseases Division (RM), The University of Chicago, Chicago, Illinois, USA
| | | | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | | | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Tom Vedvick
- Infectious Disease Research Institute, Seattle, Washington, USA
| | - Chris Fox
- Infectious Disease Research Institute, Seattle, Washington, USA
| | | | - Steven Reed
- Infectious Disease Research Institute, Seattle, Washington, USA
| | - Craig W Roberts
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Rima McLeod
- Department of Opthalmology and Visual Science; and Department of Pediatrics, Infectious Diseases Division (RM), The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|