1
|
Giangregorio F, Mosconi E, Debellis MG, Provini S, Esposito C, Garolfi M, Oraka S, Kaloudi O, Mustafazade G, Marín-Baselga R, Tung-Chen Y. A Systematic Review of Metabolic Syndrome: Key Correlated Pathologies and Non-Invasive Diagnostic Approaches. J Clin Med 2024; 13:5880. [PMID: 39407941 PMCID: PMC11478146 DOI: 10.3390/jcm13195880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Background and Objectives: Metabolic syndrome (MetS) is a condition marked by a complex array of physiological, biochemical, and metabolic abnormalities, including central obesity, insulin resistance, high blood pressure, and dyslipidemia (characterized by elevated triglycerides and reduced levels of high-density lipoproteins). The pathogenesis develops from the accumulation of lipid droplets in the hepatocyte (steatosis). This accumulation, in genetically predisposed subjects and with other external stimuli (intestinal dysbiosis, high caloric diet, physical inactivity, stress), activates the production of pro-inflammatory molecules, alter autophagy, and turn on the activity of hepatic stellate cells (HSCs), provoking the low grade chronic inflammation and the fibrosis. This syndrome is associated with a significantly increased risk of developing type 2 diabetes mellitus (T2D), cardiovascular diseases (CVD), vascular, renal, pneumologic, rheumatological, sexual, cutaneous syndromes and overall mortality, with the risk rising five- to seven-fold for T2DM, three-fold for CVD, and one and a half-fold for all-cause mortality. The purpose of this narrative review is to examine metabolic syndrome as a "systemic disease" and its interaction with major internal medicine conditions such as CVD, diabetes, renal failure, and respiratory failure. It is essential for internal medicine practitioners to approach this widespread condition in a "holistic" rather than a fragmented manner, particularly in Western countries. Additionally, it is important to be aware of the non-invasive tools available for assessing this condition. Materials and Methods: We conducted an exhaustive search on PubMed up to July 2024, focusing on terms related to metabolic syndrome and other pathologies (heart, Lung (COPD, asthma, pulmonary hypertension, OSAS) and kidney failure, vascular, rheumatological (osteoarthritis, rheumatoid arthritis), endocrinological, sexual pathologies and neoplastic risks. The review was managed in accordance with the PRISMA statement. Finally, we selected 300 studies (233 papers for the first search strategy and 67 for the second one). Our review included studies that provided insights into metabolic syndrome and non-invasive techniques for evaluating liver fibrosis and steatosis. Studies that were not conducted on humans, were published in languages other than English, or did not assess changes related to heart failure were excluded. Results: The findings revealed a clear correlation between metabolic syndrome and all the pathologies above described, indicating that non-invasive assessments of hepatic fibrosis and steatosis could potentially serve as markers for the severity and progression of the diseases. Conclusions: Metabolic syndrome is a multisystem disorder that impacts organs beyond the liver and disrupts the functioning of various organs. Notably, it is linked to a higher incidence of cardiovascular diseases, independent of traditional cardiovascular risk factors. Non-invasive assessments of hepatic fibrosis and fibrosis allow clinicians to evaluate cardiovascular risk. Additionally, the ability to assess liver steatosis may open new diagnostic, therapeutic, and prognostic avenues for managing metabolic syndrome and its complications, particularly cardiovascular disease, which is the leading cause of death in these patients.
Collapse
Affiliation(s)
- Francesco Giangregorio
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Emilio Mosconi
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Maria Grazia Debellis
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Stella Provini
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Ciro Esposito
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Matteo Garolfi
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Simona Oraka
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Olga Kaloudi
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Gunel Mustafazade
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Raquel Marín-Baselga
- Department of Internal Medicine, Hospital Universitario La Paz, Paseo Castellana 241, 28046 Madrid, Spain;
| | - Yale Tung-Chen
- Department of Internal Medicine, Hospital Universitario La Paz, Paseo Castellana 241, 28046 Madrid, Spain;
| |
Collapse
|
2
|
Alemany M. The Metabolic Syndrome, a Human Disease. Int J Mol Sci 2024; 25:2251. [PMID: 38396928 PMCID: PMC10888680 DOI: 10.3390/ijms25042251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
This review focuses on the question of metabolic syndrome (MS) being a complex, but essentially monophyletic, galaxy of associated diseases/disorders, or just a syndrome of related but rather independent pathologies. The human nature of MS (its exceptionality in Nature and its close interdependence with human action and evolution) is presented and discussed. The text also describes the close interdependence of its components, with special emphasis on the description of their interrelations (including their syndromic development and recruitment), as well as their consequences upon energy handling and partition. The main theories on MS's origin and development are presented in relation to hepatic steatosis, type 2 diabetes, and obesity, but encompass most of the MS components described so far. The differential effects of sex and its biological consequences are considered under the light of human social needs and evolution, which are also directly related to MS epidemiology, severity, and relations with senescence. The triggering and maintenance factors of MS are discussed, with especial emphasis on inflammation, a complex process affecting different levels of organization and which is a critical element for MS development. Inflammation is also related to the operation of connective tissue (including the adipose organ) and the widely studied and acknowledged influence of diet. The role of diet composition, including the transcendence of the anaplerotic maintenance of the Krebs cycle from dietary amino acid supply (and its timing), is developed in the context of testosterone and β-estradiol control of the insulin-glycaemia hepatic core system of carbohydrate-triacylglycerol energy handling. The high probability of MS acting as a unique complex biological control system (essentially monophyletic) is presented, together with additional perspectives/considerations on the treatment of this 'very' human disease.
Collapse
Affiliation(s)
- Marià Alemany
- Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
3
|
Engin A. Misalignment of Circadian Rhythms in Diet-Induced Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:27-71. [PMID: 39287848 DOI: 10.1007/978-3-031-63657-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The biological clocks of the circadian timing system coordinate cellular and physiological processes and synchronize them with daily cycles. While the central clock in the suprachiasmatic nucleus (SCN) is mainly synchronized by the light/dark cycles, the peripheral clocks react to other stimuli, including the feeding/fasting state, nutrients, sleep-wake cycles, and physical activity. During the disruption of circadian rhythms due to genetic mutations or social and occupational obligations, incorrect arrangement between the internal clock system and environmental rhythms leads to the development of obesity. Desynchronization between the central and peripheral clocks by altered timing of food intake and diet composition leads to uncoupling of the peripheral clocks from the central pacemaker and to the development of metabolic disorders. The strong coupling of the SCN to the light-dark cycle creates a situation of misalignment when food is ingested during the "wrong" time of day. Food-anticipatory activity is mediated by a self-sustained circadian timing, and its principal component is a food-entrainable oscillator. Modifying the time of feeding alone greatly affects body weight, whereas ketogenic diet (KD) influences circadian biology, through the modulation of clock gene expression. Night-eating behavior is one of the causes of circadian disruption, and night eaters have compulsive and uncontrolled eating with severe obesity. By contrast, time-restricted eating (TRE) restores circadian rhythms through maintaining an appropriate daily rhythm of the eating-fasting cycle. The hypothalamus has a crucial role in the regulation of energy balance rather than food intake. While circadian locomotor output cycles kaput (CLOCK) expression levels increase with high-fat diet-induced obesity, peroxisome proliferator-activated receptor-alpha (PPARα) increases the transcriptional level of brain and muscle aryl hydrocarbon receptor nuclear translocator (ARNT)-like 1 (BMAL1) in obese subjects. In this context, effective timing of chronotherapies aiming to correct SCN-driven rhythms depends on an accurate assessment of the SCN phase. In fact, in a multi-oscillator system, local rhythmicity and its disruption reflects the disruption of either local clocks or central clocks, thus imposing rhythmicity on those local tissues, whereas misalignment of peripheral oscillators is due to exosome-based intercellular communication.Consequently, disruption of clock genes results in dyslipidemia, insulin resistance, and obesity, while light exposure during the daytime, food intake during the daytime, and sleeping during the biological night promote circadian alignment between the central and peripheral clocks. Thus, shift work is associated with an increased risk of obesity, diabetes, and cardiovascular diseases because of unusual eating times as well as unusual light exposure and disruption of the circadian rhythm.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
4
|
Rajeswari JJ, Unniappan S. Tissue-Specific Modulation of Gluco- and Growth-Regulatory Factor Abundance by Nesfatin-1 and Nesfatin-1-like Peptide in Goldfish. Animals (Basel) 2023; 13:ani13091437. [PMID: 37174474 PMCID: PMC10177547 DOI: 10.3390/ani13091437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/16/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Nesfatin-1 and nesfatin-1-like peptide (Nlp) are derived from precursors nucleobindin-2 and -1, two calcium and DNA binding proteins, respectively. Both peptides exhibit hormone-like actions in mammals and fish. These functions include insulinotropic effects of nesfatin-1 and Nlp seen in mice and their growth hormone suppressive actions reported in goldfish. We hypothesized that nesfatin-1 and Nlp are insulin stimulatory (in adipose tissue) and modulate growth hormone and insulin-like growth factors and glucose transporters in goldfish. To test this, goldfish were intraperitoneally injected with either nesfatin-1 or Nlp (50 ng/g BW) or saline alone (control) and sampled at one-hour post-injection (in vivo study). In a separate study, tissue samples were collected and were incubated with either nesfatin-1 or Nlp for one or six hours (in vitro study). Transcript (mRNA) abundance data from the adipose tissue suggest that both nesfatin-1 and Nlp significantly upregulate the abundance of preproinsulin, insulin receptors, and pcsk1 and pcsk2 mRNAs. Meanwhile, the abundance of preproglucagon mRNA in the adipose tissue was significantly downregulated in both in vivo and in vitro studies. These results agree with the insulinotropic and glucagonostatic roles for nesfatin-1 and Nlp reported in rodents. The transcript abundance of growth regulators (igf1, igf2a, and ghra) and glucose transporters (slc2a2 and slc5a1) were upregulated in the muscle, while an opposite effect on these mRNAs was found in the liver of goldfish following nesfatin-1 and Nlp administration. Our results suggest that both nesfatin-1 and Nlp have tissue-specific regulatory roles on growth and glucoregulatory elements in the liver and muscle of goldfish. This agrees with our previous studies that showed a suppressive action of nesfatin-1 on growth hormone in goldfish liver. The results presented here provide strong supportive/confirmatory evidence for tissue-specific insulinotropic and gluco- and growth-regulatory actions of nesfatin-1 and Nlp in goldfish.
Collapse
Affiliation(s)
- Jithine Jayakumar Rajeswari
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
- Department of Biological Sciences, University of Calgary, 507 Campus Dr NW, Calgary, AB T2N 4V8, Canada
| | - Suraj Unniappan
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| |
Collapse
|
5
|
Joly-Amado A, Soty M, Philippe E, Lacombe A, Castel J, Pillot B, Vily-Petit J, Zitoun C, Mithieux G, Magnan C. Portal Glucose Infusion, Afferent Nerve Fibers, and Glucose and Insulin Tolerance of Insulin-Resistant Rats. J Nutr 2022; 152:1862-1871. [PMID: 35511216 DOI: 10.1093/jn/nxac097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/19/2022] [Accepted: 04/26/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The role of hepatoportal glucose sensors is poorly understood in the context of insulin resistance. OBJECTIVES We assessed the effects of glucose infusion in the portal vein on insulin tolerance in 2 rat models of insulin resistance, and the role of capsaicin sensitive nerves in this signal. METHODS Male Wistar rats, 8 weeks old, weighing 250-275 g, were used. Insulin and glucose tolerance were assessed following a 4-hour infusion of either glucose or saline through catheterization in the portal vein in 3 paradigms. In experiment 1, for diet-induced insulin resistance, rats were fed either a control diet (energy content: proteins = 22.5%, carbohydrates = 64.1%, and lipids = 13.4%) or a high-fat diet (energy content: proteins = 15.3%, carbohydrates = 40.3%, and lipids =44.4%) for 4 months. In experiment 2, for centrally induced peripheral insulin resistance, catheters were inserted in the carotid artery to deliver either an emulsion of triglycerides [intralipid (IL)] or saline towards the brain for 24 hours. In experiment 3, for testing the role of capsaicin-sensitive nerves, experiment 2 was repeated following a periportal treatment with capsaicin or vehicle. RESULTS In experiment 1, when compared to rats fed the control diet, rats fed the high-fat diet exhibited decreased insulin and glucose tolerance (P ≤ 0.05) that was restored with a glucose infusion in the portal vein (P ≤ 0.05). In experiment 2, infusion of a triglyceride emulsion towards the brain (IL rats) decreased insulin and glucose tolerance and increased hepatic endogenous production when compared to saline-infused rats (P ≤ 0.05). Glucose infusion in the portal vein in IL rats restored insulin and glucose tolerance, as well as hepatic glucose production, to controls levels (P ≤ 0.05). In experiment 3, portal infusion of glucose did not increase insulin tolerance in IL rats that received a periportal pretreatment with capsaicin. CONCLUSIONS Stimulation of hepatoportal glucose sensors increases insulin tolerance in rat models of insulin resistance and requires the presence of capsaicin-sensitive nerves.
Collapse
Affiliation(s)
- Aurélie Joly-Amado
- Université de Paris, Functional and Adaptive Biology Unit, UMR (Unite Mixte de Recherche) 8251, CNRS (Centre National de la Recherche Scientifique), Paris, France
| | - Maud Soty
- Institut National de la Santé et de la Recherche Médicale, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon I, Villeurbanne, France
| | - Erwann Philippe
- Université de Paris, Functional and Adaptive Biology Unit, UMR (Unite Mixte de Recherche) 8251, CNRS (Centre National de la Recherche Scientifique), Paris, France
| | - Amelie Lacombe
- Université de Paris, Functional and Adaptive Biology Unit, UMR (Unite Mixte de Recherche) 8251, CNRS (Centre National de la Recherche Scientifique), Paris, France
| | - Julien Castel
- Université de Paris, Functional and Adaptive Biology Unit, UMR (Unite Mixte de Recherche) 8251, CNRS (Centre National de la Recherche Scientifique), Paris, France
| | - Bruno Pillot
- Institut National de la Santé et de la Recherche Médicale, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon I, Villeurbanne, France
| | - Justine Vily-Petit
- Institut National de la Santé et de la Recherche Médicale, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon I, Villeurbanne, France
| | - Carine Zitoun
- Institut National de la Santé et de la Recherche Médicale, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon I, Villeurbanne, France
| | - Gilles Mithieux
- Institut National de la Santé et de la Recherche Médicale, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon I, Villeurbanne, France
| | - Christophe Magnan
- Université de Paris, Functional and Adaptive Biology Unit, UMR (Unite Mixte de Recherche) 8251, CNRS (Centre National de la Recherche Scientifique), Paris, France
| |
Collapse
|
6
|
Chazarin B, Benhaim-Delarbre M, Brun C, Anzeraey A, Bertile F, Terrien J. Molecular Liver Fingerprint Reflects the Seasonal Physiology of the Grey Mouse Lemur ( Microcebus murinus) during Winter. Int J Mol Sci 2022; 23:4254. [PMID: 35457071 PMCID: PMC9028843 DOI: 10.3390/ijms23084254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 12/14/2022] Open
Abstract
Grey mouse lemurs (Microcebus murinus) are primates that respond to environmental energetic constraints through strong physiological seasonality. They notably fatten during early winter (EW), and mobilize their lipid reserves while developing glucose intolerance during late winter (LW), when food availability is low. To decipher how the hepatic mechanisms may support such metabolic flexibility, we analyzed the liver proteome of adult captive male mouse lemurs, whose seasonal regulations are comparable to their wild counterparts. We highlight profound hepatic changes that reflect fat accretion in EW at the whole-body level, without triggering an ectopic storage of fat in the liver, however. Moreover, molecular regulations are consistent with the decrease in liver glucose utilization in LW, and therefore with reduced tolerance to glucose. However, no major regulation was seen in insulin signaling/resistance pathways. Fat mobilization in LW appeared possibly linked to the reactivation of the reproductive system while enhanced liver detoxification may reflect an anticipation to return to summer levels of food intake. Overall, these results show that the physiology of mouse lemurs during winter relies on solid molecular foundations in liver processes to adapt fuel partitioning while opposing the development of a pathological state despite large lipid fluxes.
Collapse
Affiliation(s)
- Blandine Chazarin
- Laboratoire de Spectrométrie de Masse Bio-Organique, Institut Pluridisciplinaire Hubert Curien, University of Strasbourg, CNRS, UMR 7178, 25 Rue Becquerel, 67087 Strasbourg, France; (B.C.); (M.B.-D.); (C.B.)
- Infrastructure Nationale de Protéomique ProFI—FR 2048, 25 Rue Becquerel, 67087 Strasbourg, France
| | - Margaux Benhaim-Delarbre
- Laboratoire de Spectrométrie de Masse Bio-Organique, Institut Pluridisciplinaire Hubert Curien, University of Strasbourg, CNRS, UMR 7178, 25 Rue Becquerel, 67087 Strasbourg, France; (B.C.); (M.B.-D.); (C.B.)
- Infrastructure Nationale de Protéomique ProFI—FR 2048, 25 Rue Becquerel, 67087 Strasbourg, France
| | - Charlotte Brun
- Laboratoire de Spectrométrie de Masse Bio-Organique, Institut Pluridisciplinaire Hubert Curien, University of Strasbourg, CNRS, UMR 7178, 25 Rue Becquerel, 67087 Strasbourg, France; (B.C.); (M.B.-D.); (C.B.)
- Infrastructure Nationale de Protéomique ProFI—FR 2048, 25 Rue Becquerel, 67087 Strasbourg, France
| | - Aude Anzeraey
- Unité Mécanismes Adaptatifs et Evolution (MECADEV), UMR 7179, CNRS, Muséum National d’Histoire Naturelle, 1 Avenue du Petit Château, 91800 Brunoy, France;
| | - Fabrice Bertile
- Laboratoire de Spectrométrie de Masse Bio-Organique, Institut Pluridisciplinaire Hubert Curien, University of Strasbourg, CNRS, UMR 7178, 25 Rue Becquerel, 67087 Strasbourg, France; (B.C.); (M.B.-D.); (C.B.)
- Infrastructure Nationale de Protéomique ProFI—FR 2048, 25 Rue Becquerel, 67087 Strasbourg, France
| | - Jérémy Terrien
- Unité Mécanismes Adaptatifs et Evolution (MECADEV), UMR 7179, CNRS, Muséum National d’Histoire Naturelle, 1 Avenue du Petit Château, 91800 Brunoy, France;
| |
Collapse
|
7
|
Patisaul HB. Endocrine disrupting chemicals (EDCs) and the neuroendocrine system: Beyond estrogen, androgen, and thyroid. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:101-150. [PMID: 34452685 DOI: 10.1016/bs.apha.2021.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hundreds of anthropogenic chemicals occupy our bodies, a situation that threatens the health of present and future generations. This chapter focuses on endocrine disrupting compounds (EDCs), both naturally occurring and man-made, that affect the neuroendocrine system to adversely impact health, with an emphasis on reproductive and metabolic pathways. The neuroendocrine system is highly sexually dimorphic and essential for maintaining homeostasis and appropriately responding to the environment. Comprising both neural and endocrine components, the neuroendocrine system is hormone sensitive throughout life and touches every organ system in the body. The integrative nature of the neuroendocrine system means that EDCs can have multi-system effects. Additionally, because gonadal hormones are essential for the sex-specific organization of numerous neuroendocrine pathways, endocrine disruption of this programming can lead to permanent deficits. Included in this review is a brief history of the neuroendocrine disruption field and a thorough discussion of the most common and less well understood neuroendocrine disruption modes of action. Also provided are extensive examples of how EDCs are likely contributing to neuroendocrine disorders such as obesity, and evidence that they have the potential for multi-generational effects.
Collapse
Affiliation(s)
- Heather B Patisaul
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
8
|
Chen M, Xia W. Proteomic Profiling of Plasma and Brain Tissue from Alzheimer's Disease Patients Reveals Candidate Network of Plasma Biomarkers. J Alzheimers Dis 2021; 76:349-368. [PMID: 32474469 DOI: 10.3233/jad-200110] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most prevalent form of dementia with two pathological hallmarks of tau-containing neurofibrillary tangles and amyloid-β protein (Aβ)-containing neuritic plaques. Although Aβ and tau have been explored as potential biomarkers, levels of these pathological proteins in blood fail to distinguish AD from healthy control subjects. OBJECTIVE We aim to discover potential plasma proteins associated with AD pathology by performing tandem mass tag (TMT)-based quantitative proteomic analysis of proteins from peripheral and central nervous system compartments. METHODS We performed comparative proteomic analyses of plasma collected from AD patients and cognitively normal subjects. In addition, proteomic profiles from the inferior frontal cortex, superior frontal cortex, and cerebellum of postmortem brain tissue from five AD patients and five non-AD controls were compared with plasma proteomic profiles to search for common biomarkers. Liquid chromatography-mass spectrometry was used to analyze plasma and brain tissue labeled with isobaric TMT for relative protein quantification. RESULTS Our results showed that the proteins in complement coagulation cascade and interleukin-6 signaling were significantly altered in both plasma and brains of AD patients. CONCLUSION Our results demonstrate the relevance in immune responses between the peripheral and central nervous systems. Those differentially regulated plasma proteins are explored as candidate biomarker profiles that illustrate chronic neuroinflammation in brains of AD patients.
Collapse
Affiliation(s)
- Mei Chen
- Geriatric Research Education Clinical Center, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA, USA
| | - Weiming Xia
- Geriatric Research Education Clinical Center, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA, USA.,Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
9
|
Postoperative hunger after outpatient surgery in patients anesthetized with propofol vs sevoflurane: a randomized-controlled trial. Can J Anaesth 2020; 67:550-559. [PMID: 31997087 DOI: 10.1007/s12630-020-01584-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 11/06/2019] [Accepted: 11/21/2019] [Indexed: 10/25/2022] Open
Abstract
PURPOSE Previous preclinical and preliminary clinical data suggest an appetite-stimulating effect of propofol compared with halogenated drugs. This study compared the effects of propofol with those of sevoflurane on recovery of hunger during the postoperative period. METHODS Patients undergoing outpatient transvaginal oocyte retrieval were randomized to propofol-remifentanil (propofol group) or sevoflurane-remifentanil (sevoflurane group) anesthesia. The primary endpoint was the time before feeling hungry (≥ 50/100 mm on a visual analogue scale). Secondary endpoints included plasma levels of ghrelin, leptin, and insulin (ten minutes, one hour, and two hours after anesthesia), caloric intake at first feed, and discharge readiness time. RESULTS In the 58 patients allocated to either the propofol or sevoflurane group, there was no difference in the median [interquartile range] recovery time of hunger (97 [75-138] vs 97 [80-140] min, respectively; median difference, 1; 95% confidence interval [CI], - 15 to 14; P = 0.91); caloric intake (245 [200-343] vs 260 [171-314] kcal; P = 0.39); or discharge readiness time (125 [85-153] vs 125 [95-174] min, P = 0.29). The groups showed no difference in crude plasma levels of ghrelin, leptin, and insulin at any time-point. When peptide plasma levels were expressed as a % change from baseline, there was a higher insulin plasma level one hour after anesthesia in the sevoflurane group (median difference, 4.9%; 95% CI, - 16.2 to 43.4) compared with the propofol group (median difference, - 21.2%; 95% CI, - 35.7 to 9.1; adjusted P = 0.01). CONCLUSION Propofol did not accelerate the recovery of hunger compared with sevoflurane after outpatient minor surgery. Moreover, propofol did not have distinguishable effects on other clinical or biological parameters associated with food intake. TRIAL REGISTRATION www.ClinicalTrials.gov (NCT02272166); registered 22 October, 2014.
Collapse
|
10
|
Geller S, Arribat Y, Netzahualcoyotzi C, Lagarrigue S, Carneiro L, Zhang L, Amati F, Lopez-Mejia IC, Pellerin L. Tanycytes Regulate Lipid Homeostasis by Sensing Free Fatty Acids and Signaling to Key Hypothalamic Neuronal Populations via FGF21 Secretion. Cell Metab 2019; 30:833-844.e7. [PMID: 31474567 DOI: 10.1016/j.cmet.2019.08.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 12/28/2018] [Accepted: 08/05/2019] [Indexed: 12/12/2022]
Abstract
The hypothalamus plays a key role in the detection of energy substrates to regulate energy homeostasis. Tanycytes, the hypothalamic ependymo-glia, are located at a privileged position to integrate multiple peripheral inputs. We observed that tanycytes produce and secrete Fgf21 and are located close to Fgf21-sensitive neurons. Fasting, likely via the increase in circulating fatty acids, regulates this central Fgf21 production. Tanycytes store palmitate in lipid droplets and oxidize it, leading to the activation of a reactive oxygen species (ROS)/p38-MAPK signaling pathway, which is essential for tanycytic Fgf21 expression upon palmitate exposure. Tanycytic Fgf21 deletion triggers an increase in lipolysis, likely due to impaired inhibition of key neurons during fasting. Mice deleted for tanycytic Fgf21 exhibit increased energy expenditure and a reduction in fat mass gain, reminiscent of a browning phenotype. Our results suggest that tanycytes sense free fatty acids to maintain body lipid homeostasis through Fgf21 signaling within the hypothalamus.
Collapse
Affiliation(s)
- Sarah Geller
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland.
| | - Yoan Arribat
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland
| | | | - Sylviane Lagarrigue
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland
| | - Lionel Carneiro
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland
| | - Lianjun Zhang
- Ludwig Center for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland
| | - Francesca Amati
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland; Institute of Sports Sciences, University of Lausanne, Lausanne 1005, Switzerland; Service of Endocrinology, Diabetology, and Metabolism, Department of Medicine, Lausanne University Hospital, Lausanne 1011, Switzerland
| | - Isabel C Lopez-Mejia
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Luc Pellerin
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland; Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, LabEx TRAIL-IBIO, Université de Bordeaux, Bordeaux Cedex 33760, France.
| |
Collapse
|
11
|
Hernández-Cáceres MP, Toledo-Valenzuela L, Díaz-Castro F, Ávalos Y, Burgos P, Narro C, Peña-Oyarzun D, Espinoza-Caicedo J, Cifuentes-Araneda F, Navarro-Aguad F, Riquelme C, Troncoso R, Criollo A, Morselli E. Palmitic Acid Reduces the Autophagic Flux and Insulin Sensitivity Through the Activation of the Free Fatty Acid Receptor 1 (FFAR1) in the Hypothalamic Neuronal Cell Line N43/5. Front Endocrinol (Lausanne) 2019; 10:176. [PMID: 30972025 PMCID: PMC6446982 DOI: 10.3389/fendo.2019.00176] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 03/01/2019] [Indexed: 12/13/2022] Open
Abstract
Chronic consumption of high fat diets (HFDs), rich in saturated fatty acids (SatFAs) like palmitic acid (PA), is associated with the development of obesity and obesity-related metabolic diseases such as type II diabetes mellitus (T2DM). Previous studies indicate that PA accumulates in the hypothalamus following consumption of HFDs; in addition, HFDs consumption inhibits autophagy and reduces insulin sensitivity. Whether malfunction of autophagy specifically in hypothalamic neurons decreases insulin sensitivity remains unknown. PA does activate the Free Fatty Acid Receptor 1 (FFAR1), also known as G protein-coupled receptor 40 (GPR40); however, whether FFAR1 mediates the effects of PA on hypothalamic autophagy and insulin sensitivity has not been shown. Here, we demonstrate that exposure to PA inhibits the autophagic flux and reduces insulin sensitivity in a cellular model of hypothalamic neurons (N43/5 cells). Furthermore, we show that inhibition of autophagy and the autophagic flux reduces insulin sensitivity in hypothalamic neuronal cells. Interestingly, the inhibition of the autophagic flux, and the reduction in insulin sensitivity are prevented by pharmacological inhibition of FFAR1. Our findings show that dysregulation of autophagy reduces insulin sensitivity in hypothalamic neuronal cells. In addition, our data suggest FFAR1 mediates the ability of PA to inhibit autophagic flux and reduce insulin sensitivity in hypothalamic neuronal cells. These results reveal a novel cellular mechanism linking PA-rich diets to decreased insulin sensitivity in the hypothalamus and suggest that hypothalamic autophagy might represent a target for future T2DM therapies.
Collapse
Affiliation(s)
- María Paz Hernández-Cáceres
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Autophagy Research Center, Santiago, Chile
| | - Lilian Toledo-Valenzuela
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Autophagy Research Center, Santiago, Chile
| | - Francisco Díaz-Castro
- Autophagy Research Center, Santiago, Chile
- Research Laboratory of Nutrition and Physical Activity, Institute of Nutrition and Food Technology, Universidad de Chile, Santiago, Chile
| | - Yenniffer Ávalos
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Autophagy Research Center, Santiago, Chile
| | - Paulina Burgos
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Autophagy Research Center, Santiago, Chile
| | - Carla Narro
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Autophagy Research Center, Santiago, Chile
| | - Daniel Peña-Oyarzun
- Autophagy Research Center, Santiago, Chile
- Advanced Center for Chronic Diseases and Center for Molecular Studies of the Cell, Universidad de Chile, Santiago, Chile
- Facultad de Odontología, Instituto de Investigación en Ciencias Odontológicas, Universidad de Chile, Santiago, Chile
| | - Jasson Espinoza-Caicedo
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Autophagy Research Center, Santiago, Chile
| | - Flavia Cifuentes-Araneda
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Autophagy Research Center, Santiago, Chile
| | - Fernanda Navarro-Aguad
- Laboratory of Differentiation and Pathology, Department of Cell and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cecilia Riquelme
- Laboratory of Differentiation and Pathology, Department of Cell and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Troncoso
- Autophagy Research Center, Santiago, Chile
- Research Laboratory of Nutrition and Physical Activity, Institute of Nutrition and Food Technology, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases and Center for Molecular Studies of the Cell, Universidad de Chile, Santiago, Chile
| | - Alfredo Criollo
- Autophagy Research Center, Santiago, Chile
- Advanced Center for Chronic Diseases and Center for Molecular Studies of the Cell, Universidad de Chile, Santiago, Chile
- Facultad de Odontología, Instituto de Investigación en Ciencias Odontológicas, Universidad de Chile, Santiago, Chile
| | - Eugenia Morselli
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Autophagy Research Center, Santiago, Chile
- *Correspondence: Eugenia Morselli
| |
Collapse
|
12
|
Rijnsburger M, Eggels L, Castel J, Cruciani-Guglielmacci C, Ackermans M, Luquet S, la Fleur S. A novel, double intra-carotid cannulation technique to study the effect of central nutrient sensing on glucose metabolism in the rat. J Neurosci Methods 2017; 290:79-84. [DOI: 10.1016/j.jneumeth.2017.07.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/14/2017] [Accepted: 07/24/2017] [Indexed: 10/19/2022]
|
13
|
Julliard AK, Al Koborssy D, Fadool DA, Palouzier-Paulignan B. Nutrient Sensing: Another Chemosensitivity of the Olfactory System. Front Physiol 2017; 8:468. [PMID: 28747887 PMCID: PMC5506222 DOI: 10.3389/fphys.2017.00468] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/19/2017] [Indexed: 12/31/2022] Open
Abstract
Olfaction is a major sensory modality involved in real time perception of the chemical composition of the external environment. Olfaction favors anticipation and rapid adaptation of behavioral responses necessary for animal survival. Furthermore, recent studies have demonstrated that there is a direct action of metabolic peptides on the olfactory network. Orexigenic peptides such as ghrelin and orexin increase olfactory sensitivity, which in turn, is decreased by anorexigenic hormones such as insulin and leptin. In addition to peptides, nutrients can play a key role on neuronal activity. Very little is known about nutrient sensing in olfactory areas. Nutrients, such as carbohydrates, amino acids, and lipids, could play a key role in modulating olfactory sensitivity to adjust feeding behavior according to metabolic need. Here we summarize recent findings on nutrient-sensing neurons in olfactory areas and delineate the limits of our knowledge on this topic. The present review opens new lines of investigations on the relationship between olfaction and food intake, which could contribute to determining the etiology of metabolic disorders.
Collapse
Affiliation(s)
- A-Karyn Julliard
- Univ Lyon, Université Claude Bernard Lyon1, Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028/Centre National de la Recherche Scientifique UMR5292 Team Olfaction: From Coding to MemoryLyon, France
| | - Dolly Al Koborssy
- Department of Biological Science, Florida State UniversityTallahassee, FL, United States.,Program in Neuroscience, Florida State UniversityTallahassee, FL, United States
| | - Debra A Fadool
- Department of Biological Science, Florida State UniversityTallahassee, FL, United States.,Program in Neuroscience, Florida State UniversityTallahassee, FL, United States.,Institute of Molecular Biophysics, Florida State UniversityTallahassee, FL, United States
| | - Brigitte Palouzier-Paulignan
- Univ Lyon, Université Claude Bernard Lyon1, Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028/Centre National de la Recherche Scientifique UMR5292 Team Olfaction: From Coding to MemoryLyon, France
| |
Collapse
|
14
|
Khan MSS, Asif M, Basheer MKA, Kang CW, Al-Suede FS, Ein OC, Tang J, Majid ASA, Majid AMSA. Treatment of novel IL17A inhibitor in glioblastoma implementing 3rd generation co-culture cell line and patient-derived tumor model. Eur J Pharmacol 2017; 803:24-38. [PMID: 28322833 DOI: 10.1016/j.ejphar.2017.03.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/11/2017] [Accepted: 03/15/2017] [Indexed: 12/12/2022]
Abstract
Despite many treatment options, cancer remains a growing problem and has become the second leading cause of death globally. Here, we present fluorescence molecular tomography (FMT) data regarding the reversion of third generation co-cultured U87+DBTRG and patient-derived GBM tumor model after treatment with novel IL17A inhibitor named FLVM and FLVZ (organic derivatives of caffeic acid). FMT was used to determine tumor angiogenesis volume (assessment of number of blood vessel; the expression of angiogenic factors CD34 and other angiogenic cancer bio-markers) in U87+DBTRG and patient-derived gliomas. Immunohistochemistry was used to determine microvessel density [CD34], and cell proliferation [Ki67]. Western blot was used to assess the interleukin 17A [IL17A], vascular endothelial growth factor [VEGF] and hypoxia-inducible factor-1α [HIF-1α]. Antibody array was used to assess the cancer bio-markers in co-cultured U87+DBTRG gliomas. Animal survival was found to be significantly increased (P<0.0001) after FLVM treatment compared with control-IL17A. After FMT detection, FLVM, administered orally, was found to decrease tumor growth (P<0.0001). FLVM and FLVZ administration resulted in significant decreases in tumor hypoxia [HIF-1α (P<0.05)], angiogenesis [CD34 (P<0.05)], VEGF, IL17A and cell proliferation [Ki67 (P<0.05)] and caused a significant increase of Bax, caspase and FasL (P<0.05), compared with untreated animals. Additionally, Leptin, LPL (P<0.01), FFA (P<0.05) and adipogenesis were downregulated and no additive toxicity was found in mice except calorie-restriction like effect. Use of FLVM can be considered as a novel inhibitor of IL17A for the treatment of human gliomas.
Collapse
Affiliation(s)
- Md Shamsuddin Sultan Khan
- EMAN Research and Testing Laboratory, School of Pharmaceutical Sciences, University of Science Malaysia, Penang, Malaysia; EMAN Biodiscoveries Sdn Bhd, Eureka Complex, Universiti of Science Malaysia, Minden, Penang, Malaysia; Eman research, Level 3, 81 Flushcombe Rd, Blacktown, NSW 2148, Australia.
| | - Muhammad Asif
- EMAN Research and Testing Laboratory, School of Pharmaceutical Sciences, University of Science Malaysia, Penang, Malaysia
| | | | - Cheng Wei Kang
- Institute for Research in Molecular medicine, University of Science Malaysia, Penang, Malaysia
| | - Fouad Saleh Al-Suede
- EMAN Research and Testing Laboratory, School of Pharmaceutical Sciences, University of Science Malaysia, Penang, Malaysia; EMAN Biodiscoveries Sdn Bhd, Eureka Complex, Universiti of Science Malaysia, Minden, Penang, Malaysia
| | - Oon Chern Ein
- Institute for Research in Molecular medicine, University of Science Malaysia, Penang, Malaysia
| | - Jing Tang
- Department of Mathematics and Statistics, University of Turku, Finland
| | - Aman Shah Abdul Majid
- EMAN Biodiscoveries Sdn Bhd, Eureka Complex, Universiti of Science Malaysia, Minden, Penang, Malaysia; School of Medicine, Department of Pharmacology, Quest International University, Malaysia
| | - Amin Malik Shah Abdul Majid
- EMAN Research and Testing Laboratory, School of Pharmaceutical Sciences, University of Science Malaysia, Penang, Malaysia; EMAN Biodiscoveries Sdn Bhd, Eureka Complex, Universiti of Science Malaysia, Minden, Penang, Malaysia.
| |
Collapse
|
15
|
Yehuda S, Rabinovitz S. The Role of Essential Fatty Acids in Anorexia Nervosa and Obesity. Crit Rev Food Sci Nutr 2017; 56:2021-35. [PMID: 26068122 DOI: 10.1080/10408398.2013.809690] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The two basic questions in food intake study are what we eat, and how much do we eat. Most research is directed toward the control of how much is eaten. This is likely the result of the increased number of individuals with eating disorders in the Western world. Feeding behavior is highly complex, and is controlled by many psychological, physiological, biochemical, and immunological factors. The aim of this review is to clarify the involvement of fatty acids in eating disorders such as anorexia and binge eating disorder. The review will describe the modified fatty acid profile observed in individuals with anorexia or binge eating disorder, and discuss on what factors fatty acids can exert beneficial effects. In addition, the differences and similarities between anorexia and binge eating disorder will be discussed. We suggest that beneficial effects of essential fatty acids on both anorexia and binge eating disorder can be explained by the stabilizing effect of those fatty acids on the neuronal membrane fluidity index.
Collapse
Affiliation(s)
- Shlomo Yehuda
- a Psychopharmacology Lab , Department of Psychology, Bar Ilan University , Ramat Gan , Israel
| | - Sharon Rabinovitz
- a Psychopharmacology Lab , Department of Psychology, Bar Ilan University , Ramat Gan , Israel.,b School of Criminology, University of Haifa , Mount Carmel , Israel
| |
Collapse
|
16
|
Conde-Sieira M, Soengas JL. Nutrient Sensing Systems in Fish: Impact on Food Intake Regulation and Energy Homeostasis. Front Neurosci 2017; 10:603. [PMID: 28111540 PMCID: PMC5216673 DOI: 10.3389/fnins.2016.00603] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 12/19/2016] [Indexed: 12/27/2022] Open
Abstract
Evidence obtained in recent years in a few species, especially rainbow trout, supports the presence in fish of nutrient sensing mechanisms. Glucosensing capacity is present in central (hypothalamus and hindbrain) and peripheral [liver, Brockmann bodies (BB, main accumulation of pancreatic endocrine cells in several fish species), and intestine] locations whereas fatty acid sensors seem to be present in hypothalamus, liver and BB. Glucose and fatty acid sensing capacities relate to food intake regulation and metabolism in fish. Hypothalamus is as a signaling integratory center in a way that detection of increased levels of nutrients result in food intake inhibition through changes in the expression of anorexigenic and orexigenic neuropeptides. Moreover, central nutrient sensing modulates functions in the periphery since they elicit changes in hepatic metabolism as well as in hormone secretion to counter-regulate changes in nutrient levels detected in the CNS. At peripheral level, the direct nutrient detection in liver has a crucial role in homeostatic control of glucose and fatty acid whereas in BB and intestine nutrient sensing is probably involved in regulation of hormone secretion from endocrine cells.
Collapse
Affiliation(s)
- Marta Conde-Sieira
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo Vigo, Spain
| | - José L Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo Vigo, Spain
| |
Collapse
|
17
|
Abstract
The biological clocks of the circadian timing system coordinate cellular and physiological processes and synchronizes these with daily cycles, feeding patterns also regulates circadian clocks. The clock genes and adipocytokines show circadian rhythmicity. Dysfunction of these genes are involved in the alteration of these adipokines during the development of obesity. Food availability promotes the stimuli associated with food intake which is a circadian oscillator outside of the suprachiasmatic nucleus (SCN). Its circadian rhythm is arranged with the predictable daily mealtimes. Food anticipatory activity is mediated by a self-sustained circadian timing and its principal component is food entrained oscillator. However, the hypothalamus has a crucial role in the regulation of energy balance rather than food intake. Fatty acids or their metabolites can modulate neuronal activity by brain nutrient-sensing neurons involved in the regulation of energy and glucose homeostasis. The timing of three-meal schedules indicates close association with the plasma levels of insulin and preceding food availability. Desynchronization between the central and peripheral clocks by altered timing of food intake and diet composition can lead to uncoupling of peripheral clocks from the central pacemaker and to the development of metabolic disorders. Metabolic dysfunction is associated with circadian disturbances at both central and peripheral levels and, eventual disruption of circadian clock functioning can lead to obesity. While CLOCK expression levels are increased with high fat diet-induced obesity, peroxisome proliferator-activated receptor (PPAR) alpha increases the transcriptional level of brain and muscle ARNT-like 1 (BMAL1) in obese subjects. Consequently, disruption of clock genes results in dyslipidemia, insulin resistance and obesity. Modifying the time of feeding alone can greatly affect body weight. Changes in the circadian clock are associated with temporal alterations in feeding behavior and increased weight gain. Thus, shift work is associated with increased risk for obesity, diabetes and cardio-vascular diseases as a result of unusual eating time and disruption of circadian rhythm.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- , Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
18
|
Cansell C, Luquet S. Triglyceride sensing in the reward circuitry: A new insight in feeding behaviour regulation. Biochimie 2016; 120:75-80. [DOI: 10.1016/j.biochi.2015.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 07/03/2015] [Indexed: 12/17/2022]
|
19
|
Magnan C, Levin BE, Luquet S. Brain lipid sensing and the neural control of energy balance. Mol Cell Endocrinol 2015; 418 Pt 1:3-8. [PMID: 26415589 DOI: 10.1016/j.mce.2015.09.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 09/14/2015] [Accepted: 09/22/2015] [Indexed: 12/29/2022]
Abstract
Fatty acid (FA) -sensitive neurons are present in the brain, especially the hypothalamus, and play a key role in the neural control of energy and glucose homeostasis including feeding behavior, secretion insulin and action. Subpopulations of neurons in the arcuate and ventromedial hypothalamic nuclei are selectively either activated or inhibited by FA. Molecular effectors of these FA effects include ion channels such as chloride, potassium or calcium. In addition, at least half of the responses in the hypothalamic ventromedial FA neurons are mediated through interaction with the FA translocator/receptor, FAT/CD36, that does not require metabolism to activate intracellular signaling downstream. Recently, an important role of lipoprotein lipase in FA detection has also been demonstrated not only in the hypothalamus, but also in the hippocampus and striatum. Finally, FA could overload energy homeostasis via increased hypothalamic ceramide synthesis which could, in turn, contribute to the pathogenesis of diabetes of obesity and/or type 2 in predisposed individuals by disrupting the endocrine signaling pathways of insulin and/or leptin.
Collapse
Affiliation(s)
- Christophe Magnan
- Univ Paris Diderot, Sorbonne Paris Cité, CNRS UMR 8251, F-75205, Paris, France.
| | - Barry E Levin
- Neurology Service, VA Medical Center, East Orange, NJ, USA; Department of Neurology, Rutgers, NJ Medical School, Newark, NJ, USA
| | - Serge Luquet
- Univ Paris Diderot, Sorbonne Paris Cité, CNRS UMR 8251, F-75205, Paris, France
| |
Collapse
|
20
|
Conde-Sieira M, Bonacic K, Velasco C, Valente LMP, Morais S, Soengas JL. Hypothalamic fatty acid sensing in Senegalese sole (Solea senegalensis): response to long-chain saturated, monounsaturated, and polyunsaturated (n-3) fatty acids. Am J Physiol Regul Integr Comp Physiol 2015; 309:R1521-31. [PMID: 26468264 DOI: 10.1152/ajpregu.00386.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/14/2015] [Indexed: 01/05/2023]
Abstract
We assessed the presence of fatty acid (FA)-sensing mechanisms in hypothalamus of Senegalese sole (Solea senegalensis) and investigated their sensitivity to FA chain length and/or level of unsaturation. Stearate (SA, saturated FA), oleate (OA, monounsaturated FA of the same chain length), α-linolenate [ALA, a n-3 polyunsaturated fatty acid (PUFA) of the same chain length], and eicosapentanoate (EPA, a n-3 PUFA of a larger chain length) were injected intraperitoneally. Parameters related to FA sensing and neuropeptide expression in the hypothalamus were assessed after 3 h and changes in accumulated food intake after 4, 24, and 48 h. Three FA sensing systems characterized in rainbow trout were also found in Senegalese sole and were activated by OA in a way similar to that previously characterized in rainbow trout and mammals. These hypothalamic FA sensing systems were also activated by ALA, differing from mammals, where n-3 PUFAs do not seem to activate FA sensors. This might suggest additional roles and highlights the importance of n-3 PUFA in fish diets, especially in marine species. The activation of FA sensing seems to be partially dependent on acyl chain length and degree of saturation, as no major changes were observed after treating fish with SA or EPA. The activation of FA sensing systems by OA and ALA, but not SA or EPA, is further reflected in the expression of hypothalamic neuropeptides involved in the control of food intake. Both OA and ALA enhanced anorexigenic capacity compatible with the activation of FA sensing systems.
Collapse
Affiliation(s)
- Marta Conde-Sieira
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, Porto, Portugal; Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - Kruno Bonacic
- Institut de Recerca i Tecnología Agroalimentàries, Sant Carles de la Ràpita, Spain; and
| | - Cristina Velasco
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - Luisa M P Valente
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Sofia Morais
- Institut de Recerca i Tecnología Agroalimentàries, Sant Carles de la Ràpita, Spain; and
| | - José L Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain;
| |
Collapse
|
21
|
Moullé VS, Picard A, Cansell C, Luquet S, Magnan C. Rôle de la détection centrale des lipides dans le contrôle nerveux de la balance énergétique. Med Sci (Paris) 2015; 31:397-403. [DOI: 10.1051/medsci/20153104014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
22
|
Dual effects of the non-esterified fatty acid receptor ‘GPR40’ for human health. Prog Lipid Res 2015; 58:40-50. [DOI: 10.1016/j.plipres.2015.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 01/12/2015] [Indexed: 11/18/2022]
|
23
|
Bouret S, Levin BE, Ozanne SE. Gene-environment interactions controlling energy and glucose homeostasis and the developmental origins of obesity. Physiol Rev 2015; 95:47-82. [PMID: 25540138 PMCID: PMC4281588 DOI: 10.1152/physrev.00007.2014] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Obesity and type 2 diabetes mellitus (T2DM) often occur together and affect a growing number of individuals in both the developed and developing worlds. Both are associated with a number of other serious illnesses that lead to increased rates of mortality. There is likely a polygenic mode of inheritance underlying both disorders, but it has become increasingly clear that the pre- and postnatal environments play critical roles in pushing predisposed individuals over the edge into a disease state. This review focuses on the many genetic and environmental variables that interact to cause predisposed individuals to become obese and diabetic. The brain and its interactions with the external and internal environment are a major focus given the prominent role these interactions play in the regulation of energy and glucose homeostasis in health and disease.
Collapse
Affiliation(s)
- Sebastien Bouret
- The Saban Research Institute, Neuroscience Program, Childrens Hospital Los Angeles, University of Southern California, Los Angeles, California; Inserm U837, Jean-Pierre Aubert Research Center, University Lille 2, Lille, France; Neurology Service, Veterans Administration Medical Center, East Orange, New Jersey; Department of Neurology and Neurosciences, Rutgers, New Jersey Medical School, Newark, New Jersey; and University of Cambridge Institute of Metabolic Science and MRC Metabolic Diseases Unit, Cambridge, United Kingdom
| | - Barry E Levin
- The Saban Research Institute, Neuroscience Program, Childrens Hospital Los Angeles, University of Southern California, Los Angeles, California; Inserm U837, Jean-Pierre Aubert Research Center, University Lille 2, Lille, France; Neurology Service, Veterans Administration Medical Center, East Orange, New Jersey; Department of Neurology and Neurosciences, Rutgers, New Jersey Medical School, Newark, New Jersey; and University of Cambridge Institute of Metabolic Science and MRC Metabolic Diseases Unit, Cambridge, United Kingdom
| | - Susan E Ozanne
- The Saban Research Institute, Neuroscience Program, Childrens Hospital Los Angeles, University of Southern California, Los Angeles, California; Inserm U837, Jean-Pierre Aubert Research Center, University Lille 2, Lille, France; Neurology Service, Veterans Administration Medical Center, East Orange, New Jersey; Department of Neurology and Neurosciences, Rutgers, New Jersey Medical School, Newark, New Jersey; and University of Cambridge Institute of Metabolic Science and MRC Metabolic Diseases Unit, Cambridge, United Kingdom
| |
Collapse
|
24
|
Picard A, Moullé VS, Le Foll C, Cansell C, Véret J, Coant N, Le Stunff H, Migrenne S, Luquet S, Cruciani-Guglielmacci C, Levin BE, Magnan C. Physiological and pathophysiological implications of lipid sensing in the brain. Diabetes Obes Metab 2014; 16 Suppl 1:49-55. [PMID: 25200296 DOI: 10.1111/dom.12335] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/06/2014] [Indexed: 12/17/2022]
Abstract
Fatty acid (FA)-sensitive neurons are present in the brain, especially the hypothalamus, and play a key role in the neural control of energy homeostasis. Through neuronal output, FA may modulate feeding behaviour as well as insulin secretion and action. Subpopulations of neurons in the ventromedial and arcuate hypothalamic nuclei are selectively either inhibited or activated by FA. Molecular effectors of these FA effects probably include chloride or potassium ion channels. While intracellular metabolism and activation of the ATP-sensitive K⁺ channel appear to be necessary for some of the signalling effects of FA, at least half of the FA responses in ventromedial hypothalamic neurons are mediated by interaction with FAT/CD36, an FA transporter/receptor that does not require intracellular metabolism to activate downstream signalling. Thus, FA or their metabolites can modulate neuronal activity as a means of directly monitoring ongoing fuel availability by brain nutrient-sensing neurons involved in the regulation of energy and glucose homeostasis. Recently, the role of lipoprotein lipase in FA sensing has also been shown in animal models not only in hypothalamus, but also in hippocampus and striatum. Finally, FA overload might impair neural control of energy homeostasis through enhanced ceramide synthesis and may contribute to obesity and/or type 2 diabetes pathogenesis in predisposed subjects.
Collapse
Affiliation(s)
- A Picard
- CNRS UMR 8251, Unit of Functional and Adaptive Biology, Paris, France; Department of Physiology, Université Paris Diderot, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Marissal-Arvy N, Diane A, Moisan MP, Larue-Achagiotis C, Tridon C, Tome D, Fromentin G, Mormède P. QTLs influencing carbohydrate and fat choice in a LOU/CxFischer 344 F2 rat population. Obesity (Silver Spring) 2014; 22:565-75. [PMID: 23596094 DOI: 10.1002/oby.20485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 03/19/2013] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Individual differences in macronutrient selection, particularly fat and carbohydrate, and associated body weight gain are partly inherited as polygenic traits, but the potential genetic pathways are unknown. To give an overview of the Quantitative Trait Loci (QTLs) and candidate gene pathways influencing these differences in rat was aimed in this study. DESIGN AND METHODS To that end, F2 rats obtained from the crossbreeding between LOU/C and Fischer 344 rat strains to diet self-selection during 3 weeks were submitted. A genome scan was conducted with microsatellite markers covering evenly the whole genome. Genotypes and phenotypes were analyzed separately in male and female F2 rats by multiple interval mapping. Then, lists of candidate genes were treated by the Ingenuity Pathway software to propose gene pathways involved in our phenotypes. RESULTS Among numerous others, a QTL on chromosome 12 that influences body weight gain, and fat and carbohydrate choices in the LOU/C x Fischer 344 F2 rat population was found. This locus contains notably the acyl-co-A dehydrogenase gene. CONCLUSION A strong genetic determinism and complex pathways involving numerous candidate genes and processes, notably in accordance with the metabolic theory of feeding behavior control were found.
Collapse
Affiliation(s)
- Nathalie Marissal-Arvy
- INRA, Laboratory of Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux Cedex, France; Laboratory of Nutrition and Integrative Neurobiology, University of Bordeaux, UMR 1286, 33076 Bordeaux Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Moullé VS, Picard A, Le Foll C, Levin BE, Magnan C. Lipid sensing in the brain and regulation of energy balance. DIABETES & METABOLISM 2014; 40:29-33. [DOI: 10.1016/j.diabet.2013.10.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 09/30/2013] [Accepted: 10/01/2013] [Indexed: 10/26/2022]
|
27
|
Picard A, Rouch C, Kassis N, Moullé VS, Croizier S, Denis RG, Castel J, Coant N, Davis K, Clegg DJ, Benoit SC, Prévot V, Bouret S, Luquet S, Le Stunff H, Cruciani-Guglielmacci C, Magnan C. Hippocampal lipoprotein lipase regulates energy balance in rodents. Mol Metab 2013; 3:167-76. [PMID: 24634821 DOI: 10.1016/j.molmet.2013.11.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 11/07/2013] [Accepted: 11/13/2013] [Indexed: 01/22/2023] Open
Abstract
Brain lipid sensing is necessary to regulate energy balance. Lipoprotein lipase (LPL) may play a role in this process. We tested if hippocampal LPL regulated energy homeostasis in rodents by specifically attenuating LPL activity in the hippocampus of rats and mice, either by infusing a pharmacological inhibitor (tyloxapol), or using a genetic approach (adeno-associated virus expressing Cre-GFP injected into Lpl (lox/lox) mice). Decreased LPL activity by either method led to increased body weight gain due to decreased locomotor activity and energy expenditure, concomitant with increased parasympathetic tone (unchanged food intake). Decreased LPL activity in both models was associated with increased de novo ceramide synthesis and neurogenesis in the hippocampus, while intrahippocampal infusion of de novo ceramide synthesis inhibitor myriocin completely prevented body weight gain. We conclude that hippocampal lipid sensing might represent a core mechanism for energy homeostasis regulation through de novo ceramide synthesis.
Collapse
Key Words
- AAV, adeno-associated virus
- ANS, autonomic nervous system
- CERS, ceramide synthase
- CNS, central nervous system
- Ceramides
- Energy expenditure
- GFP, green fluorescent protein
- LPL, lipoprotein lipase
- Lipid sensing
- Obesity
- Parasympathetic nervous system
- RQ, respiratory quotient
- SMPD1, acid sphingomyelin phosphodiesterase 1
- SPHK1, sphingosine kinase 1
- SPT, serine palmitoyltransferase
- TG, triglycerides
Collapse
Affiliation(s)
- Alexandre Picard
- Université Paris Diderot, Sorbonne Paris Cité, BFA, EAC 4413 CNRS, Case courrier 7126, 4, rue Marie Andrée Lagroua Weill-Hallé, F-75205 Paris Cedex 13, France
| | - Claude Rouch
- Université Paris Diderot, Sorbonne Paris Cité, BFA, EAC 4413 CNRS, Case courrier 7126, 4, rue Marie Andrée Lagroua Weill-Hallé, F-75205 Paris Cedex 13, France ; Centre National de la Recherche Scientifique-CNRS EAC 4413, F-75205 Paris, France
| | - Nadim Kassis
- Université Paris Diderot, Sorbonne Paris Cité, BFA, EAC 4413 CNRS, Case courrier 7126, 4, rue Marie Andrée Lagroua Weill-Hallé, F-75205 Paris Cedex 13, France ; Centre National de la Recherche Scientifique-CNRS EAC 4413, F-75205 Paris, France
| | - Valentine S Moullé
- Université Paris Diderot, Sorbonne Paris Cité, BFA, EAC 4413 CNRS, Case courrier 7126, 4, rue Marie Andrée Lagroua Weill-Hallé, F-75205 Paris Cedex 13, France
| | - Sophie Croizier
- Jean-Pierre Aubert Research Center, Development and Plasticity of the Postnatal Brain, INSERM U837, 59045 Lille Cedex, France
| | - Raphaël G Denis
- Jean-Pierre Aubert Research Center, Development and Plasticity of the Postnatal Brain, INSERM U837, 59045 Lille Cedex, France
| | - Julien Castel
- Université Paris Diderot, Sorbonne Paris Cité, BFA, EAC 4413 CNRS, Case courrier 7126, 4, rue Marie Andrée Lagroua Weill-Hallé, F-75205 Paris Cedex 13, France ; Centre National de la Recherche Scientifique-CNRS EAC 4413, F-75205 Paris, France
| | - Nicolas Coant
- Université Paris Diderot, Sorbonne Paris Cité, BFA, EAC 4413 CNRS, Case courrier 7126, 4, rue Marie Andrée Lagroua Weill-Hallé, F-75205 Paris Cedex 13, France
| | - Kathryn Davis
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Deborah J Clegg
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Stephen C Benoit
- Department of Psychiatry, University of Cincinnati, Cincinnati, OH, USA
| | - Vincent Prévot
- Jean-Pierre Aubert Research Center, Development and Plasticity of the Postnatal Brain, INSERM U837, 59045 Lille Cedex, France
| | - Sébastien Bouret
- Jean-Pierre Aubert Research Center, Development and Plasticity of the Postnatal Brain, INSERM U837, 59045 Lille Cedex, France ; The Saban Research Institute, Neuroscience Program, Children's Hospital Los Angeles, University of Southern California, Los Angeles, USA
| | - Serge Luquet
- Université Paris Diderot, Sorbonne Paris Cité, BFA, EAC 4413 CNRS, Case courrier 7126, 4, rue Marie Andrée Lagroua Weill-Hallé, F-75205 Paris Cedex 13, France ; Centre National de la Recherche Scientifique-CNRS EAC 4413, F-75205 Paris, France
| | - Hervé Le Stunff
- Université Paris Diderot, Sorbonne Paris Cité, BFA, EAC 4413 CNRS, Case courrier 7126, 4, rue Marie Andrée Lagroua Weill-Hallé, F-75205 Paris Cedex 13, France
| | - Céline Cruciani-Guglielmacci
- Université Paris Diderot, Sorbonne Paris Cité, BFA, EAC 4413 CNRS, Case courrier 7126, 4, rue Marie Andrée Lagroua Weill-Hallé, F-75205 Paris Cedex 13, France
| | - Christophe Magnan
- Université Paris Diderot, Sorbonne Paris Cité, BFA, EAC 4413 CNRS, Case courrier 7126, 4, rue Marie Andrée Lagroua Weill-Hallé, F-75205 Paris Cedex 13, France
| |
Collapse
|
28
|
Fatty acid transporter CD36 mediates hypothalamic effect of fatty acids on food intake in rats. PLoS One 2013; 8:e74021. [PMID: 24040150 PMCID: PMC3765350 DOI: 10.1371/journal.pone.0074021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 07/26/2013] [Indexed: 12/05/2022] Open
Abstract
Variations in plasma fatty acid (FA) concentrations are detected by FA sensing neurons in specific brain areas such as the hypothalamus. These neurons play a physiological role in the control of food intake and the regulation of hepatic glucose production. Le Foll et al. previously showed in vitro that at least 50% of the FA sensing in ventromedial hypothalamic (VMH) neurons is attributable to the interaction of long chain FA with FA translocase/CD36 (CD36). The present work assessed whether in vivo effects of hypothalamic FA sensing might be partly mediated by CD36 or intracellular events such as acylCoA synthesis or β-oxidation. To that end, a catheter was implanted in the carotid artery toward the brain in male Wistar rats. After 1 wk recovery, animals were food-deprived for 5 h, then 10 min infusions of triglyceride emulsion, Intralipid +/− heparin (IL, ILH, respectively) or saline/heparin (SH) were carried out and food intake was assessed over the next 5 h. Experimental groups included: 1) Rats previously injected in ventromedian nucleus (VMN) with shRNA against CD36 or scrambled RNA; 2) Etomoxir (CPT1 inhibitor) or saline co-infused with ILH/SH; and 3) Triacsin C (acylCoA synthase inhibitor) or saline co-infused with ILH/SH. ILH significantly lowered food intake during refeeding compared to SH (p<0.001). Five hours after refeeding, etomoxir did not affect this inhibitory effect of ILH on food intake while VMN CD36 depletion totally prevented it. Triacsin C also prevented ILH effects on food intake. In conclusion, the effect of FA to inhibit food intake is dependent on VMN CD36 and acylCoA synthesis but does not required FA oxidation.
Collapse
|
29
|
Serra D, Mera P, Malandrino MI, Mir JF, Herrero L. Mitochondrial fatty acid oxidation in obesity. Antioxid Redox Signal 2013; 19:269-84. [PMID: 22900819 PMCID: PMC3691913 DOI: 10.1089/ars.2012.4875] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SIGNIFICANCE Current lifestyles with high-energy diets and little exercise are triggering an alarming growth in obesity. Excess of adiposity is leading to severe increases in associated pathologies, such as insulin resistance, type 2 diabetes, atherosclerosis, cancer, arthritis, asthma, and hypertension. This, together with the lack of efficient obesity drugs, is the driving force behind much research. RECENT ADVANCES Traditional anti-obesity strategies focused on reducing food intake and increasing physical activity. However, recent results suggest that enhancing cellular energy expenditure may be an attractive alternative therapy. CRITICAL ISSUES This review evaluates recent discoveries regarding mitochondrial fatty acid oxidation (FAO) and its potential as a therapy for obesity. We focus on the still controversial beneficial effects of increased FAO in liver and muscle, recent studies on how to potentiate adipose tissue energy expenditure, and the different hypotheses involving FAO and the reactive oxygen species production in the hypothalamic control of food intake. FUTURE DIRECTIONS The present review aims to provide an overview of novel anti-obesity strategies that target mitochondrial FAO and that will definitively be of high interest in the future research to fight against obesity-related disorders.
Collapse
Affiliation(s)
- Dolors Serra
- Department of Biochemistry and Molecular Biology, Facultat de Farmàcia, Universitat de Barcelona, Institut de Biomedicina de la Universitat de Barcelona IBUB, Barcelona, Spain
| | | | | | | | | |
Collapse
|
30
|
Mace OJ, Marshall F. DIGESTIVE PHYSIOLOGY OF THE PIG SYMPOSIUM: Gut chemosensing and the regulation of nutrient absorption and energy supply1. J Anim Sci 2013; 91:1932-45. [DOI: 10.2527/jas.2012-5906] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- O. J. Mace
- Heptares Therapeutics, BioPark, Broadwater Road, Welwyn Garden City, AL7 3AX, United Kingdom
| | - F. Marshall
- Heptares Therapeutics, BioPark, Broadwater Road, Welwyn Garden City, AL7 3AX, United Kingdom
| |
Collapse
|
31
|
Santos GA, Pereira VD, Roman EAFR, Ignacio-Souza L, Vitorino DC, de Moura RF, Razolli DS, Torsoni AS, Velloso LA, Torsoni MA. Hypothalamic inhibition of acetyl-CoA carboxylase stimulates hepatic counter-regulatory response independent of AMPK activation in rats. PLoS One 2013; 8:e62669. [PMID: 23626844 PMCID: PMC3633841 DOI: 10.1371/journal.pone.0062669] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 03/22/2013] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Hypothalamic AMPK acts as a cell energy sensor and can modulate food intake, glucose homeostasis, and fatty acid biosynthesis. Intrahypothalamic fatty acid injection is known to suppress liver glucose production, mainly by activation of hypothalamic ATP-sensitive potassium (K(ATP)) channels. Since all models employed seem to involve malonyl-CoA biosynthesis, we hypothesized that acetyl-CoA carboxylase can modulate the counter-regulatory response independent of nutrient availability. METHODOLOGY/PRINCIPAL FINDINGS In this study employing immunoblot, real-time PCR, ELISA, and biochemical measurements, we showed that reduction of the hypothalamic expression of acetyl-CoA carboxylase by antisense oligonucleotide after intraventricular injection increased food intake and NPY mRNA, and diminished the expression of CART, CRH, and TRH mRNA. Additionally, as in fasted rats, in antisense oligonucleotide-treated rats, serum glucagon and ketone bodies increased, while the levels of serum insulin and hepatic glycogen diminished. The reduction of hypothalamic acetyl-CoA carboxylase also increased PEPCK expression, AMPK phosphorylation, and glucose production in the liver. Interestingly, these effects were observed without modification of hypothalamic AMPK phosphorylation. CONCLUSION/SIGNIFICANCE Hypothalamic ACC inhibition can activate hepatic counter-regulatory response independent of hypothalamic AMPK activation.
Collapse
Affiliation(s)
- Gustavo A. Santos
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Vinícius D. Pereira
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Erika A. F. R. Roman
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Leticia Ignacio-Souza
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Daniele C. Vitorino
- Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | | | - Daniela S. Razolli
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Adriana S. Torsoni
- Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Limeira, São Paulo, Brazil
| | - Licio A. Velloso
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Marcio A. Torsoni
- Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Limeira, São Paulo, Brazil
| |
Collapse
|
32
|
Moreno C, Yang L, Dacks P, Isoda F, Poplawski M, Mobbs CV. Regulation of peripheral metabolism by substrate partitioning in the brain. Endocrinol Metab Clin North Am 2013; 42:67-80. [PMID: 23391240 PMCID: PMC4501378 DOI: 10.1016/j.ecl.2012.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
All organisms must adapt to changing nutrient availability, with nutrient surplus promoting glucose metabolism and nutrient deficit promoting alternative fuels (in mammals, mainly free fatty acids). A major function of glucose-sensing neurons in the hypothalamus is to regulate blood glucose. When these neurons sense glucose levels are too low, they activate robust counterregulatory responses to enhance glucose production, primarily from liver, and reduce peripheral metabolism. Some hypothalamic neurons can metabolize free fatty acids via β-oxidation, and β-oxidation generally opposes effects of glucose on hypothalamic neurons. Thus hypothalamic β-oxidation promotes obese phenotypes, including enhanced hepatic glucose output.
Collapse
Affiliation(s)
- Cesar Moreno
- Department of Neuroscience, Mount Sinai School of Medicine, 1 Gustave Levy Pl., New York, NY 10029, Phone: 212 659 5911,
| | - Linda Yang
- Harvard Medical School, Beth Israel Deaconess Medical Center,
| | - Penny Dacks
- Alzheimer's Drug Discovery Foundation, Aging & Alzheimer's Disease Prevention, New York, NY 10019,
| | - Fumiko Isoda
- Department of Neuroscience, Mount Sinai School of Medicine, 1 Gustave Levy Pl., New York, NY 10029, Phone: 212 659 5911,
| | - Michael Poplawski
- Department of Neuroscience, New York, NY 10029, Phone: 212 659 5929,
| | - Charles V. Mobbs
- Department of Neuroscience, Mount Sinai School of Medicine, 1 Gustave Levy Pl., New York, NY 10029
| |
Collapse
|
33
|
Relationships between dietary macronutrients and adult neurogenesis in the regulation of energy metabolism. Br J Nutr 2013; 109:1573-89. [PMID: 23433235 DOI: 10.1017/s000711451200579x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Of the environmental factors which have an impact on body weight, nutrients are most influential. Within normal limits, hypothalamic and related neuronal populations correct perturbations in energy metabolism, to return the body to its nutritional set-point, either through direct response to nutrients or indirectly via peripheral appetite signals. Excessive intake of certain macronutrients, such as simple carbohydrates and SFA, can lead to obesity and attendant metabolic dysfunction, also reflected in alterations in structural plasticity, and, intriguingly,neurogenesis, in some of these brain regions. Neurogenesis, previously thought to occur only in the embryo, is now known to take place in the adult brain, dependent on numerous stimulating and inhibiting factors, including dietary components. Because of classic associations between neurogenesis and the hippocampus, in learning and cognition, this brain region has also been the focus of attention in the study of links between diet and neurogenesis. Recently, however, a more complete picture of this relationship has been building: not only has the hypothalamus been shown to satisfy the criteria for a neurogenic niche, but appetite-related mediators, including circulating hormones, such as leptin and ghrelin, pro-inflammatory cytokines and the endocannabinoid intracellular messengers, are also being examined for their potential role in mediating neurogenic responses to macronutrients. The present review draws together these observations and investigates whether n-3 PUFA may exert their attenuating effects on body weight through the stimulation of adult neurogenesis. Exploration of the effects of nutraceuticals on neurogenic brain regions may encourage the development of new rational therapies in the fight against obesity.
Collapse
|
34
|
Levin BE. Let the sensor fit the diet. Cell Metab 2012; 16:689-90. [PMID: 23217252 PMCID: PMC3601738 DOI: 10.1016/j.cmet.2012.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Metabolic sensing neurons are conserved across multiple animal species and allow the organism to monitor nutrient availability to maintain energy homeostasis. Miyamoto et al. (2012) describe fly neurons that are highly tuned to fructose availability and are critical determinants of ingestive behavior on a diet of simple sugars.
Collapse
Affiliation(s)
- Barry E Levin
- Neurology Service, Veterans Administration Medical Center, East Orange, NJ 07019, USA.
| |
Collapse
|
35
|
Moullé VSF, Cansell C, Luquet S, Cruciani-Guglielmacci C. The multiple roles of fatty acid handling proteins in brain. Front Physiol 2012; 3:385. [PMID: 23060810 PMCID: PMC3460233 DOI: 10.3389/fphys.2012.00385] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 09/10/2012] [Indexed: 12/31/2022] Open
Abstract
Lipids are essential components of a living organism as energy source but also as constituent of the membrane lipid bilayer. In addition fatty acid (FA) derivatives interact with many signaling pathways. FAs have amphipathic properties and therefore require being associated to protein for both transport and intracellular trafficking. Here we will focus on several FA handling proteins, among which the fatty acid translocase/CD36 (FAT/CD36), members of fatty acid transport proteins (FATPs), and lipid chaperones fatty acid-binding proteins (FABPs). A decade of extensive studies has helped decipher the mechanism of action of these proteins in peripheral tissue with high lipid metabolism. However, considerably less information is available regarding their role in the brain, despite the high lipid content of this tissue. This review will primarily focus on the recent studies that have highlighted the crucial role of lipid handling proteins in brain FA transport, neuronal differentiation and development, cognitive processes and brain diseases. Finally a special focus will be made on the recent studies that have revealed the role of FAT/CD36 in brain lipid sensing and nervous control of energy balance.
Collapse
|
36
|
Librán-Pérez M, Polakof S, López-Patiño MA, Míguez JM, Soengas JL. Evidence of a metabolic fatty acid-sensing system in the hypothalamus and Brockmann bodies of rainbow trout: implications in food intake regulation. Am J Physiol Regul Integr Comp Physiol 2012; 302:R1340-50. [PMID: 22496361 DOI: 10.1152/ajpregu.00070.2012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Enhanced lipid levels inhibit food intake in fish but no studies have characterized the possible mechanisms involved. We hypothesize that the presence of fatty acid (FA)-sensing mechanisms could be related to the control of food intake. Accordingly, we evaluated in the hypothalamus, hindbrain, and Brockmann bodies (BB) of rainbow trout changes in parameters related to fatty acid metabolism, transport of FA, nuclear receptors, and transcription factors involved in lipid metabolism, and components of the K(ATP) channel after intraperitoneal administration of different doses of oleic acid (long-chain fatty acid, LCFA) or octanoic acid (medium-chain fatty acid, MCFA). The increase in circulating LCFA or MCFA levels elicited an inhibition in food intake and induced in the hypothalamus a response compatible with fatty acid sensing in which fatty acid metabolism, binding to cluster of differentiation 36 (CD36), and mitochondrial activity are apparently involved, which is similar to that suggested in mammals except for the apparent capacity of rainbow trout to detect changes in MCFA levels. Changes in those hypothalamic pathways can be related to the control of food intake, since food intake was inhibited when FA metabolism was perturbed (using fatty acid synthase or acetyl-CoA carboxylase inhibitors) and changes in mRNA levels of specific neuropeptides such as neuropeptide Y and proopiomelancortin were also noticed. This response seems to be exclusive for the hypothalamus, since the other center controlling food intake (hindbrain) was unaffected by treatments. The results obtained in BB suggest that at least two of the components of a putative fatty acid-sensing system (based on fatty acid metabolism and binding to CD36) could be present. Therefore, the present study provides, for the first time in fish, evidence for a specific role for FA (MCFA and LCFA) as metabolic signals in hypothalamus and BB, where the detection of those FA can be associated with the control of food intake and hormone release.
Collapse
Affiliation(s)
- Marta Librán-Pérez
- Laboratorio de Fisioloxía Animal, Facultade de Bioloxía, Edificio de Ciencias Experimentais, Universidade de Vigo, E-36310 Vigo, Spain
| | | | | | | | | |
Collapse
|
37
|
Florant GL, Healy JE. The regulation of food intake in mammalian hibernators: a review. J Comp Physiol B 2011; 182:451-67. [PMID: 22080368 DOI: 10.1007/s00360-011-0630-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 10/20/2011] [Accepted: 10/29/2011] [Indexed: 12/20/2022]
Abstract
One of the most profound hallmarks of mammalian hibernation is the dramatic reduction in food intake during the winter months. Several species of hibernator completely cease food intake (aphagia) for nearly 7 months regardless of ambient temperature and in many cases, whether or not food is available to them. Food intake regulation has been studied in mammals that hibernate for over 50 years and still little is known about the physiological mechanisms that control this important behavior in hibernators. It is well known from lesion experiments in non-hibernators that the hypothalamus is the main brain region controlling food intake and therefore body mass. In hibernators, the regulation of food intake and body mass is presumably governed by a circannual rhythm since there is a clear seasonal rhythm to food intake: animals increase food intake in the summer and early autumn, food intake declines in autumn and actually ceases in winter in many species, and resumes again in spring as food becomes available in the environment. Changes in circulating hormones (e.g., leptin, insulin, and ghrelin), nutrients (glucose, and free fatty acids), and cellular enzymes such as AMP-activated protein kinase (AMPK) have been shown to determine the activity of neurons involved in the food intake pathway. Thus, it appears likely that the food intake pathway is controlled by a variety of inputs, but is also acted upon by upstream regulators that are presumably rhythmic in nature. Current research examining the molecular mechanisms and integration of environmental signals (e.g., temperature and light) with these molecular mechanisms will hopefully shed light on how animals can turn off food intake and survive without eating for months on end.
Collapse
Affiliation(s)
- Gregory L Florant
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA.
| | | |
Collapse
|
38
|
Amin KA, Kamel HH, Abd Eltawab MA. The relation of high fat diet, metabolic disturbances and brain oxidative dysfunction: modulation by hydroxy citric acid. Lipids Health Dis 2011; 10:74. [PMID: 21569551 PMCID: PMC3104359 DOI: 10.1186/1476-511x-10-74] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 05/14/2011] [Indexed: 12/14/2022] Open
Abstract
AIMS This study aimed to examine the effect of high fat diet (HFD) to modulate brain dysfunction, and understand the linkages between obesity, metabolic disturbances and the brain oxidative stress (BOS) dysfunction and modulation with hydroxyl citric acid of G. Cambogia. METHODS Rats were divided into 3 groups; 1st control, maintained on standard normal rat chow diet, 2nd HFD, maintained on high fat diet along 12 week and 3rd HFD+G, administered G. Cambogia for 4 weeks and each group include 8 rats. Blood, brain and abdominal fat were collected for biochemical measurements. RESULTS HFD group showed significant increase in energy intake, final BW and BW gain. Also significant increase in weight of abdominal fat in HFD group. HFD induce metabolic disturbance through increasing the lipid profile (LDL, TG, TC), γGT and α-amylase activity, uric acid level and hyperglycemia, while decreasing creatine kinase (CK) activity.These changes associated with lowering in brain nitric oxide (NO) level and rising in serum butyrylcholinesterase (BChE), brain catalase activity and MDA levels as oxidative stress markers. These alterations improved by G. Cambogia that decrease BOS and increased NO level. CONCLUSIONS Rats fed HFD showed, metabolic disturbances produce hyperglycemia, hypertriglyceridemia, hypercholesterolemia and increased LDL associated with increased BOS. Involvement of BuChE, NO and oxidative stress associated with metabolic disturbances in the pathophysiological progression in brain, suggesting association between obesity, metabolic disorders and brain alteration while, using G. Cambogia, ameliorate the damaging effects of the HFD via lowering feed intake and BOS.
Collapse
Affiliation(s)
- Kamal A Amin
- Biochemistry Dept, Faculty of Vete, Medicine, Beni-Suef University, Beni-Suef, Egypt.
| | | | | |
Collapse
|