1
|
d'Avanzo N, Paolino D, Barone A, Ciriolo L, Mancuso A, Christiano MC, Tolomeo AM, Celia C, Deng X, Fresta M. OX26-cojugated gangliosilated liposomes to improve the post-ischemic therapeutic effect of CDP-choline. Drug Deliv Transl Res 2024; 14:2771-2787. [PMID: 38478324 PMCID: PMC11384645 DOI: 10.1007/s13346-024-01556-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 09/10/2024]
Abstract
Cerebrovascular impairment represents one of the main causes of death worldwide with a mortality rate of 5.5 million per year. The disability of 50% of surviving patients has high social impacts and costs in long period treatment for national healthcare systems. For these reasons, the efficacious clinical treatment of patients, with brain ischemic stroke, remains a medical need. To this aim, a liposome nanomedicine, with monosialic ganglioside type 1 (GM1), OX26 (an anti-transferrin receptor antibody), and CDP-choline (a neurotrophic drug) (CDP-choline/OX26Lip) was prepared. CDP-choline/OX26Lip were prepared by a freeze and thaw method and then extruded through polycarbonate filters, to have narrow size distributed liposomes of ~80 nm. CDP-choline/OX26Lip were stable in human serum, they had suitable pharmacokinetic properties, and 30.0 ± 4.2% of the injected drug was still present in the blood stream 12 h after its systemic injection. The post-ischemic therapeutic effect of CDP-choline/OX26Lip is higher than CDP-choline/Lip, thus showing a significantly high survival rate of the re-perfused post-ischemic rats, i.e. 96% and 78% after 8 days. The treatment with CDP-choline/OX26Lip significantly decreased the peroxidation rate of ~5-times compared to CDP-choline/Lip; and the resulting conjugated dienes, that was 13.9 ± 1.1 mmol/mg proteins for CDP-choline/Lip and 3.1 ± 0.8 for CDP-choline/OX26Lip. OX26 increased the accumulation of GM1-liposomes in the brain tissues and thus the efficacious of CDP-choline. Therefore, this nanomedicine may represent a strategy for the reassessment of CDP-choline to treat post-ischemic events caused by brain stroke, and respond to a significant clinical need.
Collapse
Affiliation(s)
- Nicola d'Avanzo
- Department of Clinical and Experimental Medicine, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy
| | - Donatella Paolino
- Department of Clinical and Experimental Medicine, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy
| | - Antonella Barone
- Department of Clinical and Experimental Medicine, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy
| | - Luigi Ciriolo
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy
| | - Antonia Mancuso
- Department of Clinical and Experimental Medicine, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy
| | - Maria Chiara Christiano
- Department of Medical and Surgical Sciences, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy
| | - Anna Maria Tolomeo
- Department of Cardiac, Thoracic and Vascular Science and Public Health, University of Padova, 35128, Padua, Italy
- Perdiatric Research Institute "Città della Speranza", Corso Stati Uniti, 4, 35127, Padua, Italy
| | - Christian Celia
- Department of Pharmacy, University of Chieti - Pescara "G. d'Annunzio", Via dei Vestini 31, 66100, Chieti, Italy.
- Lithuanian University of Health Sciences, Laboratory of Drug Targets Histopathology, Institute of Cardiology, A. Mickeviciaus g. 9, LT-44307, Kaunas, Lithuania.
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Xiaoyong Deng
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Massimo Fresta
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy.
| |
Collapse
|
2
|
Wu F, Zhang Z, Ma S, He Y, He Y, Ma L, Lei N, Deng W, Wang F. Microenvironment-responsive nanosystems for ischemic stroke therapy. Theranostics 2024; 14:5571-5595. [PMID: 39310102 PMCID: PMC11413776 DOI: 10.7150/thno.99822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
Ischemic stroke, a common neurological disorder caused by impaired blood supply to the brain, presents a therapeutic challenge. Conventional treatments like thrombolysis and neuroprotection drugs lack ideal drug delivery systems, limiting their effectiveness. Selectively delivering therapies to the ischemic cerebral tissue holds great potential for preventing and/or treating ischemia-related pathological symptoms. The unique pathological microenvironment of the brain after ischemic stroke, characterized by hypoxia, acidity, and inflammation, offers new possibilities for targeted drug delivery. Pathological microenvironment-responsive nanosystems, extensively investigated in tumors with hypoxia-responsive systems as an example, could also respond to the ischemic cerebral microenvironment and achieve brain-targeted drug delivery and release. These emerging nanosystems are gaining traction for ischemic stroke treatment. In this review, we expound on the cerebral pathological microenvironment and clinical treatment strategies of ischemic stroke, highlight various stimulus-responsive materials employed in constructing ischemic stroke microenvironment-responsive nano delivery systems, and discuss the application of these microenvironment-responsive nanosystems in microenvironment regulation for ischemic stroke treatment.
Collapse
Affiliation(s)
- Fang Wu
- Department of Neuro-Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Medical Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhijian Zhang
- Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Shengnan Ma
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, 450052, Henan, China
| | - Yanyan He
- Department of Neuro-Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yuxi He
- Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Lixia Ma
- Department of Neuro-Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ningjing Lei
- Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenjing Deng
- Department of Neuro-Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Fazhan Wang
- Medical Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| |
Collapse
|
3
|
Chen J, Yang J, Chu J, Chen KH, Alt J, Rais R, Qiu Z. The SWELL1 Channel Promotes Ischemic Brain Damage by Mediating Neuronal Swelling and Glutamate Toxicity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401085. [PMID: 39056405 PMCID: PMC11423184 DOI: 10.1002/advs.202401085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Cytotoxic neuronal swelling and glutamate excitotoxicity are two hallmarks of ischemic stroke. However, the underlying molecular mechanisms are not well understood. Here, it is reported that SWELL1, the essential subunit of the volume-regulated anion channel (VRAC), plays a dual role in ischemic injury by promoting neuronal swelling and glutamate excitotoxicity. SWELL1 expression is upregulated in neurons and astrocytes after experimental stroke in mice. The neuronal SWELL1 channel is activated by intracellular hypertonicity, leading to Cl- influx-dependent cytotoxic neuronal swelling and subsequent cell death. Additionally, the SWELL1 channel in astrocytes mediates pathological glutamate release, indicated by increases in neuronal slow inward current frequency and tonic NMDAR current. Pharmacologically, targeting VRAC with a new inhibitor, an FDA-approved drug Dicumarol, attenuated cytotoxic neuronal swelling and cell death, reduced astrocytic glutamate release, and provided significant neuroprotection in mice when administered either before or after ischemia. Therefore, these findings uncover the pleiotropic effects of the SWELL1 channel in neurons and astrocytes in the pathogenesis of ischemic stroke and provide proof of concept for therapeutically targeting it in this disease.
Collapse
Affiliation(s)
- Jianan Chen
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Junhua Yang
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, TX, 77843, USA
| | - Jiachen Chu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Kevin Hong Chen
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jesse Alt
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Rana Rais
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Zhaozhu Qiu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Solomon H. Snyder Department of Neuroscience, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
4
|
Wang C, Xiao Z, Fan J, Zhang C, Wang T, Qiu Z, Ye F, Chen M, Li Y. Nanocarriers Loaded with Danshensu for Treating Ischemic Stroke by Reducing Oxidative Stress and Glial Overactivation. ACS OMEGA 2024; 9:35686-35694. [PMID: 39184494 PMCID: PMC11339989 DOI: 10.1021/acsomega.4c03991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024]
Abstract
Ischemic stroke is a complex health condition that can cause ischemia and necrosis of brain tissue. Subsequently, the excessive activation of glial cells can result in various inflammatory and oxidative stress reactions that exacerbate ischemic brain injury. In this paper, we propose the targeted self-assembly of a three-dimensional nanoparticle network containing Danshensu to rescue ischemic penumbra by reducing oxidative stress and glial overactivation. The network comprises nanoparticles composed of chitosan, thiol ketone, and carboxymethyl-β-cyclodextrin as the core wrapped by the Pro-His-Ser-Arg-Asn (PHSRN) peptide sequence as the outer layer and loaded with Danshensu. The PHSRN-peptide-modified nanoparticles bind to integrin α5β1 overexpressed on the damaged blood-brain barrier and accumulate in the damaged brain in a rat model of ischemia/reperfusion. When stimulated by reactive oxygen species, thiol ketone bonded to the nanoparticles was hydrolyzed, facilitating responsive drug release while consuming the reactive oxygen species. Subsequently, the released Danshensu scavenged the reactive oxygen species to prevent oxidative stress and inhibited the activation of astrocytes, thereby suppressing proinflammatory cytokine secretion, improving the inflammatory brain microenvironment and reducing neuronal apoptosis.
Collapse
Affiliation(s)
- Cuihong Wang
- Department
of Pharmacy, Shanghai University of Medicine
and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Zhicheng Xiao
- 411
Hospital of Shanghai University, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Jinhui Fan
- 411
Hospital of Shanghai University, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Chuan Zhang
- 411
Hospital of Shanghai University, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Tingfang Wang
- 411
Hospital of Shanghai University, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Zheng Qiu
- Shenzhen
Medicines and Health Products IMP. & EXP. Co., Ltd., Guangdong 518000, China
| | - Fei Ye
- 411
Hospital of Shanghai University, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Min Chen
- Department
of Pharmacy, Shanghai University of Medicine
and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Yi Li
- 411
Hospital of Shanghai University, School of Medicine, Shanghai University, Shanghai 200444, China
| |
Collapse
|
5
|
Yang Q, Ye W, Luo D, Xing J, Xiao Q, Wu H, Yao Y, Wang G, Yang L, Guo D, Wang K, He Y, Ye X, Zhang J, Jin Z, Fan Z, Wen X, Mao J, Chen X, Zhao Q. Neuroprotective effects of anti-TRAIL-ICG nanoagent and its multimodal imaging evaluation in cerebral ischemia-reperfusion injury. Mater Today Bio 2024; 26:101094. [PMID: 38854952 PMCID: PMC11157279 DOI: 10.1016/j.mtbio.2024.101094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/08/2024] [Accepted: 05/19/2024] [Indexed: 06/11/2024] Open
Abstract
Cerebral ischemia-reperfusion injury (CIRI) is a major challenge to neuronal survival in acute ischemic stroke (AIS). However, effective neuroprotective agents remain to be developed for the treatment of CIRI. In this work, we have developed an Anti-TRAIL protein-modified and indocyanine green (ICG)-responsive nanoagent (Anti-TRAIL-ICG) to target ischemic areas and then reduce CIRI and rescue the ischemic penumbra. In vitro and in vivo experiments have demonstrated that the carrier-free nanoagent can enhance drug transport across the blood-brain barrier (BBB) in stroke mice, exhibiting high targeting ability and good biocompatibility. Anti-TRAIL-ICG nanoagent played a better neuroprotective role by reducing apoptosis and ferroptosis, and significantly improved ischemia-reperfusion injury. Moreover, the multimodal imaging platform enables the dynamic in vivo examination of multiple morphofunctional information, so that the dynamic molecular events of nanoagent can be detected continuously and in real time for early treatment in transient middle cerebral artery occlusion (tMCAO) models. Furthermore, it has been found that Anti-TRAIL-ICG has great potential in the functional reconstruction of neurovascular networks through optical coherence tomography angiography (OCTA). Taken together, our work effectively alleviates CIRI after stoke by blocking multiple cell death pathways, which offers an innovative strategy for harnessing the apoptosis and ferroptosis against CIRI.
Collapse
Affiliation(s)
- Qiong Yang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Center for Molecular Imaging and Translational Medicine, Department of Vascular & Tumor Interventional Radiology, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Wenxuan Ye
- The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Doudou Luo
- The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Jiwei Xing
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Center for Molecular Imaging and Translational Medicine, Department of Vascular & Tumor Interventional Radiology, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Qingqing Xiao
- Department of Vascular Intervention, Guilin Medical College Affiliated Hospital, Guilin Medical College, Guilin, 541000, China
| | - Huiling Wu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Center for Molecular Imaging and Translational Medicine, Department of Vascular & Tumor Interventional Radiology, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Youliang Yao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Center for Molecular Imaging and Translational Medicine, Department of Vascular & Tumor Interventional Radiology, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Guangxing Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Center for Molecular Imaging and Translational Medicine, Department of Vascular & Tumor Interventional Radiology, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Luyao Yang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Center for Molecular Imaging and Translational Medicine, Department of Vascular & Tumor Interventional Radiology, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Dongbei Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Center for Molecular Imaging and Translational Medicine, Department of Vascular & Tumor Interventional Radiology, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Kun Wang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, 350117, China
| | - Yaqin He
- Department of Oncology Surgery, General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Xiaofeng Ye
- Department of Oncology Surgery, General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Jinde Zhang
- Institute of Advanced Science Facilities, Shenzhen, Guangdong, 518107, China
| | - Zhaokui Jin
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhongxiong Fan
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi, 830017, China
| | - Xiaofei Wen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Center for Molecular Imaging and Translational Medicine, Department of Vascular & Tumor Interventional Radiology, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jingsong Mao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Center for Molecular Imaging and Translational Medicine, Department of Vascular & Tumor Interventional Radiology, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- Department of Vascular Intervention, Guilin Medical College Affiliated Hospital, Guilin Medical College, Guilin, 541000, China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore
| | - Qingliang Zhao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Center for Molecular Imaging and Translational Medicine, Department of Vascular & Tumor Interventional Radiology, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
6
|
Yaqubi S, Karimian M. Stem cell therapy as a promising approach for ischemic stroke treatment. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 6:100183. [PMID: 38831867 PMCID: PMC11144755 DOI: 10.1016/j.crphar.2024.100183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/23/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Ischemia as the most common type of stroke is the main cause of death and disability in the world. However, there are few therapeutic approaches to treat ischemic stroke. The common approach to the treatment of ischemia includes surgery-cum-chemical drugs. Surgery and chemical drugs are used to remove blood clots to prevent the deterioration of the nervous system. Given the surgical hazards and the challenges associated with chemical drugs, these cannot be considered safe approaches to the treatment of brain ischemia. Besides surgery-cum-chemical drugs, different types of stem cells including mesenchymal stem cells and neurological stem cells have been considered to treat ischemic stroke. Therapeutic approaches utilizing stem cells to treat strokes are promising because of their neuroprotective and regenerative benefits. However, the mechanisms by which the transplanted stem cells perform their precisely actions are unknown. The purpose of this study is to critically review stem cell-based therapeutic approaches for ischemia along with related challenges.
Collapse
Affiliation(s)
- Sahar Yaqubi
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
7
|
Liu L, Ma Z, Han Q, Meng W, Wang H, Guan X, Shi Q. Myricetin Oligomer Triggers Multi-Receptor Mediated Penetration and Autophagic Restoration of Blood-Brain Barrier for Ischemic Stroke Treatment. ACS NANO 2024; 18:9895-9916. [PMID: 38533773 DOI: 10.1021/acsnano.3c09532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Restoration of blood-brain barrier (BBB) dysfunction, which drives worse outcomes of ischemic stroke, is a potential target for therapeutic opportunities, whereas a sealed BBB blocks the therapeutics entrance into the brain, making the BBB protection strategy paradoxical. Post ischemic stroke, hypoxia/hypoglycemia provokes the up-regulation of transmembrane glucose transporters and iron transporters due to multiple metabolic disorders, especially in brain endothelial cells. Herein, we develop a myricetin oligomer-derived nanostructure doped with Ce to bypass the BBB which is cointermediated by glucose transporters and iron transporters such as glucose transporters 1 (GLUT1), sodium/glucose cotransporters 1 (SGLT1), and transferrin(Tf) reporter (TfR). Moreover, it exhibits BBB restoration capacity by regulating the expression of tight junctions (TJs) through the activation of protective autophagy. The myricetin oligomers scaffold not only acts as targeting moiety but is the prominent active entity that inherits all diverse pharmacological activities of myricetin. The suppression of oxidative damage, M1 microglia activation, and inflammatory factors makes it a multitasking nanoagent with a single component as the scaffold, targeting domain and curative components.
Collapse
Affiliation(s)
- Lei Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhifang Ma
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Qiaoyi Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Wei Meng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Haozheng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Xinghua Guan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Qiang Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
8
|
Carrillo Navarrete KA, Chapa González C. Hemiplegia in acute ischemic stroke: A comprehensive review of case studies and the role of intravenous thrombolysis and mechanical thrombectomy. IBRAIN 2024; 10:59-68. [PMID: 38682021 PMCID: PMC11045183 DOI: 10.1002/ibra.12146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 05/01/2024]
Abstract
Acute ischemic stroke is a significant health concern worldwide, often leading to long-term disability and decreased quality of life. Rapid and appropriate treatment is crucial for achieving optimal outcomes in these patients. Intravenous thrombolysis (IVT) and mechanical thrombectomy (MT) are two commonly used interventions for acute ischemic stroke, but their effectiveness in improving neurological symptoms and functional outcomes in patients with hemiplegia remains uncertain. The aim of this work was to evaluate the impact of IVT and MT within a 4.5-h time frame on patients with acute ischemic stroke and hemiplegia. A systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Relevant studies that assessed the impact of IVT and MT within 4.5-h on hemiplegia in patients with an acute ischemic stroke were included. Data were extracted and analyzed to determine the overall effects of these interventions. Most included case reports indicate positive outcomes in terms of neurological symptom improvement and functional recovery in patients with hemiplegia after receiving IVT and MT within the specified time frame. However, the heterogeneity among the patients and the limited use of IVT due to contraindications posed challenges in determining the most effective treatment option. The findings from the included studies demonstrate that both interventions led to a decrease in National Institutes of Health Stroke Scale scores, indicating an improvement in neurological symptoms. The results highlight the beneficial effects of early thrombolytic interventions and MT on the neurological status and functional outcomes of patients with an acute ischemic stroke.
Collapse
Affiliation(s)
- Karen Adriana Carrillo Navarrete
- Instituto de Ingeniería y TecnologíaUniversidad Autónoma de Ciudad JuárezCiudad Juárez, ChihuahuaMéxico
- Grupo de Nanomedicina, Laboratorio de Integración de Datos y Evidencia en Revisiones de Salud y Ciencia, LIDERSCUniversidad Autónoma de Ciudad JuárezCiudad Juárez, ChihuahuaMéxico
| | - Christian Chapa González
- Instituto de Ingeniería y TecnologíaUniversidad Autónoma de Ciudad JuárezCiudad Juárez, ChihuahuaMéxico
- Grupo de Nanomedicina, Laboratorio de Integración de Datos y Evidencia en Revisiones de Salud y Ciencia, LIDERSCUniversidad Autónoma de Ciudad JuárezCiudad Juárez, ChihuahuaMéxico
| |
Collapse
|
9
|
Zhang K, Loong SSE, Yuen LZH, Venketasubramanian N, Chin HL, Lai PS, Tan BYQ. Genetics in Ischemic Stroke: Current Perspectives and Future Directions. J Cardiovasc Dev Dis 2023; 10:495. [PMID: 38132662 PMCID: PMC10743455 DOI: 10.3390/jcdd10120495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Ischemic stroke is a heterogeneous condition influenced by a combination of genetic and environmental factors. Recent advancements have explored genetics in relation to various aspects of ischemic stroke, including the alteration of individual stroke occurrence risk, modulation of treatment response, and effectiveness of post-stroke functional recovery. This article aims to review the recent findings from genetic studies related to various clinical and molecular aspects of ischemic stroke. The potential clinical applications of these genetic insights in stratifying stroke risk, guiding personalized therapy, and identifying new therapeutic targets are discussed herein.
Collapse
Affiliation(s)
- Ka Zhang
- Division of Neurology, Department of Medicine, National University Hospital, Singapore 119074, Singapore;
| | - Shaun S. E. Loong
- Cardiovascular-Metabolic Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore;
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Linus Z. H. Yuen
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | | | - Hui-Lin Chin
- Khoo Teck Puat National University Children’s Medical Institute, National University Hospital, Singapore 119074, Singapore;
| | - Poh San Lai
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore;
| | - Benjamin Y. Q. Tan
- Division of Neurology, Department of Medicine, National University Hospital, Singapore 119074, Singapore;
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|
10
|
Jiang C, Zhou Y, Chen R, Yang M, Zhou H, Tang Z, Shi H, Qin D. Nanomaterial-Based Drug Delivery Systems for Ischemic Stroke. Pharmaceutics 2023; 15:2669. [PMID: 38140010 PMCID: PMC10748360 DOI: 10.3390/pharmaceutics15122669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Ischemic stroke is a leading cause of death and disability in the world. At present, reperfusion therapy and neuroprotective therapy, as guidelines for identifying effective and adjuvant treatment methods, are limited by treatment time windows, drug bioavailability, and side effects. Nanomaterial-based drug delivery systems have the characteristics of extending half-life, increasing bioavailability, targeting drug delivery, controllable drug release, and low toxicity, thus being used in the treatment of ischemic stroke to increase the therapeutic effects of drugs. Therefore, this review provides a comprehensive overview of nanomaterial-based drug delivery systems from nanocarriers, targeting ligands and stimulus factors of drug release, aiming to find the best combination of nanomaterial-based drug delivery systems for ischemic stroke. Finally, future research areas on nanomaterial-based drug delivery systems in ischemic stroke and the implications of the current knowledge for the development of novel treatment for ischemic stroke were identified.
Collapse
Affiliation(s)
- Chengting Jiang
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming 650500, China; (C.J.); (M.Y.)
- School of Basic Medical Science, Yunnan University of Chinese Medicine, Kunming 650500, China; (R.C.); (H.Z.); (Z.T.)
| | - Yang Zhou
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China;
| | - Rong Chen
- School of Basic Medical Science, Yunnan University of Chinese Medicine, Kunming 650500, China; (R.C.); (H.Z.); (Z.T.)
| | - Mengjia Yang
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming 650500, China; (C.J.); (M.Y.)
- School of Basic Medical Science, Yunnan University of Chinese Medicine, Kunming 650500, China; (R.C.); (H.Z.); (Z.T.)
| | - Haimei Zhou
- School of Basic Medical Science, Yunnan University of Chinese Medicine, Kunming 650500, China; (R.C.); (H.Z.); (Z.T.)
| | - Zhengxiu Tang
- School of Basic Medical Science, Yunnan University of Chinese Medicine, Kunming 650500, China; (R.C.); (H.Z.); (Z.T.)
| | - Hongling Shi
- Department of Rehabilitation Medicine, The Affiliated Hospital of Yunnan University, Kunming 650021, China
| | - Dongdong Qin
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming 650500, China; (C.J.); (M.Y.)
- School of Basic Medical Science, Yunnan University of Chinese Medicine, Kunming 650500, China; (R.C.); (H.Z.); (Z.T.)
| |
Collapse
|
11
|
Zhang Y, Sharma S, Jonnalagadda S, Kumari S, Queen A, Esfahani SH, Archie SR, Nozohouri S, Patel D, Trippier PC, Karamyan VT, Abbruscato TJ. Discovery of the Next Generation of Non-peptidomimetic Neurolysin Activators with High Blood-Brain Barrier Permeability: a Pharmacokinetics Study in Healthy and Stroke Animals. Pharm Res 2023; 40:2747-2758. [PMID: 37833570 DOI: 10.1007/s11095-023-03619-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023]
Abstract
PURPOSE There is growing interest in seeking pharmacological activation of neurolysin (Nln) for stroke treatment. Discovery of central nervous system drugs remains challenging due to the protection of the blood-brain barrier (BBB). The previously reported peptidomimetic Nln activators display unsatisfactory BBB penetration. Herein, we investigate the next generation of non-peptidomimetic Nln activators with high BBB permeability. METHODS A BBB-mimicking model was used to evaluate their in vitro BBB permeability. Protein binding, metabolic stability, and efflux assays were performed to determine their unbound fraction, half-lives in plasma and brains, and dependence of BBB transporter P-glycoprotein (P-gp). The in vivo pharmacokinetic profiles were elucidated in healthy and stroke mice. RESULTS Compounds KS52 and KS73 out of this generation exhibit improved peptidase activity and BBB permeability compared to the endogenous activator and previous peptidomimetic activators. They show reasonable plasma and brain protein binding, improved metabolic stability, and independence of P-gp-mediated efflux. In healthy animals, they rapidly distribute into brains and reach peak levels of 18.69% and 12.10% injected dose (ID)/ml at 10 min. After 4 h, their total brain concentrations remain 7.78 and 12.34 times higher than their A50(minimal concentration required for enhancing 50% peptidase activity). Moreover, the ipsilateral hemispheres of stroke animals show comparable uptake to the corresponding contralateral hemispheres and healthy brains. CONCLUSIONS This study provides essential details about the pharmacokinetic properties of a new generation of potent non-peptidomimetic Nln activators with high BBB permeability and warrants the future development of these agents as potential neuroprotective pharmaceutics for stroke treatment.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Pharmaceutical Sciences, Jerry. H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
- Center for Blood Brain Barrier Research, Jerry. H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Sejal Sharma
- Department of Pharmaceutical Sciences, Jerry. H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
- Center for Blood Brain Barrier Research, Jerry. H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Shirisha Jonnalagadda
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center (UNMC), Omaha, NE, 68106, USA
- UNMC Center for Drug Discovery, University of Nebraska Medical Center (UNMC), Omaha, NE, 68106, USA
| | - Shikha Kumari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center (UNMC), Omaha, NE, 68106, USA
- UNMC Center for Drug Discovery, University of Nebraska Medical Center (UNMC), Omaha, NE, 68106, USA
| | - Aarfa Queen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center (UNMC), Omaha, NE, 68106, USA
- UNMC Center for Drug Discovery, University of Nebraska Medical Center (UNMC), Omaha, NE, 68106, USA
| | - Shiva Hadi Esfahani
- Department of Foundational Medical Studies, William Beaumont School of Medicine, Oakland University, Rochester, MI, 48309, USA
- Laboratory for Neurodegenerative Disease & Drug Discovery, William Beaumont School of Medicine, Oakland University, Rochester, MI, 48309, USA
| | - Sabrina Rahman Archie
- Department of Pharmaceutical Sciences, Jerry. H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
- Center for Blood Brain Barrier Research, Jerry. H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Saeideh Nozohouri
- Department of Pharmaceutical Sciences, Jerry. H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
- Center for Blood Brain Barrier Research, Jerry. H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Dhavalkumar Patel
- Office of Sciences, Jerry. H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center (UNMC), Omaha, NE, 68106, USA
- UNMC Center for Drug Discovery, University of Nebraska Medical Center (UNMC), Omaha, NE, 68106, USA
| | - Vardan T Karamyan
- Department of Foundational Medical Studies, William Beaumont School of Medicine, Oakland University, Rochester, MI, 48309, USA
- Laboratory for Neurodegenerative Disease & Drug Discovery, William Beaumont School of Medicine, Oakland University, Rochester, MI, 48309, USA
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, Jerry. H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.
- Center for Blood Brain Barrier Research, Jerry. H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.
| |
Collapse
|
12
|
You Y, Liu Y, Ma C, Xu J, Xie L, Tong S, Sun Y, Ma F, Huang Y, Liu J, Xiao W, Dai C, Li S, Lei J, Mei Q, Gao X, Chen J. Surface-tethered ROS-responsive micelle backpacks for boosting mesenchymal stem cell vitality and modulating inflammation in ischemic stroke treatment. J Control Release 2023; 362:210-224. [PMID: 37619863 DOI: 10.1016/j.jconrel.2023.08.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/15/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
Mesenchymal stem cells (MSCs) exhibited remarkable therapeutic potential in ischemic stroke due to their exceptional immunomodulatory ability and paracrine effect; they have also been regarded as excellent neuroprotectant delivery vehicles with inflammatory tropism. However, the presence of high levels of reactive oxygen species (ROS) and an oxidative stress environment at the lesion site inhibits cell survival and further therapeutic effects. Using bioorthogonal click chemistry, ROS-responsive luteolin-loaded micelles were tethered to the surface of MSCs. As MSCs migrated to the ischemic brain, the micelles would achieve ROS-responsive release of luteolin to protect MSCs from excessive oxidative damage while inhibiting neuroinflammation and scavenging ROS to ameliorate ischemic stroke. This study provided an effective and prospective therapeutic strategy for ischemic stroke and a framework for a stem cell-based therapeutic system to treat inflammatory cerebral diseases.
Collapse
Affiliation(s)
- Yang You
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China; Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| | - Yipu Liu
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China; Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| | - Chuchu Ma
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China; Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| | - Jianpei Xu
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China; Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| | - Laozhi Xie
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China; Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| | - Shiqiang Tong
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China; Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| | - Yinzhe Sun
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China; Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| | - Fenfen Ma
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China; Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| | - Yukun Huang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Junbin Liu
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Wenze Xiao
- Department of Rheumatology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Shanghai 201399, China
| | - Chengxiang Dai
- Daxing Research Institute, University of Science and Technology Beijing, 41 Yongda Road, Biomedical Industry Base, Zhongguancun Science and Technology Park, Daxing District, Beijing 102600, China; Cellular Biomedicine Group, Inc., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, Shanghai 201210, China
| | - Suke Li
- Cellular Biomedicine Group, Inc., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, Shanghai 201210, China
| | - Jigang Lei
- Cellular Biomedicine Group, Inc., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, Shanghai 201210, China
| | - Qiyong Mei
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China.
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China.
| | - Jun Chen
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China; Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China.
| |
Collapse
|
13
|
Howell JA, Gaouette N, Lopez M, Burke SP, Perkins E, Bidwell GL. Elastin-like polypeptide delivery of anti-inflammatory peptides to the brain following ischemic stroke. FASEB J 2023; 37:e23077. [PMID: 37402128 PMCID: PMC10349587 DOI: 10.1096/fj.202300309rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 07/05/2023]
Abstract
Inflammatory processes are activated following ischemic stroke that lead to increased tissue damage for weeks following the ischemic insult, but there are no approved therapies that target this inflammation-induced secondary injury. Here, we report that SynB1-ELP-p50i, a novel protein inhibitor of the nuclear factor kappa B (NF-κB) inflammatory cascade bound to the drug carrier elastin-like polypeptide (ELP), decreases NF-κB induced inflammatory cytokine production in cultured macrophages, crosses the plasma membrane and accumulates in the cytoplasm of both neurons and microglia in vitro, and accumulates at the infarct site where the blood-brain barrier (BBB) is compromised following middle cerebral artery occlusion (MCAO) in rats. Additionally, SynB1-ELP-p50i treatment reduces infarct volume by 11.86% compared to saline-treated controls 24 h following MCAO. Longitudinally, SynB1-ELP-p50i treatment improves survival for 14 days following stroke with no effects of toxicity or peripheral organ dysfunction. These results show high potential for ELP-delivered biologics for therapy of ischemic stroke and other central nervous system disorders and further support targeting inflammation in ischemic stroke.
Collapse
Affiliation(s)
- John Aaron Howell
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216
| | - Nicholas Gaouette
- School of Medicine, University of Mississippi Medical Center, Jackson, MS 39216
| | - Mariper Lopez
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216
| | - Stephen P. Burke
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216
| | - Eddie Perkins
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, MS 39216
| | - Gene L. Bidwell
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216
- Department of Pharmacology and Toxicology University of Mississippi Medical Center, Jackson, MS 39216
| |
Collapse
|
14
|
Prakash R, Vyawahare A, Sakla R, Kumari N, Kumar A, Ansari MM, Jori C, Waseem A, Siddiqui AJ, Khan MA, Robertson AAB, Khan R, Raza SS. NLRP3 Inflammasome-Targeting Nanomicelles for Preventing Ischemia-Reperfusion-Induced Inflammatory Injury. ACS NANO 2023; 17:8680-8693. [PMID: 37102996 DOI: 10.1021/acsnano.3c01760] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Ischemia-reperfusion (I/R) injury is a disease process that affects several vital organs. There is widespread agreement that the NLRP3 inflammasome pathway plays a crucial role in the development of I/R injury. We have developed transferrin-conjugated, pH-responsive nanomicelles for the entrapment of MCC950 drug. These nanomicelles specifically bind to the transferrin receptor 1 (TFR1) expressed on the cells of the blood-brain barrier (BBB) and thus help the cargo to cross the BBB. Furthermore, the therapeutic potential of nanomicelles was assessed using in vitro, in ovo, and in vivo models of I/R injury. Nanomicelles were injected into the common carotid artery (CCA) of a middle cerebral artery occlusion (MCAO) rat model to achieve maximum accretion of nanomicelles into the brain as blood flows toward the brain in the CCA. The current study reveals that the treatment with nanomicelles significantly alleviates the levels of NLRP3 inflammasome biomarkers which were found to be increased in oxygen-glucose deprivation (OGD)-treated SH-SY5Y cells, the I/R-damaged right vitelline artery (RVA) of chick embryos, and the MCAO rat model. The supplementation with nanomicelles significantly enhanced the overall survival of MCAO rats. Overall, nanomicelles exerted therapeutic effects against I/R injury, which might be due to the suppression of the activation of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Ravi Prakash
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow 226003, India
| | - Akshay Vyawahare
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab 140306, India
| | - Rahul Sakla
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab 140306, India
| | - Neha Kumari
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow 226003, India
| | - Ajay Kumar
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab 140306, India
| | - Md Meraj Ansari
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Sector 67, Mohali, Punjab 160062, India
| | - Chandrashekhar Jori
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab 140306, India
| | - Arshi Waseem
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow 226003, India
| | - Abu Junaid Siddiqui
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow 226003, India
| | | | - Avril A B Robertson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab 140306, India
| | - Syed Shadab Raza
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow 226003, India
- Department of Stem Cell Biology and Regenerative Medicine, Era's Lucknow Medical College Hospital, Era University, Sarfarazganj, Lucknow 226003, India
| |
Collapse
|
15
|
Sharma S, Zhang Y, Akter KA, Nozohouri S, Archie SR, Patel D, Villalba H, Abbruscato T. Permeability of Metformin across an In Vitro Blood-Brain Barrier Model during Normoxia and Oxygen-Glucose Deprivation Conditions: Role of Organic Cation Transporters (Octs). Pharmaceutics 2023; 15:pharmaceutics15051357. [PMID: 37242599 DOI: 10.3390/pharmaceutics15051357] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Our lab previously established that metformin, a first-line type two diabetes treatment, activates the Nrf2 pathway and improves post-stroke recovery. Metformin's brain permeability value and potential interaction with blood-brain barrier (BBB) uptake and efflux transporters are currently unknown. Metformin has been shown to be a substrate of organic cationic transporters (Octs) in the liver and kidneys. Brain endothelial cells at the BBB have been shown to express Octs; thus, we hypothesize that metformin uses Octs for its transport across the BBB. We used a co-culture model of brain endothelial cells and primary astrocytes as an in vitro BBB model to conduct permeability studies during normoxia and hypoxia using oxygen-glucose deprivation (OGD) conditions. Metformin was quantified using a highly sensitive LC-MS/MS method. We further checked Octs protein expression using Western blot analysis. Lastly, we completed a plasma glycoprotein (P-GP) efflux assay. Our results showed that metformin is a highly permeable molecule, uses Oct1 for its transport, and does not interact with P-GP. During OGD, we found alterations in Oct1 expression and increased permeability for metformin. Additionally, we showed that selective transport is a key determinant of metformin's permeability during OGD, thus, providing a novel target for improving ischemic drug delivery.
Collapse
Affiliation(s)
- Sejal Sharma
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Yong Zhang
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Khondker Ayesha Akter
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Saeideh Nozohouri
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Sabrina Rahman Archie
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Dhavalkumar Patel
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Heidi Villalba
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Thomas Abbruscato
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| |
Collapse
|
16
|
Murthy PM, Ca J, Kandi V, Reddy MK, Harikrishna GV, Reddy K, Jp R, Reddy AN, Narang J. Connecting the Dots: The Interplay Between Stroke and the Gut-Brain Axis. Cureus 2023; 15:e37324. [PMID: 37182027 PMCID: PMC10168015 DOI: 10.7759/cureus.37324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2023] [Indexed: 05/16/2023] Open
Abstract
This article discusses the interplay between the gut-brain axis and stroke, a multifaceted neurological disorder that affects millions of people worldwide. The gut-brain axis is a bidirectional communication network linking the central nervous system (CNS) to the gastrointestinal tract (GIT), including the enteric nervous system (ENS), vagus nerve, and gut microbiota. Dysbiosis in the gut microbiota, alterations in the ENS and vagus nerve, and gut motility changes have been linked to increased inflammation and oxidative stress, which are contributing factors in the development and progression of stroke. Research on animals has shown that modifying the gut microbiota can impact the results of a stroke. Germ-free mice displayed improved neurological function and decreased infarct volumes, indicating a positive effect. Furthermore, studies in stroke patients have shown alterations in the gut microbiota composition, indicating that targeting dysbiosis could be a potential therapeutic strategy for stroke. The review suggests that targeting the gut-brain axis may represent a potential therapeutic approach to reduce the morbidity and mortality associated with stroke.
Collapse
Affiliation(s)
- Pooja M Murthy
- Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Jayashankar Ca
- Internal Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Venkataramana Kandi
- Clinical Microbiology, Prathima Institute of Medical Sciences, Karimnagar, IND
| | - Mithun K Reddy
- Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | | | - Kavitha Reddy
- General Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Ramya Jp
- General Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Ankush N Reddy
- General Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Jigya Narang
- Internal Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| |
Collapse
|
17
|
Yang Q, Pu W, Hu K, Hu Y, Feng Z, Cai J, Li C, Li L, Zhou Z, Zhang J. Reactive Oxygen Species-Responsive Transformable and Triple-Targeting Butylphthalide Nanotherapy for Precision Treatment of Ischemic Stroke by Normalizing the Pathological Microenvironment. ACS NANO 2023; 17:4813-4833. [PMID: 36802489 DOI: 10.1021/acsnano.2c11363] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
High potency and safe therapies are still required for ischemic stroke, which is a leading cause of global death and disability. Herein, a reactive oxygen species (ROS)-responsive, transformable, and triple-targeting dl-3-n-butylphthalide (NBP) nanotherapy was developed for ischemic stroke. To this end, a ROS-responsive nanovehicle (OCN) was first constructed using a cyclodextrin-derived material, which showed considerably enhanced cellular uptake in brain endothelial cells due to notably reduced particle size, morphological transformation, and surface chemistry switching upon triggering via pathological signals. Compared to a nonresponsive nanovehicle, this ROS-responsive and transformable nanoplatform OCN exhibited a significantly higher brain accumulation in a mouse model of ischemic stroke, thereby affording notably potentiated therapeutic effects for the nanotherapy derived from NBP-containing OCN. For OCN decorated with a stroke-homing peptide (SHp), we found significantly increased transferrin receptor-mediated endocytosis, in addition to the previously recognized targeting capability to activated neurons. Consistently, the engineered transformable and triple-targeting nanoplatform, i.e., SHp-decorated OCN (SON), displayed a more efficient distribution in the injured brain in mice with ischemic stroke, showing considerable localization in endothelial cells and neurons. Furthermore, the finally formulated ROS-responsive transformable and triple-targeting nanotherapy (NBP-loaded SON) demonstrated highly potent neuroprotective activity in mice, which outperformed the SHp-deficient nanotherapy at a 5-fold higher dose. Mechanistically, our bioresponsive, transformable, and triple-targeting nanotherapy attenuated the ischemia/reperfusion-induced endothelial permeability and improved dendritic remodeling and synaptic plasticity of neurons in the injured brain tissue, thereby promoting much better functional recovery, which were achieved by efficiently enhancing NBP delivery to the ischemic brain tissue, targeting injured endothelial cells and activated neurons/microglial cells, and normalizing the pathological microenvironment. Moreover, preliminary studies indicated that the ROS-responsive NBP nanotherapy displayed a good safety profile. Consequently, the developed triple-targeting NBP nanotherapy with desirable targeting efficiency, spatiotemporally controlled drug release performance, and high translational potential holds great promise for precision therapy of ischemic stroke and other brain diseases.
Collapse
Affiliation(s)
- Qinghua Yang
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Wendan Pu
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Kaiyao Hu
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yi Hu
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zhiqiang Feng
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jiajun Cai
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chenwen Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Lanlan Li
- Department of Pharmaceutical Analysis, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zhenhua Zhou
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jianxiang Zhang
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
- State Key Lab of Trauma, Burn and Combined Injury, Institute of Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
18
|
Sifat AE, Nozohouri S, Archie SR, Chowdhury EA, Abbruscato TJ. Brain Energy Metabolism in Ischemic Stroke: Effects of Smoking and Diabetes. Int J Mol Sci 2022; 23:ijms23158512. [PMID: 35955647 PMCID: PMC9369264 DOI: 10.3390/ijms23158512] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 02/06/2023] Open
Abstract
Proper regulation of energy metabolism in the brain is crucial for maintaining brain activity in physiological and different pathophysiological conditions. Ischemic stroke has a complex pathophysiology which includes perturbations in the brain energy metabolism processes which can contribute to worsening of brain injury and stroke outcome. Smoking and diabetes are common risk factors and comorbid conditions for ischemic stroke which have also been associated with disruptions in brain energy metabolism. Simultaneous presence of these conditions may further alter energy metabolism in the brain leading to a poor clinical prognosis after an ischemic stroke event. In this review, we discuss the possible effects of smoking and/or diabetes on brain glucose utilization and mitochondrial energy metabolism which, when present concurrently, may exacerbate energy metabolism in the ischemic brain. More research is needed to investigate brain glucose utilization and mitochondrial oxidative metabolism in ischemic stroke in the presence of smoking and/or diabetes, which would provide further insights on the pathophysiology of these comorbid conditions and facilitate the development of therapeutic interventions.
Collapse
|
19
|
In-Vivo and Ex-Vivo Brain Uptake Studies of Peptidomimetic Neurolysin Activators in Healthy and Stroke Animals. Pharm Res 2022; 39:1587-1598. [PMID: 35239135 DOI: 10.1007/s11095-022-03218-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/25/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Neurolysin (Nln) is a peptidase that functions to preserve the brain following ischemic stroke by hydrolyzing various neuropeptides. Nln activation has emerged as an attractive drug discovery target for treatment of ischemic stroke. Among first-in-class peptidomimetic Nln activators, we selected three lead compounds (9d, 10c, 11a) for quantitative pharmacokinetic analysis to provide valuable information for subsequent preclinical development. METHODS Pharmacokinetic profile of these compounds was studied in healthy and ischemic stroke-induced mice after bolus intravenous administration. Brain concentration and brain uptake clearance (Kin) was calculated from single time point analysis. The inter-relationship between LogP with in-vitro and in-vivo permeability was studied to determine CNS penetration. Brain slice uptake method was used to study tissue binding, whereas P-gp-mediated transport was evaluated to understand the potential brain efflux of these compounds. RESULTS According to calculated parameters, all three compounds showed a detectable amount in the brain after intravenous administration at 4 mg/kg; however, 11a had the highest brain concentration and brain uptake clearance. A strong correlation was documented between in-vitro and in-vivo permeability data. The efflux ratio of 10c was ~6-fold higher compared to 11a and correlated well with its lower Kin value. In experimental stroke animals, the Kin of 11a was significantly higher in ischemic vs. contralateral and intact hemispheres, though it remained below its A50 value required to activate Nln. CONCLUSIONS Collectively, these preclinical pharmacokinetic studies reveal promising BBB permeability of 11a and indicate that it can serve as an excellent lead for developing improved drug-like Nln activators.
Collapse
|
20
|
Kaur MM, Sharma DS. Mitochondrial repair as potential pharmacological target in cerebral ischemia. Mitochondrion 2022; 63:23-31. [PMID: 34999014 DOI: 10.1016/j.mito.2022.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 12/19/2022]
Abstract
Cerebral ischemia and its consequences like transient ischemic attack, aneurysm and stroke are the common and devastating conditions which remain the leading cause of mortality after coronary heart disease in developed countries and are the greatest cause of disability, leaving 50% of survivors permanently disabled. Despite recognition of risk factors and mechanisms involved in the pathology of the disease, treatment of ischemic disorders is limited to thrombolytic drugs like recombinant tissue plasminogen activator (rt-PA) and clinical rendition of the neuroprotective agents have not been so successful. Recent studies evidenced the role of mitochondrial dysfunction in neuronal damage that occurred after cerebral ischemia. This review article will focus on the various fundamental mechanisms responsible for neuronal damage because of mitochondrial dysfunction including cell signaling pathways, autophagy, apoptosis/necrosis, generation of reactive oxygen species, calcium overload, the opening of membrane permeability transition pore (mPTP), mitochondrial dynamics and biogenesis. Recent studies have concerned the significant role of mitochondrial biogenesis in mitochondrial repair and transfer of healthy mitochondria from astrocytes to the damaged neurons, providing neuroprotection and neural recovery following ischemia. Novel and influential studies have evidenced the significant role of mitochondria transfer and mitochondrial transplantation in reviving cell energy and in replacement of impaired or dysfunctional mitochondria with healthy mitochondria after ischemic episode. This review article will focus on recent advances in mitochondrial interventions and exogenous therapeutic modalities like mitochondria transfer technique, employment of stem cells, mitochondrial transplantation, miRNA inhibition and mitochondrial-targeted Sirtuin1 activator for designing novel and promising treatment for cerebral ischemia induced pathological states.
Collapse
Affiliation(s)
- Ms Mandeep Kaur
- Research Scholar, Department of Pharmacology, School of Pharmaceutical Sciences, CT University, Ludhiana, Punjab, India.
| | - Dr Saurabh Sharma
- Principal and Head, School of Pharmaceutical Sciences, CT University, Ludhiana, Punjab, India.
| |
Collapse
|
21
|
Parvez S, Kaushik M, Ali M, Alam MM, Ali J, Tabassum H, Kaushik P. Dodging blood brain barrier with "nano" warriors: Novel strategy against ischemic stroke. Theranostics 2022; 12:689-719. [PMID: 34976208 PMCID: PMC8692911 DOI: 10.7150/thno.64806] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022] Open
Abstract
Ischemic stroke (IS) is one of the leading causes of death and disability resulting in inevitable burden globally. Ischemic injury initiates cascade of pathological events comprising energy dwindling, failure of ionic gradients, failure of blood brain barrier (BBB), vasogenic edema, calcium over accumulation, excitotoxicity, increased oxidative stress, mitochondrial dysfunction, inflammation and eventually cell death. In spite of such complexity of the disease, the only treatment approved by US Food and Drug Administration (FDA) is tissue plasminogen activator (t-PA). This therapy overcome blood deficiency in the brain along with side effects of reperfusion which are responsible for considerable tissue injury. Therefore, there is urgent need of novel therapeutic perspectives that can protect the integrity of BBB and salvageable brain tissue. Advancement in nanomedicine is empowering new approaches that are potent to improve the understanding and treatment of the IS. Herein, we focus nanomaterial mediated drug delivery systems (DDSs) and their role to bypass and cross BBB especially via intranasal drug delivery. The various nanocarriers used in DDSs are also discussed. In a nut shell, the objective is to provide an overview of use of nanomedicine in the diagnosis and treatment of IS to facilitate the research from benchtop to bedside.
Collapse
|
22
|
Nozohouri S, Zhang Y, Albekairi TH, Vaidya B, Abbruscato TJ. Glutamate Buffering Capacity and Blood-Brain Barrier Protection of Opioid Receptor Agonists Biphalin and Nociceptin. J Pharmacol Exp Ther 2021; 379:260-269. [PMID: 34663677 DOI: 10.1124/jpet.121.000831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/29/2021] [Indexed: 12/23/2022] Open
Abstract
Opioids play crucial roles in the regulation of many important brain functions including pain, memory, and neurogenesis. Activation of opioid receptors is reported to have neuroprotective effects after ischemic reperfusion injury. The objective of this study was to understand the role of biphalin and nociceptin, opioid receptor agonists, on blood-brain barrier (BBB) integrity during ischemic stroke. In this study, we aimed to measure the effect of biphalin and nociceptin on astrocytic glutamate uptake and on expression of excitatory amino acid transporter to study the indirect role of astrocytes on opioid receptor-mediated BBB protection during in vitro stroke conditions. We used mouse brain endothelial cells (bEnd.3) and primary astrocytes as an in vitro BBB model. Restrictive BBB properties were evaluated by measuring [14C] sucrose paracellular permeability and the redistribution of the tight junction proteins. The protective effect of biphalin and nociceptin on BBB integrity was assessed after exposing cells to oxygen glucose deprivation (OGD) and glutamate. It was observed that combined stress (2 mM glutamate and 2 hours of OGD) significantly reduced glutamate uptake by astrocytes; however, biphalin and nociceptin treatment increased glutamate uptake in primary astrocytes. This suggests a role of increased astrocytic buffering capacity in opioid-meditated protection of the BBB during ischemic stroke. It was also found that the combined stress significantly increased [14C] sucrose paracellular permeability in an in vitro BBB model. Biphalin and nociceptin treatment attenuated the effect of the combined stress, which was reversed by the opioid receptor antagonists, suggesting the role of opioid receptors in biphalin and nociception's BBB modulatory activity. SIGNIFICANT STATEMENT: There is an unmet need for discovering new efficacious therapeutic agents to offset the deleterious effects of ischemic stroke. Given the confirmed roles of opioid receptors in the regulation of central nervous system functions, opioid receptor agonists have been studied as potential neuroprotective options in ischemic conditions. This study adds to the knowledge about the cerebrovascular protective effects of opioid receptor agonists and provides insight about the mechanism of action of these agents.
Collapse
Affiliation(s)
- Saeideh Nozohouri
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas (S.N., Y.Z., T.H.A., B.V., T.J.A.); and Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia (T.H.A.)
| | - Yong Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas (S.N., Y.Z., T.H.A., B.V., T.J.A.); and Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia (T.H.A.)
| | - Thamer H Albekairi
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas (S.N., Y.Z., T.H.A., B.V., T.J.A.); and Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia (T.H.A.)
| | - Bhuvaneshwar Vaidya
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas (S.N., Y.Z., T.H.A., B.V., T.J.A.); and Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia (T.H.A.)
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas (S.N., Y.Z., T.H.A., B.V., T.J.A.); and Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia (T.H.A.)
| |
Collapse
|
23
|
Yuan J, Li L, Yang Q, Ran H, Wang J, Hu K, Pu W, Huang J, Wen L, Zhou L, Jiang Y, Xiong X, Zhang J, Zhou Z. Targeted Treatment of Ischemic Stroke by Bioactive Nanoparticle-Derived Reactive Oxygen Species Responsive and Inflammation-Resolving Nanotherapies. ACS NANO 2021; 15:16076-16094. [PMID: 34606239 DOI: 10.1021/acsnano.1c04753] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Stroke is a primary cause of death and disability worldwide, while effective and safe drugs remain to be developed for its clinical treatment. Herein, we report bioactive nanoparticle-derived multifunctional nanotherapies for ischemic stroke, which are engineered from a pharmacologically active oligosaccharide material (termed as TPCD) prepared by covalently conjugating a radical-scavenging compound (Tempol) and a hydrogen-peroxide-eliminating moiety of phenylboronic acid pinacol ester (PBAP) on β-cyclodextrin. Of note, combined functional moieties of Tempol and PBAP on β-cyclodextrin contribute to antioxidative and anti-inflammatory activities of TPCD. Cellularly, TPCD nanoparticles (i.e., TPCD NPs) reduced oxygen-glucose deprivation-induced overproduction of oxidative mediators, increased antioxidant enzyme expression, and suppressed microglial-mediated inflammation, thereby inhibiting neuronal apoptosis. After intravenous (i.v.) delivery, TPCD NPs could efficiently accumulate at the cerebral ischemic injury site of mice with middle cerebral artery occlusion (MCAO), showing considerable distribution in cells relevant to the pathogenesis of stroke. Therapeutically, TPCD NPs significantly decreased infarct volume and accelerated recovery of neurological function in MCAO mice. Mechanistically, efficacy of TPCD NPs is achieved by its antioxidative, anti-inflammatory, and antiapoptotic effects. Furthermore, TPCD NPs can function as a reactive oxygen species labile nanovehicle to efficiently load and triggerably release an inflammation-resolving peptide Ac2-26, giving rise to an inflammation-resolving nanotherapy (i.e., ATPCD NP). Compared to TPCD NP, ATPCD NP demonstrated notably enhanced in vivo efficacies, largely resulting from its additional inflammation-resolving activity. Consequently, TPCD NP-derived nanomedicines can be further developed as promising targeted therapies for stroke and other inflammation-associated cerebrovascular diseases.
Collapse
Affiliation(s)
- Jichao Yuan
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Lanlan Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Qinghua Yang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Hong Ran
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jie Wang
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Kaiyao Hu
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Wendan Pu
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jialu Huang
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Lan Wen
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Linke Zhou
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Ying Jiang
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zhenhua Zhou
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
24
|
Sun P, Ma F, Xu Y, Zhou C, Stetler RA, Yin KJ. Genetic deletion of endothelial microRNA-15a/16-1 promotes cerebral angiogenesis and neurological recovery in ischemic stroke through Src signaling pathway. J Cereb Blood Flow Metab 2021; 41:2725-2742. [PMID: 33910400 PMCID: PMC8504951 DOI: 10.1177/0271678x211010351] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cerebral angiogenesis is tightly controlled by specific microRNAs (miRs), including the miR-15a/16-1 cluster. Recently, we reported that endothelium-specific conditional knockout of the miR-15a/16-1 cluster (EC-miR-15a/16-1 cKO) promotes post-stroke angiogenesis and improves long-term neurological recovery by increasing protein levels of VEGFA, FGF2, and their respective receptors VEGFR2 and FGFR1. Herein, we further investigated the underlying signaling mechanism of these pro-angiogenic factors after ischemic stroke using a selective Src family inhibitor AZD0530. EC-miR-15a/16-1 cKO and age- and sex-matched wild-type littermate (WT) mice were subjected to 1 h middle cerebral artery occlusion (MCAO) and 28d reperfusion. AZD0530 was administered daily by oral gavage to both genotypes of mice 3-21d after MCAO. Compared to WT, AZD0530 administration exacerbated spatial cognitive impairments and brain atrophy in EC-miR-15a/16-1 cKO mice following MCAO. AZD0530 also attenuated long-term recovery of blood flow and inhibited the formation of new microvessels, including functional vessels with blood circulation, in the penumbra of stroked cKO mice. Moreover, AZD0530 blocked the Src signaling pathway by downregulating phospho-Src and its downstream mediators (p-Stat3, p-Akt, p-FAK, p-p44/42 MAPK, p-p38 MAPK) in post-ischemic brains. Collectively, our data demonstrated that endothelium-targeted deletion of the miR-15a/16-1 cluster promotes post-stroke angiogenesis and improves long-term neurological recovery via activating Src signaling pathway.
Collapse
Affiliation(s)
- Ping Sun
- Pittsburgh Institute of Brain Disorders and Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Feifei Ma
- Pittsburgh Institute of Brain Disorders and Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yang Xu
- Pittsburgh Institute of Brain Disorders and Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Chao Zhou
- Pittsburgh Institute of Brain Disorders and Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - R Anne Stetler
- Pittsburgh Institute of Brain Disorders and Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ke-Jie Yin
- Pittsburgh Institute of Brain Disorders and Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| |
Collapse
|
25
|
Nozohouri S, Vaidya B, Abbruscato TJ. Exosomes in Ischemic Stroke. Curr Pharm Des 2021; 26:5533-5545. [PMID: 32534564 DOI: 10.2174/1381612826666200614180253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/05/2020] [Indexed: 12/14/2022]
Abstract
Ischemic stroke, a leading cause of mortality, results in severe neurological outcomes in the patients. Effective stroke therapies may significantly decrease the extent of injury. For this purpose, novel and efficient drug delivery strategies need to be developed. Among a myriad of therapeutic and drug delivery techniques, exosomes have shown promising results in ischemic stroke either by their intrinsic therapeutic characteristics, which can result in angiogenesis and neurogenesis or by acting as competent, biocompatible drug delivery vehicles to transport neurotherapeutic agents into the brain. In this review, we have discussed different methods of exosome isolation and cargo loading techniques, advantages and disadvantages of using exosomes as a drug delivery carrier and the therapeutic applications of exosomes with a focus on ischemic stroke therapy.
Collapse
Affiliation(s)
- Saeideh Nozohouri
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX-79106, United States
| | - Bhuvaneshwar Vaidya
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX-79106, United States
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX-79106, United States
| |
Collapse
|
26
|
Ali MA, Bhuiyan MH. Types of biomaterials useful in brain repair. Neurochem Int 2021; 146:105034. [PMID: 33789130 DOI: 10.1016/j.neuint.2021.105034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/28/2021] [Accepted: 03/22/2021] [Indexed: 01/21/2023]
Abstract
Biomaterials is an emerging field in the study of brain tissue engineering and repair or neurogenesis. The fabrication of biomaterials that can replicate the mechanical and viscoelastic features required by the brain, including the poroviscoelastic responses, force dissipation, and solute diffusivity are essential to be mapped from the macro to the nanoscale level under physiological conditions in order for us to gain an effective treatment for neurodegenerative diseases. This research topic has identified a critical study gap that must be addressed, and that is to source suitable biomaterials and/or create reliable brain-tissue-like biomaterials. This chapter will define and discuss the various types of biomaterials, their structures, and their function-properties features which would enable the development of next-generation biomaterials useful in brain repair.
Collapse
Affiliation(s)
- M Azam Ali
- Center for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, New Zealand.
| | - Mozammel Haque Bhuiyan
- Center for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
27
|
Sharma S, Nozohouri S, Vaidya B, Abbruscato T. Repurposing metformin to treat age-related neurodegenerative disorders and ischemic stroke. Life Sci 2021; 274:119343. [PMID: 33716063 DOI: 10.1016/j.lfs.2021.119343] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022]
Abstract
Aging is a risk factor for major central nervous system (CNS) disorders. More specifically, aging can be inked to neurodegenerative diseases (NDs) because of its deteriorating impact on neurovascular unit (NVU). Metformin, a first line FDA-approved anti-diabetic drug, has gained increasing interest among researchers for its role in improving aging-related neurodegenerative disorders. Additionally, numerous studies have illustrated metformin's role in ischemic stroke, a cerebrovascular disorder in which the NVU becomes dysfunctional which can lead to permanent life-threatening disabilities. Considering metformin's beneficial preclinical actions on various disorders, and the drug's role in alleviating severity of these conditions through involvement in commonly characterized cellular pathways, we discuss the potential of metformin as a suitable drug candidate for repurposing in CNS disorders.
Collapse
Affiliation(s)
- Sejal Sharma
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA
| | - Saeideh Nozohouri
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA
| | - Bhuvaneshwar Vaidya
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA
| | - Thomas Abbruscato
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA.
| |
Collapse
|
28
|
Drug delivery platforms for neonatal brain injury. J Control Release 2021; 330:765-787. [PMID: 33417984 DOI: 10.1016/j.jconrel.2020.12.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/18/2022]
Abstract
Hypoxic-ischemic encephalopathy (HIE), initiated by the interruption of oxygenated blood supply to the brain, is a leading cause of death and lifelong disability in newborns. The pathogenesis of HIE involves a complex interplay of excitotoxicity, inflammation, and oxidative stress that results in acute to long term brain damage and functional impairments. Therapeutic hypothermia is the only approved treatment for HIE but has limited effectiveness for moderate to severe brain damage; thus, pharmacological intervention is explored as an adjunct therapy to hypothermia to further promote recovery. However, the limited bioavailability and the side-effects of systemic administration are factors that hinder the use of the candidate pharmacological agents. To overcome these barriers, therapeutic molecules may be packaged into nanoscale constructs to enable their delivery. Yet, the application of nanotechnology in infants is not well examined, and the neonatal brain presents unique challenges. Novel drug delivery platforms have the potential to magnify therapeutic effects in the damaged brain, mitigate side-effects associated with high systemic doses, and evade mechanisms that remove the drugs from circulation. Encouraging pre-clinical data demonstrates an attenuation of brain damage and increased structural and functional recovery. This review surveys the current progress in drug delivery for treating neonatal brain injury.
Collapse
|
29
|
Nozohouri S, Noorani B, Al-Ahmad A, Abbruscato TJ. Estimating Brain Permeability Using In Vitro Blood-Brain Barrier Models. Methods Mol Biol 2021; 2367:47-72. [PMID: 32789777 DOI: 10.1007/7651_2020_311] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The blood-brain barrier (BBB) is a vital biological interface that regulates transfer of different molecules between blood and brain and, therefore, maintains the homeostatic environment of the CNS. In order to perform high-throughput screening of therapeutics in drug discovery, specific properties of the BBB are investigated within in vitro BBB platforms. In this chapter, we detail the process and steps for the iPSC to BMEC and astrocyte differentiation as well as TEER and permeability measurement in Transwell platform of in vitro BBB model. Also, advanced microfluidic iPSCs-derived BMECs on chip and permeability measurement within this model have been elucidated.
Collapse
Affiliation(s)
- Saeideh Nozohouri
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
- Center for Blood-Brain Barrier Research, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Behnam Noorani
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
- Center for Blood-Brain Barrier Research, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Abraham Al-Ahmad
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
- Center for Blood-Brain Barrier Research, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA.
- Center for Blood-Brain Barrier Research, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA.
| |
Collapse
|
30
|
Zenych A, Fournier L, Chauvierre C. Nanomedicine progress in thrombolytic therapy. Biomaterials 2020; 258:120297. [DOI: 10.1016/j.biomaterials.2020.120297] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/10/2020] [Accepted: 08/01/2020] [Indexed: 12/11/2022]
|
31
|
Xie K, Cai Y, Yang P, Du F, Wu K. Upregulating microRNA-874-3p inhibits CXCL12 expression to promote angiogenesis and suppress inflammatory response in ischemic stroke. Am J Physiol Cell Physiol 2020; 319:C579-C588. [PMID: 32608990 DOI: 10.1152/ajpcell.00001.2020] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Identification of specific biomarkers for ischemic stroke is necessary due to their abilities to improve treatment outcomes. Many studies have demonstrated the involvement of microRNAs (miRNAs) in the pathogenesis and complications of ischemic stroke and patient outcomes. We found that the expression of miR-874-3p was downregulated in clinical samples of ischemic stroke. Thus the present study explored the potential role of miR-874-3p in ischemic stroke and related mechanisms. A mouse model of ischemic stroke was constructed by middle cerebral artery occlusion. The relationship among miR-874-3p, C-X-C motif chemokine ligand 12 (CXCL12), and the Wnt/β-catenin pathway was explored by dual luciferase reporter assay and Western blot analysis. Angiogenesis and brain tissue apoptosis were evaluated by immunofluorescence staining and TUNEL staining, respectively. ELISA was introduced to measure levels of inflammatory factors, including tumor necrosis factor-α (TNF-α), interleukin (IL)-1, IL-6, IL-8, and IL-10 in brain tissues. Primary hippocampal neuronal cells were isolated from the mouse model of ischemic stroke and incubated with human umbilical vein endothelial cells (HUVECs) for HUVEC tube formation. High expression of CXCL12 and low expression of miR-874-3p were confirmed in ischemic stroke. In addition, miR-874-3p was found to target and downregulate CXCL12, thus reducing TNF-α, IL-1, IL-6, and IL-8 levels, but enhancing IL-10 level. Collectively, upregulating miR-874-3p inhibits CXCL12 expression to promote angiogenesis and inhibit inflammation in ischemic stroke mice by activating the Wnt/β-catenin pathway, which may provide a new direction of ischemic stroke treatment.
Collapse
Affiliation(s)
- Kangling Xie
- Department of Rehabilitation, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Ying Cai
- Department of Rehabilitation, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Pu Yang
- Department of Vascular Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Feng Du
- Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.,Department of Cardiology, The First People's Hospital of Guiyang, Guiyang, People's Republic of China
| | - Kai Wu
- Department of Rehabilitation, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|