1
|
Stoops WW, Shellenberg TP, Regnier SD, Cox DH, Adatorwovor R, Hays LR, Anderson DM, Lile JA, Schmitz JM, Havens JR, Segerstrom SC. Influence of cocaine use reduction on markers of immune function. J Neuroimmunol 2024; 397:578470. [PMID: 39504756 DOI: 10.1016/j.jneuroim.2024.578470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/28/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024]
Abstract
This study determined the effects of reduced cocaine use on immune function. Treatment seeking participants with Cocaine Use Disorder enrolled in a 12-week contingency management trial to reduce cocaine use. Participants were randomly assigned 1:1:1 to High Value Reinforcers (i.e., $55/negative urine sample) for cocaine abstinence (n = 41), Low Value Reinforcers (i.e., $13/negative urine sample) for cocaine abstinence (n = 33) or Non-Contingent Control (n = 33). Immune measures were collected at 6-week intervals. The High Value group had greatest use reductions, increased erythema and IL-6 and decreased IL-10 and CCL5, suggesting an activated immune response. Cocaine use reduction may promote changes in immune health.
Collapse
Affiliation(s)
- William W Stoops
- Department of Behavioral Science, University of Kentucky College of Medicine, 1100 Veterans Drive, Medical Behavioral Science Building, Lexington, KY 40536-0086, USA; Department of Psychiatry, University of Kentucky College of Medicine, 245 Fountain Court, Lexington, KY 40509-1810, USA; Department of Psychology, University of Kentucky College of Arts and Sciences, 171 Funkhouser Drive, Lexington, KY 40506-0044, USA; Center on Drug and Alcohol Research, University of Kentucky College of Medicine, 845 Angliana Ave, Lexington, KY 40508, USA.
| | - Thomas P Shellenberg
- Department of Behavioral Science, University of Kentucky College of Medicine, 1100 Veterans Drive, Medical Behavioral Science Building, Lexington, KY 40536-0086, USA; Department of Psychology, University of Kentucky College of Arts and Sciences, 171 Funkhouser Drive, Lexington, KY 40506-0044, USA
| | - Sean D Regnier
- Department of Behavioral Science, University of Kentucky College of Medicine, 1100 Veterans Drive, Medical Behavioral Science Building, Lexington, KY 40536-0086, USA
| | - David H Cox
- Department of Behavioral Science, University of Kentucky College of Medicine, 1100 Veterans Drive, Medical Behavioral Science Building, Lexington, KY 40536-0086, USA
| | - Reuben Adatorwovor
- Department of Biostatistics, University of Kentucky, 725 Rose Street, Multi-disciplinary Science Building, MDS 208D, Lexington, KY 40536-0082, USA
| | - Lon R Hays
- Department of Psychiatry, University of Kentucky College of Medicine, 245 Fountain Court, Lexington, KY 40509-1810, USA
| | - Danielle M Anderson
- Department of Psychiatry, University of Kentucky College of Medicine, 245 Fountain Court, Lexington, KY 40509-1810, USA
| | - Joshua A Lile
- Department of Behavioral Science, University of Kentucky College of Medicine, 1100 Veterans Drive, Medical Behavioral Science Building, Lexington, KY 40536-0086, USA; Department of Psychiatry, University of Kentucky College of Medicine, 245 Fountain Court, Lexington, KY 40509-1810, USA; Department of Psychology, University of Kentucky College of Arts and Sciences, 171 Funkhouser Drive, Lexington, KY 40506-0044, USA
| | - Joy M Schmitz
- Center for Neurobehavioral Research on Addiction (CNRA), University of Texas Houston, 1941 East Road Houston, TX 77054, USA
| | - Jennifer R Havens
- Department of Behavioral Science, University of Kentucky College of Medicine, 1100 Veterans Drive, Medical Behavioral Science Building, Lexington, KY 40536-0086, USA; Center on Drug and Alcohol Research, University of Kentucky College of Medicine, 845 Angliana Ave, Lexington, KY 40508, USA
| | - Suzanne C Segerstrom
- School of Human Development and Family Studies, Oregon State University, Waldo Hall 453, 2250 SW Jefferson Way, Corvallis, OR 97331, USA
| |
Collapse
|
2
|
Ma H, Lee GR, Park JS, Lee J, Wang F, Ma Y, Sui GY, Rustamov N, Kim SH, Jung YS, Yoo HS, Han SB, Hong JT, Yun J, Roh YS. Cocaine-derived hippuric acid activates mtDNA-STING signaling in alcoholic liver disease: Implications for alcohol and cocaine co-abuse. Cell Biol Toxicol 2024; 40:71. [PMID: 39147926 PMCID: PMC11327214 DOI: 10.1007/s10565-024-09901-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024]
Abstract
The simultaneous abuse of alcohol-cocaine is known to cause stronger and more unpredictable cellular damage in the liver, heart, and brain. However, the mechanistic crosstalk between cocaine and alcohol in liver injury remains unclear. The findings revealed cocaine-induced liver injury and inflammation in both marmosets and mice. Of note, co-administration of cocaine and ethanol in mice causes more severe liver damage than individual treatment. The metabolomic analysis confirmed that hippuric acid (HA) is the most abundant metabolite in marmoset serum after cocaine consumption and that is formed in primary marmoset hepatocytes. HA, a metabolite of cocaine, increases mitochondrial DNA leakage and subsequently increases the production of proinflammatory factors via STING signaling in Kupffer cells (KCs). In addition, conditioned media of cocaine-treated KC induced hepatocellular necrosis via alcohol-induced TNFR1. Finally, disruption of STING signaling in vivo ameliorated co-administration of alcohol- and cocaine-induced liver damage and inflammation. These findings postulate intervention of HA-STING-TNFR1 axis as a novel strategy for treatment of alcohol- and cocaine-induced excessive liver damage.
Collapse
Affiliation(s)
- Hwan Ma
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, 28160, South Korea
| | - Gyu-Rim Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, 28160, South Korea
| | - Jeong-Su Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, 28160, South Korea
| | - Jin Lee
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Feng Wang
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, 28160, South Korea
| | - Yuanqiang Ma
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, 28160, South Korea
| | - Guo-Yan Sui
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, 28160, South Korea
| | - Nodir Rustamov
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, 28160, South Korea
| | - Sou Hyun Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 46241, South Korea
| | - Young-Suk Jung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 46241, South Korea
| | - Hwan-Soo Yoo
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, 28160, South Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, 28160, South Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, 28160, South Korea
| | - Jaesuk Yun
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, 28160, South Korea.
| | - Yoon Seok Roh
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, 28160, South Korea.
| |
Collapse
|
3
|
Li H, Watkins LR, Wang X. Microglia in neuroimmunopharmacology and drug addiction. Mol Psychiatry 2024; 29:1912-1924. [PMID: 38302560 DOI: 10.1038/s41380-024-02443-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/03/2024]
Abstract
Drug addiction is a chronic and debilitating disease that is considered a global health problem. Various cell types in the brain are involved in the progression of drug addiction. Recently, the xenobiotic hypothesis has been proposed, which frames substances of abuse as exogenous molecules that are responded to by the immune system as foreign "invaders", thus triggering protective inflammatory responses. An emerging body of literature reveals that microglia, the primary resident immune cells in the brain, play an important role in the progression of addiction. Repeated cycles of drug administration cause a progressive, persistent induction of neuroinflammation by releasing microglial proinflammatory cytokines and their metabolic products. This contributes to drug addiction via modulation of neuronal function. In this review, we focus on the role of microglia in the etiology of drug addiction. Then, we discuss the dynamic states of microglia and the correlative and causal evidence linking microglia to drug addiction. Finally, possible mechanisms of how microglia sense drug-related stimuli and modulate the addiction state and how microglia-targeted anti-inflammation therapies affect addiction are reviewed. Understanding the role of microglia in drug addiction may help develop new treatment strategies to fight this devastating societal challenge.
Collapse
Affiliation(s)
- Hongyuan Li
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Linda R Watkins
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China.
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China.
| |
Collapse
|
4
|
Tizabi Y, Getachew B, Hauser SR, Tsytsarev V, Manhães AC, da Silva VDA. Role of Glial Cells in Neuronal Function, Mood Disorders, and Drug Addiction. Brain Sci 2024; 14:558. [PMID: 38928557 PMCID: PMC11201416 DOI: 10.3390/brainsci14060558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Mood disorders and substance use disorder (SUD) are of immense medical and social concern. Although significant progress on neuronal involvement in mood and reward circuitries has been achieved, it is only relatively recently that the role of glia in these disorders has attracted attention. Detailed understanding of the glial functions in these devastating diseases could offer novel interventions. Here, following a brief review of circuitries involved in mood regulation and reward perception, the specific contributions of neurotrophic factors, neuroinflammation, and gut microbiota to these diseases are highlighted. In this context, the role of specific glial cells (e.g., microglia, astroglia, oligodendrocytes, and synantocytes) on phenotypic manifestation of mood disorders or SUD are emphasized. In addition, use of this knowledge in the potential development of novel therapeutics is touched upon.
Collapse
Affiliation(s)
- Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA;
| | - Bruk Getachew
- Department of Pharmacology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA;
| | - Sheketha R. Hauser
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Vassiliy Tsytsarev
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Alex C. Manhães
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, IBRAG, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20550-170, RJ, Brazil
| | - Victor Diogenes Amaral da Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-100, BA, Brazil;
| |
Collapse
|
5
|
Balan I, Boero G, Chéry SL, McFarland MH, Lopez AG, Morrow AL. Neuroactive Steroids, Toll-like Receptors, and Neuroimmune Regulation: Insights into Their Impact on Neuropsychiatric Disorders. Life (Basel) 2024; 14:582. [PMID: 38792602 PMCID: PMC11122352 DOI: 10.3390/life14050582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/18/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Pregnane neuroactive steroids, notably allopregnanolone and pregnenolone, exhibit efficacy in mitigating inflammatory signals triggered by toll-like receptor (TLR) activation, thus attenuating the production of inflammatory factors. Clinical studies highlight their therapeutic potential, particularly in conditions like postpartum depression (PPD), where the FDA-approved compound brexanolone, an intravenous formulation of allopregnanolone, effectively suppresses TLR-mediated inflammatory pathways, predicting symptom improvement. Additionally, pregnane neurosteroids exhibit trophic and anti-inflammatory properties, stimulating the production of vital trophic proteins and anti-inflammatory factors. Androstane neuroactive steroids, including estrogens and androgens, along with dehydroepiandrosterone (DHEA), display diverse effects on TLR expression and activation. Notably, androstenediol (ADIOL), an androstane neurosteroid, emerges as a potent anti-inflammatory agent, promising for therapeutic interventions. The dysregulation of immune responses via TLR signaling alongside reduced levels of endogenous neurosteroids significantly contributes to symptom severity across various neuropsychiatric disorders. Neuroactive steroids, such as allopregnanolone, demonstrate efficacy in alleviating symptoms of various neuropsychiatric disorders and modulating neuroimmune responses, offering potential intervention avenues. This review emphasizes the significant therapeutic potential of neuroactive steroids in modulating TLR signaling pathways, particularly in addressing inflammatory processes associated with neuropsychiatric disorders. It advances our understanding of the complex interplay between neuroactive steroids and immune responses, paving the way for personalized treatment strategies tailored to individual needs and providing insights for future research aimed at unraveling the intricacies of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Irina Balan
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Giorgia Boero
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA;
| | - Samantha Lucenell Chéry
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Neuroscience Curriculum, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Minna H. McFarland
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Neuroscience Curriculum, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alejandro G. Lopez
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - A. Leslie Morrow
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
6
|
Funchal GA, Schuch JB, Zaparte A, Sanvicente-Vieira B, Viola TW, Grassi-Oliveira R, Bauer ME. Cocaine-use disorder and childhood maltreatment are associated with the activation of neutrophils and increased inflammation. Acta Neuropsychiatr 2024; 36:97-108. [PMID: 36847141 DOI: 10.1017/neu.2023.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
BACKGROUND Cocaine-use disorder (CUD) has been associated with early life adversity and activated cellular immune responses. Women are most vulnerable to complications from chronic substance disorders, generally presenting an intense feeling of abstinence and consuming significant drug amounts. Here, we investigated neutrophil functional activities in CUD, including the formation of neutrophil extracellular traps (NETs) and related intracellular signalling. We also investigated the role of early life stress in inflammatory profiles. METHODS Blood samples, clinical data, and history of childhood abuse or neglect were collected at the onset of detoxification treatment of 41 female individuals with CUD and 31 healthy controls (HCs). Plasma cytokines, neutrophil phagocytosis, NETs, intracellular reactive oxygen species (ROS) generation, and phosphorylated protein kinase B (Akt) and mitogen-activated protein kinases (MAPK)s were assessed by flow cytometry. RESULTS CUD subjects had higher scores of childhood trauma than controls. Increased plasma cytokines (TNF-α, IL-1β, IL-6, IL-8, IL-12, and IL-10), neutrophil phagocytosis, and production of NETs were reported in CUD subjects as compared to HC. Neutrophils of CUD subjects also produced high levels of intracellular ROS and had more activated Akt and MAPKs (p38/ERK), which are essential signalling pathways involved in cell survival and NETs production. Childhood trauma scores were significantly associated with neutrophil activation and peripheral inflammation. CONCLUSION Our study reinforces that smoked cocaine and early life stress activate neutrophils in an inflammatory environment.
Collapse
Affiliation(s)
- Giselle A Funchal
- Laboratory of Immunobiology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Jaqueline B Schuch
- Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Aline Zaparte
- Developmental Cognitive Neuroscience Lab, School of Medicine, Brain Institute of the Rio Grande do Sul (InsCer), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
- LSU Health New Orleans School of Medicine, Pulmonary/Critical Care & Allergy/Immunology, New Orleans, LA, USA
| | - Breno Sanvicente-Vieira
- Developmental Cognitive Neuroscience Lab, School of Medicine, Brain Institute of the Rio Grande do Sul (InsCer), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Thiago W Viola
- Developmental Cognitive Neuroscience Lab, School of Medicine, Brain Institute of the Rio Grande do Sul (InsCer), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Rodrigo Grassi-Oliveira
- Developmental Cognitive Neuroscience Lab, School of Medicine, Brain Institute of the Rio Grande do Sul (InsCer), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Moisés E Bauer
- Laboratory of Immunobiology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
- National Institute of Science and Technology - Neuroimmunomodulation (INCT-NIM), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brasília, DF, Brazil
| |
Collapse
|
7
|
Grodin EN. Neuroimmune modulators as novel pharmacotherapies for substance use disorders. Brain Behav Immun Health 2024; 36:100744. [PMID: 38435721 PMCID: PMC10906159 DOI: 10.1016/j.bbih.2024.100744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/20/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
One promising avenue of research is the use of neuroimmune modulators to treat substance use disorders (SUDs). Neuroimmune modulators target the interactions between the nervous system and immune system, which have been found to play a crucial role in the development and maintenance of SUDs. Multiple classes of substances produce alterations to neuroimmune signaling and peripheral immune function, including alcohol, opioids, and psychostimulants Preclinical studies have shown that neuroimmune modulators can reduce drug-seeking behavior and prevent relapse in animal models of SUDs. Additionally, early-phase clinical trials have demonstrated the safety and feasibility of using neuroimmune modulators as a treatment for SUDs in humans. These therapeutics can be used as stand-alone treatments or as adjunctive. This review summarizes the current state of the field and provides future directions with a specific focus on personalized medicine.
Collapse
Affiliation(s)
- Erica N. Grodin
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, USA
- Cousins Center for Psychoneuroimmunology, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
8
|
Hersey M, Tanda G. Modafinil, an atypical CNS stimulant? ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 99:287-326. [PMID: 38467484 DOI: 10.1016/bs.apha.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Modafinil is a central nervous system stimulant approved for the treatment of narcolepsy and sleep disorders. Due to its wide range of biochemical actions, modafinil has been explored for other potential therapeutic uses. Indeed, it has shown promise as a therapy for cognitive disfunction resulting from neurologic disorders like ADHD, and as a smart drug in non-medical settings. The mechanism(s) of actions underlying the therapeutic efficacy of this agent remains largely elusive. Modafinil is known to inhibit the dopamine transporter, thus decreasing dopamine reuptake following neuronal release, an effect shared by addictive psychostimulants. However, modafinil is unique in that only a few cases of dependence on this drug have been reported, as compared to other psychostimulants. Moreover, modafinil has been tested, with some success, as a potential therapeutic agent to combat psychostimulant and other substance use disorders. Modafinil has additional, but less understood, actions on other neurotransmitter systems (GABA, glutamate, serotonin, norepinephrine, etc.). These interactions, together with its ability to activate selected brain regions, are likely one of the keys to understand its unique pharmacology and therapeutic activity as a CNS stimulant. In this chapter, we outline the pharmacokinetics and pharmacodynamics of modafinil that suggest it has an "atypical" CNS stimulant profile. We also highlight the current approved and off label uses of modafinil, including its beneficial effects as a treatment for sleep disorders, cognitive functions, and substance use disorders.
Collapse
Affiliation(s)
- Melinda Hersey
- Medication Development Program, NIDA-IRP, NIH, Baltimore, MD, United States
| | - Gianluigi Tanda
- Medication Development Program, NIDA-IRP, NIH, Baltimore, MD, United States.
| |
Collapse
|
9
|
Antwi I, Watkins D, Pedawi A, Ghrayeb A, Van de Vuurst C, Cory TJ. Substances of abuse and their effect on SAR-CoV-2 pathogenesis. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2023; 2:301-316. [PMID: 38013836 PMCID: PMC10474379 DOI: 10.1515/nipt-2023-0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/19/2023] [Indexed: 11/29/2023]
Abstract
Following the emergence of SARS-CoV-2, various reports suggest that there has been a significant increase in substance abuse due to social distancing and related issues. Several reports have suggested the impact of chronic substance use on individuals' physiological and psychological health. Therefore, there is a need to know the impact of SARS-CoV-2 on persons with substance use disorders. Individuals with substance use disorders are the most vulnerable groups and are at a high risk of SARS-CoV-2 infection due to their already existing health issues associated with substance use. This review discusses some of the molecular and systemic/organic effects chronic substance use such as alcohol, nicotine, marijuana (cannabis), opioids, methamphetamine, and cocaine have on SARS-CoV-2 infectivity and its potential cause for worsened disease outcomes in persons with substance use disorder. This will provide healthcare providers, public health policies, and researchers with the needed knowledge to address some of the many challenges faced during the Covid-19 pandemic to facilitate treatment strategies for persons with substance use disorders.
Collapse
Affiliation(s)
- Ivy Antwi
- Department of Clinical Pharmacy, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Destiny Watkins
- Department of Clinical Pharmacy, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Alahn Pedawi
- Department of Clinical Pharmacy, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Atheel Ghrayeb
- Department of Clinical Pharmacy, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Christine Van de Vuurst
- Department of Clinical Pharmacy, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Theodore J. Cory
- Department of Clinical Pharmacy, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
10
|
Brown KT, Levis SC, O'Neill CE, Levy C, Rice KC, Watkins LR, Bachtell RK. Toll-like receptor 4 antagonists reduce cocaine-primed reinstatement of drug seeking. Psychopharmacology (Berl) 2023; 240:1587-1600. [PMID: 37286899 PMCID: PMC10732226 DOI: 10.1007/s00213-023-06392-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023]
Abstract
RATIONALE Cocaine can increase inflammatory neuroimmune markers, including chemokines and cytokines characteristic of innate inflammatory responding. Prior work indicates that the Toll-like receptor 4 (TLR4) initiates this response, and administration of TLR4 antagonists provides mixed evidence that TLR4 contributes to cocaine reward and reinforcement. OBJECTIVE These studies utilize (+)-naltrexone, the TLR4 antagonist, and mu-opioid inactive enantiomer to examine the role of TLR4 on cocaine self-administration and cocaine seeking in rats. METHODS (+)-Naltrexone was continuously administered via an osmotic mini-pump during the acquisition or maintenance of cocaine self-administration. The motivation to acquire cocaine was assessed using a progressive ratio schedule following either continuous and acute (+)-naltrexone administration. The effects of (+)-naltrexone on cocaine seeking were assessed using both a cue craving model and a drug-primed reinstatement model. The highly selective TLR4 antagonist, lipopolysaccharide from Rhodobacter sphaeroides (LPS-Rs), was administered into the nucleus accumbens to determine the effectiveness of TLR4 blockade on cocaine-primed reinstatement. RESULTS (+)-Naltrexone administration did not alter the acquisition or maintenance of cocaine self-administration. Similarly, (+)-naltrexone was ineffective at altering the progressive ratio responding. Continuous administration of (+)-naltrexone during forced abstinence did not impact cued cocaine seeking. Acute systemic administration of (+)-naltrexone dose-dependently decreased cocaine-primed reinstatement of previously extinguished cocaine seeking, and administration of LPS-Rs into the nucleus accumbens shell also reduced cocaine-primed reinstatement of cocaine seeking. DISCUSSION These results complement previous studies suggesting that the TLR4 plays a role in cocaine-primed reinstatement of cocaine seeking, but may have a more limited role in cocaine reinforcement.
Collapse
Affiliation(s)
- Kyle T Brown
- Department of Psychology and Neuroscience and Center for Neuroscience, Boulder, CO, USA
| | - Sophia C Levis
- Department of Psychology and Neuroscience and Center for Neuroscience, Boulder, CO, USA
| | - Casey E O'Neill
- Department of Psychology and Neuroscience and Center for Neuroscience, Boulder, CO, USA
| | - Catherine Levy
- Department of Psychology and Neuroscience and Center for Neuroscience, Boulder, CO, USA
| | - Kenner C Rice
- Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Linda R Watkins
- Department of Psychology and Neuroscience and Center for Neuroscience, Boulder, CO, USA
| | - Ryan K Bachtell
- Department of Psychology and Neuroscience and Center for Neuroscience, Boulder, CO, USA.
- Institute for Behavioral Genetics University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
11
|
Guo ML, Roodsari SK, Cheng Y, Dempsey RE, Hu W. Microglia NLRP3 Inflammasome and Neuroimmune Signaling in Substance Use Disorders. Biomolecules 2023; 13:922. [PMID: 37371502 DOI: 10.3390/biom13060922] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
During the last decade, substance use disorders (SUDs) have been increasingly recognized as neuroinflammation-related brain diseases. Various types of abused drugs (cocaine, methamphetamine, alcohol, opiate-like drugs, marijuana, etc.) can modulate the activation status of microglia and neuroinflammation levels which are involved in the pathogenesis of SUDs. Several neuroimmune signaling pathways, including TLR/NF-кB, reactive oxygen species, mitochondria dysfunction, as well as autophagy defection, etc., have been implicated in promoting SUDs. Recently, inflammasome-mediated signaling has been identified as playing critical roles in the microglia activation induced by abused drugs. Among the family of inflammasomes, NOD-, LRR-, and pyrin-domain-containing protein 3 (NLRP3) serves the primary research target due to its abundant expression in microglia. NLRP3 has the capability of integrating multiple external and internal inputs and coordinately determining the intensity of microglia activation under various pathological conditions. Here, we summarize the effects of abused drugs on NLRP3 inflammasomes, as well as others, if any. The research on this topic is still at an infant stage; however, the readily available findings suggest that NLRP3 inflammasome could be a common downstream effector stimulated by various types of abused drugs and play critical roles in determining abused-drug-mediated biological effects through enhancing glia-neuron communications. NLRP3 inflammasome might serve as a novel target for ameliorating the development of SUDs.
Collapse
Affiliation(s)
- Ming-Lei Guo
- Drug Addiction Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Soheil Kazemi Roodsari
- Drug Addiction Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Yan Cheng
- Drug Addiction Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Rachael Elizabeth Dempsey
- Drug Addiction Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Wenhui Hu
- Center for Metabolic Disease Research, Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
12
|
Cheng D, Luo Z, Fitting S, Stoops W, Heath SL, Ndhlovu LC, Jiang W. The link between chronic cocaine use, B cell perturbations, and blunted immune recovery in HIV-infected individuals on suppressive ART. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2023; 2:71-79. [PMID: 37027536 PMCID: PMC10070012 DOI: 10.1515/nipt-2022-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/27/2023] [Indexed: 06/04/2023]
Abstract
Background We recently reveal that anti-CD4 autoantibodies contribute to blunted CD4+ T cell reconstitution in HIV+ individuals on antiretroviral therapy (ART). Cocaine use is common among HIV+ individuals and is associated with accelerated disease progression. However, the mechanisms underlying cocaine-induced immune perturbations remain obscure. Methods We evaluated plasma levels of anti-CD4 IgG and markers of microbial translocation, as well as B-cell gene expression profiles and activation in HIV+ chronic cocaine users and non-users on suppressive ART, as well as uninfected controls. Plasma purified anti-CD4 IgGs were assessed for antibody-dependent cytotoxicity (ADCC). Results HIV+ cocaine users had increased plasma levels of anti-CD4 IgGs, lipopolysaccharide (LPS), and soluble CD14 (sCD14) versus non-users. An inverse correlation was observed in cocaine users, but not non-drug users. Anti-CD4 IgGs from HIV+ cocaine users mediated CD4+ T cell death through ADCC in vitro. B cells from HIV+ cocaine users exhibited activation signaling pathways and activation (cycling and TLR4 expression) related to microbial translocation versus non-users. Conclusions This study improves our understanding of cocaine associated B cell perturbations and immune failure and the new appreciation for autoreactive B cells as novel therapeutic targets.
Collapse
Affiliation(s)
- Da Cheng
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Zhenwu Luo
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Sylvia Fitting
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William Stoops
- Department of Behavioral Science, Department of Psychiatry, Center on Drug and Alcohol Research, Department of Psychology, University of Kentucky College of Medicine and College of Arts and Sciences, Lexington, KY, USA
| | - Sonya L. Heath
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lishomwa C. Ndhlovu
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA
- Divison of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, USA
| |
Collapse
|
13
|
Raval NR, Wetherill RR, Wiers CE, Dubroff JG, Hillmer AT. Positron Emission Tomography of Neuroimmune Responses in Humans: Insights and Intricacies. Semin Nucl Med 2023; 53:213-229. [PMID: 36270830 PMCID: PMC11261531 DOI: 10.1053/j.semnuclmed.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 08/30/2022] [Indexed: 11/06/2022]
Abstract
The brain's immune system plays a critical role in responding to immune challenges and maintaining homeostasis. However, dysregulated neuroimmune function contributes to neurodegenerative disease and neuropsychiatric conditions. In vivo positron emission tomography (PET) imaging of the neuroimmune system has facilitated a greater understanding of its physiology and the pathology of some neuropsychiatric conditions. This review presents an in-depth look at PET findings from human neuroimmune function studies, highlighting their importance in current neuropsychiatric research. Although the majority of human PET studies feature radiotracers targeting the translocator protein 18 kDa (TSPO), this review also considers studies with other neuroimmune targets, including monoamine oxidase B, cyclooxygenase-1 and cyclooxygenase-2, nitric oxide synthase, and the purinergic P2X7 receptor. Promising new targets, such as colony-stimulating factor 1, Sphingosine-1-phosphate receptor 1, and the purinergic P2Y12 receptor, are also discussed. The significance of validating neuroimmune targets and understanding their function and expression is emphasized in this review to better identify and interpret PET results.
Collapse
Affiliation(s)
- Nakul R Raval
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT; Yale PET Center, Yale University, New Haven, CT
| | - Reagan R Wetherill
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Corinde E Wiers
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jacob G Dubroff
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ansel T Hillmer
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT; Yale PET Center, Yale University, New Haven, CT; Department of Psychiatry, Yale University, New Haven, CT.
| |
Collapse
|
14
|
Herrera-Imbroda J, Flores-López M, Ruiz-Sastre P, Gómez-Sánchez-Lafuente C, Bordallo-Aragón A, Rodríguez de Fonseca F, Mayoral-Cleríes F. The Inflammatory Signals Associated with Psychosis: Impact of Comorbid Drug Abuse. Biomedicines 2023; 11:biomedicines11020454. [PMID: 36830990 PMCID: PMC9953424 DOI: 10.3390/biomedicines11020454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Psychosis and substance use disorders are two diagnostic categories whose association has been studied for decades. In addition, both psychosis spectrum disorders and drug abuse have recently been linked to multiple pro-inflammatory changes in the central nervous system. We have carried out a narrative review of the literature through a holistic approach. We used PubMed as our search engine. We included in the review all relevant studies looking at pro-inflammatory changes in psychotic disorders and substance use disorders. We found that there are multiple studies that relate various pro-inflammatory lipids and proteins with psychosis and substance use disorders, with an overlap between the two. The main findings involve inflammatory mediators such as cytokines, chemokines, endocannabinoids, eicosanoids, lysophospholipds and/or bacterial products. Many of these findings are present in different phases of psychosis and in substance use disorders such as cannabis, cocaine, methamphetamines, alcohol and nicotine. Psychosis and substance use disorders may have a common origin in an abnormal neurodevelopment caused, among other factors, by a neuroinflammatory process. A possible convergent pathway is that which interrelates the transcriptional factors NFκB and PPARγ. This may have future clinical implications.
Collapse
Affiliation(s)
- Jesús Herrera-Imbroda
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Facultad de Medicina, Universidad de Málaga, Andalucía Tech, Campus de Teatinos s/n, 29071 Málaga, Spain
- Departamento de Farmacología y Pediatría, Universidad de Málaga, Andalucía Tech, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - María Flores-López
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Facultad de Psicología, Universidad de Málaga, Andalucía Tech, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - Paloma Ruiz-Sastre
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Facultad de Medicina, Universidad de Málaga, Andalucía Tech, Campus de Teatinos s/n, 29071 Málaga, Spain
- Correspondence: (P.R.-S.); (C.G.-S.-L.)
| | - Carlos Gómez-Sánchez-Lafuente
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Facultad de Psicología, Universidad de Málaga, Andalucía Tech, Campus de Teatinos s/n, 29071 Málaga, Spain
- Correspondence: (P.R.-S.); (C.G.-S.-L.)
| | - Antonio Bordallo-Aragón
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Fermín Mayoral-Cleríes
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| |
Collapse
|
15
|
Sánchez-Zavaleta R, Segovia J, Ruiz-Contreras AE, Herrera-Solís A, Méndez-Díaz M, de la Mora MP, Prospéro-García OE. GPR55 activation prevents amphetamine-induced conditioned place preference and decrease the amphetamine-stimulated inflammatory response in the ventral hippocampus in male rats. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110636. [PMID: 36099968 DOI: 10.1016/j.pnpbp.2022.110636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/18/2022] [Accepted: 09/07/2022] [Indexed: 10/14/2022]
Abstract
Inflammatory response in the Central Nervous System (CNS) induced by psychostimulants seems to be a crucial factor in the development and maintenance of drug addiction. The ventral hippocampus (vHp) is part of the reward system involved in substance addiction and expresses abundant G protein-coupled receptor 55 (GPR55). This receptor modulates the inflammatory response in vitro and in vivo, but there is no information regarding its anti-inflammatory effects and its impact on psychostimulant consumption. The aim of the present study was to investigate whether vHp GPR55 activation prevents both the inflammatory response induced by amphetamine (AMPH) in the vHp and the AMPH-induced conditioned place preference (A-CPP). Wistar adult male rats with a bilateral cannula into the vHp or intact males were subjected to A-CPP (5 mg/kg). Upon the completion of A-CPP, the vHp was dissected to evaluate IL-1β and IL-6 expression through RT-PCR, Western blot and immunofluorescence. Our results reveal that AMPH induces both A-CPP and an increase of IL-1β and IL-6 in the vHp. The GPR55 agonist lysophosphatidylinositol (LPI, 10 μM) infused into the vHp prevented A-CPP and the AMPH-induced IL-1β increase. CID 16020046 (CID, 10 μM), a selective GPR55 antagonist, abolished LPI effects. To evaluate the effect of the inflammatory response, lipopolysaccharide (LPS, 5 μg/μl) was infused bilaterally into the vHp during A-CPP acquisition. LPS strengthened A-CPP and increased IL-1β/IL-6 mRNA and protein levels in the vHp. LPS also increased CD68, Iba1, GFAP and vimentin expression. All LPS-induced effects were blocked by LPI. Our results suggest that GPR55 activation in the vHp prevents A-CPP while decreasing the local neuro-inflammatory response. These findings indicate that vHp GPR55 is a crucial factor in preventing the rewarding effects of AMPH due to its capacity to interfere with proinflammatory responses in the vHp.
Collapse
Affiliation(s)
- Rodolfo Sánchez-Zavaleta
- Laboratorio de Canabinoides, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico.
| | - José Segovia
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Mexico
| | - Alejandra E Ruiz-Contreras
- Laboratorio de Neurogenómica Cognitiva, Coordinación de Psicobiología y Neurociencias, Facultad de Psicología, México
| | - Andrea Herrera-Solís
- Laboratorio de Efectos Terapéuticos de los Cannabinoides, Subdirección de Investigación Biomédica, Hospital General Dr. Manuel Gea González, México
| | - Mónica Méndez-Díaz
- Laboratorio de Canabinoides, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | | | - Oscar E Prospéro-García
- Laboratorio de Canabinoides, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| |
Collapse
|
16
|
Machado da Silva MC, Iglesias LP, Candelario-Jalil E, Khoshbouei H, Moreira FA, de Oliveira ACP. Role of Microglia in Psychostimulant Addiction. Curr Neuropharmacol 2023; 21:235-259. [PMID: 36503452 PMCID: PMC10190137 DOI: 10.2174/1570159x21666221208142151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 12/14/2022] Open
Abstract
The use of psychostimulant drugs can modify brain function by inducing changes in the reward system, mainly due to alterations in dopaminergic and glutamatergic transmissions in the mesocorticolimbic pathway. However, the etiopathogenesis of addiction is a much more complex process. Previous data have suggested that microglia and other immune cells are involved in events associated with neuroplasticity and memory, which are phenomena that also occur in addiction. Nevertheless, how dependent is the development of addiction on the activity of these cells? Although the mechanisms are not known, some pathways may be involved. Recent data have shown psychoactive substances may act directly on immune cells, alter their functions and induce various inflammatory mediators that modulate synaptic activity. These could, in turn, be involved in the pathological alterations that occur in substance use disorder. Here, we extensively review the studies demonstrating how cocaine and amphetamines modulate microglial number, morphology, and function. We also describe the effect of these substances in the production of inflammatory mediators and a possible involvement of some molecular signaling pathways, such as the toll-like receptor 4. Although the literature in this field is scarce, this review compiles the knowledge on the neuroimmune axis that is involved in the pathogenesis of addiction, and suggests some pharmacological targets for the development of pharmacotherapy.
Collapse
Affiliation(s)
- Maria Carolina Machado da Silva
- Department of Pharmacology, Neuropharmacology Laboratory, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil;
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Lia Parada Iglesias
- Department of Pharmacology, Neuropsychopharmacology Laboratory, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Habibeh Khoshbouei
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Fabrício Araujo Moreira
- Department of Pharmacology, Neuropsychopharmacology Laboratory, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | |
Collapse
|
17
|
Martinez SS, Stebliankin V, Hernandez J, Martin H, Tamargo J, Rodriguez JB, Teeman C, Johnson A, Seminario L, Campa A, Narasimhan G, Baum MK. Multiomic analysis reveals microbiome-related relationships between cocaine use and metabolites. AIDS 2022; 36:2089-2099. [PMID: 36382433 PMCID: PMC9673179 DOI: 10.1097/qad.0000000000003363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Over 19 million individuals globally have a cocaine use disorder, a significant public health crisis. Cocaine has also been associated with a pro-inflammatory state and recently with imbalances in the intestinal microbiota as compared to nonuse. The objective of this pilot study was to characterize the gut microbiota and plasma metabolites in people with HIV (PWH) who use cocaine compared with those who do not. DESIGN Cross-sectional study. METHODS A pilot study in PWH was conducted on 25 cocaine users and 25 cocaine nonusers from the Miami Adult Studies on HIV cohort. Stool samples and blood plasma were collected. Bacterial composition was characterized using 16S rRNA sequencing. Metabolomics in plasma were determined using gas and liquid chromatography/mass spectrometry. RESULTS The relative abundances of the Lachnopspira genus, Oscillospira genus, Bifidobacterium adolescentis species, and Euryarchaeota phylum were significantly higher in the cocaine- using PWH compared to cocaine-nonusing PWH. Cocaine-use was associated with higher levels of several metabolites: products of dopamine catabolism (3-methoxytyrosine and 3-methoxytyramine sulfate), phenylacetate, benzoate, butyrate, and butyrylglycine. CONCLUSIONS Cocaine use was associated with higher abundances of taxa and metabolites known to be associated with pathogenic states that include gastrointestinal conditions. Understanding key intestinal bacterial functional pathways that are altered due to cocaine use in PWH will provide a better understanding of the relationships between the host intestinal microbiome and potentially provide novel treatments to improve health.
Collapse
Affiliation(s)
| | - Vitalii Stebliankin
- Florida International University, Bioinformatics Research Group (BioRG), Miami, FL, USA
| | - Jacqueline Hernandez
- Florida International University, R. Stempel College of Public Health and Social Work
| | - Haley Martin
- Florida International University, R. Stempel College of Public Health and Social Work
| | - Javier Tamargo
- Florida International University, R. Stempel College of Public Health and Social Work
| | | | - Colby Teeman
- Florida International University, R. Stempel College of Public Health and Social Work
| | - Angelique Johnson
- Florida International University, R. Stempel College of Public Health and Social Work
| | - Leslie Seminario
- Florida International University, R. Stempel College of Public Health and Social Work
| | - Adriana Campa
- Florida International University, R. Stempel College of Public Health and Social Work
| | - Giri Narasimhan
- Florida International University, Bioinformatics Research Group (BioRG), Miami, FL, USA
| | - Marianna K Baum
- Florida International University, R. Stempel College of Public Health and Social Work
| |
Collapse
|
18
|
Smiley CE, Wood SK. Stress- and drug-induced neuroimmune signaling as a therapeutic target for comorbid anxiety and substance use disorders. Pharmacol Ther 2022; 239:108212. [PMID: 35580690 DOI: 10.1016/j.pharmthera.2022.108212] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 10/18/2022]
Abstract
Stress and substance use disorders remain two of the most highly prevalent psychiatric conditions and are often comorbid. While individually these conditions have a debilitating impact on the patient and a high cost to society, the symptomology and treatment outcomes are further exacerbated when they occur together. As such, there are few effective treatment options for these patients, and recent investigation has sought to determine the neural processes underlying the co-occurrence of these disorders to identify novel treatment targets. One such mechanism that has been linked to stress- and addiction-related conditions is neuroimmune signaling. Increases in inflammatory factors across the brain have been heavily implicated in the etiology of these disorders, and this review seeks to determine the nature of this relationship. According to the "dual-hit" hypothesis, also referred to as neuroimmune priming, prior exposure to either stress or drugs of abuse can sensitize the neuroimmune system to be hyperresponsive when exposed to these insults in the future. This review completes an examination of the literature surrounding stress-induced increases in inflammation across clinical and preclinical studies along with a summarization of the evidence regarding drug-induced alterations in inflammatory factors. These changes in neuroimmune profiles are also discussed within the context of their impact on the neural circuitry responsible for stress responsiveness and addictive behaviors. Further, this review explores the connection between neuroimmune signaling and susceptibility to these conditions and highlights the anti-inflammatory pharmacotherapies that may be used for the treatment of stress and substance use disorders.
Collapse
Affiliation(s)
- Cora E Smiley
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC 29209, United States of America; WJB Dorn Veterans Administration Medical Center, Columbia, SC 29209, United States of America.
| | - Susan K Wood
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC 29209, United States of America; WJB Dorn Veterans Administration Medical Center, Columbia, SC 29209, United States of America.
| |
Collapse
|
19
|
Techau A. The Role of Interleukin 6 in Substance Use Disorder Treatment Failure. J Addict Nurs 2022; 33:E5-E25. [PMID: 37140424 DOI: 10.1097/jan.0000000000000490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
ABSTRACT Substance use disorders (SUDs) are often misunderstood as a reflection of an individual's lack of motivation or willpower or as a moral failing. SUDs are complex and require a biopsychosocial lens to understand the phenomenon, particularly treatment failure, which is described as a deficit in patients' willpower/self-regulation or dedication to managing their condition.Recent evidence has implicated inflammatory cytokines such as interleukin 6 (IL-6) in the action of substance use by impairing executive functioning, which is an essential aspect of self-regulatory control. Emerging research indicates that inflammation may also shape social behavior, including social withdrawal and approach, thus having potential implications on health-seeking and health-sustaining behaviors often interpreted as a dedication to managing health conditions.The aim of this two-part biobehavioral synthesis is to (a) examine the scientific evidence of the role of IL-6 in self-regulatory failure, (b) explore IL-6 as a common inflammatory mechanism across SUDs, and (c) investigate the role of IL-6 in social withdrawal and approach to gain an understanding of how this determinant may impact treatment failure.Overall, the evidence supports a new paradigm of treatment failure that stresses the influence of IL-6 on self-regulatory failure by way of dual cognitive processing and the role of IL-6 in shaping social behavior central to health-seeking and health-sustaining behaviors. This discovery will help to minimize stigma and blame. Understanding the role of IL-6 in treatment failure may elucidate novel targets for intervention, improve treatment outcomes, and break the social disconnection cycle often seen in SUDs.
Collapse
Affiliation(s)
- Aimee Techau
- Aimee Techau, MSN, PMHNP-BC, CARN-AP, University of Colorado College of Nursing, Aurora
| |
Collapse
|
20
|
Cocaine Self-Administration Influences Central Nervous System Immune Responses in Male HIV-1 Transgenic Rats. Cells 2022; 11:cells11152405. [PMID: 35954251 PMCID: PMC9368446 DOI: 10.3390/cells11152405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/25/2022] [Accepted: 07/30/2022] [Indexed: 01/19/2023] Open
Abstract
Cocaine use increases the neurotoxic severity of human immunodeficiency virus-1 (HIV-1) infection and the development of HIV-associated neurocognitive disorders (HAND). Among the studied cellular mechanisms promoting neurotoxicity in HIV-1 and cocaine use, central nervous system (CNS) immunity, such as neuroimmune signaling and reduced antiviral activity, are risk determinants; however, concrete evidence remains elusive. In the present study, we tested the hypothesis that cocaine self-administration by transgenic HIV-1 (HIV-1Tg) rats promotes CNS inflammation. To test this hypothesis, we measured cytokine, chemokine, and growth factor protein levels in the frontal cortex (fCTX) and caudal striatum (cSTR). Our results demonstrated that cocaine self-administration significantly increased fCTX inflammation in HIV-1Tg rats, but not in the cSTR. Accordingly, we postulate that cocaine synergizes with HIV-1 proteins to increase neuroinflammation in a region-selective manner, including the fCTX. Given the fCTX role in cognition, this interaction may contribute to the hyperimmunity and reduced antiviral activity associated with cocaine-mediated enhancement of HAND.
Collapse
|
21
|
Anier K, Somelar K, Jaako K, Alttoa M, Sikk K, Kokassaar R, Kisand K, Kalda A. Psychostimulant-induced aberrant DNA methylation in an in vitro model of human peripheral blood mononuclear cells. Clin Epigenetics 2022; 14:89. [PMID: 35842682 PMCID: PMC9288712 DOI: 10.1186/s13148-022-01303-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/30/2022] [Indexed: 11/14/2022] Open
Abstract
Background Several reports have provided crucial evidence in animal models that epigenetic modifications, such as DNA methylation, may be involved in psychostimulant-induced stable changes at the cellular level in the brain. Epigenetic editors DNA methyltransferases (DNMTs) and ten-eleven translocation enzymes (TETs) coordinate expression of gene networks, which then manifest as long-term behavioural changes. However, the extent to which aberrant DNA methylation is involved in the mechanisms of substance use disorder in humans is unclear. We previously demonstrated that cocaine modifies gene transcription, via DNA methylation, throughout the brain and in peripheral blood cells in mice. Results We treated human peripheral blood mononuclear cells (PBMCs) from healthy male donors (n = 18) in vitro with psychostimulants (amphetamine, cocaine). After treatment, we assessed mRNA levels and enzymatic activities of TETs and DNMTs, conducted genome-wide DNA methylation assays and next-generation sequencing. We found that repeated exposure to psychostimulants decreased mRNA levels and enzymatic activity of TETs and 5-hydroxymethylation levels in PBMCs. These data were in line with observed hyper- and hypomethylation and mRNA expression of marker genes (IL-10, ATP2B4). Additionally, we evaluated whether the effects of cocaine on epigenetic editors (DNMTs and TETs) and cytokines interleukin-6 (IL-6) and IL-10 could be reversed by the DNMT inhibitor decitabine. Indeed, decitabine eliminated cocaine’s effect on the activity of TETs and DNMTs and decreased cytokine levels, whereas cocaine increased IL-6 and decreased IL-10. Conclusions Our data suggest that repeated psychostimulant exposure decreases TETs’ enzymatic activity in PBMCs. Co-treatment with decitabine reversed TETs’ levels and modulated immune response after repeated cocaine exposure. Further investigation is needed to clarify if TET could represent a putative biomarker of psychostimulant use and if DNMT inhibition could have therapeutic potential. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-022-01303-w.
Collapse
Affiliation(s)
- Kaili Anier
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Kelli Somelar
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia.
| | - Külli Jaako
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Margret Alttoa
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Kerli Sikk
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Raul Kokassaar
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Kai Kisand
- Department of Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Anti Kalda
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| |
Collapse
|
22
|
Rosa MLP, Machado CA, Asth L, Toscano ECB, da Silva Oliveira B, Marzano LAS, Ferreira RN, Teixeira AL, Moreira FA, Miranda AS. A three-compartment apparatus alters the brain concentration of cytokines and neurotrophic factors in cocaine-induced CPP in mice. J Neuroimmunol 2022; 369:577914. [PMID: 35717736 DOI: 10.1016/j.jneuroim.2022.577914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 10/18/2022]
Abstract
Cocaine-induced neuroinflammation plays an important role in the pathophysiology of drug addiction. Evidence suggests that the immune response contributes for memory consolidation related to place preference behavior underlying cocaine administration in mice. Conditioned place preference (CPP) is a protocol extensively used to study the rewarding and/or aversive motivational effects of drug abuse in rodents, reproducing cocaine-seeking behavior in humans. Besides the variety of apparatus used in the CPP protocol, whether different types of apparatus are able to induce the same conditioned behavior response and neurobiological changes remains to be fully explored. We hypothesize that the immune response is involved in the cocaine-induced CPP and that the type of apparatus might influence this response. Herein, two- and three-compartment apparatuses were tested using the behavioral model of CPP. Cocaine-induced CPP was demonstrated in both apparatuses. However, mice injected with cocaine had decreased levels of IL-1β, IL-6, IL-10, and GDNF in the pre-frontal cortex, and decreased CX3CL1 in the striatum, in the CPP protocol using three compartments compared to controls. While similar levels were seen in the CPP protocol using two compartments. In conclusion, the current study demonstrated that the type of apparatus might influence the investigation of neurobiological mechanisms associated with cocaine-induced CPP. Our data also suggest that the three compartment-apparatus seems to be a more appropriate model to investigate the neuroinflammatory response related to cocaine addiction.
Collapse
Affiliation(s)
- Magda L P Rosa
- Laboratório de Neurobiologia, Departamento de Morfologia, Instituto de Ciências Biológicas, UFMG, Brazil; Programa de Pós-graduação em Neurociências, Instituto de Ciências Biológicas, UFMG, Brazil
| | - Caroline A Machado
- Laboratório de Neurobiologia, Departamento de Morfologia, Instituto de Ciências Biológicas, UFMG, Brazil
| | - Laila Asth
- Departamento de Farmacologia, Instituto de Ciências Biológicas, UFMG, Brazil
| | - Eliana C B Toscano
- Laboratório Integrado de Pesquisas em Patologia, Departamento de Patologia, Faculdade de Medicina, UFJF, Brazil; Laboratório de Fisiopatologia do Envelhecimento, Departamento de Clínica Médica, Faculdade de Medicina, USP, Brazil
| | - Bruna da Silva Oliveira
- Laboratório de Neurobiologia, Departamento de Morfologia, Instituto de Ciências Biológicas, UFMG, Brazil
| | - Lucas A S Marzano
- Laboratório de Neurobiologia, Departamento de Morfologia, Instituto de Ciências Biológicas, UFMG, Brazil
| | - Rodrigo N Ferreira
- Laboratório de Neurobiologia, Departamento de Morfologia, Instituto de Ciências Biológicas, UFMG, Brazil
| | - Antônio L Teixeira
- Programa de Pós-graduação em Neurociências, Instituto de Ciências Biológicas, UFMG, Brazil; Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, TX, USA
| | - Fabrício A Moreira
- Programa de Pós-graduação em Neurociências, Instituto de Ciências Biológicas, UFMG, Brazil; Departamento de Farmacologia, Instituto de Ciências Biológicas, UFMG, Brazil
| | - Aline S Miranda
- Laboratório de Neurobiologia, Departamento de Morfologia, Instituto de Ciências Biológicas, UFMG, Brazil; Programa de Pós-graduação em Neurociências, Instituto de Ciências Biológicas, UFMG, Brazil.
| |
Collapse
|
23
|
Grigoryan GA. Neuroinflammation and Reconsolidation of Memory. NEUROCHEM J+ 2022. [DOI: 10.1134/s1819712422020076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Oral Enrichment of Streptococcus and its Role in Systemic Inflammation Related to Monocyte Activation in Humans with Cocaine Use Disorder. J Neuroimmune Pharmacol 2022; 17:305-317. [PMID: 34448131 PMCID: PMC8881519 DOI: 10.1007/s11481-021-10007-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/29/2021] [Indexed: 12/29/2022]
Abstract
Cocaine use is commonly associated with increased chronic systemic inflammation. However, the drivers for cocaine use-mediated systemic inflammation are not fully understood. In the current study, we recruited individuals with cocaine use disorder and healthy individuals who did not use cocaine and collected paired saliva and blood samples. The saliva samples were used to assess the oral microbiome, and the plasma samples were evaluated for 33 cytokines and chemokines. Cocaine users exhibited decreased saliva microbial diversities compared to non-users. Streptococcus was the only increased genus in the saliva from cocaine users, whereas several genera were decreased in cocaine users compared to non-users. Notably, cocaine users exhibited increased plasma levels of several monocyte activation markers, including monocyte chemoattractant protein (MCP)-4, macrophage inflammatory protein (MIP)-3α, macrophage-derived chemokine (MDC), and thymus and activation-regulated chemokine (TARC), all of which were correlated with increased saliva levels of three Streptococcus species. Furthermore, treatment with Streptococcus or its lipoteichoic acid preferentially activated primary human monocytes to produce proinflammatory cytokines and chemokines, such as MIP-3α and TARC, in vitro compared to controls. However, monocytes failed to produce these chemokines after exposure to cocaine or cocaine plus bacteria compared to medium or bacteria alone. This study revealed that chronic cocaine use-associated inflammation in the blood may result from increased oral Streptococcus and its effects on myeloid cell activation, but does not result from cocaine directly.
Collapse
|
25
|
Chivero ET, Sil S, Singh S, Thangaraj A, Gordon L, Evah-Nzoughe GB, Ferguson N, Callen S, Buch S. Protective Role of Lactobacillus rhamnosus Probiotic in Reversing Cocaine-Induced Oxidative Stress, Glial Activation and Locomotion in Mice. J Neuroimmune Pharmacol 2022; 17:62-75. [PMID: 34628571 DOI: 10.1007/s11481-021-10020-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/30/2021] [Indexed: 12/29/2022]
Abstract
Cocaine abuse is known to cause inflammation, oxidative injury and alterations in the gut microbiota. Although emerging studies have demonstrated the role of gut microbiota in modulating neurological complications and behavior, the mechanism(s) underlying these processes remain unclear. In the present study, we investigated the protective effect of Lactobacillus rhamnosus probiotic on cocaine-induced oxidative stress, glial activation, and locomotion in mice. In this study, groups of male C56BL6 mice were administered gut-resident commensal bacteria L. rhamnosus probiotic (oral gavage) concurrently with cocaine (20 mg/kg, i.p.) or saline for 28 days and assessed for oxidative stress and cellular activation in both the gut and brain as well as alterations in locomotion behavior. Cocaine-induced gut dysregulation was associated with increased formation of 4-hydroxynonenal (4-HNE) adducts, increased expression of pERK-1/2, pNF-kB-p65 and antioxidant mediators (SOD1, GPx1). In cocaine administered mice, there was increased activation of both microglia and astrocytes in the striatum and cortex of the brain as shown by enhanced expression of CD11b and GFAP, respectively. Cocaine administration also resulted in increased locomotor activity in the open field test in these mice. Administration of L. rhamnosus attenuated cocaine-induced gut oxidative stress and inflammation as well as glial activation and locomotion. These results suggest the potential of microbial-based interventions to attenuate cocaine-mediated behavioral responses and neuroinflammation, in addition to systemic inflammation and oxidative damage.
Collapse
Affiliation(s)
- Ernest T Chivero
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Seema Singh
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Annadurai Thangaraj
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Lila Gordon
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Grace B Evah-Nzoughe
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Natasha Ferguson
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Shannon Callen
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
26
|
Namba MD, Phillips MN, Neisewander JL, Olive MF. Nuclear factor kappa B signaling within the rat nucleus accumbens core sex-dependently regulates cue-induced cocaine seeking and matrix metalloproteinase-9 expression. Brain Behav Immun 2022; 102:252-265. [PMID: 35259426 PMCID: PMC9116481 DOI: 10.1016/j.bbi.2022.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 02/06/2023] Open
Abstract
Chronic drug self-administration and withdrawal are associated with distinct neuroimmune adaptations that may increase drug craving and relapse vulnerability in humans. The nuclear factor kappa-B (NF-κB) pathway is a critical regulator of many immune- and addiction-related genes such as the extracellular matrix enzyme matrix metalloproteinase-9 (MMP-9), which is a known modulator of learning, memory, and synaptic plasticity. While some studies suggest striatal NF-κB signaling may regulate drug-conditioned behavior, no studies to date have examined whether NF-κB signaling within the nucleus accumbens core (NAc core) alters downstream neuroimmune function and cue-motivated cocaine seeking following a period of forced abstinence, whether any effects are specific to cocaine over other reinforcers, or whether sex differences exist. Here, we examined whether viral-mediated knockdown of the p65 subunit of NF-κB within the NAc core would alter MMP-9 expression and cue-induced cocaine- and sucrose-seeking behavior following a period of forced abstinence in male and female rats. We demonstrate that NAc core p65 knockdown results in a significant decrease in cue-induced cocaine seeking in males but not females. This effect was specific to cocaine, as p65 knockdown did not significantly affect cue-induced sucrose seeking in either males or females. Moreover, we demonstrate that males express higher levels of MMP-9 within the NAc core and nucleus accumbens shell (NAcSh) compared to females, and that p65 knockdown significantly decreases MMP-9 in the NAc core of males but not females among cocaine cue-exposed animals. Altogether, these results suggest that NAc core NF-κB signaling exerts modulatory control over cue-motivated drug-seeking behavior and downstream neuroimmune function in a sex-specific manner. These findings highlight the need to consider sex as an important biological variable when examining immunomodulatory mechanisms of cocaine seeking.
Collapse
Affiliation(s)
- Mark D Namba
- School of Life Science, Arizona State University, Tempe, AZ, USA.
| | - Megan N Phillips
- School of Life Science, Arizona State University, Tempe, AZ, USA
| | | | - M Foster Olive
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
27
|
dos Santos ACM, dos Santos BRC, dos Santos BB, de Moura EL, Neto ABL, Pereira e Silva AC, de Farias KF, de Medeiros Alves V, Nardi AE, de Souza Figueiredo EVM. IL-10 (-819C/T), TNFA (-30G/A) and ENOS (-786T/C) Polymorphisms Modulating the Outcome Related to Mental Disorders in Crack Addicted Users. Clin Pract Epidemiol Ment Health 2022; 18:e174501792201140. [PMID: 37274848 PMCID: PMC10156023 DOI: 10.2174/17450179-v18-e2201140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 11/23/2021] [Accepted: 12/20/2021] [Indexed: 06/07/2023]
Abstract
Background Cocaine/crack use affects immune system molecules and development of mental disorders has been identified. Objective To investigate the relationship of polymorphisms in the TNFA (-308G/A), IL-10 (-819C/T) and ENOS (-786T/C) genes with mental disorders in cocaine and crack users. Methods A case-control study was carried out, which included 107 cocaine and crack users and 115 controls who never used healthy cocaine and crack. The SNPs in the TNFA (-308G/A), IL-10 (-819C/T) and ENOS (-786T/C) genes were genotyped by real time PCR. Results As for the individuals included in this study, the average age of 31.4 years (± 8.59). We identified that the G/A genotype to TNFA (-308) (OR = 0.24; p = 0.03) and the A allele (OR = 0.30; p = 0.03) were associated with reduced risk for dysthymic disorder. The T allele of the IL-10 (-819) polymorphism was associated with decreased risk of developing panic disorder (OR = 0.44; p = 0.01), while the C allele was correlated with an increased risk for alcohol dependence (OR = 1.97; p = 0.04), alcohol abuse (OR = 1.81; p = 0.04) and psychotic syndrome (OR = 2.23; p = 0.01). C/C genotype was correlated with increased chances of developing current psychotic syndrome (OR = 4.23; p = 0.01). Conclusion Our results suggest that genetic polymorphisms promote susceptibility or promote protection for clinical phenotypes of psychiatric comorbidities in cocaine and crack users and be considered as good prognostic markers.
Collapse
Affiliation(s)
- Ana Caroline Melo dos Santos
- Program in Health Sciences, Molecular Biology and Gene Expression Laboratory, Federal University of Alagoas, Maceio, Brazil
| | | | - Bruna Brandão dos Santos
- Program in Health Sciences, Molecular Biology and Gene Expression Laboratory, Federal University of Alagoas, Maceio, Brazil
| | - Edilson Leite de Moura
- Program in Health Sciences, Molecular Biology and Gene Expression Laboratory, Federal University of Alagoas, Maceio, Brazil
| | - Abel Barbosa Lira Neto
- Program in Health Sciences, Molecular Biology and Gene Expression Laboratory, Federal University of Alagoas, Maceio, Brazil
| | | | - Karol Fireman de Farias
- Program in Nursing, Molecular Biology and Gene Expression Laboratory, Federal University of Alagoas, Maceio, Brazil
| | | | - Antônio Egídio Nardi
- Institute of Psychiatry, Federal University of Rio de Janeiro, Porto Alegre, Brazil
| | | |
Collapse
|
28
|
Merve AO, Sobiecka P, Remeškevičius V, Taylor L, Saskoy L, Lawton S, Jones BP, Elwakeel A, Mackenzie FE, Polycarpou E, Bennett J, Rooney B. Metabolites of Cannabis Induce Cardiac Toxicity and Morphological Alterations in Cardiac Myocytes. Int J Mol Sci 2022; 23:ijms23031401. [PMID: 35163321 PMCID: PMC8835806 DOI: 10.3390/ijms23031401] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/12/2022] [Accepted: 01/19/2022] [Indexed: 12/18/2022] Open
Abstract
Cannabis is one of the most commonly used recreational drugs worldwide. Rrecent epidemiology studies have linked increased cardiac complications to cannabis use. However, this literature is predominantly based on case incidents and post-mortem investigations. This study elucidates the molecular mechanism of Δ9-tetrahydrocannabinol (THC), and its primary metabolites 11-Hydroxy-Δ9-THC (THC-OH) and 11-nor-9-carboxy-Δ⁹-tetrahydrocannabinol (THC-COOH). Treatment of cardiac myocytes with THC-OH and THC-COOH increased cell migration and proliferation (p < 0.05), with no effect on cell adhesion, with higher doses (250–100 ng/mL) resulting in increased cell death and significant deterioration in cellular architecture. Conversely, no changes in cell morphology or viability were observed in response to THC. Expression of key ECM proteins α-SMA and collagen were up-regulated in response to THC-OH and THC-COOH treatments with concomitant modulation of PI3K and MAPK signalling. Investigations in the planarian animal model Polycelis nigra demonstrated that treatments with cannabinoid metabolites resulted in increased protein deposition at transection sites while higher doses resulted in significant lethality and decline in regeneration. These results highlight that the key metabolites of cannabis elicit toxic effects independent of the parent and psychoactive compound, with implications for cardiotoxicity relating to hypertrophy and fibrogenesis.
Collapse
Affiliation(s)
- Ayse Orme Merve
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK; (A.O.M.); (P.S.); (V.R.); (L.T.); (L.S.); (S.L.); (B.P.J.); (F.E.M.); (E.P.)
| | - Pola Sobiecka
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK; (A.O.M.); (P.S.); (V.R.); (L.T.); (L.S.); (S.L.); (B.P.J.); (F.E.M.); (E.P.)
| | - Vytautas Remeškevičius
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK; (A.O.M.); (P.S.); (V.R.); (L.T.); (L.S.); (S.L.); (B.P.J.); (F.E.M.); (E.P.)
| | - Luke Taylor
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK; (A.O.M.); (P.S.); (V.R.); (L.T.); (L.S.); (S.L.); (B.P.J.); (F.E.M.); (E.P.)
| | - Lili Saskoy
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK; (A.O.M.); (P.S.); (V.R.); (L.T.); (L.S.); (S.L.); (B.P.J.); (F.E.M.); (E.P.)
| | - Scott Lawton
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK; (A.O.M.); (P.S.); (V.R.); (L.T.); (L.S.); (S.L.); (B.P.J.); (F.E.M.); (E.P.)
| | - Ben P. Jones
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK; (A.O.M.); (P.S.); (V.R.); (L.T.); (L.S.); (S.L.); (B.P.J.); (F.E.M.); (E.P.)
| | - Ahmed Elwakeel
- Centre for Sport, Exercise and Life Sciences (CSELS), Coventry University, Pharmacology and Therapeutics, Alison Gingell Building, Whitefriars Street, Coventry CV1 2DS, UK; (A.E.); (J.B.)
| | - Francesca E. Mackenzie
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK; (A.O.M.); (P.S.); (V.R.); (L.T.); (L.S.); (S.L.); (B.P.J.); (F.E.M.); (E.P.)
| | - Elena Polycarpou
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK; (A.O.M.); (P.S.); (V.R.); (L.T.); (L.S.); (S.L.); (B.P.J.); (F.E.M.); (E.P.)
| | - Jason Bennett
- Centre for Sport, Exercise and Life Sciences (CSELS), Coventry University, Pharmacology and Therapeutics, Alison Gingell Building, Whitefriars Street, Coventry CV1 2DS, UK; (A.E.); (J.B.)
| | - Brian Rooney
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK; (A.O.M.); (P.S.); (V.R.); (L.T.); (L.S.); (S.L.); (B.P.J.); (F.E.M.); (E.P.)
- Correspondence:
| |
Collapse
|
29
|
Liu J, Li JX, Wu R. Toll-Like Receptor 4: A Novel Target to Tackle Drug Addiction? Handb Exp Pharmacol 2022; 276:275-290. [PMID: 35434747 PMCID: PMC9829382 DOI: 10.1007/164_2022_586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Drug addiction is a chronic brain disease characterized by compulsive drug-seeking and drug-taking behaviors despite the major negative consequences. Current well-established neuronal underpinnings of drug addiction have promoted the substantial progress in understanding this disorder. However, non-neuronal mechanisms of drug addiction have long been underestimated. Fortunately, increased evidence indicates that neuroimmune system, especially Toll-like receptor 4 (TLR4) signaling, plays an important role in the different stages of drug addiction. Drugs like opioids, psychostimulants, and alcohol activate TLR4 signaling and enhance the proinflammatory response, which is associated with drug reward-related behaviors. While extensive studies have shown that inhibition of TLR4 attenuated drug-related responses, there are conflicting findings implicating that TLR4 signaling may not be essential to drug addiction. In this chapter, preclinical and clinical studies will be discussed to further evaluate whether TLR4-based neuroimmune pharmacotherapy can be used to treat drug addiction. Furthermore, the possible mechanisms underlying the effects of TLR4 inhibition in modulating drug-related behaviors will also be discussed.
Collapse
Affiliation(s)
- Jianfeng Liu
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA,Corresponding authors: Dr. Jun-Xu Li, , Department of Pharmacology and Toxicology, University at Buffalo, The State University of New York, 955 Main Street, Buffalo, NY 14214. Tel: +1 716 829 2482; Fax: +1 716 829 2801 And Dr. Ruyan Wu, , School of Medicine, Yangzhou University, Yangzhou 225000, China
| | - Ruyan Wu
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA,School of Medicine, Yangzhou University, Yangzhou, China,Corresponding authors: Dr. Jun-Xu Li, , Department of Pharmacology and Toxicology, University at Buffalo, The State University of New York, 955 Main Street, Buffalo, NY 14214. Tel: +1 716 829 2482; Fax: +1 716 829 2801 And Dr. Ruyan Wu, , School of Medicine, Yangzhou University, Yangzhou 225000, China
| |
Collapse
|
30
|
Morissette F, Mongeau-Pérusse V, Rizkallah E, Thébault P, Lepage S, Brissette S, Bruneau J, Dubreucq S, Stip E, Cailhier JF, Jutras-Aswad D. Exploring cannabidiol effects on inflammatory markers in individuals with cocaine use disorder: a randomized controlled trial. Neuropsychopharmacology 2021; 46:2101-2111. [PMID: 34331010 PMCID: PMC8505631 DOI: 10.1038/s41386-021-01098-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 01/29/2023]
Abstract
Cocaine use disorder (CUD) is a major public health issue associated with physical, social, and psychological problems. Excessive and repeated cocaine use induces oxidative stress leading to a systemic inflammatory response. Cannabidiol (CBD) has gained substantial interest for its anti-inflammatory properties, safety, and tolerability profile. However, CBD anti-inflammatory properties have yet to be confirmed in humans. This exploratory study is based on a single-site randomized controlled trial that enrolled participants with CUD between 18 and 65 years, randomized (1:1) to daily receive either CBD (800 mg) or placebo for 92 days. The trial was divided into a 10-day detoxification (phase I) followed by a 12-week outpatient follow-up (phase II). Blood samples were collected from 48 participants at baseline, day 8, week 4, and week 12 and were analyzed to determine monocytes and lymphocytes phenotypes, and concentrations of various inflammatory markers such as cytokines. We used generalized estimating equations to detect group differences. Participants treated with CBD had lower levels of interleukin-6 (p = 0.017), vascular endothelial growth factor (p = 0.032), intermediate monocytes CD14+CD16+ (p = 0.024), and natural killer CD56negCD16hi (p = 0.000) compared with participants receiving placebo. CD25+CD4+T cells were higher in the CBD group (p = 0.007). No significant group difference was observed for B lymphocytes. This study suggests that CBD may exert anti-inflammatory effects in individuals with CUD.
Collapse
Affiliation(s)
- Florence Morissette
- grid.14848.310000 0001 2292 3357Faculty of Medicine, Department of Psychiatry and Addictology, Université de Montréal, Montreal, QC Canada ,grid.410559.c0000 0001 0743 2111Research Centre of Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC Canada
| | - Violaine Mongeau-Pérusse
- grid.14848.310000 0001 2292 3357Faculty of Medicine, Department of Psychiatry and Addictology, Université de Montréal, Montreal, QC Canada ,grid.410559.c0000 0001 0743 2111Research Centre of Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC Canada
| | - Elie Rizkallah
- grid.14848.310000 0001 2292 3357Faculty of Medicine, Department of Psychiatry and Addictology, Université de Montréal, Montreal, QC Canada ,grid.410559.c0000 0001 0743 2111Research Centre of Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC Canada
| | - Paméla Thébault
- grid.410559.c0000 0001 0743 2111Research Centre of Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC Canada ,Montreal Cancer Institute, Montreal, QC Canada
| | - Stéphanie Lepage
- grid.410559.c0000 0001 0743 2111Research Centre of Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC Canada ,Montreal Cancer Institute, Montreal, QC Canada
| | - Suzanne Brissette
- grid.410559.c0000 0001 0743 2111Research Centre of Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC Canada ,grid.14848.310000 0001 2292 3357Faculty of Medicine, Department of Family and Emergency Medicine, Université de Montréal, Montreal, QC Canada
| | - Julie Bruneau
- grid.410559.c0000 0001 0743 2111Research Centre of Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC Canada ,grid.14848.310000 0001 2292 3357Faculty of Medicine, Department of Family and Emergency Medicine, Université de Montréal, Montreal, QC Canada
| | - Simon Dubreucq
- grid.14848.310000 0001 2292 3357Faculty of Medicine, Department of Psychiatry and Addictology, Université de Montréal, Montreal, QC Canada ,grid.410559.c0000 0001 0743 2111Research Centre of Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC Canada
| | - Emmanuel Stip
- grid.14848.310000 0001 2292 3357Faculty of Medicine, Department of Psychiatry and Addictology, Université de Montréal, Montreal, QC Canada ,grid.410559.c0000 0001 0743 2111Research Centre of Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC Canada ,grid.43519.3a0000 0001 2193 6666Department of Psychiatry and Behavioral Science, College of Medicine and Health Sciences, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Jean-François Cailhier
- grid.410559.c0000 0001 0743 2111Research Centre of Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC Canada ,Montreal Cancer Institute, Montreal, QC Canada ,grid.14848.310000 0001 2292 3357Division of Nephrology, Department of Medicine, Université de Montréal, Montreal, QC Canada
| | - Didier Jutras-Aswad
- Faculty of Medicine, Department of Psychiatry and Addictology, Université de Montréal, Montreal, QC, Canada. .,Research Centre of Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada. .,University Institute on Addictions, Montreal, QC, Canada.
| |
Collapse
|
31
|
Lucerne KE, Osman A, Meckel KR, Kiraly DD. Contributions of neuroimmune and gut-brain signaling to vulnerability of developing substance use disorders. Neuropharmacology 2021; 192:108598. [PMID: 33965398 PMCID: PMC8220934 DOI: 10.1016/j.neuropharm.2021.108598] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/19/2021] [Accepted: 05/03/2021] [Indexed: 02/06/2023]
Abstract
Epidemiology and clinical research indicate that only a subset of people who are exposed to drugs of abuse will go on to develop a substance use disorder. Numerous factors impact individual susceptibility to developing a substance use disorder, including intrinsic biological factors, environmental factors, and interpersonal/social factors. Given the extensive morbidity and mortality that is wrought as a consequence of substance use disorders, a substantial body of research has focused on understanding the risk factors that mediate the shift from initial drug use to pathological drug use. Understanding these risk factors provides a clear path for the development of risk mitigation strategies to help reduce the burden of substance use disorders in the population. Here we will review the rapidly growing body of literature that examines the importance of interactions between the peripheral immune system, the gut microbiome, and the central nervous system (CNS) in mediating the transition to pathological drug use. While these systems had long been viewed as distinct, there is growing evidence that there is bidirectional communication between both the immune system and the gut microbiome that drive changes in neural and behavioral plasticity relevant to substance use disorders. Further, both of these systems are highly sensitive to environmental perturbations and are implicated in numerous neuropsychiatric conditions. While the field of study examining these interactions in substance use disorders is in its relative infancy, clarifying the relationship between gut-immune-brain signaling and substance use disorders has potential to improve our understanding of individual propensity to developing addiction and yield important insight into potential treatment options.
Collapse
Affiliation(s)
- Kelsey E Lucerne
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aya Osman
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Katherine R Meckel
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Drew D Kiraly
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
32
|
Namba MD, Leyrer-Jackson JM, Nagy EK, Olive MF, Neisewander JL. Neuroimmune Mechanisms as Novel Treatment Targets for Substance Use Disorders and Associated Comorbidities. Front Neurosci 2021; 15:650785. [PMID: 33935636 PMCID: PMC8082184 DOI: 10.3389/fnins.2021.650785] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Recent studies examining the neurobiology of substance abuse have revealed a significant role of neuroimmune signaling as a mechanism through which drugs of abuse induce aberrant changes in synaptic plasticity and contribute to substance abuse-related behaviors. Immune signaling within the brain and the periphery critically regulates homeostasis of the nervous system. Perturbations in immune signaling can induce neuroinflammation or immunosuppression, which dysregulate nervous system function including neural processes associated with substance use disorders (SUDs). In this review, we discuss the literature that demonstrates a role of neuroimmune signaling in regulating learning, memory, and synaptic plasticity, emphasizing specific cytokine signaling within the central nervous system. We then highlight recent preclinical studies, within the last 5 years when possible, that have identified immune mechanisms within the brain and the periphery associated with addiction-related behaviors. Findings thus far underscore the need for future investigations into the clinical potential of immunopharmacology as a novel approach toward treating SUDs. Considering the high prevalence rate of comorbidities among those with SUDs, we also discuss neuroimmune mechanisms of common comorbidities associated with SUDs and highlight potentially novel treatment targets for these comorbid conditions. We argue that immunopharmacology represents a novel frontier in the development of new pharmacotherapies that promote long-term abstinence from drug use and minimize the detrimental impact of SUD comorbidities on patient health and treatment outcomes.
Collapse
Affiliation(s)
- Mark D. Namba
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | | | - Erin K. Nagy
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| | - M. Foster Olive
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| | | |
Collapse
|
33
|
Agharahimi M, Badisa RB, Mazzio E, Soliman KF, Goodman CB. Cocaine potentiates an inflammatory response in C6 astroglia-like cells. Biomed Rep 2021; 14:45. [PMID: 33786174 PMCID: PMC7995314 DOI: 10.3892/br.2021.1421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/15/2021] [Indexed: 11/16/2022] Open
Abstract
Cocaine is a highly addictive drug that mediates its effect through altering dopamine metabolism in the central nervous system (CNS), resulting in a feeling of euphoria. Owing to its high lipophilicity, cocaine easily crosses the blood brain barrier of the CNS and reaches various domains of the brain, where it can trigger cellular damage. Cocaine-induced CNS damage may arise due to increased levels of free radicals and nitric oxide (NO) in immunecompetent astroglial cells. In the present study, the potential ability of cocaine to exacerbate the production of inflammatory products, primarily superoxide free radicals (O2-), hydrogen peroxide (H2O2) and NO/nitrite (NO2-) was examined in rat C6 astroglia-like cells challenged with lipopolysaccharide (LPS), a bacterial endotoxin, and interferon gamma (IFNγ), a pro-inflammatory cytokine. Furthermore, the role of cocaine in increasing the expression of hypoxia inducible factor-1 (HIF-1α) and vascular endothelial growth factor (VEGF) in cells was also determined. First, the viability of the cells was assessed when treated with cocaine (0.5-7 mM) for 24 and 48 h. The results showed that cocaine toxicity was both time and dose-dependent. In subsequent studies, cells were challenged with or without LPS and IFNγ, followed by co-treatment with cocaine (1-4 mM) for 24 h. Cocaine treatment did not increase O2- or H2O2 production in the challenged or unchallenged cells. Similarly, cocaine treatment did not increase NO/NO2- production in the unchallenged cells; however, NO/NO2- levels in the challenged cells was increased 40-50-fold upon cocaine treatment compared with the corresponding unchallenged group. The HIF-1α and VEGF levels were significantly increased in the challenged cells at higher cocaine doses compared with the unchallenged cells. Since high concentrations of NO are associated with inflammation, the high levels of NO production observed in the present study suggested that cocaine may have potentiated the inflammatory response in the challenged C6 astroglia-like cells.
Collapse
Affiliation(s)
- Maryam Agharahimi
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA
| | - Ramesh B Badisa
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA
| | - Elizabeth Mazzio
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA
| | - Karam F Soliman
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA
| | - Carl B Goodman
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA
| |
Collapse
|
34
|
Assis MA, Díaz D, Ferrado R, Ávila-Zarza CA, Weruaga E, Ambrosio E. Transplantation with Lewis bone marrow induces the reinstatement of cocaine-seeking behavior in male F344 resistant rats. Brain Behav Immun 2021; 93:23-34. [PMID: 33278561 DOI: 10.1016/j.bbi.2020.11.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/27/2020] [Accepted: 11/22/2020] [Indexed: 01/14/2023] Open
Abstract
One of the main challenges to understand drug addiction is defining the biological mechanisms that underlie individual differences in recidivism. Studies of these mechanisms have mainly focused on the brain, yet we demonstrate here a significant influence of the peripheral immune system on this phenomenon. Lewis (LEW) and Fischer 344 (F344) rats have different immunological profiles and they display a distinct vulnerability to the reinforcing effects of cocaine, with F344 more resistant to reinstate cocaine-seeking behavior. Bone marrow from male LEW and F344 rats was transferred to male F344 rats (F344/LEW-BM and F344/F344-BM, respectively), and these rats were trained to self-administer cocaine over 21 days. Following extinction, these animals received a sub-threshold primer dose of cocaine to evaluate reinstatement. F344/LEW-BM but not F344/F344-BM rats reinstated cocaine-seeking behavior, in conjunction with changes in their peripheral immune cell populations to a profile that corresponded to that of the LEW donors. After cocaine exposure, higher CD4+ T-cells and lower CD4+CD25+ T-cells levels were observed in F344/LEW-BM rats referred to control, and the splenic expression of Il-17a, Tgf-β, Tlr-2, Tlr-4 and Il-1β was altered in both groups. We propose that peripheral T-cells respond to cocaine, with CD4+ T-cells in particular undergoing Th17 polarization and generating long-term memory, these cells releasing mediators that trigger central mechanisms to induce reinstatement after a second encounter. This immune response may explain the high rates of recidivism observed despite long periods of detoxification, shedding light on the mechanisms underlying the vulnerability and resilience of specific individuals, and opening new perspectives for personalized medicine in the treatment of relapse.
Collapse
Affiliation(s)
- María Amparo Assis
- Departamento de Psicobiología, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain; Facultad de Ciencias Médicas, Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina; Laboratorio de Biología Molecular, Inmunología y Microbiología, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), CONICET-UNSE, Santiago del Estero, Argentina.
| | - David Díaz
- Instituto de Neurociencias de Castilla y León (INCyL), Universidad de Salamanca (USAL), Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Rosa Ferrado
- Departamento de Psicobiología, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Carmelo Antonio Ávila-Zarza
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain; Grupo de Estadística Aplicada, Departamento de Estadísticas, USAL, Salamanca, Spain
| | - Eduardo Weruaga
- Instituto de Neurociencias de Castilla y León (INCyL), Universidad de Salamanca (USAL), Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Emilio Ambrosio
- Departamento de Psicobiología, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| |
Collapse
|
35
|
Association between chronic psychoactive substances use and systemic inflammation: A systematic review and meta-analysis. Neurosci Biobehav Rev 2021; 125:208-220. [PMID: 33639179 DOI: 10.1016/j.neubiorev.2021.02.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 12/18/2022]
Abstract
This systematic review and meta-analysis assess the change in inflammation biomarkers level among chronic psychoactive substance users. To meet the required inclusion criteria, all studies had to describe human participants with an age ≥18y., experiencing chronic psychostimulant (nicotine, amphetamine, cocaine), sedative (benzodiazepine, opioids) and/or cannabinoid use. The comparison group was defined as healthy participants. Studies where included if they reported at least one of the pro/inflammatory biomarkers. Study bias was examined by Funnel plots and heterogeneity by computing the I2 statistics. Only 21 eligible studies were selected based on 26,216 study participants. A small and significant effect size of 0.18 mg/l (95 % CI:0.10-0.27) was detected in favour of chronic smokers (z = 4.33;P < 0.0001). There was evidence of publication bias for studies measuring IL-6 and IL-10 association with cocaine and IL-6 in association with cannabis. In summary, except for chronic tobacco users, there was no evidence of association between other chronic substances abuse and inflammatory levels. More studies are needed to inform policy and decision makers about the utility of anti-inflammatory based targeted intervention programmes.
Collapse
|
36
|
Cocaine Induces Cytoskeletal Changes in Cardiac Myocytes: Implications for Cardiac Morphology. Int J Mol Sci 2021; 22:ijms22052263. [PMID: 33668403 PMCID: PMC7956613 DOI: 10.3390/ijms22052263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 01/09/2023] Open
Abstract
Cocaine is one of the most widely abused illicit drugs worldwide and has long been recognised as an agent of cardiac dysfunction in numerous cases of drug overdose. Cocaine has previously been shown to up-regulate cytoskeletal rearrangements and morphological changes in numerous tissues; however, previous literature observes such changes primarily in clinical case reports and addiction studies. An investigation into the fundamental cytoskeletal parameters of migration, adhesion and proliferation were studied to determine the cytoskeletal and cytotoxic basis of cocaine in cardiac cells. Treatment of cardiac myocytes with cocaine increased cell migration and adhesion (p < 0.05), with no effect on cell proliferation, except with higher doses eliciting (1–10 μg/mL) its diminution and increase in cell death. Cocaine downregulated phosphorylation of cofilin, decreased expression of adhesion modulators (integrin-β3) and increased expression of ezirin within three hours of 1 μg/mL treatments. These functional responses were associated with changes in cellular morphology, including alterations in membrane stability and a stellate-like phenotype with less compaction between cells. Higher dose treatments of cocaine (5–10 μg/mL) were associated with significant cardiomyocyte cell death (p < 0.05) and loss of cellular architecture. These results highlight the importance of cocaine in mediating cardiomyocyte function and cytotoxicity associated with the possible loss of intercellular contacts required to maintain normal cell viability, with implications for cardiotoxicity relating to hypertrophy and fibrogenesis.
Collapse
|
37
|
Drug addiction co-morbidity with alcohol: Neurobiological insights. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 157:409-472. [PMID: 33648675 DOI: 10.1016/bs.irn.2020.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Addiction is a chronic disorder that consists of a three-stage cycle of binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation. These stages involve, respectively, neuroadaptations in brain circuits involved in incentive salience and habit formation, stress surfeit and reward deficit, and executive function. Much research on addiction focuses on the neurobiology underlying single drug use. However, alcohol use disorder (AUD) can be co-morbid with substance use disorder (SUD), called dual dependence. The limited epidemiological data on dual dependence indicates that there is a large population of individuals suffering from addiction who are dependent on more than one drug and/or alcohol, yet dual dependence remains understudied in addiction research. Here, we review neurobiological data on neurotransmitter and neuropeptide systems that are known to contribute to addiction pathology and how the involvement of these systems is consistent or divergent across drug classes. In particular, we highlight the dopamine, opioid, corticotropin-releasing factor, norepinephrine, hypocretin/orexin, glucocorticoid, neuroimmune signaling, endocannabinoid, glutamate, and GABA systems. We also discuss the limited research on these systems in dual dependence. Collectively, these studies demonstrate that the use of multiple drugs can produce neuroadaptations that are distinct from single drug use. Further investigation into the neurobiology of dual dependence is necessary to develop effective treatments for addiction to multiple drugs.
Collapse
|
38
|
NLRP3 Inflammasome Blockade Reduces Cocaine-Induced Microglial Activation and Neuroinflammation. Mol Neurobiol 2021; 58:2215-2230. [PMID: 33417223 DOI: 10.1007/s12035-020-02184-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/20/2020] [Indexed: 10/22/2022]
Abstract
Cocaine use disorder is a major health crisis that is associated with increased oxidative stress and neuroinflammation. While the role of NLRP3 inflammasome in mediating neuroinflammation is well-recognized, whether cocaine induces this response remains unexplored. Based on the premise that cocaine induces both reactive oxygen species (ROS) as well as microglial activation, we hypothesized that cocaine-mediated microglial activation involves both ROS and NLRP3 signaling pathways. We examined activation of the NLRP3 pathway in microglia exposed to cocaine, followed by validation in mice administered either cocaine or saline for 7 days, with or without pretreatment with the NLRP3 inhibitor, MCC950, and in postmortem cortical brain tissues of chronic cocaine-dependent humans. We found that microglia exposed to cocaine exhibited significant induction of NLRP3 and mature IL-1β expression. Intriguingly, blockade of ROS (Tempol) attenuated cocaine-mediated priming of NLRP3 and microglial activation (CD11b). Blockade of NLRP3 by both pharmacological (MCC950) as well as gene silencing (siNLRP3) approaches underpinned the critical role of NLRP3 in cocaine-mediated activation of inflammasome and microglial activation. Pretreatment of mice with MCC950 followed by cocaine administration for 7 days mitigated cocaine-mediated upregulation of mature IL-1β and CD11b, in both the striatum and the cortical regions. Furthermore, cortical brain tissues of chronic cocaine-dependent humans also exhibited upregulated expression of the NLRP3 pathway mediators compared with non-cocaine dependent controls. Collectively, these findings suggest that cocaine activates microglia involving the NLRP3 inflammasome pathway, thereby contributing to neuroinflammation. NLRP3 can thus be considered as a potential therapeutic target for alleviating cocaine-mediated neuroinflammation.
Collapse
|
39
|
Stamatovich SN, Lopez-Gamundi P, Suchting R, Colpo GD, Walss-Bass C, Lane SD, Schmitz JM, Wardle MC. Plasma pro- and anti-inflammatory cytokines may relate to cocaine use, cognitive functioning, and depressive symptoms in cocaine use disorder. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2020; 47:52-64. [DOI: 10.1080/00952990.2020.1828439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Paula Lopez-Gamundi
- Department of Cognition, Development and Educational Psychology, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute, Barcelona, Spain
| | - Robert Suchting
- Faillace Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Gabriela D. Colpo
- Faillace Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Consuelo Walss-Bass
- Faillace Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Scott D. Lane
- Faillace Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Joy M. Schmitz
- Faillace Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Margaret C. Wardle
- Department of Psychology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
40
|
Lucerne KE, Kiraly DD. The role of gut-immune-brain signaling in substance use disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 157:311-370. [PMID: 33648673 DOI: 10.1016/bs.irn.2020.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Substance use disorders (SUDs) are debilitating neuropsychiatric conditions that exact enormous costs in terms of loss of life and individual suffering. While much progress has been made defining the neurocircuitry and intracellular signaling cascades that contribute to SUDs, these studies have yielded limited effective treatment options. This has prompted greater exploration of non-traditional targets in addiction. Emerging data suggest inputs from peripheral systems, such as the immune system and the gut microbiome, impact multiple neuropsychiatric diseases, including SUDs. Until recently the gut microbiome, peripheral immune system, and the CNS have been studied independently; however, current work shows the gut microbiome and immune system critically interact to modulate brain function. Additionally, the gut microbiome and immune system intimately regulate one another via extensive bidirectional communication. Accumulating evidence suggests an important role for gut-immune-brain communication in the pathogenesis of substance use disorders. Thus, a better understanding of gut-immune-brain signaling could yield important insight to addiction pathology and potential treatment options.
Collapse
Affiliation(s)
- Kelsey E Lucerne
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Drew D Kiraly
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
41
|
Oxidative Stress and Neuroinflammation as a Pivot in Drug Abuse. A Focus on the Therapeutic Potential of Antioxidant and Anti-Inflammatory Agents and Biomolecules. Antioxidants (Basel) 2020; 9:antiox9090830. [PMID: 32899889 PMCID: PMC7555323 DOI: 10.3390/antiox9090830] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022] Open
Abstract
Drug abuse is a major global health and economic problem. However, there are no pharmacological treatments to effectively reduce the compulsive use of most drugs of abuse. Despite exerting different mechanisms of action, all drugs of abuse promote the activation of the brain reward system, with lasting neurobiological consequences that potentiate subsequent consumption. Recent evidence shows that the brain displays marked oxidative stress and neuroinflammation following chronic drug consumption. Brain oxidative stress and neuroinflammation disrupt glutamate homeostasis by impairing synaptic and extra-synaptic glutamate transport, reducing GLT-1, and system Xc− activities respectively, which increases glutamatergic neurotransmission. This effect consolidates the relapse-promoting effect of drug-related cues, thus sustaining drug craving and subsequent drug consumption. Recently, promising results as experimental treatments to reduce drug consumption and relapse have been shown by (i) antioxidant and anti-inflammatory synthetic molecules whose effects reach the brain; (ii) natural biomolecules secreted by mesenchymal stem cells that excel in antioxidant and anti-inflammatory properties, delivered via non-invasive intranasal administration to animal models of drug abuse and (iii) potent anti-inflammatory microRNAs and anti-miRNAs which target the microglia and reduce neuroinflammation and drug craving. In this review, we address the neurobiological consequences of brain oxidative stress and neuroinflammation that follow the chronic consumption of most drugs of abuse, and the current and potential therapeutic effects of antioxidants and anti-inflammatory agents and biomolecules to reduce these drug-induced alterations and to prevent relapse.
Collapse
|
42
|
Chivero ET, Liao K, Niu F, Tripathi A, Tian C, Buch S, Hu G. Engineered Extracellular Vesicles Loaded With miR-124 Attenuate Cocaine-Mediated Activation of Microglia. Front Cell Dev Biol 2020; 8:573. [PMID: 32850781 PMCID: PMC7409518 DOI: 10.3389/fcell.2020.00573] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/15/2020] [Indexed: 12/31/2022] Open
Abstract
MicroRNA-124 (miR-124), a brain-enriched microRNA, is known to regulate microglial quiescence. Psychostimulants such as cocaine have been shown to activate microglia by downregulating miR-124, leading, in turn, to neuroinflammation. We thus rationalized that restoring the levels of miR-124 could function as a potential therapeutic approach for cocaine-mediated neuroinflammation. Delivering miRNA based drugs in the brain that are effective and less invasive, however, remains a major challenge in the field. Herein we engineered extracellular vesicles (EVs) and loaded them with miR-124 for delivery in the brain. Approach involved co-transfection of mouse dendritic cells with Dicer siRNA and RVG-Lamp2b plasmid to deplete endogenous miRNAs and for targeting the CNS, respectively. Mouse primary microglia (mPm) were treated with purified engineered EVs loaded with either Cy5-miR-124 or Cy5-scrambled miRNA oligos in the presence or absence of cocaine followed by assessing EV uptake and microglial activation. In vivo studies involved pretreating mice intranasally with engineered EVs followed by cocaine injection (20 mg/kg, i.p.). mPm exposed to EV-miR-124 exhibited reduced expression of miR-124 targets - TLR4 and STAT3 as well as ERK-1/2 and Iba1. In cocaine administered mice, EV-Cy5-miR-124 delivered intranasally were detected in the CNS and significantly reduced the expression of inflammatory markers TLR4, MYD88, STAT3 and NF-kB p65 while also downregulating the microglial activation marker, Iba1. Collectively, these findings suggest that engineered EVs can deliver miR-124 into the CNS, thereby alleviating cocaine-mediated microglial activation. Manipulating EV miRNAs can thus be envisioned as an efficient means for delivery of RNA-based therapeutics to target organs.
Collapse
|
43
|
Rosário BDA, de Nazaré MDFS, Estadella D, Ribeiro DA, Viana MDB. Behavioral and neurobiological alterations induced by chronic use of crack cocaine. Rev Neurosci 2020; 31:59-75. [PMID: 31129656 DOI: 10.1515/revneuro-2018-0118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/25/2019] [Indexed: 01/01/2023]
Abstract
Crack cocaine is the crystal form of cocaine and can be smoked, and rapidly absorbed, and, in part for this reason, is potently addictive. It is hypothesized that crack cocaine is able to induce important changes in different tissues and organs, and thus dramatically alter behavior. Nevertheless, which alterations in the central nervous system are related to its frequent use is still a matter of discussion. The present study is a literature review of articles published between the years 2008 and 2018 on the theme 'crack cocaine and brain' available in PUBMED, MEDLINE, EMBASE, and Google scholar databases. The results show that the use of crack cocaine induces important behavioral, neuroanatomical, and biochemical alterations. The main behavioral sequelae include cognitive and emotional changes, such as increased anxiety and depressive symptoms, attention and memory deficits, and hyperactivity. Among the neurobiological alterations are reductions in the activity of the prefrontal, anterior cingulate cortex, and nucleus accumbens. Molecular changes include decreases in neurotrophic factors and increases in oxidative stress and inflammatory cytokines, which may be responsible for the morphological alterations observed. It is also hypothesized that these neurobiological changes might explain the emotional and cognitive dysfunctions experienced by crack cocaine addicts.
Collapse
Affiliation(s)
- Bárbara Dos Anjos Rosário
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, 11015-20 Santos SP, Brazil
| | | | - Débora Estadella
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, 11015-20 Santos SP, Brazil
| | - Daniel Araki Ribeiro
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, 11015-20 Santos SP, Brazil
| | - Milena de Barros Viana
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, 11015-20 Santos SP, Brazil, e-mail:
| |
Collapse
|
44
|
HIV Infection and Neurocognitive Disorders in the Context of Chronic Drug Abuse: Evidence for Divergent Findings Dependent upon Prior Drug History. J Neuroimmune Pharmacol 2020; 15:715-728. [PMID: 32533296 DOI: 10.1007/s11481-020-09928-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 05/26/2020] [Indexed: 12/14/2022]
Abstract
The fronto-striatal circuitry, involving the nucleus accumbens, ventral tegmental area, and prefrontal cortex, mediates goal-directed behavior and is targeted by both drugs of abuse and HIV-1 infection. Acutely, both drugs and HIV-1 provoke increased dopamine activity within the circuit. However, chronic exposure to drugs or HIV-1 leads to dysregulation of the dopamine system as a result of fronto-striatal adaptations to oppose the effects of repeated instances of transiently increased dopamine. Specifically, chronic drug use leads to reduced dopaminergic tone, upregulation of dopamine transporters, and altered circuit connectivity, sending users into an allosteric state in which goal-directed behaviors are dysregulated (i.e., addiction). Similarly, chronic exposure to HIV-1, even with combination antiretroviral therapy (cART), dysregulates dopamine and dopamine transporter function and alters connectivity of the fronto-striatal circuit, contributing to apathy and clinical symptoms of HIV-1 associated neurocognitive disorders (HAND). Thus, in a drug user also exposed to HIV-1, dysregulation of the fronto-striatal dopamine circuit advances at an exacerbated rate and appears to be driven by mechanisms unique from those seen with chronic drug use or HIV-1 exposure alone. We posit that the effects of drug use and HIV-1 infection on microglia interact to drive the progression of motivational dysfunction at an accelerated rate. The current review will therefore explore how the fronto-striatal circuit adapts to drug use (using cocaine as an example), HIV-1 infection, and both together; emphasizing proper methods and providing future directions to develop treatments for pathologies disrupting goal-directed behaviors and improve clinical outcomes for affected patients. Graphical Abstract Drug use and HIV-1 in the fronto-striatal circuit. Drugs of abuse and HIV-1 infection both target the fronto-striatal circuit which mediates goal-directed behavior. Acutely, drugs and HIV-1 increase dopamine activity; in contrast chronic exposure produces circuit adaptions leading to dysregulation, addiction and/or apathy. Comorbid drug use and HIV-1 infection may interact with microglia to exacerbate motivational dysregulation.
Collapse
|
45
|
Correia C, Romieu P, Olmstead MC, Befort K. Can cocaine-induced neuroinflammation explain maladaptive cocaine-associated memories? Neurosci Biobehav Rev 2020; 111:69-83. [PMID: 31935376 DOI: 10.1016/j.neubiorev.2020.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/20/2019] [Accepted: 01/01/2020] [Indexed: 12/19/2022]
Abstract
Persistent and intrusive memories define a number of psychiatric disorders, including posttraumatic stress disorder and substance use disorder. In the latter, memory for drug-paired cues plays a critical role in sustaining compulsive drug use as these are potent triggers of relapse. As with many drugs, cocaine-cue associated memory is strengthened across presentations as cues become reliable predictors of drug availability. Recently, the targeting of cocaine-associated memory through disruption of the reconsolidation process has emerged as a potential therapeutic strategy; reconsolidation reflects the active process by which memory is re-stabilized after retrieval. In addition, a separate line of work reveals that neuroinflammatory markers, regulated by cocaine intake, play a role in memory processes. Our review brings these two literatures together by summarizing recent findings on cocaine-associated reconsolidation and cocaine-induced neuroinflammation. We discuss the interactions between reconsolidation processes and neuroinflammation following cocaine use, concluding with a new perspective on treatment to decrease risk of relapse to cocaine use.
Collapse
Affiliation(s)
- Caroline Correia
- Université de Strasbourg, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Centre de la Recherche Nationale Scientifique, UMR 7364, Faculté de Psychologie, 12 rue Goethe, F-67000, Strasbourg, France
| | - Pascal Romieu
- Université de Strasbourg, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Centre de la Recherche Nationale Scientifique, UMR 7364, Faculté de Psychologie, 12 rue Goethe, F-67000, Strasbourg, France
| | - Mary C Olmstead
- Dept. Psychology, Centre for Neuroscience Studies, Queen's University, Kingston ON, K7L 3N6, Canada
| | - Katia Befort
- Université de Strasbourg, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Centre de la Recherche Nationale Scientifique, UMR 7364, Faculté de Psychologie, 12 rue Goethe, F-67000, Strasbourg, France.
| |
Collapse
|
46
|
Knutson AO, Watters JJ. All roads lead to inflammation: Is maternal immune activation a common culprit behind environmental factors impacting offspring neural control of breathing? Respir Physiol Neurobiol 2019; 274:103361. [PMID: 31874263 DOI: 10.1016/j.resp.2019.103361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 12/14/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022]
Abstract
Despite numerous studies investigating how prenatal exposures impact the developing brain, there remains very little known about how these in utero exposures impact the life-sustaining function of breathing. While some exposures such as alcohol and drugs of abuse are well-known to alter respiratory function, few studies have evaluated other common maternal environmental stimuli, such as maternal infection, inhalation of diesel exhaust particles prevalent in urban areas, or obstructive sleep apnea during pregnancy, just to name a few. The goals of this review article are thus to: 1) highlight data on gestational exposures that impair respiratory function, 2) discuss what is known about the potential role of inflammation in the effects of these maternal exposures, and 3) identify less studied but potential in utero exposures that could negatively impact CNS regions important in respiratory motor control, perhaps by impacting maternal or fetal inflammation. We highlight gaps in knowledge, summarize evidence related to the possible contributions of inflammation, and discuss the need for further studies of life-long offspring respiratory function both at baseline and after respiratory challenge.
Collapse
Affiliation(s)
- Andrew O Knutson
- Molecular and Environmental Toxicology Training Program and Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Jyoti J Watters
- Molecular and Environmental Toxicology Training Program and Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
47
|
Kurnaz S, Yazici AB, Nursal AF, Cetinay Aydin P, Ongel Atar A, Aydin N, Kincir Z, Pehlivan S. CNR2 rs2229579 and COMT Val158Met variants, but not CNR2 rs2501432, IL-17 rs763780 and UCP2 rs659366, contribute to susceptibility to substance use disorder in the Turkish population. PSYCHIAT CLIN PSYCH 2019. [DOI: 10.1080/24750573.2019.1688030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Selin Kurnaz
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Ahmet Bulent Yazici
- Department of Psychiatry, Sakarya University Training and Research Hospital, Sakarya, Turkey
| | - Ayse Feyda Nursal
- Department of Medical Genetics, Faculty of Medicine, Hitit University, Corum, Turkey
| | - Pinar Cetinay Aydin
- Department of Psychiatry, Bakirkoy Mazhar Osman Training and Research Hospital for Psychiatry, Istanbul, Turkey
| | - Ayca Ongel Atar
- Department of Psychiatry, Bakirkoy Mazhar Osman Training and Research Hospital for Psychiatry, Istanbul, Turkey
| | - Nazan Aydin
- Department of Psychiatry, Bakirkoy Mazhar Osman Training and Research Hospital for Psychiatry, Istanbul, Turkey
| | - Zeliha Kincir
- Department of Psychiatry, Bakirkoy Mazhar Osman Training and Research Hospital for Psychiatry, Istanbul, Turkey
| | - Sacide Pehlivan
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
48
|
Leddy AM, Roque A, Sheira LA, Frongillo EA, Landay AL, Adedimeji AA, Wilson TE, Merenstein D, Wentz E, Adimora AA, Ofotokun I, Metsch LR, Cohen MH, Tien PC, Turan JM, Turan B, Weiser SD. Food Insecurity Is Associated With Inflammation Among Women Living With HIV. J Infect Dis 2019; 219:429-436. [PMID: 30165648 DOI: 10.1093/infdis/jiy511] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/23/2018] [Indexed: 12/22/2022] Open
Abstract
Background Chronic inflammation is associated with AIDS-defining and non-AIDS-defining conditions. Limited research has considered how food insecurity influences chronic inflammation among people living with human immunodeficiency virus (HIV). We examined whether food insecurity was associated with higher levels of inflammation among women living with HIV (WWH) in the United States. Methods We analyzed cross-sectional data collected in 2015 from 421 participants on antiretroviral therapy from the Women's Interagency HIV Study. The exposure was any food insecurity. The outcome was inflammation, measured by proinflammatory cytokine interleukin-6 (IL-6) and tumor necroses factor receptor 1 (TNFR1) levels. We conducted multivariable linear regressions, adjusting for sociodemographic, clinical, and nutritional factors. Results Nearly one-third of participants (31%) were food insecure and 79% were virally suppressed (<20 copies/mL). In adjusted analyses, food insecurity was associated with 1.23 times the level of IL-6 (95% confidence interval [CI], 1.06-1.44) and 1.13 times the level of TNFR1 (95% CI, 1.05-1.21). Findings did not differ by HIV control (virally suppressed with CD4 counts ≥500 cells/mm3 or not) in adjusted stratified analyses. Conclusion Food insecurity was associated with elevated inflammation among WWH regardless of HIV control. Findings support the need for programs that address food insecurity among WWH.
Collapse
Affiliation(s)
- Anna M Leddy
- Division of Prevention Science, Center for AIDS Prevention Studies, University of California San Francisco.,Division of HIV, Infectious Diseases, and Global Medicine, University of California San Francisco
| | - Annelys Roque
- Department of Medicine, University of California San Francisco
| | - Lila A Sheira
- Division of HIV, Infectious Diseases, and Global Medicine, University of California San Francisco
| | - Edward A Frongillo
- Department of Health Promotion, Education, and Behavior, Arnold School of Public Health, University of South Carolina, Columbia
| | - Alan L Landay
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois
| | - Adebola A Adedimeji
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Tracey E Wilson
- Department of Community Health Sciences, School of Public Health, SUNY Downstate, Brooklyn, New York
| | - Daniel Merenstein
- Department of Medicine, Georgetown University Medical Center, Washington, District of Columbia
| | - Eryka Wentz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Adaora A Adimora
- School of Medicine, University of North Carolina at Chapel Hill, North Carolina
| | - Igho Ofotokun
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Lisa R Metsch
- Department of Sociomedical Sciences, Mailman School of Public Health, Columbia University, New York
| | - Mardge H Cohen
- Division of General Internal Medicine, Cook County Health and Hospital System, Chicago, Illinois
| | - Phyllis C Tien
- Department of Medicine, University of California San Francisco
| | - Janet M Turan
- Department of Health Care Organization and Policy, School of Public Health
| | - Bulent Turan
- Department of Psychology, University of Alabama at Birmingham
| | - Sheri D Weiser
- Division of Prevention Science, Center for AIDS Prevention Studies, University of California San Francisco.,Division of HIV, Infectious Diseases, and Global Medicine, University of California San Francisco
| |
Collapse
|
49
|
Zaparte A, Schuch JB, Viola TW, Baptista TAS, Beidacki AS, do Prado CH, Sanvicente-Vieira B, Bauer ME, Grassi-Oliveira R. Cocaine Use Disorder Is Associated With Changes in Th1/Th2/Th17 Cytokines and Lymphocytes Subsets. Front Immunol 2019; 10:2435. [PMID: 31749792 PMCID: PMC6843068 DOI: 10.3389/fimmu.2019.02435] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/30/2019] [Indexed: 11/21/2022] Open
Abstract
Background: Cocaine is a psychostimulant drug with high addictive proprieties. Evidence suggests that cocaine use leads to critical changes in the immune system, with significant effects on T, B, and natural killer (NK) cells and influencing peripheral levels of cytokines. The presence of abstinence-related symptoms during detoxification treatment is known to influence the prognosis. Here, our aim was to investigate immune profiles in women with cocaine use disorder (CUD) according to withdrawal symptoms severity. Methods: Blood samples and clinical data were collected at onset of detoxification treatment of 50 women with CUD. The patients were stratified according to Cocaine Selective Severity Assessment (CSSA) scores in low withdrawal (L-W) and high withdrawal (H-W) categories. In addition, we also included a control group with 19 healthy women as reference to immune parameters. Peripheral blood was collected and lymphocyte subsets were phenotyped by multi-color flow cytometry (B cells, CD4+ T, CD8+ T, NK cells, and different stages of T-cell differentiation). PBMCs from patients and healthy controls were stimulated in vitro with phytohemagglutinin (1%) for 72 h to assess the production of Th1/Th2/Th17 cytokines. Results: Following stimulation, lymphocytes from women with CUD produced increased levels of Th1/Th2/Th17 cytokines. However, higher levels of IL-2 and IL-17 were observed only in the L-W group, while higher levels of IL-6 were detected in the H-W group compared to controls. H-W group showed lower percentage of early-differentiated Th cells (CD4+CD27+CD28+), elevated percentage of Th cells (CD3+CD4+), intermediate-differentiated Th cells (CD4+CD27−CD28+), and B cells (CD3−CD19+). Both CUD groups showed decreased percentages of naïve T cells (CD3+CD4+CD45RA+ and CD3+CD8+CD45RA+). Conclusion: Our data demonstrated that CUD can lead to increased production of Th1/Th2/Th17 cytokines and lymphocyte changes.
Collapse
Affiliation(s)
- Aline Zaparte
- Developmental Cognitive Neuroscience Lab, School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jaqueline B Schuch
- Graduate Program in Biomedical Gerontology, School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Thiago W Viola
- Developmental Cognitive Neuroscience Lab, School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Talita A S Baptista
- Developmental Cognitive Neuroscience Lab, School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Amanda Stephanie Beidacki
- Developmental Cognitive Neuroscience Lab, School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carine H do Prado
- Developmental Cognitive Neuroscience Lab, School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Breno Sanvicente-Vieira
- Developmental Cognitive Neuroscience Lab, School of Health Science, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Moisés E Bauer
- Graduate Program in Biomedical Gerontology, School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratory of Stress Immunology, School of Sciences, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rodrigo Grassi-Oliveira
- Developmental Cognitive Neuroscience Lab, School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
50
|
Distinct inflammatory profiles in HIV-infected individuals under antiretroviral therapy using cannabis, cocaine or cannabis plus cocaine. AIDS 2019; 33:1831-1842. [PMID: 31490211 DOI: 10.1097/qad.0000000000002296] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES To evaluate the effects of cannabis and/or cocaine use on inflammatory, oxidative stress status and circulating monocyte subsets in HIV-infected individuals under antiretroviral therapy. DESIGN Soluble CD14 (sCD14), intestinal fatty acid-binding protein (IFABP), tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, IL-8, IL-10, C-reactive protein (CRP) and oxidative stress markers were examined. The monocyte subsets and their activation and cytokine production by peripheral blood mononuclear cells (PBMCs) of HIV-1 infected individuals upon lipopolysaccharide (LPS)-stimulation were also investigated. METHODS sCD14, IFABP, TNF-α, IL-6, IL-8 and IL-10 levels were evaluated using ELISA, CRP by turbidimetry; lipid peroxidation (TBARS) spectrofluometrically and total thiol levels by using 5-5'-dithio-bis (2-nitrobenzoic acid) reagent. Monocyte subsets and activation were assessed by flow cytometry. RESULTS All HIV-infected drug user groups showed higher sCD14 levels compared with HIV+ nondrug users. IFABP was increased in HIV+ drug-users in relation to healthy individuals. Cannabis use lowered the percentages of inflammatory, nonclassical, activated-classic and activated-inflammatory monocytes. Cocaine users showed increased plasmatic TNF-α and TBARS levels, decreased thiols content and lower activated-classic and inflammatory-monocyte percentages. Cannabis-plus-cocaine use increased CRP, IL-8 and IL-6/IL-10 ratio, but decreased thiol content, and inflammatory and activated-classic monocyte percentages. PBMCs of cannabis and cannabis-plus-cocaine users showed low-potential cytokine production either spontaneously or under LPS-stimulation. CONCLUSION In HIV infection, the use of cannabis induces predominantly an anti-inflammatory profile. The use of cocaine and cannabis-plus-cocaine showed a mixed pro-inflammatory and anti-inflammatory profile, with predominance of inflammatory status. Further studies are required to better understand the action of these drugs in HIV infection.
Collapse
|