1
|
Shirmohammadi M, Kianersi F, Shiry N, Hekmatpour F. Ecotoxicological assessment of microplastics and florfenicol on Acanthopagrus latus: mucus, humoral immune responses and DNA damage. ECOTOXICOLOGY (LONDON, ENGLAND) 2025:10.1007/s10646-025-02901-z. [PMID: 40423927 DOI: 10.1007/s10646-025-02901-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/12/2025] [Indexed: 05/28/2025]
Abstract
This study evaluated the adverse effects of florfenicol (FLO) (15 mg/kg diet) and microplastics (MPs) (100 and 500 mg/kg diet) on yellowfin seabream, Acanthopagrus latus, over a 10-day exposure period. Fish were exposed to these substances individually and in combination. Tissue, blood, and skin mucus samples were collected on days 1, 4, 7, and 14 post-exposure. Results indicated that both MPs alone and combined with FLO elevated cholesterol, triglyceride, urea, creatinine, and glucose levels. The activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase, alkaline phosphatase (ALP), and creatine kinase were also increased. Conversely, immunological markers such as complement 3, complement 4, immunoglobulin M, lysozyme activity, phagocytic activity, respiratory burst activity, and total protein concentrations decreased. Similar to blood results, the concentrations of alternative complement, total immunoglobulin, lysozyme, and total protein in the mucus were reduced, whereas ALP levels in the mucus increased. These biomarkers did not recover by day 14 in groups exposed to MPs alone or with the antibiotic. FLO concentration in muscle peaked on day 1 and declined by the end of the trial. The FLO alone affected creatinine, cholesterol, total protein, AST, ALT, ALP, and immunological markers, all of which returned to normal by the conclusion of the trial. FLO did not influence the total immunoglobulin in the mucus. MPs, individually and in combination, increased DNA damage in the liver, kidney, spleen, and intestinal tissues. The findings demonstrate that FLO and MPs detrimentally impact fish health, with a more pronounced effect when combined, indicating synergistic toxicity.
Collapse
Affiliation(s)
- Mehrnaz Shirmohammadi
- South of Iran Aquaculture Research Institute, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Ahvaz, Iran.
| | - Farahnaz Kianersi
- South of Iran Aquaculture Research Institute, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Ahvaz, Iran
| | - Nima Shiry
- Persian Gulf and Oman Sea Ecological Research Institute, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Bandar Abbas, Iran
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Fatemeh Hekmatpour
- South of Iran Aquaculture Research Institute, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Ahvaz, Iran
| |
Collapse
|
2
|
Parvez I, Ahmed S, Tasnim N, Pervin R, Alam MA, Khan MN, Ara Y, Rashid H, Pradit S. Heavy metal contamination in freshwater habitats impairs the growth and reproductive health of wild spotted snakehead Channa punctata (Channidae) in Bangladesh. Heliyon 2025; 11:e42543. [PMID: 40028566 PMCID: PMC11867276 DOI: 10.1016/j.heliyon.2025.e42543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/11/2025] [Accepted: 02/06/2025] [Indexed: 03/05/2025] Open
Abstract
Heavy metal bioaccumulation in aquatic organisms of open water aquatic ecosystems was detected globally, including Bangladesh. This study evaluated the hypothesis of whether heavy metal contamination in aquatic habitats impacts fish growth and reproduction using wild Channa punctata as an experimental animal. The growth and reproductive health of a wild freshwater fish, C. punctata, collected from five freshwater habitats, were assayed with heavy metal bioaccumulation. Atomic absorption spectrometry detected the bioaccumulation of cadmium (Cd), chromium (Cr), mercury (Hg), and lead (Pb) in the muscle of C. punctata. Cd, Cr, and Pb concentrations were the highest in the specimen collected from the Turag River and the lowest in the Dharla River. The highest concentration of Hg was found in C. punctata specimens collected from the Karatoya River (0.093 ± 0.004 mg/kg). The length-weight relationship and condition factor of C. punctata indicated a negative allometric growth pattern (b < 3.0) and poor wellness (F < 1.0) in all the stocks except Dharla River. We estimated the size at first sexual maturity (L50), ova diameter, fecundity, and gonadosomatic index (GSI) to assess reproductive health and determined the correlation with heavy metal bioaccumulation. We found that higher bioaccumulation of heavy metal impairs the reproductive health of C. punctata by lowering spawning performance. This study showed that heavy metal bioaccumulation impaired fish's growth and reproductive health, potentially affecting future recruitment and fishery sustainability.
Collapse
Affiliation(s)
- Imran Parvez
- Faculty of Environmental Management, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
- Department of Fisheries Biology and Genetics, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh
| | - Sharmin Ahmed
- Department of Fisheries Biology and Genetics, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh
| | - Nazifa Tasnim
- Department of Fisheries Biology and Genetics, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh
| | - Rubaiya Pervin
- Department of Fisheries Biology and Genetics, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh
| | - Md Ashraful Alam
- Department of Fisheries Biology and Genetics, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh
| | - Md Nasir Khan
- Department of Fisheries Biology and Genetics, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh
| | - Yeasmin Ara
- Department of Fisheries Management, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh
| | - Harunur Rashid
- Department of Fisheries Management, Bangladesh Agricultural University (BAU), Mymensingh, 2202, Bangladesh
| | - Siriporn Pradit
- Faculty of Environmental Management, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
- Marine and Coastal Resources Institute, Faculty of Environmental Management, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
- Coastal Oceanography and Climate Change Research Center, Faculty of Environmental Management, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| |
Collapse
|
3
|
Singh S, Yadav S, Chaube R, Kumar D. Toxicity of Pentachlorophenol Exposure on Male and Female Heteropneustes fossilis Investigated Using NMR-Based Metabolomics Approach. ACS OMEGA 2025; 10:6368-6384. [PMID: 40028089 PMCID: PMC11866196 DOI: 10.1021/acsomega.4c03407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 02/01/2025] [Accepted: 02/05/2025] [Indexed: 03/05/2025]
Abstract
Pentachlorophenol (PCP) is one of the most common chlorophenols utilized in numerous industrial processes, including the production of dyes, pesticides, wood preservatives, disinfectants, antiseptics, and medicines because it has fungicidal and bactericidal characteristics. Previous studies on catfish (Heteropneustes fossilis) revealed that PCP acts as a potent endocrine disruptor and also causes behavioral changes in a concentration-dependent manner. However, the toxicological effects of PCP have not been compared between male and female catfish. The present study aims to investigate the toxic effects of PCP on catfish through histopathological changes, oxidative stress, and serum metabolomics after 60 days of exposure. Chronic exposure to sublethal concentrations of PCP resulted in significant histopathological alterations in the liver and gonad, including leukocyte infiltration, hepatocyte degeneration, follicular layer dissolution, and abnormal sperm distribution. Increased levels of lipid peroxidation and hydrogen peroxide, along with decreased antioxidant enzyme activity, were observed in PCP-exposed groups. A 1H NMR-based metabolomics approach was employed to investigate the toxic effects of PCP on catfish serum, revealing alterations in various metabolites, including amino acids, organic acids, glucose, cholesterol, and neurotransmitters, in a dose-dependent manner. Multivariate partial least-squares discriminant analysis (PLS-DA) identified metabolic changes associated with oxidative stress, disruption in hormone synthesis and reproduction, disturbance in osmoregulation and membrane stabilization, energy metabolism disorder, amino acid metabolism disorder, and neurotransmitter imbalance in PCP-exposed catfish. This study demonstrates the efficacy of metabolomics in elucidating the toxicity and underlying mechanisms of wood preservatives like PCP, providing valuable insights for risk assessment in toxicology research. Overall, these findings contribute to our understanding of the toxicological effects of PCP exposure on aquatic organisms and highlight the potential of histology, oxidative stress, and metabolomics in assessing environmental contaminants' risks.
Collapse
Affiliation(s)
- Sonam Singh
- Department
of Zoology, Institute of Science, Banaras
Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Sachin Yadav
- Department
of Chemistry, Integral University, Lucknow 226026, India
| | - Radha Chaube
- Department
of Zoology, Institute of Science, Banaras
Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Dinesh Kumar
- Centre
of Biomedical Research (CBMR), Lucknow 226014, Uttar
Pradesh, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Saha NC, Chatterjee A, Banerjee P, Bhattacharya R, Sadhu A, Pastorino P, Saha S. Toxic Effects of Lead Exposure on Freshwater Climbing Perch, Anabas testudineus, and Bioremediation Using Ocimum sanctum Leaf Powder. TOXICS 2024; 12:927. [PMID: 39771142 PMCID: PMC11728737 DOI: 10.3390/toxics12120927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025]
Abstract
The acute and chronic toxicity of lead to Anabas testudineus was determined in this study using static replacement bioassay testing. During the chronic toxicity studies, an experiment on the bioremediation of lead toxicity using Ocimum sanctum leaf powder was conducted. The 96 h LC50 values of lead for Anabas testudineus was 1.08 mg/L. Different biomarkers, such as the hepatosomatic index, gonadosomatic index, and fecundity, were significantly lower in fish subjected to 10% and 20% of the 96 h LC50 values of lead, compared to controls. The 45-day chronic exposure of fish to lead concentrations of 0.2 mg/L and above significantly lowered the number of total RBC, hemoglobin content, HCT (%), plasma protein, and cholesterol while decreasing the level of total WBC, plasma glucose, creatinine, serum AST and serum ALT. The leaf powder of Ocimum sanctum plays a significant role in ameliorating lead toxicity.
Collapse
Affiliation(s)
- Nimai Chandra Saha
- Department of Zoology, Bidhannagar College, Bidhannagar, Kolkata 700064, West Bengal, India
| | - Arnab Chatterjee
- Ecotoxicology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan 713104, West Bengal, India; (A.C.); (R.B.); (A.S.); (S.S.)
| | - Priyajit Banerjee
- Department of Biotechnology, Swami Vivekananda University, West Bengal 700121, India;
| | - Ritwick Bhattacharya
- Ecotoxicology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan 713104, West Bengal, India; (A.C.); (R.B.); (A.S.); (S.S.)
| | - Auroshree Sadhu
- Ecotoxicology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan 713104, West Bengal, India; (A.C.); (R.B.); (A.S.); (S.S.)
| | - Paolo Pastorino
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy
| | - Shubhajit Saha
- Ecotoxicology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan 713104, West Bengal, India; (A.C.); (R.B.); (A.S.); (S.S.)
| |
Collapse
|
5
|
Zhai C, Liu X, Li Y, Wang R, Lv W, Ma B, Cao D, Zhang Y. Effects of Alkalinity Stress on Amino Acid Metabolism Profiles and Oxidative-Stress-Mediated Apoptosis/Ferroptosis in Hybrid Sturgeon ( Huso dauricus ♀ × Acipenser schrenckii ♂) Livers. Int J Mol Sci 2024; 25:10456. [PMID: 39408786 PMCID: PMC11476414 DOI: 10.3390/ijms251910456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Alkaline water is toxic to cultured aquatic animals that frequently live in pH-neutral freshwater. Overfishing and habitat destruction have contributed to the decline in the wild sturgeon population; consequently, the domestic hybrid sturgeon has become an increasingly important commercial species in China. Hybrid sturgeons are widely cultured in alkaline water, but little is known about the effects of alkalinity stress on hybrid sturgeon liver tissues. We exposed hybrid sturgeons to four alkaline concentrations (3.14 ± 0.02 mmol/L, 7.57 ± 0.08 mmol/L, 11.78 ± 0.24 mmol/L and 15.46 ± 0.48 mmol/L). Histopathology, biochemical index assessment, gene expression level detection and metabolomics analysis were used to investigate the negative effects on liver functions following exposure to NaHCO3. Livers exposed to alkaline stress exhibited severe tissue injury and clear apoptotic characteristics. With increased exposure concentrations, the hepatic superoxide dismutase, catalase, glutathione peroxidase and alkaline phosphatase activities significantly decreased in a dose-dependent manner. NaHCO3 exposure up-regulated the transcriptional levels of apoptosis/ferroptosis-related genes in livers. Similarly, the expression trends of interleukin-1β and heat shock protein genes also increased in high-alkalinity environments. However, the expression levels of complement protein 3 significantly decreased (p < 0.05). Hepatic untargeted metabolomics revealed the alteration conditions of various metabolites associated with the antioxidant response, the ferroptosis process and amino acid metabolism (such as beta-alanine metabolism; alanine, aspartate and glutamate metabolism; and glycine, serine and threonine metabolism). These data provided evidence that NaHCO3 impaired immune functions and the integrity of hybrid sturgeon liver tissues by mediating oxidative-stress-mediated apoptosis and ferroptosis. Our results shed light on the breeding welfare of domestic hybrid sturgeons and promote the economic development of fisheries in China.
Collapse
Affiliation(s)
- Cunhua Zhai
- Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Xiafei Liu
- Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Yutao Li
- Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Ruoyu Wang
- Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Weihua Lv
- Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Bo Ma
- Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Dingchen Cao
- Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Ying Zhang
- Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
6
|
Chandel M, Sharma AK, Thakur K, Sharma D, Brar B, Mahajan D, Kumari H, Pankaj PP, Kumar R. Poison in the water: Arsenic's silent assault on fish health. J Appl Toxicol 2024; 44:1282-1301. [PMID: 38262619 DOI: 10.1002/jat.4581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/09/2023] [Accepted: 08/25/2023] [Indexed: 01/25/2024]
Abstract
Arsenic occurs across the world in freshwater and marine environments, menacing the survival of aquatic organisms. Organic and inorganic forms of this substance can be found, in which the inorganic form is more hazardous than the organic form. Most aquatic bodies contain inorganic arsenic species, but organic species are believed to be the dominant form of arsenic in the majority of fish. Natural and anthropogenic both are the sources of water contamination with arsenic. Its bioaccumulation and transfer from one trophic level to another in the aquatic food chain make arsenic a vital environmental issue. Continuous exposure to low concentrations of arsenic in aquatic organisms including fish leads to its bioaccumulation, which may affect organisms of higher trophic levels including large fishes or humans. Humans can be exposed to arsenic through the consumption of fish contaminated with arsenic. Hence, the present review facilitates our understanding about sources of arsenic, its bioaccumulation, food chain transfer, and its effect on the fish health. Also, "Poison in the Water: Arsenic's Silent Assault on Fish Health" serves as a wake-up call to recognize the pressing need to address arsenic contamination in water bodies. By understanding its devastating impact on fish health, we can strive to implement sustainable practices and policies that safeguard our precious aquatic environments and ensure the well-being of both wildlife and human communities that depend on them.
Collapse
Affiliation(s)
- Meenakshi Chandel
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| | - Amit Kumar Sharma
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| | - Kushal Thakur
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| | - Dixit Sharma
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| | - Bhavna Brar
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| | - Danish Mahajan
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| | - Hishani Kumari
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| | - Pranay Punj Pankaj
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| | - Rakesh Kumar
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| |
Collapse
|
7
|
Yao F, Du Y, Wang Y, Wang L, Zhu R, Cai C, Shao S, Zhou T. Acute toxicity of deoxynivalenol and bioremediation of a highly effective deoxynivalenol degrading Achromobacter spanius P-9 on zebrafish embryos and adults. CHEMOSPHERE 2024; 364:143111. [PMID: 39151582 DOI: 10.1016/j.chemosphere.2024.143111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Deoxynivalenol (DON) is one of the mostly concerned mycotoxins and several microbes showed bioremediation effects on DON toxic effects. In this study, the acute toxicity of a new DON degrading strain Achromobacter spanius P-9 with DON on zebrafish embryos and adults were firstly performed. For zebrafish embryos, bacterial concentrations of 2.5 × 107 CFU/mL and 5.0 × 107 CFU/mL had no significant effects on growth and development. However, at 7.5 × 107 CFU/mL, some effects were observed, and at 10.0 × 107 CFU/mL, the embryo survival rate decreased to 70%, with 3.3% teratogenicity. Higher bacterial concentrations correlated with faster heart rates. DON (100 μg/mL) significantly reduced embryo survival to 36.7% in 96 h. Bacterial solutions at 7.5 × 107 CFU/mL and 10.0 × 107 CFU/mL expanded the zebrafish intestinal tissue wall, while DON at 100 μg/mL negatively impacted intestinal morphology. Liver tissue in zebrafish exposed to Achromobacter spanius P-9 showed no significant differences from the control group. However, exposure to DON solution increased liver fluorescence intensity and caused liver cell changes, including edema, vacuolization, and blurred boundaries. For adult zebrafish, the ROS and 8-OHdG contents in the exposure group increased with the increase of bacterial solution concentration, the SOD enzyme activity, CAT enzyme activity, GST enzyme activity and MDA was not significantly different with the control group. Compared with the control group, the content of ROS, GST enzyme activity, MDA and 8-OHdG after DON treatment showed an upward trend, SOD and CAT enzyme activities showed a decreasing trend. Achromobacter spanius P-9 has no obvious inhibitory effect on the growth and development of zebrafish embryos and has no obvious death and toxicity during the growth of adult fish, providing data support for the future application of this strain in the biodegradation of DON.
Collapse
Affiliation(s)
- Feng Yao
- College of Biological and Chemical Engineering, Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Product, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Yaowen Du
- College of Biological and Chemical Engineering, Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Product, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Yuxiang Wang
- College of Biological and Chemical Engineering, Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Product, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Luhan Wang
- College of Biological and Chemical Engineering, Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Product, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Ruiyu Zhu
- College of Biological and Chemical Engineering, Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Product, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Chenggang Cai
- College of Biological and Chemical Engineering, Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Product, Zhejiang University of Science and Technology, Hangzhou, 310023, China.
| | - Suqin Shao
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, N1G 5C9, Canada.
| | - Ting Zhou
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, N1G 5C9, Canada
| |
Collapse
|
8
|
Whitehead DA, Gayford JH, Pancaldi F, Gobbato J, Boldrin G, Tringali M, Ketchum JT, Magaña FG, Seveso D, Montano S. Heavy metal and trace element concentrations in the blood of scalloped hammerhead sharks (Sphyrna lewini) from La Paz Bay, México. MARINE POLLUTION BULLETIN 2024; 201:116155. [PMID: 38401387 DOI: 10.1016/j.marpolbul.2024.116155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/26/2024]
Abstract
Sharks are particularly susceptible to bioaccumulation due to their life history characteristics and trophic position within marine ecosystems. Despite this, studies of bioaccumulation cover only a small proportion of extant species. In this study we report concentrations of trace elements and heavy metals in blood samples of Sphyrna lewini for the first time. We report high concentrations of several trace elements and heavy metals, with concentrations of some elements exceeding the limit determined safe for human consumption. High elemental concentrations may reflect biochemical differences between blood plasma and other tissues; however, they may also be symptomatic of high levels of exposure triggered by anthropogenic activities. We also provide evidence of elemental accumulation through ontogeny, the nature of which differs from that previously reported. Ultimately, this baseline study increases our understanding of interspecific and intraspecific variation in bioaccumulation and ecotoxicology in elasmobranchs which may prove important in ensuring adequate management.
Collapse
Affiliation(s)
- Darren A Whitehead
- Investigación Tiburones Mexico A.C, Mexico; Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, 23096 La Paz, Mexico.
| | - Joel H Gayford
- Department of Life Sciences, Silwood Park Campus, Imperial College London, United Kingdom; Shark Measurements, London, United Kingdom
| | - Francesca Pancaldi
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, 23096 La Paz, Mexico
| | - Jacopo Gobbato
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Piazza Della Scienza 1, 20126 Milan, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Maldives
| | - Giulia Boldrin
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Piazza Della Scienza 1, 20126 Milan, Italy
| | - Maria Tringali
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Piazza Della Scienza 1, 20126 Milan, Italy
| | - James T Ketchum
- Pelagios Kakunjá A.C., 23060 La Paz, Mexico; Centro de Investigaciones Biológicas Noroeste (CIBNOR), La Paz, B.C.S., Mexico; MigraMar, Bodega Bay, CA, United States of America
| | - Felipe Galvan Magaña
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, 23096 La Paz, Mexico
| | - Davide Seveso
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Piazza Della Scienza 1, 20126 Milan, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Maldives
| | - Simone Montano
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Piazza Della Scienza 1, 20126 Milan, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Maldives
| |
Collapse
|
9
|
Saha NC, Banerjee P, Chatterjee A, Bhattacharya R, Saha S, Pastorino P. Haematological, biochemical, enzymological changes and mitochondrial dysfunction of liver in freshwater climbing perch Anabas testudineus during their acute and chronic exposure to sodium fluoride. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104360. [PMID: 38176602 DOI: 10.1016/j.etap.2023.104360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Anthropogenic activities are increasing fluoride concentration in watercourses. The present study focuses on the sublethal toxicity of sodium fluoride during sub-chronic and chronic time periods in the freshwater fish Anabas testudineus. The 96-hour LC50 value for fluoride was found to be 616.50 mg/L. Excessive mucous production and hyper excitability, followed by loss of balance, were seen in fish under acute fluoride exposure. Significant reduction in yield and specific growth rate of fish were assessed at 15, 30 and 45-days exposure intervals. Different bio-indicators like Hepatosomatic-index, Gonadosomatic-index and fecundity were reduced significantly in fish exposed to 10% (61.6 mg/L) and 20% (123.2 mg/L) of 96 h of LC50 values of fluoride in comparison to control. Toxicant concentrations directly correlated with parameter lowering. Fluoride exposure increased plasma glucose, creatinine, AST, and ALT and reduced total RBC, haemoglobin content, Hct (%), plasma protein, and cholesterol. Moreover, fluoride exposure significantly reduces the mitochondrial membrane potential in liver. This may result in metabolic depression, haematological, biochemical, and enzymological stress. The in-silico structural analysis predicts that fluoride may impede cytochrome c oxidase of the electron transport system, hence inhibiting mitochondrial functionality. These findings collectively highlight the urgent need for stringent regulation and monitoring of fluoride levels in freshwater ecosystems, as the subchronic and chronic effects observed in A. testudineus may have broader implications for aquatic ecosystems.
Collapse
Affiliation(s)
- Nimai Chandra Saha
- Fisheries and Ecotoxicology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India; Department of Zoology, Bidhannagar College, Bidhannagar, Kolkata, West Bengal 700064, India.
| | - Priyajit Banerjee
- Fisheries and Ecotoxicology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | - Arnab Chatterjee
- Fisheries and Ecotoxicology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | - Ritwick Bhattacharya
- Fisheries and Ecotoxicology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | - Shubhajit Saha
- Fisheries and Ecotoxicology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | - Paolo Pastorino
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, 10154 Torino, Italy
| |
Collapse
|
10
|
Li H, Gao J, Liu Y, Ding Y, Guo Y, Wang Z, Dong Z, Zhang N. Toxic Effects of Bisphenol AF Exposure on the Reproduction and Liver of Female Marine Medaka ( Oryzias melastigma). Animals (Basel) 2024; 14:222. [PMID: 38254391 PMCID: PMC10812438 DOI: 10.3390/ani14020222] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/24/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
In recent years, bisphenol AF (BPAF) in aquatic environments has drawn attention to its ecological risks. This study aims to investigate the toxic effects of BPAF (188.33 μg/L) exposure for 30 days on female marine medaka (Oryzias melastigma). On the 10th and 30th day of exposure, the toxicity was evaluated using histological analysis of the liver and ovaries and the transcription levels of genes related to the antioxidant system, immune system, and hypothalamic-pituitary-gonadal (HPG) axis. Findings revealed that (1) BPAF exposure caused vacuolation, karyopyknosis and karyolysis in the liver of marine medaka, and the toxic impact augmented with duration; (2) exposure to BPAF for 10 days facilitated the growth and maturation of primary ova, and this exposure had a comparatively inhibitory effect after 30 days; (3) exposure to BPAF resulted in a biphasic regulation of the transcriptional abundance of genes involved in antioxidant and inflammatory response (e.g., il-8, cat), with an initial up-regulation followed by down-regulation. Additionally, it disrupted the transcriptional pattern of HPG axis-related genes (e.g., 3βhsd, arα). In conclusion, 188.33 μg/L BPAF can alter the expression levels of functionally related genes, impair the structural integrity of marine organisms, and pose a threat to their overall health.
Collapse
Affiliation(s)
- Huichen Li
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; (H.L.); (J.G.); (Y.L.); (Y.D.); (Y.G.); (Z.W.)
| | - Jiahao Gao
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; (H.L.); (J.G.); (Y.L.); (Y.D.); (Y.G.); (Z.W.)
| | - Yue Liu
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; (H.L.); (J.G.); (Y.L.); (Y.D.); (Y.G.); (Z.W.)
| | - Yujia Ding
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; (H.L.); (J.G.); (Y.L.); (Y.D.); (Y.G.); (Z.W.)
| | - Yusong Guo
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; (H.L.); (J.G.); (Y.L.); (Y.D.); (Y.G.); (Z.W.)
| | - Zhongduo Wang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; (H.L.); (J.G.); (Y.L.); (Y.D.); (Y.G.); (Z.W.)
| | - Zhongdian Dong
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; (H.L.); (J.G.); (Y.L.); (Y.D.); (Y.G.); (Z.W.)
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ning Zhang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; (H.L.); (J.G.); (Y.L.); (Y.D.); (Y.G.); (Z.W.)
| |
Collapse
|
11
|
Sayed AEDH, Soliman HAM, Idriss SK, Abdel-Ghaffar SK, Hussein AAA. Oxidative Stress and Immunopathological Alterations of Clarias gariepinus Exposed to Monocyclic Aromatic Hydrocarbons (BTX). WATER, AIR, & SOIL POLLUTION 2023; 234:354. [DOI: 10.1007/s11270-023-06343-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/04/2023] [Indexed: 12/09/2024]
Abstract
AbstractThis study’s goal was to assess the catfish’s response to exposure to monoaromatic petroleum hydrocarbons (benzene, toluene, and xylene) and its recovery after exposure using oxidative stress, histopathological, and immunological changes as biomarkers. Four groups: one as control and other three exposed to benzene (0.762 ng/L), toluene (26.614 ng/L), and xylene (89.403 ng/L), respectively, for 30 days and then recovery period for 30 days. The levels of the cortisol, lipid peroxidation, and cytokines (IL-1β, IL-6) increased significantly (p < 0.05) after exposure to benzene and xylene compared to control. Superoxide dismutase (SOD), total antioxidant capacity (TAC), and acetylcholinstease (Ach) decreased significantly (p < 0.05) in fishes exposed to benzene only compared to control group. While glutathione-S-transferase (GST) did not show any change in different treatment groups compared to control group. The histopathological signs of liver exposed to benzene, toluene, and xylene displayed aggregation of melanomacrophages, congestion of sinusoids, vacuolar degeneration of hepatocytes, necrotic area with inflammatory cell infiltration, and thrombus of central vein. Kidney exposed to benzene, toluene, and xylene showed dilatation of Bowman’s space with atrophy of glomerular tuft, lyses of RBCs with mononuclear cell infiltration, multifocal area of hemopoietic tissue necrosis, organized thrombus with perivascular hemorrhage, focal inflammatory cellular reaction, renal tubular necrosis, and thrombus of blood vessels. Spleen exposed to benzene, toluene, and xylene showed hyperplasia of lymphoid follicles in white pulp in a mild degree. These lesions appeared to a mild degree or disappeared completely after recovery period to BTX except spleen. In conclusion, monocyclic aromatic hydrocarbons (BTX) are hazardous to fish and the toxicity level was as benzene > xylene > toluene even though after recovery period.
Collapse
|
12
|
Sayed AEDH, Idriss SK, Abdel-Ghaffar SK, Hussein AAA. Haemato-biochemical, mutagenic, and histopathological changes in Oreochromis niloticus exposed to BTX. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:59301-59315. [PMID: 37004609 PMCID: PMC10163093 DOI: 10.1007/s11356-023-26604-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/18/2023] [Indexed: 05/08/2023]
Abstract
The study of the DNA damage response in erythrocytes after exposure to volatile organic compounds (VOCs) can present evidence for its potential effect as genotoxic- biomarkers for environmental pollution. Although VOCs are dangerous pollutants, still little is known about hemotoxic, cytotoxic, and genotoxic effects of such pollutants on fish. We optimized an assay method for apoptosis and DNA damage in erythrocytes of adult tilapia fish after 15 days exposure to benzene (0.762 ng/L), toluene (26.614 ng/L), and xylene (89.403 ng/L). The highest level of apoptosis and DNA damage were recorded in benzene-exposed fish, as was the highest level of histopathological alterations in gills, liver, and kidney. The imbalance of the antioxidants profile explained the stress-case reported in exposed fish. These results suggest that hemotoxic, cytotoxic, genotoxic, and tissue damage were recorded after exposure to BTX in Oreochromis niloticus.
Collapse
Affiliation(s)
- Alaa El-Din H Sayed
- Molecular Biology Researches & Studies Institute, Assiut University, 71516, Assiut, Egypt.
- Zoology Department, Faculty of Science, Assiut University, 71516, Assiut, Egypt.
| | - Shaimaa K Idriss
- Department of Fish Disease and Management, Faculty of Veterinary of Medicine, Assiut University, 71516, Assiut, Egypt
| | - Sary Kh Abdel-Ghaffar
- Department of Fish Disease and Management, Faculty of Veterinary of Medicine, Assiut University, 71516, Assiut, Egypt
| | - Asmaa A A Hussein
- Molecular Biology Researches & Studies Institute, Assiut University, 71516, Assiut, Egypt
| |
Collapse
|
13
|
Panda SK, Kumar D, Jena GR, Patra RC, Panda SK, Sethy K, Mishra SK, Swain BK, Naik PK, Beura CK, Panda B. Hepatorenal Toxicity of Inorganic Arsenic in White Pekin Ducks and Its Amelioration by Using Ginger. Biol Trace Elem Res 2023; 201:2471-2490. [PMID: 35723853 DOI: 10.1007/s12011-022-03317-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022]
Abstract
The toxic metalloid arsenic is known to cause liver and kidney injury in many humans and animals. The goal of this paper was to exemplify the antagonism of ginger against arsenic (As)-induced hepato-renal toxicity. In addition, the pathways Nrf2/Keap1 and NF/κB were studied to reveal the molecular mechanism of the stress. One hundred twenty 7-day-old White Pekin ducks were randomly allocated into five groups, having 24 birds in each. Each group contained three replicates having 8 birds in each replicate and maintained for 90 days. The groups were as follows: T-1 [control-basal diet with normal water], T-2 [T1 + As at 28 ppm/L of water], T-3 [T2 + ginger powder at 100 mg/kg feed], T-4 [T2 + ginger powder at 300 mg/kg feed], and T-5 [T2 + ginger powder at 1 g/kg feed]. It was observed that there was a significant increase in oxidative parameters whereas a significant decrease in antioxidant parameters in hepato-renal tissues in T-2. The exposure to As not only decreased the mRNA expression of antioxidant parameters like Nrf2, SOD-1, CAT, GPX, and HO-1and anti-inflammatory markers like IL-4 and IL-10 but also increased the m-RNA expression of NF-κB, Keap-1 and pro-inflammatory markers like IL-2, Il-6, IL-18, IL-1β, and TNF-α. There was also an accumulation of As in hepatic and renal tissue, confirmed by residual analysis of these tissues. By correlating the above parameters, As at 28 ppm showed significant toxic effects, and ginger powder at 1 g/kg feed effectively counteracted the toxic effects of As in ducks.
Collapse
Affiliation(s)
- Santosh Kumar Panda
- Department of Veterinary Clinical Medicine, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, India.
| | - Dhirendra Kumar
- Regional centre ICAR-Directorate of Poultry Research, Bhubaneswar, 751003, India
| | - Geeta Rani Jena
- Department of Veterinary Clinical Medicine, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, India
| | - Ramesh Chandra Patra
- Department of Veterinary Clinical Medicine, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, India
| | - Susen Kumar Panda
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, India
| | - Kamdev Sethy
- Department of Animal Nutrition, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, India
| | - Surya Kant Mishra
- Regional centre ICAR-Directorate of Poultry Research, Bhubaneswar, 751003, India
| | - Bijaya Kumar Swain
- Regional centre ICAR-Directorate of Poultry Research, Bhubaneswar, 751003, India
| | - Prafulla Kumar Naik
- Regional centre ICAR-Directorate of Poultry Research, Bhubaneswar, 751003, India
| | - Chandra Kant Beura
- Regional centre ICAR-Directorate of Poultry Research, Bhubaneswar, 751003, India
| | - Bhagyalaxmi Panda
- Department of Plant Breeding and Genetics, College of Agriculture, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, India
| |
Collapse
|
14
|
Topić Popović N, Čižmek L, Babić S, Strunjak-Perović I, Čož-Rakovac R. Fish liver damage related to the wastewater treatment plant effluents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:48739-48768. [PMID: 36869954 PMCID: PMC9985104 DOI: 10.1007/s11356-023-26187-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/24/2023] [Indexed: 04/16/2023]
Abstract
Wastewater treatment plants (WWTPs) continuously release a complex mixture of municipal, hospital, industrial, and runoff chemicals into the aquatic environment. These contaminants are both legacy contaminants and emerging-concern contaminants, affecting all tissues in a fish body, particularly the liver. The fish liver is the principal detoxifying organ and effects of consistent pollutant exposure can be evident on its cellular and tissue level. The objective of this paper is thus to provide an in-depth analysis of the WWTP contaminants' impact on the fish liver structure, physiology, and metabolism. The paper also gives an overview of the fish liver biotransformation enzymes, antioxidant enzymes, and non-enzymatic antioxidants, their role in metabolizing xenobiotic compounds and coping with oxidative damage. Emphasis has been placed on highlighting the vulnerability of fish to xenobiotic compounds, and on biomonitoring of exposed fish, generally involving observation of biomarkers in caged or native fish. Furthermore, the paper systematically assesses the most common contaminants with the potential to affect fish liver tissue.
Collapse
Affiliation(s)
- Natalija Topić Popović
- Laboratory for Aquaculture Biotechnology, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia.
- Centre of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Zagreb, Croatia.
| | - Lara Čižmek
- Laboratory for Aquaculture Biotechnology, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
- Centre of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Zagreb, Croatia
| | - Sanja Babić
- Laboratory for Aquaculture Biotechnology, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
- Centre of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ivančica Strunjak-Perović
- Laboratory for Aquaculture Biotechnology, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
- Centre of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Zagreb, Croatia
| | - Rozelindra Čož-Rakovac
- Laboratory for Aquaculture Biotechnology, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
- Centre of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
15
|
Ditta SA, Yaqub A, Tanvir F, Rashid M, Ullah R, Zubair M, Ali S, Anjum KM. Gold nanoparticles capped with L-glycine, L-cystine, and L-tyrosine: toxicity profiling and antioxidant potential. JOURNAL OF MATERIALS SCIENCE 2023; 58:2814-2837. [PMID: 36743265 PMCID: PMC9888356 DOI: 10.1007/s10853-023-08209-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Biomolecules-based surface modifications of nanomaterials may yield effective and biocompatible nanoconjugates. This study was designed to evaluate gold nanoconjugates (AuNCs) for their altered antioxidant potential. Gold nanoparticles (AuNPs) and their conjugates gave SPR peaks in the ranges of 512-525 nm, with red or blueshift for different conjugates. Cys-AuNCs demonstrated enhanced (p < 0.05) and Gly-AuNCs (p > 0.05) displayed reduced DPPH activity. Gly-AuNCs and Tyr-AuNCs displayed enhanced ferric-reducing power and hydrogen peroxide scavenging activity, respectively. Cadmium-intoxicated mice were exposed to gold nanomaterials, and the level of various endogenous parameters, i.e., CAT, GST, SOD, GSH, and MTs, was evaluated. GSH and MTs in liver tissues of the cadmium-exposed group (G2) were elevated (p < 0.05), while other groups showed nonsignificance deviations than the control group. It is concluded that these nanoconjugates might provide effective nanomaterials for biomedical applications. However, more detailed studies for their safety profiling are needed before their practical applications.
Collapse
Affiliation(s)
- Sarwar Allah Ditta
- Department of Zoology, Government College University, Lahore, 54000 Pakistan
| | - Atif Yaqub
- Department of Zoology, Government College University, Lahore, 54000 Pakistan
| | - Fouzia Tanvir
- Department of Zoology, University of Okara, Okara, 56300 Pakistan
| | - Muhammad Rashid
- Department of Zoology, Government College University, Lahore, 54000 Pakistan
| | - Rehan Ullah
- Department of Zoology, Government College University, Lahore, 54000 Pakistan
| | - Muhammad Zubair
- Department of Wildlife and Ecology, The University of Veterinary and Animal Sciences, Lahore, 54000 Pakistan
| | - Shaista Ali
- Department of Chemistry, Government College University, Lahore, 54000 Pakistan
| | - Khalid Mahmood Anjum
- Department of Wildlife and Ecology, The University of Veterinary and Animal Sciences, Lahore, 54000 Pakistan
| |
Collapse
|
16
|
Ren HT, An HY, Du MX, Zhou J. Effects of Zinc Adaptation on Histological Morphology, Antioxidant Responses, and Expression of Immune-Related Genes of Grass Carp (Ctenopharyngodon idella). Biol Trace Elem Res 2022; 200:5251-5259. [PMID: 35015244 DOI: 10.1007/s12011-022-03112-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/08/2022] [Indexed: 11/02/2022]
Abstract
The study was conducted to evaluate the effect of zinc adaptation on histological morphology and antioxidant and immune responses of grass carp(Ctenopharyngodon idella). A total of 180 young grass carp (20.0 ± 2.0 g) was equally distributed into 9 groups, and triplicate groups were subjected to 0 μg/L Zn2+ (control group), 200 μg/L Zn2+, and 300 μg/L Zn2+ solution for 42 days, respectively. The results indicated that the liver and gill have obvious pathological changes after long-term adaptation to zinc except the intestine; the zinc adaptation can positively influence intestinal morphology. The activities of GPX (glutathione peroxidase activity), SOD (superoxide dismutase), and CAT (Catalase) were significantly increased in zinc treatment groups (P < 0.05). The genes expression levels of CuZnSOD (copper zinc superoxide dismutase), CAT, Hsp70 (heat shock protein-70), IL-1b (interleukin-1-b), and TGF-β1 (transforming growth factor-β1) were upregulated in the gill and intestine of grass carp following waterborne adaptation to zinc solution for 42 days (P < 0.05). In conclusion, zinc adaptation has different effects on organs of grass carp and may reduce the inflammatory response of the body's gills and intestines by improving the body's antioxidant and anti-stress defense capabilities.
Collapse
Affiliation(s)
- Hong Tao Ren
- Animal Science and Technology College, Henan University of Science and Technology, Luoyang, 471003, China.
| | - Hui Ying An
- Animal Science and Technology College, Henan University of Science and Technology, Luoyang, 471003, China
| | - Ming Xing Du
- Animal Science and Technology College, Henan University of Science and Technology, Luoyang, 471003, China
| | - Jian Zhou
- Animal Science and Technology College, Henan University of Science and Technology, Luoyang, 471003, China
| |
Collapse
|
17
|
Chen Y, Chen X, Li X, Liu Y, Guo Y, Wang Z, Dong Z. Effects of bisphenol AF on growth, behavior, histology and gene expression in marine medaka (Oryzias melastigma). CHEMOSPHERE 2022; 308:136424. [PMID: 36116629 DOI: 10.1016/j.chemosphere.2022.136424] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol AF (BPAF) is one of the substitutes for bisphenol A (BPA), which has endocrine-disrupting, reproductive and neurological toxicity. BPAF has frequently been detected in the aquatic environment, which has been a long-term threat to the health of aquatic organisms. In this study, female marine medaka (Oryzias melastigma) were exposed to 6.7 μg/L, 73.4 μg/L, and 367.0 μg/L BPAF for 120 d. The effects of BPAF on behavior, growth, liver and ovarian histology, gene transcriptional profiles, and reproduction of marine medaka were determined. The results showed that with the increase of BPAF concentration, the swimming speed of female marine medaka showed an increasing trend and then decreasing trend. BPAF (367.0 μg/L) significantly increased body weight and condition factors in females. BPAF (73.4 μg/L and 367.0 μg/L) significantly delayed oocyte maturation. Exposure to 367.0 μg/L BPAF showed an increasing trend in the transcript levels of lipid synthesis and transport-related genes such as fatty acid synthase (fasn), sterol regulatory element binding protein (srebf), diacylglycerol acyltransferase (dgat), solute carrier family 27 member 4 (slc27a4), fatty acid-binding protein (fabp), and peroxisome proliferator-activated receptor gamma (pparγ) in the liver. In addition, 6.7 μg/L BPAF significantly down-regulated the expression levels of antioxidant-related genes [superoxide dismutase (sod), glutathione peroxidase (gpx), and catalase (cat)], and complement system-related genes [complement component 5 (c5), complement component 7a (c7a), mannan-binding lectin serine peptidase 1 (masp1), and tumor necrosis factor (tnf)] were significantly up-regulated in the 73.4 and 367.0 μg/L groups, which implies the effect of BPAF on the immune system in the liver. In the hypothalamic-pituitary-ovarian axis (HPG) results, the transcription levels of estrogen receptor α (erα), estrogen receptor β (erβ), androgen receptor (arα), gonadotropin-releasing hormone 2 (gnrh2), cytochrome P450 19b (cyp19b), aromatase (cyp19a), and luteinizing hormone receptor (lhr) in the brain and ovary, and vitellogenin (vtg) and choriogenin (chg) in the liver of 367.0 μg/L BPAF group showed a downward trend. In addition, exposure to 367.0 μg/L BPAF for 120 d inhibited the spawning behavior of marine medaka. Our results showed that long-term BPAF treatment influenced growth (body weight and condition factors), lipid metabolism, and ovarian maturation, and significantly altered the immune response and the transcriptional expression levels of HPG axis-related genes.
Collapse
Affiliation(s)
- Yuebi Chen
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Xiaotian Chen
- Center for Industrial Analysis and Testing, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Xueyou Li
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Yue Liu
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Yusong Guo
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Zhongduo Wang
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China; State Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University School, Changsha, China
| | - Zhongdian Dong
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang, China.
| |
Collapse
|
18
|
Rachamalla M, Chinthada J, Kushwaha S, Putnala SK, Sahu C, Jena G, Niyogi S. Contemporary Comprehensive Review on Arsenic-Induced Male Reproductive Toxicity and Mechanisms of Phytonutrient Intervention. TOXICS 2022; 10:toxics10120744. [PMID: 36548577 PMCID: PMC9784647 DOI: 10.3390/toxics10120744] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 05/26/2023]
Abstract
Arsenic (As) is a poisonous metalloid that is toxic to both humans and animals. Drinking water contamination has been linked to the development of cancer (skin, lung, urinary bladder, and liver), as well as other disorders such as diabetes and cardiovascular, gastrointestinal, neurological, and developmental damage. According to epidemiological studies, As contributes to male infertility, sexual dysfunction, poor sperm quality, and developmental consequences such as low birth weight, spontaneous abortion, and small for gestational age (SGA). Arsenic exposure negatively affected male reproductive systems by lowering testicular and accessory organ weights, and sperm counts, increasing sperm abnormalities and causing apoptotic cell death in Leydig and Sertoli cells, which resulted in decreased testosterone synthesis. Furthermore, during male reproductive toxicity, several molecular signalling pathways, such as apoptosis, inflammation, and autophagy are involved. Phytonutrient intervention in arsenic-induced male reproductive toxicity in various species has received a lot of attention over the years. The current review provides an in-depth summary of the available literature on arsenic-induced male toxicity, as well as therapeutic approaches and future directions.
Collapse
Affiliation(s)
- Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Joshi Chinthada
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar 160062, India
| | - Sapana Kushwaha
- Department of Pharmacology and Toxicology, Transit Campus, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India
| | - Sravan Kumar Putnala
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Chittaranjan Sahu
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar 160062, India
| | - Gopabandhu Jena
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar 160062, India
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| |
Collapse
|
19
|
Shahjahan M, Taslima K, Rahman MS, Al-Emran M, Alam SI, Faggio C. Effects of heavy metals on fish physiology - A review. CHEMOSPHERE 2022; 300:134519. [PMID: 35398071 DOI: 10.1016/j.chemosphere.2022.134519] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/22/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
The pollution by heavy metals poses a serious threat to the aquatic environment and to the organisms if the concentration of heavy metals in the environment exceeds the safe limits. Due to their non-biodegradable and long persistence nature in the environment, heavy metals cause toxicity in fish by producing oxygen reactive species through oxidizing radical production. In this review, we investigated the effects of heavy metals on fish physiology with special emphasis on hemato-biochemical properties, immunological parameters especially hormones and enzymes, histopathology of different major organs and underlying molecular mechanisms. All those parameters are significantly affected by heavy metal exposure and are found to be important bio-monitoring tools to assess heavy metal toxicity. Hematological and biochemical alterations have been documented including cellular and nuclear abnormalities in different fish species exposed to different concentrations of heavy metals. Major fish organs (gills, liver, kidneys) including intestine, muscles showed different types of pathology specific to organs in acute and chronic exposure to different heavy metals. This study also revealed the expression of different genes involved in oxidative stress and detoxification of heavy metals. In a nutshell, this article shades light on the manipulation of fish physiology by the heavy metals and sought attention in the prevention and maintenance of aquatic environments particularly from heavy metals contaminations.
Collapse
Affiliation(s)
- Md Shahjahan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Khanam Taslima
- Department of Fisheries Biology and Genetics, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Mohammad Shadiqur Rahman
- Bangamata Sheikh Fojilatunnesa Mujib Science and Technology University, Melandah, Jamalpur, Bangladesh
| | - Md Al-Emran
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Shanon Iffat Alam
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, S.Agata-Messina, Italy
| |
Collapse
|
20
|
Chemical Composition and Valorization of Broccoli Leaf By-Products (Brassica oleracea L. Variety: Italica) to Ameliorate Reno-Hepatic Toxicity Induced by Gentamicin in Rats. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12146903] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Broccoli (Brassica oleracea) is reported to possess antioxidant activity that could potentially prevent oxidative damage to tissues caused by many diseases. In the present study, we investigated the preventive effect of broccoli leaf by-product extract (BL) on gentamicin-induced renal and hepatic injury by measuring tissue antioxidant activities and morphological apoptotic changes. Broccoli leaf was thoroughly extracted with 70% methanol to yield the total methanol extract (TME). The total phenolic content (TPC) was determined. Thirty male rats were divided into five groups (six animals/group). Group I received phosphate-buffered saline orally, while group II was treated with gentamicin (100 mg/kg i.p. intraperitoneal) for ten days. Group III and group IV animals were given BL (200 mg/kg and 400 mg/kg, respectively) plus gentamicin treatment. Group V received L-cysteine (1 mmole/kg) plus gentamicin. Antioxidant and biochemical parameters, such as transaminase (AST), alanine transaminase (ALT) and alkaline phosphatase (ALP), creatinine, and urea, and mRNA expression levels of tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and nuclear factor kappa B (NFkB) were determined in various groups, along with the quantification of inflammatory and apoptotic cells in hepatic and renal tissues. Malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD) levels were determined in liver and renal samples. Histopathological studies of the liver and kidneys were also carried out. The TME was subjected to various and repeated techniques of chromatography to yield caffeic acid, gallic acid, and methyl gallate. The TPC was 6.47 mg Gallic Acid Equivalent/g of dry extract. Gentamicin increased the levels of serum AST, ALT, ALP, creatinine, and urea. The MDA and GSH contents and theactivity levels of the antioxidant enzyme SOD decreased in liver and kidney samples with gentamicin administration. BL administration dose-dependently prevented the alteration in biochemical parameters and was supported by low levels of tubular and glomerular injuries induced by gentamicin. This study valorizes the potential of BL as a preventive candidate in cases of gentamicin-induced liver and kidney toxicity and recommends further clinical studies using BL to validate its utilization for human consumption and as a source of phenolics for nutraceutical and pharmaceutical purposes.
Collapse
|
21
|
Zhao SS, Su XL, Pan RJ, Lu LQ, Zheng GD, Zou SM. The transcriptomic responses of blunt snout bream (Megalobrama amblycephala) to acute hypoxia stress alone, and in combination with bortezomib. BMC Genomics 2022; 23:162. [PMID: 35216548 PMCID: PMC8876555 DOI: 10.1186/s12864-022-08399-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 02/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Blunt snout bream (Megalobrama amblycephala) is sensitive to hypoxia. A new blunt snout bream strain, "Pujiang No.2", was developed to overcome this shortcoming. As a proteasome inhibitor, bortezomib (PS-341) has been shown to affect the adaptation of cells to a hypoxic environment. In the present study, bortezomib was used to explore the hypoxia adaptation mechanism of "Pujiang No.2". We examined how acute hypoxia alone (hypoxia-treated, HN: 1.0 mg·L- 1), and in combination with bortezomib (hypoxia-bortezomib-treated, HB: Use 1 mg bortezomib for 1 kg fish), impacted the hepatic ultrastructure and transcriptome expression compared to control fish (normoxia-treated, NN). RESULTS Hypoxia tolerance was significantly decreased in the bortezomib-treated group (LOEcrit, loss of equilibrium, 1.11 mg·L- 1 and 1.32 mg·L- 1) compared to the control group (LOEcrit, 0.73 mg·L- 1 and 0.85 mg·L- 1). The HB group had more severe liver injury than the HN group. Specifically, the activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in the HB group (52.16 U/gprot, 32 U/gprot) were significantly (p < 0.01) higher than those in the HN group (32.85 U/gprot, 21. 68 U/gprot). In addition, more severe liver damage such as vacuoles, nuclear atrophy, and nuclear lysis were observed in the HB group. RNA-seq was performed on livers from the HN, HB and NN groups. KEGG pathway analysis disclosed that many DEGs (differently expressed genes) were enriched in the HIF-1, FOXO, MAPK, PI3K-Akt and AMPK signaling pathway and their downstream. CONCLUSION We explored the adaptation mechanism of "Pujiang No.2" to hypoxia stress by using bortezomib, and combined with transcriptome analysis, accurately captured the genes related to hypoxia tolerance advantage.
Collapse
Affiliation(s)
- Shan-Shan Zhao
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai, 201306, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, 201306, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiao-Lei Su
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai, 201306, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, 201306, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Rong-Jia Pan
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai, 201306, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, 201306, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Li-Qun Lu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Guo-Dong Zheng
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai, 201306, China. .,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, 201306, China. .,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| | - Shu-Ming Zou
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai, 201306, China. .,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, 201306, China. .,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
22
|
The Effect of Broccoli Extract in Arsenic-Induced Experimental Poisoning on the Hematological, Biochemical, and Electrophoretic Parameters of the Liver and Kidney of Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3509706. [PMID: 35035501 PMCID: PMC8754608 DOI: 10.1155/2022/3509706] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/12/2021] [Accepted: 12/23/2021] [Indexed: 12/31/2022]
Abstract
Heavy metals such as arsenic contribute to environmental pollution that can lead to systemic effects in various body organs. Some medicinal plants such as broccoli have been shown to reduce the harmful effects of these heavy metals. The main aim of the present study is to evaluate the effects of broccoli extract on liver and kidney toxicity, considering hematological and biochemical changes. The experimental study was performed in 28 days on 32 male Wistar rats classified into four groups: the control group (C), a group receiving 5 mg/kg oral arsenic (AS), a group receiving 300 mg/kg broccoli (B), and a group receiving arsenic and broccoli combination (AS + B). Finally, blood samples were taken to evaluate the hematological and biochemical parameters of the liver and kidney, as well as serum proteins' concentration. Liver and kidney tissue were fixed and stained by H&E and used for histopathological diagnosis. The results demonstrated a significant decrease in white blood cells (WBC), red blood cells (RBC), and hemoglobin (Hb) in the AS group compared to other groups. However, in the B group, a significant increase in RBC and WBC was observed compared to the AS and C groups (P < 0.05). Moreover, RBC and WBC levels increased significantly in the AS + B group compared to the AS group (P = 0.046). However, in the AS group, aspartate aminotransferase (AST), alanine aminotransferase (ALT), urea, and creatinine levels increased, while total protein, albumin, and globulin decreased. This can be a result of liver and kidney damage, which was observed in the AS group. Furthermore, the increase in the concentration of albumin and globulin in the AS + B group was higher than that in the AS group. Infiltration of inflammatory cells and necrosis of the liver and kidney tissue in the pathological evaluation of the AS group were significantly higher than other groups. There was an increase in superoxide dismutases (SOD), glutathione peroxidase (GPx), and total antioxidant capacity (TAC); however, a decrease in malondialdehyde (MDA) concentration was seen in the AS + B group compared to the AS group. It seems that broccoli is highly effective at reducing liver and kidney damage and improving the hematological and biochemical factors in arsenic poisoning conditions.
Collapse
|
23
|
Xiong H, Tan QG, Zhang J, Wang WX, Yuan X, Zhang W, Yan B. Physiologically based pharmacokinetic model revealed the distinct bio-transportation and turnover of arsenobetaine and arsenate in marine fish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 240:105991. [PMID: 34673466 DOI: 10.1016/j.aquatox.2021.105991] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Arsenobetaine (AsB) is the major form of arsenic in marine fish; however, its biodynamics within the fish tissues is not well understood. This study simulated the biodynamics and biotransportation (absorption, distribution, and elimination) of dietary AsB and arsenate [As(V)] in the marine grouper Epinephelus fuscoguttatus, by constructing a physiologically based pharmacokinetic (PBPK) model. The transfer rates between different compartments (gill, intestine, liver, heart, kidney, and muscle) and blood were modeled during exposure (14 d) and depuration (20 d). The model showed that AsB had a weak ability to cross the intestinal membranes and circulated slowly in the blood. The newly AsB absorbed from the blood did not enter the hepatointestinal circulation for elimination, but was effectively distributed in liver. Thereafter, it was slowly absorbed and finally stored in the muscle, the most important organ for AsB deposition, at a constant rate of 63.5 d-1. In contrast, As(V) displayed a dynamic behavior, including rapid crossing through the intestinal membranes, quick circulation in the blood and transportation to other tissues, and elimination. Biodynamics coupled with biotransformation illustrated, for the first time, the unique strategies of dietary AsB that passed slowly through the fish intestine with the highest deposition rate in the muscle, thereby contributing to the high AsB bioaccumulation in the muscle tissue of marine fish. CAPSULE: AsB displayed a weaker ability to cross the intestine membranes, slowly absorbed and finally stored in muscle, whereas As(V) displayed rapid crossing the intestine membranes, quick transportation, and elimination.
Collapse
Affiliation(s)
- Haiyan Xiong
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Qiao-Guo Tan
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, College of Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Jichao Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xiangzhou Yuan
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Wei Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
24
|
Mehta K, Kaur B, Pandey KK, Dhar P, Kaler S. Resveratrol protects against inorganic arsenic-induced oxidative damage and cytoarchitectural alterations in female mouse hippocampus. Acta Histochem 2021; 123:151792. [PMID: 34634674 DOI: 10.1016/j.acthis.2021.151792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 01/04/2023]
Abstract
Prolonged inorganic arsenic (iAs) exposure is widely associated with brain damage particularly in the hippocampus via oxidative and apoptotic pathways. Resveratrol (RES) has gained considerable attention because of its benefits to human health. However, its neuroprotective potential against iAs-induced toxicity in CA1 region of hippocampus remains unexplored. Therefore, we investigated the neuroprotective efficacy of RES against arsenic trioxide (As2O3)-induced adverse effects on neuronal morphology, apoptotic markers and oxidative stress parameters in mouse CA1 region (hippocampus). Adult female Swiss albino mice of reproductive maturity were orally exposed to either As2O3 (2 and 4 mg/kg bw) alone or in combination with RES (40 mg/kg bw) for a period of 45 days. After animal sacrifice on day 46, the perfusion fixed brain samples were used for the observation of neuronal morphology and studying the morphometric features. While the freshly dissected hippocampi were processed for biochemical estimation of oxidative stress markers and western blotting of apoptosis-associated proteins. Chronic iAs exposure led to significant decrease in Stratum Pyramidale layer thickness along with reduction in cell density and area of Pyramidal neurons in contrast to the controls. Biochemical analysis showed reduced hippocampal GSH content but no change in total nitrite (NO) levels following iAs exposure. Western blotting showed apparent changes in the expression levels of Bax and Bcl-2 proteins following iAs exposure, however the change was statistically insignificant. Contrastingly, iAs +RES co-treatment exhibited substantial reversal in morphological and biochemical observations. Together, these findings provide preliminary evidence of neuroprotective role of RES on structural and biochemical alterations pertaining to mouse hippocampus following chronic iAs exposure.
Collapse
Affiliation(s)
- K Mehta
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - B Kaur
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - K K Pandey
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - P Dhar
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - S Kaler
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India.
| |
Collapse
|
25
|
Wang Y, Zhao H, Nie X, Guo M, Jiang G, Xing M. Zinc application alleviates the adverse renal effects of arsenic stress in a protein quality control way in common carp. ENVIRONMENTAL RESEARCH 2020; 191:110063. [PMID: 32818499 DOI: 10.1016/j.envres.2020.110063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
The potential antagonistic mechanism between zinc (Zn) and arsenic (As) on renal toxicity was investigated in common carp. The results showed that by increased Zn efflux and retention (as reflected by zinc transporter 1 (ZnT-1), Zrt- and Irt- 1ike protein (ZIP) and metallothionein (MT) expression), Zn co-administration significantly recovered the antioxidant function (catalase, CAT) and the level of renal barrier function (Occludin, Claudins and Zonula Occludens) in comparison to As treatment. Interestingly, Zn co-administration with As resulted in carps undergoing reduction of heat shock response (HSPs), a low induction of autophagy flux (Beclin-1, microtubule-associated protein 1 light chain 3 (LC3) and sequestosome 1 (P62)) and decreased endoplasmic reticulum (ER) stress (activating transcription factor 6 (ATF-6), inositol requiring-1α (IRE1) and PKR-like ER kinase (PERK)) in the aspect of mRNA or protein levels. All these alleviated protein quality control processes induced by Zn under As stress was correlated with the no longer loosen tight connection, less swollen endoplasmic reticulum as well as reduced formation of autophagosomes and autophagic vesicles. Mechanically, post-transcriptional regulated protein quantities compromising phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway was demonstrated true causative forces inside the cell for Zn against As poisoning. In conclusion, we suggested the potential renal protective effect of Zn supplementation against As exposure by the modulation of protein quality control processes.
Collapse
Affiliation(s)
- Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| | - Xiaopan Nie
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Menghao Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Guangshun Jiang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| |
Collapse
|
26
|
Dennis MM, Poppenga R, Conan A, Hill K, Hargrave S, Maroun V, Stewart KM. Leatherback sea turtle (Dermochelys coriacea) hatch success and essential and nonessential metals in eggs and embryos from nests in St. Kitts (2015). MARINE POLLUTION BULLETIN 2020; 161:111726. [PMID: 33045529 DOI: 10.1016/j.marpolbul.2020.111726] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/05/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
Northwest Atlantic leatherback sea turtles (Dermochelys coriacea) are endangered and low hatch success limits potential for population recovery. We examined essential and nonessential metal concentrations in 43 eggs from nests on St. Kitts to determine if there was a relationship with hatch success. Whole homogenized embryos and undeveloped eggs contained detectable concentrations of arsenic, barium, copper, iron, selenium, vanadium, and zinc, but not beryllium, cadmium, chromium, cobalt, lead, mercury, molybdenum, and thallium. Of detected metals, only vanadium concentrations negatively correlated with hatch success (P = 0.01). Manganese and vanadium were associated with pneumonia occurring in the nest, and arsenic with renal mineralization. This study adds to the knowledge regarding baseline values for environmental contaminants in sea turtles, supporting the trend that leatherback eggs have relatively low concentrations of toxic metals, lacking a strong relationship with hatch success, and normally contain the essential elements copper, iron, selenium, and zinc.
Collapse
Affiliation(s)
- Michelle M Dennis
- Center for Conservation Medicine and Ecosystem Health, Ross University School of Veterinary Medicine, Camps, St. Kitts, West Indies, Saint Kitts and Nevis; Department of Biomedical and Diagnostic Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN, USA.
| | - Robert Poppenga
- California Animal Health and Food Safety Toxicology Laboratory, University of California, School of Veterinary Medicine, Davis, CA, USA
| | - Anne Conan
- Center for Conservation Medicine and Ecosystem Health, Ross University School of Veterinary Medicine, Camps, St. Kitts, West Indies, Saint Kitts and Nevis; Center for One Health Research and Policy Advice, City University of Hong Kong, Kowloon, Hong Kong, SAR, PR China
| | - Kristine Hill
- Center for Conservation Medicine and Ecosystem Health, Ross University School of Veterinary Medicine, Camps, St. Kitts, West Indies, Saint Kitts and Nevis; St. Kitts Sea Turtle Monitoring Network, P.O. Box 2298, Basseterre, St. Kitts, Saint Kitts and Nevis
| | - Sabine Hargrave
- California Animal Health and Food Safety Toxicology Laboratory, University of California, School of Veterinary Medicine, Davis, CA, USA
| | - Victoria Maroun
- Center for Conservation Medicine and Ecosystem Health, Ross University School of Veterinary Medicine, Camps, St. Kitts, West Indies, Saint Kitts and Nevis; St. Kitts Sea Turtle Monitoring Network, P.O. Box 2298, Basseterre, St. Kitts, Saint Kitts and Nevis
| | - Kimberly M Stewart
- Center for Conservation Medicine and Ecosystem Health, Ross University School of Veterinary Medicine, Camps, St. Kitts, West Indies, Saint Kitts and Nevis; St. Kitts Sea Turtle Monitoring Network, P.O. Box 2298, Basseterre, St. Kitts, Saint Kitts and Nevis
| |
Collapse
|
27
|
Ma Y, Shi Y, Wu Q, Ma W. Dietary arsenic supplementation induces oxidative stress by suppressing nuclear factor erythroid 2-related factor 2 in the livers and kidneys of laying hens. Poult Sci 2020; 100:982-992. [PMID: 33518152 PMCID: PMC7858178 DOI: 10.1016/j.psj.2020.11.061] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/15/2020] [Accepted: 11/23/2020] [Indexed: 01/24/2023] Open
Abstract
This study investigated the effects of dietary arsenic supplementation on laying performance, egg quality, hepatic and renal histopathology, and oxidative stress in the livers and kidneys of laying hens. Furthermore, the nuclear factor erythroid 2-related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1 (Keap1) pathway was explored to reveal the molecular mechanism of the stress. Five hundred and twelve 40-week-old Hyline White laying hens were randomly allocated to 4 groups with 8 pens per group and 16 hens per pen. The doses of arsenic administered to the 4 groups were 0.95, 20.78, 40.67, and 60.25 mg/kg. The results revealed that dietary arsenic supplementation significantly reduced hen-day egg production (P < 0.05), average egg weight (P < 0.05), Haugh units (P < 0.05), albumen height (P < 0.05), and eggshell strength (P < 0.05). Dietary arsenic supplementation also induced the accumulation of arsenic and histopathological damages in the liver and kidney. In accordance, dietary arsenic supplementation significantly enhanced serum alanine aminotransferase (P < 0.05), aspartate aminotransferase (P < 0.05), blood urea nitrogen (P < 0.05), and uric acid (P < 0.05) levels. After arsenic exposure, the activities of superoxide dismutase (SOD) (P < 0.05), catalase (P < 0.01), glutathione reductase (P < 0.05), and glutathione peroxidase (P < 0.05), and glutathione content (P < 0.05) were significantly decreased, while the malondialdehyde level was significantly increased (P < 0.05) in the liver and kidney. Positive correlations occurred between antioxidant enzyme activities and antioxidant enzyme gene expressions in the liver and kidney, except for renal manganese superoxide dismutase gene expression and SOD activity. Additionally, hepatic and renal Nrf2 mRNA expression was positively correlated with antioxidant gene expressions and negatively correlated with Keap1 mRNA expression. In summary, dietary arsenic supplementation induced oxidative stress by suppressing the Nrf2-Keap1 pathway in the livers and kidneys of laying hens.
Collapse
Affiliation(s)
- Yan Ma
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China.
| | - Yizhen Shi
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Qiujue Wu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Wenfeng Ma
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| |
Collapse
|
28
|
Dey S, Ballav P, Mandal A, Samanta P, Patra A, Das S, Mondal AK, Ghosh AR. Blood Biochemical and Erythrocytic Morpho-pathological Consequences of Naphthalene Intoxication in Indian Teleost, Anabas testudineus (Bloch). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103490. [PMID: 32911098 DOI: 10.1016/j.etap.2020.103490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/24/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
Anabas testudineus (Bloch) was exposed to 0.71 mg/L and 1.42 mg/L (25 and 50% of LC50 value respectively) naphthalene, a polycyclic aromatic hydrocarbon (PAH), for 21 days. Blood biochemical parameters and erythrocytic morphological alterations were assessed to describe the naphthalene toxicity. Biochemical analysis showed a significant increase in glutamic pyruvic transaminase, GPT (576.7 ± 11.79 and 608.9 ± 12.08 U/L, respectively) and alkaline phosphatase, ALP (12.9 ± 0.69 and 13.4 ± 0.64 U/L, respectively) activities under two doses compared with control. Protein and albumin (ALB) content in blood decreased significantly, in comparison with control value in the tune of 22.67 ± 1.04 and 23.97 ± 1.24 g/dl, respectively and 10.7 ± 0.79 and 11.1 ± 0.67 g/dl, respectively. Erythrocytes showed varied symptomatic morphological changes under naphthalene exposure, which included severe denaturation, swelling in cells, appearance of sickle and tear drop cells, and cellular vacuolation. In particularly, the changes were more prominent under higher naphthalene exposure. Following the results, it has been able to establish that GPT, ALP, protein and ALB, and the morphological manifestations of erythrocytes would be good tools of biomarker in monitoring toxicological paradigm, especially to naphthalene exposure in aquatic bodies.
Collapse
Affiliation(s)
- Sukhendu Dey
- Department of Environmental Science, The University of Burdwan, Burdwan 713104, West Bengal, India.
| | - Puspita Ballav
- Department of Environmental Science, The University of Burdwan, Burdwan 713104, West Bengal, India.
| | - Arghya Mandal
- Department of Environmental Science, The University of Burdwan, Burdwan 713104, West Bengal, India.
| | - Palas Samanta
- Department of Environmental Science, Sukanta Mahavidyalaya, University of North Bengal, Dhupguri, West Bengal, India.
| | - Atanu Patra
- Department of Environmental Science, The University of Burdwan, Burdwan 713104, West Bengal, India.
| | - Subhas Das
- Department of Environmental Science, The University of Burdwan, Burdwan 713104, West Bengal, India.
| | - Arnab Kumar Mondal
- Department of Environmental Science, The University of Burdwan, Burdwan 713104, West Bengal, India.
| | - Apurba Ratan Ghosh
- Department of Environmental Science, The University of Burdwan, Burdwan 713104, West Bengal, India.
| |
Collapse
|
29
|
Zhang W, Song D, Tan QG, Wang WX, Zhang L. Physiologically Based Pharmacokinetic Model for the Biotransportation of Arsenic in Marine Medaka ( Oryzias melastigma). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:7485-7493. [PMID: 32401018 DOI: 10.1021/acs.est.0c01519] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The toxicity of arsenic (As) targets specific tissues of organisms, while the biotransportation of As among the tissues of fish remains poorly understood. In the present study, radiotracer techniques followed by a physiologically based pharmacokinetic (PBPK) modeling were applied to simulate the biotransportation (absorption, distribution, and elimination) of 73As(V) and biotransformation of As(V) in the marine medaka Oryzias melastigma after waterborne As exposure. Fish were simulated by a six-compartment model by assuming that blood was the intermediate exchange among different compartments (gill, intestine, liver, head, and carcass). Modeling suggested that intestine and gill were the uptake, exchange, as well as elimination sites of waterborne As, while carcass and head were the main storage sites. Intestine played a vital role in the metabolism of As(V) by biotransforming inorganic As into arsenobetaine (AsB), possibly because of the important role of gut microbiota. The correlation between the PBPK model constants and the As speciation (e.g., AsB %, inorganic As %, and methylated As %) indicated that AsB tended to be stored in the tissues rather than being depurated, while inorganic and methylated As were more easily transferred from tissues to the blood and eliminated. Modeling simulation coupling with biotransformation for the first time demonstrated that the fish intestine was the main metabolic site, and synthesis of AsB as mediated by the microbiota in the intestine contributed to the high As bioaccumulation in marine fish.
Collapse
Affiliation(s)
- Wei Zhang
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Dongdong Song
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Qiao-Guo Tan
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, College of Environment and Ecology, Xiamen University, Xiamen 361102, P. R. China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Li Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
30
|
Mekkawy IA, Mahmoud UM, Moneeb RH, Sayed AEDH. Significance Assessment of Amphora coffeaeformis in Arsenic-Induced Hemato- Biochemical Alterations of African Catfish (Clarias gariepinus). FRONTIERS IN MARINE SCIENCE 2020; 7. [DOI: 10.3389/fmars.2020.00191] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
31
|
Weber AA, Sales CF, de Souza Faria F, Melo RMC, Bazzoli N, Rizzo E. Effects of metal contamination on liver in two fish species from a highly impacted neotropical river: A case study of the Fundão dam, Brazil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110165. [PMID: 31918258 DOI: 10.1016/j.ecoenv.2020.110165] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/13/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
Environmental disasters such as the rupturing of mine tailings dams are a major concern worldwide. In the present study, we assess the effects of the release of mine waste due to the rupture of the Fundão dam on two native fish species (Hoplias intermedius and Hypostomus affinis) from the Doce River basin. Two sampling sites were chosen: S1, a reference site, and S2, contaminated by mining waste. Water and sediment were collected to evaluate metals concentration. Adult fish were caught to analyse biological parameters, hepatic histopathology, and biomarkers of metal contamination. Compared to site S1, the concentration of manganese was statistically higher in water while lead, nickel, and arsenic were statistically higher in the sediment from site S2, and iron had no significant difference between sites. At site S1, fish of both species presented hepatic tissue with normal architecture. At site S2, hepatic alterations, such as cytoplasmic vacuolization and necrosis were frequently found in both species. Regarding the histopathological index, higher values were found in both species from site S2. The positive antibody reactions for cytochrome P450 1A (CYP1A) and metallothionein (MT) were statistically greater in site S2 for both species. The oxidative stress biomarkers, superoxide dismutase (SOD) and catalase (CAT) were statistically higher in H. intermedius from site S2, but only CAT was statistically greater in H. affinis at site S2. These results demonstrate that the release of mineral residues from the rupture of the Samarco mine dam is provoking hepatic damage in the fish from the Doce River besides inducing the expression of proteins and enzymes related to metal contamination.
Collapse
Affiliation(s)
- André Alberto Weber
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, C.P.486, 30161-970, Minas Gerais, Brazil
| | - Camila Ferreira Sales
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, C.P.486, 30161-970, Minas Gerais, Brazil
| | - Francisco de Souza Faria
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, C.P.486, 30161-970, Minas Gerais, Brazil
| | - Rafael Magno Costa Melo
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, C.P.486, 30161-970, Minas Gerais, Brazil
| | - Nilo Bazzoli
- Programa de Pós-graduação em Zoologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, PUC Minas, Belo Horizonte, 30535-610, Minas Gerais, Brazil
| | - Elizete Rizzo
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, C.P.486, 30161-970, Minas Gerais, Brazil.
| |
Collapse
|
32
|
Dey S, Ghosh AR. Dose-specific biochemical and erythrocytic alterations of anthracene exposure on blood of Anabas testudineus (Bloch). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 72:103247. [PMID: 31473557 DOI: 10.1016/j.etap.2019.103247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/31/2019] [Accepted: 08/24/2019] [Indexed: 06/10/2023]
Abstract
The present work is designed to compare the chronic toxicity of anthracene [one of the major constituents of polycyclic aromatic hydrocarbons (PAHs)] on Anabas testudineus (Bloch), in an air-breathing carnivorous fish, in laboratory condition under the exposure of two doses of LC50 value, i.e., 0.0075 mg/l (T1), i.e., 25% and 0.015 mg/l (T2) i.e., 50% for 21 days. A comprehensive comparison was recorded based on biochemical parameters and evaluated the erythrocytic alterations of blood components of the fish. It revealed an enhanced trend of activity of glutamic pyruvic transamin (GPT) 470.7 ± 12.32, 546.6 ± 13.22, 599.4 ± 13.09 U/L and alkaline phosphatase (ALP) 9.2 ± 0.61, 10.4 ± 0.86, 10.9 ± 0.74 U/L in control, T1 and T2 respectively; and reverse trend of protein (PRO) 26.63 ± 1.32, 22.15 ± 1.13, 22.29 ± 1.02 g/dl and albumin (ALB) 11.9 ± 0.71, 9.65 ± 0.91, 10.05 ± 0.94 g/dl in control, T1 and T2 respectively. Under T1 and T2 exposure conditions, it displayed the maximum alterations and appearance of tear drop-like cells (Tr), sickle cells (Sk), swelled cells (Sc) and vacuolated cells (Va) in comparison to control condition. An exclusive experimentation of the present work suggested that biochemical parameters and erythrocytic alterations may be useful tool as biomarkers to monitor the long term toxicological effects, especially to anthracene a constituent of PAHs, in any aquatic environment.
Collapse
Affiliation(s)
- Sukhendu Dey
- Department of Environmental Science, The University of Burdwan, Burdwan 713104, West Bengal, India.
| | - Apurba Ratan Ghosh
- Department of Environmental Science, The University of Burdwan, Burdwan 713104, West Bengal, India.
| |
Collapse
|
33
|
Sayed AH, Kitamura D, Oda S, Kashiwada S, Mitani H. Cytotoxic and genotoxic effects of arsenic on erythrocytes of Oryzias latipes: Bioremediation using Spirulina platensis. J Trace Elem Med Biol 2019; 55:82-88. [PMID: 31345371 DOI: 10.1016/j.jtemb.2019.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/28/2019] [Accepted: 06/13/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Exposure to the environmental pollutants poses a serious threat to aquatic organism. The arsenic exposure in fish increases the risk of developing serious alterations from embryo to adult. OBJECTIVES The present investigation was done to study the toxic effects of heavy metal arsenic [As(III)] on medaka (Oryzias latipes). Morphological alterations, apoptosis, nuclear abnormalities, and genotoxic biomarkers in erythrocytes were used to determine the stress caused by arsenic (As) exposure. METHODS Medaka was exposed to As for 15 days at two toxic sublethal concentrations (7 ppm and 10 ppm) in combination with Spirulina platensis (SP) treatment as antioxidant algae at 200 mg/L. RESULTS Results were consistent with a previous study results on tilapia. Exposure of medaka to As resulted in a dose-dependent increase in most the biomarkers used in the current study. Fish exposed to10 ppm As showed highest level of DNA damage. For the first time to our knowledge, using SP to counter the As toxicity in medaka, DNA damage restored to control levels. CONCLUSION Accordingly, those results suggests that SP can protect medaka in aquaculture against As-induced damage by its ability as reactive oxygen species (ROS) reducer, antioxidant role, and DNA damage scavenger.
Collapse
Affiliation(s)
- Alaa H Sayed
- Zoology department, Faculty of Science, Assiut University, 71516 Assiut, Egypt.
| | - Daiki Kitamura
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193, Japan
| | - Shoji Oda
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Shosaku Kashiwada
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193, Japan
| | - Hiroshi Mitani
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| |
Collapse
|
34
|
Effects of copper toxicity at different pH and temperatures on the in vitro enzyme activity in blood and liver of fish, Prochilodus lineatus. Mol Biol Rep 2019; 46:4933-4942. [DOI: 10.1007/s11033-019-04944-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/26/2019] [Indexed: 12/11/2022]
|
35
|
Merly L, Lange L, Meÿer M, Hewitt AM, Koen P, Fischer C, Muller J, Schilack V, Wentzel M, Hammerschlag N. Blood plasma levels of heavy metals and trace elements in white sharks (Carcharodon carcharias) and potential health consequences. MARINE POLLUTION BULLETIN 2019; 142:85-92. [PMID: 31232352 DOI: 10.1016/j.marpolbul.2019.03.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/04/2019] [Accepted: 03/10/2019] [Indexed: 06/09/2023]
Abstract
Heavy metals may adversely affect health in marine organisms. As top predators, sharks may be especially vulnerable to exposure over long lifespans. Here we evaluate plasma levels of 14 heavy metals and 12 trace elements in white sharks, Carcharodon carcharias, in South Africa to determine whether they are related to sex, body size, and/or body condition and other health parameters. High levels of mercury and arsenic were found in shark blood at levels considered toxic in other vertebrates. Heavy metal concentrations were not related to body size or sex. Metal concentrations were not related to body condition with exception of copper, which was positively correlated. Protective effects of elements such as selenium, zinc, and iron were not detected. No negative effects on health parameters, such as total leukocytes or granulocyte to lymphocyte ratios were observed. Results suggest that sharks may have protective mechanisms that mitigate harmful effects of heavy metal exposure, providing new opportunities for future studies.
Collapse
Affiliation(s)
- Liza Merly
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, FL 33149, USA.
| | - Lucia Lange
- PathCare VetLab, PathCare Reference Laboratory, Private Bag X107, N1 City, Goodwood 7460, South Africa
| | - Michael Meÿer
- Branch: Oceans and Coasts, Department of Environmental Affairs, Private Bag X4390, Cape Town 8000, South Africa
| | - Adrian Michael Hewitt
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch, 7701, Cape Town, South Africa
| | - Pieter Koen
- Western Cape Department of Agriculture, Veterinary Services, Private Bag X1, Elsenberg, 7607, South Africa
| | | | - Johann Muller
- PathCare VetLab, PathCare Reference Laboratory, Private Bag X107, N1 City, Goodwood 7460, South Africa
| | - Volker Schilack
- V&M Analytical Toxicology Laboratory Services, Private Bag X6590, George 6530, South Africa
| | - Mauritz Wentzel
- V&M Analytical Toxicology Laboratory Services, Private Bag X6590, George 6530, South Africa
| | - Neil Hammerschlag
- Department of Marine Ecosystems and Society, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, FL 33149, USA; Leonard and Jayne Abess Center for Ecosystem Science and Policy, University of Miami, Coral Gables, FL 33146, USA
| |
Collapse
|
36
|
Samanta P, Pal S, Senapati T, Mukherjee AK, Ghosh AR. Assessment of adverse outcome of Excel Mera 71 in Anabas testudineus by histological and ultrastructural alterations. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 205:19-24. [PMID: 30312898 DOI: 10.1016/j.aquatox.2018.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 10/01/2018] [Accepted: 10/01/2018] [Indexed: 06/08/2023]
Abstract
Present study was designed to evaluate the adverse effect of glyphosate-based herbicide, Excel Mera 71 in Anabas testudineus on comparative basis under field and laboratory conditions. Field (750 g/acre) and laboratory (17.2 mg/L) experiments were performed for a period of 30 days. For field experiment special type of cages were prepared. Fish gill, liver, and kidney were analyzed for histology and ultrastructural responses. A significant increment in morphometric indices (DTC) was observed in gill, liver and kidney of A. testudineus under laboratory condition (p < 0.05) and responses showed the degree of pathogenicity in the order of liver > kidney > gills. However, under field study significant increase in DTC value was observed in gill and liver (p < 0.05). Among the scanning electron microscopic (SEM) observations necrosis and loss of microridges, and damage in stratified epithelial cells were prominent in gill, although higher prevalence of alterations was observed under laboratory study than field study. Additionally, transmission electron microscopic (TEM) observations also depicted higher prevalence of pathological lesions under laboratory study compared with field observation. Among the TEM observations damage in chloride and pavement cells, degenerative mitochondria and nucleus (in gill); severe vacuolation, necrosed nucleus and vesiculated network in case of liver and degenerated epithelial cells, cytoplasmic vacuolation, and damage in proximal convoluted tubules (PCT) in case of kidney were prominent. Therefore, these findings demonstrated that Excel Mera 71 induces significant damage in tissues of A. testudineus and these responses might be considered as biomarkers for monitoring herbicidal toxicity on fish in aquatic body.
Collapse
Affiliation(s)
- Palas Samanta
- Environmental Quality, Atmospheric Science and Climate Change Research Group, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Environment and Labor Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Department of Environmental Science, The University of Burdwan, West Bengal, India; Department of Marine Science, Incheon National University, Incheon, Republic of Korea.
| | - Sandipan Pal
- Department of Environmental Science, Aghorekamini Prakashchandra Mahavidyalaya, West Bengal, India
| | - Tarakeshwar Senapati
- Department of Environmental Science, The University of Burdwan, West Bengal, India
| | | | - Apurba Ratan Ghosh
- Department of Environmental Science, The University of Burdwan, West Bengal, India
| |
Collapse
|
37
|
AnvariFar H, Amirkolaie AK, Jalali AM, Miandare HK, Sayed AH, Üçüncü Sİ, Ouraji H, Ceci M, Romano N. Environmental pollution and toxic substances: Cellular apoptosis as a key parameter in a sensible model like fish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 204:144-159. [PMID: 30273782 DOI: 10.1016/j.aquatox.2018.09.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 08/06/2018] [Accepted: 09/17/2018] [Indexed: 02/07/2023]
Abstract
The industrial wastes, sewage effluents, agricultural run-off and decomposition of biological waste may cause high environmental concentration of chemicals that can interfere with the cell cycle activating the programmed process of cells death (apoptosis). In order to provide a detailed understanding of environmental pollutants-induced apoptosis, here we reviewed the current knowledge on the interactions of environmental chemicals and programmed cell death. Metals (aluminum, arsenic, cadmium, chromium, cobalt, zinc, copper, mercury and silver) as well as other chemicals including bleached kraft pulp mill effluent (BKME), persistent organic pollutants (POPs), and pesticides (organo-phosphated, organo-chlorinated, carbamates, phyretroids and biopesticides) were evaluated in relation to apoptotic pathways, heat shock proteins and metallothioneins. Although research performed over the past decades has improved our understanding of processes involved in apoptosis in fish, yet there is lack of knowledge on associations between environmental pollutants and apoptosis. Thus, this review could be useful tool to study the cytotoxic/apoptotic effects of different pollutants in fish species.
Collapse
Affiliation(s)
- Hossein AnvariFar
- Department of Fisheries, Faculty of Animal Science and Fisheries, University of Agriculture and Natural Resources, P.O. Box 578, Sari, Iran; University of Applied Science and Technology, Provincial Unit, P.O. Box: 4916694338, Golestan, Iran
| | - A K Amirkolaie
- Department of Fisheries, Faculty of Animal Science and Fisheries, University of Agriculture and Natural Resources, P.O. Box 578, Sari, Iran
| | - Ali M Jalali
- Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 49138-15739, Iran; Sturgeon Affairs Management, Gorgan, Golestan, Iran; Center for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, VIC, 3280, Australia
| | - H K Miandare
- Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 49138-15739, Iran
| | - Alaa H Sayed
- Department of Zoology, Faculty of Science, Assiut University, 71516 Assiut, Egypt
| | - Sema İşisağ Üçüncü
- Department of Biology, Faculty of Science, Ege University, Bornova, 35100, İzmir, Turkey
| | - Hossein Ouraji
- Department of Fisheries, Faculty of Animal Science and Fisheries, University of Agriculture and Natural Resources, P.O. Box 578, Sari, Iran
| | - Marcello Ceci
- Department Ecological and Biological Sciences, University of Tuscia, Tuscia University, Viterbo, 01100, Italy
| | - Nicla Romano
- Department Ecological and Biological Sciences, University of Tuscia, Tuscia University, Viterbo, 01100, Italy.
| |
Collapse
|
38
|
Samanta P, Im H, Na J, Jung J. Ecological risk assessment of a contaminated stream using multi-level integrated biomarker response in Carassius auratus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:429-438. [PMID: 29100180 DOI: 10.1016/j.envpol.2017.10.061] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 09/26/2017] [Accepted: 10/15/2017] [Indexed: 06/07/2023]
Abstract
The goal of this study was to evaluate the adverse effects of wastewater effluents on freshwater crucian carp, Carassius auratus, inhabiting Sincheon stream using the integrated biomarker response (IBR) at the genotoxic (micronucleus [MN] test), oxidative stress (activity of catalase [CAT] and glutathione S-transferase [GST], and level of lipid peroxidation [LPO]), histopathological (degree of tissue changes [DTC]), and physiological (condition factor [CF] and liver somatic index [LSI]) levels. The CF and LSI were significantly (p < 0.05) enhanced in fish from downstream sites (DS1 and DS2) as compared to that of upstream (US) fish samples. Moreover, a significant increase in morphometric indices (DTC) was observed in C. auratus collected from downstream sites (p < 0.05) and histopathological responses showed the degree of pathogenicity in the order of liver > kidney > gills. The activities of CAT, GST, and LPO in fish from the DS1 and DS2 sites were notably increased in gills, liver, and kidney compared to that of fish from the US site. Additionally, the MN test level in C. auratus from the DS1 and DS2 were significantly increased (p < 0.05) when compared with that of the US site. Considering the higher bioaccumulation of Cd, Co, Cr, Mn, Ni, and Pb in gills, liver, and kidney of C. auratus collected from downstream sites compared to that of the upstream site (p < 0.05), the observed toxicity was likely attributable to metal accumulation. The multi-level IBR index was higher at the DS1 site (15.08) than at the DS2 (1.02) and the reference US (0.00) sites. Therefore, these findings demonstrated that wastewater effluent discharge induces significant DNA damage, oxidative stress, and tissue injuries in C. auratus and suggested that the multi-level IBR approach should be used to quantify these effects on fish in streams and rivers.
Collapse
Affiliation(s)
- Palas Samanta
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Hyungjoon Im
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Joorim Na
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jinho Jung
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
39
|
Aidos L, Pinheiro Valente LM, Sousa V, Lanfranchi M, Domeneghini C, Di Giancamillo A. Effects of different rearing temperatures on muscle development and stress response in the early larval stages of Acipenser baerii. Eur J Histochem 2017; 61:2850. [PMID: 29313594 PMCID: PMC5745384 DOI: 10.4081/ejh.2017.2850] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 01/03/2023] Open
Abstract
The present study aims at investigating muscle development and stress response in early stages of Siberian sturgeon when subjected to different rearing temperatures, by analysing growth and development of the muscle and by assessing the stress response of yolk-sac larvae. Siberian sturgeon larvae were reared at 16°C, 19°C and 22°C until the yolk-sac was completely absorbed. Sampling timepoints were: hatching, schooling and complete yolk-sac absorption stage. Histometrical, histochemical and immunohistochemical analyses were performed in order to characterize muscle growth (total muscle area, TMA; slow muscle area, SMA; fast muscle area, FMA), development (anti-proliferating cell nuclear antigen -PCNA or anticaspase) as well as stress conditions by specific stress biomarkers (heat shock protein 70 or 90, HSP70 or HSP90). Larvae subjected to the highest water temperature showed a faster yolk-sac absorption. Histometry revealed that both TMA and FMA were larger in the schooling stage at 19°C while no differences were observed in the SMA at any of the tested rearing temperatures. PCNA quantification revealed a significantly higher number of proliferating cells in the yolk-sac absorption phase at 22°C than at 16°C. HSP90 immunopositivity seems to be particularly evident at 19°C. HPS70 immunopositivity was never observed in the developing lateral muscle.
Collapse
Affiliation(s)
- Lucia Aidos
- University of Milan, Department of Health, Animal Science and Food Safety.
| | | | | | | | | | | |
Collapse
|
40
|
Okumu MO, Ochola FO, Mbaria JM, Kanja LW, Gakuya DW, Kinyua AW, Okumu PO, Kiama SG. Mitigative effects of Moringa oleifera against liver injury induced by artesunate-amodiaquine antimalarial combination in wistar rats. CLINICAL PHYTOSCIENCE 2017. [DOI: 10.1186/s40816-017-0052-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
41
|
Greani S, Lourkisti R, Berti L, Marchand B, Giannettini J, Santini J, Quilichini Y. Effect of chronic arsenic exposure under environmental conditions on bioaccumulation, oxidative stress, and antioxidant enzymatic defenses in wild trout Salmo trutta (Pisces, Teleostei). ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:930-941. [PMID: 28623431 DOI: 10.1007/s10646-017-1822-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/30/2017] [Indexed: 05/25/2023]
Abstract
The present study evaluates the relation between chronic arsenic (As) exposure in the natural distribution area of wild brown trout (Salmo trutta), oxidative stress and antioxidant enzymatic defenses. Two rivers of the same watershed were evaluated to highlight the correlation between As accumulation and the resulting stress: (i) the Presa River, which has high chronic As levels (2281.66 µg/L) due to past mining activity, and (ii) the Bravona River (control river). This metalloid was measured in main fish tissues (gills, kidney, liver, muscle, gonads and fins) and water. As organotropism in S. trutta was kidney > liver > gill > fin > gonad > muscle. The HepatoSomatic Index (HSI) and somatic condition (CF) were used to compare fish population conditions from both sites. Arsenic can be absorbed by the gills and can induce oxidative stress and disturb antioxidant defenses. The aim of this study was to evaluate oxidative stress response by measuring malondialdehyde (MDA) content, as a marker of lipid peroxidation, and antioxidant enzymatic defenses (Superoxide dismutase (SOD), catalase CAT, glutathione peroxidase (GPx) and glutathione S-transferase (GST)), in the main tissues of control and exposed trout. The highest MDA content was found in the kidney and liver of exposed trout. SOD and CAT activities in exposed livers and kidneys were considerably increased while a significant rise of GPx activity was observed only in the liver. GST activity was found to be significantly induced in the liver of exposed trout. The results demonstrate that arsenic bioaccumulation can induce lipid peroxidation and substantial modifications in antioxidant enzymatic defenses in main wild trout tissues.
Collapse
Affiliation(s)
- Samuel Greani
- Laboratoire Parasites et Ecosystèmes méditerranéens, UMR CNRS 6134 SPE, Università di Corsica, F-20250, Corti, Corsica, France
| | - Radia Lourkisti
- Laboratoire de Biochimie et Biologie moléculaire du végétal, UMR CNRS 6134 SPE, Università di Corsica, F-20250, Corti, Corsica, France
| | - Liliane Berti
- Laboratoire de Biochimie et Biologie moléculaire du végétal, UMR CNRS 6134 SPE, Università di Corsica, F-20250, Corti, Corsica, France
| | - Bernard Marchand
- Laboratoire Parasites et Ecosystèmes méditerranéens, UMR CNRS 6134 SPE, Università di Corsica, F-20250, Corti, Corsica, France
| | - Jean Giannettini
- Laboratoire de Biochimie et Biologie moléculaire du végétal, UMR CNRS 6134 SPE, Università di Corsica, F-20250, Corti, Corsica, France
| | - Jérémie Santini
- Laboratoire de Biochimie et Biologie moléculaire du végétal, UMR CNRS 6134 SPE, Università di Corsica, F-20250, Corti, Corsica, France.
| | - Yann Quilichini
- Laboratoire Parasites et Ecosystèmes méditerranéens, UMR CNRS 6134 SPE, Università di Corsica, F-20250, Corti, Corsica, France
| |
Collapse
|
42
|
Dwivedi S, Kumar M, Trivedi SP. Mitigating potential of Melissa officinale against As 3+-induced cytotoxicity and transcriptional alterations of Hsp70 and Hsp27 in fish, Channa punctatus (Bloch). ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:306. [PMID: 28573351 DOI: 10.1007/s10661-017-6002-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Abstract
The mitigating potential of Melissa officinale (MO) (Lamiaceae) against arsenite (As3+)-induced oxidative stress, cytogenotoxicity, and expression of stress genes in fish, Channa punctatus (Bloch), teleost, was explored. After confirming the composition of MO extract, caffeic acid (0.96%), hesperidin (1.73%), naringenin (7.70%), lutenolin (3.29%), kaempferol (11.46%) and hesperetin (6.24%), by HPLC-PDA analysis, the experiment was set up in six groups (G1-G6), each containing 10 specimens. Blood, muscle, gills and liver tissues of control and treated fishes were excised at an interval of 24 till 96 h. Ameliorative potential of MO was confirmed by satisfactory restoration of altered activities of malondialdehyde, hydrogen peroxide, superoxide dismutase, catalase, glutathione peroxidise, glutathione reductase, reduced glutathione and ascorbate peroxidase in G4, G5 and G6, co-exposed with 96 h-LC50/10 As3+ with MO. A significant (p < 0.05) recovery in the frequencies of cytogenotoxic markers, micronuclei, disintegrated nucleus and echinocytes, which were expressed significantly (p < 0.05) in G3 exposed to sub-lethal concentration of ATO alone, was recorded in fish groups (G4, G5 and G6) together treated with 96 h-LC50/10 of ATO and 2, 4 and 8 ppm of MO, respectively. Moreover, the expression of Hsp70 gene was downregulated (2.29-fold); whereas, Hsp27 gene was upregulated (1.16-fold) in G6, the group co-exposed with 96 h-LC50/10 As3+ with 8 ppm of MO in comparison with G3 (3.11-fold for Hsp70; 0.51-fold for Hsp27) after 96 h of exposure period. Thus, it can be inferred that the MO at its tested concentration can be effectively used to mitigate As3+ generated toxicities in C. punctatus.
Collapse
Affiliation(s)
- Shraddha Dwivedi
- Environmental Toxicology and Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Manoj Kumar
- Environmental Toxicology and Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Sunil P Trivedi
- Environmental Toxicology and Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow, 226007, India.
- ETBL, Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh, 226007, India.
| |
Collapse
|
43
|
Effect of curcumin on kidney histopathological changes, lipid peroxidation and total antioxidant capacity of serum in sodium arsenite-treated mice. ACTA ACUST UNITED AC 2017; 69:93-97. [DOI: 10.1016/j.etp.2016.08.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 08/22/2016] [Indexed: 11/23/2022]
|
44
|
Ray A, Bhaduri A, Srivastava N, Mazumder S. Identification of novel signature genes attesting arsenic-induced immune alterations in adult zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2017; 321:121-131. [PMID: 27614325 DOI: 10.1016/j.jhazmat.2016.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 08/05/2016] [Accepted: 09/01/2016] [Indexed: 06/06/2023]
Abstract
Arsenic poisoning is a serious global issue. Apart from causing developmental and systemic toxicity, arsenic has recently been reported for its ability to hinder immune responses. The present study is designed to identify the global expression profile associated with arsenic-induced immune alterations at the organismic level. Adult zebrafish (Danio rerio) were exposed to 20, 40 and 80ppb of arsenic trioxide for 30days, sacrificed and global gene expression profile studied. Microarray data suggested 65 immune related genes were commonly affected in the three treatment regimens. The expression profile of key immune related genes (tlr1, nitr1f, nitr1c, crfb8, socs7, socs3b, abcb3/1, mch1uja, ifnγ1-2, cxcl12b and crlf1a) was validated by qPCR. Pathway analysis suggested the major involvement of JAK-STAT circuit in the process. The expression of these marker genes was also studied in arsenic exposed and bacteria (Aeromonas hydrophila) challenged zebrafish. Increase in bacterial colony forming units (CFU) coupled with gross histopathology of kidney in arsenic exposed-bacteria challenged fish suggested profound immuno-compromised condition. We propose that chronic arsenic exposure leads to hyperactivation of the immune system as a consequence when exposed to further stress (microbial) it induces immuno-suppression with pathological implications. The study provides a molecular snap shot for predicting arsenic immuno-toxicity.
Collapse
Affiliation(s)
- Atish Ray
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India.
| | - Asani Bhaduri
- Cluster Innovation Centre, University of Delhi, Delhi 110007, India.
| | - Nidhi Srivastava
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India.
| | - Shibnath Mazumder
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India.
| |
Collapse
|
45
|
Fortes Carvalho Neta RN, Barbosa GL, Torres HS, Pinheiro Sousa DB, Castro JDS, Santos DMS, Tchaicka L, Almeida ZDSD, Teixeira EG, Torres AR. Changes in Glutathione S-Transferase Activity and Parental Care Patterns in a Catfish (Pisces, Ariidae) as a Biomarker of Anthropogenic Impact in a Brazilian Harbor. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 72:132-141. [PMID: 27864585 DOI: 10.1007/s00244-016-0326-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 11/02/2016] [Indexed: 06/06/2023]
Abstract
Catfish have been used as a model system for studying biochemical mechanisms of biotransformation. The main goal of this study was to identify alterations in hepatic glutathione S-transferase (GST) activity and changes in the parental care pattern of a mouth-brooding catfish, Sciades herzbergii, as a biomarker of anthropogenic impact in a port area on the northeastern coast of Brazil. The fish were sampled from a natural reserve (A1 = reference site) and from an industrialized port area (A2 = impacted site). Two analyses were carried out: hepatic GST activity and mouth-brooding behavior of males. Catfish collected from the A1 site displayed all stages of gonadal maturation, and some of the adult males were mouth brooding 12-30 embryos. Not all gonadal maturation stages of the catfish were represented at the A2 site, and no mouth-brooding males were observed. GST activity in the liver of S. herzbergii was significantly higher in fish from the impacted site compared with fish from the reference site. Values for the enzymatic activity increased progressively in fish sampled from the reserve area as they became more reproductively mature (immature ≤ maturing ≤ mature ≤ spent). However, the greatest values for GST activity (2.84 ± 0.31 μmol min-1 mg protein-1) among fish sampled from the impacted area were found in (immature) juveniles. These data suggest that changes in hepatic GST activity and mouth-brooding behavior of S. herzbergii can be used as biomarkers of anthropogenic impact.
Collapse
Affiliation(s)
- Raimunda Nonata Fortes Carvalho Neta
- Department of Chemistry and Biology, State University of Maranhão (UEMA), Campus Paulo VI, Caixa Postal 9, São Luís, Maranhão, 65000-000, Brazil.
- Laboratory of Biomarkers in Aquatic Organisms (LABOAq), State University of Maranhão (UEMA), Campus Paulo VI, São Luís, Maranhão, 65000-000, Brazil.
- Master Program of Aquatic Resources and Fisheries (PPGRAP), State University of Maranhão (UEMA), Campus Paulo VI, São Luís, Maranhão, 65000-000, Brazil.
- Master Programa in Oceanography, Federal University of Maranhão (UFMA), Campus Dom Delgado, São Luís, Maranhão, Brazil.
| | - Gleyciane Lobato Barbosa
- Laboratory of Biomarkers in Aquatic Organisms (LABOAq), State University of Maranhão (UEMA), Campus Paulo VI, São Luís, Maranhão, 65000-000, Brazil
| | - Hetty Salvino Torres
- Master Program of Aquatic Resources and Fisheries (PPGRAP), State University of Maranhão (UEMA), Campus Paulo VI, São Luís, Maranhão, 65000-000, Brazil
| | - Débora Batista Pinheiro Sousa
- Master Program of Aquatic Resources and Fisheries (PPGRAP), State University of Maranhão (UEMA), Campus Paulo VI, São Luís, Maranhão, 65000-000, Brazil
| | - Jonatas da Silva Castro
- Master Program of Aquatic Resources and Fisheries (PPGRAP), State University of Maranhão (UEMA), Campus Paulo VI, São Luís, Maranhão, 65000-000, Brazil
| | - Débora Martins Silva Santos
- Department of Chemistry and Biology, State University of Maranhão (UEMA), Campus Paulo VI, Caixa Postal 9, São Luís, Maranhão, 65000-000, Brazil
- Master Program of Aquatic Resources and Fisheries (PPGRAP), State University of Maranhão (UEMA), Campus Paulo VI, São Luís, Maranhão, 65000-000, Brazil
| | - Lígia Tchaicka
- Department of Chemistry and Biology, State University of Maranhão (UEMA), Campus Paulo VI, Caixa Postal 9, São Luís, Maranhão, 65000-000, Brazil
- Master Program of Aquatic Resources and Fisheries (PPGRAP), State University of Maranhão (UEMA), Campus Paulo VI, São Luís, Maranhão, 65000-000, Brazil
| | - Zafira da Silva de Almeida
- Department of Chemistry and Biology, State University of Maranhão (UEMA), Campus Paulo VI, Caixa Postal 9, São Luís, Maranhão, 65000-000, Brazil
- Master Program of Aquatic Resources and Fisheries (PPGRAP), State University of Maranhão (UEMA), Campus Paulo VI, São Luís, Maranhão, 65000-000, Brazil
| | - Erivania Gomes Teixeira
- Master Program of Aquatic Resources and Fisheries (PPGRAP), State University of Maranhão (UEMA), Campus Paulo VI, São Luís, Maranhão, 65000-000, Brazil
| | - Audalio Rebelo Torres
- Master Program of Aquatic Resources and Fisheries (PPGRAP), State University of Maranhão (UEMA), Campus Paulo VI, São Luís, Maranhão, 65000-000, Brazil
- Master Programa in Oceanography, Federal University of Maranhão (UFMA), Campus Dom Delgado, São Luís, Maranhão, Brazil
| |
Collapse
|
46
|
Sarkar S, Mukherjee S, Chattopadhyay A, Bhattacharya S. Differential modulation of cellular antioxidant status in zebrafish liver and kidney exposed to low dose arsenic trioxide. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 135:173-182. [PMID: 27736677 DOI: 10.1016/j.ecoenv.2016.09.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/22/2016] [Accepted: 09/26/2016] [Indexed: 06/06/2023]
Abstract
Zebrafish were exposed to a nonlethal dose (1/350LC50; 50µg/L) of As2O3 and sampled at 7, 15, 30, 60 and 90 days of treatment. The oxidative stress response was assessed in terms of time-dependent histopathological changes, lipid peroxidation, GSH status, activities of detoxification enzymes and expression of antioxidant genes in liver and kidney. As2O3 treatment enhanced lipid peroxidation except at day 90 in liver and day 30 in kidney. Glutathione depleted significantly in the liver except on day 30; whereas in kidney, it increased initially but thereafter depleted significantly. The liver GST activity was high until day 30, low on day 60 and high on day 90. On the other hand, activity of GST in kidney remained high throughout the exposure. GR activity in liver decreased initially but augmented from 30 days onwards whereas in kidney it remained high until 30 days of exposure. Significant increase in GPx and CAT activities in liver and kidney confirmed oxidative stress in zebrafish which correlated with mRNA expression of antioxidant genes. Upregulation in mRNA level of Cu-Zn Sod in liver and kidney was prominent. Gpx1 upregulation was more conspicuous in kidney as compared to liver while the pattern of Cat expression was almost similar in both the organs. Among the mitochondrial genes, expression of Cox1 was significantly high only after 90 days in liver, while in kidney it enhanced at 7, 30 and 60 days of arsenic exposure. Ucp2 was upregulated in liver after 15 days of exposure but significantly downregulated at day 90; in kidney it remained unchanged at other time points except at day 90. An overall increased expression of Bcl2 further confirmed As2O3 induced oxidative stress in zebrafish liver and kidney. The pattern of mRNA expression of Nrf2 was not uniform and was in accordance to its downstream antioxidant genes. Present findings elucidate that low dose of As2O3 exposure induces a time dependent differential modulation of antioxidant status in liver and kidney of zebrafish in a tissue-specific manner.
Collapse
Affiliation(s)
- Shuvasree Sarkar
- Environmental Toxicology Laboratory, Department of Zoology, School of Life Sciences, Visva-Bharati University, Santiniketan, West Bengal 731235, India
| | - Sandip Mukherjee
- Environmental Toxicology Laboratory, Department of Zoology, School of Life Sciences, Visva-Bharati University, Santiniketan, West Bengal 731235, India
| | - Ansuman Chattopadhyay
- Molecular Genetics Laboratory, Department of Zoology, School of Life Sciences, Visva-Bharati University, Santiniketan, West Bengal 731235, India
| | - Shelley Bhattacharya
- Environmental Toxicology Laboratory, Department of Zoology, School of Life Sciences, Visva-Bharati University, Santiniketan, West Bengal 731235, India.
| |
Collapse
|
47
|
Arsenic-induced instrumental genes of apoptotic signal amplification in death-survival interplay. Cell Death Discov 2016; 2:16078. [PMID: 27785370 PMCID: PMC5066266 DOI: 10.1038/cddiscovery.2016.78] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/21/2016] [Accepted: 07/14/2016] [Indexed: 02/07/2023] Open
Abstract
Arsenic is a global health concern at present and it is well reported for causing systemic toxicity. It is also well known for generation of free radical and inducing apoptosis in different cell types. Paradoxically arsenic is reported to be a susceptible carcinogen as well. There are several reports demonstrating diverse mechanism of apoptosis in different cell types. However, the universal scenario of instrumental genes and their interaction leading to amplification of apoptotic signal are yet to be completely uncovered, which is predicted here. Conventional studies on signaling pathway aided by time and concentration kinetics data are inadequate for prediction of anchored genes for apoptotic signal amplification. Therefore, expression profile-based approach is adopted. Core apoptosis related and glutathione metabolism genes in 1 and 10 μM of arsenic-treated HepG2 cells were analyzed after 12 h of incubation. An arsenic treatment of 1 μM exhibits no cell death at 12 h, whereas 10 μM arsenic treatment reveals around 50% cell death at 12 h. Results depict 28 and 44 affected genes in 1 and 10 μM arsenic-treated cells, respectively. Early initiation of apoptotic signaling is detected in no cell death regimens (at 1 μM), whereas amplified apoptotic signal is demonstrated at 50% cell death regimens (at 10 μM). Instrumental genes involved in progression of apoptosis in the concourse of cell death and survival is designated from the responsive genes common to both the condition. We predict the initiation process is fairly aided by the activation of intrinsic pathway, which is amplified via TNF signaling and extrinsic pathway. Furthermore, regulatory genes involved in interplay between apoptosis/anti-apoptosis and their interactions are demonstrated here.
Collapse
|
48
|
Saleh YS, Marie MAS. Use of Arius thalassinus fish in a pollution biomonitoring study, applying combined oxidative stress, hematology, biochemical and histopathological biomarkers: A baseline field study. MARINE POLLUTION BULLETIN 2016; 106:308-322. [PMID: 27039960 DOI: 10.1016/j.marpolbul.2016.03.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 03/13/2016] [Accepted: 03/15/2016] [Indexed: 06/05/2023]
Abstract
The present field study aimed to determine the extent of pollution in the Red Sea coast of Yemen Republic using a battery of biomarkers in sea catfish, Arius thalassinus, originating from a reference site in comparison with a polluted site. We reported the concentration of heavy metals in some vital fish organs and their effects on the morphological, hematological, biochemical and oxidative stress biomarkers accompanied by the examination of histopathological alterations. The obtained results showed clear signs of stress in fish from a polluted site. Linear correlation analysis exhibited that the biomarkers response could be linked to the detected metals bioaccumulation. In addition, principal component analysis showed a clear separation of sampling sites in two different assemblages. Semi-quantitative analysis for the observed histopathological lesions revealed that gills were the most affected organs with signs of severe alterations. This field investigation provides a baseline data on pollution status in this region.
Collapse
Affiliation(s)
- Yousef S Saleh
- Biology Department, Faculty of Science, Taiz University, Yemen Republic.
| | | |
Collapse
|
49
|
Sepand MR, Razavi-Azarkhiavi K, Omidi A, Zirak MR, Sabzevari S, Kazemi AR, Sabzevari O. Effect of Acetyl-L-Carnitine on Antioxidant Status, Lipid Peroxidation, and Oxidative Damage of Arsenic in Rat. Biol Trace Elem Res 2016; 171:107-15. [PMID: 26349760 DOI: 10.1007/s12011-015-0436-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/02/2015] [Indexed: 12/18/2022]
Abstract
Arsenic (As) is a widespread environmental contaminant present around the world in both organic and inorganic forms. Oxidative stress is postulated as the main mechanism for As-induced toxicity. This study was planned to examine the protective effect of acetyl-L-carnitine (ALC) on As-induced oxidative damage in male rats. Animals were randomly divided into four groups of control (saline), sodium arsenite (NaAsO2, 20 mg/kg), ALC (300 mg/kg), and NaAsO2 plus ALC. Animals were dosed orally for 28 successive days. Blood and tissue samples including kidney, brain, liver, heart, and lung were collected on the 28th day and evaluated for oxidative damage and histological changes. NaAsO2 exposure caused a significant lipid peroxidation as evidenced by elevation in thiobarbituric acid-reactive substances (TBARS). The activity of antioxidant enzymes such as glutathione-S-transferase (GST), catalase (CAT), superoxide dismutase (SOD), as well as sulfhydryl group content (SH group) was significantly suppressed in various organs following NaAsO2 treatment (P < 0.05). Furthermore, NaAsO2 administration increased serum values of alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), and bilirubin. Our findings revealed that co-administration of ALC and NaAsO2 significantly suppressed the oxidative damage induced by NaAsO2. Tissue histological studies have confirmed the biochemical findings and provided evidence for the beneficial role of ALC. The results concluded that ALC attenuated NaAsO2-induced toxicity, and this protective effect may result from the ability of ALC in maintaining oxidant-antioxidant balance.
Collapse
Affiliation(s)
- Mohammad Reza Sepand
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Kamal Razavi-Azarkhiavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ameneh Omidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zirak
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samin Sabzevari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
- Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Reza Kazemi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Omid Sabzevari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran.
- Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
50
|
Miandare HK, Niknejad M, Shabani A, Safari R. Exposure of Persian sturgeon (Acipenser persicus) to cadmium results in biochemical, histological and transcriptional alterations. Comp Biochem Physiol C Toxicol Pharmacol 2016; 181-182:1-8. [PMID: 26687766 DOI: 10.1016/j.cbpc.2015.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 12/09/2015] [Accepted: 12/09/2015] [Indexed: 12/29/2022]
Abstract
Sturgeon is one of the endangered families of fish in the Caspian Sea region, where there is up to 80% of their global caching. Unfortunately, in recent years, increase of pollutants has been resulted in their total population reduction. Due to their benthic nature, sturgeons are at great risk of exposing to contaminants such as cadmium. Despite their endangered status in the Caspian Sea, there are only a few studies on characterizing the relative sensitivity of sturgeons to cadmium. Adverse effects associated with pollution on angiogenesis are mediated by hypoxia inducing factor-1 (HIF-1) and vascular endothelial growth factor (VEGF). In this investigation, gene expression of two distinct HIFs-1, HIF-1α and HIF-2α, and VEGF was investigated at the mRNA transcript levels after exposure of Persian sturgeon (Acipenser persicus) to cadmium. VEGF, HIF-1α and HIF-2α expressions in treated Persian sturgeon were greater than controls. Significant increases (P<0.05) were also observed in cortisol and glucose levels compared to the control group especially in the fish exposed to higher cadmium concentration (800 μg/L). Plasma aspartate aminotransferase (AST), alanine aminotransferase (ALT) and lactic acid dehydrogenase (LDH) levels were increased in the cadmium-exposed fish, although the observed increases were not significant between the control and 200 μg/L cadmium treatment at some sampling time points. Gill tissues also showed histopathological changes in the cadmium treatments. Overall, results indicated that cadmium resulted in some alterations in biochemical parameters, mRNA transcript level expression of two important angiogenesis related genes as well as histological alterations in Persian sturgeon.
Collapse
Affiliation(s)
- Hamed Kolangi Miandare
- Department of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Mahtab Niknejad
- Department of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Ali Shabani
- Department of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Roghieh Safari
- Department of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|