1
|
Klitgaard M, Jacobsen J, Kristensen MN, Berthelsen R, Müllertz A. Characterizing interregional differences in the rheological properties and composition of rat small intestinal mucus. Drug Deliv Transl Res 2024; 14:3309-3320. [PMID: 38526635 PMCID: PMC11445339 DOI: 10.1007/s13346-024-01574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 03/27/2024]
Abstract
The mucus layer in the small intestine is generally regarded as a barrier to drug absorption. However, the mucus layer is a complex system, and presently, only a few studies have been conducted to elucidate its physicochemical properties. The current study hypothesizes that the mucus layer contains solubility-enhancing surfactants and thus might aid the oral absorption of poorly water-soluble drugs. Mucus was sampled from sections of the small intestine of fasted rats to analyze the rheological properties and determine the mucus pH and concentrations of proteins and endogenous surfactants, i.e., bile salts, polar lipids, and neutral lipids. The mucus layer in the two proximal sections of the small intestine exhibited different rheological properties such as higher zero-shear viscosity and lower loss tangent and higher protein concentrations compared to all subsequent sections of the small intestine. The pH of the mucus layer was stable at ~ 6.5 throughout most of the small intestine, but increased to 7.5 in the ileum. The bile salt concentrations increased from the duodenum (16.0 ± 2.2 mM) until the mid jejunum (55.1 ± 9.5 mM), whereas the concentrations of polar lipids and neutral lipids decreased from the duodenum (17.4 ± 2.2 mM and 37.8 ± 1.6 mM, respectively) until the ileum (4.8 ± 0.4 mM and 10.7 ± 1.1 mM, respectively). In conclusion, the mucus layer of the rat small intestine contains endogenous surfactants at levels that might benefit solubilization and absorption of orally administered poorly water-soluble drugs.
Collapse
Affiliation(s)
- Mette Klitgaard
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Jette Jacobsen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Maja Nørgaard Kristensen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Ragna Berthelsen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Anette Müllertz
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| |
Collapse
|
2
|
Bezze A, Mattioda C, Ciardelli G, Mattu C. Harnessing cells to improve transport of nanomedicines. Eur J Pharm Biopharm 2024; 203:114446. [PMID: 39122052 DOI: 10.1016/j.ejpb.2024.114446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/18/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Efficient tumour treatment is hampered by the poor selectivity of anticancer drugs, resulting in scarce tumour accumulation and undesired off-target effects. Nano-sized drug-delivery systems in the form of nanoparticles (NPs) have been proposed to improve drug distribution to solid tumours, by virtue of their ability of passive and active tumour targeting. Despite these advantages, literature studies indicated that less than 1% of the administered NPs can successfully reach the tumour mass, highlighting the necessity for more efficient drug transporters in cancer treatment. Living cells, such as blood cells, circulating immune cells, platelets, and stem cells, are often found as an infiltrating component in most solid tumours, because of their ability to naturally circumvent immune recognition, bypass biological barriers, and reach inaccessible tissues through innate tropism and active motility. Therefore, the tumour-homing ability of these cells can be harnessed to design living cell carriers able to improve the transport of drugs and NPs to tumours. Albeit promising, this approach is still in its beginnings and suffers from difficult scalability, high cost, and poor reproducibility. In this review, we present an overview of the most common cell transporters of drugs and NPs, and we discuss how different cell types interact with biological barriers to deliver cargoes of various natures to tumours. Finally, we analyse the different techniques used to load drugs or NPs in living cells and discuss their advantages and disadvantages.
Collapse
Affiliation(s)
- Andrea Bezze
- Politecnico di Torino - DIMEAS, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Carlotta Mattioda
- Politecnico di Torino - DIMEAS, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Gianluca Ciardelli
- Politecnico di Torino - DIMEAS, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Clara Mattu
- Politecnico di Torino - DIMEAS, C.so Duca degli Abruzzi 24, 10129 Torino, Italy.
| |
Collapse
|
3
|
Abuhassan Q, Silva MI, Tamimi RAR, Khadra I, Batchelor HK, Pyper K, Halbert GW. A novel simulated media system for in vitro evaluation of bioequivalent intestinal drug solubility. Eur J Pharm Biopharm 2024; 199:114302. [PMID: 38657741 DOI: 10.1016/j.ejpb.2024.114302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/15/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
Orally administered solid drug must dissolve in the gastrointestinal tract before absorption to provide a systemic response. Intestinal solubility is therefore crucial but difficult to measure since human intestinal fluid (HIF) is challenging to obtain, varies between fasted (Fa) and fed (Fe) states and exhibits inter and intra subject variability. A single simulated intestinal fluid (SIF) cannot reflect HIF variability, therefore current approaches are not optimal. In this study we have compared literature Fa/FeHIF drug solubilities to values measured in a novel in vitro simulated nine media system for either the fasted (Fa9SIF) or fed (Fe9SIF) state. The manuscript contains 129 literature sampled human intestinal fluid equilibrium solubility values and 387 simulated intestinal fluid equilibrium solubility values. Statistical comparison does not detect a difference (Fa/Fe9SIF vs Fa/FeHIF), a novel solubility correlation window enclosed 95% of an additional literature Fa/FeHIF data set and solubility behaviour is consistent with previous physicochemical studies. The Fa/Fe9SIF system therefore represents a novel in vitro methodology for bioequivalent intestinal solubility determination. Combined with intestinal permeability this provides an improved, population based, biopharmaceutical assessment that guides formulation development and indicates the presence of food based solubility effects. This transforms predictive ability during drug discovery and development and may represent a methodology applicable to other multicomponent fluids where no single component is responsible for performance.
Collapse
Affiliation(s)
- Qamar Abuhassan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom; Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, University of Jordan, Amman 11942, Jordan
| | - Maria Inês Silva
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| | - Rana Abu-Rajab Tamimi
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| | - Ibrahim Khadra
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| | - Hannah K Batchelor
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| | - Kate Pyper
- Department of Mathematics and Statistics, University of Strathclyde, Livingstone Tower, 26 Richmond Street, Glasgow G1 1XH, United Kingdom
| | - Gavin W Halbert
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom.
| |
Collapse
|
4
|
Kir F, Al-Sulaiti FK, Sahin S. Evaluation of in vitro dissolution profiles of modified-release metoprolol succinate tablets crushed using mortar and pestle technique. Eur J Pharm Sci 2024; 194:106694. [PMID: 38191064 DOI: 10.1016/j.ejps.2024.106694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 12/24/2023] [Accepted: 01/04/2024] [Indexed: 01/10/2024]
Abstract
PURPOSE Clinical practice guidelines advise against crushing modified-release dosage forms. Metoprolol succinate modified-release (MS-MR) tablets are commonly crushed in clinical practice to facilitate administration to patients with swallowing difficulties or using feeding tubes. To date, the effect of this practice remains unexplored. The in vitro effects of crushing commercially available MS-MR tablets were explored using a holistic approach. METHODS Dissolution profiles of crushed versus whole MS-MR tablets were compared. Tablets were crushed to powder state using pragmatic method mimicking hospital practices. For standardization purposes, the same operator, duration (60 seconds), hand, and mortar-pestle apparatus were used. Dissolution studies were conducted per U.S. Pharmacopeia at pH 1.2, pH 4.5, and pH 6.8 with USP apparatus 2 (paddle) at rotation speed of 50 rpm at 37±0.5 °C in 500 mL dissolution media. Samples were withdrawn at predetermined time points. Percent drug dissolved was measured by validated UV-vis Spectrophotometry. Comprehensive analysis of the dissolution data was conducted using model-independent, model-dependent, and ANOVA-based approaches (SPSS v.23 at α=0.05). Similarity (f2) and difference (f1) factors were calculated to compare the dissolution profiles between crushed (CT) and whole tablets (WT). Goodness of fit (GOF) analysis examined the compliance between in vitro dissolution behaviors and several drug release models. Model selection was based on GOF plots, Akaike criteria and adjusted coefficient of determination (R2adj). Imaging and particle size distribution analysis were conducted to examine associated surface and morphologic changes. RESULTS The dissolution profiles were not similar at pH 4.5 (f2=45.43, f1=18.97) and pH 6.8 (f2=31.47, f1=32.94). CT best fitted with Higuchi (pH 1.2: R2adj=0.9990), Weibull (pH 4.5: R2adj=0.9884), and Korsmeyer-Peppas (pH 6.8: R2adj=0.9719). Contrastingly, WT best fitted with Hopfenberg (pH 1.2: R2adj=0.9986), logistic (pH 4.5: R2adj=0.9839) and first-order (pH 6.8: R2adj=0.9979) models. A significant difference in the dissolution profiles was found between CT and WT using multivariate analysis of variance per time points and between the tablet forms (p=0.004). This was confirmed by unparalleled dissolution profiles. Crushing resulted in variations in particle size and surface morphological changes to the micropellets. CONCLUSION Crushing practices change the dissolution profile of MS-MR tablets by deforming the surface morphology of embedded micropellets. Amounts of drug dissolved between CT and WT were not the same at the compared time points across gastrointestinal pH ranges. This suggests potential clinical impact on plasma-concentration profiles of critically ill patients using feeding tube.
Collapse
Affiliation(s)
- Fatma Kir
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Fatima K Al-Sulaiti
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Selma Sahin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
5
|
Djuris J, Cvijic S, Djekic L. Model-Informed Drug Development: In Silico Assessment of Drug Bioperformance following Oral and Percutaneous Administration. Pharmaceuticals (Basel) 2024; 17:177. [PMID: 38399392 PMCID: PMC10892858 DOI: 10.3390/ph17020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 02/25/2024] Open
Abstract
The pharmaceutical industry has faced significant changes in recent years, primarily influenced by regulatory standards, market competition, and the need to accelerate drug development. Model-informed drug development (MIDD) leverages quantitative computational models to facilitate decision-making processes. This approach sheds light on the complex interplay between the influence of a drug's performance and the resulting clinical outcomes. This comprehensive review aims to explain the mechanisms that control the dissolution and/or release of drugs and their subsequent permeation through biological membranes. Furthermore, the importance of simulating these processes through a variety of in silico models is emphasized. Advanced compartmental absorption models provide an analytical framework to understand the kinetics of transit, dissolution, and absorption associated with orally administered drugs. In contrast, for topical and transdermal drug delivery systems, the prediction of drug permeation is predominantly based on quantitative structure-permeation relationships and molecular dynamics simulations. This review describes a variety of modeling strategies, ranging from mechanistic to empirical equations, and highlights the growing importance of state-of-the-art tools such as artificial intelligence, as well as advanced imaging and spectroscopic techniques.
Collapse
Affiliation(s)
- Jelena Djuris
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (S.C.); (L.D.)
| | | | | |
Collapse
|
6
|
Rybczyńska M, Sikorski A. The synthesis, thermal behaviour, spectral and structural characterization, and in silico prediction of pharmacokinetic parameters of tetraalkylammonium salts of non-steroidal anti-inflammatory drug nimesulide. Sci Rep 2023; 13:17268. [PMID: 37828142 PMCID: PMC10570311 DOI: 10.1038/s41598-023-44557-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/10/2023] [Indexed: 10/14/2023] Open
Abstract
The synthesis, spectral properties, thermal analysis, structural characterization and in silico prediction of pharmacokinetic parameters of tetramethylammonium (compound 1) and tetraethylammonium (compound 2) salt of nimesulide were described in this article. Both compounds crystallize in the monoclinic P21/n space group, with one tetraalkylammonium cation and one nimesulide anion in the asymmetric unit and their crystal structures are stabilized by C-H···O hydrogen bonds between ions. Additionally, structures of title compounds are stabilized by π-π interactions (compound 1), or C-H···π interactions (compound 2) between nimesulide anions. The TG and DSC measurements show that compound 1 melts at a temperature higher than nimesulide, whereas the compound 2 melts at a temperature lower than nimesulide. The MALDI-TOF, 1H NMR, 13C NMR and ATR-FTIR analyses confirm the SCXRD study, that in compounds 1 and 2 nimesulide exists in an ionized form. Studies performed by SWISS ADME and ProTOX II tools, predict to be oral bioavailability of both salts obtained, and one of them (compound 1) is predicted to be well-absorbed by digestive system, while both compounds obtained are classified into toxicity class 4.
Collapse
Affiliation(s)
| | - Artur Sikorski
- Faculty of Chemistry, University of Gdańsk, W. Stwosza 63, 80-308, Gdańsk, Poland.
| |
Collapse
|
7
|
Inês Silva M, Khadra I, Pyper K, Halbert GW. Fed Intestinal Solubility Limits and Distributions Applied to the Developability Classification System. Eur J Pharm Biopharm 2023; 186:74-84. [PMID: 36934829 DOI: 10.1016/j.ejpb.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/06/2023] [Accepted: 03/11/2023] [Indexed: 03/19/2023]
Abstract
For solid oral dosage forms drug solubility in intestinal fluid is an important parameter influencing product performance and bioavailability. Solubility along with permeability are the two parameters applied in the Biopharmaceutics and Developability Classification Systems (DCS) to assess a drug's potential for oral administration. Intestinal solubility varies with the intestinal contents and the differences between the fasted and fed states are recognised to influence solubility and bioavailability. In this study a novel fed state simulated media system comprising of nine media has been utilised to measure the solubility of seven drugs (ibuprofen, mefenamic acid, furosemide, dipyridamole, griseofulvin, paracetamol and acyclovir) previously studied in the fasted state DCS. The results demonstrate that the fed nine media system provides a range of solubility values for each drug and solubility behaviour is consistent with published design of experiment studies conducted in either the fed or fasted state. Three drugs (griseofulvin, paracetamol and acyclovir) exhibit very narrow solubility distributions, a result that matches published behaviour in the fasted state, indicating that this property is not influenced by the concentration of simulated media components. The nine solubility values for each drug can be utilised to calculate a dose/solubility volume ratio to visualise the drug's position on the DCS grid. Due to the derivation of the nine media compositions the range and catergorisation could be considered as bioequivalent and can be combined with the data from the original fed intestinal fluid analysis to provide a population based solubility distribution. This provides further information on the drugs solubility behaviour and could be applied to quality by design formulation approaches. Comparison of the fed results in this study with similar published fasted results highlight that some differences detected match in vivo behaviour in food effect studies. This indicates that a combination of the fed and fasted systems may be a useful in vitro biopharmaceutical performance tool. However, it should be noted that the fed media recipes in this study are based on a liquid meal (Ensure Plus) and this may not be representative of alternative fed states achieved through ingestion of a solid meal. Nevertheless, this novel approach provides greater in vitro detail with respect to possible in vivo biopharmaceutical performance, an improved ability to apply risk-based approaches and the potential to investigate solubility based food effects. The system is therefore worthy of further investigation but studies will be required to expand the number of drugs measured and link the in vitro measurements to in vivo results.
Collapse
Affiliation(s)
- Maria Inês Silva
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161, Cathedral Street, Glasgow, G4 0RE, United Kingdom
| | - Ibrahim Khadra
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161, Cathedral Street, Glasgow, G4 0RE, United Kingdom
| | - Kate Pyper
- Department of Mathematics and Statistics, University of Strathclyde, Livingstone Tower, 26, Richmond Street, Glasgow, G1 1XH, United Kingdom
| | - Gavin W Halbert
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161, Cathedral Street, Glasgow, G4 0RE, United Kingdom.
| |
Collapse
|
8
|
Klitgaard M, Kristensen MN, Venkatasubramanian R, Guerra P, Jacobsen J, Berthelsen R, Rades T, Müllertz A. Assessing acute colitis induced by dextran sulfate sodium in rats and its impact on gastrointestinal fluids. Drug Deliv Transl Res 2023; 13:1484-1499. [PMID: 36913104 DOI: 10.1007/s13346-023-01313-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2023] [Indexed: 03/14/2023]
Abstract
Dextran sulfate sodium (DSS) is commonly used to induce colitis in rats. While the DSS-induced colitis rat model can be used to test new oral drug formulations for the treatment of inflammatory bowel disease, the effect of the DSS treatment on the gastrointestinal tract has not been thoroughly characterized. Additionally, the use of different markers to assess and confirm successful induction of colitis is somewhat inconsistent. This study aimed to investigate the DSS model to improve the preclinical evaluation of new oral drug formulations. The induction of colitis was evaluated based on the disease activity index (DAI) score, colon length, histological tissue evaluation, spleen weight, plasma C-reactive protein, and plasma lipocalin-2. Furthermore, the study investigated how the DSS-induced colitis affected the luminal pH, lipase activity, and concentrations of bile salts, polar lipids, and neutral lipids. For all evaluated parameters, healthy rats were used as a reference. The DAI score, colon length, and histological evaluation of the colon were effective disease indicators in DSS-induced colitis rats, while spleen weight, plasma C-reactive protein, and plasma lipocalin-2 were not. The luminal pH of the colon and bile salt- and neutral lipid concentrations in regions of the small intestine were lower in DSS-induced rats compared to healthy rats. Overall, the colitis model was deemed relevant for investigating ulcerative colitis-specific formulations.
Collapse
Affiliation(s)
- Mette Klitgaard
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Maja Nørgaard Kristensen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.,The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | | | - Priscila Guerra
- Department of Veterinary and Animal Science, University of Copenhagen, Stigbøjlen 4, 1870, Frederiksberg C, Denmark
| | - Jette Jacobsen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Ragna Berthelsen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Thomas Rades
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Anette Müllertz
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark. .,Bioneer:FARMA, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| |
Collapse
|
9
|
Pigliacelli C, Belton P, Wilde P, Bombelli FB, Kroon PA, Winterbone MS, Qi S. Interaction of polymers with bile salts - Impact on solubilisation and absorption of poorly water-soluble drugs. Colloids Surf B Biointerfaces 2023; 222:113044. [PMID: 36436403 DOI: 10.1016/j.colsurfb.2022.113044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/01/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
Formulating poorly soluble drugs with polymers in the form of solid dispersions has been widely used for improving drug dissolution. Endogenous surface-active species present in the gut, such as bile salts, lecithin and other phospholipids, have been shown to play a key role in facilitating lipids and poorly soluble drugs solubilisation in the gut. In this study, we examined the possible occurrence of interactions between a model bile salt, sodium taurocholate (NaTC), and model spray dried solid dispersions comprising piroxicam and Hydroxypropyl Methylcellulose (HPMC), a commonly used hydrophilic polymer for solid dispersion preparation. Solubility measurements revealed the good solubilisation effect of NaTC on the crystalline drug, which was enhanced by the addition of HPMC, and further boosted by the drug formulation into solid dispersion. The colloidal behaviour of the solid dispersions upon dissolution in biorelevant media, with and without NaTC, revealed the formation of NaTC-HPMC complexes and other mixed colloidal species. Cellular level drug absorption studies obtained using Caco-2 monolayers confirmed that the combination of drug being delivered by solid dispersion and the presence of bile salt and lecithin significantly contributed to the improved drug absorption. Together with the role of NaTC-HPMC complexes in assisting the drug solubilisation, our results also highlight the complex interplay between bile salts, excipients and drug absorption.
Collapse
Affiliation(s)
- Claudia Pigliacelli
- School of Pharmacy, University of East Anglia, Norwich, Norfolk NR4 7TJ, UK; Dipartimento di Chimica, Materiali ed Ingegneria Chimica "G. Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy.
| | - Peter Belton
- School of Chemistry, University of East Anglia, Norwich, Norfolk NR4 7TJ, UK
| | - Peter Wilde
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK
| | - Francesca Baldelli Bombelli
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "G. Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy
| | - Paul A Kroon
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK
| | - Mark S Winterbone
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK
| | - Sheng Qi
- School of Pharmacy, University of East Anglia, Norwich, Norfolk NR4 7TJ, UK.
| |
Collapse
|
10
|
Cuoco A, Eriksen JB, Luppi B, Brandl M, Bauer-Brandl A. When interactions between bile salts and cyclodextrin cause a negative food effect: Dynamic dissolution/permeation studies with itraconazole (Sporanox®) and biomimetic media. J Pharm Sci 2022; 112:1372-1378. [PMID: 36539063 DOI: 10.1016/j.xphs.2022.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
The marketed oral solution of itraconazole (Sporanox®) contains 40% (259.2 mM) of 2-hydroxypropyl-β-cyclodextrin (HP-β-CD). The obvious role of HP-β-CD is to solubilize itraconazole and to overcome its poor aqueous solubility that restricts its absorption. In this study, we investigated the biorelevance of in vitro experiments by the influence of biomimetic media (containing bile salts and phospholipids) on the predicted itraconazole absorption from the commercial HP-β-CD-based Sporanox® solution. We performed phase-solubility studies of itraconazole and dynamic 2-step-dissolution/permeation studies using a biomimetic artificial barrier, Sporanox® solution, and fasted state simulated intestinal fluid (FaSSIF_V1). Both FaSSIF_V1 and HP-β-CD increased the apparent solubility of itraconazole when used individually. In combination, their solubility-enhancing effects were not additive probably due to the competition of bile salts with itraconazole for the hydrophobic cavity of HP-β-CD. Our combined dissolution/permeation experiments indicated the occurrence of a transient supersaturation from Sporanox® upon two-step dissolution. Through systematic variation of bile salt concentrations in the biomimetic media, it was observed that the extent and the duration of supersaturation depend on the concentrations of bile salts: supersaturation was rather stable in the absence of bile salts and phospholipids. The higher the bile salt concentration, the faster the collapse of the transient supersaturation occurred, an effect which is nicely mirrored by reduced in vitro permeation across the barrier. This is an indication of a negative food effect, which in fact correlates well with what earlier had been observed in clinical studies for Sporanox® solution. In essence, we could demonstrate that in vitro two-stage dissolution/permeation experiments using an artificial barrier and selected biomimetic media may predict the negative effects of the latter on cyclodextrin-based drug formulations like Sporanox® Oral Solution and, at the same time, provide a deeper mechanistic insight.
Collapse
Affiliation(s)
- Arianna Cuoco
- Department of Physics Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark; Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy
| | | | - Barbara Luppi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy
| | - Martin Brandl
- Department of Physics Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | - Annette Bauer-Brandl
- Department of Physics Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark.
| |
Collapse
|
11
|
Ageenko NV, Kiselev KV, Odintsova NA. Quinoid Pigments of Sea Urchins Scaphechinus mirabilis and Strongylocentrotus intermedius: Biological Activity and Potential Applications. Mar Drugs 2022; 20:611. [PMID: 36286435 PMCID: PMC9605347 DOI: 10.3390/md20100611] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/18/2022] [Accepted: 09/24/2022] [Indexed: 11/16/2022] Open
Abstract
This review presents literature data: the history of the discovery of quinoid compounds, their biosynthesis and biological activity. Special attention is paid to the description of the quinoid pigments of the sea urchins Scaphechinus mirabilis (from the family Scutellidae) and Strongylocentrotus intermedius (from the family Strongylocentrotidae). The marine environment is considered one of the most important sources of natural bioactive compounds with extremely rich biodiversity. Primary- and some secondary-mouthed animals contain very high concentrations of new biologically active substances, many of which are of significant potential interest for medical purposes. The quinone pigments are products of the secondary metabolism of marine animals, can have complex structures and become the basis for the development of new natural products in echinoids that are modulators of chemical interactions and possible active ingredients in medicinal preparations. More than 5000 chemical compounds with high pharmacological potential have been isolated and described from marine organisms. There are three well known ways of naphthoquinone biosynthesis-polyketide, shikimate and mevalonate. The polyketide pathway is the biosynthesis pathway of various quinones. The shikimate pathway is the main pathway in the biosynthesis of naphthoquinones. It should be noted that all quinoid compounds in plants and animals can be synthesized by various ways of biosynthesis.
Collapse
Affiliation(s)
- Natalya V. Ageenko
- Laboratory of Cytotechnology, National Scientific Center of Marine Biology, Federal State Budgetary Institution of Science, The Far Eastern Branch of the Russian Academy of Sciences (FEB RAS), 690041 Vladivostok, Russia
| | - Konstantin V. Kiselev
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Federal State Budgetary Institution of Science, FEB RAS, 690022 Vladivostok, Russia
| | - Nelly A. Odintsova
- Laboratory of Cytotechnology, National Scientific Center of Marine Biology, Federal State Budgetary Institution of Science, The Far Eastern Branch of the Russian Academy of Sciences (FEB RAS), 690041 Vladivostok, Russia
| |
Collapse
|
12
|
Becker T, Krome AK, Vahdati S, Schiefer A, Pfarr K, Ehrens A, Aden T, Grosse M, Jansen R, Alt S, Hesterkamp T, Stadler M, Hübner MP, Kehraus S, König GM, Hoerauf A, Wagner KG. In Vitro-In Vivo Relationship in Mini-Scale-Enabling Formulations of Corallopyronin A. Pharmaceutics 2022; 14:1657. [PMID: 36015283 PMCID: PMC9414514 DOI: 10.3390/pharmaceutics14081657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
In vivo studies in mice provide a valuable model to test novel active pharmaceutical ingredients due to their low material need and the fact that mice are frequently used as a species for early efficacy models. However, preclinical in vitro evaluations of formulation principles in mice are still lacking. The development of novel in vitro and in silico models supported the preclinical formulation evaluation for the anti-infective corallopyronin A (CorA). To this end, CorA and solubility-enhanced amorphous solid dispersion formulations, comprising povidone or copovidone, were evaluated regarding biorelevant solubilities and dissolution in mouse-specific media. As an acidic compound, CorA and CorA-ASD formulations showed decreased solubilities in mice when compared with human-specific media. In biorelevant biphasic dissolution experiments CorA-povidone showed a three-fold higher fraction partitioned into the organic phase of the biphasic dissolution, when compared with CorA-copovidone. Bioavailabilities determined by pharmacokinetic studies in BALB/c mice correlated with the biphasic dissolution prediction and resulted in a Level C in vitro-in vivo correlation. In vitro cell experiments excluded intestinal efflux by P-glycoprotein or breast cancer resistance protein. By incorporating in vitro results into a physiologically based pharmacokinetic model, the plasma concentrations of CorA-ASD formulations were predicted and identified dissolution as the limiting factor for bioavailability.
Collapse
Affiliation(s)
- Tim Becker
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
| | - Anna K. Krome
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg–Campus 1, 53127 Bonn, Germany
| | - Sahel Vahdati
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
| | - Andrea Schiefer
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg–Campus 1, 53127 Bonn, Germany
| | - Kenneth Pfarr
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg–Campus 1, 53127 Bonn, Germany
| | - Alexandra Ehrens
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg–Campus 1, 53127 Bonn, Germany
| | - Tilman Aden
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg–Campus 1, 53127 Bonn, Germany
| | - Miriam Grosse
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Rolf Jansen
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Silke Alt
- Translational Project Management Office (TPMO), German Center for Infection Research (DZIF), Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Thomas Hesterkamp
- Translational Project Management Office (TPMO), German Center for Infection Research (DZIF), Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Marc P. Hübner
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg–Campus 1, 53127 Bonn, Germany
| | - Stefan Kehraus
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
- Institute for Pharmaceutical Biology, University of Bonn, Nußallee 6, 53115 Bonn, Germany
| | - Gabriele M. König
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
- Institute for Pharmaceutical Biology, University of Bonn, Nußallee 6, 53115 Bonn, Germany
| | - Achim Hoerauf
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg–Campus 1, 53127 Bonn, Germany
| | - Karl G. Wagner
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
| |
Collapse
|
13
|
Qi Q, Taylor LS. Improved dissolution of an enteric polymer and its amorphous solid dispersions by polymer salt formation. Int J Pharm 2022; 622:121886. [PMID: 35661745 DOI: 10.1016/j.ijpharm.2022.121886] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022]
Abstract
Weakly acidic polymers, historically used as enteric coatings, are increasingly being employed in solubility-enhancing amorphous solid dispersion (ASD) formulations. However, there is a lack of fundamental understanding around how these carboxylic acid-containing polymers dissolve, in particular when molecularly mixed with a lipophilic drug, as in an ASD. Identification of critical factors dominating their dissolution is vital for rational design of new polymers with enhanced release properties to address contemporary ASD delivery challenges, notably achieving good release at higher drug loadings. Herein, after identification of polymer solubilization via ionization as the rate limiting step for dissolution, hydroxypropylmethyl cellulose phthalate (HP-50) was converted to a salt by neutralization of the phthalic acid groups with different bases. Surface normalized dissolution was performed to assess the dissolution rate improvement achieved by polymer pre-ionization via salt formation. Polymer salts showed ∼ 3-fold faster release than HP-50 at pH 6.8 (50 mM sodium phosphate buffer). Importantly, a polymer salt was able to maintain a rapid dissolution rate, irrespective of the buffer capacity of the medium, whereas the protonated polymer showed greatly diminished dissolution as medium buffer capacity decreased toward physiological gastrointestinal tract values. HP-50 and two polymer salts were formulated into ASDs with miconazole, a lipophilic and weakly basic antifungal drug, at a 20% drug loading. Rapid drug release rates were achieved with polymer salt ASDs, whereby drug release was 14 times faster than from the protonated HP-50 ASD. This study highlights the critical role of polymer ionization and buffer capacity in the dissolution of HP-50-based systems and how pre-ionization via polymer salt formation is a successful strategy for the design of new polymers for improved ASD performance.
Collapse
Affiliation(s)
- Qingqing Qi
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| |
Collapse
|
14
|
Inês Silva M, Khadra I, Pyper K, Halbert GW. Small scale in vitro method to determine a potential bioequivalent equilibrium solubility range for fed human intestinal fluid. Eur J Pharm Biopharm 2022; 177:126-134. [PMID: 35718078 DOI: 10.1016/j.ejpb.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/04/2022]
Abstract
Intestinal drug solubility is a key parameter controlling oral absorption but varies both intra and inter individuals and between the fasted and fed states, with food intake known to alter the bioavailability of many compounds. Intestinal solubility can be measured in vitro either using sampled fed human intestinal fluid (FeHIF) or simulated fed intestinal fluid (SIF) but neither approach is optimal. FeHIF is difficult to obtain and variable, whilst for fed SIF multiple recipes are available with no consensus on the ideal version. A recent study characterised FeHIF aspirates using a multidimensional approach and calculated nine simulated media recipes that covered over ninety percent of FeHIF compositional variability. In this study the equilibrium solubility of thirteen drugs have been measured using the nine simulated media recipes and compared to multiple previous design of experiment (DoE) studies, which have examined the impact of fed SIF media components on solubility. The measured nine media solubility data set is only statistically equivalent to the large scale 92 media DoE in 4 out of 13 drug comparisons, but has improved equivalence against small scale DoEs (9 or 10 media) with 6 out of 9 or 10 out of 12 (9 and 10 media respectively) equivalent. Selective removal of non-biorelevant compositions from the 92 media DoE improves statistical equivalence to 9 out of 13 comparisons. The results indicate that solubility equivalence is linked to media component concentrations and compositions, the nine media system is measuring a similar solubility space to previous systems, with a narrower solubility range than the 92 point DoE but equivalent to smaller DoE systems. Phenytoin and tadalafil display a narrow solubility range, a behaviour consistent with previous studies in fed and fasted states and only revealed through the multiple media approach. Custom DoE analysis of the nine media results to determine the most statistically significant component influencing solubility does not detect significant components. Indicating that the approach has a low statistical resolution and is not appropriate if determination of media component significance is required. This study demonstrates that it is possible to assess the fed intestinal equilibrium solubility envelope using the nine media recipes obtained from a multi-dimensional analysis of fed HIF. The derivation of the nine media compositions coupled with the results in this study indicate that the solubility results are more likely to reflect the fed intestinal solubility envelope than previous DoE studies and highlight that the system is worthy of further investigation.
Collapse
Affiliation(s)
- Maria Inês Silva
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom
| | - Ibrahim Khadra
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom
| | - Kate Pyper
- Department of Mathematics and Statistics, University of Strathclyde, Livingstone Tower, 26 Richmond Street, Glasgow, G1 1XH, United Kingdom
| | - Gavin W Halbert
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom.
| |
Collapse
|
15
|
Abuhassan Q, Khadra I, Pyper K, Augustijns P, Brouwers J, Halbert GW. Structured solubility behaviour in bioequivalent fasted simulated intestinal fluids. Eur J Pharm Biopharm 2022; 176:108-121. [PMID: 35605926 DOI: 10.1016/j.ejpb.2022.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/25/2022]
Abstract
Drug solubility in intestinal fluid is a key parameter controlling absorption after the administration of a solid oral dosage form. To measure solubility in vitro simulated intestinal fluids have been developed, but there are multiple recipes and the optimum is unknown. This situation creates difficulties during drug discovery and development research. A recent study characterised sampled fasted intestinal fluids using a multidimensional approach to derive nine bioequivalent fasted intestinal media that covered over 90% of the compositional variability. These media have been applied in this study to examine the equilibrium solubility of twenty one exemplar drugs (naproxen, indomethacin, phenytoin, zafirlukast, piroxicam, ibuprofen, mefenamic acid, furosemide, aprepitant, carvedilol, tadalafil, dipyridamole, posaconazole, atazanavir, fenofibrate, felodipine, griseofulvin, probucol, paracetamol, acyclovir and carbamazepine) to determine if consistent solubility behaviour was present. The bioequivalent media provide in the majority of cases structured solubility behaviour that is consistent with physicochemical properties and previous solubility studies. For the acidic drugs (pKa < 6.3) solubility is controlled by media pH, the profile is identical and consistent and the lowest and highest pH media identify the lowest and highest solubility in over 70% of cases. For weakly acidic (pKa > 8), basic and neutral drugs solubility is controlled by a combination of media pH and total amphiphile concentration (TAC), a consistent solubility behaviour is evident but with variation related to individual drug interactions within the media. The lowest and highest pH x TAC media identify the lowest and highest solubility in over 78% of cases. A subset of the latter category consisting of neutral and drugs non-ionised in the media pH range have been identified with a very narrow solubility range, indicating that the impact of the simulated intestinal media on their solubility is minimal. Two drugs probucol and atazanavir exhibit unusual behaviour. The study indicates that the use of two appropriate bioequivalent fasted intestinal media from the nine will identify in vitro the maximum and minimum solubility boundaries for drugs and due to the media derivation this is probably applicable in vivo. These media could be applied during discovery and development activities to provide a solubility range, which would assist placement of the drug within the BCS/DCS and rationalise drug and formulation decisions.
Collapse
Affiliation(s)
- Qamar Abuhassan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom
| | - Ibrahim Khadra
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom
| | - Kate Pyper
- Department of Mathematics and Statistics, University of Strathclyde, Livingstone Tower, 26 Richmond Street, Glasgow, G1 1XH, United Kingdom
| | - Patrick Augustijns
- Drug Delivery and Disposition, KU Leuven, ON2, Herestraat 49 box 921, 3000 Leuven, Belgium
| | - Joachim Brouwers
- Drug Delivery and Disposition, KU Leuven, ON2, Herestraat 49 box 921, 3000 Leuven, Belgium
| | - Gavin W Halbert
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom.
| |
Collapse
|
16
|
Soliman ME, Adewumi AT, Akawa OB, Subair TI, Okunlola FO, Akinsuku OE, Khan S. Simulation Models for Prediction of Bioavailability of Medicinal Drugs-the Interface Between Experiment and Computation. AAPS PharmSciTech 2022; 23:86. [PMID: 35292867 DOI: 10.1208/s12249-022-02229-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/03/2022] [Indexed: 12/17/2022] Open
Abstract
The oral drug bioavailability (BA) problems have remained inevitable over the years, impairing drug efficacy and indirectly leading to eventual human morbidity and mortality. However, some conventional lab-based methods improve drug absorption leading to enhanced BA, and the recent experimental techniques are up-and-coming. Nevertheless, some have inherent drawbacks in improving the efficacy of poorly insoluble and low impermeable drugs. Drug BA and strategies to overcome these challenges were briefly highlighted. This review has significantly unravelled the different computational models for studying and predicting drug bioavailability. Several computational approaches provide mechanistic insights into the oral drug delivery system simulation of descriptors like solubility, permeability, transport protein-ligand interactions, and molecular structures. The in silico techniques have long been known still are just being applied to unravel drug bioavailability issues. Many publications have reported novel applications of the computational models towards achieving improved drug BA, including predicting gastrointestinal tract (GIT) drug absorption properties and passive intestinal membrane permeability, thus maximizing time and resources. Also, the classical molecular simulation models for free solvation energies of soluble-related processes such as solubilization, dissolutions, supersaturation, and precipitation have been used in virtual screening studies. A few of the tools are GastroPlusTM that supports biowaiver for drugs, mainly BCS class III and predicts drug compounds' absorption and pharmacokinetic process; SimCyp® simulator for mechanistic modelling and simulation of drug formulation processes; pharmacodynamics analysis on non-linear mixed-effects modelling; and mathematical models, predicting absorption potential/maximum absorption dose. This review provides in silico-experiment annexation in the drug bioavailability enhancement, possible insights that lead to critical opinion on the applications and reliability of the various in silico models as a growing tool for drug development and discovery, thus accelerating drug development processes.
Collapse
|
17
|
Lemos HD, Prado LD, Rocha HVA. Use of biorelevant dissolution media in dissolution tests as a predictive method of oral bioavailability. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e19759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
18
|
Jeon SW, Jin HS, Park YJ. Formation of Self-Assembled Liquid Crystalline Nanoparticles and Absorption Enhancement of Ω-3s by Phospholipids and Oleic Acids. Pharmaceutics 2021; 14:68. [PMID: 35056964 PMCID: PMC8781607 DOI: 10.3390/pharmaceutics14010068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/31/2022] Open
Abstract
This study aimed to optimize and evaluate self-assembled liquid crystalline nanoparticles (SALCs) prepared from phospholipids and oleic acid for enhancing the absorption of Ω-3s. We explored the structure and optimal formulation of SALCs, which are composed of Ω-3 ethyl ester (Ω-3 EE), phospholipids, and oleic acid, using a ternary diagram and evaluated the improvement in Ω-3 dissolution, permeation, and oral bioavailability. The in vitro dissolution and pharmacokinetics of Ω-3 SALCs were compared with those of Omacor soft capsules (as the reference). The shape of the liquid crystal was determined according to the composition of phospholipids, oleic acids, and Ω-3s and was found to be in cubic, lamellar, and hexagonal forms. The dissolution rates of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) obtained from Ω-3 SALCs were 1.7 to 2.3-fold higher than those of the Omacor soft capsules. Furthermore, a pharmacokinetic study in male beagle dogs revealed that Ω-3 SALCs increased the oral bioavailability of Ω-3 EE by 2.5-fold for EPA and 3.1-fold for DHA compared with the reference. We found an optimal formulation that spontaneously forms liquid crystal-based nanoparticles, improving the bioavailability of EPA and DHA, not found in the existing literature. Our findings offer insight into the impact of nanoparticle phase on the oral delivery of oil-soluble drugs and provide a novel Ω-3 EE formulation that improves the bioavailability of EPA and DHA.
Collapse
Affiliation(s)
- Sang-Won Jeon
- College of Pharmacy, Ajou University, Worldcup-ro 206, Yeongtong-gu, Suwon-si 16499, Korea;
- Research Center, IMDpharm Inc., 17 Daehak 4-ro, Yeongtong-gu, Suwon-si 16226, Korea;
| | - Han-Sol Jin
- Research Center, IMDpharm Inc., 17 Daehak 4-ro, Yeongtong-gu, Suwon-si 16226, Korea;
| | - Young-Joon Park
- College of Pharmacy, Ajou University, Worldcup-ro 206, Yeongtong-gu, Suwon-si 16499, Korea;
- Research Center, IMDpharm Inc., 17 Daehak 4-ro, Yeongtong-gu, Suwon-si 16226, Korea;
| |
Collapse
|
19
|
Best practices in current models mimicking drug permeability in the gastrointestinal tract - an UNGAP review. Eur J Pharm Sci 2021; 170:106098. [PMID: 34954051 DOI: 10.1016/j.ejps.2021.106098] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/19/2021] [Accepted: 12/15/2021] [Indexed: 12/21/2022]
Abstract
The absorption of orally administered drug products is a complex, dynamic process, dependent on a range of biopharmaceutical properties; notably the aqueous solubility of a molecule, stability within the gastrointestinal tract (GIT) and permeability. From a regulatory perspective, the concept of high intestinal permeability is intrinsically linked to the fraction of the oral dose absorbed. The relationship between permeability and the extent of absorption means that experimental models of permeability have regularly been used as a surrogate measure to estimate the fraction absorbed. Accurate assessment of a molecule's intestinal permeability is of critical importance during the pharmaceutical development process of oral drug products, and the current review provides a critique of in vivo, in vitro and ex vivo approaches. The usefulness of in silico models to predict drug permeability is also discussed and an overview of solvent systems used in permeability assessments is provided. Studies of drug absorption in humans are an indirect indicator of intestinal permeability, but in vitro and ex vivo tools provide initial screening approaches are important tools for direct assessment of permeability in drug development. Continued refinement of the accuracy of in silico approaches and their validation with human in vivo data will facilitate more efficient characterisation of permeability earlier in the drug development process and will provide useful inputs for integrated, end-to-end absorption modelling.
Collapse
|
20
|
Fasted Intestinal Solubility Limits and Distributions Applied to the Biopharmaceutics and Developability Classification Systems. Eur J Pharm Biopharm 2021; 170:160-169. [PMID: 34923138 PMCID: PMC8769049 DOI: 10.1016/j.ejpb.2021.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 11/22/2022]
Abstract
After oral administration, a drug’s solubility in intestinal fluid is an important parameter influencing bioavailability and if the value is known it can be applied to estimate multiple biopharmaceutical parameters including the solubility limited absorbable dose. Current in vitro measurements may utilise fasted human intestinal fluid (HIF) or simulated intestinal fluid (SIF) to provide an intestinal solubility value. This single point value is limited since its position in relation to the fasted intestinal solubility envelope is unknown. In this study we have applied a nine point fasted equilibrium solubility determination in SIF, based on a multi-dimensional analysis of fasted human intestinal fluid composition, to seven drugs that were previously utilised to investigate the developability classification system (ibuprofen, mefenamic acid, furosemide, dipyridamole, griseofulvin, paracetamol and acyclovir). The resulting fasted equilibrium solubility envelope encompasses literature solubility values in both HIF and SIF indicating that it measures the same solubility space as current approaches with solubility behaviour consistent with previous SIF design of experiment studies. In addition, it identifies that three drugs (griseofulvin, paracetamol and acyclovir) have a very narrow solubility range, a feature that single point solubility approaches would miss. The measured mid-point solubility value is statistically equivalent to the value determined with the original fasted simulated intestinal fluid recipe, further indicating similarity and that existing literature results could be utilised as a direct comparison. Since the multi-dimensional approach covered greater than ninety percent of the variability in fasted intestinal fluid composition, the measured maximum and minimum equilibrium solubility values should represent the extremes of fasted intestinal solubility and provide a range. The seven drugs all display different solubility ranges and behaviours, a result also consistent with previous studies. The dose/solubility ratio for each measurement point can be plotted using the developability classification system to highlight individual drug behaviours. The lowest solubility represents a worst-case scenario which may be useful in risk-based quality by design biopharmaceutical calculations than the mid-point value. The method also permits a dose/solubility ratio frequency distribution determination for the solubility envelope which permits further risk-based refinement, especially where the drug crosses a classification boundary. This novel approach therefore provides greater in vitro detail with respect to possible biopharmaceutical performance in vivo and an improved ability to apply risk-based analysis to biopharmaceutical performance. Further studies will be required to expand the number of drugs measured and link the in vitro measurements to in vivo results.
Collapse
|
21
|
Mast MP, Modh H, Champanhac C, Wang JW, Storm G, Krämer J, Mailänder V, Pastorin G, Wacker MG. Nanomedicine at the crossroads - A quick guide for IVIVC. Adv Drug Deliv Rev 2021; 179:113829. [PMID: 34174332 DOI: 10.1016/j.addr.2021.113829] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/17/2021] [Accepted: 06/10/2021] [Indexed: 02/08/2023]
Abstract
For many years, nanomedicine is pushing the boundaries of drug delivery. When applying these novel therapeutics, safety considerations are not only a key concern when entering clinical trials but also an important decision point in product development. Standing at the crossroads, nanomedicine may be able to escape the niche markets and achieve wider acceptance by the pharmaceutical industry. While there is a new generation of drug delivery systems, the extracellular vesicles, standing on the starting line, unresolved issues and new challenges emerge from their translation from bench to bedside. Some key features of injectable nanomedicines contribute to the predictability of the pharmacological and toxicological effects. So far, only a few of the physicochemical attributes of nanomedicines can be justified by a direct mathematical relationship between the in vitro and the in vivo responses. To further develop extracellular vesicles as drug carriers, we have to learn from more than 40 years of clinical experience in liposomal delivery and pass on this knowledge to the next generation. Our quick guide discusses relationships between physicochemical characteristics and the in vivo response, commonly referred to as in vitro-in vivo correlation. Further, we highlight the key role of computational methods, lay open current knowledge gaps, and question the established design strategies. Has the recent progress improved the predictability of targeted delivery or do we need another change in perspective?
Collapse
|
22
|
Abuhassan Q, Khadra I, Pyper K, Halbert GW. Small scale in vitro method to determine a bioequivalent equilibrium solubility range for fasted human intestinal fluid. Eur J Pharm Biopharm 2021; 168:90-96. [PMID: 34419602 PMCID: PMC8491656 DOI: 10.1016/j.ejpb.2021.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/21/2021] [Accepted: 08/14/2021] [Indexed: 01/29/2023]
Abstract
Drug solubility is a key parameter controlling oral absorption, but intestinal solubility is difficult to assess in vitro. Human intestinal fluid (HIF) aspirates can be applied but they are variable, difficult to obtain and expensive. Simulated intestinal fluids (SIF) are a useful surrogate but multiple recipes are available and the optimum is unknown. A recent study characterised fasted HIF aspirates using a multi-dimensional approach and determined nine bioequivalent SIF media recipes that represented over ninety percent of HIF compositional variability. In this study these recipes have been applied to determine the equilibrium solubility of twelve drugs (naproxen, indomethacin, phenytoin, piroxicam, aprepitant, carvedilol, zafirlukast, tadalafil, fenofibrate, griseofulvin, felodipine, probucol) previously investigated using a statistical design of experiment (DoE) approach. The bioequivalent solubility measurements are statistically equivalent to the previous DoE, enclose literature solubility values in both fasted HIF and SIF, and the solubility range is less than the previous DoE. These results indicate that the system is measuring the same solubility space as literature systems with the lower overall range suggesting improved equivalence to in vivo solubility, when compared to DoEs. Three drugs (phenytoin, tadalafil and griseofulvin) display a comparatively narrow solubility range, a behaviour that is consistent with previous studies and related to the drugs' molecular structure and properties. This solubility behaviour would not be evident with single point solubility measurements. The solubility results can be analysed using a custom DoE to determine the most statistically significant factor within the media influencing solubility. This approach has a lower statistical resolution than a formal DoE and is not appropriate if determination of media factor significance for solubilisation is required. This study demonstrates that it is possible to assess the fasted intestinal equilibrium solubility envelope using a small number of bioequivalent media recipes obtained from a multi-dimensional analysis of fasted HIF. The derivation of the nine bioequivalent SIF media coupled with the lower measured solubility range indicate that the solubility results are more likely to reflect the fasted intestinal solubility envelope than previous DoE studies and highlight that intestinal solubility is a range and not a single value.
Collapse
Affiliation(s)
- Qamar Abuhassan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| | - Ibrahim Khadra
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| | - Kate Pyper
- Department of Mathematics and Statistics, University of Strathclyde, Livingstone Tower, 26 Richmond Street, Glasgow G1 1XH, United Kingdom
| | - Gavin W Halbert
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom.
| |
Collapse
|
23
|
Dening TJ, Douglas JT, Hageman MJ. Do Macrocyclic Peptide Drugs Interact with Bile Salts under Simulated Gastrointestinal Conditions? Mol Pharm 2021; 18:3086-3098. [PMID: 34255531 DOI: 10.1021/acs.molpharmaceut.1c00309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptide drugs face several barriers to oral delivery, including enzymatic degradation in the gastrointestinal tract and low membrane permeability. Importantly, the direct interaction between various biorelevant colloids (i.e., bile salt micelles and bile salt-phospholipid mixed micelles) present in the aqueous gastrointestinal environment and peptide drug molecules has not been studied. In this work, we systematically characterized interactions between a water-soluble model peptide drug, octreotide, and a range of physiologically relevant bile salts in solution. Octreotide membrane flux in pure bile salt solutions and commercially available biorelevant media, i.e., fasted state simulated intestinal fluid (FaSSIF) and fed state simulated intestinal fluid (FeSSIF), was evaluated using a side-by-side diffusion cell equipped with a cellulose dialysis membrane. All seven micellar bile salt solutions as well as FaSSIF and FeSSIF decreased octreotide membrane flux, and dihydroxy bile salts were found to have a much larger effect than trihydroxy bile salts. An inverse relationship between octreotide membrane flux and pancreatic enzymatic stability was also observed; bile salt micelles and bile salt-phospholipid mixed micelles provided a protective effect toward enzymatic degradation and prolonged octreotide half-life in vitro. Diffusion ordered nuclear magnetic resonance (DOSY NMR) spectroscopy and dynamic light scattering (DLS) were used as complementary experimental techniques to confirm peptide-micelle interactions in solution. Experiments were also performed using desmopressin as a second model peptide drug; desmopressin interacted with bile salts in solution, albeit to a lower extent relative to octreotide. The findings described herein demonstrate that amphiphilic, water-soluble peptide drugs do interact with bile salts and phospholipids in solution, with an effect on peptide membrane flux and enzymatic stability. Correspondingly, oral peptide drug absorption and bioavailability may be impacted.
Collapse
Affiliation(s)
- Tahnee J Dening
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, 2093 Constant Avenue, Lawrence, Kansas 66047, United States
| | - Justin T Douglas
- Nuclear Magnetic Resonance Core Laboratory, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Michael J Hageman
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, 2093 Constant Avenue, Lawrence, Kansas 66047, United States
| |
Collapse
|
24
|
Patel D, Bertz R, Ren S, Boulton DW, Någård M. A Systematic Review of Gastric Acid-Reducing Agent-Mediated Drug-Drug Interactions with Orally Administered Medications. Clin Pharmacokinet 2021; 59:447-462. [PMID: 31788764 PMCID: PMC7109143 DOI: 10.1007/s40262-019-00844-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVE Several review articles have been published discussing gastric acid-related drug-drug interactions (DDIs) mediated by coadministration of antacids, histamine H2 receptor antagonists, or proton pump inhibitors, but are not sufficiently comprehensive in capturing all documented DDIs with acid-reducing agents (ARAs) and tend to focus on gastric pH-dependent DDIs and/or basic drugs. Subsequently, several new drugs have been approved, and new information is available in the literature. The objective of this systematic review is to comprehensively identify oral medications that have clinically meaningful DDIs, including loss of efficacy or adverse effects, with gastric ARAs, and categorize these medications according to mechanism of interaction. METHODS An indepth search of clinical data in the PDR3D: Reed Tech Navigator™ for Drug Labels, University of Washington Drug-Drug Interaction Database, DailyMed, Drugs@FDA.gov, and UpToDate®/Lexicomp® Drug and Drug Interaction screening tool was conducted from 1 June to 1 August 2018. The PDR3D, University of Washington Drug-Drug Interaction Database, and DailyMed were searched with terms associated with gastric acid and ARAs. Conflicting findings were further investigated using the UpToDate®/Lexicomp® screening tool. Clinical relevance was assessed on whether an intervention was needed, and prescribing information and/or literature supporting the DDI. RESULTS Through the search strategy, 121 medications were found to clinically meaningfully interact with ARAs. For 38 medications the mechanism of interaction with ARAs was identified as gastric pH dependent, and for 83 medications the interaction was found to be not gastric pH mediated, with mechanisms involving metabolic enzymes, transporters, chelation, and urine alkalization. Additionally, 109 medications were studied and did not have a clinically meaningful interaction with ARAs. CONCLUSION This review may provide a resource to healthcare professionals in aiding the care of patients by increasing awareness of interactions with ARAs and may also identify and potentially aid in avoiding clinically relevant DDIs and preventing risk of treatment failure and/or adverse effects. Advances in non-clinical predictions of gastric pH-mediated DDIs may guide the need for a future clinical evaluation.
Collapse
Affiliation(s)
- Divya Patel
- University of Pittsburgh School of Pharmacy, 37 S. New York Rd, Galloway, NJ, 08205, USA
| | - Richard Bertz
- University of Pittsburgh School of Pharmacy, 37 S. New York Rd, Galloway, NJ, 08205, USA
| | - Song Ren
- Quantitative Clinical Pharmacology, Early Clinical Development, Innovative Medicines (IMed) Biotech Unit, AstraZeneca LP, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - David W Boulton
- Quantitative Clinical Pharmacology, Early Clinical Development, Innovative Medicines (IMed) Biotech Unit, AstraZeneca LP, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Mats Någård
- Quantitative Clinical Pharmacology, Early Clinical Development, Innovative Medicines (IMed) Biotech Unit, AstraZeneca LP, One MedImmune Way, Gaithersburg, MD, 20878, USA.
| |
Collapse
|
25
|
Henze LJ, Koehl NJ, O'Shea JP, Holm R, Vertzoni M, Griffin BT. Combining species specific in vitro & in silico models to predict in vivo food effect in a preclinical stage - case study of Venetoclax. Eur J Pharm Sci 2021; 162:105840. [PMID: 33845120 DOI: 10.1016/j.ejps.2021.105840] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 03/19/2021] [Accepted: 04/07/2021] [Indexed: 12/22/2022]
Abstract
The pig has been increasingly used as a reliable preclinical model for assessing and predicting the in vivo bioavailability of different formulation strategies. Nevertheless, differences in the composition between porcine and human intestinal fluids, may impact on the solubility and dissolution behaviour of drugs, in particular BCS II/IV drugs. Recently, a porcine fasted simulated intestinal fluid (FaSSIFp) was developed to mimic the composition in the lumen of landrace pigs under fasted state conditions. In this work, we present the utilization of FaSSIFp to compare solubility against human FaSSIF & FeSSIF and further combine species specific in vitro testing with in silico predictive modelling. Venetoclax was chosen as a model drug, representing a BCS class IV drug, with a reported clinically significant positive food effect, where bioavailability is increased up to approximately five-fold when administered with a high-fat meal. Biorelevant species specific in vitro testing was a promising tool for integrating in vitro data into in silico models, using FaSSIFp resulted in reliable predictions of the plasma concentration profile in fasted pigs, based on a porcine physiologically based absorption model. The porcine physiologically based absorption model was used to prospectively simulate the impact of food on the bioavailability of venetoclax. The use of luminal solubility estimates in combination with dissolution data for venetoclax, measured in species specific simulated fluids, correctly predict the observed pig plasma concentration profile and food effect. Overall, integrating species specific in vitro - in silico models led to accurate prediction of in vivo absorption of venetoclax in a preclinical stage, which can support guidance in early decisions of drug product development. In addition, the study further demonstrated the utility of the pig model to predict the food effects of venetoclax in humans.
Collapse
Affiliation(s)
- Laura J Henze
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Niklas J Koehl
- Drug Product Development, Janssen Research and Development, Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium
| | | | - René Holm
- Drug Product Development, Janssen Research and Development, Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium; Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Maria Vertzoni
- Department of Pharmacy, School of Health Science, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
26
|
Yang Y, Lv Y, Shen C, Shi T, He H, Qi J, Dong X, Zhao W, Lu Y, Wu W. In vivo dissolution of poorly water-soluble drugs: Proof of concept based on fluorescence bioimaging. Acta Pharm Sin B 2021; 11:1056-1068. [PMID: 33996417 PMCID: PMC8105772 DOI: 10.1016/j.apsb.2020.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/16/2020] [Accepted: 07/09/2020] [Indexed: 01/10/2023] Open
Abstract
In vitro‒in vivo correlation (IVIVC) of solid dosage forms should be established basically between in vitro and in vivo dissolution of active pharmaceutical ingredients. Nevertheless, in vivo dissolution profiles have never been accurately portrayed. The current practice of IVIVC has to resort to in vivo absorption fractions (Fa). In this proof-of-concept study, in vivo dissolution of a model poorly water-soluble drug fenofibrate (FNB) was investigated by fluorescence bioimaging. FNB crystals were first labeled by near-infrared fluorophores with aggregation-caused quenching properties. The dyes illuminated FNB crystals but quenched immediately and absolutely once been released into aqueous media, enabling accurate monitoring of residual drug crystals. The linearity established between fluorescence and crystal concentration justified reliable quantification of FNB crystals. In vitro dissolution was first measured following pharmacopoeia monograph protocols with well-documented IVIVC. The synchronicity between fluorescence and in vitro dissolution of FNB supported using fluorescence as a measure for determination of dissolution. In vitro dissolution correlated well with in vivo dissolution, acquired by either live or ex vivo imaging. The newly established IVIVC was further validated by correlating both in vitro and in vivo dissolution with Fa obtained from pharmacokinetic data.
Collapse
|
27
|
Impact of gastrointestinal tract variability on oral drug absorption and pharmacokinetics: An UNGAP review. Eur J Pharm Sci 2021; 162:105812. [PMID: 33753215 DOI: 10.1016/j.ejps.2021.105812] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/19/2021] [Accepted: 03/16/2021] [Indexed: 12/17/2022]
Abstract
The absorption of oral drugs is frequently plagued by significant variability with potentially serious therapeutic consequences. The source of variability can be traced back to interindividual variability in physiology, differences in special populations (age- and disease-dependent), drug and formulation properties, or food-drug interactions. Clinical evidence for the impact of some of these factors on drug pharmacokinetic variability is mounting: e.g. gastric pH and emptying time, small intestinal fluid properties, differences in pediatrics and the elderly, and surgical changes in gastrointestinal anatomy. However, the link of colonic factors variability (transit time, fluid composition, microbiome), sex differences (male vs. female) and gut-related diseases (chronic constipation, anorexia and cachexia) to drug absorption variability has not been firmly established yet. At the same time, a way to decrease oral drug pharmacokinetic variability is provided by the pharmaceutical industry: clinical evidence suggests that formulation approaches employed during drug development can decrease the variability in oral exposure. This review outlines the main drivers of oral drug exposure variability and potential approaches to overcome them, while highlighting existing knowledge gaps and guiding future studies in this area.
Collapse
|
28
|
Hens B, Augustijns P, Lennernäs H, McAllister M, Abrahamsson B. Leveraging Oral Drug Development to a Next Level: Impact of the IMI-Funded OrBiTo Project on Patient Healthcare. Front Med (Lausanne) 2021; 8:480706. [PMID: 33748152 PMCID: PMC7973356 DOI: 10.3389/fmed.2021.480706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 02/12/2021] [Indexed: 11/13/2022] Open
Abstract
A thorough understanding of the behavior of drug formulations in the human gastrointestinal (GI) tract is essential when working in the field of oral drug development in a pharmaceutical company. For orally administered drug products, various GI processes, including disintegration of the drug formulation, drugrelease, dissolution, precipitation, degradation, dosage form transit and permeation, dictate absorption into the systemic circulation. These processes are not always fully captured in predictive in vitro and in silico tools, as commonly applied in the pre-clinical stage of formulation drug development. A collaborative initiative focused on the science of oral biopharmaceutics was established in 2012 between academic institutions and industrial companies to innovate, optimize and validate these in vitro and in silico biopharmaceutical tools. From that perspective, the predictive power of these models can be revised and, if necessary, optimized to improve the accuracy toward predictions of the in vivo performance of orally administered drug products in patients. The IMI/EFPIA-funded "Oral Bioavailability Tools (OrBiTo)" project aimed to improve our fundamental understanding of the GI absorption process. The gathered information was integrated into the development of new (or already existing) laboratory tests and computer-based methods in order to deliver more accurate predictions of drug product behavior in a real-life setting. These methods were validated with the use of industrial data. Crucially, the ultimate goal of the project was to set up a scientific framework (i.e., decision trees) to guide the use of these new tools in drug development. The project aimed to facilitate and accelerate the formulation development process and to significantly reduce the need for animal experiments in this area as well as for human clinical studies in the future. With respect to the positive outcome for patients, high-quality oral medicines will be developed where the required dose is well-calculated and consistently provides an optimal clinical effect. In a first step, this manuscript summarizes the setup of the project and how data were collected across the different work packages. In a second step, case studies of how this project contributed to improved knowledge of oral drug delivery which can be used to develop improved products for patients will be illustrated.
Collapse
Affiliation(s)
- Bart Hens
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.,Drug Product Design, Pfizer, Sandwich, United Kingdom
| | - Patrick Augustijns
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Hans Lennernäs
- Department of Pharmaceutical Biosciences and Technology, Uppsala University, Uppsala, Sweden
| | | | - Bertil Abrahamsson
- Oral Product Development, Pharmaceutical Technology and Development, Operations, AstraZeneca Gothenburg, Mölndal, Sweden
| |
Collapse
|
29
|
Derdour L. A Pathway to First Crystals for Substances Prone to Liquid‐Liquid Phase Separation. Chem Eng Technol 2021. [DOI: 10.1002/ceat.202000274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Lotfi Derdour
- GlaxoSmithKline Material Sciences, Chemical Development 1250 S. Collegeville Road 19426 Collegeville PA USA
| |
Collapse
|
30
|
Measurement of the Intestinal pH in Mice under Various Conditions Reveals Alkalization Induced by Antibiotics. Antibiotics (Basel) 2021; 10:antibiotics10020180. [PMID: 33670214 PMCID: PMC7916911 DOI: 10.3390/antibiotics10020180] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/17/2022] Open
Abstract
The intestinal pH can greatly influence the stability and absorption of oral drugs. Therefore, knowledge of intestinal pH is necessary to understand the conditions for drug delivery. This has previously been measured in humans and rats. However, information on intestinal pH in mice is insufficient despite these animals being used often in preclinical testing. In this study, 72 female ICR mice housed in SPF (specific pathogen-free) conditions were separated into nine groups to determine the intestinal pH under conditions that might cause pH fluctuations, including high-protein diet, ageing, proton pump inhibitor (PPI) treatment, several antibiotic treatment regimens and germ-free mice. pH was measured in samples collected from the ileum, cecum and colon, and compared to control animals. An electrode, 3 mm in diameter, enabled accurate pH measurements with a small amount of gastrointestinal content. Consequently, the pH values in the cecum and colon were increased by high-protein diet, and the pH in the ileum was decreased by PPI. Drastic alkalization was induced by antibiotics, especially in the cecum and colon. The alkalized pH values in germ-free mice suggested that the reduction in the intestinal bacteria caused by antibiotics led to alkalization. Alkalization of the intestinal pH caused by antibiotic treatment was verified in mice. We need further investigations in clinical settings to check whether the same phenomena occur in patients.
Collapse
|
31
|
Madsen CM, Plum J, Hens B, Augustijns P, Müllertz A, Rades T. Exploring the Impact of Intestinal Fluid Components on the Solubility and Supersaturation of Danazol. J Pharm Sci 2021; 110:2479-2488. [PMID: 33428916 DOI: 10.1016/j.xphs.2020.12.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/10/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023]
Abstract
Eleven simulated intestinal fluids (SIF) were designed using a Design of Experiment (DoE) approach. The DoE SIF covered a range of compositions of fasted state human intestinal fluid (FaHIF) with regard to pH, bile salt (BS), and phospholipid (PL). Using the model compound danazol, the apparent crystalline solubility (aCS) and apparent amorphous solubility (aAS), as well as the supersaturation propensity was determined in the DoE SIF media. The aCS of danazol was dependent on the composition of the SIF, with PL as the main factor, and a small effect from BS and an interaction between BS and PL. From the DoE solubility data a model was derived, which could predict aCS in commercially available SIF (FaSSIF-V1 and -V2) and in a range of FaHIF. The aAS of danazol was differently affected by the SIF composition than the aCS; PL was again the main factor influencing the aAS, but interactions between BS and pH, as well as pH and PL were also important. The supersaturation propensities of danazol in the DoE SIF media were affected by the same factors as the aCS. Hence, the supersaturation behaviour and aCS of danazol, were found to be closely related.
Collapse
Affiliation(s)
- Cecilie Maria Madsen
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark; Pharmaceutical R&D, H. Lundbeck A/S, Valby, Denmark; Pharmaceutical Sciences, Janssen, Beerse, Belgium
| | - Jakob Plum
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Bart Hens
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Patrick Augustijns
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Anette Müllertz
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark; Bioneer:FARMA, University of Copenhagen, Copenhagen, Denmark.
| | - Thomas Rades
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark; Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| |
Collapse
|
32
|
A combined in vitro in-silico approach to predict the oral bioavailability of borderline BCS Class II/IV weak base albendazole and its main metabolite albendazole sulfoxide. Eur J Pharm Sci 2020; 155:105552. [PMID: 32937212 DOI: 10.1016/j.ejps.2020.105552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/28/2020] [Accepted: 09/11/2020] [Indexed: 12/17/2022]
Abstract
The aim of this study was to use a combined in vitro-in silico approach to develop a physiologically based pharmacokinetic model (PBPK) that predicts the bioavailability of albendazole (ABZ), a BCS class II/IV lipophilic weak base, and simulates its main metabolite albendazole sulphoxide (ABZSO) after oral administration of the current marketed dose of 400 mg in the fasted state. In vitro data was collected from solubility and dissolution tests performed with biorelevant media and transfer tests were carried out to evaluate the supersaturation and precipitation characteristics of ABZ upon gastric emptying. These in vitro results were used as biopharmaceutical inputs together with ABZ physicochemical properties including also permeability and in vitro metabolism data and information gathered from different clinical trials reported in the literature, were used to enable PBPK models to be developed using GastroPlus™ (version 9.7). As expected for this weak base with pKa = 3.6, ABZ exhibited a pronounced pH dependent solubility, with the solubility and extent of dissolution being greater at gastric pH and dropping significantly in the intestinal environment suggesting supersaturation and precipitation upon gastric emptying, which was confirmed by the transfer model experiments. PBPK models were set up for heathy volunteers using a full PBPK modeling approach and by implementing dynamic fluid volumes in the ACAT gut physiology in GastroPlus™. When coupling in vitro data (solubility values, dissolution rate and precipitation rate constant, etc.) for ABZ and with fitted values for the Vdss and liver systemic clearance of the sulfoxide metabolite to the PBPK model, the simulated profiles successfully predicated plasma concentrations of ABZ at 400 mg dose and simulated ABZSO at different ABZ dose levels and with different study populations, indicating the usefulness of combing in vitro biorelevant tools with PBPK modeling for the accurate prediction of ABZ bioavailability. The results obtained in this study also helped confirm that ABZ behaves as a BCS class IV compound.
Collapse
|
33
|
Shikov AN, Flisyuk EV, Obluchinskaya ED, Pozharitskaya ON. Pharmacokinetics of Marine-Derived Drugs. Mar Drugs 2020; 18:E557. [PMID: 33182407 PMCID: PMC7698100 DOI: 10.3390/md18110557] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022] Open
Abstract
Marine organisms represent an excellent source of innovative compounds that have the potential for the development of new drugs. The pharmacokinetics of marine drugs has attracted increasing interest in recent decades due to its effective and potential contribution to the selection of rational dosage recommendations and the optimal use of the therapeutic arsenal. In general, pharmacokinetics studies how drugs change after administration via the processes of absorption, distribution, metabolism, and excretion (ADME). This review provides a summary of the pharmacokinetics studies of marine-derived active compounds, with a particular focus on their ADME. The pharmacokinetics of compounds derived from algae, crustaceans, sea cucumber, fungus, sea urchins, sponges, mollusks, tunicate, and bryozoan is discussed, and the pharmacokinetics data in human experiments are analyzed. In-depth characterization using pharmacokinetics is useful for obtaining information for understanding the molecular basis of pharmacological activity, for correct doses and treatment schemes selection, and for more effective drug application. Thus, an increase in pharmacokinetic research on marine-derived compounds is expected in the near future.
Collapse
Affiliation(s)
- Alexander N. Shikov
- Department of Technology of Pharmacutical Formulations, St. Petersburg State Chemical Pharmaceutical University, Prof. Popov, 14a, Saint-Petersburg 197376, Russia;
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), Vladimirskaya, 17, Murmansk 183010, Russia; (E.D.O.); (O.N.P.)
| | - Elena V. Flisyuk
- Department of Technology of Pharmacutical Formulations, St. Petersburg State Chemical Pharmaceutical University, Prof. Popov, 14a, Saint-Petersburg 197376, Russia;
| | - Ekaterina D. Obluchinskaya
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), Vladimirskaya, 17, Murmansk 183010, Russia; (E.D.O.); (O.N.P.)
| | - Olga N. Pozharitskaya
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), Vladimirskaya, 17, Murmansk 183010, Russia; (E.D.O.); (O.N.P.)
| |
Collapse
|
34
|
Kabedev A, Hossain S, Hubert M, Larsson P, Bergström CAS. Molecular Dynamics Simulations Reveal Membrane Interactions for Poorly Water-Soluble Drugs: Impact of Bile Solubilization and Drug Aggregation. J Pharm Sci 2020; 110:176-185. [PMID: 33152373 DOI: 10.1016/j.xphs.2020.10.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/14/2020] [Accepted: 10/28/2020] [Indexed: 01/19/2023]
Abstract
Molecular transport mechanisms of poorly soluble hydrophobic drug compounds to lipid membranes were investigated using molecular dynamics (MD) simulations. The model compound danazol was used to investigate the mechanism(s) by which bile micelles delivered it to the membrane. The interactions between lipid membrane and pure drug aggregates-in the form of amorphous aggregates and nanocrystals-were also studied. Our simulations indicate that bile micelles formed in the intestinal fluid may facilitate danazol incorporation into cellular membranes through two different mechanisms. The micelle may be acting as: i) a shuttle that presents the danazol directly to the membrane or ii) an elevator that moves the solubilized danazol with it as the colloidal structure itself becomes incorporated and solubilized within the membrane. The elevator hypothesis was supported by complementary lipid monolayer adsorption experiments. In these experiments, colloidal structures formed with simulated intestinal fluid were observed to rapidly incorporate into the monolayer. Simulations of membrane interaction with drug aggregates showed that both the amorphous aggregates and crystalline nanostructures incorporated into the membrane. However, the amorphous aggregates solubilized more quickly than the nanocrystals into the membrane, thereby improving the danazol absorption.
Collapse
Affiliation(s)
- Aleksei Kabedev
- Department of Pharmacy, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden
| | - Shakhawath Hossain
- Department of Pharmacy, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden
| | - Madlen Hubert
- Department of Pharmacy, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden
| | - Per Larsson
- Department of Pharmacy, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden; The Swedish Drug Delivery Center (SweDeliver), Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden
| | - Christel A S Bergström
- Department of Pharmacy, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden; The Swedish Drug Delivery Center (SweDeliver), Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden.
| |
Collapse
|
35
|
Bennett-Lenane H, Koehl NJ, O'Dwyer PJ, Box KJ, O'Shea JP, Griffin BT. Applying Computational Predictions of Biorelevant Solubility Ratio Upon Self-Emulsifying Lipid-Based Formulations Dispersion to Predict Dose Number. J Pharm Sci 2020; 110:164-175. [PMID: 33144233 DOI: 10.1016/j.xphs.2020.10.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/19/2020] [Accepted: 10/28/2020] [Indexed: 11/26/2022]
Abstract
Computational approaches are increasingly utilised in development of bio-enabling formulations, including self-emulsifying drug delivery systems (SEDDS), facilitating early indicators of success. This study investigated if in silico predictions of drug solubility gain i.e. solubility ratios (SR), after dispersion of a SEDDS in biorelevant media could be predicted from drug properties. Apparent solubility upon dispersion of two SEDDS in FaSSIF was measured for 30 structurally diverse poorly water soluble drugs. Increased drug solubility upon SEDDS dispersion was observed in all cases, with higher SRs observed for cationic and neutral versus anionic drugs at pH 6.5. Molecular descriptors and solid-state properties were used as inputs during partial least squares (PLS) modelling resulting in predictive models for SRMC (r2 = 0.81) and SRLC (r2 = 0.77). Multiple linear regression (MLR) facilitated generation of simplified SR equations with high predictivity (SRMC r2 = 0.74; SRLC r2 = 0.69), requiring only three drug properties; partition coefficient at pH 6.5 (logD6.5), melting point (Tm) and aromatic bonds as fraction of total bonds (F-AromB). Through using the equations to inform developability classification system (DCS) classes for drugs that have already been licensed as lipid-based formulations, merits for development with SEDDS was predicted for 2/3 drugs.
Collapse
Affiliation(s)
| | - Niklas J Koehl
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Patrick J O'Dwyer
- School of Pharmacy, University College Cork, Cork, Ireland; Pion Inc. (UK) Ltd, Forest Row, East Sussex, UK
| | - Karl J Box
- Pion Inc. (UK) Ltd, Forest Row, East Sussex, UK
| | | | | |
Collapse
|
36
|
Jacobsen NMY, Caglayan I, Caglayan A, Bar-Shalom D, Müllertz A. Achieving delayed release of freeze-dried probiotic strains by extrusion, spheronization and fluid bed coating - evaluated using a three-step in vitro model. Int J Pharm 2020; 591:120022. [PMID: 33122110 DOI: 10.1016/j.ijpharm.2020.120022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 01/09/2023]
Abstract
Intake of probiotics is associated with many health benefits, which has generated an interest in formulating viable probiotic supplements. The present study had two aims. The first aim was to achieve gastrointestinal protection and delayed release of viable probiotics by pelletizing and coating freeze-dried probiotic strains, using riboflavin as a marker for release. The second aim was to set up a dynamic three-step in vitro model simulating the conditions in the human gastric, duodenum/jejunum and ileum compartments using physiologically relevant media to evaluate delayed release of the formulations. To simulate lowered bile acid concentrations in the ileum area of the gastrointestinal tract, a novel method using the bile acid sequestrant cholestyramine to lower bile acid concentrations in the small intestinal medium to physiologically relevant levels was attempted. Granulation, extrusion and spheronization was used to develop pellets containing viable probiotics using freeze-dried Lactobacullus reuteri as a model strain. Fluid bed coating the pellets with the pH-sensitive polymers Eudragit S100 or Eudragit FS30D resulted in targeted release in the ileum step of the three-step in vitro model based on release of the marker riboflavin.
Collapse
Affiliation(s)
| | - Ibrahim Caglayan
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Aslihan Caglayan
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Daniel Bar-Shalom
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; Bioneer:FARMA, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Anette Müllertz
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; Bioneer:FARMA, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
37
|
Biomimetic Artificial Membrane Permeability Assay over Franz Cell Apparatus Using BCS Model Drugs. Pharmaceutics 2020; 12:pharmaceutics12100988. [PMID: 33086670 PMCID: PMC7589491 DOI: 10.3390/pharmaceutics12100988] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 11/17/2022] Open
Abstract
A major parameter controlling the extent and rate of oral drug absorption is permeability through the lipid bilayer of intestinal epithelial cells. Here, a biomimetic artificial membrane permeability assay (Franz-PAMPA Pampa) was validated using a Franz cells apparatus. Both high and low permeability drugs (metoprolol and mannitol, respectively) were used as external standards. Biomimetic properties of Franz-PAMPA were also characterized by electron paramagnetic resonance spectroscopy (EPR). Moreover, the permeation profile for eight Biopharmaceutic Classification System (BCS) model drugs cited in the FDA guidance and another six drugs (acyclovir, cimetidine, diclofenac, ibuprofen, piroxicam, and trimethoprim) were measured across Franz-PAMPA. Apparent permeability (Papp) Franz-PAMPA values were correlated with fraction of dose absorbed in humans (Fa%) from the literature. Papp in Caco-2 cells and Corti artificial membrane were likewise compared to Fa% to assess Franz-PAMPA performance. Mannitol and metoprolol Papp values across Franz-PAMPA were lower (3.20 × 10-7 and 1.61 × 10-5 cm/s, respectively) than those obtained across non-impregnated membrane (2.27 × 10-5 and 2.55 × 10-5 cm/s, respectively), confirming lipidic barrier resistivity. Performance of the Franz cell permeation apparatus using an artificial membrane showed acceptable log-linear correlation (R2 = 0.664) with Fa%, as seen for Papp in Caco-2 cells (R2 = 0.805). Data support the validation of the Franz-PAMPA method for use during the drug discovery process.
Collapse
|
38
|
Development and evaluation of a biorelevant medium simulating porcine gastrointestinal fluids. Eur J Pharm Biopharm 2020; 154:116-126. [DOI: 10.1016/j.ejpb.2020.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/08/2020] [Accepted: 06/14/2020] [Indexed: 12/23/2022]
|
39
|
Nainwal N, Singh R, Jawla S, Saharan VA. The Solubility-Permeability Interplay for Solubility-Enabling Oral Formulations. Curr Drug Targets 2020; 20:1434-1446. [PMID: 31333138 DOI: 10.2174/1389450120666190717114521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/30/2019] [Accepted: 07/01/2019] [Indexed: 02/01/2023]
Abstract
The Biopharmaceutical classification system (BCS) classifies the drugs based on their intrinsic solubility and intestinal permeability. The drugs with good solubility and intestinal permeability have good bioavailability. The drugs with poor solubility and poor permeability have solubility dependent and permeability dependent bioavailability, respectively. In the current pharmaceutical field, most of the drugs have poor solubility. To solve the problem of poor solubility, various solubility enhancement approaches have been successfully used. The effects of these solubility enhancing approaches on the intestinal permeability of the drugs are a matter of concern, and must not be overlooked. The current review article focuses on the effect of various solubility enhancing approaches viz. cyclodextrin, surfactant, cosolvent, hydrotropes, and amorphous solid dispersion, on the intestinal permeability of drugs. This article will help in the designing of the optimized formulations having balanced solubility enhancement without affecting the permeability of drugs.
Collapse
Affiliation(s)
- Nidhi Nainwal
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sardar Bhagwan Singh University, Balawala, Dehradun, India
| | - Ranjit Singh
- School of Pharmacy, Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University Gangoh, Saharanpur, India
| | - Sunil Jawla
- School of Pharmacy, Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University Gangoh, Saharanpur, India
| | - Vikas Anand Saharan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sardar Bhagwan Singh University, Balawala, Dehradun, India
| |
Collapse
|
40
|
Pyper K, Brouwers J, Augustijns P, Khadra I, Dunn C, Wilson CG, Halbert GW. Multidimensional analysis of human intestinal fluid composition. Eur J Pharm Biopharm 2020; 153:226-240. [PMID: 32585351 DOI: 10.1016/j.ejpb.2020.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022]
Abstract
The oral administration of solid dosage forms is the commonest method to achieve systemic therapy and relies on the drug's solubility in human intestinal fluid (HIF), a key factor that influences bioavailability and biopharmaceutical classification. However, HIF is difficult to obtain and is known to be variable, which has led to the development of a range of simulated intestinal fluid (SIF) systems to determine drug solubility in vitro. In this study we have applied a novel multidimensional approach to analyse and characterise HIF composition using a published data set in both fasted and fed states with a view to refining the existing SIF approaches. The data set provided 152 and 172 measurements of five variables (total bile salt, phospholipid, total free fatty acid, cholesterol and pH) in time-dependent HIF samples from 20 volunteers in the fasted and fed state, respectively. The variable data sets for both fasted state and fed state are complex, do not follow normal distributions but the amphiphilic variable concentrations are correlated. When plotted 2-dimensionally a generally ellipsoid shaped data cloud with a positive slope is revealed with boundaries that enclose published fasted or fed HIF compositions. The data cloud also encloses the majority of fasted state and fed state SIF recipes and illustrates that the structured nature of design of experiment (DoE) approaches does not optimally cover the variable space and may examine media compositions that are not biorelevant. A principal component analysis in either fasted or fed state in combination with fitting an ellipsoid shape to enclose the data results in 8 points that capture over 95% of the compositional variability of HIF. The variable's average rate of concentration change in both fasted state and fed state over a short time scale (10 min) is zero and a Euclidean analysis highlights differences between the fasted and fed states and among individual volunteers. The results indicate that a 9-point DoE (8 + 1 central point) could be applied to investigate drug solubility in vitro and provide statistical solubility limits. In addition, a single point could provide a worst-case solubility measurement to define the lowest biopharmaceutical classification boundary or for use during drug development. This study has provided a novel description of HIF composition. The approach could be expanded in multiple ways by incorporation of further data sets to improve the statistical coverage or to cover specific patient groups (e.g., paediatric). Further development might also be possible to analyse information on the time dependent behaviour of HIF and to guide HIF sampling and analysis protocols.
Collapse
Affiliation(s)
- Kate Pyper
- Department of Mathematics and Statistics, University of Strathclyde, Livingstone Tower, 26 Richmond Street, Glasgow G1 1XH, United Kingdom
| | - Joachim Brouwers
- Drug Delivery and Disposition, KU Leuven, ON2, Herestraat 49 Box 921, 3000 Leuven, Belgium
| | - Patrick Augustijns
- Drug Delivery and Disposition, KU Leuven, ON2, Herestraat 49 Box 921, 3000 Leuven, Belgium
| | - I Khadra
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| | - C Dunn
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| | - C G Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| | - G W Halbert
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom.
| |
Collapse
|
41
|
Selen A, Müllertz A, Kesisoglou F, Ho RJY, Cook JA, Dickinson PA, Flanagan T. Integrated Multi-stakeholder Systems Thinking Strategy: Decision-making with Biopharmaceutics Risk Assessment Roadmap (BioRAM) to Optimize Clinical Performance of Drug Products. AAPS JOURNAL 2020; 22:97. [PMID: 32719954 DOI: 10.1208/s12248-020-00470-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/04/2020] [Indexed: 12/20/2022]
Abstract
Decision-making in drug development benefits from an integrated systems approach, where the stakeholders identify and address the critical questions for the system through carefully designed and performed studies. Biopharmaceutics Risk Assessment Roadmap (BioRAM) is such a systems approach for application of systems thinking to patient focused and timely decision-making, suitable for all stages of drug discovery and development. We described the BioRAM therapy-driven drug delivery framework, strategic roadmap, and integrated risk assessment instrument (BioRAM Scoring Grid) in previous publications (J Pharm Sci 103:3377-97, 2014; J Pharm Sci 105:3243-55, 2016). Integration of systems thinking with pharmaceutical development, manufacturing, and clinical sciences and health care is unique to BioRAM where the developed strategy identifies the system and enables risk characterization and balancing for the entire system. Successful decision-making process in BioRAM starts with the Blueprint (BP) meetings. Through shared understanding of the system, the program strategy is developed and captured in the program BP. Here, we provide three semi-hypothetical examples for illustrating risk-based decision-making in high and moderate risk settings. In the high-risk setting, which is a rare disease area, two completely alternate development approaches are considered (gene therapy and small molecule). The two moderate-risk examples represent varied knowledge levels and drivers for the programs. In one moderate-risk example, knowledge leveraging opportunities are drawn from the manufacturing knowledge and clinical performance of a similar drug substance. In the other example, knowledge on acute tolerance patterns for a similar mechanistic pathway is utilized for identifying markers to inform the drug release profile from the dosage form with the necessary "flexibility" for dosing. All examples illustrate implementation of the BioRAM strategy for leveraging knowledge and decision-making to optimize the clinical performance of drug products for patient benefit.
Collapse
Affiliation(s)
- Arzu Selen
- US Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Office of Testing and Research, 10903 New Hampshire Ave., Silver Spring, Maryland, 20993, USA.
| | - Anette Müllertz
- Bioneer: FARMA, Department of Pharmacy, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Filippos Kesisoglou
- Biopharmaceutics, Pharmaceutical Sciences and Clinical Supply, Merck & Co, Inc., West Point, Pennsylvania, 19486, USA
| | - Rodney J Y Ho
- University of Washington, Seattle, Washington, 98195, USA
| | - Jack A Cook
- Clinical Pharmacology Department, Global Product Development, Pfizer, Inc., Groton, Connecticut, 06340, USA
| | - Paul A Dickinson
- Seda Pharmaceutical Development Services, Alderley Park, Alderley Edge, Cheshire, SK10 4TG, UK
| | - Talia Flanagan
- UCB Pharma S.A., Avenue de l'Industrie, 1420, Braine - l'Alleud, Belgium
| |
Collapse
|
42
|
Yoshida H, Abe Y, Tomita N, Izutsu KI. Utilization of Diluted Compendial Media as Dissolution Test Solutions with Low Buffer Capacity for the Investigation of Dissolution Rate of Highly Soluble Immediate Release Drug Products. Chem Pharm Bull (Tokyo) 2020; 68:664-670. [PMID: 32612001 DOI: 10.1248/cpb.c20-00247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Research from the past decade has shown that the buffer capacities of intestinal fluids are much lower than those in the media used for dissolution test of many solid formulations. The purpose of this study was to elucidate the effect of buffer capacity on the dissolution profiles of highly soluble drug products, using metoclopramide (a biopharmaceutics classification system [BCS] class III drug) tablets as a model. The dissolution profiles of three metoclopramide products were obtained in Japanese pharmacopeia dissolution medium (pH 1.2 and 6.8), diluted medium with low buffer capacity comparable to that of gastrointestinal fluid, and other biorelevant media. One product showed slower dissolution in the medium with lower buffer capacity (bio-relevant, diluted compendial solution), but substantially similar dissolution in the compendial test solutions. Disintegration difference was implied to be involved in the different dissolution profiles depending on the medium buffer capacity. This study indicated the importance of media buffer capacity as a factor inducing different dissolution between products of highly soluble active pharmaceutical ingredients. The diluted compendial media would be a useful alternative to biorelevant media for the detection of the different formulation performances depending on the buffer capacities.
Collapse
Affiliation(s)
| | - Yasuhiro Abe
- Division of Drugs, National Institute of Health Sciences
| | - Naomi Tomita
- Division of Drugs, National Institute of Health Sciences
| | | |
Collapse
|
43
|
Six years of progress in the oral biopharmaceutics area – A summary from the IMI OrBiTo project. Eur J Pharm Biopharm 2020; 152:236-247. [DOI: 10.1016/j.ejpb.2020.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/10/2020] [Indexed: 12/18/2022]
|
44
|
Sahile H, Martínez-Martínez MS, Dillenberger M, Becker K, Imming P. Synthesis and Evaluation of Antimycobacterial and Antiplasmodial Activities of Hirsutellide A and Its Analogues. ACS OMEGA 2020; 5:14451-14460. [PMID: 32596583 PMCID: PMC7315603 DOI: 10.1021/acsomega.0c01065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/08/2020] [Indexed: 06/11/2023]
Abstract
Hirsutellide A is nature-derived cyclic hexadepsipeptide with reported antimycobacterial and antiplasmodial activities. To verify its structure, hirsutellide A was synthesized following a solution-phase peptide synthesis approach. A detailed analysis of the 1H and 13C NMR spectra of the synthesized compound revealed structural variation from what had been originally assigned for hirsutellide A, despite the use of identical building blocks. This variation occurred at the two allo-Ile moieties. To investigate the structure-activity relationship, the depsipeptide and peptide analogues of hirsutellide A were prepared and tested for antimycobacterial and antiplasmodial activities. The compounds displayed antiplasmodial potency against Plasmodium falciparum 3D7 while showing weak or no activity against Mycobacterium tuberculosis H37Rv. The drug-likeness of the series was assessed through in vitro absorption, distribution, metabolism, and excretion (ADME) profiling, revealing systematic differences between the pharmacokinetic properties of cyclic hexapeptides and hexadepsipeptides.
Collapse
Affiliation(s)
- Henok
Asfaw Sahile
- Institut
für Pharmazie, Martin-Luther-Universität
Halle-Wittenberg, 06120 Halle, Germany
- Division
of Infectious Diseases, Departments of Medicine, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, V6T 1Z3 Canada
| | - Maria Santos Martínez-Martínez
- Diseases
of the Developing World, Medicines Development Campus, GlaxoSmithKline, Calle de Severo Ochoa, 2, 28760 Tres Cantos, Madrid, Spain
| | - Melissa Dillenberger
- Biochemistry
and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Katja Becker
- Biochemistry
and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Peter Imming
- Institut
für Pharmazie, Martin-Luther-Universität
Halle-Wittenberg, 06120 Halle, Germany
| |
Collapse
|
45
|
Sinko PD, Harris S, Salehi N, Meyer PJ, Amidon GL, Amidon GE. Ultrathin, Large-Area Membrane Diffusion Cell for pH-Dependent Simultaneous Dissolution and Absorption Studies. Mol Pharm 2020; 17:2319-2328. [DOI: 10.1021/acs.molpharmaceut.0c00040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Patrick D. Sinko
- Department of Pharmacy, Uppsala Biomedical Centre, Uppsala University, P.O. Box 580, SE-751 23 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
46
|
Ruiz-Picazo A, Gonzalez-Alvarez M, Gonzalez-Alvarez I, Bermejo M. Effect of Common Excipients on Intestinal Drug Absorption in Wistar Rats. Mol Pharm 2020; 17:2310-2318. [DOI: 10.1021/acs.molpharmaceut.0c00023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Alejandro Ruiz-Picazo
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Elche, Spain
| | - Marta Gonzalez-Alvarez
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Elche, Spain
| | - Isabel Gonzalez-Alvarez
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Elche, Spain
| | - Marival Bermejo
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Elche, Spain
| |
Collapse
|
47
|
Intrinsic Dissolution Rate Profiling of Poorly Water-Soluble Compounds in Biorelevant Dissolution Media. Pharmaceutics 2020; 12:pharmaceutics12060493. [PMID: 32481718 PMCID: PMC7356998 DOI: 10.3390/pharmaceutics12060493] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 12/31/2022] Open
Abstract
The intrinsic dissolution rate (IDR) of active pharmaceutical ingredients (API) is a key property that aids in early drug development, especially selecting formulation strategies to improve dissolution and thereby drug absorption in the intestine. Here, we developed a robust method for rapid, medium throughput screening of IDR and established the largest IDR dataset in open literature to date that can be used for pharmaceutical computational modeling. Eighteen compounds with diverse physicochemical properties were studied in both fasted and fed state simulated intestinal fluids. Dissolution profiles were measured in small-scale experimental assays using compound suspensions or discs. IDR measurements were not solely linked to API solubility in either dissolution media. Multivariate data analysis revealed that IDR strongly depends on compound partitioning into bile salt and phospholipid micelles in the simulated intestinal fluids, a process that in turn is governed by API lipophilicity, hydrophobicity, and ionization.
Collapse
|
48
|
Hamed R, Alnadi SH, Awadallah A. The Effect of Enzymes and Sodium Lauryl Sulfate on the Surface Tension of Dissolution Media: Toward Understanding the Solubility and Dissolution of Carvedilol. AAPS PharmSciTech 2020; 21:146. [PMID: 32435989 DOI: 10.1208/s12249-020-01683-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/09/2020] [Indexed: 11/30/2022] Open
Abstract
The objective of this work was to study the effect of the physiologically relevant enzymes pepsin, pancreatin, and the synthetic surfactant sodium lauryl sulfate (SLS) on the surface tension of the dissolution media and the solubility and dissolution of the weakly basic drug carvedilol. Compendial dissolution media and buffer solutions that simulate the gastrointestinal fluid, prepared with and without the addition of SLS, were used in this study. The surface tension of the dissolution media; critical micelle concentration (CMC) of SLS in buffer solutions; and size, polydispersity index, and zeta potential of SLS micelles loading carvedilol were determined. The solubility and dissolution of carvedilol were investigated and compared with those of the corresponding media prepared without the addition of pepsin, pancreatin, and SLS. Results showed that the addition of pepsin, pancreatin, and SLS lowered the surface tension of the dissolution media to 54.8, 55.7, and ~ 30 mN/m, respectively. The solubility of carvedilol was significantly enhanced with pepsin and SLS; however, no significant difference was found with pancreatin. The dissolution rate of carvedilol was fast in simulated gastric fluid with and without pepsin. The dissolution was further enhanced in media with pancreatin and SLS. The dissolution data were corroborated with the molar micellar solubilization (X) of SLS, ranging between 0.02 and 3.09. Understanding the effect of pepsin, pancreatin, and SLS on the surface tension of the dissolution media and the solubility and dissolution of poorly soluble drugs can improve our knowledge of the performance of these drugs in vivo.
Collapse
|
49
|
Drug-like property optimization: Discovery of orally bioavailable quinazoline-based multi-targeted kinase inhibitors. Bioorg Chem 2020; 98:103689. [DOI: 10.1016/j.bioorg.2020.103689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/27/2022]
|
50
|
McPherson S, Perrier J, Dunn C, Khadra I, Davidson S, Ainousah B, Wilson CG, Halbert G. Small scale design of experiment investigation of equilibrium solubility in simulated fasted and fed intestinal fluid. Eur J Pharm Biopharm 2020; 150:14-23. [PMID: 32035969 DOI: 10.1016/j.ejpb.2020.01.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 11/11/2019] [Accepted: 01/22/2020] [Indexed: 12/19/2022]
Abstract
It is widely recognised that drug solubility within the gastrointestinal tract (GIT) differs from values determined in a simple aqueous buffer and to circumvent this problem measurement in biorelevant fluids is determined. Biorelevant fluids are complex mixtures of components (sodium taurocholate, lecithin, sodium phosphate, sodium chloride, pancreatin and sodium oleate) at various concentrations and pH levels to provide systems simulating fasted (FaSSIF) or fed (FeSSIF) intestinal media. Design of Experiment (DoE) studies have been applied to investigate FaSSIF and FeSSIF and indicate that a drug's equilibrium solubility varies over orders of magnitude, is influenced by the drug type and individual or combinations of media components, with some of these interactions being drug specific. Although providing great detail on the drug media interactions these studies are resource intensive requiring up to ninety individual experiments for FeSSIF. In this paper a low sample number or reduced DoE system has been investigated by restricting components with minimal solubility impact to a single value and only investigating variations in the concentrations of sodium taurocholate, lecithin, sodium oleate, pH and additionally in the case of fed media, monoglyceride. This reduces the experiments required to ten (FaSSIF) and nine (FeSSIF). Twelve poorly soluble drugs (Ibuprofen, Valsartan, Zafirlukast, Indomethacin, Fenofibrate, Felodipine, Probucol, Tadalafil, Carvedilol, Aprepitant, Bromocriptine and Itraconazole) were investigated and the results compared to published DoE studies and literature solubility values in human intestinal fluid (HIF), FaSSIF or FeSSIF. The solubility range determined by the reduced DoE is statistically equivalent to the larger scale published DoE results in over eighty five percent of the cases. The reduced DoE range also covers HIF, FaSSIF or FeSSIF literature solubility values. In addition the reduced DoE provides lowest measured solubility values that agree with the published DoE values in ninety percent of the cases. However, the reduced DoE only identified single and in some cases none of the major components influencing solubility in contrast to the larger published DoE studies which identified multiple individual components and component interactions. The identification of significant components within the reduced DoE was also dependent upon the drug and system under investigation. The study demonstrates that the lower experimental number reduces statistical power of the DoE to resolve the impact of media components on solubility. However, in a situation where only the solubility range is required the reduced DoE can provide the desired information, which will be of benefit during in vitro development studies. Further refinements are possible to extend the reduced DoE protocol to improve biorelevance and application into areas such as PBPK modelling.
Collapse
Affiliation(s)
- Stephanie McPherson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| | - Jeremy Perrier
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| | - Claire Dunn
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| | - Ibrahim Khadra
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom.
| | - Scott Davidson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| | - Bayan Ainousah
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| | - Clive G Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| | - Gavin Halbert
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| |
Collapse
|