1
|
Azizi S, Hadi Dehghani M, Nabizadeh R. Ambient air fine particulate matter (PM10 and PM2.5) and risk of type 2 diabetes mellitus and mechanisms of effects: a global systematic review and meta-analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-20. [PMID: 39267465 DOI: 10.1080/09603123.2024.2391993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 08/08/2024] [Indexed: 09/17/2024]
Abstract
Type 2 diabetes causes early mortality worldwide. Air pollution's relationship with T2DM has been studied. The association between them is unclear because of inconsistent outcomes. Studies on this topic have been published since 2019, but not thoroughly evaluated. We conducted a systematic review and meta-analysis using relevant data. The study protocol was registered in PROSPIRO and conducted according to MOOSE guidelines. In total, 4510 manuscripts were found. After screening, 46 studies were assessed using the OHAT tool. This meta-analysis evaluated fine particles with T2DM using OR and HR effect estimates. Evaluation of publication bias was conducted by Egger's test, Begg's test, and funnel plot analysis. A sensitivity analysis was conducted to evaluate the influence of several studies on the total estimations. Results show a significant association between PM2.5 and PM10 exposure and T2DM. Long-term exposure to fine air particles may increase the prevalence and incidence of T2DM. Fine air pollution increases the chance of developing T2DM mainly via systemic inflammation, oxidative stress, and endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Salah Azizi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Nabizadeh
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Shou X, Yao Z, Wang Y, Chai Y, Huang Y, Chen R, Gu W, Liu Q. Research on the causal relationship between fine particulate matter and type 2 diabetes mellitus: A two-sample multivariable mendelian randomization study. Nutr Metab Cardiovasc Dis 2024:S0939-4753(24)00332-6. [PMID: 39366807 DOI: 10.1016/j.numecd.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 06/06/2024] [Accepted: 08/30/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND AND AIMS Previous research has suggested a correlation between fine particulate matter (PM2.5) and type 2 diabetes mellitus (T2DM). However, the causality was vulnerable to confounding variables. METHODS AND RESULTS A two-sample multivariable mendelian randomization study was designed to examine the causal connection between PM2.5 and T2DM. PM2.5 trait was investigated as exposure while T2DM-related traits as outcomes. The summary data were obtained from the Finngen database and the open genome-wide association study database. The mendelian randomization estimates were obtained using the inverse-variance weighted approach, and multiple sensitivity analyses were conducted. There were potential causal relationships between PM2.5 and T2DM (OR = 2.418; P = 0.019), PM2.5 and glycated hemoglobin (HbA1c) (OR = 1.590; P = 0.041), and PM2.5 and insulin metabolism. PM2.5 was found to have no causal effect on fasting glucose and insulin, 2-h glucose, and insulin-like growth factor binding protein-1 (P > 0.05), while had a potential protective effect against some diabetes complications. CONCLUSIONS Our findings indicated potential causal relationships among PM2.5 and T2DM, especially the causal relationship between PM2.5 and long-term glucose levels.
Collapse
Affiliation(s)
- Xinyang Shou
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zhenghong Yao
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yimin Wang
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yanxi Chai
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yuxin Huang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Rucheng Chen
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Weijia Gu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qiang Liu
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Zheng X, Wang Q, Xu X, Huang X, Chen J, Huo X. Associations of insulin sensitivity and immune inflammatory responses with child blood lead (Pb) and PM 2.5 exposure at an e-waste recycling area during the COVID-19 lockdown. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:296. [PMID: 38980420 DOI: 10.1007/s10653-024-02066-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/04/2024] [Indexed: 07/10/2024]
Abstract
Fine particular matter (PM2.5) and lead (Pb) exposure can induce insulin resistance, elevating the likelihood of diabetes onset. Nonetheless, the underlying mechanism remains ambiguous. Consequently, we assessed the association of PM2.5 and Pb exposure with insulin resistance and inflammation biomarkers in children. A total of 235 children aged 3-7 years in a kindergarten in e-waste recycling areas were enrolled before and during the Corona Virus Disease 2019 (COVID-19) lockdown. Daily PM2.5 data was collected and used to calculate the individual PM2.5 daily exposure dose (DED-PM2.5). Concentrations of whole blood Pb, fasting blood glucose, serum insulin, and high mobility group box 1 (HMGB1) in serum were measured. Compared with that before COVID-19, the COVID-19 lockdown group had lower DED-PM2.5 and blood Pb, higher serum HMGB1, and lower blood glucose and homeostasis model assessment of insulin resistance (HOMA-IR) index. Decreased DED-PM2.5 and blood Pb levels were linked to decreased levels of fasting blood glucose and increased serum HMGB1 in all children. Increased serum HMGB1 levels were linked to reduced levels of blood glucose and HOMA-IR. Due to the implementation of COVID-19 prevention and control measures, e-waste dismantling activities and exposure levels of PM2.5 and Pb declined, which probably reduced the association of PM2.5 and Pb on insulin sensitivity and diabetes risk, but a high level of risk of chronic low-grade inflammation remained. Our findings add new evidence for the associations among PM2.5 and Pb exposure, systemic inflammation and insulin resistance, which could be a possible explanation for diabetes related to environmental exposure.
Collapse
Affiliation(s)
- Xiangbin Zheng
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou, 511443, Guangdong, China
- Center for Reproductive Medicine, Clinical Research Center, Shantou Central Hospital, Shantou, 515041, Guangdong, China
| | - Qihua Wang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou, 511443, Guangdong, China
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, The Netherlands
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xiaofan Huang
- Center for Reproductive Medicine, Clinical Research Center, Shantou Central Hospital, Shantou, 515041, Guangdong, China
| | - Jiaxue Chen
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou, 511443, Guangdong, China.
| |
Collapse
|
4
|
Zhao J, Mei Y, Li A, Zhou Q, Zhao M, Xu J, Li Y, Li K, Yang M, Xu Q. Association between PM 2.5 constituents and cardiometabolic risk factors: Exploring individual and combined effects, and mediating inflammation. CHEMOSPHERE 2024; 359:142251. [PMID: 38710413 DOI: 10.1016/j.chemosphere.2024.142251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/17/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND The individual and combined effects of PM2.5 constituents on cardiometabolic risk factors are sparsely investigated. Besides, the key cardiometabolic risk factor that PM2.5 constituents targeted and the biological mechanisms remain unclear. METHOD A multistage, stratified cluster sampling survey was conducted in two typically air-polluted Chinese cities. The PM2.5 and its constituents including sulfate, nitrate, ammonium, organic matter, and black carbon were predicted using a machine learning model. Twenty biomarkers in three category were simultaneously adopted as cardiometabolic risk factors. We explored the individual and mixture association of long-term PM2.5 constituents with these markers using generalized additive model and quantile-based g-computation, respectively. To minimize potential confounding effects, we accounted for covariates including demographic, lifestyle, meteorological, temporal trends, and disease-related information. We further used ROC curve and mediation analysis to identify the key subclinical indicators and explore whether inflammatory mediators mediate such association, respectively. RESULT PM2.5 constituents was positively correlated with HOMA-B, TC, TG, LDL-C and LCI, and negatively correlated with PP and RC. Further, PM2.5 constituent mixture was positive associated with DBP, MAP, HbA1c, HOMA-B, AC, CRI-1 and CRI-2, and negative associated with PP and HDL-C. The ROC analysis further reveals that multiple cardiometabolic risk factors can collectively discriminate exposure to PM2.5 constituents (AUC>0.9), among which PP and CRI-2 as individual indicators exhibit better identifiable performance for nitrate and ammonium (AUC>0.75). We also found that multiple blood lipid indicators may be affected by PM2.5 and its constituents, possibly mediated through complement C3 or hsCRP. CONCLUSION Our study suggested associations of individual and combined PM2.5 constituents exposure with cardiometabolic risk factors. PP and CRI-2 were the targeted markers of long-term exposure to nitrate and ammonium. Inflammation may serve as a mediating factor between PM2.5 constituents and dyslipidemia, which enhance current understanding of potential pathways for PM2.5-induced preclinical cardiovascular responses.
Collapse
Affiliation(s)
- Jiaxin Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Yayuan Mei
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China; Big Data Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Quan Zhou
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Meiduo Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Jing Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Yanbing Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Kai Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Ming Yang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
5
|
Oshidari Y, Salehi M, Kermani M, Jonidi Jafari A. Associations between long-term exposure to air pollution, diabetes, and hypertension in metropolitan Iran: an ecologic study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2476-2490. [PMID: 37674318 DOI: 10.1080/09603123.2023.2254713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
Epidemiological studies on air pollution, diabetes, and hypertension conflict. This study examined air pollution, diabetes, and hypertension in adults in 11 metropolitan areas of Iran (2012-2016). Local environment departments and the Tehran Air Quality Control Company provided air quality data. The VIZIT website and Stepwise Approach to Chronic Disease Risk Factor Surveillance study delivered chronic disease data. Multiple logistic regression and generalized estimating equations evaluated air pollution-related diabetes and hypertension. In Isfahan, Ahvaz, and Tehran, PM2.5 was linked to diabetes. In all cities except Urmia, Yasuj, and Yazd, PM2.5 was statistically related to hypertension. O3 was connected to hypertension in Ahvaz, Tehran, and Shiraz, whereas NO2 was not. BMI and gender predict hypertension and diabetes. Diabetes, SBP, and total cholesterol were correlated. Iran's largest cities' poor air quality may promote diabetes and hypertension. PM2.5 impacts many cities' outcomes. Therefore, politicians and specialists have to control air pollution.
Collapse
Affiliation(s)
- Yasaman Oshidari
- Research Center of Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Salehi
- Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Kermani
- Research Center of Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Jonidi Jafari
- Research Center of Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Hu K, Cao B, Lu H, Xu J, Zhang Y, Wang C. Changes in PM 2.5-related diabetes risk under the implementation of the clean air act in Shanghai. Diabetes Res Clin Pract 2024; 212:111716. [PMID: 38777130 DOI: 10.1016/j.diabres.2024.111716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/15/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVES We examined the associations between PM2.5 exposure and Type 2 diabetes mellitus risk under the implementation of the Clean Air Act (CAA) among high-risk population for diabetes in Shanghai. METHODS A total of 10,499 subjects from the Shanghai High-Risk Diabetic Screen (SHiDS) project between 2002 and 2018, linked with remotely sensed PM2.5 concentrations, were enrolled in this study. Ordinary least squares and logistic regression were applied to explore associations between PM2.5 and diabetes risk in various exposure periods. RESULTS In year 2002-2013 (before CAA), the diabetes risk increased 7.5 % (95 % CI: 1.018-1.137), 8.0 % (95 % CI: 1.022-1.142) and 7.9 % (95 % CI: 1.021-1.141) under each 10 μg/m3 increase of long-term (1, 2 and 3 years) PM2.5 exposure, respectively. Elevated PM2.5 exposure were also associated with a significant increase in glycemic parameters before CAA implementation. However, in the year 2014-2018 (after CAA), the associations between PM2.5 exposure and diabetes risk were not significant after controlling for potential confounders. CONCLUSION Our findings suggest that long-term and high-level exposure to PM2.5 was associated with increased prevalence of diabetes. Moreover, the implementation of CAA might ameliorate PM2.5-related diabetes risk.
Collapse
Affiliation(s)
- Kai Hu
- Department of Sociology, School of Social and Public Administration, East China University of Science and Technology, Meilong Road 130, Xuhui District, Shanghai 200237, China
| | - Baige Cao
- Department of Endocrinology & Metabolism, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Huijuan Lu
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, The Metabolic Disease Biobank, Shanghai, China
| | - Jinfang Xu
- Department of Health Statistics, Naval Medical University, Shanghai 200433, China
| | - Yinan Zhang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, The Metabolic Disease Biobank, Shanghai, China.
| | - Congrong Wang
- Department of Endocrinology & Metabolism, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
| |
Collapse
|
7
|
Chen Y, Wang Y, Chen Q, Chung MK, Liu Y, Lan M, Wei Y, Lin L, Cai L. Gestational and Postpartum Exposure to PM 2.5 Components and Glucose Metabolism in Chinese Women: A Prospective Cohort Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8675-8684. [PMID: 38728584 DOI: 10.1021/acs.est.4c03087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Pregnant women are physiologically prone to glucose intolerance, while the puerperium represents a critical phase for recovery. However, how air pollution disrupts glucose homeostasis during the gestational and early postpartum periods remains unclear. This prospective cohort study conducted an oral glucose tolerance test and measured the insulin levels of 834 pregnant women in Guangzhou, with a follow-up for 443 puerperae at 6-8 weeks postpartum. Residential PM2.5 and five chemical components were estimated by an established spatiotemporal model. The adjusted linear model showed that an IQR increase in gestational PM2.5 exposure was associated with an increase of 0.17 mmol/L (95% CI: 0.06, 0.28) in fasting plasma glucose (FPG) and 0.24 (95% CI: 0.05, 0.42) in the insulin resistance index. Postpartum PM2.5 exposure was linked to a 0.17 mmol/L (95% CI: 0.05, 0.28) elevation in FPG per IQR, with a strengthened association found in women with gestational diabetes (Pinteraction = 0.003). In the quantile-based g-computation model, NO3- consistently contributed to the combined effect of PM2.5 components on gestational and postpartum FPG. This study was the first to suggest that PM2.5 components were associated with exacerbated gestational insulin resistance and elevated postpartum FPG. Targeted interventions reducing the emissions of toxic PM2.5 components are essential to improving maternal glucose metabolism.
Collapse
Affiliation(s)
- Yujing Chen
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Yuxuan Wang
- Global Health Research Center, Duke Kunshan University, Kunshan 215316, Jiangsu, China
| | - Qian Chen
- Department of Neonatology, Guangzhou Key Laboratory of Neonatal Intestinal Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510080, Guangdong, China
| | - Ming Kei Chung
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, 999077, China
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong 999077, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Yu Liu
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Minyan Lan
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Yanhong Wei
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080 Guangdong, China
| | - Lizi Lin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Li Cai
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| |
Collapse
|
8
|
Sha Y, Wang S. Type 2 diabetes attributable to ambient particulate matter pollution: a global burden study from 1990 to 2019. Front Public Health 2024; 12:1371253. [PMID: 38832227 PMCID: PMC11144887 DOI: 10.3389/fpubh.2024.1371253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/17/2024] [Indexed: 06/05/2024] Open
Abstract
Background This study assesses the changes over time and geographical locations in the disease burden of type 2 diabetes (T2D) attributed to ambient particulate matter pollution (APMP) from 1990 to 2019 in 204 countries and regions with different socio-demographic indexes (SDI). Methods The Global Burden of Diseases Study 2019 (GBD2019) database was used to analyze the global burden of T2D attributed to APMP. This study evaluated both the age-standardized death rate (ASDR) and disability-adjusted life years (DALYs) related to T2D, comparing data from 1990 to 2019. Estimated Annual Percentage Changes (EAPCs) were also utilized to investigate the trends over the 30-year study period. Results The global age-standardized DALY rate and ASDR exhibited an increasing trend, with an EAPC of 2.21 (95% CI: 2.15 to 2.27) and 1.50 (95% CI: 1.43 to 1.58), respectively. This rise was most notable among older adult populations, men, regions in Africa and Asia, as well as low-middle SDI regions. In 2019, the ASDR for T2D caused by APMP was recorded at 2.47 per 100,000 population, while the DALY rate stood at 108.98 per 100,000 population. Males and countries with middle SDI levels displayed significantly high age-standardized death and DALY rates, particularly noticeable in Southern Sub-Saharan Africa. Conversely, regions with high SDI levels like High-income North America demonstrated decreasing trends. Conclusion This study reveals a significant increase in T2D worldwide as a result of APMP from 1990 to 2019, with a particular emphasis on its impact on men, the older adult, and regions with low to middle SDI levels. These results underscore the urgent necessity for implementing policies aimed at addressing air pollution in order to reduce the prevalence of T2D, especially in the areas most heavily affected.
Collapse
Affiliation(s)
- Yuyi Sha
- Department of Intensive Care Medicine, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Shuai Wang
- Department of Rehabilitation Medicine, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
9
|
Zuo B, Hu Q, Wu Y, Li X, Wang B, Yan M, Li Y. Association between long-term exposure to air pollution and diabetic retinopathy: Evidence from the Fujian Eye Study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116459. [PMID: 38763052 DOI: 10.1016/j.ecoenv.2024.116459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/01/2024] [Accepted: 05/12/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND Diabetic retinopathy (DR), one of the most common microvascular complications of diabetes mellitus (DM), is a major contributor of vision impairment and blindness worldwide. Studies have shown that air pollution exposure is adversely associated with DM. However, evidence is scarce regarding how air pollution exposure affects DR. This study aimed to investigate the association between ambient air pollution exposure and DR risk. METHODS The study population was based on the Fujian Eye Study (FJES), an ophthalmologic, epidemiologic survey investigating the eye health condition of residents in Fujian Province from 2018 to 2019. Daily average concentrations of ambient air pollutants (PM2.5, PM10, SO2, NO2, and O3) were acquired from a high-resolution air quality dataset in China from 2013 to 2018. We used a logistic regression model to examine the associations between DR risk and long-term air pollution at various exposure windows. RESULTS A total of 2405 out of the 8211 participants were diagnosed with diabetes, among whom 183 had DR. Ambient air pollution, especially particulate matter (i.e., PM2.5 and PM10) and NO2 were positively associated with DR prevalence among all the study subjects. Ambient SO2 and O3 concentrations were not associated with DR prevalence. PM2.5 and NO2 seemed to be borderline significantly associated with increased prevalence of DR in subjects with DM, especially under the model adjusted for sex, age, BMI, SBP, and DBP. CONCLUSIONS These findings showed that long-term exposure to ambient particulate matter and NO2 was associated with a high DR risk in Fujian province, where ambient air pollution is relatively low.
Collapse
Affiliation(s)
- Bo Zuo
- Department of Cardiology, Cardiovascular Centre, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Qinrui Hu
- Eye Institute and Affiliated Xiamen Eye Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China; Xiamen Municipal Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China; Xiamen Research Center for Eye Diseases and Key Laboratory of Ophthalmology, Xiamen, Fujian, China
| | - Yixue Wu
- Department of Environmental Science and Engineering, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, China
| | - Xiaoxin Li
- Eye Institute and Affiliated Xiamen Eye Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China; Xiamen Municipal Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China; Xiamen Research Center for Eye Diseases and Key Laboratory of Ophthalmology, Xiamen, Fujian, China; Department of Ophthalmology, Peking University People's Hospital, Beijing, China
| | - Bin Wang
- Eye Institute and Affiliated Xiamen Eye Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China; Xiamen Municipal Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China; Xiamen Research Center for Eye Diseases and Key Laboratory of Ophthalmology, Xiamen, Fujian, China
| | - Meilin Yan
- Department of Environmental Science and Engineering, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, China.
| | - Yang Li
- Eye Institute and Affiliated Xiamen Eye Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China; Xiamen Municipal Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China; Xiamen Research Center for Eye Diseases and Key Laboratory of Ophthalmology, Xiamen, Fujian, China.
| |
Collapse
|
10
|
Jiang Y, Li L. Projections of functional dependence among the late middle-aged and older population from 2018-2048 in China: a dynamic microsimulation. Glob Health Res Policy 2024; 9:15. [PMID: 38679749 PMCID: PMC11057077 DOI: 10.1186/s41256-024-00357-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/23/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND The population of China is aging rapidly. However, the long-term trajectories of functionally dependent late middle-aged and older Chinese people are currently absent. The present study aimed to estimate the population size and proportion of late middle-aged and older adults with difficulties and dependence on activities of daily living (ADL) and instrumental activities of daily living (IADL) in China from 2018 to 2048. METHODS We constructed a dynamic microsimulation model to project the population size and proportions of late middle-aged and older Chinese people who have difficulty and dependence in ADL and IADL from 2018-2048. The model was populated with a representative sample of the target population and allowed individual-level interaction between risk factors, diseases, and health outcomes. Analyses by socioeconomic subgroups were also conducted. RESULTS Almost 25% and 38% of late middle-aged and older people in China will become ADL- and IADL-dependent by 2048, respectively. Also, 17% of the target population will be severely ADL-disabled by 2048. The inequity in functional status across subgroups by sex, educational level, and urban/rural residency will become substantial. CONCLUSIONS The numbers and percentages of China's functionally difficult and dependent late middle-aged and older population will increase by magnitudes as of the mid-21st century, the pressure of which is compounded by its disproportionate distribution across subgroups. To alleviate the overwhelming challenge, efforts to improve the functional status of the underserved subpopulation should also be iterated.
Collapse
Affiliation(s)
- Yawen Jiang
- School of Public Health (Shenzhen), Sun Yat-sen University, Room 533, #1 West Wing of Medical Complex, 66 Gongchang Road, Guangming District, Shenzhen, Guangdong, China.
| | - Limin Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Room 533, #1 West Wing of Medical Complex, 66 Gongchang Road, Guangming District, Shenzhen, Guangdong, China
| |
Collapse
|
11
|
Bonanni LJ, Wittkopp S, Long C, Aleman JO, Newman JD. A review of air pollution as a driver of cardiovascular disease risk across the diabetes spectrum. Front Endocrinol (Lausanne) 2024; 15:1321323. [PMID: 38665261 PMCID: PMC11043478 DOI: 10.3389/fendo.2024.1321323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
The prevalence of diabetes is estimated to reach almost 630 million cases worldwide by the year 2045; of current and projected cases, over 90% are type 2 diabetes. Air pollution exposure has been implicated in the onset and progression of diabetes. Increased exposure to fine particulate matter air pollution (PM2.5) is associated with increases in blood glucose and glycated hemoglobin (HbA1c) across the glycemic spectrum, including normoglycemia, prediabetes, and all forms of diabetes. Air pollution exposure is a driver of cardiovascular disease onset and exacerbation and can increase cardiovascular risk among those with diabetes. In this review, we summarize the literature describing the relationships between air pollution exposure, diabetes and cardiovascular disease, highlighting how airborne pollutants can disrupt glucose homeostasis. We discuss how air pollution and diabetes, via shared mechanisms leading to endothelial dysfunction, drive increased cardiovascular disease risk. We identify portable air cleaners as potentially useful tools to prevent adverse cardiovascular outcomes due to air pollution exposure across the diabetes spectrum, while emphasizing the need for further study in this particular population. Given the enormity of the health and financial impacts of air pollution exposure on patients with diabetes, a greater understanding of the interventions to reduce cardiovascular risk in this population is needed.
Collapse
Affiliation(s)
- Luke J. Bonanni
- Grossman School of Medicine, New York University (NYU) Langone Health, New York, NY, United States
| | - Sharine Wittkopp
- Division of Cardiovascular Disease, Grossman School of Medicine, New York University (NYU) Langone Health, New York, NY, United States
| | - Clarine Long
- Grossman School of Medicine, New York University (NYU) Langone Health, New York, NY, United States
| | - José O. Aleman
- Division of Endocrinology, Grossman School of Medicine, New York University (NYU) Langone Health, New York, NY, United States
| | - Jonathan D. Newman
- Division of Cardiovascular Disease, Grossman School of Medicine, New York University (NYU) Langone Health, New York, NY, United States
| |
Collapse
|
12
|
Song L, Gao Y, Tian J, Liu N, Nasier H, Wang C, Zhen H, Guan L, Niu Z, Shi D, Zhang H, Zhao L, Zhang Z. The mediation effect of asprosin on the association between ambient air pollution and diabetes mellitus in the elderly population in Taiyuan, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19674-19686. [PMID: 38363509 DOI: 10.1007/s11356-024-32255-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/25/2024] [Indexed: 02/17/2024]
Abstract
Evidence around the relationship between air pollution and the development of diabetes mellitus (DM) remains limited and inconsistent. To investigate the potential mediation effect of asprosin on the association between fine particulate matter (PM2.5), tropospheric ozone (O3) and blood glucose homeostasis. A case-control study was conducted on a total of 320 individuals aged over 60 years, including both diabetic and non-diabetic individuals, from six communities in Taiyuan, China, from July to September 2021. Generalized linear models (GLMs) suggested that short-term exposure to PM2.5 was associated with elevated fasting blood glucose (FBG), insulin resistance index (HOMA-IR), as well as reduced pancreatic β-cell function index (HOMA-β), and short-term exposure to O3 was associated with increased FBG and decreased HOMA-β in the total population and elderly diabetic patients. Mediation analysis showed that asprosin played a mediating role in the relationship of PM2.5 and O3 with FBG, with mediating ratios of 10.2% and 18.4%, respectively. Our study provides emerging evidence supporting that asprosin mediates the short-term effects of exposure to PM2.5 and O3 on elevated FBG levels in an elderly population. Additionally, the elderly who are diabetic, over 70 years, and BMI over 24 kg/m2 are more vulnerable to air pollutants and need additional protection to reduce their exposure to air pollution.
Collapse
Affiliation(s)
- Lulu Song
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Yuhui Gao
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Jiayu Tian
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Nannan Liu
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Halimaimaiti Nasier
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Caihong Wang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Huiqiu Zhen
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Linlin Guan
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Zeyu Niu
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Dongxing Shi
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Hongmei Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Lifang Zhao
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Zhihong Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China.
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China.
- Key Laboratory of Coal Environmental Pathogenicity and Prevention Shanxi Medical University, Ministry of Education, Taiyuan, China.
| |
Collapse
|
13
|
Ye J, Li J, Li L, Zhang S, Chen J, Zhu D, Zhang C, Xie B, Zhang B, Hou K. Trends in global ambient fine particulate matter pollution and diabetes mortality rates attributable to it in the 1990-2019: 30 years systematic analysis of global burden of disease. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168358. [PMID: 37951257 DOI: 10.1016/j.scitotenv.2023.168358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/16/2023] [Accepted: 11/03/2023] [Indexed: 11/13/2023]
Abstract
AIM To analyze the trends in ambient fine particulate matter pollution (PM2.5) and the age-standardized mortality rate (ASMR) of diabetes attributable to it from 1990 to 2019 by region, country, and socio-economic development status. METHODS The main data, including the summary exposure value (SEV) of ambient PM2.5 and the ASMR of diabetes due to ambient PM2.5, was collected from the Global Burden of Disease 2019 database. The socio-demographic index (SDI) was employed for assessing a particular region or country's degree of socio-economic development. Joinpoint regression analysis was used to assess the changes of ambient PM2.5 and ASMR of diabetes attributable to it. RESULTS Globally, the SEV of ambient PM2.5 increased from 15.65 μg/m3 in 1990 to 26.22 μg/m3 in 2019, with an annual average percent change (AAPC) of 1.788 (95 % CI 1.687-1.889) μg/m3. The ASMR of diabetes attributable to ambient PM2.5 increased from 1.57 per 100,000 population in 1990 to 2.47 per 100.000 population in 2019 (AAPC = 1.569 [95 % CI 1.42-1.718]). Most regions and countries had an increase of SEV of ambient PM2.5 and ASMR of diabetes attributable to ambient PM2.5. The largest increase of SEV of ambient PM2.5 was observed in South Asia (AAPC = 3.556 [95 % CI 3.329-3.875]), while the largest increase of ASMR of diabetes was in Central Asia (AAPC = 5.170 [95%CI 4.696-5.647]). Moreover, the increase of SEV of ambient PM2.5 and ASMR of diabetes attributable to it were positively associated with SDI in low SDI countries (SDI < 0.46), whereas the opposite result was observed when SDI ≥ 0.46. CONCLUSION From 1990 to 2019, the population's exposure to ambient PM2.5 and ASMR of diabetes attributable to it increased generally, especially in low-middle SDI regions. Ambient PM2.5 remains a threat to global health. Greater investment in ambient PM2.5 and the mortality attributable to it are needed.
Collapse
Affiliation(s)
- Junjun Ye
- Department of Cardiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, China; Shantou University Medical College, Shantou, Guangdong, China
| | - Jilin Li
- Department of Cardiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, China
| | - Liping Li
- School of Public Health, Shantou University, Shantou 515041, China
| | - Shuo Zhang
- Shantou University Medical College, Shantou, Guangdong, China; School of Public Health, Shantou University, Shantou 515041, China
| | - Jingxian Chen
- Shantou University Medical College, Shantou, Guangdong, China; School of Public Health, Shantou University, Shantou 515041, China
| | - Dan Zhu
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, Shantou, China
| | - Chuanyan Zhang
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, Shantou, China
| | - Bin Xie
- Department of Cardiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, China
| | - Bangzhou Zhang
- School of Public Health, Shantou University, Shantou 515041, China; Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen 361102, China.
| | - Kaijian Hou
- School of Public Health, Shantou University, Shantou 515041, China; Department of Endocrine and Metabolic Diseases, Longhu Hospital, Shantou, China.
| |
Collapse
|
14
|
Zeng X, Zhan Y, Zhou W, Qiu Z, Wang T, Chen Q, Qu D, Huang Q, Cao J, Zhou N. The Influence of Airborne Particulate Matter on the Risk of Gestational Diabetes Mellitus: A Large Retrospective Study in Chongqing, China. TOXICS 2023; 12:19. [PMID: 38250975 PMCID: PMC10818620 DOI: 10.3390/toxics12010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024]
Abstract
Emerging research findings suggest that airborne particulate matter might be a risk factor for gestational diabetes mellitus (GDM). However, the concentration-response relationships and the susceptible time windows for different types of particulate matter may vary. In this retrospective analysis, we employ a novel robust approach to assess the crucial time windows regarding the prevalence of GDM and to distinguish the susceptibility of three GDM subtypes to air pollution exposure. This study included 16,303 pregnant women who received routine antenatal care in 2018-2021 at the Maternal and Child Health Hospital in Chongqing, China. In total, 2482 women (15.2%) were diagnosed with GDM. We assessed the individual daily average exposure to air pollution, including PM2.5, PM10, O3, NO2, SO2, and CO based on the volunteers' addresses. We used high-accuracy gridded air pollution data generated by machine learning models to assess particulate matter per maternal exposure levels. We further analyzed the association of pre-pregnancy, early, and mid-pregnancy exposure to environmental pollutants using a generalized additive model (GAM) and distributed lag nonlinear models (DLNMs) to analyze the association between exposure at specific gestational weeks and the risk of GDM. We observed that, during the first trimester, per IQR increases for PM10 and PM2.5 exposure were associated with increased GDM risk (PM10: OR = 1.19, 95%CI: 1.07~1.33; PM2.5: OR = 1.32, 95%CI: 1.15~1.50) and isolated post-load hyperglycemia (GDM-IPH) risk (PM10: OR = 1.23, 95%CI: 1.09~1.39; PM2.5: OR = 1.38, 95%CI: 1.18~1.61). Second-trimester O3 exposure was positively correlated with the associated risk of GDM, while pre-pregnancy and first-trimester exposure was negatively associated with the risk of GDM-IPH. Exposure to SO2 in the second trimester was negatively associated with the risk of GDM-IPH. However, there were no observed associations between NO2 and CO exposure and the risk of GDM and its subgroups. Our results suggest that maternal exposure to particulate matter during early pregnancy and exposure to O3 in the second trimester might increase the risk of GDM, and GDM-IPH is the susceptible GDM subtype to airborne particulate matter exposure.
Collapse
Affiliation(s)
- Xiaoling Zeng
- Institute of Toxicology, Facutly of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; (X.Z.); (T.W.); (Q.C.)
- School of Public Health, China Medical University, Shenyang 110122, China
| | - Yu Zhan
- Department of Environmental Science and Engineering, Sichuan University, Chengdu 610065, China; (Y.Z.); (Z.Q.)
| | - Wei Zhou
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children (Women and Children’s Hospital of Chongqing Medical University), Chongqing 401147, China; (W.Z.); (Q.H.)
| | - Zhimei Qiu
- Department of Environmental Science and Engineering, Sichuan University, Chengdu 610065, China; (Y.Z.); (Z.Q.)
| | - Tong Wang
- Institute of Toxicology, Facutly of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; (X.Z.); (T.W.); (Q.C.)
| | - Qing Chen
- Institute of Toxicology, Facutly of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; (X.Z.); (T.W.); (Q.C.)
| | - Dandan Qu
- Clinical Research Centre, Women and Children’s Hospital of Chongqing Medical University, Chongqing 401147, China;
- Chongqing Research Centre for Prevention & Control of Maternal and Child Diseases and Public Health, Women and Children’s Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Qiao Huang
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children (Women and Children’s Hospital of Chongqing Medical University), Chongqing 401147, China; (W.Z.); (Q.H.)
| | - Jia Cao
- Institute of Toxicology, Facutly of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; (X.Z.); (T.W.); (Q.C.)
| | - Niya Zhou
- Clinical Research Centre, Women and Children’s Hospital of Chongqing Medical University, Chongqing 401147, China;
- Chongqing Research Centre for Prevention & Control of Maternal and Child Diseases and Public Health, Women and Children’s Hospital of Chongqing Medical University, Chongqing 401147, China
| |
Collapse
|
15
|
Fiffer MR, Li H, Iyer HS, Nethery RC, Sun Q, James P, Yanosky JD, Kaufman JD, Hart JE, Laden F. Associations between air pollution, residential greenness, and glycated hemoglobin (HbA1c) in three prospective cohorts of U.S. adults. ENVIRONMENTAL RESEARCH 2023; 239:117371. [PMID: 37839528 PMCID: PMC10873087 DOI: 10.1016/j.envres.2023.117371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND While studies suggest impacts of individual environmental exposures on type 2 diabetes (T2D) risk, mechanisms remain poorly characterized. Glycated hemoglobin (HbA1c) is a biomarker of glycemia and diagnostic criterion for prediabetes and T2D. We explored associations between multiple environmental exposures and HbA1c in non-diabetic adults. METHODS HbA1c was assessed once in 12,315 women and men in three U.S.-based prospective cohorts: the Nurses' Health Study (NHS), Nurses' Health Study II (NHSII), and Health Professionals Follow-up Study (HPFS). Residential greenness within 270 m and 1,230 m (normalized difference vegetation index, NDVI) was obtained from Landsat. Fine particulate matter (PM2.5) and nitrogen dioxide (NO2) were estimated from nationwide spatiotemporal models. Three-month and one-year averages prior to blood draw were assigned to participants' addresses. We assessed associations between single exposure, multi-exposure, and component scores from Principal Components Analysis (PCA) and HbA1c. Fully-adjusted models built on basic models of age and year at blood draw, BMI, alcohol use, and neighborhood socioeconomic status (nSES) to include diet quality, race, family history, smoking status, postmenopausal hormone use, population density, and season. We assessed interactions between environmental exposures, and effect modification by population density, nSES, and sex. RESULTS Based on HbA1c, 19% of participants had prediabetes. In single exposure fully-adjusted models, an IQR (0.14) higher 1-year 1,230 m NDVI was associated with a 0.27% (95% CI: 0.05%, 0.49%) lower HbA1c. In basic component score models, a SD increase in Component 1 (high loadings for 1-year NDVI) was associated with a 0.19% (95% CI: 0.04%, 0.34%) lower HbA1c. CI's crossed the null in multi-exposure and fully-adjusted component score models. There was little evidence of associations between air pollution and HbA1c, and no evidence of effect modification. CONCLUSIONS Among non-diabetic adults, environmental exposures were not consistently associated with HbA1c. More work is needed to elucidate biological pathways between the environment and prediabetes.
Collapse
Affiliation(s)
- Melissa R Fiffer
- Harvard T.H. Chan School of Public Health, Department of Environmental Health, Boston, MA, USA; University of Illinois Chicago, Children's Environmental Health Initiative, Chicago, IL, USA.
| | - Huichu Li
- Harvard T.H. Chan School of Public Health, Department of Environmental Health, Boston, MA, USA
| | - Hari S Iyer
- Harvard T.H. Chan School of Public Health, Department of Epidemiology, Boston, MA, USA; Dana-Farber Cancer Institute, Division of Population Sciences, Boston, MA, USA; Rutgers Cancer Institute of New Jersey, Section of Cancer Epidemiology and Health Outcomes, New Brunswick, NJ, USA
| | - Rachel C Nethery
- Harvard T.H. Chan School of Public Health, Department of Biostatistics, Boston, MA, USA
| | - Qi Sun
- Harvard T.H. Chan School of Public Health, Department of Epidemiology, Boston, MA, USA; Harvard T.H. Chan School of Public Health, Department of Nutrition, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Peter James
- Harvard T.H. Chan School of Public Health, Department of Environmental Health, Boston, MA, USA; Harvard Medical School and Harvard Pilgrim Health Care Institute, Department of Population Medicine, Boston, MA, USA
| | - Jeff D Yanosky
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine, Hershey, USA
| | - Joel D Kaufman
- Department of Epidemiology, University of Washington, Seattle, USA; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, USA
| | - Jaime E Hart
- Harvard T.H. Chan School of Public Health, Department of Environmental Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Francine Laden
- Harvard T.H. Chan School of Public Health, Department of Environmental Health, Boston, MA, USA; Harvard T.H. Chan School of Public Health, Department of Epidemiology, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Laorattapong A, Poobunjirdkul S, Rattananupong T, Jiamjarasrangsi W. The Association Between PM2.5 Exposure and Diabetes Mellitus Among Thai Army Personnel. J Prev Med Public Health 2023; 56:449-457. [PMID: 37828872 PMCID: PMC10579641 DOI: 10.3961/jpmph.23.292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/07/2023] [Indexed: 10/14/2023] Open
Abstract
OBJECTIVES This study investigated the association between baseline exposures to particulate matter with a diameter < 2.5 microns (PM2.5) and subsequent temporal changes in PM2.5 exposure with the incidence of type 2 diabetes among Royal Thai Army personnel. METHODS A retrospective cohort study was conducted using nationwide health check-up data from 21 325 Thai Army personnel between 2018 and 2021. Multilevel mixed-effects parametric survival statistics were utilized to analyze the relationship between baseline (i.e., PM2.5-baseline) and subsequent changes (i.e., PM2.5-change) in PM2.5 exposure and the occurrence of type 2 diabetes. Hazard ratios (HRs) and 95% confidence intervals (CIs) were employed to assess this association while considering covariates. RESULTS There was a significant association between both PM2.5 baseline and PM2.5-change and the incidence of type 2 diabetes in a dose-response manner. Compared to quartile 1, the HRs for quartiles 2 to 4 of PM2.5-baseline were 1.11 (95% CI, 0.74 to 1.65), 1.51 (95% CI, 1.00 to 2.28), and 1.77 (95% CI, 1.07 to 2.93), respectively. Similarly, the HRs for quartiles 2 to 4 of PM2.5-change were 1.41 (95% CI, 1.14 to 1.75), 1.43 (95% CI, 1.13 to 1.81) and 2.40 (95% CI, 1.84 to 3.14), respectively. CONCLUSIONS Our findings contribute to existing evidence regarding the association between short-term and long-term exposure to PM2.5 and the incidence of diabetes among personnel in the Royal Thai Army.
Collapse
Affiliation(s)
- Apisorn Laorattapong
- Division of Occupational Medicine, Department of Outpatient Service, Phramongkutklao Hospital, Bangkok, Thailand
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sarun Poobunjirdkul
- Division of Occupational Medicine, Department of Outpatient Service, Phramongkutklao Hospital, Bangkok, Thailand
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thanapoom Rattananupong
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Wiroj Jiamjarasrangsi
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
17
|
Liu C, He L, Li Y, Yang A, Zhang K, Luo B. Diabetes risk among US adults with different socioeconomic status and behavioral lifestyles: evidence from the National Health and Nutrition Examination Survey. Front Public Health 2023; 11:1197947. [PMID: 37674682 PMCID: PMC10477368 DOI: 10.3389/fpubh.2023.1197947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023] Open
Abstract
Background Diabetes disproportionately affects minorities and those with low socioeconomic status (SES) in the United States, and differences in behavioral lifestyles are largely responsible for the unequal distribution of diabetes among different groups. Methods With data of 9,969 participants collected in the 2007-2008 and 2009-2010 cycles of the US National Health and Nutrition Examination Survey (NHANES), this study examined several mediators and their mediating effects in the connection between SES and the risk of diabetes. The SES is assessed by the income-to-poverty ratio (IPR), education level, and employment status. For the mediation analysis, we used health-related behaviors as mediators (smoking, alcohol use, consumption of green vegetables and fruits, physical activity and sedentary time, health insurance, and healthcare). In this study, the structural equation model was utilized to evaluate the mediating effects of behavioral lifestyle as a mediator in the relationship between SES and diabetes. Results A total of 9,969 participants were included in this study. We found a negative nonlinear association between IPR and diabetes risk (Poverall < 0.001; Pnon-linear = 0.46), which was independent of the majority of known or suspected risk factors and confounding variables (gender, age, race). Participants with lower SES had higher risk of diabetes compared with those with higher SES. In mediating analysis, we found alcohol intake (OR = 0.996), physical activity (OR = 0.993), health insurance (OR = 0.998), and healthcare (OR = 1.002) mediated the IPR-diabetes association. But in the relationship between education status and diabetes, the mediation effect of alcohol intake (OR = 0.995), physical activity (OR = 0.991), and health care (OR = 1.008) were obvious. Likewise, alcohol intake (OR = 0.996), fruit intake (OR = 0.998), and health care (OR = 0.975) were important mediators in the association between employment status and diabetes. Conclusion This study provides critical insights on the link between SES and diabetes. Our results highlight that poor health-related behaviors and limited access to healthcare are important pathways for increased diabetes risk related to those with low SES, particularly among Mexican Americans and males. They should be top priorities for agencies and healthcare providers to develop behavior-related interventions to reduce inequalities in diabetes risk.
Collapse
Affiliation(s)
- Ce Liu
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, China
| | - Li He
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, China
| | - Yuanfei Li
- Department of Sociology, University at Albany, State University of New York, Albany, CA, United States
| | - Aimin Yang
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Kai Zhang
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, NY, United States
| | - Bin Luo
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
18
|
Jiang Q, Wang S, Zhang H, Guo Y, Lou Y, Huang S, You Q, Cao S. The Association Between Solid Fuel Use and Visual Impairment Among Middle-Aged and Older Chinese Adults: Nationwide Population-Based Cohort Study. JMIR Public Health Surveill 2023; 9:e43914. [PMID: 37494091 PMCID: PMC10413239 DOI: 10.2196/43914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 05/13/2023] [Accepted: 06/21/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Indoor air pollution has been reported to have adverse effects on the eye; however, the health effects of exposure to cooking with solid fuels on visual impairment remain unclear in China. OBJECTIVE We aimed to examine the association between cooking with solid fuels and visual impairment, including distance visual impairment (DVI) and near visual impairment (NVI). METHODS Data were obtained from the China Health and Retirement Longitudinal Study, a nationwide survey of adults aged over 45 years who were enrolled in 2011 (Wave 1) and followed up in Wave 2 (2013), Wave 3 (2015), and Wave 4 (2018). We used Cox proportional hazards models to determine the association between solid fuels use and visual impairment. Additionally, the impact of switching cooking fuel types on vision function were examined through wave-specific data analysis (Wave 1 and Wave 4). Interaction and subgroup analyses were performed to explore the potential effect modifiers. Data were collected using the stratified multistage random sampling method and further analyzed using SPSS 27.0 and R 4.2.1 statistical software packages. RESULTS A total of 9559 middle-aged and older Chinese adults without visual impairment at baseline were included in the study, with 51.2% (n=4914) of the participants reporting that they cooked with solid fuels. During the follow-up period, 2644 (27.5%) and 3130 (32.6%) participants developed DVI and NVI, respectively. Compared with the clean fuel users, participants who cooked with solid fuels had a higher risk of DVI (hazards ratio [HR] 1.38, 95% CI 1.28-1.50) and NVI (HR 1.18, 95% CI 1.10-1.27). In addition, switching the cooking fuel type from clean to solid fuels was associated with an elevated risk of DVI (HR 1.51, 95% CI 1.15-1.98) and NVI (HR 1.39, 95% CI 1.06-1.82) compared to persistently using clean fuels during the follow-up period, although no protective effect of switching from solid to clean fuels on NVI was found (P=.52). In subgroup analysis, we found that cooking with solid fuels increased the risk of DVI in participants younger than 65 years (HR 1.41, 95% CI 1.28-1.55), men (HR 1.45, 95% CI 1.28-1.65), urban residents (HR 1.41, 95% CI 1.08-1.75), and smokers (HR 1.43, 95% CI 1.25-1.64). By contrast, negative effects of cooking with solid fuels on NVI were found in nonsmokers (HR 1.21, 95% CI 1.11-1.33) and urban residents (HR 1.20, 95% CI 1.10-1.37). CONCLUSIONS Cooking with solid fuels was associated with an increased risk of visual impairment among middle-aged and older Chinese adults. These findings indicate that promoting the utilization of clean fuels is conducive to reducing the burden of visual impairment for the public.
Collapse
Affiliation(s)
- Qingqing Jiang
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiqi Wang
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Zhang
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Guo
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiling Lou
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shen Huang
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiqi You
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiyi Cao
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Gong Z, Yue H, Li Z, Bai S, Cheng Z, He J, Wang H, Li G, Sang N. Association between maternal exposure to air pollution and gestational diabetes mellitus in Taiyuan, North China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162515. [PMID: 36868286 DOI: 10.1016/j.scitotenv.2023.162515] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The effect of air pollution on human health has been a major concern, especially the association between air pollution and gestational diabetes mellitus (GDM). METHODS In this study, we conducted a retrospective cohort study in Taiyuan, a typical energy production base in China. This study included 28,977 pairs of mothers and infants between January 2018 and December 2020. To screen for GDM, oral glucose tolerance test (OGTT) was performed in pregnant women at 24-28 weeks of gestation. Logistic regression was used to assess the trimester-specific association between 5 common air pollutants (PM10, PM2.5, NO2, SO2, and O3) and GDM, and the weekly-based association was also assessed using distributed lag non-linear models (DLNMs). Odds ratios (ORs) with 95 % confidence intervals (CIs) were calculated for the association between GDM and each air pollutant. RESULTS The overall incidence of GDM was 3.29 %. PM2.5 was positively associated with GDM over the second trimester (OR [95 % CI], 1.105 [1.021, 1.196]). O3 was positively associated with GDM in the preconception period (OR [95 % CI], 1.125 [1.024, 1.236]), the first trimester (OR [95 % CI], 1.088 [1.019, 1.161]) and the 1st + 2nd trimester (OR [95 % CI], 1.643 [1.387, 1.945]). For the weekly-based association, PM2.5 was positively associated with GDM at 19-24 weeks of gestation, with the strongest association at week 24 (OR [95 % CI], 1.044 [1.021, 1.067]). PM10 was positively associated with GDM at 18-24 weeks of gestation, with the strongest association at week 24 (OR [95 % CI], 1.016 [1.003, 1.030]). O3 was positively associated with GDM during the 3rd week before conception to the 8th gestational week, with the strongest association at week 3 of gestation (OR [95 % CI], 1.054 [1.032, 1.077]). CONCLUSION The findings are important for the development of effective air quality policies and the optimization of preventive strategies for preconception and prenatal care.
Collapse
Affiliation(s)
- Zhihua Gong
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China; Department of Clinical Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi 030032, PR China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Zhihong Li
- Taiyuan Taihang Hospital, Taiyuan, Shanxi 030006, PR China
| | - Shuqing Bai
- Taiyuan Taihang Hospital, Taiyuan, Shanxi 030006, PR China
| | - Zhonghui Cheng
- Xiaodian District Maternal and Child Health Care Hospital, Taiyuan 030032, PR China
| | - Jing He
- Department of Obstetrics and Gynecology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi 030032, PR China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Huimin Wang
- Fengtai Mental Health Center, Beijing 100071, PR China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| |
Collapse
|
20
|
Su B, Liu C, Chen L, Wu Y, Li J, Zheng X. Long-term exposure to PM 2.5 and O 3 with cardiometabolic multimorbidity: Evidence among Chinese elderly population from 462 cities. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114790. [PMID: 36948004 DOI: 10.1016/j.ecoenv.2023.114790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Cardiometabolic multimorbidity (CMM) refers to the presence of multiple cardiovascular and metabolic diseases (CMDs), such as hypertension, diabetes, and cardio-cerebrovascular diseases (CCVD), in the same individual, and has emerge as a significant global health concern due to population aging. Although previous research has demonstrated the association between cardiovascular and metabolic diseases and air pollutants, evidence on the link between CMM and air pollution exposure among Chinese older adults is limited. To address this research gap, we conducted a national representative survey of 222,179 adults aged 60 and older to investigate the epidemiology of CMM and its association with long-term exposure to PM2.5 and O3 in China's elderly population. We found that the prevalence of CMM among Chinese older adults was 16.9%, and hypertension and CCVD were the most common CMM cluster (10.8%). After adjusting for confounding variables, we observed a significant positive association between PM2.5 exposure and the prevalence of hypertension, diabetes, and CCVD, with a respective excess risk increase of 3.2%, 3.6%, and 5.5% for every 10-unit increase. Moreover, every 10-unit increase in PM2.5 was linked to a higher risk of hypertension and diabetes (2.2%), hypertension and CCVD (5.4%), diabetes and CCVD (5.6%), and hypertension, diabetes, and CCVD combined (7.6%). We also found a U-shaped curve relationship between O3 exposure and the occurrence of hypertension, diabetes, and CCVD, as well as different subtypes of CMM, with the lowest risk of O3 exposure was observed near 75-80 μg/m3. Furthermore, we identified that female and rural residents are more vulnerable to the health risks of air pollution than male and urban residents. Given the increasing aging of the population and rising prevalence of multimorbidity, policymakers should focus more attention on the female and rural elderly population to prevent and control CMM. This study provides compelling evidence that reducing air pollution levels can be an effective strategy to prevent and manage CMM among older adults.
Collapse
Affiliation(s)
- Binbin Su
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, People's Republic of China
| | - Chen Liu
- Peking University Third Hospital, Beijing, People's Republic of China
| | - Li Chen
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, People's Republic of China
| | - Yu Wu
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, People's Republic of China
| | - Jun Li
- Institute of Quantitative and Technological Economics, Chinese Academy of Social Sciences, Beijing, People's Republic of China
| | - Xiaoying Zheng
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, People's Republic of China.
| |
Collapse
|
21
|
Aarthi GR, Mehreen Begum TS, Moosawi SA, Kusuma D, Ranjani H, Paradeepa R, Padma V, Mohan V, Anjana RM, Fecht D. Associations of the built environment with type 2 diabetes in Asia: a systematic review. BMJ Open 2023; 13:e065431. [PMID: 37015791 PMCID: PMC10083821 DOI: 10.1136/bmjopen-2022-065431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/06/2023] Open
Abstract
OBJECTIVES Our study aimed to systematically review the literature and synthesise findings on potential associations of built environment characteristics with type 2 diabetes (T2D) in Asia. DESIGN Systematic review of the literature. DATA SOURCES Online databases Medline, Embase and Global Health were used to identify peer-reviewed journal articles published from inception to 23 January 2023. ELIGIBILITY CRITERIA Eligible studies included cohort, cross-sectional and case-control studies that explored associations of built environment characteristics with T2D among adults 18 years and older in Asia. DATA EXTRACTION AND SYNTHESIS Covidence online was used to remove duplicates and perform title, abstract and full-text screening. Data extraction was carried out by two independent reviewers using the OVID database and data were imported into MS Excel. Out of 5208 identified studies, 28 studies were included in this systematic review. Due to heterogeneity in study design, built environment and outcome definitions, a semiqualitative analysis was conducted, which synthesised results using weighted z-scores. RESULTS Five broad categories of built environment characteristics were associated with T2D in Asia. These included urban green space, walkability, food environment, availability and accessibility of services such as recreational and healthcare facilities and air pollution. We found very strong evidence of a positive association of particulate matter (PM2.5, PM10), nitrogen dioxide and sulfur dioxide (p<0.001) with T2D risk. CONCLUSION Several built environment attributes were significantly related to T2D in Asia. When compared with Western countries, very few studies have been conducted in Asia. Further research is, therefore, warranted to establish the importance of the built environment on T2D. Such evidence is essential for public health and planning policies to (re)design neighbourhoods and help improve public health across Asian countries. PROSPERO REGISTRATION NUMBER CRD42020214852.
Collapse
Affiliation(s)
- Garudam Raveendiran Aarthi
- Department of Research Operations, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India
- School of Public Health, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Thaharullah Shah Mehreen Begum
- Department of Research Operations, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India
- School of Public Health, Imperial College London, London, UK
| | | | - Dian Kusuma
- Centre for Health Economics and Policy Innovations, Imperial College Business School, London, UK
| | - Harish Ranjani
- Department of Translational Research, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India
| | - Rajendra Paradeepa
- Department of Diabetology, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India
| | - Venkatasubramanian Padma
- School of Public Health, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Viswanathan Mohan
- Department of Diabetology, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India
| | - Ranjit Mohan Anjana
- School of Public Health, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
- Department of Diabetology, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India
| | - Daniela Fecht
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| |
Collapse
|
22
|
Wang L, Zhou Z, Li D, Wu M, Yang Y, Hu Y, Wang Y, Sun Y, Tian Y. The modifiable effect of vitamin D in the association between long-term exposure to ambient air pollution and glycosylated hemoglobin in patients with hypertension. Nutrition 2023; 107:111920. [PMID: 36535189 DOI: 10.1016/j.nut.2022.111920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/07/2022] [Accepted: 11/19/2022] [Indexed: 12/02/2022]
Abstract
OBJECTIVES Evidence on the association between long-term exposure to ambient air pollution and serum glycosylated hemoglobin A1c (HbA1c) is limited and inconclusive. In addition, whether vitamin D can modify the association between air pollution exposure and glucose metabolism has not been previously investigated. We aimed to evaluate the effects of various air pollutants on serum HbA1c levels in patients with hypertension and, further, to explore the modification effect of individual serum vitamin D levels. METHODS This study was derived from UK Biobank study, and 246 027 participants with hypertension were included in our analysis. Individual exposures to particulate matters (PMs) and nitrogen oxides were estimated using the land use regression model. The associations between air pollutants and HbA1c were assessed using the multivariable linear regression model. Among the 222 845 participants with a measurement of serum vitamin D, we explored the associations in subgroups stratified by vitamin D levels. RESULTS Long-term air pollutant exposures were significantly associated with higher HbA1c levels. After adjusting for potential confounders, 10-μg/m3 (or 1-m-1) increases in concentrations of PM with diameters ≤2.5 µm (PM2.5), PM with diameters ≤10 µm, PM with diameters from 2.5 µm to 10 µm, PM2.5 absorbance, nitrogen oxides, and nitrogen dioxide were significantly associated with 0.59 (95% confidence interval, 0.28-0.89), 0.49 (0.33-0.65), 0.81 (0.48-1.14), 0.56 (0.44-0.69), 0.06 (0.04-0.09), and 0.16 (0.12-0.21) mmol/mol increase in serum HbA1c levels, respectively. The associations were weakened but remained significant after additional adjustment of vitamin D. In addition, the associations of air pollutants with HbA1c were more evident in participants with low serum vitamin D levels (all P values for interaction <0.001). CONCLUSIONS Long-term exposures to ambient air pollutants were associated with higher levels of HbA1c in a dose-response fashion in a large UK cohort. Serum vitamin D status significantly modified these associations, and high serum vitamin D levels may attenuate the relationships between air pollution exposures and HbA1c levels.
Collapse
Affiliation(s)
- Lulin Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziyi Zhou
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dankang Li
- Ministry of Education Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingyang Wu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingping Yang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yonghua Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Youjie Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaohua Tian
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
23
|
Kang N, Wu R, Liao W, Zhang C, Liu X, Mao Z, Huo W, Hou J, Zhang K, Tian H, Lin H, Wang C. Association of long-term exposure to PM 2.5 constituents with glucose metabolism in Chinese rural population. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160364. [PMID: 36427733 DOI: 10.1016/j.scitotenv.2022.160364] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/26/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Evidence on the associations of fine particulate matter (PM2.5) constituents and glucose metabolism is limited in resource-limited areas. This study aimed to explore the associations of PM2.5 constituents with glucose metabolism in rural areas, and to further specify the most responsible constituent. METHODS A total of 38,442 adults were recruited from the Henan Rural Cohort Study during 2015-2017. Three-year averaged concentrations of PM2.5 mass and its constituents (black carbon (BC), ammonium (NH4+), nitrate (NO3-), organic matter (OM), inorganic sulfate (SO42-), soil particles (SOIL) and sea salt (SS)) were estimated by a hybrid satellite-based model. Generalized linear model was applied to explore the associations of PM2.5 mass and its constituents with type 2 diabetes mellitus (T2DM), fasting blood glucose (FBG), insulin, and HOMA-β. Proportion and residual analyses were employed to specify the most responsible constituent. RESULTS The adjusted odds ratio (OR) for T2DM associated with 1 μg/m3 increase was 1.02 for PM2.5 mass, 1.28 for BC, 1.15 for NH4+, 1.08 for NO3-, 1.10 for OM, 1.11 for SO42-, and 1.12 for SOIL. Significant associations of PM2.5 mass and its constituents with elevated FBG, decreased insulin and HOMA-β were also observed. Proportion and residual analyses indicated that BC was the most responsible constituent, in which 1 percentage increment in the proportion of BC in PM2.5 corresponded with 1.51-fold risk for T2DM, 0.17 mmol/L increase in FBG, 2.18 μU/mL decrease in insulin, and 38.26 % decrease in HOMA-β; and 1 μg/m3 increment in the PM2.5-adjusted BC corresponded with 1.59-fold risk for T2DM, 0.53 mmol/L increase in FBG, 4.79 μU/mL decrease in insulin, and 91.32 % decrease in HOMA-β. CONCLUSIONS PM2.5 mass and its constituents (BC, NH4+, NO3-, OM, SO42-, SOIL) were associated with T2DM, increased FBG, decreased insulin and HOMA-β, of which BC was most responsible for these associations. TRIAL REGISTRATION The Henan Rural Cohort Study has been registered at Chinese Clinical Trial Register (Registration number: ChiCTR-OOC-15006699). Date of registration: 06 July 2015. http://www.chictr.org.cn/showproj.aspx?proj=11375.
Collapse
Affiliation(s)
- Ning Kang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Ruiyu Wu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Wei Liao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Caiyun Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaotian Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Wenqian Huo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Kai Zhang
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Albany, NY, USA
| | - Hezhong Tian
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing, China
| | - Hualiang Lin
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China; Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
24
|
Nagrani R, Marron M, Bongaerts E, Nawrot TS, Ameloot M, de Hoogh K, Vienneau D, Lequy E, Jacquemin B, Guenther K, De Ruyter T, Mehlig K, Molnár D, Moreno LA, Russo P, Veidebaum T, Ahrens W, Buck C. Association of urinary and ambient black carbon, and other ambient air pollutants with risk of prediabetes and metabolic syndrome in children and adolescents. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120773. [PMID: 36455765 DOI: 10.1016/j.envpol.2022.120773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/10/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
The effects of exposure to black carbon (BC) on various diseases remains unclear, one reason being potential exposure misclassification following modelling of ambient air pollution levels. Urinary BC particles may be a more precise measure to analyze the health effects of BC. We aimed to assess the risk of prediabetes and metabolic syndrome (MetS) in relation to urinary BC particles and ambient BC and to compare their associations in 5453 children from IDEFICS/I. Family cohort. We determined the amount of BC particles in urine using label-free white-light generation under femtosecond pulsed laser illumination. We assessed annual exposure to ambient air pollutants (BC, PM2.5 and NO2) at the place of residence using land use regression models for Europe, and we calculated the residential distance to major roads (≤250 m vs. more). We analyzed the cross-sectional relationships between urinary BC and air pollutants (BC, PM2.5 and NO2) and distance to roads, and the associations of all these variables to the risk of prediabetes and MetS, using logistic and linear regression models. Though we did not observe associations between urinary and ambient BC in overall analysis, we observed a positive association between urinary and ambient BC levels in boys and in children living ≤250 m to a major road compared to those living >250 m away from a major road. We observed a positive association between log-transformed urinary BC particles and MetS (ORper unit increase = 1.72, 95% CI = 1.21; 2.45). An association between ambient BC and MetS was only observed in children living closer to a major road. Our findings suggest that exposure to BC (ambient and biomarker) may contribute to the risk of MetS in children. By measuring the internal dose, the BC particles in urine may have additionally captured non-residential sources and reduced exposure misclassification. Larger studies, with longitudinal design including measurement of urinary BC at multiple time-points are warranted to confirm our findings.
Collapse
Affiliation(s)
- Rajini Nagrani
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany.
| | - Manuela Marron
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| | - Eva Bongaerts
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium; Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Marcel Ameloot
- Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Kreuzenstrasse 2, 4123 Allschwil, Switzerland; University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Danielle Vienneau
- Swiss Tropical and Public Health Institute, Kreuzenstrasse 2, 4123 Allschwil, Switzerland; University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Emeline Lequy
- Unité "Cohortes en Population" UMS 011 Inserm/Université Paris-Cité/Université Paris Saclay/UVSQ Villejuif, France
| | - Bénédicte Jacquemin
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherché en Santé, Environnement et Travail) - UMR_S 1085,Rennes, France
| | - Kathrin Guenther
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| | - Thaïs De Ruyter
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium; Department of Public Health and Primary Care, Ghent University, 9000, Ghent, Belgium
| | - Kirsten Mehlig
- School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Dénes Molnár
- Department of Paediatrics, Medical School, University of Pécs, Pécs, Hungary
| | - Luis A Moreno
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, University of Zaragoza, Instituto Agroalimentario de Aragón (IA2), Instituto de Investigación Sanitaria de Aragón (IIS Aragón) Zaragoza, Spain and Centro de Investigación Biomédica en Red de Fisiopatología de La Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - Paola Russo
- Institute of Food Sciences, National Research Council, Avellino, Italy
| | | | - Wolfgang Ahrens
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany; Institute of Statistics, Faculty of Mathematics and Computer Science, Bremen University, Bremen, Germany
| | - Christoph Buck
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| |
Collapse
|
25
|
Gu W, Wang R, Cai Z, Lin X, Zhang L, Chen R, Li R, Zhang W, Ji X, Shui G, Sun Q, Liu C. Hawthorn total flavonoids ameliorate ambient fine particulate matter-induced insulin resistance and metabolic abnormalities of lipids in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114456. [PMID: 38321675 DOI: 10.1016/j.ecoenv.2022.114456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 02/08/2024]
Abstract
Recent studies have shown a strong correlation between ambient fine particulate matter (PM2.5) exposure and diabetes risk, including abnormal lipid accumulation and systemic insulin resistance (IR). Hawthorn total flavonoids (HF) are the main groups of active substances in Hawthorn, which showed anti-hyperlipidemic and anti-hyperglycemic effects. Therefore, we hypothesized that HF may attenuate PM2.5-induced IR and abnormal lipid accumulation. Female C57BL/6 N mice were randomly assigned to the filtered air exposure (FA) group, concentrated PM2.5 exposure (PM) group, PM2.5 exposure maintained on a low-dose HF diet (LHF) group, and PM2.5 exposure maintained on a high-dose HF diet (HHF) group for an 8-week PM2.5 exposure using a whole-body exposure device. Body glucose homeostasis, lipid profiles in the liver and serum, and enzymes responsible for hepatic lipid metabolism were measured. We found that exposure to PM2.5 impaired glucose tolerance and insulin sensitivity. In addition, triacylglycerol (TAG) in serum elevated, whereas hepatic TAG levels were decreased after PM2.5 exposure, accompanied by inhibited fatty acid uptake, lipogenesis, and lipolysis in the liver. HF administration, on the other hand, balanced the hepatic TAG levels by increasing fatty acid uptake and decreasing lipid export, leading to alleviated systemic IR and hyperlipidemia in PM2.5-exposed mice. Therefore, HF administration may be an effective strategy to protect against PM2.5-induced IR and metabolic abnormalities of lipids.
Collapse
Affiliation(s)
- Weijia Gu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Ruiqing Wang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ziwei Cai
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiujuan Lin
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Zhang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Rucheng Chen
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Ran Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Wenhui Zhang
- Department of Environmental and Occupational health, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Xuming Ji
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qinghua Sun
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China.
| | - Cuiqing Liu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China.
| |
Collapse
|
26
|
Mei Y, Li A, Zhao J, Zhou Q, Zhao M, Xu J, Li R, Li Y, Li K, Ge X, Guo C, Wei Y, Xu Q. Association of long-term air pollution exposure with the risk of prediabetes and diabetes: Systematic perspective from inflammatory mechanisms, glucose homeostasis pathway to preventive strategies. ENVIRONMENTAL RESEARCH 2023; 216:114472. [PMID: 36209785 DOI: 10.1016/j.envres.2022.114472] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 08/29/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Limited evidence suggests the association of air pollutants with a series of diabetic cascades including inflammatory pathways, glucose homeostasis disorder, and prediabetes and diabetes. Subclinical strategies for preventing such pollutants-induced effects remain unknown. METHODS We conducted a cross-sectional study in two typically air-polluted Chinese cities in 2018-2020. One-year average PM1, PM2.5, PM10, SO2, NO2, and O3 were calculated according to participants' residence. GAM multinomial logistic regression was performed to investigate the association of air pollutants with diabetes status. GAM and quantile g-computation were respectively performed to investigate individual and joint effects of air pollutants on glucose homeostasis markers (glucose, insulin, HbA1c, HOMA-IR, HOMA-B and HOMA-S). Complement C3 and hsCRP were analyzed as potential mediators. The ABCS criteria and hemoglobin glycation index (HGI) were examined for their potential in preventive strategy. RESULTS Long-term air pollutants exposure was associated with the risk of prediabetes [Prevalence ratio for O3 (PR_O3) = 1.96 (95% CI: 1.24, 3.03)] and diabetes [PR_PM1 = 1.18 (95% CI: 1.05, 1.32); PR_PM2.5 = 1.08 (95% CI: 1.00, 1.16); PR_O3 = 1.35 (95% CI: 1.03, 1.74)]. PM1, PM10, SO2 or O3 exposure was associated with glucose-homeostasis disorder. For example, O3 exposure was associated with increased levels of glucose [7.67% (95% CI: 1.75, 13.92)], insulin [19.98% (95% CI: 4.53, 37.72)], HOMA-IR [34.88% (95% CI: 13.81, 59.84)], and decreased levels of HOMA-S [-25.88% (95% CI: -37.46, -12.16)]. Complement C3 and hsCRP played mediating roles in these relationships with proportion mediated ranging from 6.95% to 60.64%. Participants with HGI ≤ -0.53 were protected from the adverse effects of air pollutants. CONCLUSION Our study provides comprehensive insights into air pollutant-associated diabetic cascade and suggests subclinical preventive strategies.
Collapse
Affiliation(s)
- Yayuan Mei
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Jiaxin Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Quan Zhou
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Meiduo Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Jing Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Runkui Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanbing Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Kai Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Xiaoyu Ge
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Chen Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
| | - Yongjie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China.
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
27
|
Liu F, Zhang K, Chen G, He J, Pan M, Zhou F, Wang X, Tong J, Guo Y, Li S, Xiang H. Sustained air pollution exposures, fasting plasma glucose, glycated haemoglobin, prevalence and incidence of diabetes: a nationwide study in China. Int J Epidemiol 2022; 51:1862-1873. [PMID: 35947763 DOI: 10.1093/ije/dyac162] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/02/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Evidence remains limited and inconsistent for the associations between sustained air pollution exposures and diabetes development. This study aimed to determine the potential effects of particulate matter with a diameter of ≤10 micrometres (PM10), particulate matter with a diameter of ≤2.5 micrometres (PM2.5) and nitrogen dioxide (NO2) on alterations of fasting plasma glucose (FPG), glycated haemoglobin (HbA1c), in particular, on prevalence and incidence of diabetes. METHODS Cross-sectional analyses were conducted based on 9628 participants aged ≥45 years from the baseline survey (2011) of the China Health and Retirement Longitudinal Study (CHARLS), whereas cohort analyses were based on 3510 individuals without diabetes at baseline in the third survey (2015). Residences of participants were geocoded and the air pollution exposures were estimated using a satellite-based spatiotemporal model. Linear, logistic and modified Poisson regression models, adjusting for multiple confounders, were applied to assess the associations between air pollution and FPG, HbA1c, prevalence and incidence of diabetes, respectively. RESULTS Associations between PM10, PM2.5 and increased levels of FPG and HbA1c were identified. The levels of FPG and HbA1c increased by 0.025 mmol/L (95% CI: 0.007, 0.044) and 0.011 mmol/L (95% CI: 0.002, 0.019), respectively, for a 10-μg/m3 increase in PM10, and the levels of FPG and HbA1c increased by 0.061 mmol/L (95% CI: 0.028, 0.096) and 0.016 mmol/L (95% CI: 0.000, 0.031), respectively, for a 10-μg/m3 increase in PM2.5. There were also positive associations between diabetes prevalence and PM2.5 and PM10. In the cohort analyses, PM10, PM2.5 and NO2 were associated with a higher incidence of diabetes. CONCLUSION Air pollution was allied to diabetes development in elderly Chinese populations. Considering the impact of the dramatic increase in the incidence and prevalence of diabetes in China, interventions to improve air quality are urgently needed.
Collapse
Affiliation(s)
- Feifei Liu
- Department of Global Health, School of Public Health, Wuhan, China
- Global Health Institute, School of Public Health, Wuhan University, Wuhan, China
| | - Ke Zhang
- Department of Global Health, School of Public Health, Wuhan, China
- Global Health Institute, School of Public Health, Wuhan University, Wuhan, China
| | - Gongbo Chen
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jie He
- Department of Environmental Health Sciences, School of Public Health, University of Michigan-Ann Arbor, Ann Arbor, USA
| | - Mengnan Pan
- Department of Global Health, School of Public Health, Wuhan, China
- Global Health Institute, School of Public Health, Wuhan University, Wuhan, China
| | - Feng Zhou
- Department of Global Health, School of Public Health, Wuhan, China
- Global Health Institute, School of Public Health, Wuhan University, Wuhan, China
| | - Xiangxiang Wang
- Department of Global Health, School of Public Health, Wuhan, China
- Global Health Institute, School of Public Health, Wuhan University, Wuhan, China
| | - Jiahui Tong
- Department of Global Health, School of Public Health, Wuhan, China
- Global Health Institute, School of Public Health, Wuhan University, Wuhan, China
| | - Yuming Guo
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Shanshan Li
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Hao Xiang
- Department of Global Health, School of Public Health, Wuhan, China
- Global Health Institute, School of Public Health, Wuhan University, Wuhan, China
| |
Collapse
|
28
|
Ye Z, Liang R, Wang B, Yu L, Liu W, Wang X, Xiao L, Ma J, Zhou M, Chen W. Cross-sectional and longitudinal associations of urinary zinc with glucose-insulin homeostasis traits and type 2 diabetes: Exploring the potential roles of systemic inflammation and oxidative damage in Chinese urban adults. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120331. [PMID: 36195192 DOI: 10.1016/j.envpol.2022.120331] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
The link between zinc exposure and glucose metabolism or the development of type 2 diabetes (T2D) is controversial, and underlying mechanisms are unclear. This study aimed to explore the associations of zinc exposure with glucose-insulin homeostasis traits and the long-term effects of zinc on the development of T2D, and further to estimate the potential roles of inflammation and oxidative damage in such relationships. We investigated 3890 urban adults from the Wuhan-Zhuhai cohort, and followed up every three years. Mixed linear model was applied to estimate dose-response associations between urinary zinc and glycemia traits [fasting plasma insulin (FPI), fasting plasma glucose (FPG), insulin resistance (homeostasis model assessment of insulin resistance, HOMA-IR), and β-cell dysfunction (homeostasis model assessment of β-cell function, HOMA-B)], as well as zinc and biomarkers for systemic inflammation (C-reactive protein) and oxidative damage (8-isoprostane and 8-hydroxy-2'-deoxyguanosine). Logistic regression model and Cox regression model were conducted to evaluate the relationships between urinary zinc and prevalence and incidence of T2D, respectively. We further performed mediation analysis to assess the roles of inflammation and oxidative damage biomarkers in above associations. At baseline, we observed significant dose-response relationships of elevated urinary zinc with increased FPI, FPG, HOMA-IR, and T2D prevalence and decreased HOMA-B, and such associations could be strengthened by increased C-reactive protein, 8-isoprostane, and 8-hydroxy-2'-deoxyguanosine. Elevated C-reactive protein significantly mediated 9.09% and 17.67% of the zinc-related FPG and HOMA-IR increments, respectively. In longitudinal analysis, a significantly positive association between urinary zinc and T2D incidence was observed among subjects with persistent high urinary zinc levels when compared with those with persistent low zinc levels. Our results suggested that high levels of zinc exposure adversely affected on glucose-insulin homeostasis and further contributed to increased risk of T2D cross-sectionally and longitudinally. Moreover, inflammatory response might play an important role in zinc-related glucose metabolic disorder.
Collapse
Affiliation(s)
- Zi Ye
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Ruyi Liang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Linling Yu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xing Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lili Xiao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jixuan Ma
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Min Zhou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
29
|
Yan M, Hou F, Xu J, Liu H, Liu H, Zhang Y, Liu H, Lu C, Yu P, Wei J, Tang NJ. The impact of prolonged exposure to air pollution on the incidence of chronic non-communicable disease based on a cohort in Tianjin. ENVIRONMENTAL RESEARCH 2022; 215:114251. [PMID: 36063911 DOI: 10.1016/j.envres.2022.114251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/21/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Evidence on the associations of prolonged ambient pollutants exposure with chronic non-communicable diseases among middle-aged and elderly residents is still limited. This prospective cohort study intends to investigate the long-term effects of ambient pollution on hypertension and diabetes incidence among relatively older residents in China. Individual particulate matter exposure levels were estimated by satellite-based model. Individual gaseous pollutants exposure levels were estimated by Inverse Distance Weighted model. A Cox regression model was employed to assess the risks of hypertension and diabetes morbidity linked to air pollutants exposures. The cross-product term of ambient pollutants exposure and covariates was further added into the regression model to test whether covariates would modify these air pollution-morbidity associations. During the period from 2014 to 2018, a total of 97,982 subjects completed follow-up. 12,371 incidents of hypertension and 2034 of diabetes occurred. In the multi-covariates model, the hazard ratios (HR) and 95% confidence interval (CI) were 1.49 (1.45-1.52), 1.28 (1.26-1.30), 1.17 (1.15-1.18), 1.21 (1.17-1.25) and 1.33 (1.31-1.35) for hypertension morbidity per 10 μg/m3 increment in PM1, PM2.5, PM10, NO2 and SO2, respectively. For diabetes onsets, the HR (95% CI) were 1.17 (1.11-1.23), 1.09 (1.04-1.13), 1.06 (1.02-1.09), 1.02 (0.95-1.10), and 1.24 (1.19-1.29), respectively. In addition, for hypertension analyses, the effect estimates were more pronounced in the participants with age <60 years old, BMI ≥24 kg/m2, and frequent alcohol drinking. These findings provided the evidence on elevated risks of morbidity of hypertension and diabetes associated with prolonged ambient pollutants exposure at relatively high levels.
Collapse
Affiliation(s)
- Mengfan Yan
- Department of Occupational and Environmental Health Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Fang Hou
- Community Health Service Center, Jiefang Road, Tanggu Street, Binhai New District, Tianjin, China
| | - Jiahui Xu
- Department of Occupational and Environmental Health Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Huanyu Liu
- Department of Occupational and Environmental Health Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Hongyan Liu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Yourui Zhang
- Community Health Service Center, Jiefang Road, Tanggu Street, Binhai New District, Tianjin, China
| | - Hao Liu
- Community Health Service Center, Jiefang Road, Tanggu Street, Binhai New District, Tianjin, China
| | - Chunlan Lu
- Community Health Service Center, Jiefang Road, Tanggu Street, Binhai New District, Tianjin, China
| | - Pei Yu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, 20742, United States.
| | - Nai-Jun Tang
- Department of Occupational and Environmental Health Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China.
| |
Collapse
|
30
|
Yang L, Wan W, Yu C, Xuan C, Zheng P, Yan J. Associations between PM 2.5 exposure and Alzheimer's Disease prevalence Among elderly in eastern China. Environ Health 2022; 21:119. [PMID: 36447194 PMCID: PMC9706836 DOI: 10.1186/s12940-022-00937-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Studies showed that PM2.5 might be associated with various neurogenic diseases such as Alzheimer's Disease (AD). However, this topic had been little studied in Zhejiang province of China. METHODS: In 2018, we established a cohort of AD high-risk population with 1,742 elderly aged 60 and above. In 2020, the cohort was followed up, a total of 1,545 people participated the 2 surveys. Data collection included questionnaires and basic physical examinations. The average residential exposure to PM2.5 for each participant, that in a 5-years period prior to the first survey, was estimated using a satellite-based spatial statistical model. We determined the association between PM2.5 and AD prevalence by cox proportional hazards regression model. RESULTS: This study showed that an increase in the PM2.5 level was an important associated risk factor that contributed to AD. The average PM2.5 exposure levels among the study population ranged from 32.69 μg/m3 to 39.67 μg/m3 from 2013 to 2017, which were much higher than 5 μg/m3 that specified in the WHO air quality guidelines. There was an association between PM2.5 exposure and AD, and the correlations between PM2.5 and Mini-Mental State Examination, Montreal cognitive assessment scale scores were statistically significant. An increase in the PM2.5 level by 10 μg/m3 elevated the risk of AD among residents by 2%-5% (HR model 2-model 4 = 1.02 to 1.05, CI model 2-model 4 = 1.01-1.10). The subgroups of male, with old age, with low education levels, used to work as farmers or blue-collar workers before retirement, overweight and obese were associated with a higher effect of PM2.5. CONCLUSIONS Reducing PM2.5 exposure might be a good way to prevent AD.
Collapse
Affiliation(s)
- Li Yang
- Zhejiang Hospital, No.12 Ling Yin Road, Hangzhou, 310013, China
- Key Laboratory of Public Health Safety, Ministry of Education, Health Communication Institute, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Wenjie Wan
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Caiyan Yu
- Zhuji Second People's Hospital, No. 15 Fengbei Road, Fengqiao Town, Zhuji, 311811, China
| | - Cheng Xuan
- Zhuji Second People's Hospital, No. 15 Fengbei Road, Fengqiao Town, Zhuji, 311811, China
| | - Pinpin Zheng
- Key Laboratory of Public Health Safety, Ministry of Education, Health Communication Institute, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Jing Yan
- Zhejiang Hospital, No.12 Ling Yin Road, Hangzhou, 310013, China.
| |
Collapse
|
31
|
Chen Q, Ma X, Geng Y, Liao J, Ma L. Association between smoking and hypertension under different PM 2.5 and green space exposure: A nationwide cross-sectional study. Front Public Health 2022; 10:1026648. [PMID: 36466446 PMCID: PMC9712966 DOI: 10.3389/fpubh.2022.1026648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/24/2022] [Indexed: 11/19/2022] Open
Abstract
Background Smoking has been widely reported to have a significant relationship with hypertension, but the past description of this relationship has not been uniform. In addition, there has been a lack of research to discuss the impact of environmental exposure on the relationship between smoking and hypertension. Therefore, this study estimates the association between smoking and hypertension in middle aged and elderly people in China under different PM2.5 (fine particulate matter) concentrations and the green space exposure conditions. Methods Individual sample data from the China Health and Retirement Longitudinal Study in 2018 and the long-term average exposure concentration of fine particles and green space exposure for all participants were used with a multilevel binary logistic mixed effects model. Adjustments were made for sociodemographic characteristics and other health behaviors including drinking, physical activity, and social activity. The normalized difference vegetation index (NDVI) and PM2.5 concentration stratification were assigned with the median of the population exposure concentration as the dividing line, and the dual environmental factor stratification was assigned in combination with the two types of environmental exposure. The analysis was also stratified using age groups. Results A total of 10,600 participants over the age of 45 were included in the study. The effects of smoking on hypertension were diverse under different environmental exposure conditions. There was a significant relationship between smoking behavior and hypertension in the Low-NDVI group, and the effect value of this relationship was significantly different from that in the High-NDVI group. Furthermore, for respondents exposed to low green spaces and high PM2.5 environments at the same time (Low-NDVI/High-PM2.5 group), their smoking behavior may lead to an increase in the risk of hypertension. In addition, the risk of hypertension caused by smoking in the middle-aged (45-64) was significant under low green space exposure, but the effect difference between the different age groups was not significant. Conclusions The relationship between smoking and hypertension was different under different environmental exposure conditions. Exposure to low green spaces may strengthen the association between smoking and hypertension risk. When participants were exposed to both low green spaces and high PM2.5 concentrations, the risk of hypertension caused by smoking was significantly higher than that of those who were exposed to high green spaces and low PM2.5 concentrations.
Collapse
Affiliation(s)
- Qihao Chen
- Department of Biostatistics, School of Public Health, Wuhan University, Wuhan, China
| | - Xuxi Ma
- Department of Global Health, School of Public Health, Wuhan University, Wuhan, China
| | - Yan Geng
- Department of Global Health, School of Public Health, Wuhan University, Wuhan, China
| | - Jingling Liao
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Lu Ma
- Department of Biostatistics, School of Public Health, Wuhan University, Wuhan, China,*Correspondence: Lu Ma
| |
Collapse
|
32
|
Zhang Q, Meng X, Shi S, Kan L, Chen R, Kan H. Overview of particulate air pollution and human health in China: Evidence, challenges, and opportunities. Innovation (N Y) 2022; 3:100312. [PMID: 36160941 PMCID: PMC9490194 DOI: 10.1016/j.xinn.2022.100312] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022] Open
Abstract
Ambient particulate matter (PM) pollution in China continues to be a major public health challenge. With the release of the new WHO air quality guidelines in 2021, there is an urgent need for China to contemplate a revision of air quality standards (AQS). In the recent decade, there has been an increase in epidemiological studies on PM in China. A comprehensive evaluation of such epidemiological evidence among the Chinese population is central for revision of the AQS in China and in other developing countries with similar air pollution problems. We thus conducted a systematic review on the epidemiological literature of PM published in the recent decade. In summary, we identified the following: (1) short-term and long-term PM exposure increase mortality and morbidity risk without a discernible threshold, suggesting the necessity for continuous improvement in air quality; (2) the magnitude of long-term associations with mortality observed in China are comparable with those in developed countries, whereas the magnitude of short-term associations are appreciably smaller; (3) governmental clean air policies and personalized mitigation measures are potentially effective in protecting public and individual health, but need to be validated using mortality or morbidity outcomes; (4) particles of smaller size range and those originating from fossil fuel combustion appear to show larger relative health risks; and (5) molecular epidemiological studies provide evidence for the biological plausibility and mechanisms underlying the hazardous effects of PM. This updated review may serve as an epidemiological basis for China’s AQS revision and proposes several perspectives in designing future health studies. Acute effects of PM are smaller in China compared with developed countries Health effects caused by PM depend on particle composition, source, and size There are no thresholds for the health effects of PM Mechanistic studies support the biological plausibility of PM’s health effects
Collapse
Affiliation(s)
- Qingli Zhang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Xia Meng
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Su Shi
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Lena Kan
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, MD 21205, USA
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China.,Children's Hospital of Fudan University, National Center for Children's Health, Shanghai 201102, China
| |
Collapse
|
33
|
Zhou P, Mo S, Peng M, Yang Z, Wang F, Hu K, Zhang Y. Long-term exposure to PM 2.5 constituents in relation to glucose levels and diabetes in middle-aged and older Chinese. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 245:114096. [PMID: 36162351 DOI: 10.1016/j.ecoenv.2022.114096] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Previous studies have indicated the associations between fine particulate matter (PM2.5) exposure and diabetes or glucose levels. However, evidence linking PM2.5 constituents and diabetes or glucose levels was extensively scarce, particularly in developing countries. This study aimed to investigate the associations of exposure to PM2.5 and its five constituents (black carbon [BC], organic matter [OM], nitrate [NO3-], sulfate [SO42-], and ammonium [NH4+]) with diabetes and glucose levels among the middle-aged and elderly Chinese populations. METHODS A national cross-sectional sample of participants aged 45+ years was enrolled from 28 provinces across China's mainland. Health examination and questionnaire survey for each respondent were performed during 2011-2012. Diabetes was determined by alternative definitions, and the main definition (MD) was self-report diabetes or antidiabetic medicine use or HbA1c ≥6.5 or fasting glucose ≥7 mmol/L or random glucose ≥11.1 mmol/L. Monthly exposure to PM2.5 mass and its five constituents (BC, OM, NO3-, SO42-, and NH4+) for each participant at residence were estimated using satellite-based spatiotemporal prediction models. Generalized linear models and linear mixed-effects models were used to assess the effects of exposure to PM2.5 and its constituents on diabetes or glucose levels, respectively. Stratification analyses were done by sex and age. RESULTS We included a total of 17,326 adults over 45 years in this study. The 3-year mean (interquartile range [IQR]) concentrations of PM2.5, BC, OM, NO3-, SO42-, and NH4+ were 47.9 (27.4) µg/m3, 2.9 (2.2) µg/m3, 9.2 (6.6) µg/m3, 10.2 (9.4) µg/m3, 11.0 (5.2) µg/m3, and 7.1 (4.4) µg/m3, respectively. Per IQR rise in exposure to PM2.5 was significantly associated with an increase of 0.133 mmol/L (95% confidence interval, 0.048-0.219) in glucose concentrations. Similar positive associations were observed for BC (0.097 mmol/L [0.012-0.181]), OM (0.160 mmol/L [0.065-0.256]), NO3- (0.145 mmol/L [0.039-0.251]), SO42- (0.111 mmol/L [0.026-0.196]), and NH4+ (0.135 mmol/L [0.041-0.230]). Under different diabetes definitions, PM2.5 mass and selected constituents with the exception of SO42- were all associated with a higher risk of prevalent diabetes. In MD-based analysis, similar positive associations were observed for four constituents, with corresponding odds ratios of 1.180 (1.097-1.270) for PM2.5, 1.154 (1.079-1.235) for BC, 1.170 (1.079-1.270) for OM, 1.200 (1.098-1.312) for NO3-, and 1.123 (1.037-1.215) for NH4+. Stratified analyses showed a significantly higher risk of diabetes in males (1.225 [1.064-1.411]) than females (1.024 [0.923-1.136]) when exposed to PM2.5. Participants under 65 years were generally more vulnerable to diabetes hazards related to PM2.5 constituents exposure. CONCLUSIONS Exposures to PM2.5 and its constituents (i.e., BC, OM, NO3-, and NH4+) were positively associated with increased risks of prevalent diabetes and elevated glucose levels in middle-aged and older adults.
Collapse
Affiliation(s)
- Peixuan Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Shaocai Mo
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Minjin Peng
- Department of Infection Control, Shiyan Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China.
| | - Zhiming Yang
- School of Economics and Management, University of Science and Technology Beijing, Beijing 100083, China
| | - Fang Wang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Kejia Hu
- Institute of Big Data in Health Science, School of Public Health, Zhejiang University, Hangzhou 310058, China
| | - Yunquan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
34
|
Liu H, Gu J, Huang Z, Han Z, Xin J, Yuan L, Du M, Chu H, Wang M, Zhang Z. Fine particulate matter induces METTL3-mediated m 6A modification of BIRC5 mRNA in bladder cancer. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129310. [PMID: 35749893 DOI: 10.1016/j.jhazmat.2022.129310] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/17/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Long-term exposure to fine particulate matter (PM2.5) is reportedly related to a variety of cancers including bladder cancer. However, little is known about the biological mechanism underlying this association. In the present study, PM2.5 exposure was significantly associated with increased levels of m6A modification in bladder cancer patients and bladder cells. METTL3 expression was aberrantly upregulated after PM2.5 exposure, and METTL3 was involved in PM2.5-induced m6A methylation. Higher METTL3 expression was observed in bladder cancer tissues and METTL3 knockdown dramatically inhibited bladder cancer cell proliferation, colony formation, migration and invasion, inducing apoptosis and disrupting the cell cycle. Mechanistically, PM2.5 enhanced the expression of METTL3 by inducing the promoter hypomethylation of its promoter and increasing the binding affinity of the transcription factor HIF1A. BIRC5 was identified as the target of METTL3 through m6A sequencing (m6A-Seq) and KEGG analysis. The methylated BIRC5 transcript was subsequently recognized by IGF2BP3, which increased its mRNA stability. In particular, PM2.5 exposure promoted the m6A modification of BIRC5 and its recognition by IGF2BP3. In addition, BIRC5 was involved in bladder cancer proliferation and metastasis, as well as VEGFA-regulated angiogenesis. This comprehensive study revealed that PM2.5 exposure exerts epigenetic regulatory effects on bladder cancer via the HIF1A/METTL3/IGF2BP3/BIRC5/VEGFA network.
Collapse
Affiliation(s)
- Hanting Liu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jingjing Gu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhengkai Huang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhichao Han
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Junyi Xin
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Lin Yuan
- Department of Urology, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Mulong Du
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Haiyan Chu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
35
|
Nanda M, Sharma R, Mubarik S, Aashima A, Zhang K. Type-2 Diabetes Mellitus (T2DM): Spatial-temporal Patterns of Incidence, Mortality and Attributable Risk Factors from 1990 to 2019 among 21 World Regions. Endocrine 2022; 77:444-454. [PMID: 35841511 DOI: 10.1007/s12020-022-03125-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 06/17/2022] [Indexed: 12/20/2022]
Abstract
PURPOSE Type-2 diabetes Mellitus (T2DM) is one of the leading causes of death and disability worldwide. This study examines temporal patterns of the global, regional, and national burden of T2DM in the last three decades. DATA AND METHODS The estimates of age, sex and location-wise incident cases, deaths, prevalent cases, and disability-adjusted-life-years (DALYs) and risk factors for 21 regions and 204 countries are retrieved from the Global Burden of Disease 2019 study from 1990 to 2019. Socio-demographic index (SDI) is used as the indicator of the development status of countries, and quadratic regression is employed to examine the relationship between country-level age-standardized rates and SDI. RESULTS Globally, incident cases of T2DM more than doubled from 8.4 million[95% uncertainty interval, 7.8-9.1 million] in 1990 to 21.7 million[20.0-23.5 million] in 2019, and deaths more than doubled from 606,407[573,069-637,508] to 1.5 million[1.4-1.6 million] between 1990 and 2019. Global T2DM prevalence increased from 148.4 million[135.5-162.6 million] in 1990 to 437.9 million[402.0-477.0 million] in 2019. In 2019, global age-standardized prevalence rate stood at 5282.8/100,000[4853.6-5752.1], varying from 2174.5/100,000[1924.3-2470.5] in Mongolia to 19876.8/100,000[18211.1-21795.3] in American Samoa. SDI exhibited inverted-U shaped relationship with country-level age-standardised rates. Globally, high body-mass-index (51.9%), ambient particulate matter pollution (13.6%), smoking (9.9%) and secondhand smoke (8.7%) were the major contributing risk factors towards T2DM DALYs in 2019. CONCLUSION With ubiquitously rising prevalent cases globally, particularly in low and middle-income countries and regions, T2DM requires immediate attention and targeted policy response worldwide centered on lifestyle interventions (e.g., physical activity, smoking, diet, and obesity), air pollution control and cost-effective timely treatment.
Collapse
Affiliation(s)
- Mehak Nanda
- University School of Management and Entrepreneurship, Delhi Technological University, Delhi, India
| | - Rajesh Sharma
- University School of Management and Entrepreneurship, Delhi Technological University, Delhi, India.
| | - Sumaira Mubarik
- Department of Epidemiology and Biostatistics, School of Health Sciences, Wuhan University, Wuhan, 430071, China
| | - Aashima Aashima
- University School of Management and Entrepreneurship, Delhi Technological University, Delhi, India
| | - Kai Zhang
- Empire Innovation Associate Professor, Department of Environmental Health Sciences, School of Public Health | University at Albany, State University of New York, Albany, USA
| |
Collapse
|
36
|
He J, Hu S, Xu X, Guo P, Niu Y, Zhang J, Zhang R, Chen S, Ma S, Liu F, Li Q, Li C, Zhang L, Wu Y, Zhang M, Zhang M. Association of long-term exposure to PM 2.5 in workplace with fasting plasma glucose among asymptomatic adults: A multicenter study in North China. ENVIRONMENT INTERNATIONAL 2022; 166:107353. [PMID: 35749995 DOI: 10.1016/j.envint.2022.107353] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The impacts of long-term high exposure to PM2.5 in workplace on glucose metabolism in asymptomatic working adults (AWAs) have rarely been explored. OBJECTIVES To assess the relationship between long-term exposure to workplace PM2.5 and glucose metabolism in asymptomatic general working adults in heavily polluted regions. METHODS We used the baseline data of the asymptomatic working participants from the Beijing-Tianjin-Hebei Medical Examination Cohort, which recruited adults undergoing medical examinations. A machine learning-based spatial-temporal model was used to estimate daily average PM2.5 concentrations in the participants' workplaces. We assessed the association of long-term PM2.5 concentrations (three years prior to the interview) and fasting plasma glucose (FPG) using generalized linear mixed-effects models (GLMM) with inclusion of potential confounders. Stratified analyses by sex, age, BMI and smoking status, and two pollutant models were further performed. RESULTS A total of 37,619 individuals were interviewed and 28,865 were included in the analyses. The mean FPG was 5.20 (0.96) mmol/L, and the estimated three-year average concentration of PM2.5 exposure was 69.51 (6.92) μg/m3. We detected a significant association of long-term exposure to workplace PM2.5 and FPG, a 10 µg/m3 increase in the long-term workplace PM2.5 exposure was associated with 0.075 (95%CI: 0.050-0.100) mmol/L elevated FPG and 25% (OR = 1.25, 95%CI: 1.05-1.50) elevated odds of abnormal fasting glucose metabolism with control of the potential confounding. The detected association between workplace PM2.5 and FPG metabolism remained significant in males, individuals aged > 44 years, overweight and/or obese people, both smokers and non-smokers, and when NO2, SO2, O3, and CO were included in the model. CONCLUSIONS Long-term exposure to workplace PM2.5 was associated with elevated FPG and/or odds of abnormal glucose metabolism among AWAs. Male, middle-aged, overweight and/or obese AWAs were more susceptible to workplace PM2.5 regardless of smoking status.
Collapse
Affiliation(s)
- Jiangshan He
- School of Medicine, Nankai University, Tianjin, China
| | - Songhua Hu
- School of Statistics and Data Science, Nankai University, Tianjin, China.
| | - Ximing Xu
- Big Data Center for Children's Medical Care, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.
| | - Pei Guo
- School of Medicine, Nankai University, Tianjin, China
| | - Yujie Niu
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China; Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang, China.
| | - Jingbo Zhang
- Beijing Physical Examination Center, Beijing, China
| | - Rong Zhang
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China; Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang, China.
| | - Shuo Chen
- Beijing Physical Examination Center, Beijing, China.
| | - Shitao Ma
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China; Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang, China
| | - Feng Liu
- Beijing Physical Examination Center, Beijing, China.
| | - Qiang Li
- Beijing Physical Examination Center, Beijing, China
| | - Chunjun Li
- Tianjin People's Hospital, Tianjin, China
| | - Li Zhang
- Tianjin First Central Hospital, Tianjin, China
| | - Ying Wu
- School of Statistics and Data Science, Nankai University, Tianjin, China.
| | - Mianzhi Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Minying Zhang
- School of Medicine, Nankai University, Tianjin, China.
| |
Collapse
|
37
|
Tian L, Sun M, Lin L, Wang Y, Yu Y, Duan J, Sun Z. Effects of ambient air pollution on glycosylated hemoglobin: a systematic review and meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:53954-53966. [PMID: 35622285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Air pollution is one of the biggest environmental health problems in the world; accumulative studies have shown that air pollution was closely related to metabolism disorders. HbA1c is a stable indicator for blood glucose level monitoring. However, studies on the impact of ambient air pollution on HbA1c have inconsistent conclusions. The objective of the study is to explore the influence of ambient air pollution on HbA1c. By searching keywords, a systematic literature retrieval was carried out on PubMed, Cochrane Library, Web of Science, and Embase databases up to April 2022. Pooled percentage change (%-change) and 95% confidence intervals (95% CI) were estimated using random effect models for particulate matter (PM) and nitrogen dioxide (NO2). A subgroup analysis of body mass index (BMI), study region, exposure period, sample size, sensitivity analysis, and publication bias detection was also performed. There were 8, 12, and 6 studies included in this meta-analysis to explore the association between PM10, PM2.5, NO2, and HbA1c, respectively. The results showed that for every increase of 10 μg/m3 in PM10, PM2.5, and NO2, the %-changes in HbA1c were 0.13%, 0.814%, and 0.02%, respectively. The subgroup analysis showed that exposure period, sample size, and BMI were associated with HbA1c in response to air pollution. PM10, PM2.5, and NO2 exposure were significantly associated with increased HbA1c levels.
Collapse
Affiliation(s)
- Li Tian
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Lisen Lin
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Yan Wang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Yang Yu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China.
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| |
Collapse
|
38
|
Weng Z, Liu Q, Yan Q, Liang J, Zhang X, Xu J, Li W, Xu C, Gu A. Associations of genetic risk factors and air pollution with incident hypertension among participants in the UK Biobank study. CHEMOSPHERE 2022; 299:134398. [PMID: 35339527 DOI: 10.1016/j.chemosphere.2022.134398] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/19/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
The purposes of this study were to quantify the association of the combination of air pollution and genetic risk factors with hypertension and explore the interactions between air pollution and genetic risk. This study included 391,366 participants of European ancestry initially free from pre-existing hypertension in the UK Biobank. Exposure to ambient air pollutants, including particulate matter (PM2.5 PM2.5-10, and PM10), nitrogen dioxide (NO2) and nitrogen oxides (NOX), was estimated through land use regression modelling, and the associations between air pollutants and the incidence of hypertension were investigated using a Cox proportional hazards model adjusted for covariates. Furthermore, we established a polygenic risk score for hypertension and assessed the combined effect of genetic susceptibility and air pollution on incident hypertension. The results showed significant associations between the risk of hypertension and exposure to PM2.5 (hazard ratio [HR]: 1.41, 95% confidence interval [CI]: 1.29-1.53; per 10 μg/m3), PM10 (1.05, 1.00-1.09; per 10 μg/m3), and NOX (1.01, 1.01-1.02 per 10 μg/m3). Additive effects of PM2.5 and NOX exposure and genetic risk were observed. Compared to individuals with a low genetic risk and low air pollution exposure, participants with high air pollution exposure and a high genetic risk had a significantly increased risk of hypertension (PM2.5: 71% (66%-76%), PM10: 59% (55%-64%), NOX: 65% (60%-70%)). Our results indicate that long-term exposure to air pollution is associated with an increased risk of hypertension, especially in individuals with a high genetic risk.
Collapse
Affiliation(s)
- Zhenkun Weng
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Qian Liu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Qing Yan
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jingjia Liang
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Xin Zhang
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Jin Xu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China; Department of Maternal, Child, and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wenxiang Li
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Cheng Xu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China.
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
39
|
He MZ, Kloog I, Just AC, Gutiérrez-Avila I, Colicino E, Téllez-Rojo MM, Luisa Pizano-Zárate M, Tamayo-Ortiz M, Cantoral A, Soria-Contreras DC, Baccarelli AA, Wright RO, Yitshak-Sade M. Intermediate- and long-term associations between air pollution and ambient temperature and glycated hemoglobin levels in women of child bearing age. ENVIRONMENT INTERNATIONAL 2022; 165:107298. [PMID: 35597113 PMCID: PMC9233109 DOI: 10.1016/j.envint.2022.107298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/07/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Air pollution has been linked to obesity while higher ambient temperatures typically reduce metabolic demand in a compensatory manner. Both relationships may impact glucose metabolism, thus we examined the association between intermediate- and long-term exposure to fine particulate matter (PM2.5) and ambient temperature and glycated hemoglobin(HbA1c), a longer-term marker of glucose control. METHODS We assessed 3-month, 6-month, and 12-month average air pollution and ambient temperature at 1-km2 spatial resolution via satellite remote sensing models (2013-2019), and assessed HbA1c at four, six, and eight years postpartum in women enrolled in the Programming Research in Obesity, Growth, Environment and Social Stressors (PROGRESS) cohort based in Mexico City. PM2.5 and ambient temperature were matched to participants' addresses and confirmed by GPS tracker. Using linear mixed-effects models, we examined the association between 3-month, 6-month, and 12-month average PM2.5 and ambient temperature with repeated log-transformed HbA1c values. All models included a random intercept for each woman and were adjusted for calendar year, season, and individual-level confounders (age, marital status, smoking, alcohol consumption level, and education level). RESULTS We analyzed 1,265 HbA1c measurements of 484 women. Per 1 µg/m3 increase in 3-month and 6-month PM2.5, HbA1c levels increased by 0.28% (95% confidence interval (95 %CI): 0.14, 0.42%) and 0.28% (95 %CI: 0.04, 0.52%) respectively. No association was seen for 12-month average PM2.5. Per 1 °C increase in ambient temperature, HbA1c levels decreased by 0.63% (95 %CI: -1.06, -0.21%) and 0.61% (95 %CI: -1.08, -0.13%), while the 12-month average again is not associated with HbA1c. CONCLUSIONS Intermediate-term exposure to PM2.5 and ambient temperature are associated with opposing changes in HbA1c levels, in this region of high PM2.5 and moderate temperature fluctuation. These effects, measurable in mid-adult life, may portend future risk of type 2 diabetes and possible heart disease.
Collapse
Affiliation(s)
- Mike Z He
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, United States.
| | - Itai Kloog
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, United States; Department of Geography and Environmental Development, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Allan C Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Iván Gutiérrez-Avila
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Martha M Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - María Luisa Pizano-Zárate
- Nutrition and Bioprogramming Coordination, National Institute of Perinatology, Mexico City, Mexico; UMF 4, South Delegation of the Federal District, Mexican Social Security Institute (IMSS), Mexico City, Mexico
| | - Marcela Tamayo-Ortiz
- Occupational Health Research Unit, Mexican Social Security Institute (IMSS), Mexico City, Mexico
| | | | - Diana C Soria-Contreras
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, United States
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Maayan Yitshak-Sade
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, United States
| |
Collapse
|
40
|
Hu K, Keenan K, Hale JM, Liu Y, Kulu H. A longitudinal analysis of PM2.5 exposure and multimorbidity clusters and accumulation among adults aged 45-85 in China. PLOS GLOBAL PUBLIC HEALTH 2022; 2:e0000520. [PMID: 36962462 PMCID: PMC10021527 DOI: 10.1371/journal.pgph.0000520] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/04/2022] [Indexed: 06/18/2023]
Abstract
While previous studies have emphasised the role of individual factors in understanding multimorbidity disparities, few have investigated contextual factors such as air pollution (AP). We first use cross-sectional latent class analysis (LCA) to assess the associations between PM2.5 exposure and multimorbidity disease clusters, and then estimate the associations between PM2.5 exposure and the development of multimorbidity longitudinally using growth curve modelling (GCM) among adults aged 45-85 in China. The results of LCA modelling suggest four latent classes representing three multimorbidity patterns (respiratory, musculoskeletal, cardio-metabolic) and one healthy pattern. The analysis shows that a 1 μg/m3 increase in cumulative exposure to PM2.5 is associated with a higher likelihood of belonging to respiratory, musculoskeletal or cardio-metabolic clusters: 2.4% (95% CI: 1.02, 1.03), 1.5% (95% CI: 1.01, 1.02) and 3.3% (95% CI: 1.03, 1.04), respectively. The GCM models show that there is a u-shaped association between PM2.5 exposure and multimorbidity, indicating that both lower and higher PM2.5 exposure is associated with increased multimorbidity levels. Higher multimorbidity in areas of low AP is explained by clustering of musculoskeletal diseases, whereas higher AP is associated with cardio-metabolic disease clusters. The study shows how multimorbidity clusters vary contextually and that PM2.5 exposure is more detrimental to health among older adults.
Collapse
Affiliation(s)
- Kai Hu
- Population and Health Research Group, School of Geography and Sustainable Development, University of St Andrews, Fife, United Kingdom
| | - Katherine Keenan
- Population and Health Research Group, School of Geography and Sustainable Development, University of St Andrews, Fife, United Kingdom
| | - Jo Mhairi Hale
- Population and Health Research Group, School of Geography and Sustainable Development, University of St Andrews, Fife, United Kingdom
| | - Yang Liu
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Hill Kulu
- Population and Health Research Group, School of Geography and Sustainable Development, University of St Andrews, Fife, United Kingdom
| |
Collapse
|
41
|
Yan L, Pang Y, Wang Z, Luo H, Han Y, Ma S, Li L, Yuan J, Niu Y, Zhang R. Abnormal fasting blood glucose enhances the risk of long-term exposure to air pollution on dyslipidemia: A cross-sectional study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 237:113537. [PMID: 35468441 DOI: 10.1016/j.ecoenv.2022.113537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/16/2022] [Accepted: 04/16/2022] [Indexed: 06/14/2023]
Abstract
Both long-term exposure to air pollution and abnormal fasting blood glucose (FBG) are linked to dyslipidemia prevalence. However, the joint role of air pollution and FBG on dyslipidemia remains unknown clearly. In this study, we aimed to test whether abnormal FBG could enhance the risks of long-term exposure to air pollutants on dyslipidemia in general Chinese adult population. The present study recruited 8917 participants from 4 cities in Hebei province, China. Participants' individual exposure to air pollutants was evaluated by the Empirical Bayesian Kriging statistical model in ArcGIS10.2 geographic information system. Dyslipidemia was defined according to Guidelines for the Prevention and Treatment of Dyslipidemia in Chinese Adults. Subjects were grouped into normal, prediabetes, diabetes according to FBG level. Generalized linear models were applied to analyze the interaction of air pollutants and FBG on dyslipidemia prevalence. The prevalence of dyslipidemia was 43.83% in our investigation. After adjusting all covariates, we found the risk of four air pollutants (PM2.5, PM10, NO2, SO2) on dyslipidemia prevalence was stronger as higher FBG level, and the adjusted odd ratio of interaction (ORinter (95% CI)) between PM2.5, PM10, NO2, SO2 and FBG levels on dyslipidemia was 1.171 (1.162, 1.189), 1.119 (1.111, 1.127), 1.124 (1.115, 1.130), 1.107 (1.098, 1.115), respectively. Stratified analyses indicated the modifying effects of FBG on the association of air pollution with dyslipidemia were stronger among male, less than 65 years old, overweight/obesity (all Pinter<0.1). Our study concluded that high FBG levels strengthened the risk of long-term exposure to air pollution on dyslipidemia, especially more noticeable in male, less than 65 years old, overweight.
Collapse
Affiliation(s)
- Lina Yan
- Department of Epidemiology and Health Statistics, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, PR China
| | - Yaxian Pang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, PR China
| | - Zhikun Wang
- Office of Academic Affairs, The First Affiliated Hospital of Hebei College of Traditional Chinese Medicine, Shijiazhuang 050017, PR China
| | - Haixia Luo
- Department of Cardiology, Shijiazhuang No.1 Hospital, Shijiazhuang 050011, PR China
| | - Yuquan Han
- Emergency Department, People's Hospital of Qingdao West Coast New Area, Shandong 266400, PR China
| | - Shitao Ma
- Department of Hospital Infection Control, The People's Hospital of Luanzhou, Luanzhou 063700, PR China
| | - Lipeng Li
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, PR China
| | - Jing Yuan
- Department of Biostatistics,Clinical Development Division of CSPC, Shijiazhuang 050035, PR China
| | - Yujie Niu
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, PR China; Department occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China.
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, PR China.
| |
Collapse
|
42
|
Ao L, Zhou J, Han M, Li H, Li Y, Pan Y, Chen J, Xie X, Jiang Y, Wei J, Chen G, Li S, Guo Y, Hong F, Li Z, Xiao X, Zhao X. The joint effects of physical activity and air pollution on type 2 diabetes in older adults. BMC Geriatr 2022; 22:472. [PMID: 35650529 PMCID: PMC9158242 DOI: 10.1186/s12877-022-03139-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/12/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Older adults with type 2 diabetes are at higher risk of developing common geriatric syndromes and have a lower quality of life. To prevent type 2 diabetes in older adults, it's unclear whether the health benefits of physical activity (PA) will be influenced by the harms caused by increased exposure to air pollution during PA, especially in developing countries with severe air pollution problem. We aimed to investigate the joint effects of PA and long-term exposure to air pollution on the type 2 diabetes in older adults from China. METHODS This cross-sectional study was based on the China Multi-Ethnic cohort (CMEC) study. The metabolic equivalent of PA was calculated according to the PA scale during the CMEC baseline survey. High resolution air pollution datasets (PM10, PM2.5 and PM1) were collected from open products. The joint effects were assessed by the marginal structural mean model with generalized propensity score. RESULTS A total of 36,562 participants aged 50 to 79 years were included in the study. The prevalence of type 2 diabetes was 10.88%. The mean (SD) level of PA was 24.93 (18.60) MET-h/d, and the mean (SD) level of PM10, PM2.5, and PM1 were 70.00 (23.32) µg/m3, 40.45 (15.66) µg/m3 and 27.62 (6.51) µg/m3, respectively. With PM10 < 92 µg/m3, PM2.5 < 61 µg/m3, and PM1 < 36 µg/m3, the benefit effects of PA on type 2 diabetes was significantly greater than the harms due to PMs when PA levels were roughly below 80 MET-h/d. With PM10 ≥ 92 µg/m3, PM2.5 ≥ 61 µg/m3, and PM1 ≥ 36 µg/m3, the odds ratio (OR) first decreased and then rose rapidly with confidence intervals progressively greater than 1 and break-even points close to or even below 40 MET-h/d. CONCLUSIONS Our findings implied that for the prevention of type 2 diabetes in older adults, the PA health benefits outweighed the harms of air pollution except in extreme air pollution situations, and suggested that when the air quality of residence is severe, the PA levels should ideally not exceed 40 MET-h/d.
Collapse
Affiliation(s)
- Linjun Ao
- grid.13291.380000 0001 0807 1581West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu Sichuan, China
| | - Junmin Zhou
- grid.13291.380000 0001 0807 1581West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu Sichuan, China
| | - Mingming Han
- grid.507966.bChengdu Center for Disease Control and Prevention, Sichuan, China
| | - Hong Li
- grid.508395.20000 0004 9404 8936Yunnan Center for Disease Control and Prevention, Yunnan, China
| | - Yajie Li
- Tibet Center for Disease Control and Prevention CN, Tibet, China
| | - Yongyue Pan
- grid.440680.e0000 0004 1808 3254Tibet University, Tibet, China
| | - Jiayi Chen
- grid.13291.380000 0001 0807 1581West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu Sichuan, China
| | - Xiaofen Xie
- grid.13291.380000 0001 0807 1581West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu Sichuan, China
| | - Ye Jiang
- grid.13291.380000 0001 0807 1581West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu Sichuan, China
| | - Jing Wei
- grid.164295.d0000 0001 0941 7177Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD USA
| | - Gongbo Chen
- grid.12981.330000 0001 2360 039XGuangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Shanshan Li
- grid.1002.30000 0004 1936 7857Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Yuming Guo
- grid.1002.30000 0004 1936 7857Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Feng Hong
- grid.413458.f0000 0000 9330 9891School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Zhifeng Li
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
| | - Xiong Xiao
- grid.13291.380000 0001 0807 1581West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu Sichuan, China
| | - Xing Zhao
- grid.13291.380000 0001 0807 1581West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu Sichuan, China
| |
Collapse
|
43
|
Wang Y, Cao R, Xu Z, Jin J, Wang J, Yang T, Wei J, Huang J, Li G. Long-term exposure to ozone and diabetes incidence: A longitudinal cohort study in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151634. [PMID: 34774942 DOI: 10.1016/j.scitotenv.2021.151634] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Ozone (O3) has become a prominent air pollutant problem as other pollutants concentrations have decreased obviously since China published Air Pollution Action Plan Pollution Prevention Action Plan in 2013. Few studies examined the association between O3 and diabetes especially in developing countries. This study was designed to investigate the above topic in China. METHODS We conducted a prospective cohort study based on a nationwide survey of 13,548 adults from China Health and Retirement Longitudinal Study. City-level exposure to ozone for each participant was matched through ChinaHighO3 dataset. Time-varying cox proportional hazard regression model was applied to determine the association. Stratification analyses were conducted to explore potential effect modification. RESULTS The annual mean concentration of O3 was 86.6 μg/m3. A 10 μg/m3 increase in 1-year average O3 concentration was associated with 5.7% (95% CI: 1.004-1.114) relative increment in hazards ratio of diabetes incidence in the fully adjusted model. Results stayed stable when controlling for physical activity, PM2.5 and mean temperature. CONCLUSIONS Our findings provided initial support for a positive and robust association between long-term exposure to O3 and diabetes incidence in a developing country. More scientific and social attention should be attached to the ozone-induced risks of diabetes occurrence.
Collapse
Affiliation(s)
- Yuxin Wang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Ru Cao
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Zhihu Xu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Jianbo Jin
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Jiawei Wang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Teng Yang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA.
| | - Jing Huang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Guoxing Li
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China.
| |
Collapse
|
44
|
Ye Z, Li X, Han Y, Wu Y, Fang Y. Association of long-term exposure to PM 2.5 with hypertension and diabetes among the middle-aged and elderly people in Chinese mainland: a spatial study. BMC Public Health 2022; 22:569. [PMID: 35317761 PMCID: PMC8941772 DOI: 10.1186/s12889-022-12984-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/11/2022] [Indexed: 11/23/2022] Open
Abstract
Background Epidemiological evidence has shown an association between long-term exposure to fine particulate matter (PM2.5) and hypertension and diabetes, but few studies have considered the spatial properties of the samples. This study aimed to investigate the long-term effect of PM2.5 exposure on hypertension and diabetes among middle-aged and elderly people in China based on a spatial study. Methods We conducted a national cross-sectional study of the most recently launched wave 4 2018 data of the China Health and Retirement Longitudinal Study (CHARLS) to calculate the prevalence of hypertension and diabetes. The exposure data of annual average PM2.5 concentrations were estimated combined with satellite observations, chemical transport modeling, and ground-based monitoring. A shared component model (SCM) was used to explore the association of PM2.5 with hypertension and diabetes, in which these two diseases borrowed information on spatial variations from each other. Then, we evaluated the effect variations in PM2.5 in different periods and smoking status on changes in outcomes. Results The prevalence of hypertension and diabetes was 44.27% and 18.44%, respectively, among 19,529 participants. The annual average PM2.5 concentration in 31 provinces ranged from 4.4 μg/m3 to 51.3 μg/m3 with an average of 27.86 μg/m3 in 2018. Spatial auto-correlations of the prevalence of hypertension and diabetes and PM2.5 concentrations were seen (Moran’s I = 0.336, p = 0.01; Moran’s I = 0.288, p = 0.03; Moran’s I = 0.490, p = 0.01). An interquartile range (IQR: 16.2 μg/m3) increase in PM2.5 concentrations was significantly associated with a higher prevalence of hypertension and diabetes with odds ratios (ORs) of 1.070 [95% credible interval (95% CrI): 1.034, 1.108] and 1.149 (95% CrI: 1.100, 1.200), respectively. Notably, the effect of PM2.5 on both hypertension and diabetes was relatively stronger among non-smokers than smokers. Conclusion Our nationwide study demonstrated that long-term exposure to PM2.5 might increase the risk of hypertension and diabetes, and could provide guidance to public policymakers to prevent and control hypertension and diabetes according to the spatial distribution patterns of the above effects in China. Supplementary Information The online version contains supplementary material available at 10.1186/s12889-022-12984-6.
Collapse
Affiliation(s)
- Zirong Ye
- State Key Laboratory of Molecular Vaccine and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China.,Key Laboratory of Health Technology Assessment of Fujian Province, School of Public Health, Xiamen University, Xiamen, China
| | - Xueru Li
- State Key Laboratory of Molecular Vaccine and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China.,Key Laboratory of Health Technology Assessment of Fujian Province, School of Public Health, Xiamen University, Xiamen, China
| | - Yaofeng Han
- State Key Laboratory of Molecular Vaccine and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China.,Key Laboratory of Health Technology Assessment of Fujian Province, School of Public Health, Xiamen University, Xiamen, China
| | - Yafei Wu
- State Key Laboratory of Molecular Vaccine and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China.,Key Laboratory of Health Technology Assessment of Fujian Province, School of Public Health, Xiamen University, Xiamen, China.,National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Ya Fang
- State Key Laboratory of Molecular Vaccine and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China. .,Key Laboratory of Health Technology Assessment of Fujian Province, School of Public Health, Xiamen University, Xiamen, China. .,National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
45
|
Cheng X, Ji X, Yang D, Zhang C, Chen L, Liu C, Meng X, Wang W, Li H, Kan H, Huang H. Associations of PM 2.5 exposure with blood glucose impairment in early pregnancy and gestational diabetes mellitus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113278. [PMID: 35131583 DOI: 10.1016/j.ecoenv.2022.113278] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/22/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Exposure to fine particulate matter (PM2.5) during pregnancy has been linked to the risk of gestational diabetes mellitus (GDM), while conclusions are inconsistent. In this study we aimed to estimate the effects of prenatal PM2.5 exposure with blood glucose in early pregnancy and the GDM risk. Participants were recruited from the SH-IPMCH-BTH cohort (n = 41,929), a study of air pollution and birth outcome. All participants provided serum samples for analyses of fasting blood glucose (FBG) and HbA1c during early pregnancy. GDM was diagnosed using an oral glucose tolerance test (OGTT) with the time interval of 1 h. Prenatal exposure to PM2.5 was estimated using gap-filled satellite exposure assessments in Shanghai, China. Both FBG and HbA1c levels were significantly and positively associated with PM2.5 exposure during early pregnancy. A 10 μg/m3 increase of PM2.5 exposure from early to middle pregnancy was associated with the risk of GDM (first trimester OR=1.09, 95% CI: 1.02, 1.16; second trimester OR=1.09, 95% CI: 1.03, 1.16; first two trimester OR=1.15, 95%CI: 1.04, 1.28). The combined effects were greater among elevated FBG and HbA1c women with higher PM2.5 exposure in middle trimester (P for interaction=0.037 and 0.001, respectively). This study found that exposure to PM2.5 exposure in the 1st and 2nd trimesters was related to GDM. FBG and HbA1c played roles in the relationship between PM2.5 exposure in the 2nd trimester and GDM.
Collapse
Affiliation(s)
- Xiaoyue Cheng
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Xinhua Ji
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Dongjian Yang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Chen Zhang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Chen
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Xia Meng
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Weidong Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Huichu Li
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, Shanghai, China
| | - Hefeng Huang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.
| |
Collapse
|
46
|
Sex-specific associations between diabetes mellitus and hearing loss in the middle-aged and elderly: a national cohort study of Chinese adults. Endocr Pract 2022; 28:357-363. [PMID: 35033657 DOI: 10.1016/j.eprac.2022.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/22/2021] [Accepted: 01/03/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To examine the association between diabetes and hearing loss and whether the association varied by sex. METHODS This cohort study based on nationally representative data from the China Health and Retirement Longitudinal Study included 16140 Chinese adults aged over 45 years between 2011 and 2018. Diabetes was identified by blood glucose, HbA1c, and a self-reported diagnosis at baseline. The main outcome is self-reported incident hearing loss. Cox proportional hazards regression models were performed to estimate the risk of hearing loss. RESULTS We documented 2388 cases of hearing loss during a median 6.9 years of follow-up. The incidence rate was 29.64 (95% CI 28.07-31.29) per 1000 person-years in women and 25.23 (95% CI 23.77-26.78) per 1000 person-years in men. After adjustment, the HR of hearing loss associated with diabetes was 1.20 (95% CI 1.01-1.42) for women and 0.97 (95% CI 0.78-1.19) for men. Compared with poor control of blood sugar, the OR for hearing loss for women with good glycemic control was reduced from 5.08 (95%CI 1.31-19.66) to 1.26 (95%CI 0.69-2.28), and the corresponding OR for men was 1.65 (95% CI 0.61-4.44) to 0.50 (95%CI 0.18-1.38). CONCLUSIONS In conclusion, we identified a differential effect of sex on hearing loss risk with more pronounced effects for women. Our data suggest that good blood glucose control is helpful to prevent hearing loss.
Collapse
|
47
|
Lanzinger S, Altug H, Schikowski T, Khodaverdi S, Rosenbauer J, Rathmann W, Praedicow K, Schönau E, Holl RW. Longitudinal relationship of particulate matter and metabolic control and severe hypoglycaemia in children and adolescents with type 1 diabetes. ENVIRONMENTAL RESEARCH 2022; 203:111859. [PMID: 34389348 DOI: 10.1016/j.envres.2021.111859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/20/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Evidence for the metabolic impact of long-term exposure to air pollution on diabetes is lacking. We investigated the association of particulate matter <10 μm (PM10) and <2.5 μm (PM2.5) with yearly averages of HbA1c, daily insulin dose (IU/kg) and rates of severe hypoglycaemia in type 1 diabetes (T1D). METHODS We studied data of 44,383 individuals with T1D < 21 years which were documented in 377 German centres within the diabetes prospective follow-up registry (DPV) between 2009 and 2018. Outcomes were aggregated by year and by patient. PM10-and PM2.5-yearly averages prior to the respective treatment year were linked to individuals via the five-digit postcode areas of residency. Repeated measures linear and negative binomial regression were used to study the association between PM-quartiles (Q1 lowest, Q4 highest concentration) and yearly averages of HbA1c, daily insulin dose and rates of severe hypoglycaemia (confounders: sex, time-dependent age, age at diabetes onset, time-dependent type of treatment, migratory background, degree of urbanisation and socioeconomic index of deprivation). RESULTS Adjusted mean HbA1c increased with PM10 (Q1: 7.96% [95%-CI: 7.95-7.98], Q4: 8.03% [8.02-8.05], p-value<0.001) and with PM2.5 (Q1: 7.97% [7.95-7.99], Q4: 8.02% [8.01-8.04], p < 0.001). Changes in daily insulin dose were inversely related to PM (PM10 and PM2.5: Q1 0.85 IU/kg [0.84-0.85], Q4: 0.83 IU/kg [0.82-0.83], p < 0.001). Adjusted rates of severe hypoglycaemia increased with PM-quartile groups (PM10 Q1:11.2 events/100 PY [10.9-11.5], PM10 Q4: 15.3 [14.9-15.7], p < 0.001; PM2.5 Q1: 9.9 events/100 PY [9.6-10.2], PM2.5 Q4: 14.2 [13.9-14.6], p < 0.001). DISCUSSION Air pollution was associated with higher HbA1c levels and increased risk of severe hypoglycaemia in people with T1D, consequently indicating a higher risk of diabetes complications. Further studies are needed to explore causal pathways of the observed associations.
Collapse
Affiliation(s)
- Stefanie Lanzinger
- Institute of Epidemiology and Medical Biometry, ZIBMT, Ulm University, Germany; German Centre for Diabetes Research (DZD), München-Neuherberg, Germany.
| | - Hicran Altug
- Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany
| | - Tamara Schikowski
- Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany
| | - Semik Khodaverdi
- Clinic for Children and Adolescent Medicine, Clinical Centre Hanau, Germany
| | - Joachim Rosenbauer
- German Centre for Diabetes Research (DZD), München-Neuherberg, Germany; Institute for Biometrics and Epidemiology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University Düsseldorf, Germany
| | - Wolfgang Rathmann
- German Centre for Diabetes Research (DZD), München-Neuherberg, Germany; Institute for Biometrics and Epidemiology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University Düsseldorf, Germany
| | - Kirsten Praedicow
- Clinic for Children and Adolescent Medicine, Diabetology and Endocrinology, Helios Clinical Centre Aue, Germany
| | - Eckhard Schönau
- University of Cologne, Department of Pediatrics, Cologne, Germany
| | - Reinhard W Holl
- Institute of Epidemiology and Medical Biometry, ZIBMT, Ulm University, Germany; German Centre for Diabetes Research (DZD), München-Neuherberg, Germany
| |
Collapse
|
48
|
Liu W, Wang B, Yang S, Xu T, Yu L, Wang X, Cheng M, Zhou M, Chen W. Associations of propylene oxide exposure with fasting plasma glucose and diabetes: Roles of oxidative DNA damage and lipid peroxidation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118453. [PMID: 34737025 DOI: 10.1016/j.envpol.2021.118453] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/10/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
Whether propylene oxide (PO) exposure is associated with hyperglycemia were rarely explored. We aimed to determine the relationship between PO exposure and glucose metabolism, and potential role of oxidative stress. Among 3294 Chinese urban adults, urinary PO metabolite (N-Acetyl-S-(2-hydroxypropyl)-L-cysteine, 2HPMA), biomarkers of oxidative DNA damage (8-oxo-7,8-dihydro-20-deoxyguanosine, 8-OHdG) and lipid peroxidation (8-isoprostane, 8-iso-PGF2α) in urine were determined. The associations of 2HPMA with 8-OHdG, 8-iso-PGF2α, fasting plasma glucose (FPG), and risk of diabetes were explored. The roles of 8-OHdG and 8-iso-PGF2α on association of 2HPMA with FPG and risk of diabetes were detected. After adjusted for potential confounders, each 1-unit increase in log-transformed concentration of 2HPMA was associated with a 0.15-mmol/L increase in FPG level, and the adjusted OR (95% CI) of diabetes by the associations of log-transformed urinary 2HPMA concentrations was 1.47 (95% CI: 1.03-2.11). Combination effects of 2HPMA with 8-OHdG or 8-iso-PGF2α on risk of diabetes were detected, and elevated 8-iso-PGF2α significantly mediated 34.5% of the urinary 2HPMA-associated FPG elevation. PO exposure was positively associated with FPG levels and risk of diabetes. PO exposure combined with DNA oxidative damage or lipid peroxidation may increase the risk of diabetes, and lipid peroxidation may partially mediate the PO exposure-induced FPG elevation.
Collapse
Affiliation(s)
- Wei Liu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Shijie Yang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Tao Xu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Linling Yu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xing Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Man Cheng
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Min Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
49
|
Zheng XY, Ma SL, Guan WJ, Xu YJ, Tang SL, Zheng YJ, Liao TT, Li C, Meng RL, Zeng ZP, Lin LF. Impact of polluting fuels for cooking on diabetes mellitus and glucose metabolism in south urban China. INDOOR AIR 2022; 32:e12960. [PMID: 34796997 DOI: 10.1111/ina.12960] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/01/2021] [Accepted: 11/06/2021] [Indexed: 05/26/2023]
Abstract
We hypothesized that exposure to polluting fuels for cooking was associated with abnormality of glucose metabolism and diabetes mellitus (DM) in south urban China. 3414 residents were surveyed in 14 urban areas of Guangdong Province in 2018. We recorded polluting fuels for cooking exposure, different DM status (DM, prediabetes), fasting blood glucose (FBG), oral glucose tolerance test (OGTT), glycated hemoglobin (HbA1c ), and other covariates by using a structured questionnaire. We conducted logistic regression model and multivariate linear regression model based on propensity-score method (inverse probability of weighting) to examine the effect of polluting fuels for cooking exposure on DM and glucose metabolism. Exposure to polluting fuels for cooking was associated with DM (odds ratio: 2.57, 95% confidence interval: 1.71 to 3.86) and prediabetes (odds ratio: 1.98, 95% confidence interval: 1.52 to 2.58) in both the adjusted and unadjusted models (all p < 0.05). Exposure to polluting fuels for cooking was significantly associated with an increase of FBG (β: 0.30 mmol/L, 95% confidence interval: 0.22 to 0.38 mmol/L). Sensitivity analysis showed that the results were not substantially changed. There was an increased risk of DM, prediabetes and high levels of FBG, OGTT, and HbA1c among participants aged ≥ 40 years with exposure to polluting fuels for cooking. We demonstrated that exposure to polluting fuels for cooking was associated with higher levels of FBG, which contributed to the increased risk of DM and prediabetes in middle-aged elderly Chinese population living in urban areas.
Collapse
Affiliation(s)
- Xue-Yan Zheng
- Guangdong provincial center for disease control and prevention, Guangdong, China
| | - Shu-Li Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wei-Jie Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Thoracic Surgery, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yan-Jun Xu
- Guangdong provincial center for disease control and prevention, Guangdong, China
| | - Si-Li Tang
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Yi-Jin Zheng
- Department of Epidemiology and Biostatistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | | | - Chuan Li
- Guangdong provincial center for disease control and prevention, Guangdong, China
| | - Rui-Lin Meng
- Guangdong provincial center for disease control and prevention, Guangdong, China
| | - Zhuan-Ping Zeng
- Department of Epidemiology and Biostatistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Li-Feng Lin
- Guangdong provincial center for disease control and prevention, Guangdong, China
- School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
50
|
Wang H, Liu H, Guo F, Li J, Li P, Guan T, Yao Y, Lv X, Xue T. Association between Ambient Fine Particulate Matter and Physical Functioning in Middle-aged and Older Chinese Adults: A Nationwide Longitudinal Study. J Gerontol A Biol Sci Med Sci 2021; 77:986-993. [PMID: 34908113 DOI: 10.1093/gerona/glab370] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Exposure to air pollution is associated with several chronic diseases and subclinical processes that could subsequently contribute to physical disability. However, whether and to what extent air pollution exposure is associated with objective measures of physical functioning remains understudied. METHODS We used longitudinal data from the China Health and Retirement Longitudinal Study (CHARLS) and included 10,823 participants who were surveyed at least twice. Annual average exposure to fine particulate matter (PM2.5) was assessed using a state-of-the-art estimator. Physical functioning was assessed with four objective tests covering hand-grip strength, balance, repeated chair stands, and gait speed. Mixed-effects models with participants as a random term were used to estimate associations with multiple adjustments. RESULTS We found a significant and robust association between exposure to increased PM2.5 and the reduction in hand-grip strength and balance ability. Each 10-μg/m 3 increase in annual averaged concentrations of PM2.5 was associated with a 220-g (95% confidence interval [CI]: 127, 312 g) reduction in hand-grip strength per 60 kg of body weight and a 5% risk (95% CI: 2, 7) of reduced balance ability. The estimated effect of each 10-μg/m 3 increase in PM2.5 on hand-grip strength and balance ability was equivalent to the effect of aging [1.12 (95% CI: 0.76, 1.48) and 0.98 (95% CI: 0.50, 1.50) years, respectively]. CONCLUSIONS PM2.5 may be differentially associated with various dimensions of physical functioning. Improving air quality can prevent physical disability.
Collapse
Affiliation(s)
- Huiyu Wang
- Institute of Reproductive and Child Health / Ministry of Health Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Hengyi Liu
- Institute of Reproductive and Child Health / Ministry of Health Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Fuyu Guo
- Institute of Reproductive and Child Health / Ministry of Health Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Jiajianghui Li
- Institute of Reproductive and Child Health / Ministry of Health Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Pengfei Li
- Institute of Reproductive and Child Health / Ministry of Health Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China.,Advanced Institute of Information Technology, Peking University
| | - Tianjia Guan
- Department of Health Policy, School of Health Policy and Management, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yao Yao
- China Center for Health Development Studies, Peking University, Beijing, China
| | - Xiaozhen Lv
- Dementia Care and Research Center, Clinical Research Division, Peking University Institute of Mental Health (Sixth Hospital), Beijing, China.,Beijing Dementia Key Lab, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Beijing, China
| | - Tao Xue
- Institute of Reproductive and Child Health / Ministry of Health Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| |
Collapse
|