1
|
Sukumaran K, Botternhorn KL, Schwartz J, Gauderman J, Cardenas-Iniguez C, McConnell R, Hackman DA, Berhane K, Ahmadi H, Abad S, Habre R, Herting MM. Associations between Fine Particulate Matter Components, Their Sources, and Cognitive Outcomes in Children Ages 9-10 Years Old from the United States. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:107009. [PMID: 39475730 PMCID: PMC11524409 DOI: 10.1289/ehp14418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 08/28/2024] [Accepted: 10/03/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND Emerging literature suggests that fine particulate matter [with aerodynamic diameter ≤ 2.5 μ m (PM 2.5 )] air pollution and its components are linked to various neurodevelopmental outcomes. However, few studies have evaluated how PM 2.5 component mixtures from distinct sources relate to cognitive outcomes in children. OBJECTIVES This cross-sectional study investigated how ambient concentrations of PM 2.5 component mixtures relate to neurocognitive performance in 9- to 10-year-old children, as well as explored potential source-specific effects of these associations, across the US. METHODS Using spatiotemporal hybrid models, annual concentrations of 15 chemical components of PM 2.5 were estimated based on the residential address of child participants from the Adolescent Brain Cognitive Development (ABCD) Study. General cognitive ability, executive function, and learning/memory scores were derived from the NIH Toolbox. We applied positive matrix factorization to identify six major PM 2.5 sources based on the 15 components, which included crustal, ammonium sulfate, biomass burning, traffic, ammonium nitrate, and industrial/residual fuel burning. We then utilized weighted quantile sum (WQS) and linear regression models to investigate associations between PM 2.5 components' mixture, their potential sources, and children's cognitive scores. RESULTS Mixture modeling revealed associations between cumulative exposure and worse cognitive performance across all three outcome domains, including shared overlap in detrimental effects driven by ammonium nitrates, silicon, and calcium. Using the identified six sources of exposure, source-specific negative associations were identified between ammonium nitrates and learning & memory, traffic and executive function, and crustal and industrial mixtures and general cognitive ability. Unexpected positive associations were also seen between traffic and general ability as well as biomass burning and executive function. DISCUSSION This work suggests nuanced associations between outdoor PM 2.5 exposure and childhood cognitive performance, including important differences in cognition related both to individual chemicals as well as to specific sources of these exposures. https://doi.org/10.1289/EHP14418.
Collapse
Affiliation(s)
- Kirthana Sukumaran
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, USA
| | - Katherine L. Botternhorn
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, USA
- Department of Psychology, Florida International University, Miami, Florida, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Jim Gauderman
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, USA
| | - Carlos Cardenas-Iniguez
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, USA
| | - Rob McConnell
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, USA
| | - Daniel A. Hackman
- USC Suzanne Dworak-Peck School of Social Work, University of Southern California, Los Angeles, California, USA
| | - Kiros Berhane
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Hedyeh Ahmadi
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, USA
| | - Shermaine Abad
- Department of Radiology, University of California—San Diego, San Diego, California, USA
| | - Rima Habre
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, USA
- Spatial Sciences Institute, University of Southern California, Los Angeles, California, USA
| | - Megan M. Herting
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, USA
- Children’s Hospital Los Angeles, Los Angeles, California, USA
| |
Collapse
|
2
|
Li J, Wang T, Li C, Yan H, Alam K, Cui Y, Amonov MO, Huang J. Can the aerosol pollution extreme events be revealed by global reanalysis products? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171424. [PMID: 38432375 DOI: 10.1016/j.scitotenv.2024.171424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/04/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Extreme aerosol pollution poses significant risks to the climate, environment, and human health. To investigate the formation and impacts of aerosol pollution extreme events (APEE), the reanalysis product presents meticulous spatiotemporal information on the three-dimensional distribution of aerosols. However, there is a lack of comprehensive evaluation and information regarding the data quality of reanalysis products employed in APEE research, as well as limited understanding of their spatial and temporal distribution, variation, and long-term trends. To address this scientific gap, we conducted a global study for distribution and variation patterns of APEE using two widely-used reanalysis products, MERRA-2 (Modern-Era Retrospective Analysis for Research-2) and CAMS (Copernicus Atmospheric Monitoring Service). The APEE was defined here as a day when the daily aerosol optical depth (AOD) exceeding its 90th percentile for a given station and month. Eleven distinct land regions worldwide were selected for evaluation by comparing both reanalysis products with MODIS satellite products and ground-based observations in terms of frequency, intensity, and temporal trends of APEE. The analysis indicates that MERRA-2 and CAMS exhibit high matching rates (70 % and 80 %, respectively) in terms of occurrence timeline for APEE at monthly and seasonal scales, while also exhibiting strong monthly correlation coefficients (>0.65) with ground-based observations over selected regions. The total AOD (-0.002 ∼ -0.123 decade-1), APEE AOD (-0.004 ∼ -0.293 decade-1), and APEE frequency (-0.264 ∼ -1.769 day month-1 decade-1) of both observations and reanalysis products in most regions showed a decreasing trend with various magnitude, except for some regions such as South Asia where the trend is increasing. Based on the aforementioned evaluation, it is evident that reanalysis products are effective and useful in identifying the temporal trends associated with APEE.
Collapse
Affiliation(s)
- Jingtao Li
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China
| | - Tianhe Wang
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China; Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, Lanzhou, China.
| | - Chenrui Li
- Lanzhou Central Meteorological Observatory, Lanzhou, China
| | - Hongru Yan
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China; Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, Lanzhou, China
| | - Khan Alam
- Department of Physics, University of Peshawar, Peshawar, Pakistan
| | - Yang Cui
- Ningxia Key Laboratory for Meteorological Disaster Prevention and Reduction, Yinchuan, China; Ningxia Institute of Meteorological Sciences, Yinchuan, China
| | - Mansur O Amonov
- Tashkent Institute of Irrigation & Agricultural Mechanization Engineers, National Research University, Tashkent, Uzbekistan
| | - Jianping Huang
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China; Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Domínguez A, Koch S, Marquez S, de Castro M, Urquiza J, Evandt J, Oftedal B, Aasvang GM, Kampouri M, Vafeiadi M, Mon-Williams M, Lewer D, Lepeule J, Andrusaityte S, Vrijheid M, Guxens M, Nieuwenhuijsen M. Childhood exposure to outdoor air pollution in different microenvironments and cognitive and fine motor function in children from six European cohorts. ENVIRONMENTAL RESEARCH 2024; 247:118174. [PMID: 38244968 DOI: 10.1016/j.envres.2024.118174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND Exposure to air pollution during childhood has been linked with adverse effects on cognitive development and motor function. However, limited research has been done on the associations of air pollution exposure in different microenvironments such as home, school, or while commuting with these outcomes. OBJECTIVE To analyze the association between childhood air pollution exposure in different microenvironments and cognitive and fine motor function from six European birth cohorts. METHODS We included 1301 children from six European birth cohorts aged 6-11 years from the HELIX project. Average outdoor air pollutants concentrations (NO2, PM2.5) were estimated using land use regression models for different microenvironments (home, school, and commute), for 1-year before the outcome assessment. Attentional function, cognitive flexibility, non-verbal intelligence, and fine motor function were assessed using the Attention Network Test, Trail Making Test A and B, Raven Colored Progressive Matrices test, and the Finger Tapping test, respectively. Adjusted linear regressions models were run to determine the association between each air pollutant from each microenvironment on each outcome. RESULTS In pooled analysis we observed high correlation (rs = 0.9) between air pollution exposures levels at home and school. However, the cohort-by-cohort analysis revealed correlations ranging from low to moderate. Air pollution exposure levels while commuting were higher than at home or school. Exposure to air pollution in the different microenvironments was not associated with working memory, attentional function, non-verbal intelligence, and fine motor function. Results remained consistently null in random-effects meta-analysis. CONCLUSIONS No association was observed between outdoor air pollution exposure in different microenvironments (home, school, commute) and cognitive and fine motor function in children from six European birth cohorts. Future research should include a more detailed exposure assessment, considering personal measurements and time spent in different microenvironments.
Collapse
Affiliation(s)
- Alan Domínguez
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Sarah Koch
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Sandra Marquez
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Montserrat de Castro
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jose Urquiza
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jorun Evandt
- Norwegian Institute of Public Health, Department of Air Quality and Noise, Oslo, Norway
| | - Bente Oftedal
- Norwegian Institute of Public Health, Department of Air Quality and Noise, Oslo, Norway
| | - Gunn Marit Aasvang
- Norwegian Institute of Public Health, Department of Air Quality and Noise, Oslo, Norway
| | - Mariza Kampouri
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Marina Vafeiadi
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Mark Mon-Williams
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Dan Lewer
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Johanna Lepeule
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Development and Respiratory Health, IAB, 38000, Grenoble, France
| | - Sandra Andrusaityte
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Martine Vrijheid
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Mònica Guxens
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Mark Nieuwenhuijsen
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
4
|
Chiu YHM, Wilson A, Hsu HHL, Jamal H, Mathews N, Kloog I, Schwartz J, Bellinger DC, Xhani N, Wright RO, Coull BA, Wright RJ. Prenatal ambient air pollutant mixture exposure and neurodevelopment in urban children in the Northeastern United States. ENVIRONMENTAL RESEARCH 2023; 233:116394. [PMID: 37315758 PMCID: PMC10528414 DOI: 10.1016/j.envres.2023.116394] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/22/2023] [Accepted: 06/09/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND Studies of prenatal air pollution (AP) exposure on child neurodevelopment have mostly focused on a single pollutant. We leveraged daily exposure data and implemented novel data-driven statistical approaches to assess effects of prenatal exposure to a mixture of seven air pollutants on cognitive functioning in school-age children from an urban pregnancy cohort. METHODS Analyses included 236 children born at ≥37 weeks gestation. Maternal prenatal daily exposure levels for nitrogen dioxide (NO2), ozone (O3), and constituents of fine particles [elemental carbon (EC), organic carbon (OC), nitrate (NO3-), sulfate (SO42-), ammonium (NH4+)] were estimated based on residential addresses using validated satellite-based hybrid models or global 3-D chemical-transport models. Children completed Wide Range Assessment of Memory and Learning (WRAML-2) and Conners' Continuous Performance Test (CPT-II) at 6.5 ± 0.9 years of age. Time-weighted levels for mixture pollutants were estimated using Bayesian Kernel Machine Regression Distributed Lag Models (BKMR-DLMs), with which we also explored the interactions in the exposure-response functions among pollutants. Resulting time-weighted exposure levels were used in Weighted Quantile Sum (WQS) regressions to examine AP mixture effects on outcomes, adjusted for maternal age, education, child sex, and prenatal temperature. RESULTS Mothers were primarily ethnic minorities (81% Hispanic and/or black) reporting ≤12 years of education (68%). Prenatal AP mixture (per unit increase in WQS estimated AP index) was associated with decreased WRAML-2 general memory (GM; β = -0.64, 95%CI = -1.40, 0.00) and memory-related attention/concentration (AC; β = -1.03, 95%CI = -1.78, -0.27) indices, indicating poorer memory functioning, as well as increased CPT-II omission errors (OE; β = 1.55, 95%CI = 0.34, 2.77), indicating increased attention problems. When stratified by sex, association with AC index was significant among girls, while association with OE was significant among boys. Traffic-related pollutants (NO2, OC, EC) and SO42- were major contributors to these associations. There was no significant evidence of interactions among mixture components. CONCLUSIONS Prenatal exposure to an AP mixture was associated with child neurocognitive outcomes in a sex- and domain-specific manner.
Collapse
Affiliation(s)
- Yueh-Hsiu Mathilda Chiu
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Kravis Children's Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ander Wilson
- Department of Statistics, Colorado State University, Fort Collins, CO, USA
| | - Hsiao-Hsien Leon Hsu
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Harris Jamal
- Augusta University/University of Georgia Medical Partnership, Medical College of Georgia, Athens, GA, USA
| | - Nicole Mathews
- The Kravis Children's Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Itai Kloog
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - David C Bellinger
- Departments of Neurology and Psychiatry, Boston Children's Hospital, Boston, MA, USA; Departments of Neurology and Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Naim Xhani
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brent A Coull
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Rosalind J Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Kravis Children's Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
5
|
Liu F, Liu C, Liu Y, Wang J, Wang Y, Yan B. Neurotoxicity of the air-borne particles: From molecular events to human diseases. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131827. [PMID: 37315411 DOI: 10.1016/j.jhazmat.2023.131827] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/26/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023]
Abstract
Exposure to PM2.5 is associated with an increased incidence of CNS diseases in humans, as confirmed by numerous epidemiological studies. Animal models have demonstrated that PM2.5 exposure can damage brain tissue, neurodevelopmental issues and neurodegenerative diseases. Both animal and human cell models have identified oxidative stress and inflammation as the primary toxic effects of PM2.5 exposure. However, understanding how PM2.5 modulates neurotoxicity has proven challenging due to its complex and variable composition. This review aims to summarize the detrimental effects of inhaled PM2.5 on the CNS and the limited understanding of its underlying mechanism. It also highlights new frontiers in addressing these issues, such as modern laboratory and computational techniques and chemical reductionism tactics. By utilizing these approaches, we aim to fully elucidate the mechanism of PM2.5-induced neurotoxicity, treat associated diseases, and ultimately eliminate pollution.
Collapse
Affiliation(s)
- Fang Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong 250014, China
| | - Chunyan Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong 250014, China
| | - Yin Liu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Jiahui Wang
- College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yibing Wang
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong 250014, China.
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
6
|
Shih P, Chiang TL, Wu CD, Shu BC, Lung FW, Guo YL. Air pollution during the perinatal period and neurodevelopment in children: A national population study in Taiwan. Dev Med Child Neurol 2023; 65:783-791. [PMID: 36349526 DOI: 10.1111/dmcn.15430] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/11/2022]
Abstract
AIM To evaluate the association between ambient particulate matter no larger than 2.5 μm in diameter (PM2.5 ) during the prenatal and postnatal periods and infant neurodevelopmental parameters. METHOD We conducted a population-based birth cohort study using the Taiwan Birth Cohort Study. Participants were assessed for developmental conditions through home interviews at 6 months and 18 months of age. Exposure to PM2.5 of mothers and infants during perinatal periods was estimated using hybrid kriging/land-use regression. The exposure was linked to each participant by home address. Logistic regression was then conducted to determine the risk of neurodevelopmental delay in relation to PM2.5 . RESULTS A total of 17 683 term singletons without congenital malformations were included in the final analysis. PM2.5 during the second trimester was associated with increased risks of delays in gross motor neurodevelopmental milestones (adjusted odds ratio [aOR] 1.09 per 10 μg/m3 increase in exposure to PM2.5 ). Delayed fine motor development was also found to be related to exposure to PM2.5 in the second and third trimesters (aOR 1.06), as was personal-social skill (aOR 1.11 for the second trimester and 1.06 for the third). These neurodevelopmental parameters were unrelated to postnatal PM2.5 exposure. INTERPRETATION Exposure to ambient PM2.5 during pregnancy was significantly related to delay in gross motor, fine motor, and personal-social development in this population-based study. WHAT THIS PAPER ADDS Prenatal exposure to higher PM2.5 was associated with increased risk of delayed early neurodevelopment. The critical period for delayed gross motor development was the second trimester. The critical period for fine motor and personal-social development was the second and third trimesters.
Collapse
Affiliation(s)
- Ping Shih
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Environmental and Occupational Medicine, National Taiwan University, Taipei, Taiwan
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Tung-Liang Chiang
- Institute of Health Policy and Management, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Chih-Da Wu
- Department of Geomatics, National Cheng Kung University, Tainan, Taiwan
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Bih-Ching Shu
- Institute of Allied Health Sciences, Department of Nursing, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - For-Wey Lung
- Calo Psychiatric Center, Pingtung, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
| | - Yue Leon Guo
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Environmental and Occupational Medicine, National Taiwan University, Taipei, Taiwan
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
7
|
Thompson R, Smith RB, Karim YB, Shen C, Drummond K, Teng C, Toledano MB. Air pollution and human cognition: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160234. [PMID: 36427724 DOI: 10.1016/j.scitotenv.2022.160234] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/01/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND This systematic review summarises and evaluates the literature investigating associations between exposure to air pollution and general population cognition, which has important implications for health, social and economic inequalities, and human productivity. METHODS The engines MEDLINE, Embase Classic+Embase, APA PsycInfo, and SCOPUS were searched up to May 2022. Our inclusion criteria focus on the following pollutants: particulate matter, NOx, and ozone. The cognitive abilities of interest are: general/global cognition, executive function, attention, working memory, learning, memory, intelligence and IQ, reasoning, reaction times, and processing speed. The collective evidence was assessed using the NTP-OHAT framework and random-effects meta-analyses. RESULTS Eighty-six studies were identified, the results of which were generally supportive of associations between exposures and worsened cognition, but the literature was varied and sometimes contradictory. There was moderate certainty support for detrimental associations between PM2.5 and general cognition in adults 40+, and PM2.5, NOx, and PM10 and executive function (especially working memory) in children. There was moderate certainty evidence against associations between ozone and general cognition in adults age 40+, and NOx and reasoning/IQ in children. Some associations were also supported by meta-analysis (N = 14 studies, all in adults aged 40+). A 1 μg/m3 increase in NO2 was associated with reduced performance on general cognitive batteries (β = -0.02, p < 0.05) as was a 1 μg/m3 increase in PM2.5 exposure (β = -0.02, p < 0.05). A 1μgm3 increase in PM2.5 was significantly associated with lower verbal fluency by -0.05 words (p = 0.01) and a decrease in executive function task performance of -0.02 points (p < 0.001). DISCUSSION Evidence was found in support of some exposure-outcome associations, however more good quality research is required, particularly with older teenagers and young adults (14-40 years), using multi-exposure modelling, incorporating mechanistic investigation, and in South America, Africa, South Asia and Australasia.
Collapse
Affiliation(s)
- Rhiannon Thompson
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK; MRC Centre for Environment and Health, School of Public Health, Imperial College London, UK
| | - Rachel B Smith
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK; MRC Centre for Environment and Health, School of Public Health, Imperial College London, UK; Mohn Centre for Children's Health and Wellbeing, School of Public Health, Imperial College London, UK
| | - Yasmin Bou Karim
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK; MRC Centre for Environment and Health, School of Public Health, Imperial College London, UK
| | - Chen Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK; MRC Centre for Environment and Health, School of Public Health, Imperial College London, UK
| | - Kayleigh Drummond
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK; MRC Centre for Environment and Health, School of Public Health, Imperial College London, UK
| | - Chloe Teng
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK; MRC Centre for Environment and Health, School of Public Health, Imperial College London, UK
| | - Mireille B Toledano
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK; MRC Centre for Environment and Health, School of Public Health, Imperial College London, UK; Mohn Centre for Children's Health and Wellbeing, School of Public Health, Imperial College London, UK; National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Environmental Exposures and Health, School of Public Health, Imperial College London, UK; National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Chemical and Radiation Threats and Hazards, School of Public Health, Imperial College London, UK.
| |
Collapse
|
8
|
Rahman MM, Carter SA, Lin JC, Chow T, Yu X, Martinez MP, Chen Z, Chen JC, Rud D, Lewinger JP, van Donkelaar A, Martin RV, Eckel SP, Schwartz J, Lurmann F, Kleeman MJ, McConnell R, Xiang AH. Associations of Autism Spectrum Disorder with PM 2.5 Components: A Comparative Study Using Two Different Exposure Models. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:405-414. [PMID: 36548990 PMCID: PMC10898516 DOI: 10.1021/acs.est.2c05197] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This retrospective cohort study examined associations of autism spectrum disorder (ASD) with prenatal exposure to major fine particulate matter (PM2.5) components estimated using two independent exposure models. The cohort included 318 750 mother-child pairs with singleton deliveries in Kaiser Permanente Southern California hospitals from 2001 to 2014 and followed until age five. ASD cases during follow-up (N = 4559) were identified by ICD codes. Prenatal exposures to PM2.5, elemental (EC) and black carbon (BC), organic matter (OM), nitrate (NO3-), and sulfate (SO42-) were constructed using (i) a source-oriented chemical transport model and (ii) a hybrid model. Exposures were assigned to each maternal address during the entire pregnancy, first, second, and third trimester. In single-pollutant models, ASD was associated with pregnancy-average PM2.5, EC/BC, OM, and SO42- exposures from both exposure models, after adjustment for covariates. The direction of effect estimates was consistent for EC/BC and OM and least consistent for NO3-. EC/BC, OM, and SO42- were generally robust to adjustment for other components and for PM2.5. EC/BC and OM effect estimates were generally larger and more consistent in the first and second trimester and SO42- in the third trimester. Future PM2.5 composition health effect studies might consider using multiple exposure models and a weight of evidence approach when interpreting effect estimates.
Collapse
Affiliation(s)
- Md Mostafijur Rahman
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California 90032, United States
| | - Sarah A Carter
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, California 91101, United States
| | - Jane C Lin
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, California 91101, United States
| | - Ting Chow
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, California 91101, United States
| | - Xin Yu
- Spatial Science Institute, University of Southern California, Los Angeles, California 90089, United States
| | - Mayra P Martinez
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, California 91101, United States
| | - Zhanghua Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California 90032, United States
| | - Jiu-Chiuan Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California 90032, United States
| | - Daniel Rud
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California 90032, United States
| | - Juan P Lewinger
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California 90032, United States
| | - Aaron van Donkelaar
- Department of Energy, Environmental & Chemical Engineering, Washington University at St. Louis, St. Louis, Missouri 63130, United States
| | - Randall V Martin
- Department of Energy, Environmental & Chemical Engineering, Washington University at St. Louis, St. Louis, Missouri 63130, United States
| | - Sandrah Proctor Eckel
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California 90032, United States
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Fred Lurmann
- Sonoma Technology, Inc., Petaluma, California 94954, United States
| | - Michael J Kleeman
- Department of Civil and Environmental Engineering, University of California, Davis, Davis, California 95616, United States
| | - Rob McConnell
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California 90032, United States
| | - Anny H Xiang
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, California 91101, United States
| |
Collapse
|
9
|
Rahman MM, Carter SA, Lin JC, Chow T, Yu X, Martinez MP, Levitt P, Chen Z, Chen JC, Rud D, Lewinger JP, Eckel SP, Schwartz J, Lurmann FW, Kleeman MJ, McConnell R, Xiang AH. Prenatal exposure to tailpipe and non-tailpipe tracers of particulate matter pollution and autism spectrum disorders. ENVIRONMENT INTERNATIONAL 2023; 171:107736. [PMID: 36623380 PMCID: PMC9943058 DOI: 10.1016/j.envint.2023.107736] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/08/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Traffic-related air pollution exposure is associated with increased risk of autism spectrum disorder (ASD). It is unknown whether carbonaceous material from vehicular tailpipe emissions or redox-active non-tailpipe metals, eg. from tire and brake wear, are responsible. We assessed ASD associations with fine particulate matter (PM2.5) tracers of tailpipe (elemental carbon [EC] and organic carbon [OC]) and non-tailpipe (copper [Cu]; iron [Fe] and manganese [Mn]) sources during pregnancy in a large cohort. METHODS This retrospective cohort study included 318,750 children born in Kaiser Permanente Southern California (KPSC) hospitals during 2001-2014, followed until age 5. ASD cases were identified by ICD codes. Monthly estimates of PM2.5 and PM2.5 constituents EC, OC, Cu, Fe, and Mn with 4 km spatial resolution were obtained from a source-oriented chemical transport model. These exposures and NO2 were assigned to each maternal address during pregnancy, and associations with ASD were assessed using Cox regression models adjusted for covariates. PM constituent effect estimates were adjusted for PM2.5 and NO2 to assess independent effects. To distinguish ASD risk associated with non-tailpipe from tailpipe sources, the associations with Cu, Fe, and Mn were adjusted for EC and OC, and vice versa. RESULTS There were 4559 children diagnosed with ASD. In single-pollutant models, increased ASD risk was associated with gestational exposures to tracers of both tailpipe and non-tailpipe emissions. The ASD hazard ratios (HRs) per inter-quartile increment of exposure) for EC, OC, Cu, Fe, and Mn were 1.11 (95% CI: 1.06-1.16), 1.09 (95% CI: 1.04-1.15), 1.09 (95% CI: 1.04-1.13), 1.14 (95% CI: 1.09-1.20), and 1.17 (95% CI: 1.12-1.22), respectively. Estimated effects of Cu, Fe, and Mn (reflecting non-tailpipe sources) were largely unchanged in two-pollutant models adjusting for PM2.5, NO2, EC or OC. In contrast, ASD associations with EC and OC were markedly attenuated by adjustment for non-tailpipe sources. CONCLUSION Results suggest that non-tailpipe emissions may contribute to ASD. Implications are that reducing tailpipe emissions, especially from vehicles with internal combustion engines, may not eliminate ASD associations with traffic-related air pollution.
Collapse
Affiliation(s)
- Md Mostafijur Rahman
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sarah A Carter
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Jane C Lin
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Ting Chow
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Xin Yu
- Spatial Science Institute, University of Southern California, Los Angeles, CA, USA
| | - Mayra P Martinez
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Pat Levitt
- Department of Pediatrics, Keck School of Medicine, Program in Developmental Neuroscience and Neurogenetics, The Saban Research Institute, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Zhanghua Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jiu-Chiuan Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Daniel Rud
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Juan Pablo Lewinger
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sandrah P Eckel
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Michael J Kleeman
- Department of Civil and Environmental Engineering, University of California, Davis, Davis, CA, USA
| | - Rob McConnell
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Anny H Xiang
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA.
| |
Collapse
|
10
|
Eckard ML, Marvin E, Conrad K, Oberdörster G, Sobolewski M, Cory-Slechta DA. Neonatal exposure to ultrafine iron but not combined iron and sulfur aerosols recapitulates air pollution-induced impulsivity in mice. Neurotoxicology 2023; 94:191-205. [PMID: 36509212 PMCID: PMC9839645 DOI: 10.1016/j.neuro.2022.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Air pollution (AP) is becoming recognized as a major threat to neurological health across the lifespan with increased risk of both neurodevelopmental and neurodegenerative disorders. AP is a complex mixture of gases and particulate matter, with adsorbed contaminants including metals and trace elements, which may differentially contribute to its neurodevelopmental impacts. Iron (Fe) is one of the most abundant metals found in AP, and Fe concentrations may drive some behavioral deficits observed in children. Furthermore, brains of neonate mice exposed to concentrated ambient ultrafine particulate matter (UFP) show significant brain accumulation of Fe and sulfur (S) supporting the hypothesis that AP exposure may lead to brain metal dyshomeostasis. The current study determined the extent to which behavioral effects of UFP, namely memory deficits and impulsive-like behavior, could be recapitulated with exposure to Fe aerosols with or without concomitant SO2. Male and female neonate mice were either exposed to filtered air or spark discharge-generated ultrafine Fe particles with or without SO2 gas (n = 12/exposure/sex). Inhalation exposures occurred from postnatal day (PND) 4-7 and 10-13 for 4 hr/day, mirroring our previous UFP exposures. Mice were aged to adulthood prior to behavioral testing. While Fe or Fe + SO2 exposure did not affect gross locomotor behavior, Fe + SO2-exposed females displayed consistent thigmotaxis during locomotor testing. Neither exposure affected novel object memory. Fe or Fe + SO2 exposure produced differential outcomes on a fixed-interval reinforcement schedule with males showing higher (Fe-only) or lower (Fe + SO2) response rates and postreinforcement pauses (PRP) and females showing higher (Fe-only) PRP. Lastly, Fe-exposed, but not Fe + SO2-exposed, males showed increased impulsive-like behavior in tasks requiring response inhibition with no such effects in female mice. These findings suggest that: 1) exposure to realistic concentrations of Fe aerosols can recapitulate behavioral effects of UFP exposure, 2) the presence of SO2 can modulate behavioral effects of Fe inhalation, and 3) brain metal dyshomeostasis may be an important factor in AP neurotoxicity.
Collapse
Affiliation(s)
- M L Eckard
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA; Department of Psychology, Radford University, Radford, VA, USA.
| | - E Marvin
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
| | - K Conrad
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
| | - G Oberdörster
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
| | - M Sobolewski
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
| | - D A Cory-Slechta
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
| |
Collapse
|
11
|
Lei X, Zhang Y, Wang Z, Lu Z, Pan C, Zhang S, Chen Q, Yuan T, Zhang J, Gao Y, Tian Y. Effects of prenatal exposure to PM 2.5 and its composition on cognitive and motor functions in children at 12 months of age: The Shanghai Birth Cohort Study. ENVIRONMENT INTERNATIONAL 2022; 170:107597. [PMID: 36327589 DOI: 10.1016/j.envint.2022.107597] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/30/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Prenatal fine particulate matter (PM2.5) exposure has been linked to infant cognitive and motor functions, but the effects of PM2.5 chemical composition remain unclear. OBJECTIVES We aimed to explore the associations of prenatal PM2.5 and its composition exposure with infant cognitive and motor functions. METHODS We studied 2,435 mother-infant pairs in the Shanghai Birth Cohort Study. PM2.5 and its seven compositions [primary particles (black carbon, mineral dust and sea salts) and secondary particles (NH4+, NO3-, SO42- and organic matter)] during thethreetrimesters ofpregnancy were retrieved from the V4.CH.03 product developed by using a combined geoscience-statistical method. At the 12-month-old follow-up, infant cognitive and motor functions in five domains were assessed using the Ages and Stages Questionnaire (ASQ). We used multivariable linear regressions to estimate the effects of PM2.5 and its composition on the ASQ scores, for all infants and stratifying by sex and breastfeeding duration. RESULTS PM2.5 exposure was negatively associated with gross motor, problem-solving and personal-social scores for all infants. PM2.5 compositions were inversely associated with ASQ scores in all five domains, and the effects of different compositions varied across domains. Specifically, all compositions except organic matter were correlated with lower problem-solving scores [e.g., ( [Formula: see text] = - 10.79, 95 % CI: -17.40, -4.18) ∼ ( [Formula: see text] = - 4.68, 95 % CI: -7.84, -1.53); for each 10 μg/m3 increase in PM2.5 compositions during the third trimester]. Primary and some secondary particles (organic matter, NO3-) were related to lower gross motor scores. Secondary particles were also inversely associated with communication (organic matter and NO3-), fine motor (NH4+, NO3-, SO42-) and personal-social (NH4+) scores. Additionally, boys and infants breastfed for < 6 months appeared to be more susceptible. CONCLUSIONS We found negative associations of PM2.5 and its compositions with infant cognitive and motor functions over a range of domains, especially the problem-solving domain.
Collapse
Affiliation(s)
- Xiaoning Lei
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yan Zhang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zixia Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhenping Lu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chengyu Pan
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shanyu Zhang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qian Chen
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Tao Yuan
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yu Gao
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Ying Tian
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
12
|
Pan R, Zhang Y, Xu Z, Yi W, Zhao F, Song J, Sun Q, Du P, Fang J, Cheng J, Liu Y, Chen C, Lu Y, Li T, Su H, Shi X. Exposure to fine particulate matter constituents and cognitive function performance, potential mediation by sleep quality: A multicenter study among Chinese adults aged 40-89 years. ENVIRONMENT INTERNATIONAL 2022; 170:107566. [PMID: 36219911 DOI: 10.1016/j.envint.2022.107566] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Although exposure to fine particulate matter (PM2.5) has been associated with cognitive decline, little is known about which PM2.5 constituents are more harmful. Recent study on the association between PM2.5 and sleep quality prompted us to propose that sleep quality may mediate the adverse effects of PM2.5 components on cognitive decline. Understanding the association between PM2.5 constituents and cognitive function, as well as the mediating role of sleep quality provides a future intervention target for improving cognitive function. Using data involving 1834 participants from a multicenter cross-sectional study in nine cities of the Beijing-Tianjin-Hebei (BTH) region in China, we undertook multivariable linear regression analyses to quantify the association of annual moving-average PM2.5 and its chemical constituents with cognitive function and to assess the modifying role of exposure characteristic in this association. Besides, we examined the extent to which this association of PM2.5 constituents with cognitive function was mediated via sleep quality by a mediation analysis. We observed significantly negative associations between an increase of one interquartile range increase in PM2.5 [-0.876 (95 % CI: -1.205, -0.548)], organic carbon [-0.481 (95 % CI: -0.744, -0.219)], potassium [-0.344 (95 % CI: -0.530, -0.157)], iron [-0.468 (95 % CI: -0.646, -0.291)], and ammonium ion [-0.125 (95 % CI: -0.197, -0.052)] and cognitive decline. However, we didn't find any individual components more harmful than PM2.5. Poor sleep quality partially mediated the estimated associations, which were explained ranging from 2.28 % to 11.99 %. Stratification analyses showed that people living in areas with lower greenspace were more susceptible to specific PM2.5 components. Our study suggests that the adverse effect of suffering from PM2.5 components is more pronounced among individuals with poor sleep quality, amplifying environmental inequalities in health. Besides reducing environmental pollution, improving sleep quality may be another measure worth considering to improve cognition if our research is confirmed in the future.
Collapse
Affiliation(s)
- Rubing Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Yi Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Zhiwei Xu
- School of Public Health, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Weizhuo Yi
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Feng Zhao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Jian Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Qinghua Sun
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Peng Du
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Jianlong Fang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Jian Cheng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Yingchun Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Chen Chen
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yifu Lu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Tiantian Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Hong Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China.
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| |
Collapse
|
13
|
Massimi L, Pietrantonio E, Astolfi ML, Canepari S. Innovative experimental approach for spatial mapping of source-specific risk contributions of potentially toxic trace elements in PM 10. CHEMOSPHERE 2022; 307:135871. [PMID: 35926744 DOI: 10.1016/j.chemosphere.2022.135871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Exposure to potentially toxic trace elements (PTTEs) in inhalable particulate matter (PM10) is associated with an increased risk of developing cardiorespiratory diseases. Therefore, in multi-source polluted urban contexts, a spatially-resolved evaluation of health risks associated with exposure to PTTEs in PM is essential to identify critical risk areas. In this study, a very-low volume device for high spatial resolution sampling and analysis of PM10 was employed in Terni (Central Italy) in a wide and dense network (23 sampling sites, about 1 km between each other) during a 15-month monitoring campaign. The soluble and insoluble fraction of 33 elements in PM10 was analysed through a chemical fractionation procedure that increased the selectivity of the elements as source tracers. Total carcinogenic risk (CR) and non-carcinogenic risk (NCR) for adults and children due to concentrations of PTTEs in PM10 were calculated and quantitative source-specific risk apportionment was carried out by applying Positive Matrix Factorization (PMF) to the spatially-resolved concentrations of the chemically fractionated elements. PMF analysis identified 5 factors: steel plant, biomass burning, brake dust, soil dust and road dust. Steel plant showed the greatest risk contribution. Total CR and NCR, and source-specific risk contributions at the 23 sites were interpolated using the ordinary kriging (OK) method and mapped to geo-reference the health risks of the identified sources in the whole study area. This also allowed risk estimation in areas not directly measured and the assessment of the risk contribution of individual sources at each point of the study area. This innovative experimental approach is an effective tool to localize the health risks of spatially disaggregated sources of PTTEs and it may allow for better planning of control strategies and mitigation measures to reduce airborne pollutant concentrations in urban settings polluted by multiple sources.
Collapse
Affiliation(s)
- Lorenzo Massimi
- Department of Environmental Biology, Sapienza University of Rome, P. le Aldo Moro, 5, Rome, 00185, Italy; C.N.R. Institute of Atmospheric Pollution Research, Via Salaria, Km 29,300, Monterotondo St., Rome, 00015, Italy.
| | - Eva Pietrantonio
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, P. le Aldo Moro 5, Rome, 00185, Italy
| | - Maria Luisa Astolfi
- Department of Chemistry, Sapienza University of Rome, P. le Aldo Moro, 5, Rome, 00185, Italy
| | - Silvia Canepari
- Department of Environmental Biology, Sapienza University of Rome, P. le Aldo Moro, 5, Rome, 00185, Italy; C.N.R. Institute of Atmospheric Pollution Research, Via Salaria, Km 29,300, Monterotondo St., Rome, 00015, Italy
| |
Collapse
|
14
|
Peterson BS, Bansal R, Sawardekar S, Nati C, Elgabalawy ER, Hoepner LA, Garcia W, Hao X, Margolis A, Perera F, Rauh V. Prenatal exposure to air pollution is associated with altered brain structure, function, and metabolism in childhood. J Child Psychol Psychiatry 2022; 63:1316-1331. [PMID: 35165899 DOI: 10.1111/jcpp.13578] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND Prenatal exposure to air pollution disrupts cognitive, emotional, and behavioral development. The brain disturbances associated with prenatal air pollution are largely unknown. METHODS In this prospective cohort study, we estimated prenatal exposures to fine particulate matter (PM2.5 ) and polycyclic aromatic hydrocarbons (PAH), and then assessed their associations with measures of brain anatomy, tissue microstructure, neurometabolites, and blood flow in 332 youth, 6-14 years old. We then assessed how those brain disturbances were associated with measures of intelligence, ADHD and anxiety symptoms, and socialization. RESULTS Both exposures were associated with thinning of dorsal parietal cortices and thickening of postero-inferior and mesial wall cortices. They were associated with smaller white matter volumes, reduced organization in white matter of the internal capsule and frontal lobe, higher metabolite concentrations in frontal cortex, reduced cortical blood flow, and greater microstructural organization in subcortical gray matter nuclei. Associations were stronger for PM2.5 in boys and PAH in girls. Youth with low exposure accounted for most significant associations of ADHD, anxiety, socialization, and intelligence measures with cortical thickness and white matter volumes, whereas it appears that high exposures generally disrupted these neurotypical brain-behavior associations, likely because strong exposure-related effects increased the variances of these brain measures. CONCLUSIONS The commonality of effects across exposures suggests PM2.5 and PAH disrupt brain development through one or more common molecular pathways, such as inflammation or oxidative stress. Progressively higher exposures were associated with greater disruptions in local volumes, tissue organization, metabolite concentrations, and blood flow throughout cortical and subcortical brain regions and the white matter pathways interconnecting them. Together these affected regions comprise cortico-striato-thalamo-cortical circuits, which support the regulation of thought, emotion, and behavior.
Collapse
Affiliation(s)
- Bradley S Peterson
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA.,Department of Psychiatry, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Ravi Bansal
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA.,Department of Pediatrics, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Siddhant Sawardekar
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Carlo Nati
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Eman R Elgabalawy
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Lori A Hoepner
- Department of Environmental and Occupational Health Sciences, SUNY Downstate School of Public Health, Brooklyn, NY, USA
| | - Wanda Garcia
- Heilbrunn Department of Population and Family Health, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Xuejun Hao
- Department of Psychiatry, Columbia Presbyterian Medical Center & New York State Psychiatric Institute, New York, NY, USA
| | - Amy Margolis
- Department of Psychiatry, Columbia Presbyterian Medical Center & New York State Psychiatric Institute, New York, NY, USA
| | - Frederica Perera
- Columbia Center for Children's Environmental Health, New York, NY, USA.,Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Virginia Rauh
- Heilbrunn Department of Population and Family Health, Mailman School of Public Health, Columbia University, New York, NY, USA.,Columbia Center for Children's Environmental Health, New York, NY, USA
| |
Collapse
|
15
|
Wang P, Zhou Y, Zhao Y, Zhao W, Wang H, Li J, Zhang L, Wu M, Xiao X, Shi H, Ma W, Zhang Y. Prenatal fine particulate matter exposure associated with placental small extracellular vesicle derived microRNA and child neurodevelopmental delays. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156747. [PMID: 35716750 DOI: 10.1016/j.scitotenv.2022.156747] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS Prenatal fine particulate matter (PM2.5) exposure has been linked to adverse neurodevelopment. However, epidemiological evidence remains inconclusive and little information about the effects of various PM2.5 components on child neurodevelopment is currently known. The underlying mechanism was also not elucidated. The study aimed to evaluate the effects of PM2.5 and components exposure on child neurodevelopmental delays and the role of placental small extracellular vesicles (sEVs)-derived miRNAs in the associations. METHODS We included 267 mother-child pairs in this analysis. Prenatal PM2.5 and components (i.e. elements, water-soluble ions, and PAHs) exposure during three trimesters were monitored through personal PM2.5 sampling. Child neurodevelopment at 2, 6, and 12 months old were evaluated by Ages and Stages Questionnaire (ASQ). We isolated sEVs from placental tissue to analyze the change of sEVs-derived miRNAs in response to PM2.5. Associations between the PM2.5-associated miRNAs and child neurodevelopment were evaluated using multivariate linear regression models. RESULTS The PM2.5 exposure levels in the three trimesters range from 2.51 to 185.21 μg/m3. Prenatal PM2.5 and the components of Pb, Al, V and Ti exposure in the second and third trimester were related to decreased ASQ scores communication, problem-solving and personal-social domains in children aged 2 or 6 months. RNA sequencing identified fifteen differentially expressed miRNAs. The miR-101-3p and miR-520d-5p were negatively associated with PM2.5 and Pb component. miR-320a-3p expression was positively associated with PM2.5 and V component. Meanwhile, the miR-320a-3p was associated with decreased ASQ scores, as reflected by ASQ-T (β: -2.154, 95 % CI: -4.313, -0.516) and problem-solving domain (β: -0.605, 95 % CI: -1.111, -0.099) in children aged 6 months. CONCLUSION Prenatal exposure to PM2.5 and its Pb, Al, V & Ti component were associated with infant neurodevelopmental delays. The placenta sEVs derived miRNAs, especially miR-320a-3p, might contribute to an increased risk of neurodevelopmental delays.
Collapse
Affiliation(s)
- Pengpeng Wang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yuhan Zhou
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yingya Zhao
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Wenxuan Zhao
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Hang Wang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Jinhong Li
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Liyi Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Min Wu
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Xirong Xiao
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Huijing Shi
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Wenjuan Ma
- Minhang Hospital, Fudan University, Shanghai 201199, China.
| | - Yunhui Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
16
|
Gheissari R, Liao J, Garcia E, Pavlovic N, Gilliland FD, Xiang AH, Chen Z. Health Outcomes in Children Associated with Prenatal and Early-Life Exposures to Air Pollution: A Narrative Review. TOXICS 2022; 10:toxics10080458. [PMID: 36006137 PMCID: PMC9415268 DOI: 10.3390/toxics10080458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 06/04/2023]
Abstract
(1) Background: The developmental origins of health and disease (DOHaD) hypothesis links adverse fetal exposures with developmental mal-adaptations and morbidity later in life. Short- and long-term exposures to air pollutants are known contributors to health outcomes; however, the potential for developmental health effects of air pollution exposures during gestation or early-childhood have yet to be reviewed and synthesized from a DOHaD lens. The objective of this study is to summarize the literature on cardiovascular and metabolic, respiratory, allergic, and neuropsychological health outcomes, from prenatal development through early childhood, associated with early-life exposures to outdoor air pollutants, including traffic-related and wildfire-generated air pollutants. (2) Methods: We conducted a search using PubMed and the references of articles previously known to the authors. We selected papers that investigated health outcomes during fetal or childhood development in association with early-life ambient or source-specific air pollution exposure. (3) Results: The current literature reports that prenatal and early-childhood exposures to ambient and traffic-related air pollutants are associated with a range of adverse outcomes in early life, including cardiovascular and metabolic, respiratory and allergic, and neurodevelopmental outcomes. Very few studies have investigated associations between wildfire-related air pollution exposure and health outcomes during prenatal, postnatal, or childhood development. (4) Conclusion: Evidence from January 2000 to January 2022 supports a role for prenatal and early-childhood air pollution exposures adversely affecting health outcomes during development. Future studies are needed to identify both detrimental air pollutants from the exposure mixture and critical exposure time periods, investigate emerging exposure sources such as wildfire, and develop feasible interventional tools.
Collapse
Affiliation(s)
- Roya Gheissari
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Jiawen Liao
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Erika Garcia
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Nathan Pavlovic
- Sonoma Technology Inc., 1450 N. McDowell Blvd., Suite 200, Petaluma, CA 94954, USA
| | - Frank D. Gilliland
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Anny H. Xiang
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA 91107, USA
| | - Zhanghua Chen
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
17
|
Xu X, Qin N, Zhao W, Tian Q, Si Q, Wu W, Iskander N, Yang Z, Zhang Y, Duan X. A three-dimensional LUR framework for PM 2.5 exposure assessment based on mobile unmanned aerial vehicle monitoring. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 301:118997. [PMID: 35176409 DOI: 10.1016/j.envpol.2022.118997] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Land use regression (LUR) models have been widely used in epidemiological studies and risk assessments related to air pollution. Although efforts have been made to improve the performance of LUR models so that they capture the spatial heterogeneity of fine particulate matter (PM2.5) in high-density cities, few studies have revealed the vertical differences in PM2.5 exposure. This study proposes a three-dimensional LUR (3-D LUR) assessment framework for PM2.5 exposure that combines a high-resolution LUR model with a vertical PM2.5 variation model to investigate the results of horizontal and vertical mobile PM2.5 monitoring campaigns. High-resolution LUR models that were developed independently for daytime and nighttime were found to explain 51% and 60% of the PM2.5 variation, respectively. Vertical measurements of PM2.5 from three regions were first parameterized to produce a coefficient of variation for the concentration (CVC) to define the rate at which PM2.5 changes at a certain height relative to the ground. The vertical variation model for PM2.5 was developed based on a spline smoothing function in a generalized additive model (GAM) framework with an adjusted R2 of 0.91 and explained 92.8% of the variance. PM2.5 exposure levels for the population in the study area were estimated based on both the LUR models and the 3-D LUR framework. The 3-D LUR framework was found to improve the accuracy of exposure estimation in the vertical direction by avoiding exposure estimation errors of up to 5%. Although the 3-D LUR-based assessment did not indicate significant variation in estimates of premature mortality that could be attributed to PM2.5, exposure to this pollutant was found to differ in the vertical direction. The 3-D LUR framework has the potential to provide accurate exposure estimates for use in future epidemiological studies and health risk assessments.
Collapse
Affiliation(s)
- Xiangyu Xu
- School of Energy and Environmental Engineering, University of Science and Technology of Beijing, Beijing 100083, China
| | - Ning Qin
- School of Energy and Environmental Engineering, University of Science and Technology of Beijing, Beijing 100083, China
| | - Wenjing Zhao
- School of Energy and Environmental Engineering, University of Science and Technology of Beijing, Beijing 100083, China
| | - Qi Tian
- School of Energy and Environmental Engineering, University of Science and Technology of Beijing, Beijing 100083, China
| | - Qi Si
- School of Energy and Environmental Engineering, University of Science and Technology of Beijing, Beijing 100083, China
| | - Weiqi Wu
- School of Energy and Environmental Engineering, University of Science and Technology of Beijing, Beijing 100083, China
| | - Nursiya Iskander
- School of Energy and Environmental Engineering, University of Science and Technology of Beijing, Beijing 100083, China
| | - Zhenchun Yang
- Duke Global Health Institute, Duke University, Durham, NC 27708, United States
| | - Yawei Zhang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiaoli Duan
- School of Energy and Environmental Engineering, University of Science and Technology of Beijing, Beijing 100083, China.
| |
Collapse
|
18
|
Castagna A, Mascheroni E, Fustinoni S, Montirosso R. Air pollution and neurodevelopmental skills in preschool- and school-aged children: A systematic review. Neurosci Biobehav Rev 2022; 136:104623. [PMID: 35331818 DOI: 10.1016/j.neubiorev.2022.104623] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/18/2022] [Accepted: 03/12/2022] [Indexed: 12/12/2022]
Abstract
Early life exposure to air pollution has been associated with neurodevelopmental disorders. Emerging evidence are highlighting a possible impact of air pollution on typically developing children. Thirty papers were included in this review to systematically evaluate the association between air pollutants exposure in prenatal and/or postnatal periods and specific neurodevelopmental skills (i.e. intellective functioning, memory and learning, attention and executive functions, verbal language, numeric ability and motor and/or sensorimotor functions) in preschool- and school-age children. Detrimental effects of air pollutants on children's neurodevelopmental skills were observed, although they do not show clinically relevant performance deficits. The most affected domains were global intellective functioning and attention/executive functions. The pollutants that seem to represent the greatest risk are PM2.5, NO₂ and PAHs. Prenatal exposure is primarily associated with child neurodevelopment at pre-school and school ages. Early exposure to air pollutants is related to adverse neurodevelopmental outcomes in the general population of children. Further research is needed to support stronger conclusions.
Collapse
Affiliation(s)
- Annalisa Castagna
- 0-3 Center for the at-Risk Infant, Scientific Institute IRCCS "Eugenio Medea", Bosisio Parini, Lecco, Italy
| | - Eleonora Mascheroni
- 0-3 Center for the at-Risk Infant, Scientific Institute IRCCS "Eugenio Medea", Bosisio Parini, Lecco, Italy
| | - Silvia Fustinoni
- EPIGET - Epidemiology, Epigenetics, and Toxicology Lab, Department of Clinical Sciences and Com-munity Health, Università degli Studi di Milano, Milano, Italy; Environmental and Industrial Toxicology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Rosario Montirosso
- 0-3 Center for the at-Risk Infant, Scientific Institute IRCCS "Eugenio Medea", Bosisio Parini, Lecco, Italy.
| |
Collapse
|
19
|
Wei F, Yu Z, Zhang X, Wu M, Wang J, Shui L, Lin H, Jin M, Tang M, Chen K. Long-term exposure to ambient air pollution and incidence of depression: A population-based cohort study in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:149986. [PMID: 34798713 DOI: 10.1016/j.scitotenv.2021.149986] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Long-term exposure to ambient air pollution was linked to depression incidence, although the results were limited and inconsistent. OBJECTIVES To investigate the effects of long-term air pollution exposure on depression risk prospectively in China. METHODS The present study used data from Yinzhou Cohort on adults without depression at baseline, and followed up until April 2020. Two-year moving average concentrations of particulate matter with a diameter ≤ 2.5 μm (PM2.5), ≤10 μm (PM10) and nitrogen dioxide (NO2) were measured using land-use regression (LUR) models for each participant. Depression cases were ascertained using the Health Information System (HIS) of the local health administration by linking the unique identifiers. We conducted Cox regression models with time-varying exposures to estimate the hazard ratios (HRs) and 95% confidence intervals (95% CIs) of depression with each pollutant, after adjusting for a sequence of individual covariates as demographic characteristics, lifestyles, and comorbidity. Besides, physical activity, baseline potential depressive symptoms, cancer status, COVID-19 pandemic, different outcome definitions and air pollution exposure windows were considered in sensitivity analyses. RESULTS Among the 30,712 adults with a mean age of 62.22 ± 11.25, 1024 incident depression cases were identified over totaling 98,619 person-years of observation. Interquartile range increments of the air pollutants were associated with increased risks of depression, and the corresponding HRs were 1.59 (95%CI: 1.46, 1.72) for PM2.5, 1.49 (95%CI: 1.35, 1.64) for PM10 and 1.58 (95%CI: 1.42, 1.77) for NO2. Subgroup analyses suggested that participants without taking any protective measures towards air pollution were more susceptible. The results remained robust in all sensitivity analyses. CONCLUSIONS Long-term exposure to ambient air pollution was identified as a risk factor for depression onset. Strategies to reduce air pollution are necessary to decrease the disease burden of depression.
Collapse
Affiliation(s)
- Fang Wei
- Department of Epidemiology and Biostatistics at School of Public Health and the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Zhebin Yu
- Department of Epidemiology and Biostatistics at School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Xinhan Zhang
- Department of Epidemiology and Biostatistics at School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengyin Wu
- Department of Epidemiology and Biostatistics at School of Public Health and National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianbing Wang
- Department of Epidemiology and Biostatistics at School of Public Health and National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liming Shui
- Health Commission of Ningbo, Zhejiang, China
| | - Hongbo Lin
- The Center for Disease Control and Prevention of Yinzhou District, Ningbo, Zhejiang, China
| | - Mingjuan Jin
- Department of Epidemiology and Biostatistics at School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Mengling Tang
- Department of Epidemiology and Biostatistics at School of Public Health and the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Kun Chen
- Department of Epidemiology and Biostatistics at School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
20
|
Binter AC, Bernard JY, Mon-Williams M, Andiarena A, González-Safont L, Vafeiadi M, Lepeule J, Soler-Blasco R, Alonso L, Kampouri M, Mceachan R, Santa-Marina L, Wright J, Chatzi L, Sunyer J, Philippat C, Nieuwenhuijsen M, Vrijheid M, Guxens M. Urban environment and cognitive and motor function in children from four European birth cohorts. ENVIRONMENT INTERNATIONAL 2022; 158:106933. [PMID: 34662798 DOI: 10.1016/j.envint.2021.106933] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/07/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The urban environment may influence neurodevelopment from conception onwards, but there is no evaluation of the impact of multiple groups of exposures simultaneously. We investigated the association between early-life urban environment and cognitive and motor function in children. METHODS We used data from 5403 mother-child pairs from four population-based birth-cohorts (UK, France, Spain, and Greece). We estimated thirteen urban home exposures during pregnancy and childhood, including: built environment, natural spaces, and air pollution. Verbal, non-verbal, gross motor, and fine motor functions were assessed using validated tests at five years old. We ran adjusted multi-exposure models using the Deletion-Substitution-Addition algorithm. RESULTS Higher greenness exposure within 300 m during pregnancy was associated with higher verbal abilities (1.5 points (95% confidence interval 0.4, 2.7) per 0.20 unit increase in greenness). Higher connectivity density within 100 m and land use diversity during pregnancy were related to lower verbal abilities. Childhood exposure to PM2.5 mediated 74% of the association between greenness during childhood and verbal abilities. Higher exposure to PM2.5 during pregnancy was related to lower fine motor function (-1.2 points (-2.1, -0.4) per 3.2 μg/m3 increase in PM2.5). No associations were found with non-verbal abilities and gross motor function. DISCUSSION This study suggests that built environment, greenness, and air pollution may impact child cognitive and motor function at five years old. This study adds evidence that well-designed urban planning may benefit children's cognitive and motor development.
Collapse
Affiliation(s)
- Anne-Claire Binter
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Spain
| | - Jonathan Y Bernard
- Université de Paris, Centre for Research in Epidemiology and StatisticS (CRESS), Inserm, INRAE, F-75004 Paris, France; Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Mark Mon-Williams
- Bradford Institute for Health Research, Bradford, West Yorkshire, UK; School of Psychology, University of Leeds, Leeds, UK; National Centre for Optics, Vision and Eye Care, University of South-Eastern Norway, Kongsberg, Norway
| | - Ainara Andiarena
- Faculty of Psychology, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain; Biodonostia, Environmental Epidemiology and Child Development Group, 20014 San Sebastian, Spain
| | - Llúcia González-Safont
- CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO -Universitat Jaume I -Universitat de Val ència, Valencia, Spain
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Johanna Lepeule
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Grenoble, France
| | - Raquel Soler-Blasco
- Epidemiology and Environmental Health Joint Research Unit, FISABIO -Universitat Jaume I -Universitat de Val ència, Valencia, Spain
| | - Lucia Alonso
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Spain
| | - Mariza Kampouri
- Department of Social Medicine, Faculty of Medicine, University of Crete, 71003 Heraklion, Crete, Greece; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Rosie Mceachan
- Bradford Institute of Health Research, Bradford BD9 6RJ, United Kingdom
| | - Loreto Santa-Marina
- Epidemiology and Environmental Health Joint Research Unit, FISABIO -Universitat Jaume I -Universitat de Val ència, Valencia, Spain; Biodonostia, Epidemiology and Public Health Area, Environmental Epidemiology and Child Development Group, 20014 San Sebastian, Spain; Public Health Division of Gipuzkoa, Basque Government, 20013 San Sebastian, Spain
| | - John Wright
- Bradford Institute of Health Research, Bradford BD9 6RJ, United Kingdom
| | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, US
| | - Jordi Sunyer
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Spain; IMIM-Parc Salut Mar, Barcelona
| | - Claire Philippat
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Grenoble, France
| | - Mark Nieuwenhuijsen
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Spain
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Spain
| | - Mònica Guxens
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Spain; Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands.
| |
Collapse
|
21
|
Cao Z, Guo G, Wu Z, Li S, Sun H, Guan W. Mapping Total Exceedance PM 2.5 Exposure Risk by Coupling Social Media Data and Population Modeling Data. GEOHEALTH 2021; 5:e2021GH000468. [PMID: 34786531 PMCID: PMC8576961 DOI: 10.1029/2021gh000468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/25/2021] [Accepted: 10/20/2021] [Indexed: 05/06/2023]
Abstract
The PM2.5 exposure risk assessment is the foundation to reduce its adverse effects. Population survey-related data have been deficient in high spatiotemporal detailed descriptions. Social media data can quantify the PM2.5 exposure risk at high spatiotemporal resolutions. However, due to the no-sample characteristics of social media data, PM2.5 exposure risk for older adults is absent. We proposed combining social media data and population survey-derived data to map the total PM2.5 exposure risk. Hourly exceedance PM2.5 exposure risk indicators based on population modeling (HEPEpmd) and social media data (HEPEsm) were developed. Daily accumulative HEPEsm and HEPEpsd ranged from 0 to 0.009 and 0 to 0.026, respectively. Three peaks of HEPEsm and HEPEpsd were observed at 13:00, 18:00, and 22:00. The peak value of HEPEsm increased with time, which exhibited a reverse trend to HEPEpsd. The spatial center of HEPEsm moved from the northwest of the study area to the center. The spatial center of HEPEpsd moved from the northwest of the study area to the southwest of the study area. The expansion area of HEPEsm was nearly 1.5 times larger than that of HEPEpsd. The expansion areas of HEPEpsd aggregated in the old downtown, in which the contribution of HEPEpsd was greater than 90%. Thus, this study introduced various source data to build an easier and reliable method to map total exceedance PM2.5 exposure risk. Consequently, exposure risk results provided foundations to develop PM2.5 pollution mitigation strategies as well as scientific supports for sustainability and eco-health achievement.
Collapse
Affiliation(s)
- Zheng Cao
- School of Geographical SciencesGuangzhou UniversityGuangzhouChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
| | - Guanhua Guo
- School of Geographical SciencesGuangzhou UniversityGuangzhouChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
| | - Zhifeng Wu
- School of Geographical SciencesGuangzhou UniversityGuangzhouChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
| | - Shaoying Li
- School of Geographical SciencesGuangzhou UniversityGuangzhouChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
| | - Hui Sun
- School of Geographical SciencesGuangzhou UniversityGuangzhouChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
| | - Wenchuan Guan
- School of Geographical SciencesGuangzhou UniversityGuangzhouChina
| |
Collapse
|
22
|
Abstract
Atmospheric aerosol is one of the major leading environmental risk factors for human health worldwide, potentially causing several million premature deaths per year [...]
Collapse
|
23
|
Abstract
Atmospheric particulate matter (PM) is one of the leading health risks worldwide [...]
Collapse
|
24
|
The Relationship Between Air Pollution and Cognitive Functions in Children and Adolescents: A Systematic Review. Cogn Behav Neurol 2020; 33:157-178. [PMID: 32889949 DOI: 10.1097/wnn.0000000000000235] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Air pollution has a negative impact on one's health and on the central nervous system. We decided to assess studies that evaluated the relationship between air pollution and cognitive functions in children and adolescents by reviewing studies that had been published between January 2009 and May 2019. We searched three major databases for original works (26 studies) and for studies using brain imaging methods based on MRI (six studies). Adverse effects of air pollutants on selected cognitive or psychomotor functions were found in all of the studies. Exposure to nitrogen dioxide, for example, was linked to impaired working memory, general cognitive functions, and psychomotor functions; particulate matter 2.5 was linked to difficulties in working memory, short-term memory, attention, processing speed, and fine motor function; black carbon was linked to poor verbal intelligence, nonverbal intelligence, and working memory; airborne copper was linked to impaired attentiveness and fine motor skills; isophorone was linked to lower mathematical skills; and polycyclic aromatic hydrocarbons in fetal life were linked to lower intelligence scores. The studies using MRI showed that high concentrations of air pollutants were linked to changes in the brain's white matter or lower functional integration and segregation in children's brain networks. In view of the global increase in air pollution, there is a need for further research to elucidate the relationship between air pollution and cognitive and motor development in children. According to some studies, neuroinflammation, the e4 allele of the apolipoprotein E gene, and gutathione-S-transferase gene polymorphism processes may play a role.
Collapse
|
25
|
Massimi L, Ristorini M, Simonetti G, Frezzini MA, Astolfi ML, Canepari S. Spatial mapping and size distribution of oxidative potential of particulate matter released by spatially disaggregated sources. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115271. [PMID: 32814272 DOI: 10.1016/j.envpol.2020.115271] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
The ability of particulate matter (PM) to induce oxidative stress is frequently estimated by acellular oxidative potential (OP) assays, such as ascorbic acid (AA) and 1,4-dithiothreitol (DTT), used as proxy of reactive oxygen species (ROS) generation in biological systems, and particle-bound ROS measurement, such as 2',7'-dichlorodihydrofluorescein (DCFH) assay. In this study, we evaluated the spatial and size distribution of OP results obtained by three OP assays (OPAA, OPDCFH and OPDTT), to qualitative identify the relative relevance of single source contributions in building up OP values and to map the PM potential to induce oxidative stress in living organisms. To this aim, AA, DCFH and DTT assays were applied to size-segregated PM samples, collected by low-pressure cascade impactors, and to PM10 samples collected at 23 different sampling sites (about 1 km between each other) in Terni, an urban and industrial hot-spot of Central Italy, by using recently developed high spatial resolution samplers of PM, which worked in parallel during three monitoring periods (February, April and December 2017). The sampling sites were chosen for representing the main spatially disaggregated sources of PM (vehicular traffic, rail network, domestic heating, power plant for waste treatment, steel plant) present in the study area. The obtained results clearly showed a very different sensitivity of the three assays toward each local PM source. OPAA was particularly sensitive toward coarse particles released from the railway, OPDCFH was sensible to fine particles released from the steel plant and domestic biomass heating, and OPDTT was quite selectively sensitive toward the fine fraction of PM released by industrial and biomass burning sources.
Collapse
Affiliation(s)
- Lorenzo Massimi
- Department of Chemistry, Sapienza University of Rome, P. le Aldo Moro, 5, Rome, 00185, Italy.
| | - Martina Ristorini
- Department of Bioscience and Territory, University of Molise, Pesche, IS, 86090, Italy
| | - Giulia Simonetti
- Department of Chemistry, Sapienza University of Rome, P. le Aldo Moro, 5, Rome, 00185, Italy
| | - Maria Agostina Frezzini
- Department of Chemistry, Sapienza University of Rome, P. le Aldo Moro, 5, Rome, 00185, Italy
| | - Maria Luisa Astolfi
- Department of Chemistry, Sapienza University of Rome, P. le Aldo Moro, 5, Rome, 00185, Italy
| | - Silvia Canepari
- Department of Chemistry, Sapienza University of Rome, P. le Aldo Moro, 5, Rome, 00185, Italy
| |
Collapse
|
26
|
Air Pollution-Related Brain Metal Dyshomeostasis as a Potential Risk Factor for Neurodevelopmental Disorders and Neurodegenerative Diseases. ATMOSPHERE 2020. [DOI: 10.3390/atmos11101098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Increasing evidence links air pollution (AP) exposure to effects on the central nervous system structure and function. Particulate matter AP, especially the ultrafine (nanoparticle) components, can carry numerous metal and trace element contaminants that can reach the brain in utero and after birth. Excess brain exposure to either essential or non-essential elements can result in brain dyshomeostasis, which has been implicated in both neurodevelopmental disorders (NDDs; autism spectrum disorder, schizophrenia, and attention deficit hyperactivity disorder) and neurodegenerative diseases (NDGDs; Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and amyotrophic lateral sclerosis). This review summarizes the current understanding of the extent to which the inhalational or intranasal instillation of metals reproduces in vivo the shared features of NDDs and NDGDs, including enlarged lateral ventricles, alterations in myelination, glutamatergic dysfunction, neuronal cell death, inflammation, microglial activation, oxidative stress, mitochondrial dysfunction, altered social behaviors, cognitive dysfunction, and impulsivity. Although evidence is limited to date, neuronal cell death, oxidative stress, and mitochondrial dysfunction are reproduced by numerous metals. Understanding the specific contribution of metals/trace elements to this neurotoxicity can guide the development of more realistic animal exposure models of human AP exposure and consequently lead to a more meaningful approach to mechanistic studies, potential intervention strategies, and regulatory requirements.
Collapse
|
27
|
Prenatal PM 2.5 exposure and behavioral development in children from Mexico City. Neurotoxicology 2020; 81:109-115. [PMID: 32950567 DOI: 10.1016/j.neuro.2020.09.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/06/2020] [Accepted: 09/14/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Childhood exposure to air pollution has been linked with maladaptive cognitive development; however, less is known about the association between prenatal fine particulate matter (PM2.5) exposure and childhood behavior. OBJECTIVES Our aim was to assess the association between prenatal PM2.5 exposure and behavioral development in 4-6 year old children residing in Mexico City. METHODS We used data from 539 mother-child pairs enrolled in a prospective birth cohort in Mexico City. We estimated daily PM2.5 exposure using a 1 km2 satellite-based exposure model and averaged over each trimester of pregnancy. We assessed childhood behavior at 4-6 years of age using the parent-completed Behavioral Assessment Scale for Children (BASC-2) composite scores and subscales. We used linear regression models to estimate change in BASC-2 T-scores with trimester specific 5-μg/m3 increases in PM2.5. All models were mutually adjusted for PM2.5 exposures during the other trimesters, maternal factors including age, education, socioeconomic status, depression, and IQ, child's age at study visit, and season. We additionally assessed sex-specific effects by including an interaction term between PM2.5 and sex. RESULTS Higher first trimester PM2.5 exposure was associated with reduced Adaptive Skills scores (β: -1.45, 95% CI: -2.60, -0.30). Lower scores on the Adaptive Skills composite score and subscales indicate poorer functioning. For PM2.5 exposure during the first trimester, decrements were consistent across adaptive subscale scores including Adaptability (β: -1.51, 95% CI: -2.72, -0.30), Social Skills (β: -1.63, 95% CI: -2.90, -0.36), and Functional Communication (β: -1.21, 95% CI: -2.21, -0.21). The association between 1st trimester PM2.5 and depression was stronger in males than females (β for males: 1.52, 95% CI: -0.41, 3.45; β for females: -0.13, 95% CI: -1.99, 1.72; p-int: 0.07). CONCLUSIONS Exposure to PM2.5 during early pregnancy may be associated with impaired behavioral development in children, particularly for measures of adaptive skills. These results suggest that air pollution impacts behavioral domains as well as cognition, and that the timing of exposure may be critical.
Collapse
|
28
|
Jiang Q, Zhang C, Chen S, Shi L, Li DC, Lv N, Cui L, Chen Y, Zheng Y. Particulate Matter 2.5 Induced Developmental Cardiotoxicity in Chicken Embryo and Hatchling. Front Pharmacol 2020; 11:841. [PMID: 32581800 PMCID: PMC7289969 DOI: 10.3389/fphar.2020.00841] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022] Open
Abstract
Particulate matter poses health risk to developing organisms. To investigate particulate matters with a diameter smaller than 2.5 um (PM2.5)-induced developmental cardiotoxicity, fertile chicken eggs were exposed to PM2.5 via air cell injection at doses of 0.05, 0.2, 0.5, 2, and 5 mg/egg kg. Morphological changes in the embryonic day four (ED4) and hatchling hearts were assessed with histological techniques. Heart rates of hatchling chickens were measured with electrocardiography. The protein expression levels of nuclear factor kappa-light-chain-enhancer of activated B cells p65 (NF-kb p65), inducible nitric oxide synthase (iNOS), and matrix metallopeptidase 9 (MMP9) were assessed with immunohistochemistry or western blotting in hatchling hearts. PM2.5 exposure elevated areas of heart in ED4 embryo, increased heart rate, and thickened right ventricular wall thickness in hatchling chickens. Immunohistochemistry revealed enhanced NF-kb p65 expression in hatchling hearts. Western blotting results indicated that both iNOS and MMP9 expression were enhanced by lower doses of PM2.5 exposure (0.2 and 0.5 mg/kg) but not 2 mg/kg. In summary, developmental exposure to PM2.5 induced developmental cardiotoxicity in chicken embryo and hatchling chickens, which is associated with NF-kb p65, iNOS, and MMP9.
Collapse
Affiliation(s)
- Qixiao Jiang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Chao Zhang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Shen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Limei Shi
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Dao Chuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Na Lv
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Lianhua Cui
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Yanxia Chen
- Department of Occupational Diseases, Occupational Disease Center, Qingdao Central Hospital, Qingdao, China
| | - Yuxin Zheng
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| |
Collapse
|
29
|
Zhu X, Ji X, Shou Y, Huang Y, Hu Y, Wang H. Recent advances in understanding the mechanisms of PM 2.5-mediated neurodegenerative diseases. Toxicol Lett 2020; 329:31-37. [PMID: 32360789 DOI: 10.1016/j.toxlet.2020.04.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/15/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022]
Abstract
PM2.5 particles are widely believed to be associated with respiratory and cardiovascular diseases. However, recent studies have reported that PM2.5 may be associated with neurodegenerative diseases. The exact mechanism by which PM2.5 mediates neurotoxicity and cognitive dysfunction is still unclear. In the current work, we collected evidence supporting the association between PM2.5 exposure and development of neurodegenerative disorders. Evidence from epidemiological investigations, animal experiments, and ex vivo cell experiments showed that PM2.5 exposure may lead to neuroinflammation, oxidative stress, mitochondrial dysfunction, neuronal apoptosis, synaptic damage and ultimately neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaozheng Zhu
- School of Medicine, Hangzhou Normal University, China
| | - Xintong Ji
- School of Medicine, Hangzhou Normal University, China; Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, China
| | - Yikai Shou
- School of Medicine, Hangzhou Normal University, China; The Children's Hospital, The Institute of Translational Medicine, School of Medicine, Zhejiang University, China
| | - Yilu Huang
- School of Medicine, Hangzhou Normal University, China; Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, China
| | - Yu Hu
- School of Medicine, Hangzhou Normal University, China.
| | - Huanhuan Wang
- School of Medicine, Hangzhou Normal University, China; Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, China.
| |
Collapse
|
30
|
Brabhukumr A, Malhi P, Ravindra K, Lakshmi PVM. Exposure to household air pollution during first 3 years of life and IQ level among 6-8-year-old children in India - A cross-sectional study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:135110. [PMID: 31874342 DOI: 10.1016/j.scitotenv.2019.135110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/02/2019] [Accepted: 10/20/2019] [Indexed: 06/10/2023]
Abstract
Many illnesses have been attributed to the exposure of solid biomass smoke but the effect on intelligence has largely been unexplored. The study aims to examine the effect of exposure to solid biomass smoke during the first 3 years of life on intelligence among 6-8-year-old children. Children aged 6-8 years were enrolled from a primary school and their houses were visited to collect data on socio-economic status and household exposure assessment. Households using LPG as cooking fuel were considered as the unexposed group. All the children were tested for their Intelligence Quotient (IQ) using Malin's Intelligence Scale for Indian Children (MISIC). The mean IQ was calculated as the average of Verbal and Performance score. Potential confounders were adjusted using multivariate general linear model. About 45% of children had average or above-average IQ while the rest had below-average IQ. The mean scores for the arithmetic component of IQ were found to be significantly lower among solid biomass fuel users as compared to LPG users after adjusting for confounders. The mean IQ of LPG users were 5.58 points higher (95% CI: 0.46-10.1) for the arithmetic component as compared to solid biomass users. Children living in the houses using solid biomass fuel for cooking have lower IQ as compared to the children living in the houses using LPG for cooking for arithmetic component even after adjusting for potential confounders.
Collapse
Affiliation(s)
- Ajith Brabhukumr
- Department of Community Medicine and School of Public Health, PGIMER, Chandigarh, India
| | | | - Khaiwal Ravindra
- Department of Community Medicine and School of Public Health, PGIMER, Chandigarh, India.
| | - P V M Lakshmi
- Department of Paediatrics, PGIMER, Chandigarh, India.
| |
Collapse
|
31
|
Grineski SE, Collins TW, Adkins DE. Hazardous air pollutants are associated with worse performance in reading, math, and science among US primary schoolchildren. ENVIRONMENTAL RESEARCH 2020; 181:108925. [PMID: 31776015 DOI: 10.1016/j.envres.2019.108925] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/25/2019] [Accepted: 11/12/2019] [Indexed: 05/29/2023]
Abstract
Emerging evidence demonstrates that chronic exposure to air pollution may negatively impact children's cognitive processing and memory. Little is currently known about how air pollution impacts individual children's academic performance through time. Academic performance is practically important, given its linkage to children's future life course trajectories. Individual-level, longitudinal data from 16,000 US primary school students are combined with a tract-level hazardous air pollutant (HAP) measure to assess how kindergarten exposures are associated with competencies in reading, math and science through third grade. We employed linear mixed models with repeated measures within children (e.g., five math tests across four years), clustering within census tracts, and random effects specified at the child- and census tract-levels. Controlling for a comprehensive list of time variant and time invariant covariates, we found statistically significant associations between higher levels of HAPs and lower reading (b = -0.02; p < 0.05), math (b = -0.02; p < 0.001), and science (b = -0.05; p < 0.001) scores. These negative effects of pollution on academic competency in the early primary school years add to the weight of evidence that air pollution harms children's academic potential.
Collapse
Affiliation(s)
- Sara E Grineski
- Departments of Sociology and Environmental and Sustainability Studies, University of Utah, 390 1530 E #301, Salt Lake City, UT, 84112, USA.
| | - Timothy W Collins
- Departments of Geography and Environmental and Sustainability Studies, University of Utah, 260 South Campus Drive, Salt Lake City, UT, 84112, USA.
| | - Daniel E Adkins
- Departments of Sociology and Psychiatry, University of Utah, 390 1530 E #301, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
32
|
Liu J, Chen Y, Cao H, Zhang A. Burden of typical diseases attributed to the sources of PM 2.5-bound toxic metals in Beijing: An integrated approach to source apportionment and QALYs. ENVIRONMENT INTERNATIONAL 2019; 131:105041. [PMID: 31377599 DOI: 10.1016/j.envint.2019.105041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 07/16/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
PM2.5-bound toxic metals (TMs) are derived from various sources, and they can cause many adverse health effects on the human body. To effectively reduce the disease burden of TMs by controlling the relative sources, an integrated approach of quality-adjusted life years (QALYs) and source-apportionment (positive matrix factorization, PMF) was proposed and applied to some typical diseases induced by TMs in 2017 in Beijing. The estimation included two parts; first, the number of potentially affected people was calculated based on the source mass contribution from PMF and the inhalation unit risk of TMs; second, the QALYs lost per affected person was calculated based on the disease duration, expected years of life lost (EYLL) and quality of life (QoL) for both affected people and the general population. The results showed that QALYs lost per person for renal cancer (17.3 QALYs), pneumonia (14.4 QALYs), lung cancer (14.2 QALYs), skin cancer (12.7 QALYs) and diabetes mellitus (12.6 QALYs) were higher than those for other diseases. Combined with PMF, the source contributions to the overall burden of typical diseases from the TMs followed the order of coal combustion (50.2%) > vehicle emissions (24.4%) > fuel oil combustion (11.4%) > Cr-related industry (10.9%) > resuspended dust (3.0%). The rank was further compared with that assessed for noncancer and cancer risks, and we verified the reasonability of the QALYs method. For seasonal contributions to coal combustion, winter and spring had the highest contributions, which coincided with the fact that coal was the main fuel for heating in Beijing. The QALYs lost attributed to TMs for coal combustion decreased by 49.1% from 2016 to 2017, which may indicate an effective policy associated with coal control. Overall, the integrated approach was successfully employed for estimating the disease burden induced by TMs from each source and was an effective solution to identify the control rank of sources for TM reduction.
Collapse
Affiliation(s)
- Jianwei Liu
- Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Yanjiao Chen
- Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Hongbin Cao
- Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China.
| | - Aichen Zhang
- Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
33
|
Jorcano A, Lubczyńska MJ, Pierotti L, Altug H, Ballester F, Cesaroni G, El Marroun H, Fernández-Somoano A, Freire C, Hanke W, Hoek G, Ibarluzea J, Iñiguez C, Jansen PW, Lepeule J, Markevych I, Polańska K, Porta D, Schikowski T, Slama R, Standl M, Tardon A, Vrijkotte TGM, von Berg A, Tiemeier H, Sunyer J, Guxens M. Prenatal and postnatal exposure to air pollution and emotional and aggressive symptoms in children from 8 European birth cohorts. ENVIRONMENT INTERNATIONAL 2019; 131:104927. [PMID: 31326824 DOI: 10.1016/j.envint.2019.104927] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 05/14/2023]
Abstract
BACKGROUND The association between air pollution exposure and emotional and behavioural problems in children is unclear. We aimed to assess prenatal and postnatal exposure to several air pollutants and child's depressive and anxiety symptoms, and aggressive symptoms in children of 7-11 years. METHODS We analysed data of 13182 children from 8 European population-based birth cohorts. Concentrations of nitrogen dioxide (NO2), nitrogen oxides (NOx), particulate matter (PM) with diameters of ≤10 μm (PM10), ≤ 2.5 μm (PM2.5), and between 10 and 2.5 μm (PMcoarse), the absorbance of PM2.5 filters (PM2.5abs), and polycyclic aromatic hydrocarbons (PAHs) were estimated at residential addresses of each participant. Depressive and anxiety symptoms and aggressive symptoms were assessed at 7-11 years of age using parent reported tests. Children were classified in borderline/clinical range or clinical range using validated cut offs. Region specific models were adjusted for various socio-economic and lifestyle characteristics and then combined using random effect meta-analysis. Multiple imputation and inverse probability weighting methods were applied to correct for potential attrition bias. RESULTS A total of 1896 (14.4%) children were classified as having depressive and anxiety symptoms in the borderline/clinical range, and 1778 (13.4%) as having aggressive symptoms in the borderline/clinical range. Overall, 1108 (8.4%) and 870 (6.6%) children were classified as having depressive and anxiety symptoms, and aggressive symptoms in the clinical range, respectively. Prenatal exposure to air pollution was not associated with depressive and anxiety symptoms in the borderline/clinical range (e.g. OR 1.02 [95%CI 0.95 to 1.10] per 10 μg/m3 higher NO2) nor with aggressive symptoms in the borderline/clinical range (e.g. OR 1.04 [95%CI 0.96 to 1.12] per 10 μg/m3 higher NO2). Similar results were observed for the symptoms in the clinical range, and for postnatal exposures to air pollution. CONCLUSIONS Overall, our results suggest that prenatal and postnatal exposure to air pollution is not associated with depressive and anxiety symptoms or aggressive symptoms in children of 7 to 11 years old.
Collapse
Affiliation(s)
- Ainhoa Jorcano
- ISGlobal, Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Małgorzata J Lubczyńska
- ISGlobal, Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Livia Pierotti
- ISGlobal, Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Hicran Altug
- Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany
| | - Ferran Ballester
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Department of Nursing, Universitat de València, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
| | - Giulia Cesaroni
- Department of Epidemiology, Lazio Regional Health Service, Rome, Italy
| | - Hanan El Marroun
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center-Sophia's Children's Hospital, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC - Sophia Children's Hospital, the Netherlands; Department of Psychology, Education and Child Studies, Erasmus School of Social and Behavioral Sciences, Erasmus University Rotterdam, Netherlands
| | - Ana Fernández-Somoano
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; IUOPA-Departamento de Medicina, University of Oviedo, Oviedo, Spain; Institute of Health Research of the Principality of Asturias, Foundation for Biosanitary Research of Asturias (ISPA-FINBA), Oviedo, Spain
| | - Carmen Freire
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Wojciech Hanke
- Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Gerard Hoek
- IRAS, Utrecht University, Utrecht, the Netherlands
| | - Jesús Ibarluzea
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Departamento de Salud, Gobierno Vasco, Subdirección de Salud Pública de Guipúzcoa, San Sebastián, Spain; BIODONOSTIA, Instituto de Investigación Sanitaria, San Sebastián 20014, Spain; School of Psychology, University of the Basque Country (UPV/EHU), San Sebastián 20080, Spain
| | - Carmen Iñiguez
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Department of Statistic and Computational Research, Universitat de València, Spain
| | - Pauline W Jansen
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center-Sophia's Children's Hospital, Rotterdam, the Netherlands; Department of Psychology, Education and Child Studies, Erasmus School of Social and Behavioral Sciences, Erasmus University Rotterdam, Netherlands
| | - Johanna Lepeule
- University Grenoble Alpes, Inserm, CNRS, IAB, 38000 Grenoble, France
| | - Iana Markevych
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany; Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Kinga Polańska
- Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Daniela Porta
- Department of Epidemiology, Lazio Regional Health Service, Rome, Italy
| | - Tamara Schikowski
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Remy Slama
- University Grenoble Alpes, Inserm, CNRS, IAB, 38000 Grenoble, France
| | - Marie Standl
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Adonina Tardon
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; IUOPA-Departamento de Medicina, University of Oviedo, Oviedo, Spain; Institute of Health Research of the Principality of Asturias, Foundation for Biosanitary Research of Asturias (ISPA-FINBA), Oviedo, Spain
| | - Tanja G M Vrijkotte
- Department of Public Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Andrea von Berg
- Research Institute, Department of Pediatrics, Marien-Hospital Wesel, Wesel, Germany
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center-Sophia's Children's Hospital, Rotterdam, the Netherlands; Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Jordi Sunyer
- ISGlobal, Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Mònica Guxens
- ISGlobal, Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center-Sophia's Children's Hospital, Rotterdam, the Netherlands.
| |
Collapse
|
34
|
Brunst KJ, Ryan PH, Altaye M, Yolton K, Maloney T, Beckwith T, LeMasters G, Cecil KM. Myo-inositol mediates the effects of traffic-related air pollution on generalized anxiety symptoms at age 12 years. ENVIRONMENTAL RESEARCH 2019; 175:71-78. [PMID: 31103795 PMCID: PMC6571158 DOI: 10.1016/j.envres.2019.05.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/23/2019] [Accepted: 05/09/2019] [Indexed: 05/16/2023]
Abstract
BACKGROUND Exposure to traffic-related air pollution (TRAP) has been linked to childhood anxiety symptoms. Neuroimaging in patients with anxiety disorders indicate altered neurochemistry. OBJECTIVES Evaluate the impact of TRAP on brain metabolism and its relation to childhood anxiety symptoms in the Cincinnati Childhood Allergy and Air Pollution Study (CCAAPS). METHODS Adolescents (n = 145) underwent magnetic resonance spectroscopy. Brain metabolites, including myo-inositol, N-acetylaspartate, creatine, choline, glutamate, glutamate plus glutamine, and glutathione were measured in the anterior cingulate cortex. Anxiety symptoms were assessed using the Spence Children's Anxiety Scale. TRAP exposure in early-life, averaged over childhood, and during the 12 months prior to imaging was estimated using a validated land use regression model. Associations between TRAP exposure, brain metabolism, and anxiety symptoms were estimated using linear regression and a bootstrapping approach for testing mediation by brain metabolite levels. RESULTS Recent exposure to high levels of TRAP was associated with significant increases in myo-inositol (β = 0.26; 95%CI 0.01, 0.51) compared to low TRAP exposure. Recent elevated TRAP exposure (β = 4.71; 95% CI 0.95, 8.45) and increased myo-inositol levels (β = 2.98; 95% CI 0.43, 5.52) were also significantly associated with increased generalized anxiety symptoms with 12% of the total effect between TRAP and generalized anxiety symptoms being mediated by myo-inositol levels. CONCLUSIONS This is the first study of children to utilize neuroimaging to link TRAP exposure, metabolite dysregulation in the brain, and generalized anxiety symptoms among otherwise healthy children. TRAP may elicit atypical excitatory neurotransmission and glial inflammatory responses leading to increased metabolite levels and subsequent anxiety symptoms.
Collapse
Affiliation(s)
- Kelly J Brunst
- Department of Environmental Health, University of Cincinnati, 160 Panzeca Way, ML 0056, Cincinnati, OH, 45267, USA.
| | - Patrick H Ryan
- Department of Environmental Health, University of Cincinnati, 160 Panzeca Way, ML 0056, Cincinnati, OH, 45267, USA; Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7035, Cincinnati, OH, 45229, USA
| | - Mekibib Altaye
- Department of Environmental Health, University of Cincinnati, 160 Panzeca Way, ML 0056, Cincinnati, OH, 45267, USA; Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7035, Cincinnati, OH, 45229, USA
| | - Kimberly Yolton
- Division of General and Community Pediatrics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, 3333 Burnet Avenue, MLC, 5041, Cincinnati, OH, USA
| | - Thomas Maloney
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, ML 5033, Cincinnati, OH, 45229, USA
| | - Travis Beckwith
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, ML 5033, Cincinnati, OH, 45229, USA
| | - Grace LeMasters
- Department of Environmental Health, University of Cincinnati, 160 Panzeca Way, ML 0056, Cincinnati, OH, 45267, USA
| | - Kim M Cecil
- Department of Environmental Health, University of Cincinnati, 160 Panzeca Way, ML 0056, Cincinnati, OH, 45267, USA; Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, ML 5033, Cincinnati, OH, 45229, USA
| |
Collapse
|
35
|
Guxens M, Lubczyńska MJ, Muetzel RL, Dalmau-Bueno A, Jaddoe VWV, Hoek G, van der Lugt A, Verhulst FC, White T, Brunekreef B, Tiemeier H, El Marroun H. Air Pollution Exposure During Fetal Life, Brain Morphology, and Cognitive Function in School-Age Children. Biol Psychiatry 2018. [PMID: 29530279 DOI: 10.1016/j.biopsych.2018.01.016] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Air pollution exposure during fetal life has been related to impaired child neurodevelopment, but it is unclear if brain structural alterations underlie this association. The authors assessed whether air pollution exposure during fetal life alters brain morphology and whether these alterations mediate the association between air pollution exposure during fetal life and cognitive function in school-age children. METHODS We used data from a population-based birth cohort set up in Rotterdam, The Netherlands (2002-2006). Residential levels of air pollution during the entire fetal period were calculated using land-use regression models. Structural neuroimaging and cognitive function were performed at 6 to 10 years of age (n = 783). Models were adjusted for several socioeconomic and lifestyle characteristics. RESULTS Mean fine particle levels were 20.2 μg/m3 (range, 16.8-28.1 μg/m3). Children exposed to higher particulate matter levels during fetal life had thinner cortex in several brain regions of both hemispheres (e.g., cerebral cortex of the precuneus region in the right hemisphere was 0.045 mm thinner (95% confidence interval, 0.028-0.062) for each 5-μg/m3 increase in fine particles). The reduced cerebral cortex in precuneus and rostral middle frontal regions partially mediated the association between exposure to fine particles and impaired inhibitory control. Air pollution exposure was not associated with global brain volumes. CONCLUSIONS Exposure to fine particles during fetal life was related to child brain structural alterations of the cerebral cortex, and these alterations partially mediated the association between exposure to fine particles during fetal life and impaired child inhibitory control. Such cognitive impairment at early ages could have significant long-term consequences.
Collapse
Affiliation(s)
- Mònica Guxens
- ISGlobal, Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health, Instituto de Salud Carlos III, Madrid, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre-Sophia Children's Hospital, Rotterdam, The Netherlands.
| | - Małgorzata J Lubczyńska
- ISGlobal, Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Ryan L Muetzel
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre-Sophia Children's Hospital, Rotterdam, The Netherlands; Generation R Study Group, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Albert Dalmau-Bueno
- ISGlobal, Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Vincent W V Jaddoe
- Department of Pediatrics, Erasmus University Medical Centre-Sophia Children's Hospital, Rotterdam, The Netherlands; Generation R Study Group, Erasmus University Medical Centre, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Aad van der Lugt
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Frank C Verhulst
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Tonya White
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre-Sophia Children's Hospital, Rotterdam, The Netherlands; Department of Radiology and Nuclear Medicine, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Bert Brunekreef
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre-Sophia Children's Hospital, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Hanan El Marroun
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre-Sophia Children's Hospital, Rotterdam, The Netherlands; Generation R Study Group, Erasmus University Medical Centre, Rotterdam, The Netherlands
| |
Collapse
|