1
|
Irnidayanti Y, Soegianto A, Ramdhany FA, Afifudin AFM, Payus CM, Hartl MGJ. Microplastic contamination in green mussels (Perna viridis Linnaeus, 1858) from traditional seafood markets in Jakarta, Indonesia, and an evaluation of potential hazards. MARINE POLLUTION BULLETIN 2025; 214:117818. [PMID: 40088633 DOI: 10.1016/j.marpolbul.2025.117818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/03/2025] [Accepted: 03/09/2025] [Indexed: 03/17/2025]
Abstract
Marine organisms, especially mussels, can efficiently take up microplastics (MPs) through their filtration processes. This study evaluated the characteristics of MPs in green mussels (Perna viridis) sold at traditional seafood markets in Jakarta, Indonesia. The polymers of MPs were examined using Fourier Transform Infrared spectroscopy, while the chemical components of MPs in green mussels were analyzed using Gas Chromatography-Mass Spectrometry. The MPs identified in green mussels sold at traditional seafood markets in Jakarta are predominantly of fiber type, display a black coloration, and measure <100 μm in size. The density of these microplastics in green mussels is uniform across all traditional markets. The concentration of microplastics in green mussels correlates positively with the length of the green mussel shell. The average annual consumption of mussel products by people in Jakarta was 11,170 items/year/person. Green mussels from Jakarta exhibited a significantly elevated polymer hazard index (III), indicating the presence of polymers categorized as high risk. Certain plasticizers (phthalates) and specific additive chemicals (phenol, butylated hydroxytoluene, and hexadecanamide) were also present in green mussels sourced from traditional markets in Jakarta. These substances are toxic and have a negative impact on both aquatic life and humans.
Collapse
Affiliation(s)
- Yulia Irnidayanti
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta, Jakarta, Indonesia
| | - Agoes Soegianto
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia.
| | - Farel Akbar Ramdhany
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta, Jakarta, Indonesia
| | - Alfin Fatwa M Afifudin
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia
| | - Carolyn Melissa Payus
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Mark G J Hartl
- Centre for Marine Biodiversity & Biotechnology, Institute of Life & Earth Sciences, School of Energy, Geoscience, Infrastructure & Society, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| |
Collapse
|
2
|
Lee JC, Smaoui S, Duffill J, Marandi B, Varzakas T. Research Progress in Current and Emerging Issues of PFASs' Global Impact: Long-Term Health Effects and Governance of Food Systems. Foods 2025; 14:958. [PMID: 40231978 PMCID: PMC11941069 DOI: 10.3390/foods14060958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 04/16/2025] Open
Abstract
Per- and polyfluoroalkyl substances (PFASs) are found everywhere, including food, cosmetics, and pharmaceuticals. This review introduces PFASs comprehensively, discussing their nature and identifying their interconnection with microplastics and their impacts on public health and the environment. The human cost of decades of delay, cover-ups, and mismanagement of PFASs and plastic waste is outlined and briefly explained. Following that, PFASs and long-term health effects are critically assessed. Risk assessment is then critically reviewed, mentioning different tools and models. Scientific research and health impacts in the United States of America are critically analyzed, taking into consideration the Center for Disease Control (CDC)'s PFAS Medical Studies and Guidelines. PFAS impact and activities studies around the world have focused on PFAS levels in food products and dietary intake in different countries such as China, European countries, USA and Australia. Moreover, PFASs in drinking water and food are outlined with regard to risks, mitigation, and regulatory needs, taking into account chemical contaminants in food and their impact on health and safety. Finally, PFAS impact and activities briefings specific to regions around the world are discussed, referring to Australia, Vietnam, Canada, Europe, the United States of America (USA), South America, and Africa. The PFAS crisis is a multifaceted issue, exacerbated by mismanagement, and it is discussed in the context of applying the following problem-solving analytical tools: the Domino Effect Model of accident causation, the Swiss Cheese Theory Model, and the Ishikawa Fish Bone Root Cause Analysis. Last but not least, PFASs' impacts on the Sustainable Development Goals (SDGs) of 2030 are rigorously discussed.
Collapse
Affiliation(s)
- Jocelyn C. Lee
- Independent Researcher—Food Safety Consultant, San Francisco Bay Area, San Francisco, CA 94121, USA;
| | - Slim Smaoui
- Laboratory of Microbial and Enzymatic Biotechnologies and Biomolecules, Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia;
| | - John Duffill
- John Crop Development Vietnam Co., Ltd., Landmark 81, 720A Dien Bien Phu St., Binh Thanh Dist., Quận Bình Thạnh, Ho Chi Minh City 718900, Vietnam;
| | - Ben Marandi
- Food Scientist Researcher, Food Policy and Legal Advisor, 26 Lauren Beth Dr., Richmond Hill, ON L4E 4K3, Canada;
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece
| |
Collapse
|
3
|
Liang X, Ma Y, Li J, Ye Y, Li J. Impact of microplastics on microbial diversity and pathogen distribution in aquaculture ecosystems: A seasonal analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125796. [PMID: 39914565 DOI: 10.1016/j.envpol.2025.125796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/27/2024] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Microplastics, as a prominent emerging pollutant in marine environments, pose a serious threat to the stability of marine ecosystems due to their resistance to biodegradation. MPs act as substrates for biofouling and potentially promote the spread of harmful microorganisms. Research indicates that human activities exacerbate MPs pollution in aquaculture environments, significantly increasing their abundance. This study focused on the aquaculture environment of the large yellow croaker (Larimichthys crocea), one of the most extensively farmed fish species in coastal regions. We conducted a comprehensive analysis of microbial diversity on the biofilms covering MPs and in the surrounding aquaculture water, with a focus on the distribution of pathogens on MPs. Furthermore, this study investigated the impact of seasonal variations on the microbial communities within these biofilms. Sequencing analysis revealed that the α-diversity of microbial communities on MPs was lower than that in aquaculture water during winter but higher in summer, indicating a seasonal shift in microbial community structure. PICRUSt predictions suggested that microbes on MPs possess unique metabolic pathways. Co-occurrence network analysis demonstrated that during summer, the microbial communities on MPs revealed increased connectivity and functional modularity, whereas microbial communities in aquaculture water showed stronger interactions in winter. Additionally, several potential pathogens, including Vibrio and Pseudomonas, were detected in the MPs biofilms. These findings underscore the ways in which MPs influence the microbial community structure in aquaculture environments, increasing health risks to the ecosystem. This research offers significant insights into the ecological impacts of MPs pollution on microbial communities in aquaculture ecosystems.
Collapse
Affiliation(s)
- Xinjie Liang
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316000, China
| | - Yanwen Ma
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316000, China
| | - Jing Li
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316000, China
| | - Yingying Ye
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316000, China
| | - Jiji Li
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316000, China.
| |
Collapse
|
4
|
Fossi MC, Baini M, Galli M, Tepsich P, Grossi F, Concato M, Giani D, Rosso M, Borroni A, Romeo T, Panti C. Biodiversity at risk in the SPAMI Pelagos Sanctuary: The impact of marine litter on biota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 964:178527. [PMID: 39848148 DOI: 10.1016/j.scitotenv.2025.178527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/16/2024] [Accepted: 01/13/2025] [Indexed: 01/25/2025]
Abstract
The Mediterranean basin is the second largest global biodiversity hotspot in the world, which coexists with a plethora of anthropogenic stress. This study examines the risks that marine litter poses to Mediterranean biodiversity, using the Special Protection Area of Mediterranean Importance (SPAMI) "Pelagos Sanctuary" as a case study. In this paper, a new survey method and data analysis strategies to assess the impact of marine litter, including microplastics, on Mediterranean organisms, is proposed. A total of 23 species, from invertebrates to cetaceans, were analysed using two main monitoring approaches. In the first approach, the core density distribution areas of 11 megafauna species (elasmobranchs, sea turtles, seabirds, and cetaceans) and 4 invertebrate species were evaluated through an extended field survey. Simultaneously, monitoring of floating macro- and micro-litter was performed to be overlapped with the species distribution and abundance. The second monitoring approach assessed the ingestion of marine litter, microplastics and the levels of plastic additives in 10 stranded megafauna species and in 7 invertebrate and fish species. The final data processing, merging the data on biodiversity and marine litter abundance and distribution in the environment, with the data of ingested marine litter, microplastics, and plastic additives in sentinel species, allowed to: a) create risk maps for the species inhabiting the Pelagos Sanctuary, identifying critical areas for biodiversity conservation; b) identify the most exposed species to the risk of marine litter by an "exposure score"; c) to select sentinel species for pelagic environment.
Collapse
Affiliation(s)
- Maria Cristina Fossi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Matteo Baini
- Department of Physical, Earth and Environmental Sciences, University of Siena, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy.
| | - Matteo Galli
- Department of Physical, Earth and Environmental Sciences, University of Siena, Italy
| | - Paola Tepsich
- NBFC, National Biodiversity Future Center, Palermo, Italy; CIMA Research Foundation, 17100 Savona, Italy
| | - Francesca Grossi
- CIMA Research Foundation, 17100 Savona, Italy; Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genova, Italy
| | - Margherita Concato
- Department of Physical, Earth and Environmental Sciences, University of Siena, Italy
| | - Dario Giani
- Department of Physical, Earth and Environmental Sciences, University of Siena, Italy
| | - Massimiliano Rosso
- NBFC, National Biodiversity Future Center, Palermo, Italy; CIMA Research Foundation, 17100 Savona, Italy
| | - Anna Borroni
- NBFC, National Biodiversity Future Center, Palermo, Italy; CIMA Research Foundation, 17100 Savona, Italy
| | - Teresa Romeo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Sicily Marine Centre, Messina, Italy
| | - Cristina Panti
- Department of Physical, Earth and Environmental Sciences, University of Siena, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
5
|
Liu J, Gutang Q, Fan Y, Bi R, Zhao P, Zhang K, Sun Z, Li P, Liu W, Wang J. Microplastics in fish species from the eastern Guangdong: Implications to Indo-Pacific humpback dolphin (Sousa chinensis) and human health. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106852. [PMID: 39580953 DOI: 10.1016/j.marenvres.2024.106852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/22/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024]
Abstract
Microplastic (MP) pollution is widespread in aquatic environments, accumulating in organisms and transferring through the food web. This study investigated MP abundance, composition, and distribution in 15 fish species from eastern Guangdong, 11 of which are prey for Indo-Pacific humpback dolphins (Sousa chinensis). Results indicated the highest MP abundance in fish gastrointestinal tracts, with pelagic species being the most affected. Ethylene vinyl acetate (EVA) and polyethylene (PE), linked to local industrial activities, were the most prevalent polymers. Risk quotients (RQ) at 95th percentile for Indo-Pacific humpback dolphins exceeded one, suggesting significant MP exposure risk via prey ingestion. In contrast, the MPs risk for humans through fish consumption was minimal. These findings underscore the urgent need for improved plastic waste management to protect marine apex predators.
Collapse
Affiliation(s)
- Jinyan Liu
- Marine Microorganism Ecological & Application Lab, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022, China; Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, and Institute of Marine Sciences, Shantou University, Shantou, 515063, China; Guangdong Engineering Technology Research Center of Offshore Environmental Pollution Control, Shantou, 515063, China
| | - Qilin Gutang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, and Institute of Marine Sciences, Shantou University, Shantou, 515063, China; Guangdong Engineering Technology Research Center of Offshore Environmental Pollution Control, Shantou, 515063, China
| | - Yingping Fan
- Marine Microorganism Ecological & Application Lab, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Ran Bi
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, and Institute of Marine Sciences, Shantou University, Shantou, 515063, China; Guangdong Engineering Technology Research Center of Offshore Environmental Pollution Control, Shantou, 515063, China.
| | - Puhui Zhao
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, and Institute of Marine Sciences, Shantou University, Shantou, 515063, China; Guangdong Engineering Technology Research Center of Offshore Environmental Pollution Control, Shantou, 515063, China
| | - Keqin Zhang
- Marine Microorganism Ecological & Application Lab, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022, China; Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, and Institute of Marine Sciences, Shantou University, Shantou, 515063, China; Guangdong Engineering Technology Research Center of Offshore Environmental Pollution Control, Shantou, 515063, China
| | - Zewei Sun
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, and Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Ping Li
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, and Institute of Marine Sciences, Shantou University, Shantou, 515063, China; Guangdong Engineering Technology Research Center of Offshore Environmental Pollution Control, Shantou, 515063, China
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, and Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Jianxin Wang
- Marine Microorganism Ecological & Application Lab, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022, China.
| |
Collapse
|
6
|
Piskuła P, Astel A, Pawlik M. Microplastics in seawater and fish acquired from the corresponding fishing zones of the Baltic Sea. MARINE POLLUTION BULLETIN 2025; 211:117485. [PMID: 39718281 DOI: 10.1016/j.marpolbul.2024.117485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/02/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
Microplastics in seawater and fish from the Baltic Sea were analyzed. The significant contribution of the study is due to extensive collection of fish and surface water samples from corresponding fishing zones. Microplastics were detected in 100 % of seawater and 61 % of fish samples. The abundances of microplastics were 19,984 ± 8858 items/m3 (seawater) and 3.3 items/fish in the fish organs. The average dimension was 1.08 ± 1.19 mm (seawater), and 0.77 ± 0.84 mm (fish). In 106 out of 178 specimens (61 %), MPs were found in the gills (46 %), digestive tract (38 %), or liver (16 %). Fiber was the most dominant shape found in seawater (91.7 %) and fish (68.3 %), while the dominant color of items was blue. Items were mostly composed of polyethylene (21 %), polypropylene (20 %), cellophane (16 %), polyamide (9 %), and polyacrylate (8 %).
Collapse
Affiliation(s)
- Paulina Piskuła
- Institute of Geography, Pomeranian University in Słupsk, 22a Arciszewskiego Str., 76-200 Słupsk, Poland.
| | - Aleksander Astel
- Institute of Geography, Pomeranian University in Słupsk, 22a Arciszewskiego Str., 76-200 Słupsk, Poland
| | - Magdalena Pawlik
- Institute of Geography, Pomeranian University in Słupsk, 22a Arciszewskiego Str., 76-200 Słupsk, Poland
| |
Collapse
|
7
|
Li W, Zou H, Zheng Y, Zhang G, Xiang Y, Zhi D, Zhou Y. Microplastics in aquatic environments: detection, abundance, characteristics, and toxicological studies. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:150. [PMID: 39779524 DOI: 10.1007/s10661-024-13605-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025]
Abstract
Microplastics (MPs) are fragments with a diameter of less than 5 mm that have been directly manufactured or formed by the degradation of plastic waste. MPs are not only prone to bioaccumulation in the environment, but they also lead to the spread of micropollutants in the environment, thereby threatening human health ecological environment. The useful detection method of MPs and understanding their abundance, characteristics and toxicity are great essential for MPs removal and control. This work presented the current methods of MPs' detection, compared the abundance and characteristics of MPs in water, and reviewed MPs' toxicity to organisms. Furthermore, detailed policies intervention for plastics and MPs' mitigation have been focused which delineate for application of science and policy together with scientific evidence. Lastly, this study suggests more attention should be paid to the content of MPs in freshwater and organisms closely related to human life, as well as the toxicological toxicity of MPs in mammals.
Collapse
Affiliation(s)
- Wei Li
- School of Biology and Chemistry, Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, Minzu Normal University of Xingyi, Xingyi, 562400, China
| | - Huanwei Zou
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Yuguo Zheng
- School of Biology and Chemistry, Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, Minzu Normal University of Xingyi, Xingyi, 562400, China
| | - Guiqiang Zhang
- School of Biology and Chemistry, Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, Minzu Normal University of Xingyi, Xingyi, 562400, China
| | - Yujia Xiang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China.
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| | - Dan Zhi
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Yaoyu Zhou
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
8
|
Padula AD, Ronda AC, Rodríguez Pirani LS, Picone AL, Romano RM, Giardino GV, Seco Pon JP, Machado R, Gerpe M, Rodriguez D, Denuncio P. Microplastics in the digestive tract of an endangered cetacean of the Southwest Atlantic Ocean: The franciscana dolphin. MARINE POLLUTION BULLETIN 2025; 210:117348. [PMID: 39613520 DOI: 10.1016/j.marpolbul.2024.117348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024]
Abstract
In this study, we investigated for the first time anthropogenic microparticles in the franciscana dolphin Pontoporia blainvillei, the most endangered cetacean of the Southwest Atlantic Ocean. The intestinal content of the proximal and distal sections, and wall tissues of the proximal section of ten female dolphins collected during 2013-2023 were analyzed. All samples contained anthropogenic particles (%FO = 100). Fibers were the most abundant shape (99 %). Micro-Raman and micro-FTIR spectroscopies revealed the presence of polyester, polypropylene, acrylic, polyethylene, and semi-synthetic cotton polymers. Manufactured pigments such as reactive blue 238, Indigo 3600, and diarylide azo pigment (yellow 152) were also detected. We observed variations in the color and types of polymers present in the different sections of the intestine and within the wall tissue, suggesting a differential microplastic absorption. These findings confirm both the presence and absorption of microplastics in the intestines from franciscana dolphins.
Collapse
Affiliation(s)
- Antonella D Padula
- Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Funes 3350, CC1260, B7602AYL Mar del Plata, Argentina; Asociación Naturalista Geselina, Villa Gesell, Argentina.
| | - Ana C Ronda
- Instituto Argentino de Oceanografía (IADO-CONICET/UNS), CCT-CONICET Bahía Blanca, Camino La Carrindanga km 7.5, 8000 Bahía Blanca, Argentina; Departamento de Geografía y Turismo, Universidad Nacional del Sur (UNS), Av. Alem 1253, 8000 Bahía Blanca, Argentina
| | - Lucas S Rodríguez Pirani
- CEQUINOR (UNLP, CCT-CONICET La Plata, associated with CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, La Plata 1900, Argentina
| | - A Lorena Picone
- CEQUINOR (UNLP, CCT-CONICET La Plata, associated with CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, La Plata 1900, Argentina
| | - Rosana M Romano
- CEQUINOR (UNLP, CCT-CONICET La Plata, associated with CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, La Plata 1900, Argentina
| | - Gisela V Giardino
- Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Funes 3350, CC1260, B7602AYL Mar del Plata, Argentina
| | - Juan Pablo Seco Pon
- Asociación Naturalista Geselina, Villa Gesell, Argentina; Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata-CONICET, Rodríguez Pena 4046, nivel 1 (B7602GSD), Argentina
| | - Rodrigo Machado
- Grupo de Estudos de Mamíferos Aquáticos do Rio Grande do Sul (GEMARS), Torres, RS, Brazil; Grupo Interdisciplinar de Pesquisa em Ecológica Humana e Conservação da Biodiversidade Marinha (GIPEMar) and Programa de Pós-Graduação em Ciências Ambientais (PPGCA), Universidade do Extremo Sul Catarinense (UNESC), SC, Brazil
| | - Marcela Gerpe
- Toxicología Ambiental, Instituto de Investigaciones Marinas y Costeras (IIMyC), Argentina, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMDP), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Funes 3350, CC7600 Mar del Plata, Argentina
| | - Diego Rodriguez
- Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Funes 3350, CC1260, B7602AYL Mar del Plata, Argentina
| | - Pablo Denuncio
- Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Funes 3350, CC1260, B7602AYL Mar del Plata, Argentina; Asociación Naturalista Geselina, Villa Gesell, Argentina
| |
Collapse
|
9
|
López-Vázquez J, Miró M, Quintana JB, Cela R, Ferriol P, Rodil R. Bioaccessibility of plastic-related compounds from polymeric particles in marine settings: Are microplastics the principal vector of phthalate ester congeners and bisphenol A towards marine vertebrates? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176308. [PMID: 39284443 DOI: 10.1016/j.scitotenv.2024.176308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/24/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024]
Abstract
Marine vertebrates are known to ingest significant amounts of microplastics (MPs). Once ingested, MPs might cause gastrointestinal injuries and serve as a path of harmful plastic components, such as phthalate esters (PAEs) and bisphenol A (BPA) in the food chain. However, there is a lack of standardized in-vitro methods capable of simulating fish uptake of chemicals from MPs in the environment as potential vectors of such contaminants. In this work, leaching and in-vitro oral bioaccessibility testing of PAEs and BPA from MPs were conducted batchwise using artificial seawater and gut fluids mimicking gastric, intestinal, and gastrointestinal compartments of marine vertebrates at physiological temperature. The environmental and physiologically relevant extraction tests were applied to medium-density polyethylene (PE) and polyvinyl chloride (PVC) certified reference materials containing eight PAEs of varying hydrophobicity, namely, dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate, benzylbutyl phthalate, diethylhexyl phthalate, di-n-octyl phthalate, diisononyl phthalate and diisodecyl phthalate, and BPA (only in PE) as MP surrogates with realistic analyte concentrations of additives for primary MPs. The analysis of the leachates/gut fluid extracts was performed via dilute-and-shoot by ultra-high performance liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Only the most hydrophilic compounds, i.e. DMP, DEP and BPA, were found to get released significantly in saline waters, and exhibited the highest oral bioaccessibility rates (34-83 %). Based on our results, a dual-compartment physiologically relevant gastrointestinal test is recommended for appropriate estimation of fish bioaccessibility. The fish daily intakes of DMP, DEP and BPA from MPs, and seawater ingestion as well were estimated using several contamination scenarios (10th percentile as the low level, 50th percentile as the medium level and 90th percentile as the high level) based on probabilistic distributions and cumulative probability curves of measured environmental concentrations of (i) MPs in seawater throughout the world, (ii) DMP, DEP and BPA in beached MPs and those sampled in the open ocean (including both incurred and adsorbed contaminants), and (iii) DMP, DEP and BPA in seawater as reported in recent literature. Under a medium-level concentration scenario (50th percentile) in marine settings, and taking the gastrointestinal bioaccessibility factor into account, the daily intake of DMP, DEP and BPA from MPs accounted for a mere 0.02 % of the waterborne contribution. Hence, the ingestion of MPs should not be considered the primary route of fish exposure to BPA and the most polar PAEs in marine environments. However, more studies on the local and the global scales for mass concentrations of MPs and additives in marine settings are needed for further confirmation of our findings.
Collapse
Affiliation(s)
- Javier López-Vázquez
- Aquatic One Health Research Center (ARCUS) & Department of Analytical Chemistry, Nutrition and Food Chemistry, Universidade de Santiago de Compostela, R. Constantino Candeira S/N, IIAA building, Santiago de Compostela 15782, Spain
| | - Manuel Miró
- FI-TRACE Group, Department of Chemistry, Faculty of Science, University of the Balearic Islands, Carretera de Valldemossa km 7.5, E-07122 Palma de Mallorca, Illes Balears, Spain.
| | - José Benito Quintana
- Aquatic One Health Research Center (ARCUS) & Department of Analytical Chemistry, Nutrition and Food Chemistry, Universidade de Santiago de Compostela, R. Constantino Candeira S/N, IIAA building, Santiago de Compostela 15782, Spain
| | - Rafael Cela
- Mestrelab Research Center (CIM), Av. Barcelona 7, E-15706 Santiago de Compostela, Spain
| | - Pere Ferriol
- Interdisciplinary Ecology Group, Department of Biology, Faculty of Science, University of the Balearic Islands, Carretera de Valldemossa km 7.5, E-07122 Palma de Mallorca, Illes Balears, Spain
| | - Rosario Rodil
- Aquatic One Health Research Center (ARCUS) & Department of Analytical Chemistry, Nutrition and Food Chemistry, Universidade de Santiago de Compostela, R. Constantino Candeira S/N, IIAA building, Santiago de Compostela 15782, Spain.
| |
Collapse
|
10
|
Dueñas-Moreno J, Mora A, Capparelli MV, González-Domínguez J, Mahlknecht J. Potential ecological risk assessment of microplastics in environmental compartments in Mexico: A meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124812. [PMID: 39182811 DOI: 10.1016/j.envpol.2024.124812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/30/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Microplastic (MP) environmental contamination has been widely studied in Mexico. However, the evaluation of the associated risk to MPs in environmental compartments is scarce. Therefore, this study addresses this issue using diverse indicators such as the Pollution Load Index (PLI), the Polymer Risk Index (PRI), and the Potential Ecological Risk Index (PERI). The results of a meta-analysis revealed high MP contamination levels in most of the studied compartments, which included marine and estuarine waters, beach sand, freshwater, sediments, and biota. Regarding the risk assessment indicators, PLIs indicated low (56%), dangerous (22%), moderate (12%), and high (10%) levels across compartments. Meanwhile, PRIs displayed concerning values, with 36%, 35%, 20%, and 9% exhibiting dangerous, high, moderate, and low levels, respectively. Thus, high PRI values emphasized the significant rise in MP pollution, largely attributed to high-hazard polymer compositions. Otherwise, PERIs showed low (56%), very dangerous (29%), moderate (6%), high (5%), and dangerous (4%) levels. Thus, the ecological risk in Mexico is widespread and mainly linked to MP abundance, polymer type, environmental matrix, and characteristics of organisms. This study represents the first attempt at MP ecological risk assessment in Mexico, providing crucial insights for developing mitigation strategies to address concerns about MP contamination.
Collapse
Affiliation(s)
- Jaime Dueñas-Moreno
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64700, Mexico
| | - Abrahan Mora
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64700, Mexico.
| | - Mariana V Capparelli
- Instituto de Ciencias del Mar y Limnología, Estación El Carmen, Universidad Nacional Autónoma de México, Ciudad del Carmen, 24157, Mexico
| | - Janeth González-Domínguez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64700, Mexico
| | - Jürgen Mahlknecht
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64700, Mexico
| |
Collapse
|
11
|
Lv L, Feng W, Cai J, Zhang Y, Jiang J, Liao D, Yan C, Sui Y, Dong X. Enrichment characteristics of microplastics in Antarctic benthic and pelagic fish and krill near the Antarctic Peninsula. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175582. [PMID: 39159696 DOI: 10.1016/j.scitotenv.2024.175582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/02/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024]
Abstract
Global microplastic pollution has garnered widespread attention from researchers both domestically and internationally. However, compared to other regions worldwide, little is known about microplastic pollution in the marine ecosystems of the Antarctic region. This study investigated the abundance and characteristics of microplastics (MPs) in the gills and intestines of 15 species of Antarctic fish and Antarctic krill (Euphausia superba). The results indicate that the abundance of MPs in Antarctic fish and E. superba ranged from 0.625 to 2.0 items/individual and 0.17 to 0.27 items/individual, with mean abundances of 0.93 ± 0.96 items/individual and 0.23 ± 0.44 items/individual, respectively. Antarctic fish ingested significantly more MPs than E. superba. There was no significant difference in the abundance of MPs between the gills and intestines of Antarctic fish. However, the quantity of pellet-shaped MPs in the gills was significantly higher than in the intestines. The depth of fish habitat influenced the quantity and size of MPs in their bodies, with benthic fish ingesting significantly fewer MPs than pelagic fish. Pelagic fish ingested significantly more MPs sized 1-5 mm than benthic fish. Additionally, analysis of the characteristics of MPs revealed that fiber-shaped MPs were predominant in shape, with sizes generally smaller than 0.25 mm and 0.25-0.5 mm. The predominant colors of MPs were transparent, red, and black, while the main materials were polypropylene (PP), polystyrene (PS), polyamide (PA), and polyvinyl chloride (PVC). Compared to organisms from other regions, the levels of MPs in Antarctic fish and E. superba were relatively low. This study contributes to a better understanding of the extent of MP pollution in Antarctic fish and E. superba, aiding human efforts to mitigate its impact on the environment.
Collapse
Affiliation(s)
- Linlan Lv
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224,000, PR China
| | - Wanjun Feng
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224,000, PR China
| | - Jiaying Cai
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224,000, PR China
| | - Yingying Zhang
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224,000, PR China
| | - Jiacheng Jiang
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224,000, PR China
| | - Dagui Liao
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224,000, PR China
| | - Cong Yan
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224,000, PR China
| | - Yanming Sui
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224,000, PR China
| | - Xuexing Dong
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224,000, PR China
| |
Collapse
|
12
|
Mattioda V, Giorda F, Consales G, Testori C, Zoppi S, Goria M, Crescio MI, Serracca L, Varello K, Carta V, Marsili L, Baini M, Galli M, Fossi CC, Fontanesi E, Garibaldi F, Pietroluongo G, Mazzariol S, Brunelli F, Casalone C, Grattarola C. Anthropic Pressure on Cetaceans Stranded Along the Ligurian Coast Within the Pelagos Sanctuary: A Case Series. Animals (Basel) 2024; 14:3207. [PMID: 39595260 PMCID: PMC11591048 DOI: 10.3390/ani14223207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/25/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Data collected by C. Re. Di. Ma over a 3-year period (2020-2022) were considered to assess anthropic pressure on cetaceans living in the Ligurian sea. Out of a total of 37 stranded cetaceans, a complete post mortem examination was performed on 23 cases. Of these, 14 were further selected considering at least one of these conditions: (i) confirmed, probable, or suspected interaction with fishing activities through the application of a standardized diagnostic framework (7/14; 50%), (ii) toxicological stress through the evaluation of OCs hazardous levels (14/14; 100%), and (iii) terrestrial pathogen-associated disease (systemic infection and/or associated lesions) (7/14; 50%). For 9 animals out of a total of 14 selected, the cause of death was classified as natural (6/14; 42,8%), anthropic (3/14; 21,4%), or not determined (5/14; 35,7%) based on gross and histological pathology and ancillary testing. These findings extend our knowledge of the anthropic pressure to which cetaceans stranded along the Ligurian coastline are subjected from a multidisciplinary point of view.
Collapse
Affiliation(s)
- Virginia Mattioda
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (V.M.); (C.T.); (S.Z.); (M.G.); (M.I.C.); (L.S.); (K.V.); (V.C.); (C.C.); (C.G.)
| | - Federica Giorda
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (V.M.); (C.T.); (S.Z.); (M.G.); (M.I.C.); (L.S.); (K.V.); (V.C.); (C.C.); (C.G.)
| | - Guia Consales
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, 53100 Siena, Italy; (L.M.); (M.B.); (M.G.); (C.C.F.)
| | - Camilla Testori
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (V.M.); (C.T.); (S.Z.); (M.G.); (M.I.C.); (L.S.); (K.V.); (V.C.); (C.C.); (C.G.)
| | - Simona Zoppi
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (V.M.); (C.T.); (S.Z.); (M.G.); (M.I.C.); (L.S.); (K.V.); (V.C.); (C.C.); (C.G.)
| | - Maria Goria
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (V.M.); (C.T.); (S.Z.); (M.G.); (M.I.C.); (L.S.); (K.V.); (V.C.); (C.C.); (C.G.)
| | - Maria Ines Crescio
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (V.M.); (C.T.); (S.Z.); (M.G.); (M.I.C.); (L.S.); (K.V.); (V.C.); (C.C.); (C.G.)
| | - Laura Serracca
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (V.M.); (C.T.); (S.Z.); (M.G.); (M.I.C.); (L.S.); (K.V.); (V.C.); (C.C.); (C.G.)
| | - Katia Varello
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (V.M.); (C.T.); (S.Z.); (M.G.); (M.I.C.); (L.S.); (K.V.); (V.C.); (C.C.); (C.G.)
| | - Valerio Carta
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (V.M.); (C.T.); (S.Z.); (M.G.); (M.I.C.); (L.S.); (K.V.); (V.C.); (C.C.); (C.G.)
| | - Letizia Marsili
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, 53100 Siena, Italy; (L.M.); (M.B.); (M.G.); (C.C.F.)
- Centro Interuniversitario di Ricerca Sui Cetacei (CIRCE), University of Siena, 53100 Siena, Italy
| | - Matteo Baini
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, 53100 Siena, Italy; (L.M.); (M.B.); (M.G.); (C.C.F.)
| | - Matteo Galli
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, 53100 Siena, Italy; (L.M.); (M.B.); (M.G.); (C.C.F.)
| | - Cristina Cristina Fossi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, 53100 Siena, Italy; (L.M.); (M.B.); (M.G.); (C.C.F.)
| | - Elena Fontanesi
- Delfini del Ponente APS, Via Regione Bussi 27, 18100 Imperia, Italy;
| | - Fulvio Garibaldi
- DISTAV, University of Genoa, Corso Europa 26, 16132 Genova, Italy;
| | - Guido Pietroluongo
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (G.P.); (S.M.)
| | - Sandro Mazzariol
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (G.P.); (S.M.)
| | | | - Cristina Casalone
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (V.M.); (C.T.); (S.Z.); (M.G.); (M.I.C.); (L.S.); (K.V.); (V.C.); (C.C.); (C.G.)
| | - Carla Grattarola
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (V.M.); (C.T.); (S.Z.); (M.G.); (M.I.C.); (L.S.); (K.V.); (V.C.); (C.C.); (C.G.)
| |
Collapse
|
13
|
Liu G, Yuan H, Chen Y, Mao L, Yang C, Zhang R, Zhang G. Magnetic silica-coated cutinase immobilized via ELPs biomimetic mineralization for efficient nano-PET degradation. Int J Biol Macromol 2024; 279:135414. [PMID: 39245124 DOI: 10.1016/j.ijbiomac.2024.135414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/12/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
The proliferation of nano-plastic particles (NPs) poses severe environmental hazards, urgently requiring effective biodegradation methods. Herein, a novel method was developed for degrading nano-PET (polyethylene terephthalate) using immobilized cutinases. Nano-PET particles were prepared using a straightforward method, and biocompatible elastin-like polypeptide-magnetic nanoparticles (ELPs-MNPs) were obtained as magnetic cores via biomimetic mineralization. Using one-pot synthesis with the cost-effective precursor tetraethoxysilane (TEOS), silica-coated magnetically immobilized ELPs-tagged cutinase (ET-C@SiO2@MNPs) were produced. ET-C@SiO2@MNPs showed rapid magnetic separation within 30 s, simplifying recovery and reuse. ET-C@SiO2@MNPs retained 86 % of their initial activity after 11 cycles and exhibited superior hydrolytic capabilities for nano-PET, producing 0.515 mM TPA after 2 h of hydrolysis, which was 96.6 % that of free enzymes. Leveraging ELPs biomimetic mineralization, this approach offers a sustainable and eco-friendly solution for PET-nanoplastic degradation, highlighting the potential of ET-C@SiO2@MNPs in effective nanoplastic waste management and contributing to environmental protection and sustainable development.
Collapse
Affiliation(s)
- Guanzhang Liu
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Hang Yuan
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Yaxin Chen
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China; School of Chemistry and Molecular Biology, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Lei Mao
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Chun Yang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Ruifang Zhang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Guangya Zhang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China.
| |
Collapse
|
14
|
Kelly NE. Spatial distribution and risk assessment of microplastics in surface waters of the St. Lawrence Estuary. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174324. [PMID: 38960195 DOI: 10.1016/j.scitotenv.2024.174324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/31/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
Development of effective prevention and mitigation strategies for marine plastic pollution requires a better understanding of the pathways and transport mechanisms of plastic waste. Yet the role of estuaries as a key interface between riverine inputs of plastic pollution and delivery to receiving marine environments remains poorly understood. This study quantified the concentration and distribution of microplastics (MPs) (50-3200 μm) in surface waters of the St. Lawrence Estuary (SLE) in eastern Canada. Microplastics were identified and enumerated based on particle morphology, colour, and size class. Fourier Transform Infrared (FTIR) spectroscopy was used on a subset of particles to identify polymers. Generalized linear models (Gamma distribution with log-link) examined the relationship between MP concentrations and oceanographic variables and anthropogenic sources. Finally, a risk assessment model, using MP concentrations and chemical hazards based on polymer types, estimated the MP pollution risk to ecosystem health. Mean surface MP concentration in the SLE was 120 ± 42 SD particles m-3; MP concentrations were highest in the fluvial section and lowest in the Northwest Gulf of St. Lawrence. However, MP concentrations exhibited high heterogeneity along the length and width of the SLE. Microplastics were elevated at stations located closer to wastewater treatment plant outflows and downstream sites with more agricultural land. Black, blue, and transparent fibers and fragments ≤250 μm were most commonly encountered. Predominant polymer types included polyethylene terephthalate, regenerated cellulose, polyethylene, and alkyds. While the overall risk to ecosystem health in the entire estuary was considered low, several stations, particularly near urban centres were at high or very high risk. This study provides new insights into the quantification and distribution of MPs and first estimates of the risk of MP pollution to ecosystem health in one of the world's largest estuaries.
Collapse
Affiliation(s)
- Noreen E Kelly
- Fisheries and Oceans Canada, 1 Challenger Drive, Dartmouth, NS, Canada.
| |
Collapse
|
15
|
Pedersen AF, Bayen S, Liu L, Dietz R, Sonne C, Rosing-Asvid A, Ferguson SH, McKinney MA. Nontarget and suspect screening reveals the presence of multiple plastic-related compounds in polar bear, killer whale, narwhal and long-finned pilot whale blubber from East Greenland. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124417. [PMID: 38909771 DOI: 10.1016/j.envpol.2024.124417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/05/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
The monitoring of legacy contaminants in sentinel northern marine mammals has revealed some of the highest concentrations globally. However, investigations into the presence of chemicals of emerging Arctic concern (CEACs) and other lesser-known chemicals are rarely conducted, if at all. Here, we used a nontarget/suspect approach to screen for thousands of different chemicals, including many CEACs and plastic-related compounds (PRCs) in blubber/adipose from killer whales (Orcinus orca), narwhals (Monodon monoceros), long-finned pilot whales (Globicephala melas), and polar bears (Ursus maritimus) in East Greenland. 138 compounds were tentatively identified mostly as PRCs, and four were confirmed using authentic standards: di(2-ethylhexyl) phthalate (DEHP), diethyl phthalate (DEP), di(2-propylheptyl) phthalate (DPHP), and one antioxidant (Irganox 1010). Three other PRCs, a nonylphenol isomer, 2,6-di-tert-butylphenol, and dioctyl sebacate, exhibited fragmentation patterns matching those in library databases. While phthalates were only above detection limits in some polar bear and narwhal, Irganox 1010, nonylphenol, and 2,6-di-tert-butylphenol were detected in >50% of all samples. This study represents the first application of a nontarget/suspect screening approach in Arctic cetaceans, leading to the identification of multiple PRCs in their blubber. Further nontarget analyses are warranted to comprehensively characterize the extent of CEAC and PRC contamination within Arctic marine food webs.
Collapse
Affiliation(s)
- Adam F Pedersen
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada.
| | - Stéphane Bayen
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Lan Liu
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Rune Dietz
- Department of Ecoscience, Arctic Research Centre, Aarhus University, Roskilde DK-4000, Denmark
| | - Christian Sonne
- Department of Ecoscience, Arctic Research Centre, Aarhus University, Roskilde DK-4000, Denmark
| | - Aqqalu Rosing-Asvid
- Department of Birds and Mammals, Greenland Institute of Natural Resources, Nuuk GL-3900, Greenland
| | - Steven H Ferguson
- Arctic Aquatic Research Division, Fisheries and Oceans Canada, Winnipeg, MB R3T 2N6, Canada
| | - Melissa A McKinney
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| |
Collapse
|
16
|
Murano C, Balestrieri R, Minichino A, Campioni L, Casotti R. Macro-and micro-plastics detected in razorbill Alca torda in the western Mediterranean Sea. MARINE POLLUTION BULLETIN 2024; 206:116814. [PMID: 39116756 DOI: 10.1016/j.marpolbul.2024.116814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
The Mediterranean Sea is a hotspot for plastic pollution and, consequently, an area at high risk of plastic exposure for oceanic seabirds. In this work we retrieved plastic items from different tissues/organs of razorbills Alca torda. This is a piscivorous species of the Alcidae family usually thriving along the North Atlantic coasts. In the winter 2022-2023, some individuals were observed in the Mediterranean area up to the Italian tyrrhenian coasts. Among the five carcasses examined, three contained plastic debris, mainly in the digestive system, in the form of fragments and fibers. The latter were also found in the pectoral muscles and, in one individual, in the liver. Polyethylene was the most represented polymer (55.2 %), followed by polypropylene (24.1 %) and cellulose (10.4 %). Previous reports hypothesized that North Atlantic razorbills are less exposed to plastic pollution because of their feeding strategy. Our results contradict this hypothesis, highlighting their susceptibility to plastic contamination.
Collapse
Affiliation(s)
- Carola Murano
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy; NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy
| | - Rosario Balestrieri
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, Amendolara, Italy.
| | - Adriano Minichino
- Department of Veterinary Medicine and Animal Production, Federico II University of Naples, 80134 Naples, Italy
| | - Letizia Campioni
- MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Ispa - Instituto Universitário de Ciências Psicológicas, Sociais e da Vida, Lisboa 1149-041, Portugal
| | - Raffaella Casotti
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy.
| |
Collapse
|
17
|
Ali SS, Elsamahy T, Al-Tohamy R, Sun J. A critical review of microplastics in aquatic ecosystems: Degradation mechanisms and removing strategies. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 21:100427. [PMID: 38765892 PMCID: PMC11099331 DOI: 10.1016/j.ese.2024.100427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/21/2024] [Accepted: 04/21/2024] [Indexed: 05/22/2024]
Abstract
Plastic waste discarded into aquatic environments gradually degrades into smaller fragments, known as microplastics (MPs), which range in size from 0.05 to 5 mm. The ubiquity of MPs poses a significant threat to aquatic ecosystems and, by extension, human health, as these particles are ingested by various marine organisms including zooplankton, crustaceans, and fish, eventually entering the human food chain. This contamination threatens the entire ecological balance, encompassing food safety and the health of aquatic systems. Consequently, developing effective MP removal technologies has emerged as a critical area of research. Here, we summarize the mechanisms and recently reported strategies for removing MPs from aquatic ecosystems. Strategies combining physical and chemical pretreatments with microbial degradation have shown promise in decomposing MPs. Microorganisms such as bacteria, fungi, algae, and specific enzymes are being leveraged in MP remediation efforts. Recent advancements have focused on innovative methods such as membrane bioreactors, synthetic biology, organosilane-based techniques, biofilm-mediated remediation, and nanomaterial-enabled strategies, with nano-enabled technologies demonstrating substantial potential to enhance MP removal efficiency. This review aims to stimulate further innovation in effective MP removal methods, promoting environmental and social well-being.
Collapse
Affiliation(s)
- Sameh S. Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
18
|
Siwach S, Bharti M, Yadav S, Dolkar P, Modeel S, Yadav P, Negi T, Negi RK. Unveiling the ecotoxicological impact of microplastics on organisms - the persistent organic pollutant (POP): A comprehensive review. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 266:104397. [PMID: 39059355 DOI: 10.1016/j.jconhyd.2024.104397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/17/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Microplastics have been ubiquitous in our environment for decades, and numerous studies have revealed their extensive dispersion, reaching far beyond the surface of the land, soil, aquatic ecosystems. They have infiltrated the food-chain, the food web, even the air we breathe, as well as the water we drink. Microplastics have been detected in the food we consume, acting as vectors for hazardous chemicals that adhere to their hydrophobic surfaces. This can result in the transfer of these chemicals to the aquatic life, posing a threat to their well-being. The release of microplastics into different environmental settings can give rise to various eco-toxicological implications. The substantial body of literature has led scientists to the consensus that microplastic pollution is a global problem with the potential to impact virtually any type of ecosystem. This paper aims to discuss crucial information regarding the occurrence, accumulation, and ecological effects of microplastics on organisms. It also highlights the new and emerging disease named "Plasticosis" that is directly linked to microplastics and its toxicological effects like permanent scarring and long-term inflammation in the digestive system of the seabirds. By comprehending the behaviour of these microplastic pollutants in diverse habitats and evaluating their ecological consequences, it becomes possible to facilitate a better understanding of this toxicological issue.
Collapse
Affiliation(s)
- Sneha Siwach
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India
| | - Meghali Bharti
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India
| | - Sheetal Yadav
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India
| | - Padma Dolkar
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India
| | - Sonakshi Modeel
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India
| | - Pankaj Yadav
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India
| | - Tarana Negi
- Government College, Dujana, Jhajjar, Haryana 124102, India
| | - Ram Krishan Negi
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India.
| |
Collapse
|
19
|
Mohan P, Shahul Hamid F, Furumai H, Nishikawa K. Beneath the surface: Exploring microplastic intricacies in Anadara granosa. MARINE ENVIRONMENTAL RESEARCH 2024; 199:106581. [PMID: 38878345 DOI: 10.1016/j.marenvres.2024.106581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 07/14/2024]
Abstract
Anadara granosa or blood cockles have been reported to be a candidate for biomonitoring agents due to their sedimentary nature and their nutrient uptake mechanisms. Yet, this bivalve is still regarded as a delicacy in Asian cuisine. Malaysia is the largest exporter of this sea product that contaminated cockles may also be experienced by the importing countries. However, the bioaccumulation of microplastics in A. granosa cultivated in Malaysia has not been extensively studied. It is crucial to comprehend the risk posed to humans by consuming A. granosa in their diet. Therefore, the purpose of this research is to investigate the levels of microplastic accumulation in A. granosa from major exporters in Peninsular Malaysia, to evaluate the associated risk of microplastics on the species, and to estimate daily human consumption of microplastics through the consumption of A. granosa. The abundance of microplastics was quantified through the use of a stereo microscope, and the polymer type was determined using FTIR and micro-FTIR. Findings from this investigation revealed that all samples of A. granosa were contaminated with microplastics, with the highest levels of accumulation found in bivalves collected from the west coast (0.26 ± 0.15 particles/g) of Peninsular Malaysia. Fragment and fiber microplastics, measuring between 0.05 and 0.1 mm in size, were found to be the most prevalent in A. granosa, with blue being the dominant identified colour and rayon being the most common polymer type. Microplastic risk assessment due to the presence of polyacrylate, polycarbonate (PC), and polymethyl methacrylate (PMMA) resulted in a high risk of contamination for A. granosa. It was further determined that the current estimated dietary intake (EDI) suggests that consumers of A. granosa uptake approximately 21.8-93.5 particles/person/year of microplastics. This study highlights that A. granosa accumulates microplastics, which could potentially result in bioaccumulation and biomagnification in humans through consumption.
Collapse
Affiliation(s)
- Priya Mohan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Fauziah Shahul Hamid
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Center for Research in Waste Management, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Hiroaki Furumai
- Research and Development Initiative, Chuo University, Tokyo, Japan
| | | |
Collapse
|
20
|
Baettig CG, Laroche O, Ockenden A, Smith KF, Lear G, Tremblay LA. Characterization of the transcriptional effects of the plastic additive dibutyl phthalate alone and in combination with microplastic on the green-lipped mussel Perna canaliculus. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1604-1614. [PMID: 38771199 DOI: 10.1002/etc.5893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/26/2023] [Accepted: 04/17/2024] [Indexed: 05/22/2024]
Abstract
The presence and persistence of microplastics (MPs) in diverse aquatic environments are of global concern. Microplastics can impact marine organisms via direct physical interaction and the release of potentially harmful chemical additives incorporated into the plastic. These chemicals are physically bound to the plastic matrix and can leach out. The hazards associated with chemical additives to exposed organisms is not well characterized. We investigated the hazards of plastic additives leaching from plastic. We used the common plasticizer dibutyl phthalate (DBP) as a chemical additive proxy and the New Zealand green-lipped mussel (Perna canaliculus) as a model. We used early-adult P. canaliculus exposed to combinations of virgin and DBP-spiked polyvinyl chloride (PVC), MPs, and DBP alone for 7 days. Whole transcriptome sequencing (RNA-seq) was conducted to assess whether leaching of DBP from MPs poses a hazard. The differences between groups were evaluated using pairwise permutational multivariate analysis of variance (PERMANOVA), and all treatments were significantly different from controls. In addition, a significant difference was seen between DBP and PVC MP treatment. Transcriptome analysis revealed that mussels exposed to DBP alone had the most differentially expressed genes (914), followed by PVC MP + DBP (448), and PVC MP (250). Gene ontology functional analysis revealed that the most enriched pathway types were in cellular metabolism, immune response, and endocrine disruption. Microplastic treatments enriched numerous pathways related to cellular metabolism and immune response. The combined exposure of PVC MP + DBP appears to cause combined effects, suggesting that DBP is bioavailable to the exposed mussels in the PVC MP + DBP treatment. Our results support the hypothesis that chemical additives are potentially an important driver of MP toxicity. Environ Toxicol Chem 2024;43:1604-1614. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Camille G Baettig
- University of Auckland, Auckland, New Zealand
- Cawthron Institute, Nelson, New Zealand
| | | | | | - Kirsty F Smith
- University of Auckland, Auckland, New Zealand
- Cawthron Institute, Nelson, New Zealand
| | - Gavin Lear
- University of Auckland, Auckland, New Zealand
| | - Louis A Tremblay
- University of Auckland, Auckland, New Zealand
- Cawthron Institute, Nelson, New Zealand
| |
Collapse
|
21
|
Vincoff S, Schleupner B, Santos J, Morrison M, Zhang N, Dunphy-Daly MM, Eward WC, Armstrong AJ, Diana Z, Somarelli JA. The Known and Unknown: Investigating the Carcinogenic Potential of Plastic Additives. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10445-10457. [PMID: 38830620 PMCID: PMC11191590 DOI: 10.1021/acs.est.3c06840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 06/05/2024]
Abstract
Microplastics are routinely ingested and inhaled by humans and other organisms. Despite the frequency of plastic exposure, little is known about its health consequences. Of particular concern are plastic additives─chemical compounds that are intentionally or unintentionally added to plastics to improve functionality or as residual components of plastic production. Additives are often loosely bound to the plastic polymer and may be released during plastic exposures. To better understand the health effects of plastic additives, we performed a comprehensive literature search to compile a list of 2,712 known plastic additives. Then, we performed an integrated toxicogenomic analysis of these additives, utilizing cancer classifications and carcinogenic expression pathways as a primary focus. Screening these substances across two chemical databases revealed two key observations: (1) over 150 plastic additives have known carcinogenicity and (2) the majority (∼90%) of plastic additives lack data on carcinogenic end points. Analyses of additive usage patterns pinpointed specific polymers, functions, and products in which carcinogenic additives reside. Based on published chemical-gene interactions, both carcinogenic additives and additives with unknown carcinogenicity impacted similar biological pathways. The predominant pathways involved DNA damage, apoptosis, the immune response, viral diseases, and cancer. This study underscores the urgent need for a systematic and comprehensive carcinogenicity assessment of plastic additives and regulatory responses to mitigate the potential health risks of plastic exposure.
Collapse
Affiliation(s)
- Sophia Vincoff
- Department
of Medicine and the Duke Cancer Institute Center for Prostate and
Urologic Cancer, Duke University Medical
Center, Durham, North Carolina 27710, United States
| | - Beatrice Schleupner
- Department
of Orthopaedics, Duke University Medical
Center, Durham, North Carolina 27710, United States
| | - Jasmine Santos
- Department
of Medicine and the Duke Cancer Institute Center for Prostate and
Urologic Cancer, Duke University Medical
Center, Durham, North Carolina 27710, United States
| | - Margaret Morrison
- Nicholas
School of the Environment, Duke University, Durham, North Carolina 27710, United States
| | - Newland Zhang
- Department
of Medicine and the Duke Cancer Institute Center for Prostate and
Urologic Cancer, Duke University Medical
Center, Durham, North Carolina 27710, United States
| | - Meagan M. Dunphy-Daly
- Division
of Marine Science and Conservation, Nicholas School of the Environment,
Duke University Marine Laboratory, Duke
University, Beaufort, North Carolina 28516, United States
| | - William C. Eward
- Department
of Orthopaedics, Duke University Medical
Center, Durham, North Carolina 27710, United States
| | - Andrew J. Armstrong
- Department
of Medicine and the Duke Cancer Institute Center for Prostate and
Urologic Cancer, Duke University Medical
Center, Durham, North Carolina 27710, United States
| | - Zoie Diana
- Division
of Marine Science and Conservation, Nicholas School of the Environment,
Duke University Marine Laboratory, Duke
University, Beaufort, North Carolina 28516, United States
- Department
of Ecology and Evolutionary Biology, University
of Toronto, 25 Wilcocks
Street, Toronto, Ontario M5S3B2, Canada
| | - Jason A. Somarelli
- Department
of Medicine and the Duke Cancer Institute Center for Prostate and
Urologic Cancer, Duke University Medical
Center, Durham, North Carolina 27710, United States
- Nicholas
School of the Environment, Duke University, Durham, North Carolina 27710, United States
| |
Collapse
|
22
|
De Benedetto GE, Fraissinet S, Tardio N, Rossi S, Malitesta C. Microplastics determination and quantification in two benthic filter feeders Sabella spallanzanii, Polychaeta and Paraleucilla magna, Porifera. Heliyon 2024; 10:e31796. [PMID: 38845917 PMCID: PMC11153181 DOI: 10.1016/j.heliyon.2024.e31796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
Plastic pollution is a worldwide problem especially in the marine environment. Plastic items once fragmented into microplastics (MPs), can be captured by different marine species. Benthic filter feeders like sponges and polychaetas, due to their trophic strategy, are highly exposed to MPs pollution. Herein a simple but effective method to digest the fan worm Sabella spallanzanii and the calcareous sponge Paraleucilla magna is presented: a solution with KOH and H2O2 was able to remove quantitatively (more than 98 %) the organic matter in 3 h while an acid treatment dissolved most of spicules and chaetes in less than 30 min. MPs were easily identified both microscopically and spectroscopically on filters. Quantification in animals collected from the same environment showed that, on average, sponges accumulate fewer MPs than polychaetes (66 ± 31 and 117 ± 46 particles/g dry weight, respectively). The plastic recovery of the method was validated using three different approaches (spiking of standard PS microspheres, of common-use plastic objects, and of microplastics already weathered in marine environment). This procedure can make it easier and cost-effective to process biota in monitoring studies, providing information about bioindicator/bioremediation species.
Collapse
Affiliation(s)
- Giuseppe E. De Benedetto
- Laboratorio di Spettrometria di Massa Analitica e Isotopica, Dipartimento di Beni Culturali, Universita' del Salento, Via Monteroni, 73100, Lecce, Italy
| | - Silvia Fraissinet
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (DISTEBA), Universita' del Salento, Lecce, Italy
| | - Nicoletta Tardio
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (DISTEBA), Universita' del Salento, Lecce, Italy
| | - Sergio Rossi
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (DISTEBA), Universita' del Salento, Lecce, Italy
- CoNISMa Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy
- Institute of Marine Sciences (LABOMAR), Federal University of Ceará, Av, Abolicao 230, Fortaleza, 60440-900, Brazil
| | - Cosimino Malitesta
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (DISTEBA), Universita' del Salento, Lecce, Italy
| |
Collapse
|
23
|
Oliveira S, Krelling AP, Turra A. Contamination by microplastics in oysters shows a widespread but patchy occurrence in a subtropical estuarine system. MARINE POLLUTION BULLETIN 2024; 203:116380. [PMID: 38733889 DOI: 10.1016/j.marpolbul.2024.116380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/10/2024] [Accepted: 04/13/2024] [Indexed: 05/13/2024]
Abstract
Microplastics (MPs) have been widely documented in marine biota, with a notable presence in bivalve species. This study examines microplastic (MP) contamination in oysters across a subtropical estuarine system, revealing widespread and highly variable levels of contamination. Our results indicate a general trend of higher contamination in areas with greater anthropogenic impact, and unexpectedly high values in remote Marine Protected Areas, suggesting alternative sources of MPs. We observed a 94.31 % frequency of occurrence and an average contamination level of 8.16 ± 6.39 MP.ind-1, 1.06 ± 1.28 MP.g-1ww, and 7.54 ± 6.55 MP.g-1dw. Transparent fibers, predominantly composed of polyester and polyethylene from likely textile origins, were the most common. The findings underscore the significance of MP pollution in marine environments, even in protected zones. For enhanced spatial assessment and consistent data comparison, we recommend that future studies include MP quantities in terms of dry weight (MP.g-1dw) and biometric data such as size and weight.
Collapse
Affiliation(s)
- Suzane Oliveira
- Federal University of Paraná (UFPR), Center for Marine Studies (CEM), Coastal and Oceanic Systems Postgraduate Program (PGSISCO), Av. Beira-Mar, s/n, 83255-976 Pontal do Paraná, Paraná, Brazil; Federal University of Paraná (UFPR), Scientific and didactic laboratories of Setor Litoral. R. Jaguariaíva, 512, 83260-000 Matinhos, Paraná, Brazil.
| | - Allan Paul Krelling
- Federal University of Paraná (UFPR), Center for Marine Studies (CEM), Coastal and Oceanic Systems Postgraduate Program (PGSISCO), Av. Beira-Mar, s/n, 83255-976 Pontal do Paraná, Paraná, Brazil; Federal Institute of Paraná (IFPR), Paranaguá Campus, Natural Resources Department, Antônio Carlos Rodrigues St. 453, 83215-750 Paranaguá, Paraná, Brazil
| | - Alexander Turra
- Federal University of Paraná (UFPR), Center for Marine Studies (CEM), Coastal and Oceanic Systems Postgraduate Program (PGSISCO), Av. Beira-Mar, s/n, 83255-976 Pontal do Paraná, Paraná, Brazil; University of São Paulo (USP), Department of Biological Oceanography, Oceanographic Institute (IOUSP), Praça do Oceanográfico, 191, 05508-120 São Paulo, SP, Brazil
| |
Collapse
|
24
|
Marchellina A, Soegianto A, Irawan B, Indriyasari KN, Rahmatin NM, Mukholladun W, Irnidayanti Y, Payus CM, Hartl MGJ. The presence and physico-chemical properties of microplastics in seawater, sediment, and several organs of the spotted scat fish (Scatophagus argus, Linnaeus, 1766) collected from different locations along the East Java coast in Indonesia. CHEMOSPHERE 2024; 358:142214. [PMID: 38701863 DOI: 10.1016/j.chemosphere.2024.142214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024]
Abstract
A comprehensive study was undertaken to examine the contamination of spotted scat fish (Scatophagus argus) with microplastics (MP) in various locations along the East Java coast of Indonesia. The purpose of this study was to collect detailed information regarding the abundance, color, shape, size, type of polymer, and chemical components of the MP. The findings of this study indicated that MP exhibiting distinct attributes-including a specific fiber type, black coloration, and a size range of 1000- <5000 μm-was most abundant in the gill, stomach, and intestines of spotted scat fish of varying lengths. And MP with a size range of 100-<500 μm was prevalent in the sediment. MP with black fragments measuring less than 100 μm in diameter were found primarily in seawater. A positive correlation was identified between fish length and MP abundance in the intestines, as indicated by the Spearman correlation coefficient. Conversely, a negative correlation was detected between fish length and MP abundance in the gills. The findings of the Fourier transform infrared spectroscopy and Gas chromatography-mass spectrometry analyses, which indicate the presence of various polymers and chemical substances including plasticizers (e.g., diethyl phthalate, decane, and eicosane), stabilizers (2-piperidinone, hexadecanoic acid, mesitylene, and 2,4-Di-tert-butylphenol), and flame retardant (cyclododecene), in fish, are of the utmost importance. These substances have the potential to endanger the health of both animals and humans if they are ingested through the food chain.
Collapse
Affiliation(s)
- Ary Marchellina
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia.
| | - Agoes Soegianto
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia.
| | - Bambang Irawan
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia.
| | | | - Nailul Muthiati Rahmatin
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia.
| | - Wildanun Mukholladun
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia.
| | - Yulia Irnidayanti
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta, Jakarta, Indonesia.
| | - Carolyn Melissa Payus
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia.
| | - Mark G J Hartl
- Institute for Life and Earth Sciences, Centre for Marine Biodiversity and Biotechnology, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Riccarton, Edinburgh, Scotland, UK.
| |
Collapse
|
25
|
Bauri S, Shekhar H, Sahoo H, Mishra M. Investigation of the effects of nanoplastic polyethylene terephthalate on environmental toxicology using model Drosophila melanogaster. Nanotoxicology 2024; 18:354-372. [PMID: 38958196 DOI: 10.1080/17435390.2024.2368004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/04/2024]
Abstract
Plastic pollution has become a major environmental concern, and various plastic polymers are used daily. A study was conducted to examine the toxic effects of polyethylene terephthalate (PET) nanoplastics (NPLs) on Drosophila melanogaster. We have successfully synthesized PET NPLs and characterized using DLS, Zeta potential, TEM, HRTEM, SAED, XRD, FTIR, and Raman spectroscopy to gain crucial insights into the structure and properties. We fed PET NPLs to Drosophila to assess toxicity. ROS was quantified using DCFH-DA and NBT, and the nuclear degradation was checked by DAPI staining. Quantification of protein and activity of antioxidant enzymes like SOD, catalase depicted the adverse consequences of PET NPLs exposure. The dorsal side of the abdomens, eyes, and wings were also defective when phenotypically analyzed. These results substantiate the genotoxic and cytotoxic impact of nanoplastics. Notably, behavioral observations encompassing larval crawling and climbing of adults exhibit normal patterns, excluding the presence of neurotoxicity. Adult Drosophila showed decreased survivability, and fat accumulation enhanced body weight. These findings contribute to unraveling the intricate mechanisms underlying nanoplastic toxicity and emphasize its potential repercussions for organismal health and ecological equilibrium.
Collapse
Affiliation(s)
- Samir Bauri
- Department of Life Science, Neural Developmental Biology Lab, National Institute of Technology, Rourkela, India
| | - Himanshu Shekhar
- Department of Chemistry, Biophysical and Protein Chemistry Lab, National Institute of Technology, Rourkela, India
| | - Harekrushna Sahoo
- Department of Chemistry, Biophysical and Protein Chemistry Lab, National Institute of Technology, Rourkela, India
| | - Monalisa Mishra
- Department of Life Science, Neural Developmental Biology Lab, National Institute of Technology, Rourkela, India
| |
Collapse
|
26
|
Lemos LS, Di Perna AC, Steinman KJ, Robeck TR, Quinete NS. Assessment of Phthalate Esters and Physiological Biomarkers in Bottlenose Dolphins ( Tursiops truncatus) and Killer Whales ( Orcinus orca). Animals (Basel) 2024; 14:1488. [PMID: 38791705 PMCID: PMC11117373 DOI: 10.3390/ani14101488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/25/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
There is growing concern about the potential adverse health effects of phthalates (PAEs) on human health and the environment due to their extensive use as plasticizers and additives in commercial and consumer products. In this study, we assessed PAE concentrations in serum samples from aquarium-based delphinids (Tursiops truncatus, n = 36; Orcinus orca, n = 42) from California, Florida, and Texas, USA. To better understand the physiological effects of phthalates on delphinids, we also explored potential correlations between phthalates and the biomarkers aldosterone, cortisol, corticosterone, hydrogen peroxide, and malondialdehyde while accounting for sex, age, and reproductive stage. All PAEs were detected in at least one of the individuals. ΣPAE ranges were 5.995-2743 ng·mL-1 in bottlenose dolphins and 5.372-88,675 ng·mL-1 in killer whales. Both species displayed higher mean concentrations of DEP and DEHP. PAEs were detected in newborn delphinids, indicating transference via placenta and/or lactation. Linear mixed model results indicated significant correlations between aldosterone, month, location, status, and ΣPAEs in killer whales, suggesting that aldosterone concentrations are likely affected by the cumulative effects of these variables. This study expands on the knowledge of delphinid physiological responses to PAEs and may influence management and conservation decisions on contamination discharge regulations near these species.
Collapse
Affiliation(s)
- Leila S. Lemos
- Institute of Environment, Florida International University, North Miami, FL 33181, USA
- Emerging Contaminants of Concern Research Laboratory, Department of Chemistry & Biochemistry, College of Arts, Sciences, and Education, Florida International University, North Miami, FL 33181, USA;
| | - Amanda C. Di Perna
- Emerging Contaminants of Concern Research Laboratory, Department of Chemistry & Biochemistry, College of Arts, Sciences, and Education, Florida International University, North Miami, FL 33181, USA;
| | - Karen J. Steinman
- SeaWorld & Busch Gardens Species Preservation Laboratory, United Parks and Resorts, San Diego, CA 92109, USA; (K.J.S.); (T.R.R.)
| | - Todd R. Robeck
- SeaWorld & Busch Gardens Species Preservation Laboratory, United Parks and Resorts, San Diego, CA 92109, USA; (K.J.S.); (T.R.R.)
- United Parks and Resorts, 7007 Sea Harbor Drive, Orlando, FL 32821, USA
| | - Natalia S. Quinete
- Institute of Environment, Florida International University, North Miami, FL 33181, USA
- Emerging Contaminants of Concern Research Laboratory, Department of Chemistry & Biochemistry, College of Arts, Sciences, and Education, Florida International University, North Miami, FL 33181, USA;
| |
Collapse
|
27
|
Shukla S, Pei Y, Li WG, Pei DS. Toxicological Research on Nano and Microplastics in Environmental Pollution: Current Advances and Future Directions. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 270:106894. [PMID: 38492287 DOI: 10.1016/j.aquatox.2024.106894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/06/2024] [Accepted: 03/10/2024] [Indexed: 03/18/2024]
Abstract
This review explains the sources of nanoplastics (NPs) and microplastics (MPs), their release, fate, and associated health risks in the aquatic environment. In the 21st century, scientists are grappling with a major challenge posed by MPs and NPs. The global production of plastic has skyrocketed from 1.5 million tons in the 1950s to an astonishing 390.7 million tons in 2021. This pervasive presence of these materials in our environment has spurred scientific inquiry into their potentially harmful effects on living organisms. Studies have revealed that while MPs, with their larger surface area, are capable of absorbing contaminants and pathogens from the surroundings, NPs can easily be transferred through the food chain. As a result, living organisms may ingest them and accumulate them within their bodies. Due to their minuscule size, NPs are particularly difficult to isolate and quantify. Furthermore, exposure to both NPs and MPs has been linked to various adverse health effects in aquatic species, including neurological impairments, disruption of lipid and energy metabolism, and increased susceptibility to cytotoxicity, oxidative stress, inflammation, and reactive oxygen species (ROS) production. It is alarming to note that MPs have even been detected in commercial fish, highlighting the severity of this issue. There are also challenges associated with elucidating the toxicological effects of NPs and MPs, which are discussed in detail in this review. In conclusion, plastic pollution is a pressing issue that governments should tackle by ensuring proper implementation of rules and regulations at national and provincial levels to reduce its health risks.
Collapse
Affiliation(s)
- Saurabh Shukla
- School of Public Health, Chongqing Medical University, Chongqing 400016, China; College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.; Department of Forensic Science, School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, India
| | - Yang Pei
- Chongqing No.11 Middle School, Chongqing 400061, China
| | - Wei-Guo Li
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
28
|
Morais LMS, Queiroz AFDS, Brito BKFD, Fenzl N, Soares MDO, Giarrizzo T, Martinelli Filho JE. Microplastics in the Amazon biome: State of the art and future priorities. Heliyon 2024; 10:e28851. [PMID: 38596029 PMCID: PMC11002258 DOI: 10.1016/j.heliyon.2024.e28851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/11/2024] Open
Abstract
Microplastics (MPs) have been identified as a major potential threat to the biota and human health. Despite the exponential increase in MP research worldwide, few studies have focused on the extensive Amazon biome. To assess research priorities, the present study reviewed and summarized the available scientific knowledge on MPs in the Amazon, in addition to analyzing population and waste-management data, to evaluate potential sources of MPs in the hydrographic system. Poor sanitation conditions are a main source of MPs for the vast hydrographic basin, and, consequently, for the adjacent ocean. Secondary MPs predominated, mostly fibers (96% of debris), composed of polyamide (32%). Mean MP concentrations ranged from 0.34 to 38.3 particles.individual-1 in biota, 5 to 476,000 particles.m-3 in water, and 492.5 to 1.30848 × 107 particles.m-3 in sediment, values in close comparison with those found in areas profoundly affected by anthropogenic pollution. MPs were widespread in a range of Amazonian environments and species, and negative effects are probably occurring at various ecological levels. However, limited research, methodological constraints, flaws and the lack of standardization, combined with the continental dimensions of the Amazon, hampers the collection of the fundamental knowledge needed to reliably evaluate the impacts and implement effective mitigation measures. There is an urgent need to expand scientific data available for the region, improving local research infrastructure, and training and deploying local researchers.
Collapse
Affiliation(s)
- Leonardo Mario Siqueira Morais
- Centro de Estudos Avançados da Biodiversidade, Universidade Federal do Pará, Av. Perimetral, km 01, Guamá, Belém, PA, 66075-750, Brazil
- Laboratório de Oceanografia Biológica, Instituto de Geociências, Universidade Federal do Pará. Av. Augusto Corrêa s/n, Guamá, Belém, PA, 66075-110, Brazil
| | - Arnaldo Fabrício dos Santos Queiroz
- Centro de Estudos Avançados da Biodiversidade, Universidade Federal do Pará, Av. Perimetral, km 01, Guamá, Belém, PA, 66075-750, Brazil
- Laboratório de Oceanografia Biológica, Instituto de Geociências, Universidade Federal do Pará. Av. Augusto Corrêa s/n, Guamá, Belém, PA, 66075-110, Brazil
| | - Bárbara Kellry Fagundes de Brito
- Centro de Estudos Avançados da Biodiversidade, Universidade Federal do Pará, Av. Perimetral, km 01, Guamá, Belém, PA, 66075-750, Brazil
- Laboratório de Oceanografia Biológica, Instituto de Geociências, Universidade Federal do Pará. Av. Augusto Corrêa s/n, Guamá, Belém, PA, 66075-110, Brazil
| | - Norbert Fenzl
- Núcleo de Meio Ambiente, Universidade Federal do Pará. Rua do chalé de Ferro s/n, Guamá, Belém, PA, 66075-110, Brazil
| | - Marcelo de Oliveira Soares
- Instituto de Ciências do Mar (LABOMAR), Universidade Federal do Ceará (UFC), Av. da Abolição, 3207, Meireles, Fortaleza, CE, 60165-081, Brazil
| | - Tommaso Giarrizzo
- Grupo de Ecologia Aquática, Núcleo de Ecologia Aquática e Pesca da Amazônia (NEAP), Universidade Federal do Pará, Av. Perimetral 2651, Belém, Brazil
- Instituto de Ciências do Mar (LABOMAR), Universidade Federal do Ceará (UFC), Av. da Abolição, 3207, Meireles, Fortaleza, CE, 60165-081, Brazil
| | - José Eduardo Martinelli Filho
- Centro de Estudos Avançados da Biodiversidade, Universidade Federal do Pará, Av. Perimetral, km 01, Guamá, Belém, PA, 66075-750, Brazil
- Laboratório de Oceanografia Biológica, Instituto de Geociências, Universidade Federal do Pará. Av. Augusto Corrêa s/n, Guamá, Belém, PA, 66075-110, Brazil
| |
Collapse
|
29
|
Hongsawat P, Thinjong W, Chouychai B, Punyapalakul P, Prarat P. Microplastics in retail shellfish from a seafood market in eastern Thailand: Occurrence and risks to human food safety. MARINE POLLUTION BULLETIN 2024; 201:116228. [PMID: 38467085 DOI: 10.1016/j.marpolbul.2024.116228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 03/03/2024] [Accepted: 03/03/2024] [Indexed: 03/13/2024]
Abstract
This study aimed to investigate the presence of microplastics in three economically essential shellfish species: green mussels, cockles and spotted babylon. The average abundance of microplastics ranged from 2.41 to 2.84 particles/g wet weight. The predominant shape was fiber, with colors ranging from black-grey to transparent. The size of the microplastics discovered was <1.0 mm. Polystyrene and polyethylene were the most detected types in mussels and cockles, while linen was the predominant type in spotted babylon. The Thai population's estimated annual intake (EAI) of microplastics through shellfish consumption ranged from 20.23 to 1178.42 particles/person/year. The potential human health risks were evaluated using the polymer hazard index (PHI), which led to risk categories III-IV. These findings, along with others from the literature, indicate that shellfish consumption may pose risks to human health, depending on the species consumed and the origin of the specimens.
Collapse
Affiliation(s)
- Parnuch Hongsawat
- Faculty of Science, Energy and Environment, King Mongkut's University of Technology North Bangkok, Rayong Campus, Rayong 21120, Thailand
| | - Waleerat Thinjong
- Faculty of Science, Energy and Environment, King Mongkut's University of Technology North Bangkok, Rayong Campus, Rayong 21120, Thailand
| | - Bopit Chouychai
- Faculty of Engineering and Technology, King Mongkut's University of Technology North Bangkok, Rayong Campus, Rayong 21120, Thailand
| | - Patiparn Punyapalakul
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence on Hazardous Substance Management, Chulalongkorn University, Bangkok 10330, Thailand; Research unit Control of Emerging Micropollutants in Environment, Chulalongkorn University, Bangkok 10330, Thailand
| | - Panida Prarat
- Faculty of Science, Energy and Environment, King Mongkut's University of Technology North Bangkok, Rayong Campus, Rayong 21120, Thailand.
| |
Collapse
|
30
|
Cheng JO, Wang PL, Chou LC, Chang CW, Wang HV, Yang WC, Ko FC. Investigation of organic contaminants in the blubber of a blue whale (Balaenoptera musculus) first stranded on the coast of Taiwan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23638-23646. [PMID: 38424246 DOI: 10.1007/s11356-024-32647-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
This study presents a comprehensive assessment of persistent organic pollutants (POPs) in the blubber of a stranded blue whale found on the coast of Taiwan. The analysis included polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDT), Hexachlorobenzene (HCB), and polybrominated diphenyl ethers (PBDEs). The whale exhibited evident signs of emaciation, including low body weight, reduced blubber fat content, and thin blubber thickness. The dominant fatty acid type detected in the blubber was short-chain monounsaturated fatty acids (SC-MUFA), known to aid in thermoregulation. Stable isotope ratios indicated that the blue whale occupied a lower trophic position compared to a fin whale, suggesting its proximity to krill habitats in the Southern Ocean for feeding. The average concentrations of DDTs (1089.2 ± 4.7 ng/g lw; ΣDDT) and PCBs (1057.1 ± 49.8 ng/g lw) in the blubber were almost one order of magnitude higher than PAHs (41.7 ± 10.0 ng/g lw), HCB (70.6 ± 2. ng/g lw), and PBDEs (7.2 ± 1.2 ng/g lw). Pollutant concentrations in this individual blue whale were comparable to levels found in Norway, higher than those found in Chile, and notably lower than those found in Canada and Mexico. Calculating the biomagnification factor (BMF) for the POPs from krill (Euphausia superba) to the blue whale revealed significant bioaccumulation of pollutants in this particular whale. Additional research is imperative to achieve a thorough comprehension of bioaccumulation of POPs and their potential toxicological impacts on whale health.
Collapse
Affiliation(s)
- Jing-O Cheng
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
| | - Pei-Ling Wang
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| | - Li-Chin Chou
- National Academy of Marine Research, Kaohsiung, Taiwan
| | | | - Hao Ven Wang
- Department of Life Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- Marine Biology and Cetacean Research Center, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Cheng Yang
- School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Fung-Chi Ko
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan.
- Institute of Marine Biology, National Dong Hwa University, Pingtung, Taiwan.
| |
Collapse
|
31
|
Mukhopadhyay P, Valsalan SA. Incidence of microplastic translocation in freshwater fish eggs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123529. [PMID: 38341061 DOI: 10.1016/j.envpol.2024.123529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
The issue of microplastic contamination in seafood is progressively recognised as a significant global issue. This study presents novel findings regarding the detection of microplastics within the eggs of commercially available fish intended for consumption by humans. Eggs of Ompok bimaculatus, Heteropneustes fossilis, Mystus vittatus and Anabas testudineus collected from the Periyar River, Kerala, India were subjected to analysis for the potential presence of microplastics. Out of the 91 fishes (containing eggs) examined, microplastics were observed in the eggs of 2 species, i.e., Ompok bimaculatus and Mystus vittatus. The polymers recorded were polyethylene and polypropylene. Fish eggs are commonly consumed by humans and are highly esteemed as a delectable food. Considering the widespread consumption of fish eggs as a delicacy among humans, there exists a potential route for human exposure to microplastics, which raises concerns regarding public health.
Collapse
Affiliation(s)
- Patralika Mukhopadhyay
- School of Industrial Fisheries, Cochin University of Science and Technology, Lakeside Campus, Kochi, Kerala, India.
| | - Shibu Arkkakadavil Valsalan
- School of Industrial Fisheries, Cochin University of Science and Technology, Lakeside Campus, Kochi, Kerala, India
| |
Collapse
|
32
|
Ferreira LC, Souza Azevedo J. What do we know about plastic pollution in Brazilian aquatic ecosystems? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22119-22130. [PMID: 38403825 DOI: 10.1007/s11356-024-32525-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/14/2024] [Indexed: 02/27/2024]
Abstract
Due to the increasing use and inadequate disposal of plastic by humans, aquatic environments have become receptacles for pollutants such as plastic. This study aimed to perform an analysis of plastic particles pollution in Brazilian aquatic ecosystems with special attention to inland aquatic environments and fish in order to identify information gaps in this field. Manuscripts published in the last 21 years and indexed in the Web of Science database were consulted. A total of 185 met the proposed inclusion criteria, such as having empirical data, being conducted in Brazil, and dealing with plastic pollution. In general, the number of studies increases over the years, and this increasing number of publications is accompanied by declared financial support; the Southeast and Northeast regions are the regions that publish the most on the topic, with São Paulo, Rio de Janeiro, and Pernambuco being the main states; the main focus of the studies is the detection of plastic particles mainly in biota (51%) and sediment (34%), and the most frequent ecosystem is the marine (89%); regarding the taxa, the majority is about plastic detection in fish (75%). Only 18% of the papers studying fishes consider their bio-ecological data, and only 17% of the manuscripts carried out the chemical characterization of the particles. However, 99% of the papers considered the shape of the plastic particle. We emphasize the need for more research and grants for studies with Brazilian inland aquatic ecosystems on the effects of plastic particle pollution on freshwater fish. Regional and national research funding agencies are very important to encourage an increase in the number of grants and specific calls for studies on plastic pollution and its impact on freshwater biota, considering the different macro-regions in Brazil, especially in the northern region.
Collapse
Affiliation(s)
- Leticia Carneiro Ferreira
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, São Nicolau Street, 210, Centro, Diadema, Brazil
| | - Juliana Souza Azevedo
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, São Nicolau Street, 210, Centro, Diadema, Brazil.
| |
Collapse
|
33
|
Galli M, Baini M, Panti C, Giani D, Caliani I, Campani T, Rosso M, Tepsich P, Levati V, Laface F, Romeo T, Scotti G, Galgani F, Fossi MC. Oceanographic and anthropogenic variables driving marine litter distribution in Mediterranean protected areas: Extensive field data supported by forecasting modelling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166266. [PMID: 37579802 DOI: 10.1016/j.scitotenv.2023.166266] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/27/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Marine litter concentration in the Mediterranean Sea is strongly influenced both by anthropogenic pressures and hydrodynamic factors that locally characterise the basin. Within the Plastic Busters MPAs (Marine Protected Areas) Interreg Mediterranean Project, a comprehensive assessment of floating macro- and microlitter in the Pelagos Sanctuary and the Tuscan Archipelago National Park was performed. An innovative multilevel experimental design has been planned ad-hoc according to a litter provisional distribution model, harmonising and implementing the current sampling methodologies. The simultaneous presence of floating macro- and microlitter items and the potential influences of environmental and anthropogenic factors affecting litter distribution have been evaluated to identify hotspot accumulation areas representing a major hazard for marine species. A total of 273 monitoring transects of floating macrolitter and 141 manta trawl samples were collected in the study areas to evaluate the abundance and composition of marine litter. High mean concentrations of floating macrolitter (399 items/km2) and microplastics (259,490 items/km2) have been found in the facing waters of the Gulf of La Spezia and Tuscan Archipelago National Park as well in the Genova canyon and Janua seamount area. Accordingly, strong litter inputs were identified to originate from the mainland and accumulate in coastal waters within 10-15 nautical miles. Harbours and riverine outfalls contribute significantly to plastic pollution representing the main sources of contamination as well as areas with warmer waters and weak oceanographic features that could facilitate its accumulation. The results achieved may indicate a potentially threatening trend of litter accumulation that may pose a serious risk to the Pelagos Sanctuary biodiversity and provide further indications for dealing with plastic pollution in protected areas, facilitating future management recommendations and mitigation actions in these fragile marines and coastal environments.
Collapse
Affiliation(s)
- Matteo Galli
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100 Siena, Italy
| | - Matteo Baini
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100 Siena, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Cristina Panti
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100 Siena, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy.
| | - Dario Giani
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100 Siena, Italy
| | - Ilaria Caliani
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100 Siena, Italy
| | - Tommaso Campani
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100 Siena, Italy
| | - Massimiliano Rosso
- NBFC, National Biodiversity Future Center, Palermo, Italy; CIMA Research Foundation, 17100 Savona, Italy
| | - Paola Tepsich
- NBFC, National Biodiversity Future Center, Palermo, Italy; CIMA Research Foundation, 17100 Savona, Italy
| | - Vanessa Levati
- CIMA Research Foundation, 17100 Savona, Italy; Department of Biology, University of Napoli Federico II, 80138 Napoli, Italy
| | - Federica Laface
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; Stazione Zoologica Anton Dohrn, 98167 Messina, Italy
| | - Teresa Romeo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 98057 Milazzo, Italy; ISPRA, Italian Institute for Environmental Protection and Research, 98057 Milazzo, Italy
| | - Gianfranco Scotti
- ISPRA, Italian Institute for Environmental Protection and Research, 98057 Milazzo, Italy
| | | | - Maria Cristina Fossi
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100 Siena, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
34
|
Yang Z, Arakawa H. A beaker method for determination of microplastic concentration by micro-Raman spectroscopy. MethodsX 2023; 11:102251. [PMID: 37448948 PMCID: PMC10336159 DOI: 10.1016/j.mex.2023.102251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 06/10/2023] [Indexed: 07/18/2023] Open
Abstract
Fourier-transform infrared (FT-IR) spectroscopy method for measuring small microplastic (SMP) concentration in marine environment is time-consuming and labor-intensive due to sample pre-treatment. In contrast, Raman spectroscopy is less influenced by water and can directly measure SMP samples in water, making it a more efficient method to measure SMP concentration. Therefore, a method that can directly estimate the concentration of SMPs in water was developed, and the relationship between SMP concentration and experimental Raman spectra were established by testing with standard polyethylene (PE) samples. It was found that average spectra acquired in water solution could reflect characteristic peaks of the plastic after baseline correction. Further investigation found that there is a significant functional relationship between correlation coefficient of sample spectra and the concentration of PE particles, and such relationship can be modelled by Langmuir model. The empirical functional relationships can be used to estimate SMP concentrations by measuring average Raman spectra. The developed methodology is helpful for developing rapid SMP identification and monitoring methods in a more complex manner.•A method of directly measuring MP concentration in water is proposed.•Experimental procedures are provided.•Data analysis methods are outlined.
Collapse
|
35
|
Hossain MB, Yu J, Nur AAU, Banik P, Jolly YN, Mamun MA, Paray BA, Arai T. Distribution, characterization and contamination risk assessment of microplastics in the sediment from the world's top sediment-laden estuary. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118472. [PMID: 37384995 DOI: 10.1016/j.jenvman.2023.118472] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
Microplastics (MPs) have gained a serious attention as an emerging contaminant throughout the world because of their persistence and possible risks to aquatic ecosystems and human well-being. However, knowledge on MPs contamination from sub-tropical coastal systems is limited, and no study has been conducted on the MPs contamination in sediment from one of the highest sediment-laden estuaries, Meghna River, in the world. This is the first study to examine the quantity, morpho-chemical characteristics and contamination risk level of MPs from this large scale river. MPs were extracted from the sediment samples of 10 stations along the banks of the estuary by density separation, and then characterized using a stereomicroscope and Fourier Transform Infrared (FTIR) spectroscopy. The incidence of MPs varied from 12.5 to 55 item/kg dry sediment with an average of 28.67 ± 10.80 item/kg. The majority (78.5%) of the MPs were under 0.5 mm in size, with fibers being the most (74.1%) prevalent MPs type. Polypropylene (PP) was found to be the predominant polymer (53.4%), followed by polyethylene (PE, 20%), polystyrene (PS, 13.3%), and polyvinyl chloride (PVC, 13.3%). The highest occurrence of PP indicted the MPs in the estuary might be originated from clothing and dying industries, fishing nets, food packages, and pulp industries. The sampling stations were contaminated with MPs as shown by the contamination factor (CF) values and pollutant load index (PLI), both of which were >1. This study exposed new insights on the status of MPs in the sediments of the Meghna River, laying the groundwork for future research. The findings will contribute to estimate the global share of MPs to the marine environment.
Collapse
Affiliation(s)
- M Belal Hossain
- School of Engineering and Built Environment, Griffith University, Brisbane, QLD, Australia; Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali-3814, Bangladesh.
| | - Jimmy Yu
- School of Engineering and Built Environment, Griffith University, Brisbane, QLD, Australia
| | - As-Ad Ujjaman Nur
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
| | - Partho Banik
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
| | - Yeasmin N Jolly
- Atmospheric and Environmental Chemistry Laboratory, Chemistry Division, Atomic Energy Centre Dhaka, Bangladesh Atomic Energy Commission, Dhaka, Bangladesh
| | - Md Al- Mamun
- Materials Science Division, Atomic Energy Centre Dhaka, Bangladesh Atomic Energy Commission, Dhaka, 1000, Bangladesh
| | - Bilal Ahamad Paray
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Takaomi Arai
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam
| |
Collapse
|
36
|
Vighi M, Borrell A, Sahyoun W, Net S, Aguilar A, Ouddane B, Garcia-Garin O. Concentrations of bisphenols and phthalate esters in the muscle of Mediterranean striped dolphins (Stenella coeruleoalba). CHEMOSPHERE 2023; 339:139686. [PMID: 37544523 DOI: 10.1016/j.chemosphere.2023.139686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/20/2023] [Accepted: 07/29/2023] [Indexed: 08/08/2023]
Abstract
Bisphenols (BPs) and phthalate esters (PAEs) are important compounds for the plastics industry, also called "everywhere chemicals" due to their ubiquity in daily use products. Both chemical groups are well-known environmental contaminants, whose presence has been reported in all environmental compartments, and whose effects, mainly associated to endocrine disruption, are detrimental to living organisms. Cetaceans, due to their long life-span, low reproduction rate and high position in the trophic web, are especially vulnerable to the effects of contaminants. However, little is known about BP and PAE concentrations in cetacean tissues, their potential relation to individual biological variables, or their trends over time. Here, the concentration of 10 BPs and 13 PAEs was assessed in the muscle of 30 striped dolphins (Stenella coeruleoalba) stranded along the Spanish Catalan coast (NW Mediterranean) between 1990 and 2018. Six BP and 6 PAE compounds were detected, of which only 4,4'-(cyclohexane-1,1-diyl)diphenol (BPZ) was detected in all the samples, at the highest concentration (mean 16.06 μg g-1 lipid weight). Sex or reproductive condition were largely uninfluential on concentrations: only dimethylphthalate (DMP) concentrations were significantly higher in immature individuals than in adults, and the overall PAE concentrations were significantly higher in males than in females. Temporal variations were only detected in bis(4-hydroxyphenyl)ethane (BPE), diethylphthalate (DEP) and dimethylphthalate (DMP), whose concentrations were lower, and 9,9-Bis(4-hydroxyphenyl)fluorene (BPFL), which were higher, respectively, in samples taken between 2014 and 2018, probably reflecting shifts in the production and use of these chemicals. These results provide the first assessment of concentrations of several BP and PAE compounds in the muscle of an odontocete cetacean.
Collapse
Affiliation(s)
- Morgana Vighi
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology. University of Barcelona, 08028, Barcelona, Spain; Biodiversity Research Institute (IRBio). University of Barcelona, 08028, Barcelona, Spain.
| | - Asunción Borrell
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology. University of Barcelona, 08028, Barcelona, Spain; Biodiversity Research Institute (IRBio). University of Barcelona, 08028, Barcelona, Spain
| | - Wissam Sahyoun
- Université de Lille, Faculté des Sciences et Technologies, Laboratoire LASIRE (UMR 8516 CNRS), Cité Scientifique, 59655, Villeneuve d'Ascq Cedex, France
| | - Sopheak Net
- Université de Lille, Faculté des Sciences et Technologies, Laboratoire LASIRE (UMR 8516 CNRS), Cité Scientifique, 59655, Villeneuve d'Ascq Cedex, France
| | - Alex Aguilar
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology. University of Barcelona, 08028, Barcelona, Spain; Biodiversity Research Institute (IRBio). University of Barcelona, 08028, Barcelona, Spain
| | - Baghdad Ouddane
- Université de Lille, Faculté des Sciences et Technologies, Laboratoire LASIRE (UMR 8516 CNRS), Cité Scientifique, 59655, Villeneuve d'Ascq Cedex, France
| | - Odei Garcia-Garin
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology. University of Barcelona, 08028, Barcelona, Spain; Biodiversity Research Institute (IRBio). University of Barcelona, 08028, Barcelona, Spain
| |
Collapse
|
37
|
López-Martínez S, Giménez-Luque E, Molina-Pardo JL, Manzano-Medina S, Arribas-Arias H, Gavara R, Morales-Caselles C, L Rivas M. Plastic ingestion by two cetacean groups: Ziphiidae and Delphinidae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:121932. [PMID: 37336348 DOI: 10.1016/j.envpol.2023.121932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/21/2023]
Abstract
The presence of plastic in our environment is having a massive impact on today's marine biota. Whales and dolphins are becoming sentinels of litter pollution as plastic entanglement and ingestion affect them with unknown consequences. Although information exists about this anthropogenic interaction, the compilation of this data on metastudies is difficult due to the use of varied methodologies. A combination of our own data as well as a review of historical data was used to complete an extensive study of how cetaceans are interacting with macro and micro-litter at a global level. Here, we identify the plastic uptake by two cetacean families: Ziphiidae and Delphinidae, thus allowing for a better understanding in order to offer a global overview of their current status. Additionally, analysis was run on the plastic found in the digestive contents of stranded specimens of two Cuvier's beaked whales and fourteen striped dolphins in the Alboran Sea, in the Western Mediterranean, a hotspot for marine megafauna. Out of 623 stranded cetaceans from datasets, beaked whales displayed the highest concentration of macro, meso and microplastic in the Western Pacific Ocean. Regarding striped dolphins, Eastern Spain was the location with the highest plastic ingestion. Moreover, deep divers such as beaked whales ingested more plastic than striped dolphins which could be as a consequence of their feeding behavior or habitat. Thus, this overview provides useful information concerning conservation issues on how cetacean hotspots are highly affected by marine plastic ingestion.
Collapse
Affiliation(s)
| | | | | | | | | | - Rafael Gavara
- Instituto de Agroquímica y Tecnologia de Alimentos, CSIC, Paterna, Spain
| | | | - Marga L Rivas
- Biology Department, Institute of Marine Science INMAR, University of Cádiz, Spain
| |
Collapse
|
38
|
Schuab JM, Quirino WP, de Paula MS, Milagres MR, Motta DG, Zamprogno GC, Otegui MBP, Ocaris ERY, da Costa MB. Abundance of microplastic in different coastal areas using Phragmatopoma caudata (Kroyer in Morch, 1863) (Polychaeta: Sabelariidae) as an indicator. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163219. [PMID: 37011693 DOI: 10.1016/j.scitotenv.2023.163219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 05/27/2023]
Abstract
Plastic debris has been reported in the marine environment since the '70s. These plastic materials are introduced into the marine environment in several sizes, one of them microplastics (MP), and they have drawn great interest and concern in the past decades. Consumption of MP can cause weight loss, feeding rate decrease, reproductive activity decrease, and several other negative effects. Ingestion of MPs has already been reported for some species of polychaetes but the use of these annelids in MP studies is still poorly reported. Costa et al. (2021) was the first study to investigate the capability of the reef-building polychaete Phragmatopoma caudata to incorporate microplastic in its colony's structures. This makes the colonies a reservoir of MP and thus they reflect the environment's quality regarding MP presence. Consequently, this specie becomes an important asset to MP pollution investigation in coastal areas. Therefore, this work aims to investigate the abundance of MPs on the coastline of Espírito Santo using P. caudata as an indicator of MP presence. For this, we collected samples of P. caudata colonies in 12 sampling sites along the Espírito Santo coast (three replicates at each site). These colony samples were processed to extract the MPs particles from the colony surface, its inner structure, and tissues from the individuals. These MPs were counted using a stereomicroscope and sorted according to their color and type (filament, fragment, and other). Statistical analysis was performed using GraphPad Prism 9.3.0. Significant values followed p < 0.05. We found MP particles in all 12 sampled beaches, configuring a pollution rate of 100 %. The number of filaments was notably greater than the number of fragments and others. The most impacted beaches were found inside the metropolitan region of the state. Finally, P. caudata is an efficient and trustable indicator of microplastic in coastal areas.
Collapse
Affiliation(s)
- João Marcos Schuab
- Post-Graduation Program in Animal Biology, Department of Biological Sciences, Federal University of Espírito Santo, Brazil; Laboratory of Coastal Biology and Microplastic Analysis, Department of Chemistry, Federal University of Espírito Santo, Brazil.
| | - Welton Pereira Quirino
- Laboratory of Coastal Biology and Microplastic Analysis, Department of Chemistry, Federal University of Espírito Santo, Brazil; Laboratory of Genetics and Molecular Evolution, Biological Sciences Department, Federal University of Espírito Santo, Brazil
| | - Midiã Silva de Paula
- Post-Graduation Program in Animal Biology, Department of Biological Sciences, Federal University of Espírito Santo, Brazil; Laboratory of Coastal Biology and Microplastic Analysis, Department of Chemistry, Federal University of Espírito Santo, Brazil
| | - Mateus Reis Milagres
- Post-Graduation Program in Animal Biology, Department of Biological Sciences, Federal University of Espírito Santo, Brazil; Laboratory of Coastal Biology and Microplastic Analysis, Department of Chemistry, Federal University of Espírito Santo, Brazil
| | - Daniel Gosser Motta
- Post-Graduation Program in Animal Biology, Department of Biological Sciences, Federal University of Espírito Santo, Brazil; Laboratory of Coastal Biology and Microplastic Analysis, Department of Chemistry, Federal University of Espírito Santo, Brazil
| | - Gabriela Carvalho Zamprogno
- Laboratory of Coastal Biology and Microplastic Analysis, Department of Chemistry, Federal University of Espírito Santo, Brazil
| | - Mariana Beatriz Paz Otegui
- Laboratory of Coastal Biology and Microplastic Analysis, Department of Chemistry, Federal University of Espírito Santo, Brazil; Institute of Biodiversity and Applied Experimental Biology (CONICET-UBA), Buenos Aires University, Argentina
| | - Enrique Ronald Yapuchura Ocaris
- Universidad Tecnológica del Perú, Peru; Laboratory of Carbon and Ceramic Materials, Department of Chemistry, Federal University of Espírito Santo, Brazil
| | - Mercia Barcellos da Costa
- Laboratory of Coastal Biology and Microplastic Analysis, Department of Chemistry, Federal University of Espírito Santo, Brazil
| |
Collapse
|
39
|
Ahmed ASS, Billah MM, Ali MM, Bhuiyan MKA, Guo L, Mohinuzzaman M, Hossain MB, Rahman MS, Islam MS, Yan M, Cai W. Microplastics in aquatic environments: A comprehensive review of toxicity, removal, and remediation strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162414. [PMID: 36868275 DOI: 10.1016/j.scitotenv.2023.162414] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/10/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
The occurrence of microplastics (MPs) in aquatic environments has been a global concern because they are toxic and persistent and may serve as a vector for many legacies and emerging pollutants. MPs are discharged to aquatic environments from different sources, especially from wastewater plants (WWPs), causing severe impacts on aquatic organisms. This study mainly aims to review the Toxicity of MPs along with plastic additives in aquatic organisms at various trophic compartments and available remediation methods/strategies for MPs in aquatic environments. Occurrences of oxidative stress, neurotoxicity, and alterations in enzyme activity, growth, and feeding performance were identical in fish due to MPs toxicity. On the other hand, growth inhibition and ROS formation were observed in most of the microalgae species. In zooplankton, potential impacts were acceleration of premature molting, growth retardation, mortality increase, feeding behaviour, lipid accumulation, and decreased reproduction activity. MPs togather with additive contaminants could also exert some toxicological impacts on polychaete, including neurotoxicity, destabilization of the cytoskeleton, reduced feeding rate, growth, survivability and burrowing ability, weight loss, and high rate of mRNA transcription. Among different chemical and biological treatments for MPs, high removal rates have been reported for coagulation and filtration (>86.5 %), electrocoagulation (>90 %), advanced oxidation process (AOPs) (30 % to 95 %), primary sedimentation/Grit chamber (16.5 % to 58.84 %), adsorption removal technique (>95 %), magnetic filtration (78 % to 93 %), oil film extraction (>95 %), and density separation (95 % to 100 %). However, desirable extraction methods are required for large-scale research in MPs removal from aquatic environments.
Collapse
Affiliation(s)
- A S Shafiuddin Ahmed
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong; Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong.
| | - Md Masum Billah
- Inter-Departmental Research Centre for Environmental Science-CIRSA, University of Bologna, Ravenna Campus, Italy
| | - Mir Mohammad Ali
- Department of Aquaculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Md Khurshid Alam Bhuiyan
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, Cadiz, Spain
| | - Laodong Guo
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, USA
| | - Mohammad Mohinuzzaman
- Department of Environmental Science and Disaster Management, Noakhali Science and Technology University, Sonapur, Bangladesh
| | - M Belal Hossain
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Sonapur, Bangladesh; School of Engineering and Built Environment, Griffith University, Brisbane, Australia
| | - M Safiur Rahman
- Water Quality Research Laboratory, Chemistry Division, Atomic Energy Center, Atomic Energy Commission, Dhaka, Bangladesh
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| | - Meng Yan
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong
| | - Wenlong Cai
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong; Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong
| |
Collapse
|
40
|
Ma YB, Xie ZY, Hamid N, Tang QP, Deng JY, Luo L, Pei DS. Recent advances in micro (nano) plastics in the environment: Distribution, health risks, challenges and future prospects. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106597. [PMID: 37311378 DOI: 10.1016/j.aquatox.2023.106597] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/15/2023]
Abstract
Environmental micro(nano)plastics have become a significant global pollution problem due to the widespread use of plastic products. In this review, we summarized the latest research advances on micro(nano)plastics in the environment, including their distribution, health risks, challenges, and future prospect. Micro(nano)plastics have been found in a variety of environmental media, such as the atmosphere, water bodies, sediment, and especially marine systems, even in remote places like Antarctica, mountain tops, and the deep sea. The accumulation of micro(nano)plastics in organisms or humans through ingestion or other passive ways poses a series of negative impacts on metabolism, immune function, and health. Moreover, due to their large specific surface area, micro(nano)plastics can also adsorb other pollutants, causing even more serious effects on animal and human health. Despite the significant health risks posed by micro(nano)plastics, there are limitations in the methods used to measure their dispersion in the environment and their potential health risks to organisms. Therefore, further research is needed to fully understand these risks and their impacts on the environment and human health. Taken together, the challenges of micro(nano)plastics analysis in the environment and organisms must be addressed, and future research prospects need to be identified. Governments and individuals must take action to reduce plastic waste and minimize the negative impact of micro(nano)plastics on the environment and human health.
Collapse
Affiliation(s)
- Yan-Bo Ma
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Zhuo-Yuan Xie
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; College of Architecture and Urban Planning, Chongqing Jiaotong University, Chongqing 400074, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Naima Hamid
- Faculty of Science and Marine Environment, University Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Qi-Ping Tang
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
| | - Jiao-Yun Deng
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
| | - Lin Luo
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
| | - De-Sheng Pei
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
41
|
Galli M, Olavarrieta Garcia T, Baini M, Urbán R J, Ramírez-Macías D, Viloria-Gómora L, Panti C, Martellini T, Cincinelli A, Fossi MC. Microplastic occurrence and phthalate ester levels in neuston samples and skin biopsies of filter-feeding megafauna from La Paz Bay (Mexico). MARINE POLLUTION BULLETIN 2023; 192:115086. [PMID: 37236093 DOI: 10.1016/j.marpolbul.2023.115086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
The impacts of microplastics on filter feeders megafauna have recently received increased attention. These organisms are potentially exposed to plastic ingestion and the release of added/sorbed contaminants during feeding activities. An assessment of microplastic abundance and the chemical impact of Phthalates esters (PAEs) were performed in neustonic samples and skin biopsies of Balaenoptera physalus and Rhincodon typus inhabiting the Gulf of California (Mexico). Sixty-eight percent of the net tows contained plastics with a maximum of 0.24 items/m3 mainly composed of polyethylene fragments. PAE levels were detected both in environmental and skin biopsy samples, with the highest values in the fin whale specimens (5291 ng/g d.w). Plasticizer fingerprint showed a similar distribution pattern between neustonic samples and filter-feeding species, with DEHP and MBP having the highest concentrations. The detection of PAE levels confirmed their potential role as plastic tracers and give preliminary information about the toxicological status of these species feeding in La Paz Bay.
Collapse
Affiliation(s)
- Matteo Galli
- Department of Physical Sciences, Earth and Environment, University of Siena, Via P.A. Mattioli 4, 53100 Siena, Italy
| | - Tabata Olavarrieta Garcia
- Department of Marine and Coastal Sciences, Autonomous University of Baja California Sur, La Paz, B.C.S., Mexico
| | - Matteo Baini
- Department of Physical Sciences, Earth and Environment, University of Siena, Via P.A. Mattioli 4, 53100 Siena, Italy.
| | - Jorge Urbán R
- Department of Marine and Coastal Sciences, Autonomous University of Baja California Sur, La Paz, B.C.S., Mexico
| | - Deni Ramírez-Macías
- Tiburon Ballena Mexico proyecto de Conexiones Terramar AC, La Paz, BCS, Mexico
| | - Lorena Viloria-Gómora
- Department of Marine and Coastal Sciences, Autonomous University of Baja California Sur, La Paz, B.C.S., Mexico
| | - Cristina Panti
- Department of Physical Sciences, Earth and Environment, University of Siena, Via P.A. Mattioli 4, 53100 Siena, Italy
| | - Tania Martellini
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia, 3, 50019 Sesto Fiorentino, Firenze, Italy
| | - Alessandra Cincinelli
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia, 3, 50019 Sesto Fiorentino, Firenze, Italy
| | - Maria Cristina Fossi
- Department of Physical Sciences, Earth and Environment, University of Siena, Via P.A. Mattioli 4, 53100 Siena, Italy
| |
Collapse
|
42
|
Forrest SA, Vermaire JC. Spatial distribution of microplastics in a large watershed: a case study of the Ottawa River watershed. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:645. [PMID: 37150787 DOI: 10.1007/s10661-023-11277-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/19/2023] [Indexed: 05/09/2023]
Abstract
River water was sampled at 105 locations in the Ottawa River watershed and analysed for microplastics. Sampling techniques were standardised and replicated at each sample location to give an indication of the spatial extent of microplastics at the watershed scale. Microplastic concentrations remained largely uniform, with no clear accumulation of microplastics towards the lower reaches of the watershed. An ANCOVA analysis determined that the only significant relationships to microplastic concentration were distance downstream on the main channel and tributaries and an increase of microplastic concentrations at boat launch locations. However, these relationships were not strong (R2 value of 0.15) and suggest a more complex interaction of microplastics in large watersheds. It is recommended that further research on microplastic pollution in rivers needs to also focus on temporal factors in addition to considering sinks as an important element in the distribution of microplastics at the watershed scale.
Collapse
Affiliation(s)
- Shaun A Forrest
- Department of Geography and Environmental Studies, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| | - Jesse C Vermaire
- Department of Geography and Environmental Studies, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
- Institute of Environmental Science, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| |
Collapse
|
43
|
Park B, Kim SK, Joo S, Kim JS, Jo K, Song NS, Im J, Lee HJ, Kim SW, Lee SB, Kim S, Lee Y, Kim BY, Kim TW. Microplastics in large marine animals stranded in the Republic of Korea. MARINE POLLUTION BULLETIN 2023; 189:114734. [PMID: 36842279 DOI: 10.1016/j.marpolbul.2023.114734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs) are found in every ocean and are frequently ingested by marine animals. This study analyzed MPs in the stomachs and intestines of 12 large marine animals comprising one fin whale (Balaenoptera physalus), seven finless porpoises (Neophocaena asiaeorientalis), two loggerhead turtles (Caretta caretta), one Indo-Pacific bottlenose dolphin (Tursiops aduncus), and one common dolphin (Delphinus delphis) that were stranded off the Republic of Korea between 2019 and 2021. MPs were detected with a mean abundance of 3.42 ± 3.2 items/g and were predominantly of transparent-white, fragment-shaped polypropylene smaller than 200 μm. The abundance of MPs found did not correlate with the biological information (maturity, body length) of the finless porpoises and there were no significant differences in the abundance of MPs between the stomachs and intestines. These results cannot accurately assess the impact of MPs on large marine animals, so further studies are necessary to understand how MPs can potentially affect them.
Collapse
Affiliation(s)
- Byeongyong Park
- Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea; Department of Ocean Sciences, Inha University, Incheon 22212, Republic of Korea
| | - Seung-Kyu Kim
- Department of Marine Science, College of Natural Sciences, Incheon National University, Academy-ro 119, Yeounsu-gu, Incheon 22012, Republic of Korea; Research Institute of Basic Sciences, Incheon National University, Academy-ro 119, Yeonsu-gu, Incheon 22012, Republic of Korea; Yellow Sea Institute, Incheon National University, Academy-ro 119, Yeonsu-gu, Incheon 22012, Republic of Korea.
| | - Soobin Joo
- Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea; Department of Ocean Sciences, Inha University, Incheon 22212, Republic of Korea
| | - Ji-Su Kim
- Department of Marine Science, College of Natural Sciences, Incheon National University, Academy-ro 119, Yeounsu-gu, Incheon 22012, Republic of Korea
| | - Kyungsik Jo
- Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea; Department of Ocean Sciences, Inha University, Incheon 22212, Republic of Korea
| | - Nan-Seon Song
- Department of Marine Science, College of Natural Sciences, Incheon National University, Academy-ro 119, Yeounsu-gu, Incheon 22012, Republic of Korea
| | - Jibin Im
- Korean Environmental Technology Consulting Hotline, Republic of Korea
| | - Hee-Jee Lee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Academy-ro 119, Yeounsu-gu, Incheon 22012, Republic of Korea
| | - Sang Wha Kim
- Department of Microbiology and Immunology, Institute of Endemic Disease, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Sung Bin Lee
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Sunmin Kim
- Department of Parasitology, College of Medicine, Chungbuk National University, Republic of Korea
| | - Youngran Lee
- Department of Companion Animals, Osan University, Republic of Korea
| | - Byung-Yeob Kim
- Department of Marine Industry and Maritime Policy, Jeju National University, Jeju City 63243, Republic of Korea
| | - Tae Won Kim
- Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea; Department of Ocean Sciences, Inha University, Incheon 22212, Republic of Korea.
| |
Collapse
|
44
|
Goswami P, Selvakumar N, Verma P, Saha M, Suneel V, Vinithkumar NV, Dharani G, Rathore C, Nayak J. Microplastic intrusion into the zooplankton, the base of the marine food chain: Evidence from the Arabian Sea, Indian Ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:160876. [PMID: 36539089 DOI: 10.1016/j.scitotenv.2022.160876] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/16/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) are ubiquitous in the marine environment, yet information regarding their occurrence in the food web is limited. We investigated the concentration and composition of MPs in water and diverse zooplankton groups from the Arabian Sea basin. Forty-one zooplankton tows were collected with a bongo net (330 μm mesh) from the Arabian Sea in January 2019. MPs in the surface water varied between 0 and 0.055 particles/m3, with a relatively higher concentration (0.013 ± 0.002 particles/m3) in the central Arabian Sea. Though fibrous MPs were most abundant in the seawater (77.14 %), zooplankton prefers small fragments (55.3 %). The size of MPs was distinctly smaller (277.1 ± 46.74 μm) in zooplankton than that in seawater (864.32 ± 73.72 μm), and MPs bioaccumulation was observed in almost all the zooplankton functional groups. Polymer composition revealed polyamide, polyethylene, polypropylene, and PVC were abundant in water and zooplankton, suggesting that the textile, fishing, shipping, and packaging industries are significant sources. The prevailing northeasterly winds, strong West India Coastal Current, and conducive westward radiated Rossby wave during January 2019 have carried the microplastic contaminated water mass away from the coast, posing a threat to the open ocean ecosystems. These results demand further attention to investigate the state of plastic pollution in the Arabian Sea basin.
Collapse
Affiliation(s)
- Prasun Goswami
- Atal Centre for Ocean Science and Technology for Islands, National Institute of Ocean Technology, Port Blair, 744103, Andaman and Nicobar Islands, India.
| | - Narasimman Selvakumar
- Atal Centre for Ocean Science and Technology for Islands, National Institute of Ocean Technology, Port Blair, 744103, Andaman and Nicobar Islands, India; Centre for Environmental Studies, Anna University, Chennai 600 025, India
| | - Pankaj Verma
- Ocean Science and Technology for Islands, National Institute of Ocean Technology, Ministry of Earth Sciences, Government of India, Chennai 600 100, India
| | - Mahua Saha
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403 004, India
| | - V Suneel
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403 004, India
| | - Nambali Valsalan Vinithkumar
- Atal Centre for Ocean Science and Technology for Islands, National Institute of Ocean Technology, Port Blair, 744103, Andaman and Nicobar Islands, India
| | - Gopal Dharani
- Ocean Science and Technology for Islands, National Institute of Ocean Technology, Ministry of Earth Sciences, Government of India, Chennai 600 100, India
| | - Chayanika Rathore
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403 004, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Jibananand Nayak
- Atal Centre for Ocean Science and Technology for Islands, National Institute of Ocean Technology, Port Blair, 744103, Andaman and Nicobar Islands, India
| |
Collapse
|
45
|
Sun XL, Xiang H, Xiong HQ, Fang YC, Wang Y. Bioremediation of microplastics in freshwater environments: A systematic review of biofilm culture, degradation mechanisms, and analytical methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160953. [PMID: 36543072 DOI: 10.1016/j.scitotenv.2022.160953] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Microplastics, defined as particles <5 mm in diameter, are emerging environmental pollutants that pose a threat to ecosystems and human health. Biofilm degradation of microplastics may be an ecologically friendly approach. This review systematically summarises the factors affecting biofilm degradation of microplastics and proposes feasible methods to improve the efficiency of microplastic biofilm degradation. Environmentally insensitive microorganisms were screened, optimized, and commercially cultured to facilitate the practical application of this technology. For strain screening, technology should focus on microorganisms/strains that can modify the hydrophobicity of microplastics, degrade the crystalline zone of microplastics, and metabolise additives in microplastics. The biodegradation mechanism is also described; microorganisms secreting extracellular oxidases and hydrolases are key factors for degradation. Measuring the changes in molecular weight distribution (MWD) enables better analysis of the biodegradation behaviour of microplastics. Biofilm degradation of microplastics has relatively few applications because of its low efficiency; however, enrichment of microplastics in freshwater environments and wastewater treatment plant tailwater is currently the most effective method for treating microplastics with biofilms.
Collapse
Affiliation(s)
- Xiao-Long Sun
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, College of Wetlands, Southwest Forestry University, Kunming 650224, China; National Plateau Wetlands Research Center, Southwest Forestry University, Kunming 650224, China; National Wetland Ecosystem Fixed Research Station of Yunnan Dianchi, Southwest Forestry University, Kunming 650224, China.
| | - Hong Xiang
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, College of Wetlands, Southwest Forestry University, Kunming 650224, China; National Plateau Wetlands Research Center, Southwest Forestry University, Kunming 650224, China; National Wetland Ecosystem Fixed Research Station of Yunnan Dianchi, Southwest Forestry University, Kunming 650224, China
| | - Hao-Qin Xiong
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, College of Wetlands, Southwest Forestry University, Kunming 650224, China; National Plateau Wetlands Research Center, Southwest Forestry University, Kunming 650224, China; National Wetland Ecosystem Fixed Research Station of Yunnan Dianchi, Southwest Forestry University, Kunming 650224, China
| | - Yi-Chuan Fang
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, College of Wetlands, Southwest Forestry University, Kunming 650224, China; National Plateau Wetlands Research Center, Southwest Forestry University, Kunming 650224, China; National Wetland Ecosystem Fixed Research Station of Yunnan Dianchi, Southwest Forestry University, Kunming 650224, China
| | - Yuan Wang
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, College of Wetlands, Southwest Forestry University, Kunming 650224, China; National Plateau Wetlands Research Center, Southwest Forestry University, Kunming 650224, China; National Wetland Ecosystem Fixed Research Station of Yunnan Dianchi, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
46
|
Khanashyam AC, Anjaly Shanker M, Nirmal NP. Nano/micro-plastics: Sources, trophic transfer, toxicity to the animals and humans, regulation, and assessment. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 103:141-174. [PMID: 36863834 DOI: 10.1016/bs.afnr.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Being in an era of revolutionized production, consumption, and poor management of plastic waste, the existence of these polymers has resulted in an accumulation of plastic litter in nature. With macro plastics themselves being a major issue, the presence of their derivatives like microplastics which are confined to the size limitations of less than 5mm has ascended as a recent type of emergent contaminant. Even though there is size confinement, their occurrence is not narrowed and is extensively seen in both aquatic and terrestrial extents. The vast incidence of these polymers causing harmful effects on various living organisms through diverse mechanisms such as entanglement and ingestion have been reported. The risk of entanglement is mainly limited to smaller animals, whereas the risk associated with ingestion concerns even humans. Laboratory findings indicate the alignment of these polymers toward detrimental physical and toxicological effects on all creatures including humans. Supplementary to the risk involved with their presence, plastics also proceed as carters of certain toxic contaminants complemented during their industrial production process, which is injurious. Nevertheless, the assessment regarding the severity of these components to all creatures is comparatively restricted. This chapter focuses on the sources, complications, and toxicity associated with the presence of micro and nano plastics in the environment along with evidence of trophic transfer, and quantification methods.
Collapse
Affiliation(s)
- Anandu Chandra Khanashyam
- Department of Food Science and Technology, Kasetsart University, Ladyao, Chatuchak, Bangkok, Thailand
| | - M Anjaly Shanker
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonepat, Haryana, India
| | | |
Collapse
|
47
|
Bashirova N, Poppitz D, Klüver N, Scholz S, Matysik J, Alia A. A mechanistic understanding of the effects of polyethylene terephthalate nanoplastics in the zebrafish (Danio rerio) embryo. Sci Rep 2023; 13:1891. [PMID: 36732581 PMCID: PMC9894871 DOI: 10.1038/s41598-023-28712-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/23/2023] [Indexed: 02/04/2023] Open
Abstract
Plastic pollution, especially by nanoplastics (NPs), has become an emerging topic due to the widespread existence and accumulation in the environment. The research on bioaccumulation and toxicity mechanism of NPs from polyethylene terephthalate (PET), which is widely used for packaging material, have been poorly investigated. Herein, we report the first use of high-resolution magic-angle spinning (HRMAS) NMR based metabolomics in combination with toxicity assay and behavioural end points to get systems-level understanding of toxicity mechanism of PET NPs in intact zebrafish embryos. PET NPs exhibited significant alterations on hatching and survival rate. Accumulation of PET NPs in larvae were observed in liver, intestine, and kidney, which coincide with localization of reactive oxygen species in these areas. HRMAS NMR data reveal that PET NPs cause: (1) significant alteration of metabolites related to targeting of the liver and pathways associated with detoxification and oxidative stress; (2) impairment of mitochondrial membrane integrity as reflected by elevated levels of polar head groups of phospholipids; (3) cellular bioenergetics as evidenced by changes in numerous metabolites associated with interrelated pathways of energy metabolism. Taken together, this work provides for the first time a comprehensive system level understanding of toxicity mechanism of PET NPs exposure in intact larvae.
Collapse
Affiliation(s)
- Narmin Bashirova
- Institute for Medical Physics and Biophysics, Leipzig University, Leipzig, Germany.,Institute for Analytical Chemistry, Leipzig University, Leipzig, Germany
| | - David Poppitz
- Institute of Chemical Technology, Leipzig University, Leipzig, Germany
| | - Nils Klüver
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Stefan Scholz
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Jörg Matysik
- Institute for Analytical Chemistry, Leipzig University, Leipzig, Germany
| | - A Alia
- Institute for Medical Physics and Biophysics, Leipzig University, Leipzig, Germany. .,Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
48
|
A Review on Analytical Performance of Micro- and Nanoplastics Analysis Methods. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
|
49
|
Ziani K, Ioniță-Mîndrican CB, Mititelu M, Neacșu SM, Negrei C, Moroșan E, Drăgănescu D, Preda OT. Microplastics: A Real Global Threat for Environment and Food Safety: A State of the Art Review. Nutrients 2023; 15:617. [PMID: 36771324 PMCID: PMC9920460 DOI: 10.3390/nu15030617] [Citation(s) in RCA: 130] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
Microplastics are small plastic particles that come from the degradation of plastics, ubiquitous in nature and therefore affect both wildlife and humans. They have been detected in many marine species, but also in drinking water and in numerous foods, such as salt, honey and marine organisms. Exposure to microplastics can also occur through inhaled air. Data from animal studies have shown that once absorbed, plastic micro- and nanoparticles can distribute to the liver, spleen, heart, lungs, thymus, reproductive organs, kidneys and even the brain (crosses the blood-brain barrier). In addition, microplastics are transport operators of persistent organic pollutants or heavy metals from invertebrate organisms to other higher trophic levels. After ingestion, the additives and monomers in their composition can interfere with important biological processes in the human body and can cause disruption of the endocrine, immune system; can have a negative impact on mobility, reproduction and development; and can cause carcinogenesis. The pandemic caused by COVID-19 has affected not only human health and national economies but also the environment, due to the large volume of waste in the form of discarded personal protective equipment. The remarkable increase in global use of face masks, which mainly contain polypropylene, and poor waste management have led to worsening microplastic pollution, and the long-term consequences can be extremely devastating if urgent action is not taken.
Collapse
Affiliation(s)
- Khaled Ziani
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Corina-Bianca Ioniță-Mîndrican
- Department of Toxicology, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020945 Bucharest, Romania
| | - Magdalena Mititelu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | | | - Carolina Negrei
- Department of Toxicology, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020945 Bucharest, Romania
| | - Elena Moroșan
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Doina Drăgănescu
- Department of Pharmaceutical Physics and Informatics, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Olivia-Teodora Preda
- Department of Toxicology, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020945 Bucharest, Romania
| |
Collapse
|
50
|
Ortega-Borchardt JÁ, Ramírez-Álvarez N, Rios Mendoza LM, Gallo-Reynoso JP, Barba-Acuña ID, García-Hernández J, Égido-Villarreal J, Kubenik T. Detection of microplastic particles in scats from different colonies of California sea lions (Zalophus californianus) in the Gulf of California, Mexico: A preliminary study. MARINE POLLUTION BULLETIN 2023; 186:114433. [PMID: 36495612 DOI: 10.1016/j.marpolbul.2022.114433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs, < 5 mm in size) are highly bioavailable to many taxa within the marine ecosystem, either ingested directly or indirectly through trophic transfer from polluted prey. The ingestion analysis of these MPs from top predators, such as pinnipeds in Mexico, is relatively unexplored. Forty-eight scats from California sea lions were collected on six rookeries along the Gulf of California. From these scat samples, 294 suspected MPs particles were classified and chemically analyzed; 34% were synthetic and semi-synthetic, and 66% were non-synthetic. Blue-colored polyethylene terephthalate fibers were the most common type of MP registered. During laboratory work, multiple contamination control measures were implemented. Although the ingestion pathway is still unknown, our results support the other authors that suggest the potential trophic transfer of MPs to top predators and incidental ingestion while foraging. The particles documented here provide important baseline information for future MP research in the Gulf of California.
Collapse
Affiliation(s)
- José Ángel Ortega-Borchardt
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera al Varadero Nacional Km. 6.6. Col. Las Playitas, Guaymas, Sonora, C.P. 85480, Mexico.
| | - Nancy Ramírez-Álvarez
- Instituto de Investigaciones Oceanológicas-UABC, Carretera Tijuana-Ensenada 3917, Col. Playitas, Ensenada, B.C., C.P. 22860, Mexico.
| | - Lorena M Rios Mendoza
- University of Wisconsin-Superior, Department of Natural Sciences/Chemistry, Superior, WI 54880, USA.
| | - Juan Pablo Gallo-Reynoso
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera al Varadero Nacional Km. 6.6. Col. Las Playitas, Guaymas, Sonora, C.P. 85480, Mexico.
| | - Isai David Barba-Acuña
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera al Varadero Nacional Km. 6.6. Col. Las Playitas, Guaymas, Sonora, C.P. 85480, Mexico.
| | - Jaqueline García-Hernández
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera al Varadero Nacional Km. 6.6. Col. Las Playitas, Guaymas, Sonora, C.P. 85480, Mexico.
| | - Janitzio Égido-Villarreal
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera al Varadero Nacional Km. 6.6. Col. Las Playitas, Guaymas, Sonora, C.P. 85480, Mexico.
| | - Trevor Kubenik
- University of Wisconsin-Superior, Department of Natural Sciences/Chemistry, Superior, WI 54880, USA
| |
Collapse
|