1
|
Namulanda G, Condon S, Palmer TL, Ellis E, Yip F, Reh CM, Breysse P. Assessing the utility of healthcare claims data to determine potential health impacts of PFAS exposure with public drinking water. Environ Epidemiol 2025; 9:e368. [PMID: 40041203 PMCID: PMC11878993 DOI: 10.1097/ee9.0000000000000368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/02/2025] [Indexed: 03/06/2025] Open
Abstract
Healthcare claims data can support the timely surveillance of health outcomes from exposures to emerging and established environmental contaminants such as per- and polyfluoroalkyl substances (PFAS). PFAS are widely used in a variety of consumer products and industrial applications. They are detected in almost all Americans. PFAS exposure has been associated with several health outcomes including high cholesterol and thyroid disease. In 2014, PFAS were detected in five drinking water wells in New Castle City, New Castle County, Delaware. Perfluorooctane sulfonate and perfluorooctanoic acid were measured above the then Environmental Protection Agency's lifetime health advisory of 70 parts per trillion. This study uses healthcare claims data to show that healthcare plan members living in the ZIP code served by the five wells were at higher risk for type 2 diabetes, hypertension, hypertensive diseases, coronary artery disease, and hyperthyroidism based on new claims compared with healthcare plan members living elsewhere in the county. Healthcare claims data provided timely information on health outcomes not captured by traditional public health surveillance systems and at finer geographic levels.
Collapse
Affiliation(s)
- Gonza Namulanda
- Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA
| | - Suzanne Condon
- National Center for Environmental Health/Agency for Toxic Substances and Disease Registry, Centers for Disease Control and Prevention, Atlanta, GA
| | | | | | - Fuyuen Yip
- Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA
| | - Christopher M Reh
- National Center for Environmental Health/Agency for Toxic Substances and Disease Registry, Centers for Disease Control and Prevention, Atlanta, GA
| | - Patrick Breysse
- National Center for Environmental Health/Agency for Toxic Substances and Disease Registry, Centers for Disease Control and Prevention, Atlanta, GA
| |
Collapse
|
2
|
Hall AM, Braun JM. Per- and Polyfluoroalkyl Substances and Outcomes Related to Metabolic Syndrome: A Review of the Literature and Current Recommendations for Clinicians. Am J Lifestyle Med 2025; 19:211-229. [PMID: 39981556 PMCID: PMC11836584 DOI: 10.1177/15598276231162802] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of toxic, ubiquitous, anthropogenic chemicals known to bioaccumulate in humans. Substantial concern exists regarding the human health effects of PFAS, particularly metabolic syndrome (MetS), a precursor to cardiovascular disease, the leading cause of mortality worldwide. This narrative review provides an overview of the PFAS literature on 4 specific components of MetS: insulin resistance/glucose dysregulation, central adiposity, dyslipidemia, and blood pressure. We focus on prospective cohort studies as these provide the best body of evidence compared to other study designs. Available evidence suggests potential associations between some PFAS and type-2 diabetes in adults, dyslipidemia in children and adults, and blood pressure in adults. Additionally, some studies found that sex and physical activity may modify these relationships. Future studies should consider modification by sex and lifestyle factors (e.g., diet and physical activity), as well quantifying the impact of PFAS mixtures on MetS features and related clinical disease. Finally, clinicians can follow recently developed clinical guidance to screen for PFAS exposure in patients, measure PFAS levels, conduct additional clinical care based on PFAS levels, and advise on PFAS exposure reduction.
Collapse
Affiliation(s)
- Amber M. Hall
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - Joseph M. Braun
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| |
Collapse
|
3
|
Elgarahy AM, Eloffy MG, Saber AN, Abouzid M, Rashad E, Ghorab MA, El-Sherif DM, Elwakeel KZ. Exploring the sources, occurrence, transformation, toxicity, monitoring, and remediation strategies of per- and polyfluoroalkyl substances: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1209. [PMID: 39556161 DOI: 10.1007/s10661-024-13334-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 10/25/2024] [Indexed: 11/19/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS), a class of man-made chemicals, possess unique properties that have rendered them indispensable in various industries and consumer goods. However, their extensive use and persistence in the environment have raised concerns about their potential repercussions on human health and the ecosystem. This review provides insights into the sources, occurrence, transformation, impacts, fate, monitoring, and remediation strategies for PFAS. Once released into the environment, these chemicals undergo intricate transformation processes, such as degradation, bioaccumulation, and biomagnification, which result in their far-reaching distribution and persistence. Their chemical stability results in persistent pollution, with far-reaching ecological and human health implications. Remediation strategies for PFAS are still in their infancy, and researchers are exploring innovative and sustainable methods for treating contaminated environments. Promising technologies such as adsorption, biodegradation, and electrochemical oxidation have shown the potential to remove PFAS from contaminated sites, yet the search for more efficient and sustainable solutions continues. In conclusion, this review emphasizes the urgent need for continued research and innovation to address the global environmental challenge posed by PFAS. As we move forward, it is imperative to prioritize sustainable solutions that minimize the detrimental consequences of these substances on human health and the environment.
Collapse
Affiliation(s)
- Ahmed M Elgarahy
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt
- Egyptian Propylene and Polypropylene Company (EPPC), Port-Said, Egypt
| | - M G Eloffy
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | - Ayman N Saber
- Pesticide Residues and Environmental Pollution Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Dokki, 12618, Giza, Egypt
- Department of Analytical Chemistry, Institute of Chemistry for Energy and the Environment, University of Córdoba, 14071, Cordoba, Spain
| | - Mohamed Abouzid
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 6 Święcickiego Street, 60-781, Poznan, Poland
| | - Emanne Rashad
- Department of Environmental Sciences, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mohamed A Ghorab
- Wildlife Toxicology Laboratory, Department of Animal Science, Institute for Integrative Toxicology (IIT), Michigan State University, East Lansing, MI, 48824, USA
| | - Dina M El-Sherif
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Khalid Z Elwakeel
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt.
- Department of Environmental Science, College of Science, University of Jeddah, Jeddah, Saudi Arabia.
| |
Collapse
|
4
|
Rudzanova B, Thon V, Vespalcova H, Martyniuk CJ, Piler P, Zvonar M, Klanova J, Blaha L, Adamovsky O. Gene expression patterns associated with PFOA exposure in Czech young men and women. ENVIRONMENT INTERNATIONAL 2024; 190:108879. [PMID: 39008919 DOI: 10.1016/j.envint.2024.108879] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/20/2024] [Accepted: 07/05/2024] [Indexed: 07/17/2024]
Abstract
Perfluorooctanoic acid (PFOA), a member of per- and polyfluoroalkyl substances (PFASs), has been widely used in manufacturing for decades. Currently, PFOA is strictly regulated, but due to its high stability and persistence, it is detected in both environmental as well as in human matrices. To elucidate mechanisms of PFOA toxicity in humans, we determined the genome-wide transcriptomic changes of peripheral blood mononuclear cells (PBMC) responding to PFOA exposure in a sex-stratified analysis. This work employed samples from 145 female and 143 male participants of the CELSPAC: YA study to characterize PFOA-associated transcripts in a broader context using computational analysis. PFOA-associated gene expression differed significantly between men and women, as only 2 % of mapped genes were expressed in both sexes. Disease-specific enrichment analysis revealed cancer and immune-related disease terms as those most enriched in male and female populations. Patterns of enriched terms within the gene set enrichment analysis indicated three main targets of PFOA toxicity: i) lipid metabolism for women; ii) cell cycle regulation for men; and iii) immune system response for both sexes. In summary, our genome-wide transcriptomics analysis described sex-specific differences in PFOA-associated gene expression and provided evidence about biological pathways underlying PFOA toxicity in humans.
Collapse
Affiliation(s)
- Barbora Rudzanova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 602 00 Brno, Czech Republic
| | - Vojtech Thon
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 602 00 Brno, Czech Republic
| | - Hana Vespalcova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 602 00 Brno, Czech Republic
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Pavel Piler
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 602 00 Brno, Czech Republic
| | - Martin Zvonar
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 602 00 Brno, Czech Republic; Department of Kinesiology, Faculty of Sports Studies, Kamenice 753/5, Brno, Czech Republic
| | - Jana Klanova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 602 00 Brno, Czech Republic
| | - Ludek Blaha
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 602 00 Brno, Czech Republic
| | - Ondrej Adamovsky
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 602 00 Brno, Czech Republic.
| |
Collapse
|
5
|
Abstract
Conservative estimates by the World Health Organization suggest that at least a quarter of global cardiovascular diseases are attributable to environmental exposures. Associations between air pollution and cardiovascular risk have garnered the most headlines and are strong, but less attention has been paid to other omnipresent toxicants in our ecosystem. Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are man-made chemicals that are extensively used in industrial and consumer products worldwide and in aqueous film-forming foam utilized in firefighting. As such, our exposure to PFAS is essentially ubiquitous. Given the long half-lives of these degradation-resistant chemicals, virtually, all people are carrying a body burden of PFAS. Health concerns related to PFAS are growing such that the National Academies of Sciences, Engineering and Medicine has recommended standards for clinical follow-up of individuals with high PFAS blood levels, including prioritizing screening for dyslipidemia. The link between PFAS and dyslipidemia has been extensively investigated, and evidence for associations is compelling. However, dyslipidemia is not the only cardiovascular risk factor with which PFAS is associated. Here, we review the epidemiological evidence for links between PFAS of concern identified by the National Academies of Sciences, Engineering and Medicine and risk factors for cardiovascular disease, including overweight/obesity, glucose intolerance, hypertension, dyslipidemia, and hyperuricemia. Moreover, we review the potential connections of PFAS with vascular disease and atherosclerosis. While observational data support associations between the National Academies of Sciences, Engineering and Medicine PFAS and selected cardiac risk factors, additional research is needed to establish causation and better understand how exposure to PFAS leads to the development of these conditions.
Collapse
Affiliation(s)
| | - Noyan Gokce
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
6
|
Ko MY, Chon SH, Park H, Min E, Kim Y, Cha SW, Seo JW, Lee BS, Ka M, Hyun SA. Perfluorooctanoic acid induces cardiac dysfunction in human induced pluripotent stem cell-derived cardiomyocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116170. [PMID: 38452704 DOI: 10.1016/j.ecoenv.2024.116170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/22/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
Perfluorooctanoic acid (PFOA), commonly found in drinking water, leads to widespread exposure through skin contact, inhalation, and ingestion, resulting in detectable levels of PFOA in the bloodstream. In this study, we found that exposure to PFOA disrupts cardiac function in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). We observed reductions in field and action potentials in hiPSC-CMs exposed to PFOA. Furthermore, PFOA demonstrated a dose-dependent inhibitory effect on various ion channels, including the calcium, sodium, and potassium channels. Additionally, we noted dose-dependent inhibition of the expression of these ion channels in hiPSC-CMs following exposure to PFOA. These findings suggest that PFOA exposure can impair cardiac ion channel function and decrease the transcription of genes associated with these channels, potentially contributing to cardiac dysfunction such as arrhythmias. Our study sheds light on the electrophysiological and epigenetic consequences of PFOA-induced cardiac dysfunction, underscoring the importance of further research on the cardiovascular effects of perfluorinated compounds (PFCs).
Collapse
Affiliation(s)
- Moon Yi Ko
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Sun-Hwa Chon
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea; Graduate School of Pre-Clinical Laboratory Science, Konyang University, Daejeon 35365, Republic of Korea
| | - Heejin Park
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Euijun Min
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Younhee Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Sin-Woo Cha
- Department of Nonclinical Studies, Korea Institute of Toxicology, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Joung-Wook Seo
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Byoung-Seok Lee
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea.
| | - Minhan Ka
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea.
| | - Sung-Ae Hyun
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea.
| |
Collapse
|
7
|
Pang L, Li M, Dukureh A, Li Y, Ma J, Tang Q, Wu W. Association between prenatal perfluorinated compounds exposure and risk of pregnancy complications: A meta-analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116017. [PMID: 38290316 DOI: 10.1016/j.ecoenv.2024.116017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/02/2024] [Accepted: 01/23/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND AND OBJECTIVE Per- and polyfluoroalkyl substances (PFASs) have been shown to be persistent and bioaccumulative. An elevated danger of pregnancy complications perhaps connected with exposure to PFASs, but the potential effects remain elusive. The objective of this study is to investigate the possible association between PFASs exposure and pregnancy complications, drawing upon existing evidence. METHODS Electronic databases of PubMed, Qvid Medline, Embase, and Web of Science were searched thoroughly to identify eligible research published prior to November 28, 2023, examining the relationship between PFASs and pregnancy-related complications. To evaluate the quality of observational studies incorporated into the article, the Strengthening Reporting of Observational Studies in Epidemiology (STROBE) tool was utilized. The main outcomes assessed in this study included gestational diabetes mellitus (GDM), hypertensive disorders of pregnancy (HDP), gestational hypertension (GH), and preeclampsia (PE). RESULTS Twenty-five relevant studies involving 30079 participants were finally selected from four databases. The combined estimates indicate that prenatal exposure to perfluorooctanoic acid (PFOA), perfluorohexane sulfonic acid (PFHxS), perfluorobutane sulfonic acid (PFBS), and perfluoroenanthic acid (PFHpA) is associated with gestational diabetes mellitus (GDM) (PFOA: OR = 1.45, 95%CI: 1.07-1.94, P = 0.015; PFHxS: OR = 1.16, 95%CI: 1.00-1.36, P = 0.055; PFBS: OR = 1.44, 95%CI: 1.16-1.79, P = 0.001; PFHpA: OR = 1.41, 95%CI: 1.10-1.82, P = 0.008). The exposure to PFBS is positively associated with HDP (OR = 1.27, 95%CI: 1.14-1.41, P < 0.001), while both PFOA and PFHpA demonstrate statistically significant positive correlations with GH (PFOA: OR = 1.09, 95%CI: 1.00-1.19, P = 0.049; PFHpA: OR = 1.43, 95%CI: 1.15-1.78, P = 0.001). Negative correlations were observed for prenatal perfluorododecanoic acid (PFDoA) exposure and GH (OR = 0.71, 95%CI: 0.57-0.87, P = 0.001). However, no compelling evidence was identified to link PFASs exposure with the risk of PE. CONCLUSION According to the meta-analysis findings, exposure to PFASs may be linked to GDM, HDP, and GH, but it does not significantly raise the risk of PE alone. Further research with larger sample size is required to verify this potential association and explore the biological mechanisms.
Collapse
Affiliation(s)
- Liya Pang
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 213043, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Mei Li
- Department of Expanded Program on Immunization, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Abdoulie Dukureh
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 213043, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ying Li
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 213043, China
| | - Jinqi Ma
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 213043, China
| | - Qiuqin Tang
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China.
| | - Wei Wu
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 213043, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
8
|
Aker A, Ayotte P, Caron-Beaudoin É, Ricard S, Gaudreau É, Lemire M. Cardiometabolic health and per and polyfluoroalkyl substances in an Inuit population. ENVIRONMENT INTERNATIONAL 2023; 181:108283. [PMID: 37883911 DOI: 10.1016/j.envint.2023.108283] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023]
Abstract
INTRODUCTION The cardiometabolic health status of Inuit in Nunavik has worsened in the last thirty years. The high concentrations of perfluoroalkyl acids (PFAAs) may be contributing to this since PFAAs have been linked with hypercholesterolemia, diabetes, and high blood pressure. The aim of this study was to examine the association between a PFAAs mixture and lipid profiles, Type II diabetes, prediabetes, and high blood pressure in this Inuit population. METHODS We included 1212 participants of the Qanuilirpitaa? 2017 survey aged 16-80 years. Two mixture models (quantile g-computation and Bayesian Kernel Machine Regression (BKMR)) were used to investigate the associations between six PFAAs (PFHxS, PFOS, PFOA and three long-chain PFAAs (PFNA, PFDA and PFUnDA)) with five lipid profiles and three cardiometabolic outcomes. Non-linearity and interaction between PFAAs were further assessed. RESULTS An IQR increase in all PFAAs congeners resulted in an increase in total cholesterol (β 0.15, 95% confidence interval (CI) 0.06, 0.24), low-density lipoprotein cholesterol (LDL) (β 0.08, 95% CI 0.01, 0.16), high-density lipoprotein cholesterol (HDL) (β 0.04, 95% CI 0.002, 0.08), apolipoprotein B-100 (β 0.03, 95% CI 0.004, 0.05), and prediabetes (OR 1.80, 95% CI 1.11, 2.91). There was no association between PFAAs and triglycerides, diabetes, or high blood pressure. Long-chain PFAAs congeners were the main contributors driving the associations. Associations were largely linear, and there was no evidence of interaction between the PFAAs congeners. CONCLUSIONS Our study provides further evidence of increasing circulating lipids with increased exposure to PFAAs. The increased risk of prediabetes points to the influence of PFAAs on potential clinical outcomes. International regulation of PFAAs is essential to curb PFAAs exposure and related health effects in Arctic communities.
Collapse
Affiliation(s)
- Amira Aker
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Département de médecine sociale et préventive, Université Laval, Québec, Quebec, Canada.
| | - Pierre Ayotte
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Département de médecine sociale et préventive, Université Laval, Québec, Quebec, Canada; Centre de Toxicologie du Québec, Institut National de Santé Publique du Québec, Québec, Canada
| | - Élyse Caron-Beaudoin
- Department of Health and Society, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada
| | - Sylvie Ricard
- Nunavik Regional Board of Health and Social Services, Kuujjuaq, QC, Canada
| | - Éric Gaudreau
- Centre de Toxicologie du Québec, Institut National de Santé Publique du Québec, Québec, Canada
| | - Mélanie Lemire
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Département de médecine sociale et préventive, Université Laval, Québec, Quebec, Canada; Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec, Quebec, Canada
| |
Collapse
|
9
|
Christensen BT, Calkins MM. Occupational exposure to per- and polyfluoroalkyl substances: a scope review of the literature from 1980-2021. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:673-686. [PMID: 36977833 PMCID: PMC10533727 DOI: 10.1038/s41370-023-00536-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) comprise a large group of chemicals that have been integrated into a wide variety of industrial processes and consumer products since the 1950s. Due to their profuse usage and high persistence in human serum, understanding workplace exposures to PFAS is critical. OBJECTIVE We aimed to characterize the PFAS exposure profiles of relevant occupational populations, elucidate trends in the PFAS exposure characterization process, and identify major research gaps that remain within the occupational PFAS exposure literature. METHODS A systematic search of four literature databases for peer-reviewed articles published between 1980 and 2021 on PFAS exposure in occupational settings was conducted. RESULTS Of the 2574 articles identified, 92 met the inclusion criteria. Fluorochemical workers were the target population in most early exposure assessment research; however, studies conducted within the last 10 years have evaluated a wider range of occupational populations and settings. The highest exposures were reported in fluorochemical workers, but, in comparison to reference populations, one or more PFAS were elevated in most workers and in most workplaces that were assessed. PFAS was most frequently assessed in worker serum using a discrete analytical panel of PFAS, with earlier studies restricted to a few long-alkyl chain PFAS while more recent studies have included more expansive panels due to more robust methods. SIGNIFICANCE Characterization of occupational exposure to PFAS is limited but expanding. Current analytical methods are not robust enough to fully capture the potential range of PFAS present across different workers and workplaces. While exposures to PFAS for certain occupational groups have been studied in detail, exposure information for other occupational groups with high potential for exposure are limited. This review highlights substantial findings and major research gaps within the occupational literature.
Collapse
Affiliation(s)
- Brian T Christensen
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Division of Field Studies and Engineering, Cincinnati, OH, 45213, USA.
| | - Miriam M Calkins
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Division of Field Studies and Engineering, Cincinnati, OH, 45213, USA
| |
Collapse
|
10
|
Lazarevic N, Smurthwaite KS, D'Este C, Lucas RM, Armstrong B, Clements AC, Trevenar SM, Gad I, Hosking R, Law HD, Mueller J, Bräunig J, Nilsson S, Lane J, Lal A, Lidbury BA, Korda RJ, Kirk MD. Liver and cardiometabolic markers and conditions in a cross-sectional study of three Australian communities living with environmental per- and polyfluoroalkyl substances contamination. ENVIRONMENTAL RESEARCH 2023; 226:115621. [PMID: 36898423 DOI: 10.1016/j.envres.2023.115621] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/05/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) have been associated with higher cholesterol and liver function markers in some studies, but the evidence for specific cardiometabolic conditions has been inconclusive. OBJECTIVES We quantified the associations of single and combined PFAS with cardiometabolic markers and conditions in a cross-sectional study of three Australian communities with PFAS-contaminated water from the historical use of aqueous film-forming foam in firefighting activities, and three comparison communities. METHODS Participants gave blood samples for measurement of nine PFAS, four lipids, six liver function markers, and completed a survey on sociodemographic characteristics and eight cardiometabolic conditions. We estimated differences in mean biomarker concentrations per doubling in single PFAS concentrations (linear regression) and per interquartile range increase in the PFAS mixture (Bayesian kernel machine regression). We estimated prevalence ratios of biomarker concentrations outside reference limits and self-reported cardiometabolic conditions (Poisson regression). RESULTS We recruited 881 adults in exposed communities and 801 in comparison communities. We observed higher mean total cholesterol with higher single and mixture PFAS concentrations in blood serum (e.g., 0.18 mmol/L, 95% credible interval -0.06 to 0.42, higher total cholesterol concentrations with an interquartile range increase in all PFAS concentrations in Williamtown, New South Wales), with varying certainty across communities and PFAS. There was less consistency in direction of associations for liver function markers. Serum perfluorooctanoic acid (PFOA) concentrations were positively associated with the prevalence of self-reported hypercholesterolemia in one of three communities, but PFAS concentrations were not associated with self-reported type II diabetes, liver disease, or cardiovascular disease. DISCUSSION Our study is one of few that has simultaneously quantified the associations of blood PFAS concentrations with multiple biomarkers and cardiometabolic conditions in multiple communities. Our findings for total cholesterol were consistent with previous studies; however, substantial uncertainty in our estimates and the cross-sectional design limit causal inference.
Collapse
Affiliation(s)
- Nina Lazarevic
- National Centre for Epidemiology and Population Health, College of Health and Medicine, The Australian National University, Canberra, ACT 2600, Australia.
| | - Kayla S Smurthwaite
- National Centre for Epidemiology and Population Health, College of Health and Medicine, The Australian National University, Canberra, ACT 2600, Australia
| | - Catherine D'Este
- National Centre for Epidemiology and Population Health, College of Health and Medicine, The Australian National University, Canberra, ACT 2600, Australia; School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Robyn M Lucas
- National Centre for Epidemiology and Population Health, College of Health and Medicine, The Australian National University, Canberra, ACT 2600, Australia
| | - Bruce Armstrong
- School of Public Health, The University of Sydney, Sydney, NSW, 2206, Australia; School of Population and Global Health, The University of Western Australia, Perth, WA, 6009, Australia
| | - Archie Ca Clements
- Faculty of Health Sciences, Curtin University, Bentley, WA, 6102, Australia; Telethon Kids Institute, Nedlands, WA, 6009, Australia
| | - Susan M Trevenar
- National Centre for Epidemiology and Population Health, College of Health and Medicine, The Australian National University, Canberra, ACT 2600, Australia
| | - Imogen Gad
- National Centre for Epidemiology and Population Health, College of Health and Medicine, The Australian National University, Canberra, ACT 2600, Australia
| | - Rose Hosking
- National Centre for Epidemiology and Population Health, College of Health and Medicine, The Australian National University, Canberra, ACT 2600, Australia
| | - Hsei Di Law
- National Centre for Epidemiology and Population Health, College of Health and Medicine, The Australian National University, Canberra, ACT 2600, Australia
| | - Jochen Mueller
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, Qld, 4102, Australia
| | - Jennifer Bräunig
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, Qld, 4102, Australia
| | - Sandra Nilsson
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, Qld, 4102, Australia
| | - Jo Lane
- National Centre for Epidemiology and Population Health, College of Health and Medicine, The Australian National University, Canberra, ACT 2600, Australia
| | - Aparna Lal
- National Centre for Epidemiology and Population Health, College of Health and Medicine, The Australian National University, Canberra, ACT 2600, Australia
| | - Brett A Lidbury
- National Centre for Epidemiology and Population Health, College of Health and Medicine, The Australian National University, Canberra, ACT 2600, Australia
| | - Rosemary J Korda
- National Centre for Epidemiology and Population Health, College of Health and Medicine, The Australian National University, Canberra, ACT 2600, Australia
| | - Martyn D Kirk
- National Centre for Epidemiology and Population Health, College of Health and Medicine, The Australian National University, Canberra, ACT 2600, Australia
| |
Collapse
|
11
|
Xu Y, Jakobsson K, Harari F, Andersson EM, Li Y. Exposure to high levels of PFAS through drinking water is associated with increased risk of type 2 diabetes-findings from a register-based study in Ronneby, Sweden. ENVIRONMENTAL RESEARCH 2023; 225:115525. [PMID: 36813069 DOI: 10.1016/j.envres.2023.115525] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/03/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Epidemiological studies linking type 2 diabetes (T2D) and exposure to per- and polyfluoroalkyl substances (PFAS), are limited and have yielded conflicting results. This register-based study aimed to investigate the risk of T2D among Swedish adults who had been exposed to PFAS from highly contaminated drinking water for decades. METHODS The study included 55,032 adults (aged ≥18 years) from the Ronneby Register Cohort, who ever lived in Ronneby during 1985-2013. Exposure was assessed using the yearly residential address and the absence ("never-high") or presence ("ever-high") of high PFAS contamination in the municipal drinking water supply; the latter was subdivided into "early-high" and "late-high" exposure with cut-off at 2005. Incident T2D cases were retrieved from the National Patient Register and the Prescription Register. Cox proportional hazard models with time-varying exposure were used to estimate hazard ratios (HRs). Stratified analyses were performed based on age (18-45 vs > 45). RESULTS Elevated HRs for T2D were observed when comparing "ever-high" to "never-high" exposure (HR 1.18, 95% CI 1.03-1.35), as well as when comparing "early-high" (HR 1.12, 95% CI 0.98-1.50) or "late-high" (HR 1.17, 95% CI 1.00-1.37) to "never-high", after adjusting for age and sex. Individuals aged 18-45 years had even higher HRs. Adjusting for the highest-achieved education level attenuated the estimates, but the directions of associations remained. Elevated HRs were also found among those who had lived in areas with a heavily contaminated water supply for 1-5 years (HR 1.26, 95% CI 0.97-1.63) and 6-10 years (HR 1.25, 95% CI 0.80-1.94). CONCLUSION This study suggests an increased risk of T2D after long-term high PFAS exposure through drinking water. In particular, a higher risk of early onset diabetes was found, indicating increased susceptibility to PFAS-related health effects at younger ages.
Collapse
Affiliation(s)
- Yiyi Xu
- School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kristina Jakobsson
- School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Florencia Harari
- School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Eva M Andersson
- School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ying Li
- School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; SSORG-Scandinavian Surgical Outcomes Research Group, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
12
|
Gui SY, Qiao JC, Xu KX, Li ZL, Chen YN, Wu KJ, Jiang ZX, Hu CY. Association between per- and polyfluoroalkyl substances exposure and risk of diabetes: a systematic review and meta-analysis. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:40-55. [PMID: 35970987 DOI: 10.1038/s41370-022-00464-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Emerging evidence suggests that per- and polyfluoroalkyl substances (PFAS) are endocrine disruptors and may contribute to the etiology of diabetes. OBJECTIVES This study aimed to systematically review the epidemiological evidence on the associations of PFAS with mortality and morbidity of diabetes and to quantitatively evaluate the summary effect estimates of the existing literature. METHODS We searched three electronic databases for epidemiological studies concerning PFAS and diabetes published before April 1, 2022. Summary odds ratio (OR), hazard ratio (HR), or β and their 95% confidence intervals (CIs) were respectively calculated to evaluate the association between PFAS and diabetes using random-effects model by the exposure type, and dose-response meta-analyses were also performed when possible. We also assessed the risk of bias of the studies included and the confidence in the body of evidence. RESULTS An initial literature search identified 1969 studies, of which 22 studies were eventually included. The meta-analyses indicated that the observed statistically significant PFAS-T2DM associations were consistent in cohort studies, while the associations were almost non-significant in case-control and cross-sectional studies. Dose-response meta-analysis showed a "parabolic-shaped" association between perfluorooctanoate acid (PFOA) exposure and T2DM risk. Available evidence was rated with "low" risk of bias, and the level of evidence for PFAS and incident T2DM was considered "moderate". CONCLUSIONS Our findings suggest that PFAS exposure may increase the risk of incident T2DM, and that PFOA may exert non-monotonic dose-response effect on T2DM risk. Considering the widespread exposure, persistence, and potential for adverse health effects of PFAS, further cohort studies with improvements in expanding the sample size, adjusting the covariates, and considering different types of PFAS exposure at various doses, are needed to elucidate the putative causal associations and potential mode of action of different PFAS on diabetes. IMPACT STATEMENT A growing body of evidence suggests that per- and polyfluoroalkyl substances (PFAS) are endocrine disruptors and may contribute to the development of diabetes. However, epidemiological evidence on the associations of PFAS and diabetes is inconsistent. We performed this comprehensive systematic review and meta-analysis to quantitatively synthesize the evidence. The findings of this study suggest that exposure to PFAS may increase diabetes risk among the general population. Reduced exposure to these "forever and everywhere chemicals" may be an important preventative approach to reducing the risk of diabetes across the population.
Collapse
Affiliation(s)
- Si-Yu Gui
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Jian-Chao Qiao
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Ke-Xin Xu
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Ze-Lian Li
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, China
| | - Yue-Nan Chen
- Department of Pharmacy, School of Clinical Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Ke-Jia Wu
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Zheng-Xuan Jiang
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China.
| | - Cheng-Yang Hu
- Department of Humanistic Medicine, School of Humanistic Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
| |
Collapse
|
13
|
He X, Wu D, Xu Y, Zhang Y, Sun Y, Chang X, Zhu Y, Tang W. Perfluorooctanoic acid promotes pancreatic β cell dysfunction and apoptosis through ER stress and the ATF4/CHOP/TRIB3 pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:84532-84545. [PMID: 35788477 DOI: 10.1007/s11356-022-21188-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Perfluorooctanoic acid (PFOA), a widely used chemical substance, causes an increased risk of human type 2 diabetes (T2D), but its underlying mechanism is not well elucidated. The aim of the present study was to investigate whether PFOA regulates the functions of pancreatic β cells, which are specialized for the biosynthesis and secretion of insulin. The treatment of the mouse pancreatic β cell line (MIN6 cells) with PFOA caused a time- and dose-dependent inhibition of cell viability in CCK-8 assays. Annexin V/PI and TUNEL staining results confirmed that exposure to a high PFOA dose (500 μM) promoted apoptosis of β cells, while a low dose (300 μM) had no effects on β cell survival. PFOA treatment, even at a low dose, diminished glucose-stimulated insulin secretion (GSIS) in both primary islet perfusion and MIN6 cell experiments. RNA-sequencing data showed significantly increased expression of endoplasmic reticulum (ER) stress-associated genes, with tribbles homolog 3 (Trib3) ranking first among the altered genes. The activation of ER stress pathways was verified by qRT-PCR assays, and the ATF4/CHOP/TRIB3 pathway contributed to PFOA-induced β cell damage. The inhibition of TRIB3 expression significantly protected MIN6 cells from PFOA-induced GSIS defects and apoptosis by ameliorating ER stress. These findings reveal a link between ER stress and PFOA-induced β cell defects, opening up a new set of questions about the pathogenesis of T2D due to environmental chemicals.
Collapse
Affiliation(s)
- Xiaowei He
- Department of Endocrinology, Islet Cell Senescence and Function Research Laboratory, Nanjing Medical University Affiliated Geriatric Hospital/Jiangsu Province Geriatric Hospital, 30 Luojia Road, Nanjing, 210024, Jiangsu, China
| | - Dan Wu
- Department of Endocrinology, Islet Cell Senescence and Function Research Laboratory, Nanjing Medical University Affiliated Geriatric Hospital/Jiangsu Province Geriatric Hospital, 30 Luojia Road, Nanjing, 210024, Jiangsu, China
| | - Yanan Xu
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiangjia Yuan, Nanjing, 210011, Jiangsu, China
| | - Yaqin Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Yue Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Xiaoai Chang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Yunxia Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Wei Tang
- Department of Endocrinology, Islet Cell Senescence and Function Research Laboratory, Nanjing Medical University Affiliated Geriatric Hospital/Jiangsu Province Geriatric Hospital, 30 Luojia Road, Nanjing, 210024, Jiangsu, China.
| |
Collapse
|
14
|
Roth K, Petriello MC. Exposure to per- and polyfluoroalkyl substances (PFAS) and type 2 diabetes risk. Front Endocrinol (Lausanne) 2022; 13:965384. [PMID: 35992116 PMCID: PMC9388934 DOI: 10.3389/fendo.2022.965384] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/13/2022] [Indexed: 01/09/2023] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous man-made chemicals found in consumer products including fabrics, food packaging, non-stick coatings, and aqueous film-forming foams. PFAS are stable and extremely resistant to degradation, resulting in high persistence throughout the environment as well as in human blood. PFAS consist of a large family of synthetic chemicals, with over 4000 distinct varieties having been identified and around 250 currently being manufactured at globally relevant levels. Numerous epidemiological studies have linked exposure to PFAS with adverse health effects ranging from immunotoxicity, cardiometabolic disease, developmental and reproductive effects, cancer, and recently type 2 diabetes. Several studies have demonstrated associations between serum PFAS concentrations and glycemic indicators of type 2 diabetes including glucose, insulin, and HOMA-IR in adolescent and adult cohorts. In addition, some studies have shown positive associations with incident type 2 diabetes and multiple PFAS. However, the link between PFAS exposure and the development of diabetes continues to be a disputed area of study, with conflicting data having been reported from various epidemiological studies. In this mini review we will summarize the current state of the literature linking PFAS to type 2 diabetes and discuss important future directions including the use of more complex mixtures-based statistical analyses.
Collapse
Affiliation(s)
- Katherine Roth
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States
| | - Michael C. Petriello
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, United States
| |
Collapse
|
15
|
Park SK, Wang X, Ding N, Karvonen-Gutierrez CA, Calafat AM, Herman WH, Mukherjee B, Harlow SD. Per- and polyfluoroalkyl substances and incident diabetes in midlife women: the Study of Women's Health Across the Nation (SWAN). Diabetologia 2022; 65:1157-1168. [PMID: 35399113 PMCID: PMC9177697 DOI: 10.1007/s00125-022-05695-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/03/2022] [Indexed: 01/28/2023]
Abstract
AIMS/HYPOTHESIS Diabetogenic effects of per- and polyfluoroalkyl substances (PFAS) have been suggested. However, evidence based on prospective cohort studies is limited. We examined the association between serum PFAS concentrations and incident diabetes in the Study of Women's Health Across the Nation Multi-Pollutant Study (SWAN-MPS). METHODS We included 1237 diabetes-free women aged 45-56 years at baseline (1999-2000) who were followed up to 2017. At each follow-up visit, women with incident diabetes were identified by the presence of one or more of the following conditions: (1) use of a glucose-lowering medication at any visit; (2) fasting glucose ≥7 mmol/l on two consecutive visits while not on steroids; and (3) any two visits with self-reported diabetes and at least one visit with fasting blood glucose ≥7 mmol/l. Serum concentrations of 11 PFAS were quantified by online solid-phase extraction-HPLC-isotope dilution-tandem MS. Seven PFAS with high detection rates (>96%) (n-perfluorooctanoic acid [n-PFOA], perfluorononanoic acid [PFNA], perfluorohexane sulfonic acid [PFHxS], n-perfluorooctane sulfonic acid [n-PFOS], sum of perfluoromethylheptane sulfonic acid isomers [Sm-PFOS], 2-[N-methyl-perfluorooctane sulfonamido] acetic acid [MeFOSAA] and 2-[N-ethyl-perfluorooctane sulfonamido] acetic acid) were included in data analysis. Cox proportional hazards models were used to compute HRs and 95% CIs. Quantile-based g-computation was used to evaluate the joint effects of PFAS mixtures. RESULTS After adjustment for race/ethnicity, site, education, smoking status, alcohol consumption, total energy intake, physical activity, menopausal status and BMI, the HR (95% CI) comparing the lowest with the highest tertile was 1.67 (1.21, 2.31) for n-PFOA (ptrend = 0.001), 1.58 (1.13, 2.21) for PFHxS (ptrend = 0.003), 1.36 (0.97, 1.90) for Sm-PFOS (ptrend = 0.05), 1.85 (1.28, 2.67) for MeFOSAA (ptrend = 0.0004) and 1.64 (1.17, 2.31) for the sum of four common PFAS (n-PFOA, PFNA, PFHxS and total PFOS) (ptrend = 0.002). Exposure to seven PFAS as mixtures was associated with an HR of 2.62 (95% CI 1.12, 6.20), comparing the top with the bottom tertiles for all seven PFAS. CONCLUSIONS/INTERPRETATION This study suggests that PFAS may increase diabetes risk in midlife women. Reduced exposure to these 'forever and everywhere chemicals' may be an important preventative approach to lowering population-wide diabetes risk.
Collapse
Affiliation(s)
- Sung Kyun Park
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
| | - Xin Wang
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Ning Ding
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | | | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - William H Herman
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, School of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Bhramar Mukherjee
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Siobán D Harlow
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
16
|
Hoyeck MP, Matteo G, MacFarlane EM, Perera I, Bruin JE. Persistent organic pollutants and β-cell toxicity: a comprehensive review. Am J Physiol Endocrinol Metab 2022; 322:E383-E413. [PMID: 35156417 PMCID: PMC9394781 DOI: 10.1152/ajpendo.00358.2021] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/20/2021] [Accepted: 02/07/2022] [Indexed: 01/09/2023]
Abstract
Persistent organic pollutants (POPs) are a diverse family of contaminants that show widespread global dispersion and bioaccumulation. Humans are continuously exposed to POPs through diet, air particles, and household and commercial products; POPs are consistently detected in human tissues, including the pancreas. Epidemiological studies show a modest but consistent correlation between exposure to POPs and increased diabetes risk. The goal of this review is to provide an overview of epidemiological evidence and an in-depth evaluation of the in vivo and in vitro evidence that POPs cause β-cell toxicity. We review evidence for six classes of POPs: dioxins, polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), organophosphate pesticides (OPPs), flame retardants, and per- and polyfluoroalkyl substances (PFAS). The available data provide convincing evidence implicating POPs as a contributing factor driving impaired glucose homeostasis, β-cell dysfunction, and altered metabolic and oxidative stress pathways in islets. These findings support epidemiological data showing that POPs increase diabetes risk and emphasize the need to consider the endocrine pancreas in toxicity assessments. Our review also highlights significant gaps in the literature assessing islet-specific endpoints after both in vivo and in vitro POP exposure. In addition, most rodent studies do not consider the impact of biological sex or secondary metabolic stressors in mediating the effects of POPs on glucose homeostasis and β-cell function. We discuss key gaps and limitations that should be assessed in future studies.
Collapse
Affiliation(s)
- Myriam P Hoyeck
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Geronimo Matteo
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Erin M MacFarlane
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Ineli Perera
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Jennifer E Bruin
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
17
|
Gang N, Van Allen K, Villeneuve PJ, MacDonald H, Bruin JE. Sex-specific Associations Between Type 2 Diabetes Incidence and Exposure to Dioxin and Dioxin-like Pollutants: A Meta-analysis. FRONTIERS IN TOXICOLOGY 2022; 3:685840. [PMID: 35295132 PMCID: PMC8915902 DOI: 10.3389/ftox.2021.685840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 12/14/2021] [Indexed: 01/09/2023] Open
Abstract
The potential for persistent organic pollutants (POPs), including dioxins and dioxin-like polychlorinated biphenyls (DL-PCBs), to increase the risk of incident diabetes in adults has been extensively studied. However, there is substantial variability in the reported associations both between and within studies. Emerging data from rodent studies suggest that dioxin disrupts glucose homeostasis in a sex-specific manner. Thus, we performed a review and meta-analysis of relevant epidemiological studies to investigate sex differences in associations between dioxin or DL-PCB exposure and type 2 diabetes incidence. Articles that met our selection criteria (n = 81) were organized into the following subcategories: data stratified by sex (n = 13), unstratified data (n = 45), and data from only 1 sex (n = 13 male, n = 10 female). We also considered whether exposure occurred either abruptly at high concentrations through a contamination event (“disaster exposure”) or chronically at low concentrations (“non-disaster exposure”). There were 8 studies that compared associations between dioxin/DL-PCB exposure and diabetes risk in males versus females within the same population. When all sex-stratified or single-sex studies were considered in the meta-analysis (n = 18), the summary relative risk (RR) for incident diabetes among those exposed relative to reference populations was 1.78 (95% CI = 1.37–2.31) and 1.95 (95% CI = 1.56–2.43) for female and males, respectively. However, when we restricted the meta-analysis to disaster-exposed populations, the RR was higher in females than males (2.86 versus 1.59, respectively). In contrast, in non-disaster exposed populations the RR for females was lower than males (1.40 and 2.02, respectively). Our meta-analysis suggests that there are sex differences in the associations between dioxin/DL-PCBs exposure and incident diabetes, and that the mode of exposure modifies these differences.
Collapse
Affiliation(s)
- Noa Gang
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Kyle Van Allen
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Paul J. Villeneuve
- School of Mathematics and Statistics, Carleton University, Ottawa, ON, Canada
- Department of Public Health Sciences, Queen’s University, Kingston, ON, Canada
| | - Heather MacDonald
- Health and Biosciences Librarian, MacOdrum Library, Carleton University, Ottawa, ON, Canada
| | - Jennifer E. Bruin
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
- *Correspondence: Jennifer E. Bruin,
| |
Collapse
|
18
|
Zhang YT, Zeeshan M, Su F, Qian ZM, Dee Geiger S, Edward McMillin S, Wang ZB, Dong PX, Ou YQ, Xiong SM, Shen XB, Zhou PE, Yang BY, Chu C, Li QQ, Zeng XW, Feng WR, Zhou YZ, Dong GH. Associations between both legacy and alternative per- and polyfluoroalkyl substances and glucose-homeostasis: The Isomers of C8 health project in China. ENVIRONMENT INTERNATIONAL 2022; 158:106913. [PMID: 34624590 DOI: 10.1016/j.envint.2021.106913] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Epidemiological studies on the associations of legacy per- and polyfluoroalkyl substances (PFASs) and glucose homeostasis remain discordant. Understanding of PFAS alternatives is limited, and few studies have reported joint associations of PFASs and PFAS alternatives. OBJECTIVES To investigate associations of novel PFAS alternatives (chlorinated perfluoroalkyl ether sulfonic acids, Cl-PFESAs and perfluorobutanoic acid, PFBA) and two legacy PFASs (Perfluorooctanoic acid, PFOA and perfluorooctane sulfonate, PFOS) with glucose-homeostasis markers and explore joint associations of 13 legacy and alternative PFASs with the selected outcomes. METHODS We used cross-sectional data of 1,038 adults from the Isomers of C8 Health Project in China. Associations of PFASs and PFAS alternatives with glucose-homeostasis were explored in single-pollutant models using generalized linear models with natural cubic splines for PFASs. Bayesian Kernel Machine Regression (BKMR) models were applied to assess joint associations of exposures and outcomes. Sex-specific analyses were also conducted to evaluate effect modification. RESULTS After adjusting for confounders, both legacy (PFOA, PFOS) and alternative (Cl-PFESAs and PFBA) PFASs were positively associated with glucose-homeostasis markers in single-pollutant models. For example, in the total study population, estimated changes with 95% confidence intervals (CI) of fasting glucose at the 95th percentile of 6:2Cl-PFESA and PFOS against the thresholds were 0.90 (95% CI: 0.59, 1.21) and 0.44 (95% CI: 0.26, 0.62). Positive joint associations were found in BKMR models with 6:2Cl-PFESA contributing most. Sex-specific associations existed in both single- and multi-pollutant models. CONCLUSIONS Legacy and alternative PFASs were positively associated with glucose-homeostasis markers. 6:2Cl-PFESA was the primary contributor. Sex-specific associations were also identified. These results indicate that joint associations and effect modification should be considered in risk assessment. However, further studies are recommended to strengthen our findings and to elucidate the mechanisms of action of legacy and alternative PFASs.
Collapse
Affiliation(s)
- Yun-Ting Zhang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Mohammed Zeeshan
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Fan Su
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zheng-Min Qian
- Department of Epidemiology and Biostatistics, College for Public Health & Social Justice, Saint Louis University, Saint Louis, MO 63104, USA
| | - Sarah Dee Geiger
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Stephen Edward McMillin
- School of Social Work, College for Public Health and Social Justice, Saint Louis University, Saint Louis, MO 63103, USA
| | - Zhi-Bin Wang
- Department of Environmental Health Sciences, Laboratory of Human Environmental Epigenomes, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Peng-Xin Dong
- Nursing College, Guangxi Medical University, Nanning 530021, China
| | - Yan-Qiu Ou
- Department of Epidemiology, Guangdong Cardiovascular Institute, WHO Collaborating Center for Research and Training in Cardiovascular Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Shi-Min Xiong
- School of Public Health, Zunyi Medical University, Zunyi 563060, China
| | - Xu-Bo Shen
- School of Public Health, Zunyi Medical University, Zunyi 563060, China
| | - Pei-En Zhou
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Chu Chu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qing-Qing Li
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wen-Ru Feng
- Department of Environmental Health, Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China.
| | - Yuan-Zhong Zhou
- School of Public Health, Zunyi Medical University, Zunyi 563060, China.
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
19
|
Duan Y, Sun H, Yao Y, Li Y, Meng Y, Lu Y, Han L, Chen L. Serum concentrations of per-/polyfluoroalkyl substances and risk of type 2 diabetes: A case-control study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147476. [PMID: 33992947 DOI: 10.1016/j.scitotenv.2021.147476] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/12/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Per-/polyfluoroalkyl substances (PFASs), as a group of synthetic chemicals, have been extensively detected in human samples. Recently, epidemiological investigations have reported relationships between exposure to PFASs with risk of type 2 diabetes mellitus (T2DM), but with contradictory results. In this study, a case-control study was conducted to explore associations between serum PFASs and T2DM risk among 252 T2DM cases and 252 controls, who were both diagnosed according to fasting glucose and glycosylated hemoglobin levels. Besides, dose-response relationships were analyzed to clarify effects of PFAS exposure on T2DM risk at different exposure levels. Multivariable logistic regression models showed that compared to the lowest tertiles, elevated odds of T2DM risk were observed in the middle tertiles of perfluorohexane sulfonic acid (PFHxS) [odds ratio (OR): 4.09; 95% confidence interval (CI): 2.23, 7.50; p < 0.01] and perfluorohexane sulfonic acid (PFHpA) (OR: 1.87; 95% CI: 1.06, 3.29; p = 0.03), but not in the highest tertiles, and the restricted cubic spline regression models presented inverted U-shaped dose-response relationships for exposure to PFHxS and PFHpA with T2DM risk, indicating non-monotonic dose-response effect and low-dose effect. Most other PFASs were inversely associated with risk of T2DM, especially at higher exposure levels. Our findings suggested that there are associations between exposure to PFASs and risk of T2DM. Further mechanism research is worthy to be conducted to elucidate the mode of action of different PFASs on T2DM at different exposure levels.
Collapse
Affiliation(s)
- Yishuang Duan
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China.
| | - Yiming Yao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Yongcheng Li
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Yue Meng
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Yuan Lu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Liping Han
- Tianjin Medical University Metabolic Diseases Hospital, Tianjin, China
| | - Liming Chen
- Tianjin Medical University Metabolic Diseases Hospital, Tianjin, China
| |
Collapse
|
20
|
Margolis R, Sant KE. Associations between Exposures to Perfluoroalkyl Substances and Diabetes, Hyperglycemia, or Insulin Resistance: A Scoping Review. J Xenobiot 2021; 11:115-129. [PMID: 34564296 PMCID: PMC8482218 DOI: 10.3390/jox11030008] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 01/09/2023] Open
Abstract
Per- and polyfluoroalkyl substances (PFASs) are persistent environmental pollutants that are commonly found in the human body due to exposures via drinking water, surfactants used in consumer materials, and aqueous film-forming foams (AFFFs). PFAS exposure has been linked to adverse health effects such as low infant birth weights, cancer, and endocrine disruption, though increasingly studies have demonstrated that they may perturb metabolic processes and contribute to dysfunction. This scoping review summarizes the chemistry of PFAS exposure and the epidemiologic evidence for associations between exposure to per- and polyfluoroalkyl substances and the development of diabetes, hyperglycemia, and/or insulin resistance. We identified 11 studies on gestational diabetes mellitus, 3 studies on type 1 diabetes, 7 studies on type 2 diabetes, 6 studies on prediabetes or unspecified diabetes, and 15 studies on insulin resistance or glucose tolerance using the SCOPUS and PubMed databases. Approximately 24 reported positive associations, 9 negative associations, 2 non-linear associations, and 2 inverse associations, and 8 reported no associations found between PFAS and all diabetes search terms. Cumulatively, these data indicate the need for further studies to better assess these associations between PFAS exposure and diabetes.
Collapse
Affiliation(s)
| | - Karilyn E. Sant
- School of Public Health, San Diego State University, San Diego, CA 92182, USA;
| |
Collapse
|
21
|
Zeeshan M, Zhang YT, Yu S, Huang WZ, Zhou Y, Vinothkumar R, Chu C, Li QQ, Wu QZ, Ye WL, Zhou P, Dong P, Zeng XW, Hu LW, Yang BY, Shen X, Zhou Y, Dong GH. Exposure to isomers of per- and polyfluoroalkyl substances increases the risk of diabetes and impairs glucose-homeostasis in Chinese adults: Isomers of C8 health project. CHEMOSPHERE 2021; 278:130486. [PMID: 34126693 DOI: 10.1016/j.chemosphere.2021.130486] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) exposure has been linked to diabetes, but evidence on the association of isomers of PFAS with type 2 diabetes (T2D) remains scant. This population based cross-sectional study aimed to investigate associations between serum PFAS isomers, glucose-homeostasis markers and T2D, adjusted for multiple potential confounders. We used data from "Isomers of C8 Health Project in China" from July 2015 to October 2016. A total of 10 PFAS including isomers of PFOS and PFOA were measured in serum of 1045 Chinese adults. Fasting blood glucose, fasting insulin, homeostasis model of insulin (HOMA-IR) and beta cell function (HOMA-β) were considered as markers of glucose-homeostasis. We found significant positive associations between serum PFAS isomers and glucose-homeostasis markers, namely, fasting blood glucose, fasting insulin and HOMA-IR. Per log-unit increase in branched (br)-PFOS concentration was associated with increased fasting blood glucose (β = 0.25, 95% CI: 0.18, 0.33), fasting insulin (β = 2.19, 95% CI: 1.44, 2.93) and HOMA-IR (β = 0.69, 95% CI: 0.50, 0.89). As compared to br-PFOS, linear (n)-PFOS and -PFOA showed lesser significant associations with glucose-homeostasis makers. Further, exposure to all PFAS including isomeric PFOS, PFOA and PFHxS increased the risk of T2D with br-PFOS exhibiting the highest risk (OR = 5.41, 95% CI: 3.68-7.96). The associations were stronger among women than men. In conclusion, chronic exposure to PFAS isomers was associated with impaired glucose-homeostasis and may increase the prevalence of T2D in Chinese adults. Given the ubiquity of PFAS in the environment and the public health burden of T2D, future studies are warranted to corroborate the findings.
Collapse
Affiliation(s)
- Mohammed Zeeshan
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yun-Ting Zhang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shu Yu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen-Zhong Huang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yang Zhou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, China
| | - Rajamanickam Vinothkumar
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Chu Chu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing-Qing Li
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qi-Zhen Wu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wan-Lin Ye
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Peien Zhou
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Pengxin Dong
- Nursing College, Guangxi Medical University, Nanning, 530021, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Li-Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xubo Shen
- School of Public Health, Zunyi Medical University, Zunyi, 563060, China
| | - Yuanzhong Zhou
- School of Public Health, Zunyi Medical University, Zunyi, 563060, China
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
22
|
Abdullah Soheimi SS, Abdul Rahman A, Abd Latip N, Ibrahim E, Sheikh Abdul Kadir SH. Understanding the Impact of Perfluorinated Compounds on Cardiovascular Diseases and Their Risk Factors: A Meta-Analysis Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168345. [PMID: 34444092 PMCID: PMC8391474 DOI: 10.3390/ijerph18168345] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/16/2021] [Accepted: 07/31/2021] [Indexed: 01/23/2023]
Abstract
Perfluorinated compounds (PFCs) are non-biodegradable synthetic chemical compounds that are widely used in manufacturing many household products. Many studies have reported the association between PFCs exposure with the risk of developing cardiovascular diseases (CVDs). However, those reports are still debatable, due to their findings. Thus, this review paper aimed to analyse the association of PFCs compound with CVDs and their risk factors in humans by systematic review and meta-analysis. Google Scholar, PubMed and ScienceDirect were searched for PFCs studies on CVDs and their risk from 2009 until present. The association of PFCs exposure with the prevalence of CVDs and their risk factors were assessed by calculating the quality criteria, odds ratios (ORs), and 95% confidence intervals (CIs). CVDs risk factors were divided into serum lipid profile (main risk factor) and other known risk factors. The meta-analysis was then used to derive a combined OR test for heterogeneity in findings between studies. Twenty-nine articles were included. Our meta-analysis indicated that PFCs exposure could be associated with CVDs (Test for overall effect: z = 2.2, p = 0.02; Test for heterogeneity: I2 = 91.6%, CI = 0.92–1.58, p < 0.0001) and their risk factors (Test for overall effect: z = 4.03, p < 0.0001; Test for heterogeneity: I2 = 85.8%, CI = 1.00–1.14, p < 0.0001). In serum lipids, total cholesterol levels are frequently reported associated with the exposure of PFCs. Among PFCs, perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) exposure increased the risk of CVDs than other types of PFCs. Although the risk of PFOA and PFOS were positively associated with CVDs and their risk factors, more observational studies shall be carried out to identify the long-term effects of these contaminants in premature CVDs development in patients.
Collapse
Affiliation(s)
- Siti Suhana Abdullah Soheimi
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia;
- Institute of Medical Molecular Biotechnology (IMMB), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia;
| | - Amirah Abdul Rahman
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia;
| | - Normala Abd Latip
- Atta-ur-Rahman Institute for Natural Products Discovery (AuRINS), Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam 42300, Selangor, Malaysia;
| | - Effendi Ibrahim
- Department of Physiology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia;
| | - Siti Hamimah Sheikh Abdul Kadir
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia;
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia;
- Correspondence:
| |
Collapse
|
23
|
Ye WL, Chen ZX, Xie YQ, Kong ML, Li QQ, Yu S, Chu C, Dong GH, Zeng XW. Associations between serum isomers of perfluoroalkyl acids and metabolic syndrome in adults: Isomers of C8 Health Project in China. ENVIRONMENTAL RESEARCH 2021; 196:110430. [PMID: 33181135 DOI: 10.1016/j.envres.2020.110430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Exposure to perfluoroalkyl acids (PFAAs) is known to be associated with metabolic disorders. However, whether PFAAs isomers are associated with metabolic syndrome (MetS) still remains unknown. OBJECTIVES To explore the associations between serum PFAAs isomers and MetS. METHODS We recruited 1,501 adults from a cross-sectional study, the "Isomers of C8 Health Project in China" to investigate the associations between PFAAs isomers and MetS. A total of 20 PFAAs including the isomers of PFOS and PFOA were detected. Logistic regression models and restricted cubic spline models were used to evaluate the relationship of serum PFAAs isomers exposure with MetS and its components as well after adjusting for covariates. RESULTS The MetS prevalence in our study was 43.0%. The serum levels of both PFOS and PFOA isomers were higher in participants with MetS than that with non-MetS (p < 0.05). We found positive associations for per natural log-transformed ng/mL of branched perfluorooctane sulfonate (br-PFOS) (odds ratio (OR) = 1.18, 95% confidence interval (CI): 1.01, 1.38)) linear perfluoronanoic acid (n-PFOA) (OR = 1.35, 95% CI: 1.16, 1.58) and perfluoro-6-methylpheptanoic acid (6 m-PFOA) (OR = 1.32, 95% CI: 1.11, 1.57) with higher odds of MetS after covariates adjustment, while null association was observed for linear isomers of PFOS (OR = 1.09, 95% CI: 0.94, 1.25). We found a nonlinear dose-response relationship with a "threshold" effect in serum br-PFOS isomers with MetS, in which the odds of MetS increased quickly with increasing serum br-PFOS isomers under low exposure (p for nonlinearity = 0.030). CONCLUSION We report new evidence of associations between PFAAs isomers and MetS and the nonlinearity of dose-response relationship with br-PFOS isomers. Our findings indicate that more attention is needed to pay on the nonlinearity of dose-response relationship when investigate the association of PFAAs isomers with human health.
Collapse
Affiliation(s)
- Wan-Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zan-Xiong Chen
- Maternal and Child Health Hospital of Maoming City, Maoming, 525000, Guangdong, China
| | - Yan-Qi Xie
- Maternal and Child Health Hospital of Maoming City, Maoming, 525000, Guangdong, China
| | - Min-Li Kong
- Maternal and Child Health Hospital of Maoming City, Maoming, 525000, Guangdong, China
| | - Qing-Qing Li
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shu Yu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chu Chu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Guang-Hui Dong
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiao-Wen Zeng
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
24
|
Jain RB. Impact of kidney hyperfiltration on concentrations of selected perfluoroalkyl acids among US adults for various disease groups. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:21499-21515. [PMID: 33411299 DOI: 10.1007/s11356-020-11855-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/26/2020] [Indexed: 05/26/2023]
Abstract
Data from the National Health and Nutrition Examination Survey (N = 6141) for the years 2003-2016 for US adults were analyzed to evaluate the impact of glomerular hyperfiltration on the observed concentrations of perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), perfluorodecanoic acid, perfluorohexane sulfonic acid (PFHxS), and perfluorononanoic acid (PFNA) for several disease groups. Hyperfiltrators were defined as having an estimated glomerular filtration rate (eGFR) ≥ 110 mL/min/1.73 m2, and normal filtrators were defined as those having an eGFR between 90 and 110 mL/min/1.73 m2. The seven disease groups for which the data were analyzed were as follows: those (i) without any diseases; (ii) with hypertension only; (iii) with albuminuria only; (iv) with anemia only; (v) with diabetes only; (vi) with hypertension and one or more of diabetes, anemia, and albuminuria; and (vii) with two or more of diabetes, anemia, and albuminuria without hypertension. For almost every PFAA, for all seven disease groups except the albuminuria only group, hyperfiltrators had lower adjusted geometric means (AGM) than normal filtrators. For example, for the disease group with hypertension only, for PFOS, the AGMs for hyperfiltrators and normal filtrators were 8.3 and 10.6 ng/mL, respectively, for the total population. For the group with albuminuria only, normal filtrators were found to have higher AGMs than hyperfiltrators for the total population and males. For example, for PFHxS, the AGMs for normal and hyperfiltrators were 0.98 and 1.05 ng/mL, respectively, for the total population. For females, these AGMs for normal and hyperfiltrators were 0.96 and 0.86 ng/mL respectively. Males usually had higher AGMs than females, but the reverse was also true occasionally. Usually, male-female differences were substantially narrower for normal filtrators than hyperfiltrators. Irrespective of the filtration status, the disease group with hypertension only had the highest AGMs for every PFAA. AGMs for the anemia only group were the lowest for every PFAA as compared with other disease groups among hyperfiltrators.
Collapse
|
25
|
Fenton SE, Ducatman A, Boobis A, DeWitt JC, Lau C, Ng C, Smith JS, Roberts SM. Per- and Polyfluoroalkyl Substance Toxicity and Human Health Review: Current State of Knowledge and Strategies for Informing Future Research. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:606-630. [PMID: 33017053 PMCID: PMC7906952 DOI: 10.1002/etc.4890] [Citation(s) in RCA: 964] [Impact Index Per Article: 241.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/29/2020] [Accepted: 09/20/2020] [Indexed: 01/09/2023]
Abstract
Reports of environmental and human health impacts of per- and polyfluoroalkyl substances (PFAS) have greatly increased in the peer-reviewed literature. The goals of the present review are to assess the state of the science regarding toxicological effects of PFAS and to develop strategies for advancing knowledge on the health effects of this large family of chemicals. Currently, much of the toxicity data available for PFAS are for a handful of chemicals, primarily legacy PFAS such as perfluorooctanoic acid and perfluorooctane sulfonate. Epidemiological studies have revealed associations between exposure to specific PFAS and a variety of health effects, including altered immune and thyroid function, liver disease, lipid and insulin dysregulation, kidney disease, adverse reproductive and developmental outcomes, and cancer. Concordance with experimental animal data exists for many of these effects. However, information on modes of action and adverse outcome pathways must be expanded, and profound differences in PFAS toxicokinetic properties must be considered in understanding differences in responses between the sexes and among species and life stages. With many health effects noted for a relatively few example compounds and hundreds of other PFAS in commerce lacking toxicity data, more contemporary and high-throughput approaches such as read-across, molecular dynamics, and protein modeling are proposed to accelerate the development of toxicity information on emerging and legacy PFAS, individually and as mixtures. In addition, an appropriate degree of precaution, given what is already known from the PFAS examples noted, may be needed to protect human health. Environ Toxicol Chem 2021;40:606-630. © 2020 SETAC.
Collapse
Affiliation(s)
- Suzanne E. Fenton
- National Toxicology Program Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Alan Ducatman
- West Virginia University School of Public Health, Morgantown, West Virginia, USA
| | - Alan Boobis
- Imperial College London, London, United Kingdom
| | - Jamie C. DeWitt
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Christopher Lau
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Carla Ng
- Departments of Civil and Environmental Engineering and Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - James S. Smith
- Navy and Marine Corps Public Health Center, Portsmouth, Virginia, USA
| | - Stephen M. Roberts
- Center for Environmental & Human Toxicology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
26
|
Mokra K. Endocrine Disruptor Potential of Short- and Long-Chain Perfluoroalkyl Substances (PFASs)-A Synthesis of Current Knowledge with Proposal of Molecular Mechanism. Int J Mol Sci 2021; 22:2148. [PMID: 33670069 PMCID: PMC7926449 DOI: 10.3390/ijms22042148] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 01/25/2023] Open
Abstract
Endocrine disruptors are a group of chemical compounds that, even in low concentrations, cause a hormonal imbalance in the body, contributing to the development of various harmful health disorders. Many industry compounds, due to their important commercial value and numerous applications, are produced on a global scale, while the mechanism of their endocrine action has not been fully understood. In recent years, per- and polyfluoroalkyl substances (PFASs) have gained the interest of major international health organizations, and thus more and more studies have been aimed to explain the toxicity of these compounds. PFASs were firstly synthesized in the 1950s and broadly used in the industry in the production of firefighting agents, cosmetics and herbicides. The numerous industrial applications of PFASs, combined with the exceptionally long half-life of these substances in the human body and extreme environmental persistence, result in a common and chronic exposure of the general population to their action. Available data have suggested that human exposure to PFASs can occur during different stages of development and may cause short- or/and long-term health effects. This paper synthetizes the current literature reports on the presence, bioaccumulation and, particularly, endocrine toxicity of selected long- and short-chain PFASs, with a special emphasis on the mechanisms underlying their endocrine actions.
Collapse
Affiliation(s)
- Katarzyna Mokra
- Department of Environmental Pollution Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 St., 90-236 Lodz, Poland
| |
Collapse
|
27
|
Jain RB. Perfluoroalkyl acids and their isomers, diabetes, anemia, and albuminuria: Variabilities with deteriorating kidney function. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111625. [PMID: 33396145 DOI: 10.1016/j.ecoenv.2020.111625] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023]
Abstract
Data for US adults aged ≥20 years from National Health and Nutrition Examination Survey for the years 2003-2014 were analyzed to evaluate how adjusted (N = 8481) and unadjusted (N = 9080) levels of selected perfluoroalkyl acids (PFAA) vary across the different stages of glomerular function (GF) among those who did not have diabetes, anemia, or albuminuria as compared to those who had diabetes only, anemia only, and albuminuria only. PFAAs selected for analyses were: perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), perfluorodecanoic acid (PFDA), perfluorohexane sulfonic acid (PFHxS), and perfluorononanoic acid (PFNA). Irrespective of GF stage, there was no noticeable evidence to suggest that adjusted levels of PFAA for those with diabetes only are any lower than those with no diabetes, no anemia, and no albuminuria. Those who had anemia only were found to have lower adjusted levels of at least PFOA, PFOS, PFDA, and PFHxS than those who had no diabetes, no anemia, and no albuminuria. These results were seen in the presence (eGFR < 60 mL/min/1.73 m2) as well as the absence of chronic kidney disease. For GF-1 (eGFR > 90 mL/min/1.73 m2), GF-2 (60 ≤ eGFR ≤ 90 mL/min/1.73 m2), and GF-3B/4 (15 < eGFR ≤ 45 mL/min/1.73 m2), those who had albuminuria only had lower adjusted levels of PFOA, PFOS, and PFHxS than those who had no diabetes, no anemia, and no albuminuria. In general, adjusted levels of those who had albuminuria only were lower than those who had anemia only at GF-3 and more often than not at GF-1 and GF-2. Rise in adjusted levels of PFAA from GF-1 to GF-3A (45 < eGFR < 60 mL/min/1.73 m2) was faster for those with anemia only than any other comparison group for the total population and females.
Collapse
|
28
|
Schillemans T, Shi L, Donat-Vargas C, Hanhineva K, Tornevi A, Johansson I, Koponen J, Kiviranta H, Rolandsson O, Bergdahl IA, Landberg R, Åkesson A, Brunius C. Plasma metabolites associated with exposure to perfluoroalkyl substances and risk of type 2 diabetes - A nested case-control study. ENVIRONMENT INTERNATIONAL 2021; 146:106180. [PMID: 33113464 DOI: 10.1016/j.envint.2020.106180] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Perfluoroalkyl substances (PFAS) are widespread persistent environmental pollutants. There is evidence that PFAS induce metabolic perturbations in humans, but underlying mechanisms are still unknown. In this exploratory study, we investigated PFAS-related plasma metabolites for their associations with type 2 diabetes (T2D) to gain potential mechanistic insight in these perturbations. We used untargeted LC-MS metabolomics to find metabolites related to PFAS exposures in a case-control study on T2D (n = 187 matched pairs) nested within the Västerbotten Intervention Programme cohort. Following principal component analysis (PCA), six PFAS measured in plasma appeared in two groups: 1) perfluorononanoic acid, perfluorodecanoic acid and perfluoroundecanoic acid and 2) perfluorohexane sulfonic acid, perfluorooctane sulfonic acid and perfluorooctanoic acid. Using a random forest algorithm, we discovered metabolite features associated with individual PFAS and PFAS exposure groups which were subsequently investigated for associations with risk of T2D. PFAS levels correlated with 171 metabolite features (0.16 ≤ |r| ≤ 0.37, false discovery rate (FDR) adjusted p < 0.05). Out of these, 35 associated with T2D (p < 0.05), with 7 remaining after multiple testing adjustment (FDR < 0.05). PCA of the 35 PFAS- and T2D-related metabolite features revealed two patterns, dominated by glycerophospholipids and diacylglycerols, with opposite T2D associations. The glycerophospholipids correlated positively with PFAS and associated inversely with risk for T2D (Odds Ratio (OR) per 1 standard deviation (1-SD) increase in metabolite PCA pattern score = 0.2; 95% Confidence Interval (CI) = 0.1-0.4). The diacylglycerols also correlated positively with PFAS, but they associated with increased risk for T2D (OR per 1-SD = 1.9; 95% CI = 1.3-2.7). These results suggest that PFAS associate with two groups of lipid species with opposite relations to T2D risk.
Collapse
Affiliation(s)
- Tessa Schillemans
- Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Lin Shi
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden; School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Carolina Donat-Vargas
- Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, CEI UAM+CSIC, Madrid, Spain
| | - Kati Hanhineva
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden; Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Department of Biochemistry, University of Turku, Turku, Finland
| | - Andreas Tornevi
- Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University, Umeå, Sweden
| | | | - Jani Koponen
- Department for Health Security, Environmental Health Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Hannu Kiviranta
- Department for Health Security, Environmental Health Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Olov Rolandsson
- Department of Public Health and Clinical Medicine, Family Medicine, Umeå University, Umeå, Sweden
| | - Ingvar A Bergdahl
- Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University, Umeå, Sweden
| | - Rikard Landberg
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden; Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University, Umeå, Sweden
| | - Agneta Åkesson
- Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Carl Brunius
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
29
|
Charles D, Berg V, Nøst TH, Huber S, Sandanger TM, Rylander C. Pre- and post-diagnostic blood profiles of perfluoroalkyl acids in type 2 diabetes mellitus cases and controls. ENVIRONMENT INTERNATIONAL 2020; 145:106095. [PMID: 32919259 DOI: 10.1016/j.envint.2020.106095] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND Studies exploring the associations between perfluoroalkyl acids (PFAAs) and type 2 diabetes mellitus (T2DM) are rather limited and have reported conflicting results. All studies to date, including prospective ones, have relied on a single blood sample to study this association. Similarly, studies investigating how T2DM status may influence the longitudinal changes in PFAA concentrations have not been previously performed. As PFAA concentrations in humans have changed considerably over the last two decades, and as individuals diagnosed with T2DM usually undergo lifestyle changes that could influence these concentrations, a single blood sample may not necessarily reflect the life-time exposure to PFAA concentrations. Hence, repeated measurements from the same individuals will extend our understanding of how PFAAs are associated with T2DM. The present study, therefore, aimed to explore associations between pre- and post-diagnostic PFAA blood profiles and T2DM and assess factors associated with longitudinal changes in PFAAs in T2DM cases and controls. METHODS Questionnaire data and blood samples from women participating in the Norwegian Women and Cancer study were used to conduct a nested case-control study among 46 T2DM cases matched to 85 non-diabetic controls. PFAAs were measured in blood samples collected prior to (2001/02) and after (2005/6) T2DM diagnosis. We investigated the association between PFAAs and incident and prevalent T2DM using conditional logistic regression. We assessed the longitudinal changes in PFAA concentrations within and between matched cases and controls using t-tests and linear regression models. RESULTS We observed no significant associations between pre-diagnostic PFAA concentrations and T2DM incidence. Similar results were observed for the post-diagnostic PFAA concentrations and T2DM prevalence. Decrease over time in PFAA concentrations were observed for PFOA and ∑PFOS concentrations, whereas increase over time were observed for PFNA, PFDA and PFUnDA concentrations. Longitudinal trends in PFAA concentrations among T2DM cases were similar to the changes observed in controls. CONCLUSIONS The study did not find evidence of association between PFAAs and incident or prevalent T2DM. The longitudinal changes in PFAAs concentrations were not influenced by T2DM status.
Collapse
Affiliation(s)
- Dolley Charles
- Department of Community Medicine, Faculty of Health Sciences, UIT-The Arctic University of Norway, NO-9037 Tromsø, Norway.
| | - Vivian Berg
- Department of Medical Biology, Faculty of Health Sciences, UIT-The Arctic University of Norway, NO-9037 Tromsø, Norway; Department of Laboratory Medicine, Division of Diagnostic Services, University Hospital of North-Norway, NO-9038 Tromsø, Norway
| | - Therese H Nøst
- Department of Community Medicine, Faculty of Health Sciences, UIT-The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Sandra Huber
- Department of Laboratory Medicine, Division of Diagnostic Services, University Hospital of North-Norway, NO-9038 Tromsø, Norway
| | - Torkjel M Sandanger
- Department of Community Medicine, Faculty of Health Sciences, UIT-The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Charlotta Rylander
- Department of Community Medicine, Faculty of Health Sciences, UIT-The Arctic University of Norway, NO-9037 Tromsø, Norway
| |
Collapse
|
30
|
Jain RB. Impact of the co-occurrence of obesity with diabetes, anemia, hypertension, and albuminuria on concentrations of selected perfluoroalkyl acids. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115207. [PMID: 32698119 DOI: 10.1016/j.envpol.2020.115207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Data (N = 10644) for US adults aged ≥20 years for 2003-2016 from National Health and Nutrition Examination Survey were analyzed to evaluate the impact of co-occurrence of obesity with diabetes, anemia, albuminuria, and hypertension on concentrations of five perfluoroalkyl acids (PFAA), namely, perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), perfluorodecanoic acid (PFDA), perfluorohexane sulfonic acid (PFHxS), and perfluorononanoic acid (PFNA). For the total population, males, and females, co-occurrence of obesity with hypertension, albuminuria, anemia, and diabetes was found to be associated with lower adjusted geometric means (AGM) than nonobese for every PFAA. For example for females, for PFOS, AGMs for obese with no diseases, hypertension, albuminuria, anemia, and diabetes were 8.2, 10.8, 5.8, 4.6, and 7.7 ng/mL respectively. In comparison, for PFOS, for nonobese females, AGMs for those with no diseases, hypertension, albuminuria, anemia, and diabetes were found to be 8.9, 13.4, 7.7, 6.0, and 10.2 ng/mL respectively. This implies obesity is associated with higher excretion rates. Females, in general, had lower AGMs than males for both obese and nonobese for every PFAA for every disease group. For example, percent ratios of obese females to males AGMs for PFOA were 66.7%, 87.1%, 88.2%, 70.6%, and 90% for those with no diseases, hypertension, albuminuria, anemia, and diabetes respectively. The ratios of obese to nonobese AGMs for females were lower than males for every PFAA for those with no diseases and hypertension only. For example, for PFOA for those with no diseases, obese to nonobese AGM ratios were 87% for females and 100% for males. Thus, additional excretion of certain PFAAs due to obesity is higher in females than males for those with no diseases and hypertension only.
Collapse
Affiliation(s)
- Ram B Jain
- 2959 Estate View Ct, Dacula, GA, 30019, USA.
| |
Collapse
|
31
|
Kahn LG, Philippat C, Nakayama SF, Slama R, Trasande L. Endocrine-disrupting chemicals: implications for human health. Lancet Diabetes Endocrinol 2020; 8:703-718. [PMID: 32707118 PMCID: PMC7437820 DOI: 10.1016/s2213-8587(20)30129-7] [Citation(s) in RCA: 428] [Impact Index Per Article: 85.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/03/2020] [Accepted: 04/02/2020] [Indexed: 12/27/2022]
Abstract
Since reports published in 2015 and 2016 identified 15 probable exposure-outcome associations, there has been an increase in studies in humans of exposure to endocrine-disrupting chemicals (EDCs) and a deepened understanding of their effects on human health. In this Series paper, we have reviewed subsequent additions to the literature and identified new exposure-outcome associations with substantial human evidence. Evidence is particularly strong for relations between perfluoroalkyl substances and child and adult obesity, impaired glucose tolerance, gestational diabetes, reduced birthweight, reduced semen quality, polycystic ovarian syndrome, endometriosis, and breast cancer. Evidence also exists for relations between bisphenols and adult diabetes, reduced semen quality, and polycystic ovarian syndrome; phthalates and prematurity, reduced anogenital distance in boys, childhood obesity, and impaired glucose tolerance; organophosphate pesticides and reduced semen quality; and occupational exposure to pesticides and prostate cancer. Greater evidence has accumulated than was previously identified for cognitive deficits and attention-deficit disorder in children following prenatal exposure to bisphenol A, organophosphate pesticides, and polybrominated flame retardants. Although systematic evaluation is needed of the probability and strength of these exposure-outcome relations, the growing evidence supports urgent action to reduce exposure to EDCs.
Collapse
Affiliation(s)
- Linda G Kahn
- Department of Pediatrics, New York University, New York, NY, USA
| | - Claire Philippat
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Shoji F Nakayama
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Japan
| | - Rémy Slama
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Leonardo Trasande
- Department of Pediatrics, New York University, New York, NY, USA; Department of Environmental Medicine, and Department of Population Health, New York University Grossman School of Medicine and New York University School of Global Public Health, New York University, New York, NY, USA.
| |
Collapse
|
32
|
Qi W, Clark JM, Timme-Laragy AR, Park Y. Per- and Polyfluoroalkyl Substances and Obesity, Type 2 Diabetes and Non-alcoholic Fatty Liver Disease: A Review of Epidemiologic Findings. TOXICOLOGICAL AND ENVIRONMENTAL CHEMISTRY 2020; 102:1-36. [PMID: 33304027 PMCID: PMC7723340 DOI: 10.1080/02772248.2020.1763997] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/27/2020] [Indexed: 05/17/2023]
Abstract
Per- and polyfluoroalkyl substances, a group of fluoro-surfactants widely detected in the environment, wildlife and humans, have been linked to adverse health effects. A growing body of literature has addressed their effects on obesity, diabetes and non-alcoholic fatty liver disease/ non-alcoholic steatohepatitis. This review summarizes the brief historical use and chemistry of per- and polyfluoroalkyl substances, routes of human exposure, as well as the epidemiologic evidence for associations between exposure to per- and polyfluoroalkyl substances and the development of obesity, diabetes and non-alcoholic fatty liver disease/ non-alcoholic steatohepatitis. We identified 22 studies on obesity and 32 studies on diabetes, while only 1 study was found for non-alcoholic fatty liver disease/ non-alcoholic steatohepatitis by searching PubMed for human studies. Approximately 2/3 of studies reported positive associations between per- and polyfluoroalkyl substances exposure and the prevalence of obesity and/or type 2 diabetes. Causal links between per- and polyfluoroalkyl substances and obesity, diabetes and non-alcoholic fatty liver disease/ non-alcoholic steatohepatitis, however, require further large-scale prospective cohort studies combined with mechanistic laboratory studies to better assess these associations.
Collapse
Affiliation(s)
- Weipeng Qi
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, United States
| | - John M. Clark
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, United States
| | - Alicia R. Timme-Laragy
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, 01003, United States
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, United States
| |
Collapse
|
33
|
Barton KE, Starling AP, Higgins CP, McDonough CA, Calafat AM, Adgate JL. Sociodemographic and behavioral determinants of serum concentrations of per- and polyfluoroalkyl substances in a community highly exposed to aqueous film-forming foam contaminants in drinking water. Int J Hyg Environ Health 2020; 223:256-266. [PMID: 31444118 PMCID: PMC6878185 DOI: 10.1016/j.ijheh.2019.07.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/24/2019] [Accepted: 07/24/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are a chemical class widely used in industrial and commercial applications because of their unique physical and chemical properties. Between 2013 and 2016 PFAS were detected in public water systems and private wells in El Paso County, Colorado. The contamination was likely due to aqueous film forming foams used at a nearby Air Force base. OBJECTIVE To cross-sectionally describe the serum concentrations of PFAS in a highly exposed community, estimate associations with drinking water source, and explore potential demographic and behavioral predictors. METHODS In June 2018, serum PFAS concentrations were quantified and questionnaires administered in 213 non-smoking adult (ages 19-93) participants residing in three affected water districts. Twenty PFAS were quantified and those detected in >50% of participants were analyzed: perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), perfluorononanoate (PFNA) and perfluoroheptane sulfonate (PFHpS). Unadjusted associations were estimated between serum PFAS concentrations and several predictors, including water consumption, demographics, personal behaviors and employment. A multiple linear regression model estimated adjusted associations with smoking history. RESULTS Study participants' median PFHxS serum concentration (14.8 ng/mL) was approximately 12 times as high as the U.S. national average. Median serum concentrations for PFOS, PFOA, PFNA and PFHpS were 9.7 ng/mL, 3.0 ng/mL, 0.4 ng/mL and 0.2 ng/mL, respectively. Determinants of PFHxS serum concentrations were water district of residence, frequency of bottled water consumption, age, race/ethnicity, and smoking history. Determinants of serum concentrations for the other four PFAS evaluated included: water district of residence, bottled water consumption, age, sex, race/ethnicity, smoking history, and firefighter or military employment. CONCLUSIONS Determinants of serum concentrations for multiple PFAS, including PFHxS, included water district of residence and frequency of bottled water consumption. Participants' dominant PFAS exposure route was likely consumption of PFAS-contaminated water, but certain demographic and behavioral characteristics also predicted serum concentrations.
Collapse
Affiliation(s)
- Kelsey E Barton
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Anne P Starling
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA; Department of Epidemiology, Colorado School of Public Health, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA
| | - Carrie A McDonough
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA
| | - Antonia M Calafat
- Centers for Disease Control and Prevention, National Center for Environmental Health, Atlanta, GA, USA
| | - John L Adgate
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
34
|
Hutcheson R, Innes K, Conway B. Perfluoroalkyl substances and likelihood of stroke in persons with and without diabetes. Diab Vasc Dis Res 2020; 17:1479164119892223. [PMID: 31841043 PMCID: PMC7418060 DOI: 10.1177/1479164119892223] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE The main objective of this study is to evaluate the relationship of perfluoroalkyl substances with stroke and any modifying influence of diabetes. METHODS Data on 3921 adults aged ⩾20 years with and 44,285 without diabetes were drawn from the C8 Health Project. Four perfluoroalkyl substances were investigated: perfluorohexane sulphate, C8 - perfluorooctanoic acid, perfluoroctane sulfonate and perfluorononaoic acid. RESULTS There were 238 cases of stroke among those with and 643 among those without diabetes. In analyses controlled for age, sex, race, diabetes duration, body mass index, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, C-reactive protein, kidney function and a history of smoking, a history of stroke was significantly inversely associated with serum perfluorohexane sulphate (odds ratio = 0.75, 0.64-0.88) and perfluoroctane sulfonate (odds ratio = 0.81, 0.70-0.90), but not perfluorooctanoic acid (odds ratio = 1.04, 0.94-1.15) or perfluorononaoic acid (odds ratio = 0.89, 0.70-1.14) among those with diabetes. Perfluoroalkyl substances demonstrated no association with stroke among those without diabetes (p interaction = 0.006 and 0.01 for perfluorohexane sulphate and perfluorooctanoic acid, respectively). CONCLUSION In this large cross-sectional study, serum levels of perfluorohexane sulphate and perfluoroctane sulfonate were inversely associated with stroke among those with diabetes. Although mechanisms and implications for this diabetes-specific inverse relationship need to be further explored, our data suggest that perfluoroalkyl substances do not increase risk of stroke among persons with or without diabetes.
Collapse
Affiliation(s)
- Robert Hutcheson
- Department of Epidemiology, West
Virginia University, Morgantown, WV, USA
| | - Kim Innes
- Department of Epidemiology, West
Virginia University, Morgantown, WV, USA
| | - Baqiyyah Conway
- Department of Community Health, The
University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Baqiyyah Conway, Department of Community
Health, The University of Texas Health Science Center at Tyler, 11937 US Highway
271, BMR 110.2, Tyler, TX 75708-3154, USA.
| |
Collapse
|
35
|
Duan Y, Sun H, Yao Y, Meng Y, Li Y. Distribution of novel and legacy per-/polyfluoroalkyl substances in serum and its associations with two glycemic biomarkers among Chinese adult men and women with normal blood glucose levels. ENVIRONMENT INTERNATIONAL 2020; 134:105295. [PMID: 31726357 DOI: 10.1016/j.envint.2019.105295] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/06/2019] [Accepted: 10/28/2019] [Indexed: 05/23/2023]
Abstract
In recent years, the occurrence of novel per-/polyfluoroalkyl substances (PFASs) such as polyfluoroalkyl ether sulfonates (PFAESs) in human samples have aroused attention due to the change in PFASs production profile, however, the data are still lacking. Furthermore, epidemiological studies have examined the associations of PFAS exposure with glucose homeostasis, but with inconsistent results. Therefore, in this study, fasting serum samples from 252 participants with an age range from 19 to 87 years old were collected in Tianjin, China. A total of 21 target PFASs were determined to analyze the levels and distribution of novel and legacy PFASs in serum and to further evaluate the cross-sectional associations of serum PFAS concentrations with two glycemic biomarkers (i.e., fasting glucose and glycated hemoglobin (HbA1c)). 6:2 chlorinated PFAES (6:2 Cl-PFAES) and trifluoroacetic acid (TFA) were widely detected novel PFASs (greater than90%) with relatively high median concentrations (8.64 ng/mL and 8.46 ng/mL, respectively), which were second only to the two dominant legacy PFASs, i.e., perfluorooctanoic acid (PFOA, 14.83 ng/mL) and perfluorooctane sulfonic acid (14.24 ng/mL). The percentage contributions to the total known PFASs were separately 17.6% and 17.2% for 6:2 Cl-PFAES and TFA. The levels of 6:2 Cl-PFAES were significantly correlated with age and BMI, and the concentrations of TFA were also significantly correlated with age. Furthermore, 1% increase in serum PFOA and perfluorononanoic acid (PFNA) was separately significantly associated with 0.018% [95% confidence interval (CI): 0.004%, 0.033%] and 0.022% (95% CI: 0.007%, 0.037%) increment in fasting glucose levels. Similarly, 1% increase in serum perfluorohexanoic acid, PFNA, and perfluorohexane sulfonic acid was significantly associated with 0.030% (95% CI: 0.010%, 0.051%), 0.018% (95% CI: 0.003%, 0.033%), 0.007% (95% CI: 0.003%, 0.011%) increment in HbA1c levels, respectively. These findings suggested that 6:2 Cl-PFAES and TFA showed greater contributions to PFASs in serum and supported an association of exposure to PFASs with fasting glucose and HbA1c.
Collapse
Affiliation(s)
- Yishuang Duan
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China; Institute of Environment and Health, Jianghan University, Wuhan, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China.
| | - Yiming Yao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Yue Meng
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Yongcheng Li
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| |
Collapse
|
36
|
Girardi P, Merler E. A mortality study on male subjects exposed to polyfluoroalkyl acids with high internal dose of perfluorooctanoic acid. ENVIRONMENTAL RESEARCH 2019; 179:108743. [PMID: 31542491 DOI: 10.1016/j.envres.2019.108743] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVES The aim of the present study was to examine the association between exposure to polyfluoroalkyl substances (PFASs) and mortality (1970-2018) in a cohort of 462 male employees who had worked at least six months before 2009 for a factory (14,658 person-years; 107 deaths, average follow-up time 31.7 years), which had been producing perfluorooctanoic acid (PFOA), perfluorooctanesulfonyl fluoride (PFOS) and other chemicals since 1968. METHODS Employees were classified as follows: 1) by probability of exposure to PFASs; 2) by tertiles of PFOA serum concentrations. In a fraction (n = 120) of workers measurements of internal PFOA serum concentration were used to predict a cumulative serum PFOA concentration of each cohort member. Mortality rates were compared to that of the regional population using the standardized mortality ratio (SMR), and to that of the workers of a nearby metalworking factory in terms of risk ratio (RR), across categories of probability of PFASs exposure and tertiles of cumulative serum PFOA concentrations. RESULTS Internal PFOA serum concentration among 120 workers in the 2000-2013 period was very high (Geometric Mean: 4048 ng/mL; range 19-91,900 ng/mL). The mortality of the chemical cohort was increased for liver cancer (SMR: 2.32; CI: 1.11-4.87), malignant neoplasm of lymphatic and haematopoietic tissue (SMR: 2.26; CI: 1.08-4.73). In the comparison with the cohort of workers from the metalworking factory, the RRs for mortality of the cohort were increased for overall mortality (RR: 1.42; CI: 1.12-1.79), diabetes (RR: 5.95; CI: 1.08-32.8), liver cancer (RR: 6.69; CI: 1.71-26.2) and liver cirrhosis (RR: 3.87; CI: 1.18-12.7). Mortality for these causes increased in association with probability of PFASs exposure and with tertiles of cumulative PFOA serum concentrations. CONCLUSION The present is a small observational study with limited control over confounding factors. The cohort showed increased mortality for all causes and subjects in the highest cumulative internal dose of PFOA had a statistically significant increase for mortality of liver cancer, liver cirrhosis, diabetes, malignant neoplasms of lymphatic and haematopoietic tissue in both comparisons. Toxicological studies on PFOA and PFOS provide support for causality for the observed association with the risk for liver cirrhosis and liver cancer.
Collapse
Affiliation(s)
- Paolo Girardi
- Azienda Zero - Epidemiological Department, Veneto Region, Via Jacopo D'Avanzo, Padua, 35132, Italy; Directorate of Prevention, Food Safety and Veterinary Public Health, Veneto Region, Venice, Italy.
| | - Enzo Merler
- Azienda Zero - Epidemiological Department, Veneto Region, Via Jacopo D'Avanzo, Padua, 35132, Italy; Directorate of Prevention, Food Safety and Veterinary Public Health, Veneto Region, Venice, Italy.
| |
Collapse
|
37
|
Chen A, Jandarov R, Zhou L, Calafat AM, Zhang G, Urbina EM, Sarac J, Augustin DH, Caric T, Bockor L, Petranovic MZ, Novokmet N, Missoni S, Rudan P, Deka R. Association of perfluoroalkyl substances exposure with cardiometabolic traits in an island population of the eastern Adriatic coast of Croatia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 683:29-36. [PMID: 31129329 PMCID: PMC6581612 DOI: 10.1016/j.scitotenv.2019.05.250] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 05/31/2023]
Abstract
BACKGROUND Exposure to perfluoroalkyl substances (PFAS), ubiquitous environmental contaminants, may be related to cardiometabolic diseases in adults. Studies in European populations to examine the association of PFAS exposure and comprehensive cardiometabolic traits and metabolic syndrome (MetS) are limited. METHODS In this pilot cross-sectional study of a well-characterized adult population of the island of Hvar, situated off the eastern Adriatic coast of Croatia, we measured PFAS concentrations in plasma samples collected during 2007-2008 and examined their cross-sectional associations with cardiometabolic traits and MetS after adjustment of covariates (n = 122). PFAS investigated in this study included perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorohexane sulfonic acid (PFHxS), and perfluorononanoic acid (PFNA). RESULTS The geometric mean (range) was 8.91 (2.36, 33.67) ng/mL for PFOS, 2.87 (1.03, 8.02) ng/mL for PFOA, 0.77 (0.25, 2.40) ng/mL for PFHxS, and 1.29 (0.48, 3.46) ng/mL for PFNA, with frequency of detection at 100%, 100%, 95.9%, and 100%, respectively. PFOS, PFOA, and PFNA concentrations were positively associated with the risk of MetS as defined by the Adult Treatment Panel III (ATP III) criteria, with estimated odds ratios and 95% confidence intervals at 1.89 (0.93, 3.86), 2.19 (0.88, 5.44), and 2.95 (1.12, 7.80), respectively, with only PFNA reaching statistical significance. PFNA concentrations were associated with increased risk of overweight or obesity. CONCLUSIONS Background exposure to PFOS, PFOA, and PFNA was marginally associated with increased risk of MetS in this small study, and these results should be confirmed with a larger sample size and longitudinal follow-up.
Collapse
Affiliation(s)
- Aimin Chen
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Roman Jandarov
- Division of Biostatistics and Bioinformatics, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Li Zhou
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Epidemiology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ge Zhang
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Elaine M Urbina
- Heart Institute, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jelena Sarac
- Institute for Anthropological Research, Zagreb, Croatia
| | | | - Tonko Caric
- Institute for Anthropological Research, Zagreb, Croatia
| | - Luka Bockor
- Institute for Anthropological Research, Zagreb, Croatia
| | | | | | - Sasa Missoni
- Institute for Anthropological Research, Zagreb, Croatia; Josip Juraj Strossmayer University of Osijek, Faculty of Medicine, Osijek, Croatia
| | - Pavao Rudan
- Institute for Anthropological Research, Zagreb, Croatia; Croatian Academy of Sciences and Arts, Zagreb, Croatia
| | - Ranjan Deka
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
38
|
Cardenas A, Hivert MF, Gold DR, Hauser R, Kleinman KP, Lin PID, Fleisch AF, Calafat AM, Ye X, Webster TF, Horton ES, Oken E. Associations of Perfluoroalkyl and Polyfluoroalkyl Substances With Incident Diabetes and Microvascular Disease. Diabetes Care 2019; 42:1824-1832. [PMID: 31296647 PMCID: PMC6702604 DOI: 10.2337/dc18-2254] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 06/22/2019] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are suspected endocrine disruptors widely detected across populations. We examine the extent to which PFASs are associated with diabetes incidence and microvascular disease. Secondarily, we tested whether a lifestyle intervention modifies associations and decreases concentrations. RESEARCH DESIGN AND METHODS We analyzed data from a prospective cohort of 957 participants from the Diabetes Prevention Program (DPP) trial and Diabetes Prevention Program Outcomes Study (DPPOS). At baseline, participants were randomized to an intensive lifestyle intervention of diet, physical activity, and behavior modification or a placebo medication. We quantified plasma concentrations of six PFASs at baseline and 2 years after randomization. Participants were monitored for ∼15 years, repeatedly tested for diabetes, and evaluated for microvascular disease at the end of the follow-up. RESULTS A doubling in baseline branched perfluorooctanoic acid concentration was associated with a 14% increase in diabetes risk for the placebo (hazard ratio [HR] 1.14, 95% CI 1.04, 1.25) but not in the lifestyle intervention group (HR 1.01, 95% CI 0.92, 1.11, P interaction = 0.11). Mean change in plasma baseline branched perfluorooctanoic acid concentration was greater for the placebo (0.96 ng/mL; 95% CI 0.71, 1.22) compared with the lifestyle intervention group (0.31 ng/mL; 95% CI 0.14, 0.48) 2 years after randomization. Each doubling in N-ethyl-perfluorooctane sulfonamido acetic acid was associated with 17% greater odds of prevalent microvascular disease (OR 1.17, 95% CI 1.05, 1.31), and a similar association was observed for perfluorodimethylhexane sulfonic acid (OR 1.18, 95% CI 1.04, 1.35), regardless of treatment. CONCLUSIONS Some plasma PFASs were associated with diabetes and microvascular disease. Our results suggest that exercise and diet may attenuate the diabetogenic association of PFASs.
Collapse
Affiliation(s)
- Andres Cardenas
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA
| | - Diane R Gold
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Ken P Kleinman
- Department of Biostatistics and Epidemiology, University of Massachusetts-Amherst School of Public Health and Health Sciences, Amherst, MA
| | - Pi-I D Lin
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA
| | - Abby F Fleisch
- Division of Pediatric Endocrinology and Diabetes, Maine Medical Center, Portland, ME
- Center for Outcomes Research and Evaluation, Maine Medical Center Research Institute, Portland, ME
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA
| | - Xiaoyun Ye
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA
| | - Thomas F Webster
- Department of Environmental Health, Boston University School of Public Health, Boston, MA
| | | | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA
| |
Collapse
|
39
|
Jain RB, Ducatman A. Perfluoroalkyl acids serum concentrations and their relationship to biomarkers of renal failure: Serum and urine albumin, creatinine, and albumin creatinine ratios across the spectrum of glomerular function among US adults. ENVIRONMENTAL RESEARCH 2019; 174:143-151. [PMID: 31077989 DOI: 10.1016/j.envres.2019.04.034] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 01/09/2023]
Abstract
Associations between selected perfluoroalkyl acids (PFAAs) and biomarkers of renal function were evaluated for US adult aged ≥ 20 years (N = 8220) in the National Health and Nutrition Examination Survey for 2005-2014. Glomerular filtration (GF) stage-stratified regression models were classified by estimated glomerular filtration rate (eGFR) with GF-1 (eGFR > 90 mL/min/1.73 m2), GF-2 (eGFR 60-89 mL/min/1.73 m2), GF-3A (45-59 mL/min/1.73 m2), and GF-3B/4 (15-44 mL/min/1.73 m2). For GF-1, PFOA, PFOS, and PFHxS were positively and significantly associated with serum creatinine. Serum albumin levels were positively associated with the PFAA considered at all stages and most associations were significant. Further, PFAS serum concentration associations to serum albumin were about 2-3 times stronger at GF-3B/4 than at GF-1. In contrast, urine albumin was negatively and significantly associated with PFOA and PFHxS serum concentrations at all stages of renal function, while, PFOS and PFNA were negatively and significantly associated to urine albumin at GF-3A and GF-3B/4. Urine albumin/creatinine ratios were negatively and significantly associated with PFOA, PFOS, and, and PFHxS serum concentrations at all stages of renal function, as well as with PFNA and PFDA at GF-3A and GF-3B/4. Recent work revealed that serum PFAAs have an inverted U-shaped association to the calculated stages of renal failure based on eGFR; this work adds that albuminuria makes additional negative contributions to already existing negative associations of PFAA to eGFR in advancing stages of renal failure. We hypothesize that both progressive renal failure per se and especially renal failure with albuminuria cause the kidneys to reabsorb less and to excrete more of the PFAAs studied. We suspect this finding may generalize to some other perfluoroalkyl substances (PFAS). The findings also imply study design considerations for evaluating associations to diseases and biomarkers associated with renal failure, such as diabetes.
Collapse
Affiliation(s)
- Ram B Jain
- Independent Researcher, Dacula, Ga, USA.
| | - Alan Ducatman
- West Virginia University School of Public Health, Morgantown, WV, USA
| |
Collapse
|
40
|
Liu X, Zhang L, Chen L, Li J, Wang Y, Wang J, Meng G, Chi M, Zhao Y, Chen H, Wu Y. Structure-based investigation on the association between perfluoroalkyl acids exposure and both gestational diabetes mellitus and glucose homeostasis in pregnant women. ENVIRONMENT INTERNATIONAL 2019; 127:85-93. [PMID: 30909097 DOI: 10.1016/j.envint.2019.03.035] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND Biomonitoring studies have shown the presence of structurally diverse perfluoroalkyl acids (PFAAs) in humans but only a few studies are available regarding the differential structural effects of PFAAs on human health. OBJECTIVE The specific association between different structural PFAAs and both gestational diabetes mellitus (GDM) and glucose homeostasis in pregnant women was investigated. METHODS A prospective nested case-control study including 439 women was conducted during 2013-2015 in Beijing, China. First trimester maternal serum was collected and analyzed for 25 diverse PFAAs with varying carbon chain lengths, linear/branched isomers and carboxylate or sulfonate functional groups. The analyzed PFAAs were grouped into different exposure variables depending on structure characteristics. GDM cases were diagnosed at 24-28 weeks of gestation and individually matched in a 1:2 ratio to controls. Conditional logistic and linear regression was used to evaluate the association between structurally grouped PFAAs and both GDM risk and glucose homeostasis parameters. RESULTS Among the 25 PFAAs, 12 perfluoroalkyl carboxylates (PFCAs) and 8 perfluoroalkyl sulfonates (PFSAs) were detected in >55.0% of samples and were respectively grouped into different structural groups. The structural-based effect was observed for PFCAs, where short-chain (C4-C7) PFCAs continuous level was significantly associated with GDM with an estimated odds ratio (OR) of 1.99 (95% CI: 1.29, 3.09), and the multivariable-adjusted ORs (95% CI) of GDM for increasing tertiles of short-chain PFCAs were 1.00 (ref.), 1.82 (0.80, 4.16) and 3.01 (1.31, 6.94), P trend = 0.011. Additionally, increased concentration of short-chain PFCAs was significantly associated with higher postprandial glucose levels (P < 0.05). Non-significant association was observed between structure grouped PFSAs and GDM as well as glucose homeostasis. CONCLUSION This investigation suggests a structure-specific association between short-chain PFCAs exposure and both GDM risk and impaired glucose homeostasis in pregnant women. These findings warrant further investigation with larger samples and a wide range of short-chain PFCAs exposure.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China; NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Lei Zhang
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Liangkai Chen
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingguang Li
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China.
| | - Yuxin Wang
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Jun Wang
- Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Guimin Meng
- Beijing Fengtai Hospital Obstetrics and Gynecology, Beijing, China
| | - Min Chi
- Taiyuan Center for Disease Control and Prevention, Taiyuan, China
| | - Yunfeng Zhao
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yongning Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China; NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| |
Collapse
|
41
|
Honda-Kohmo K, Hutcheson R, Innes KE, Conway BN. Perfluoroalkyl substances are inversely associated with coronary heart disease in adults with diabetes. J Diabetes Complications 2019; 33:407-412. [PMID: 30928231 PMCID: PMC6511468 DOI: 10.1016/j.jdiacomp.2019.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/29/2019] [Accepted: 02/12/2019] [Indexed: 01/09/2023]
Abstract
AIMS Perfluoroalkyl substances (PFAS) are environmentally and biologically persistent synthetic environmental contaminants linked to adverse health outcomes. Though null to modest inverse relationships between PFAS and coronary heart disease (CHD) have been reported, studies regarding relationships in high risk populations such as those with diabetes are sparse. We investigated the relationship of PFAS with CHD in persons with diabetes. METHODS Data on 5270 adults, aged ≥20 years, with diabetes were obtained from the C8 Health Project. Four PFAS were investigated separately: perfluorohexane sulfonate (PFHxS), perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), and perfluorononanoic acid (PFNA). RESULTS In logistic regression analyses adjusting for age, sex, diabetes duration, BMI, smoking, lipids, WBC, CRP, eGFR, uric acid, hemoglobin and iron, all PFAS were inversely associated with CHD, ORs (95% CIs): PFHxS; 0.72 (0.65-0.79), PFOA; 0.90 (0.81-0.96), PFOS; 0.90 (0.81-0.99), PFNA; 0.88 (0.76-1.02). Stratification by chronic kidney disease status revealed similar inverse relationships for those with and without chronic kidney disease. CONCLUSIONS In this cross-sectional study of over 5000 adults with diabetes, PFAS showed inverse associations with CHD. These findings may, if confirmed in future studies, provide new physiologic understanding of CHD prevention strategies.
Collapse
Affiliation(s)
- Kyoko Honda-Kohmo
- Department of Epidemiology, West Virginia University, Morgantown, WV, USA; Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Robert Hutcheson
- Department of Epidemiology, West Virginia University, Morgantown, WV, USA
| | - Kim E Innes
- Department of Epidemiology, West Virginia University, Morgantown, WV, USA
| | - Baqiyyah N Conway
- Department of Epidemiology, West Virginia University, Morgantown, WV, USA; Department of Community Health, University of Texas Health Science Center at Tyler, Tyler, TX, USA.
| |
Collapse
|
42
|
Donat-Vargas C, Bergdahl IA, Tornevi A, Wennberg M, Sommar J, Kiviranta H, Koponen J, Rolandsson O, Åkesson A. Perfluoroalkyl substances and risk of type II diabetes: A prospective nested case-control study. ENVIRONMENT INTERNATIONAL 2019; 123:390-398. [PMID: 30622063 DOI: 10.1016/j.envint.2018.12.026] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 05/27/2023]
Abstract
BACKGROUND Perfluoroalkyl substances (PFAS) have drawn much attention due to bioaccumulation potential and their current omnipresence in human blood. We assessed whether plasma PFAS, suspected to induce endocrine-disrupting effects, were prospectively associated with clinical type 2 diabetes (T2D) risk. METHODS We established a nested case-control study within the Swedish prospective population-based Västerbotten Intervention Programme cohort. Several PFAS were measured in plasma from a subset of 124 case-control pairs at baseline (during 1990-2003) and at 10-year follow-up. T2D cases were matched (1:1) according to gender, age and sample date with participants without T2D (controls). Conditional logistic regressions were used to prospectively assess risk of T2D by baseline PFAS plasma concentrations. Associations between long-term PFAS plasma levels (mean of baseline and follow-up) and insulin resistance (HOMA2-IR) and beta-cell function (HOMA2-B%) at follow-up were prospectively explored among 178 and 181 controls, respectively, by multivariable linear regressions. RESULTS After adjusting for gender, age, sample year, diet and body mass index, the odds ratio of T2D for the sum of PFAS (Σ z-score PFAS) was 0.52 (95% confidence interval, CI: 0.20, 1.36), comparing third with first tertile; and 0.92 (95% CI: 0.84, 1.00) per one standard deviation increment of sum of log-transformed PFAS. Among the controls, the adjusted β of HOMA2-IR and HOMA-B% for the sum of PFAS were -0.26 (95% CI: -0.52, -0.01) and -9.61 (95% CI: -22.60, 3.39) respectively comparing third with first tertile. CONCLUSIONS This prospective nested case-control study yielded overall inverse associations between individual PFAS and risk of T2D, although mostly non-significant. Among participants without T2D, long-term PFAS exposure was prospectively associated with lower insulin resistance.
Collapse
Affiliation(s)
- Carolina Donat-Vargas
- Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ingvar A Bergdahl
- Department of Public Health and Clinical Medicine, Occupational and Environmental Medicine, Umeå University, Umeå, Sweden
| | - Andreas Tornevi
- Department of Public Health and Clinical Medicine, Occupational and Environmental Medicine, Umeå University, Umeå, Sweden
| | - Maria Wennberg
- Department of Public Health and Clinical Medicine, Nutritional Research, Umeå University, Umeå, Sweden
| | - Johan Sommar
- Department of Public Health and Clinical Medicine, Occupational and Environmental Medicine, Umeå University, Umeå, Sweden
| | - Hannu Kiviranta
- Department for Health Security, Environmental Health Unit, National Institute for Health and Welfare, Kuopio, Finland
| | - Jani Koponen
- Department for Health Security, Environmental Health Unit, National Institute for Health and Welfare, Kuopio, Finland
| | - Olov Rolandsson
- Department of Public Health and Clinical Medicine, Family Medicine, Umeå University, Umeå, Sweden
| | - Agneta Åkesson
- Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
43
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Vleminckx C, Vollmer G, Wallace H, Bodin L, Cravedi JP, Halldorsson TI, Haug LS, Johansson N, van Loveren H, Gergelova P, Mackay K, Levorato S, van Manen M, Schwerdtle T. Risk to human health related to the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food. EFSA J 2018; 16:e05194. [PMID: 32625773 PMCID: PMC7009575 DOI: 10.2903/j.efsa.2018.5194] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The European Commission asked EFSA for a scientific evaluation on the risks to human health related to the presence of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in food. Regarding PFOS and PFOA occurrence, the final data set available for dietary exposure assessment contained a total of 20,019 analytical results (PFOS n = 10,191 and PFOA n = 9,828). There were large differences between upper and lower bound exposure due to analytical methods with insufficient sensitivity. The CONTAM Panel considered the lower bound estimates to be closer to true exposure levels. Important contributors to the lower bound mean chronic exposure were 'Fish and other seafood', 'Meat and meat products' and 'Eggs and egg products', for PFOS, and 'Milk and dairy products', 'Drinking water' and 'Fish and other seafood' for PFOA. PFOS and PFOA are readily absorbed in the gastrointestinal tract, excreted in urine and faeces, and do not undergo metabolism. Estimated human half-lives for PFOS and PFOA are about 5 years and 2-4 years, respectively. The derivation of a health-based guidance value was based on human epidemiological studies. For PFOS, the increase in serum total cholesterol in adults, and the decrease in antibody response at vaccination in children were identified as the critical effects. For PFOA, the increase in serum total cholesterol was the critical effect. Also reduced birth weight (for both compounds) and increased prevalence of high serum levels of the liver enzyme alanine aminotransferase (ALT) (for PFOA) were considered. After benchmark modelling of serum levels of PFOS and PFOA, and estimating the corresponding daily intakes, the CONTAM Panel established a tolerable weekly intake (TWI) of 13 ng/kg body weight (bw) per week for PFOS and 6 ng/kg bw per week for PFOA. For both compounds, exposure of a considerable proportion of the population exceeds the proposed TWIs.
Collapse
|
44
|
Wang Y, Zhang L, Teng Y, Zhang J, Yang L, Li J, Lai J, Zhao Y, Wu Y. Association of serum levels of perfluoroalkyl substances with gestational diabetes mellitus and postpartum blood glucose. J Environ Sci (China) 2018; 69:5-11. [PMID: 29941268 DOI: 10.1016/j.jes.2018.03.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 03/16/2018] [Accepted: 03/16/2018] [Indexed: 05/26/2023]
Abstract
This study was conducted to examine the association of perfluoroalkyl substance (PFAS) exposure with gestational diabetes mellitus (GDM) risk and postpartum fasting blood glucose. We used a 1:2 matched case-control study with 84 GDM subjects and 168 healthy pregnant women from Beijing, China. The maternal blood was collected at 1-2days before delivery, and eight linear isomers and fourteen branched isomers were determined in maternal serum. Logistic regression analyses were performed to evaluate the associations after adjusting for potential confounders. The median of the sum of levels of total PFASs was 4.24ng/mL with a interquartile range (IQR) of 2.82-6.54ng/mL. Although maternal PFAS exposure was not associated with risk of GDM, significant positive associations were observed between evaluated exposure to specific PFAS congeners and increasing blood glucose. The odds ratio (ORs) of the highest category of postpartum fasting blood glucose for perfluoro-1-metylheptylsulfonat (1m-PFOS), perfluoro-3/4-metylheptylsulfonat (3m+4m-PFOS), perfluoro-5-metylheptylsulfonat (5m-PFOS), and perfluorohexane sulfonate (PFHxS) were 2.03 (95% CI: 1.09-3.77), 1.93 (95% CI: 1.04-3.58), 2.48 (95% CI: 1.33-4.65), and 2.26 (95% CI: 1.21-4.21), respectively, suggesting negative effects of maternal exposure to specific PFAS compounds on glucose metabolism.
Collapse
Affiliation(s)
- Yuxin Wang
- The Key Laboratory of Food Safety Risk Assessment, Ministry of Health (CFSA), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Lei Zhang
- The Key Laboratory of Food Safety Risk Assessment, Ministry of Health (CFSA), China National Center for Food Safety Risk Assessment, Beijing 100021, China.
| | - Yue Teng
- Haidian Maternal and Child Hygiene Hospital, Beijing 100080, China
| | - Jiayu Zhang
- College of Literature, Science and Arts, University of Michigan, Ann Arbor, MI48104, USA
| | - Lin Yang
- The Key Laboratory of Food Safety Risk Assessment, Ministry of Health (CFSA), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Jingguang Li
- The Key Laboratory of Food Safety Risk Assessment, Ministry of Health (CFSA), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Jianqiang Lai
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China.
| | - Yunfeng Zhao
- The Key Laboratory of Food Safety Risk Assessment, Ministry of Health (CFSA), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Yongning Wu
- The Key Laboratory of Food Safety Risk Assessment, Ministry of Health (CFSA), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| |
Collapse
|
45
|
He X, Liu Y, Xu B, Gu L, Tang W. PFOA is associated with diabetes and metabolic alteration in US men: National Health and Nutrition Examination Survey 2003-2012. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 625:566-574. [PMID: 29291571 DOI: 10.1016/j.scitotenv.2017.12.186] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 12/16/2017] [Accepted: 12/17/2017] [Indexed: 05/27/2023]
Abstract
Exposure to perfluoroalkyl substances (PFAS) is associated with a range of adverse health effects. However, it remains unclear whether PFAS at environmentally relevant exposure levels are related to diabetes and metabolite concentrations in adults. Using cross-sectional data from 7904 adults (age≥20years) in the 2003-2012 National Health and Nutrition Examination Survey (NHANES), we examined the association of PFAS with the prevalence of diabetes and metabolite concentrations. A multivariate logistic regression was applied to investigate the associations of diabetes prevalence with serum perfluorooctanoate (PFOA), perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS) and perfluorononanoate (PFNA) levels. A multivariate generalised linear regression was further performed to investigate the associations between PFAS exposure and some metabolites. We identified a strong positive association between serum PFOA and diabetes prevalence in men with an adjusted model (OR: 2.66, 95% CI: 1.63-4.35; P for trend=0.001). No significant association between serum PFOA and diabetes prevalence was observed in women (OR: 1.47, 95% CI: 0.88-2.46; P for trend=0.737). Furthermore, diabetes was not related to PFOS, PFHxS and PFNA, regardless of gender. In the gender-stratified generalised linear models, men and women with the highest PFOA levels demonstrated a 1.43% (95% CI: 0.62%-2.34%) and a 1.07% (95% CI: 0.27%-1.97%) greater increase in serum total cholesterol (P for trend=0.006 and 0.001) compared to those with the lowest PFOA levels. There were no significant associations between serum PFOA and other metabolites. These results provide epidemiological evidence that environment-related levels of serum PFOA may be positively associated with the prevalence of diabetes in men and with total cholesterol in adults. Further clinical and animal studies are urgently needed to elucidate putative causal relationships and shed light on the potential mode of action involved.
Collapse
Affiliation(s)
- Xiaowei He
- Department of Endocrinology, Islet Cell Senescense and Function Research Laboratory, Jiangsu Province Geriatric Institute, 30 Luojia Road, Nanjing, Jiangsu 210024, China
| | - Yuanxin Liu
- Department of Endocrinology, Islet Cell Senescense and Function Research Laboratory, Jiangsu Province Geriatric Institute, 30 Luojia Road, Nanjing, Jiangsu 210024, China
| | - Bo Xu
- School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Liubao Gu
- Department of Endocrinology, Islet Cell Senescense and Function Research Laboratory, Jiangsu Province Geriatric Institute, 30 Luojia Road, Nanjing, Jiangsu 210024, China
| | - Wei Tang
- Department of Endocrinology, Islet Cell Senescense and Function Research Laboratory, Jiangsu Province Geriatric Institute, 30 Luojia Road, Nanjing, Jiangsu 210024, China.
| |
Collapse
|
46
|
Wang H, Yang J, Du H, Xu L, Liu S, Yi J, Qian X, Chen Y, Jiang Q, He G. Perfluoroalkyl substances, glucose homeostasis, and gestational diabetes mellitus in Chinese pregnant women: A repeat measurement-based prospective study. ENVIRONMENT INTERNATIONAL 2018; 114:12-20. [PMID: 29459131 DOI: 10.1016/j.envint.2018.01.027] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/07/2018] [Accepted: 01/26/2018] [Indexed: 05/26/2023]
Abstract
BACKGROUND Exposure to perfluoroalkyl substances (PFASs) can affect glucose homeostasis and has been suggested as a potential risk of diabetes mellitus, but data are limited for pregnant women. OBJECTIVES We aimed to explore the associations of exposure to PFASs with glucose homeostasis and gestational diabetes mellitus (GDM) in Chinese pregnant women. METHODS The current study was conducted in Hebei Province of Northern China between 2013 and 2014 and 560 pregnant women were recruited in their early term of pregnancy and two representative serum PFASs, perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS), were measured. In 385 pregnant women who completed oral glucose tolerance test (OGTT), the associations of serum PFOA and PFOS concentrations with fasting blood glucose (FBG), fasting insulin (FIns), and homeostasis model assessment of insulin resistance (HOMA-IR) in the early, middle, and late terms of pregnancy and occurrence of GDM were examined using linear and Cox proportional hazard regression models. The reproducibility of serum PFASs during pregnancy was assessed in 230 pregnant women. RESULTS The intraclass correlation coefficients of serum PFASs, covariates, and outcomes based on averaged repeat measurement (0.35-0.96) were higher than those based on single measurement (0.16-0.92). Serum PFOA was positively associated with averaged FIns and HOMA-IR in the early, middle, and late terms of pregnancy and averaged blood glucose level at 1 h and 2 h of OGTT, but serum PFOS tended to be negatively associated with averaged FBG and OGTT blood glucose. The adjusted hazard ratios of GDM associated with serum PFOA and PFOS were 1.98 (95% confidence interval: 0.70-5.57; p-value: 0.197) and 0.71 (0.29-1.75; 0.453), respectively. CONCLUSIONS Our data raised a possibility that exposure to PFASs might have different influences on glucose homeostasis and GDM in Chinese pregnant women. More lab and human studies are needed to further test the hypothesis and investigate potential mechanisms.
Collapse
Affiliation(s)
- Hexing Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China
| | - Jiaqi Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China
| | - Hongyi Du
- Department of Maternal, Child and Adolescent Health, School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China
| | - Linji Xu
- Maternal and Child Health Care Hospital, Tangshan Municipality, Tangshan 063000, Hebei province, China
| | - Shuping Liu
- Maternal and Child Health Care Hospital, Tangshan Municipality, Tangshan 063000, Hebei province, China
| | - Jianping Yi
- Maternal and Child Health Care Hospital, Tangshan Municipality, Tangshan 063000, Hebei province, China
| | - Xu Qian
- Department of Maternal, Child and Adolescent Health, School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China
| | - Yue Chen
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1G5Z3, Canada
| | - Qingwu Jiang
- Department of Epidemiology, School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China
| | - Gengsheng He
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China.
| |
Collapse
|
47
|
Mudumbi JBN, Ntwampe SKO, Mekuto L, Matsha T, Itoba-Tombo EF. The role of pollutants in type 2 diabetes mellitus (T2DM) and their prospective impact on phytomedicinal treatment strategies. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:262. [PMID: 29610974 DOI: 10.1007/s10661-018-6634-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 03/22/2018] [Indexed: 06/08/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is the most common form of diabetes and it is characterized by high blood sugar and abnormal sera lipid levels. Although the specific reasons for the development of these abnormalities are still not well understood, traditionally, genetic and lifestyle behavior have been reported as the leading causes of this disease. In the last three decades, the number of diabetic patients has drastically increased worldwide, with current statistics suggesting the number is to double in the next two decades. To combat this incurable ailment, orthodox medicines, to which economically disadvantaged patients have minimal access to, have been used. Thus, a considerable amalgamation of medicinal plants has recently been proven to possess therapeutic capabilities to manage T2DM, and this has prompted studies primarily focusing on the healing aspect of these plants, and ultimately, their commercialization. Hence, this review aims to highlight the potential threat of pollutants, i.e., polyfluoroalkyl compounds (PFCs), endocrine disrupting chemicals (EDCs) and heavy metals, to medicinal plants, and their prospective impact on the phytomedicinal therapy strategies for T2DM. It is further suggested that auxiliary research be undertaken to better comprehend the factors that influence the uptake of these compounds by these plants. This should include a comprehensive risk assessment of phytomedicinal products destined for the treatment of T2DM. Regulations that control the use of PFC-precursors in certain developing countries are also long overdue.
Collapse
Affiliation(s)
- John Baptist Nzukizi Mudumbi
- Bioresource Engineering Research Group (BioERG), Department of Biotechnology, Cape Peninsula University of Technology, PO Box 652, Cape Town, 8000, South Africa.
| | - Seteno Karabo Obed Ntwampe
- Bioresource Engineering Research Group (BioERG), Department of Biotechnology, Cape Peninsula University of Technology, PO Box 652, Cape Town, 8000, South Africa
| | - Lukhanyo Mekuto
- Department of Chemical Engineering, University of Johannesburg, PO Box 17011, Johannesburg, Gauteng, 2028, South Africa
| | - Tandi Matsha
- Department of Bio-Medical sciences, Faculty of Health and Wellness Science, Cape Peninsula University of Technology, PO Box 1906, Bellville, 7535, South Africa
| | - Elie Fereche Itoba-Tombo
- Bioresource Engineering Research Group (BioERG), Department of Biotechnology, Cape Peninsula University of Technology, PO Box 652, Cape Town, 8000, South Africa
| |
Collapse
|
48
|
Sun Q, Zong G, Valvi D, Nielsen F, Coull B, Grandjean P. Plasma Concentrations of Perfluoroalkyl Substances and Risk of Type 2 Diabetes: A Prospective Investigation among U.S. Women. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:037001. [PMID: 29498927 PMCID: PMC6071816 DOI: 10.1289/ehp2619] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Emerging evidence suggests that perfluoroalkyl substances (PFASs) are endocrine disruptors and may contribute to the etiology of type 2 diabetes (T2D), but this hypothesis needs to be clarified in prospective human studies. OBJECTIVES Our objective was to examine the associations between PFAS exposures and subsequent incidence of T2D in the Nurses' Health Study II (NHSII). In addition, we aimed to evaluate potential demographic and lifestyle determinants of plasma PFAS concentrations. METHODS A prospective nested case-control study of T2D was conducted among participants who were free of diabetes, cardiovascular disease, and cancer in 1995-2000 [(mean±SD): 45.3±4.4 y) of age]. We identified and ascertained 793 incident T2D cases through 2011 (mean±SD) years of follow-up: 6.7±3.7 y). Each case was individually matched to a control (on age, month and fasting status at sample collection, and menopausal status and hormone replacement therapy). Plasma concentrations of five major PFASs, including perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorohexanesulfonate, perfluorononanoic acid, and perfluorodecanoic acid were measured. Odds ratios (ORs) of T2D by PFAS tertiles were estimated by conditional logistic regression. RESULTS Shorter breastfeeding duration and higher intake of certain foods, such as seafood and popcorn, were significantly associated with higher plasma concentrations of PFASs among controls. After multivariate adjustment for T2D risk factors, including body mass index, family history, physical activity, and other covariates, higher plasma concentrations of PFOS and PFOA were associated with an elevated risk of T2D. Comparing extreme tertiles of PFOS or PFOA, ORs were 1.62 (95% CI: 1.09, 2.41; ptrend=0.02) and 1.54 (95% CI: 1.04, 2.28; ptrend=0.03), respectively. Other PFASs were not clearly associated with T2D risk. CONCLUSIONS Background exposures to PFASs in the late 1990s were associated with higher T2D risk during the following years in a prospective case-control study of women from the NHSII. These findings support a potential diabetogenic effect of PFAS exposures. https://doi.org/10.1289/EHP2619.
Collapse
Affiliation(s)
- Qi Sun
- Department of Nutrition, Harvard T.H. Chan School of Public Health , Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts, USA
| | - Geng Zong
- Department of Nutrition, Harvard T.H. Chan School of Public Health , Boston, Massachusetts, USA
| | - Damaskini Valvi
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Flemming Nielsen
- Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Brent Coull
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health , Boston, Massachusetts, USA
| | - Philippe Grandjean
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Institute of Public Health, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
49
|
Zheng F, Sheng N, Zhang H, Yan S, Zhang J, Wang J. Perfluorooctanoic acid exposure disturbs glucose metabolism in mouse liver. Toxicol Appl Pharmacol 2017; 335:41-48. [DOI: 10.1016/j.taap.2017.09.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 01/09/2023]
|
50
|
Cardenas A, Gold DR, Hauser R, Kleinman KP, Hivert MF, Calafat AM, Ye X, Webster TF, Horton ES, Oken E. Plasma Concentrations of Per- and Polyfluoroalkyl Substances at Baseline and Associations with Glycemic Indicators and Diabetes Incidence among High-Risk Adults in the Diabetes Prevention Program Trial. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:107001. [PMID: 28974480 PMCID: PMC5933403 DOI: 10.1289/ehp1612] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 05/20/2023]
Abstract
BACKGROUND Several per- and polyfluoroalkyl substances (PFAS) are ubiquitous anthropogenic pollutants almost universally detected in humans. Experimental evidence indicates that PFAS alter glucose metabolism and insulin secretion. However, epidemiological studies have yielded inconsistent results. OBJECTIVE We sought to examine associations between plasma PFAS concentrations, glycemic indicators, and diabetes incidence among high-risk adults. METHODS Within the Diabetes Prevention Program (DPP), a trial for the prevention of type 2 diabetes among high-risk individuals, we quantified baseline plasma concentrations of nine PFAS among 957 participants randomized to a lifestyle intervention or placebo. We evaluated adjusted associations for plasma PFAS concentrations with diabetes incidence and key glycemic indicators measured at baseline and annually over up to 4.6 y. RESULTS Plasma PFAS concentrations were similar to those reported in the U.S. population in 1999-2000. At baseline, in cross-sectional analysis, a doubling in plasma perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) concentrations was associated with higher homeostatic model assessment of insulin resistance (HOMA-IR) [βPFOS=0.39; 95% confidence interval (CI): 0.13, 0.66; βPFOA=0.64; 95% CI: 0.34, 0.94], β-cell function (HOMA-β) (βPFOS=9.62; 95% CI: 1.55, 17.70; βPFOA=15.93; 95% CI: 6.78, 25.08), fasting proinsulin (βPFOS=1.37 pM; 95% CI: 0.50, 2.25; βPFOA=1.71 pM; 95% CI: 0.72, 2.71), and glycated hemoglobin (HbA1c) (βPFOS=0.03%; 95% CI: 0.002, 0.07; βPFOA=0.04%; 95% CI: 0.001, 0.07). There was no strong evidence of associations between plasma PFAS concentrations and diabetes incidence or prospective changes in glycemic indicators during the follow-up period. CONCLUSIONS At baseline, several PFAS were cross-sectionally associated with small differences in markers of insulin secretion and β-cell function. However, there was limited evidence suggesting that PFAS concentrations are associated with diabetes incidence or changes in glycemic indicators during the follow-up period. https://doi.org/10.1289/EHP1612.
Collapse
Affiliation(s)
- Andres Cardenas
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim HealthCare Institute , Boston, Massachusetts, USA
| | - Diane R Gold
- Channing Laboratory, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Ken P Kleinman
- Department of Biostatistics, School of Public Health and Human Sciences, University of Massachusetts Amherst , Amherst, Massachusetts, USA
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim HealthCare Institute , Boston, Massachusetts, USA
- Diabetes Unit , Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention , Atlanta, Georgia, USA
| | - Xiaoyun Ye
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention , Atlanta, Georgia, USA
| | - Thomas F Webster
- Department of Environmental Health, Boston University School of Public Health , Boston, Massachusetts, USA
| | - Edward S Horton
- Joslin Diabetes Center, Harvard Medical School , Boston, Massachusetts, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim HealthCare Institute , Boston, Massachusetts, USA
| |
Collapse
|