1
|
Long XB, Yao CR, Li SY, Zhang JG, Lu ZJ, Ma DD, Jiang YX, Ying GG, Shi WJ. Multiomics analysis reveal the impact of 17α-Ethinylestradiol on mortality in juvenile zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2024; 286:110027. [PMID: 39233286 DOI: 10.1016/j.cbpc.2024.110027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/11/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
17α-Ethinylestradiol (EE2) is known for its endocrine-disrupting effects on embryonic and adult fish. However, its impact on juvenile zebrafish has not been well established. In this study, juvenile zebrafish were exposed to EE2 at concentrations of 5 ng/L (low dose, L), 10 ng/L (medium dose, M), and 50 ng/L (high dose, H) from 21 days post-fertilization (dpf) to 49 dpf. We assessed their growth, development, behavior, transcriptome, and metabolome. The findings showed that the survival rate in the EE2-H group was 66.8 %, with all surviving fish displaying stunted growth and swollen, transparent abdomens by 49 dpf. Moreover, severe organ deformities were observed in the gills, kidneys, intestines, and heart of fish in both the EE2-H and EE2-M groups. Co-expression analysis of mRNA and lncRNA revealed that EE2 downregulated the transcription of key genes involved in the cell cycle, DNA replication, and Fanconi anemia signaling pathways. Additionally, metabolomic analysis indicated that EE2 influenced metabolism and development-related signaling pathways. These pathways were also significantly identified based on the genes regulated by lncRNA. Consequently, EE2 induced organ deformities and mortality in juvenile zebrafish by disrupting signaling pathways associated with development and metabolism. The results of this study offer new mechanistic insights into the adverse effects of EE2 on juvenile zebrafish based on multiomics analysis. The juvenile zebrafish are highly sensitive to EE2 exposure, which is not limited to adult and embryonic stages. It is a potential model for studying developmental toxicity.
Collapse
Affiliation(s)
- Xiao-Bing Long
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Chong-Rui Yao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Si-Ying Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jin-Ge Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Zhi-Jie Lu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Dong-Dong Ma
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Yu-Xia Jiang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Wen-Jun Shi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
2
|
Rocha PRS, Moura HSRP, Silva NG, Neves FAR, Sodré FF, Amato AA. Exposure of elementary school-aged Brazilian children to bisphenol A: association with demographic, social, and behavioral factors, and a worldwide comparison. Sci Rep 2024; 14:24355. [PMID: 39420023 PMCID: PMC11487177 DOI: 10.1038/s41598-024-67267-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 07/09/2024] [Indexed: 10/19/2024] Open
Abstract
Bisphenol A (BPA) is a plasticizer used to synthesize polycarbonate plastics and epoxy resins and is well-known for its endocrine-disrupting action. BPA occurrence in the environment is widespread, and there is a growing concern regarding exposure to this chemical during childhood, given the findings indicating the long-lasting hazards associated with exposure during early life compared to adulthood. We examined urinary BPA concentrations from 319 elementary school-aged Brazilian children, using high-performance liquid chromatography coupled to high-resolution mass spectrometry. We found that urinary BPA was detectable in the majority of children, and that urinary BPA levels were higher among children with lower family income and lower maternal educational levels. BPA levels found herein were compared with those from countries with different regulation policies concerning exposure to BPA. They were similar to those reported from studies conducted in Egypt and Australia. Despite more protective regulatory policies in the European Union, they were similar or lower than those reported in European studies. Our findings indicate that exposure of Brazilian children to BPA is widespread and comparable to or even lower than that of countries with stricter regulatory policies.
Collapse
Affiliation(s)
| | | | - Nadyellem G Silva
- Laboratory of Molecular Pharmacology, Faculty of Health Sciences, University of Brasilia, Room B1 146/10, Campus Universitario Darcy Ribeiro, Brasília, Brazil
| | - Francisco A R Neves
- Laboratory of Molecular Pharmacology, Faculty of Health Sciences, University of Brasilia, Room B1 146/10, Campus Universitario Darcy Ribeiro, Brasília, Brazil
| | - Fernando F Sodré
- Institute of Chemistry, University of Brasilia, Brasília, Brazil
| | - Angélica A Amato
- Laboratory of Molecular Pharmacology, Faculty of Health Sciences, University of Brasilia, Room B1 146/10, Campus Universitario Darcy Ribeiro, Brasília, Brazil.
| |
Collapse
|
3
|
Bloom MS, Clark JM, Pearce JL, Ferguson PL, Newman RB, Roberts JR, Grobman WA, Sciscione AC, Skupski DW, Garcia K, Vena JE, Hunt KJ. Impact of Skin Care Products on Phthalates and Phthalate Replacements in Children: the ECHO-FGS. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:97001. [PMID: 39230332 PMCID: PMC11373421 DOI: 10.1289/ehp13937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
BACKGROUND Phthalates and their replacements have been implicated as developmental toxicants. Young children may be exposed to phthalates/replacements when using skin care products (SCPs). OBJECTIVES Our objective is to assess the associations between use of SCPs and children's urinary phthalate/replacement metabolite concentrations. METHODS Children (4-8 years old) from the Environmental Influences on Child Health Outcomes-Fetal Growth Study (ECHO-FGS) cohort provided spot urine samples from 2017 to 2019, and mothers were queried about children's SCP use in the past 24 h (n = 906 ). Concentrations of 16 urinary phthalate/replacement metabolites were determined by liquid chromatography-tandem mass spectrometry (n = 630 ). We used linear regression to estimate the child's use of different SCPs as individual predictors of urinary phthalate/replacement metabolites, adjusted for urinary specific gravity, age, sex assigned at birth, body mass index, and self-reported race/ethnic identity, as well as maternal education, and season of specimen collection. We created self-organizing maps (SOM) to group children into "exposure profiles" that reflect discovered patterns of use for multiple SCPs. RESULTS Children had lotions applied (43.0%) frequently, but "2-in-1" hair-care products (7.5%), sunscreens (5.9%), and oils (4.3%) infrequently. Use of lotions was associated with 1.17-fold [95% confidence interval (CI): 1.00, 1.34] greater mono-benzyl phthalate and oils with 2.86-fold (95% CI: 1.89, 4.31) greater monoethyl phthalate (MEP), 1.43-fold (95% CI: 1.09, 1.90) greater monobutyl phthalate (MBP), and 1.40-fold (95% CI: 1.22, 1.61) greater low-molecular-weight phthalates (LMW). Use of 2-in-1 haircare products was associated with 0.84-fold (95% CI: 0.72, 0.97) and 0.78-fold (95% CI: 0.62, 0.98) lesser mono(3-carboxypropyl) phthalate (MCPP) and MBP, respectively. Child's race/ethnic identity modified the associations of lotions with LMW, oils with MEP and LMW, sunscreen with MCPP, ointments with MEP, and hair conditioner with MCPP. SOM identified four distinct SCP-use exposure scenarios (i.e., profiles) within our population that predicted 1.09-fold (95% CI: 1.03, 1.15) greater mono-carboxy isononyl phthalate, 1.31-fold (95% CI: 0.98, 1.77) greater mono-2-ethyl-5-hydroxyhexyl terephthalate, 1.13-fold (95% CI: 0.99, 1.29) greater monoethylhexyl phthalate, and 1.04-fold (95% CI: 1.00, 1.09) greater diethylhexyl phthalate. DISCUSSION We found that reported SCP use was associated with urinary phthalate/replacement metabolites in young children. These results may inform policymakers, clinicians, and parents to help limit children's exposure to developmental toxicants. https://doi.org/10.1289/EHP13937.
Collapse
Affiliation(s)
- Michael S Bloom
- Department of Global and Community Health, George Mason University, Fairfax, Virginia, USA
| | - Juliana M Clark
- Department of Global and Community Health, George Mason University, Fairfax, Virginia, USA
| | - John L Pearce
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Pamela L Ferguson
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Roger B Newman
- Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - James R Roberts
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - William A Grobman
- Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Anthony C Sciscione
- Department of Obstetrics and Gynecology, Christiana Care Health System, Newark, Delaware, USA
| | - Daniel W Skupski
- Department of Obstetrics and Gynecology, New York-Presbyterian Queens Hospital, Queens, New York, USA
| | - Kelly Garcia
- Department of Global and Community Health, George Mason University, Fairfax, Virginia, USA
| | - John E Vena
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kelly J Hunt
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
4
|
Li N, Liu J, Ying G, Lee JCK, Leung TF, Covaci A, Deng WJ. Endocrine disrupting chemicals in children's and their parents' urine: Is the exposure related to the Chinese and Western lifestyle? Int J Hyg Environ Health 2024; 259:114383. [PMID: 38652942 DOI: 10.1016/j.ijheh.2024.114383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Children are known to be more vulnerable to exposure to endocrine-disrupting chemicals (EDCs) compared to adults, but evaluating the exposure pathways can be challenging. This research employed target and non-target analysis (NTA) to examine the exposure characteristics of EDCs in spot urine samples collected from 46 children's (aged 3-12 years) and their parents in Hong Kong (Chinese/Western lifestyle) and Guangzhou (mainly Chinese lifestyle). The results revealed that the geometric mean concentrations of phthalate esters metabolites (mPAEs) and bisphenols (BPs) in children's urine were 127.3 μg/gcrea and 2.5 μg/gcrea in Guangzhou, and 93.7 μg/gcrea and 2.9 μg/gcrea in Hong Kong, respectively, which were consistent with global levels. NTA identified a total of 1069 compounds, including 106 EDCs, commonly detected in food, cosmetics, and drugs. Notable regional differences were observed between Guangzhou and Hong Kong with potential sources of EDCs including dietary and cosmetic additives, toys, flooring and dust, as well as differences in lifestyles, diet, and living environment. However, age was found to significantly impact EDC exposure. The quantified EDCs (mPAEs and BPs) posed possible health risks to 60% of the children. Moreover, the presence of caffeine in children's urine, which exhibited higher detection rates in children from Hong Kong (95.6%) and Guangzhou (44.4%), warrants further attention. The sources of EDCs exposure in these regions need to be fully confirmed.
Collapse
Affiliation(s)
- Na Li
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, N.T., Hong Kong China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jing Liu
- The Environmental Research Institute, MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Guangguo Ying
- The Environmental Research Institute, MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, 510006, China
| | - John Chi-Kin Lee
- Academy of Applied Policy Studies and Education Futures, The Education University of Hong Kong, Tai Po, N.T., Hong Kong China
| | - Ting Fan Leung
- Department of Paediatrics & Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong China
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, 2610, Wilrijk, Belgium.
| | - Wen-Jing Deng
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, N.T., Hong Kong China.
| |
Collapse
|
5
|
Collins AR, Azqueta A, Schoeters G, Slingers G, Dusinska M, Langie SAS. In memory of Dr. Ir. Gudrun Koppen (1969-2024). MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 895:503751. [PMID: 38575250 DOI: 10.1016/j.mrgentox.2024.503751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Affiliation(s)
- Andrew R Collins
- Norgenotech AS, Oslo Cancer Cluster Incubator, Oslo, Norway; & Department of Nutrition, University of Oslo, Oslo, Norway
| | - Amaya Azqueta
- Department of Pharmaceutical Science, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Greet Schoeters
- Prof. Em., Department of Biomedical Sciences & Toxicological Centre, University of Antwerp, Wilrijk, Belgium
| | - Gitte Slingers
- Environmental Intelligence, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Maria Dusinska
- Department of Environmental Chemistry and Health Effects, The Climate and Environmental Research Institute NILU, Kjeller, Norway
| | - Sabine A S Langie
- Department of Pharmacology and Toxicology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
6
|
Chbihi K, Menouni A, Hardy E, Creta M, Grova N, Van Nieuwenhuyse A, Godderis L, El Jaafari S, Duca RC. Exposure of children to brominated flame retardants and heavy metals in Morocco: Urine and blood levels in association with global cytosine and adenine methylation. ENVIRONMENT INTERNATIONAL 2024; 183:108409. [PMID: 38185044 DOI: 10.1016/j.envint.2023.108409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/30/2023] [Accepted: 12/24/2023] [Indexed: 01/09/2024]
Abstract
Persistent pollutants, namely brominated flame retardants (BFRs) and heavy metals, are compounds that are added to a wide range of products and materials for preventing ignition, increasing the functionality of materials or improving their performance, e.g. electric conductivity. The exposure of children might consequently be inferred, through indoor dust and hand-to-mouth or toy-chewing behaviors. The current study is aimed at assessing the exposure of Moroccan children to BFRs and heavy metal elements, and evaluating their associations with global DNA methylation. First, parents responded to a questionnaire pertaining to children's lifestyle, then blood and urine samples were collected from (n = 93) children aged between 5 and 11 years for biomonitoring and DNA methylation analysis. BFRs were detected in 54.84% of samples with a median concentration of 0.01 nmol/mL (range: 0.004-0.051 nmol/mL) while metal elements were detected in more than 90% of samples. BFRs showed no variations with global DNA methylation, unlike metal elements, which revealed significant associations with global DNA methylation markers, namely 5-mC, 5-hmC and N⁶-mA levels. Moroccan children may be exposed to flame retardants and heavy metals through several routes. Further research is required to assess the exposure and the health impacts of environmental pollutants and ultimately protect the Moroccan population by the prevention of adverse health effects.
Collapse
Affiliation(s)
- Kaoutar Chbihi
- Cluster of Competences on Health & Environment, Moulay Ismail University, Meknes 50000, Morocco; Center for Environment & Health, Department of Public Health and Primary Care, Faculty of Medicine, Katholieke Universiteit of Leuven, Leuven 3000, Belgium; Unit of Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire National de Santé (LNS), Dudelange L-3555, Luxembourg.
| | - Aziza Menouni
- Cluster of Competences on Health & Environment, Moulay Ismail University, Meknes 50000, Morocco; Center for Environment & Health, Department of Public Health and Primary Care, Faculty of Medicine, Katholieke Universiteit of Leuven, Leuven 3000, Belgium
| | - Emilie Hardy
- Unit of Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire National de Santé (LNS), Dudelange L-3555, Luxembourg
| | - Matteo Creta
- Center for Environment & Health, Department of Public Health and Primary Care, Faculty of Medicine, Katholieke Universiteit of Leuven, Leuven 3000, Belgium; Unit of Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire National de Santé (LNS), Dudelange L-3555, Luxembourg
| | - Nathalie Grova
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity-Luxembourg Institute of Health, Esch-Sur-Alzette L-4354, Luxembourg; UMR Inserm 1256 nGERE, Nutrition-Génétique et exposition aux risques environnementaux, Institute of Medical Research (Pôle BMS) - University of Lorraine, B.P. 184, Nancy 54511, France
| | - An Van Nieuwenhuyse
- Center for Environment & Health, Department of Public Health and Primary Care, Faculty of Medicine, Katholieke Universiteit of Leuven, Leuven 3000, Belgium; Department of Health Protection, Laboratoire National de Santé (LNS), Dudelange L-3555, Luxembourg
| | - Lode Godderis
- Center for Environment & Health, Department of Public Health and Primary Care, Faculty of Medicine, Katholieke Universiteit of Leuven, Leuven 3000, Belgium; IDEWE, External Service for Prevention and Protection at Work, Heverlee 3001, Belgium
| | - Samir El Jaafari
- Cluster of Competences on Health & Environment, Moulay Ismail University, Meknes 50000, Morocco
| | - Radu-Corneliu Duca
- Center for Environment & Health, Department of Public Health and Primary Care, Faculty of Medicine, Katholieke Universiteit of Leuven, Leuven 3000, Belgium; Unit of Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire National de Santé (LNS), Dudelange L-3555, Luxembourg.
| |
Collapse
|
7
|
Zhang W, Zheng N, Wang S, Sun S, An Q, Li X, Li Z, Ji Y, Li Y, Pan J. Characteristics and health risks of population exposure to phthalates via the use of face towels. J Environ Sci (China) 2023; 130:1-13. [PMID: 37032026 DOI: 10.1016/j.jes.2022.10.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 06/19/2023]
Abstract
The production of face towels is growing at an annual rate of about 4% in China, reaching 1.13 million tons by 2021. Phthalates (PAEs) are widely used in textiles, and face towels, as an important household textile, may expose people to PAEs via the skin, further leading to health risks. We collected new face towels and analyzed the distribution characterization of PAEs in them. The changes of PAEs were explored in a face towel use experiment and a simulated laundry experiment. Based on the use of face towels by 24 volunteers, we calculated the estimated daily intake (EDI) and comprehensively assessed the hazard quotient (HQ), hazard index (HI), and dermal cancer risk (DCR) of PAEs exposure in the population. PAEs were present in new face towels at total concentrations of <MDL-2388 ng/g, with a median of 173.2 ng/g, which was a lower contamination level compared with other textiles. PAE contents in used face towels were significantly higher than in new face towels. The concentrations of PAEs in coral velvet were significantly higher than those in cotton. Water washing removed some PAEs, while detergent washing increased the PAE content on face towels. Gender, weight, use time, and material were the main factors affecting EDI. The HQ and HI were less than 1, which proved PAEs had no significant non-carcinogenic health risks. Among the five target PAEs studied, DEHP was the only carcinogenic PAE and may cause potential health risks after long-term exposure. Therefore, we should pay more attention to DEHP.
Collapse
Affiliation(s)
- Wenhui Zhang
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Na Zheng
- College of New Energy and Environment, Jilin University, Changchun 130012, China; Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130012, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Sujing Wang
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Siyu Sun
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Qirui An
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Xiaoqian Li
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Zimeng Li
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Yining Ji
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Yunyang Li
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Jiamin Pan
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| |
Collapse
|
8
|
Chen HK, Chang YH, Sun CW, Wu MT, Chen ML, Wang SL, Hsieh CJ. Associations of urinary phthalate metabolites with household environments among mothers and their preschool-age children. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115162. [PMID: 37352583 DOI: 10.1016/j.ecoenv.2023.115162] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/25/2023]
Abstract
Phthalates have become a matter of public health concern due to their extensive use worldwide and negative health effects. The evaluation of potential sources of phthalate exposure is crucial to design prevention strategies, especially for vulnerable populations. This study included 528 mother-child pairs in the Taiwan Mother Infant Cohort Study who were followed up at ages 3-6 years between 2016 and 2020. Each mother was interviewed by using a structured questionnaire containing questions on demographic characteristics and household environment factors, such as the use of plastic food packaging, residential visible mold, insecticide sprays, and electric mosquito repellents. Eleven phthalate metabolites were analyzed in urine samples simultaneously collected from the mother-child pairs. The phthalate metabolite urinary concentrations were higher among the children than among their mothers, except those of mono-ethyl phthalate (MEP) and mono-2-ethylhexyl phthalate (MEHP). Multiple linear regression analyses showed that urine samples collected during the summer showed higher concentrations of phthalate metabolites than those collected during the winter. Family income levels had negative associations with the concentrations of MnBP and metabolites of di-2-ethylhexyl phthalate (DEHP) in children. The use of plastic food packaging was positively associated with mono-n-butyl phthalate (MnBP) and metabolites of DEHP in mothers. Residential visible mold or mold stains were significantly associated with higher MnBP and DEHP metabolite concentrations in children. The use of insecticide sprays was positively associated with MnBP concentrations in children. Significant associations between household environmental factors and phthalate exposure were mostly found in children, potentially indicating different exposure pathways between mothers and their children. Findings from this study provide additional information for the design of prevention strategies to protect the health of children and women.
Collapse
Affiliation(s)
- Hsing-Kang Chen
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan, ROC; Department of Psychiatry, Yuli Hospital, Ministry of Health and Welfare, Hualien, Taiwan, ROC
| | - Yu-Hsun Chang
- Department of Pediatrics, Hualien Tzu Chi General Hospital, Hualien, Taiwan, ROC; School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC; Department of Pediatrics, National Taiwan University Hospital, Taiwan, ROC
| | - Chien-Wen Sun
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan, ROC
| | - Ming-Tsang Wu
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC; Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC; Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC; Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Mei-Lien Chen
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Shu-Li Wang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan, ROC; Department of Public Health, National Defense Medical Center, Taipei, Taiwan, ROC; Department of Safety, Health, and Environmental Engineering, National United University, Miaoli, Taiwan, ROC.
| | - Chia-Jung Hsieh
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan, ROC; Department of Public Health, Tzu Chi University, Hualien, Taiwan, ROC.
| |
Collapse
|
9
|
Qiu F, He S, Zhang Z, Dai S, Wang J, Liu N, Li Z, Hu X, Xiang S, Wei C. MiR-93 alleviates DEHP plasticizer-induced neurotoxicity by negatively regulating TNFAIP1 and inhibiting ubiquitin-mediated degradation of CK2β. Food Chem Toxicol 2023:113888. [PMID: 37302538 DOI: 10.1016/j.fct.2023.113888] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/28/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a plasticizer that is widely used in various products, such as plastic packaging in food industries. As an environmental endocrine disruptor, it induces adverse effects on brain development and function. However, the molecular mechanisms by which DEHP induces learning and memory impairment remain poorly understood. Herein, we found that DEHP impaired learning and memory in pubertal C57BL/6 mice, decreased the number of neurons, downregulated miR-93 and the β subunit of casein kinase 2 (CK2β), upregulated tumor necrosis factor-induced protein 1 (TNFAIP1), and inhibited Akt/CREB pathway in mouse hippocampi. Coimmunoprecipitation and western blotting assays revealed that TNFAIP1 interacted with CK2β and promoted its degradation by ubiquitination. Bioinformatics analysis showed a miR-93 binding site in the 3'-untranslated region of Tnfaip1. A dual-luciferase reporter assay revealed that miR-93 targeted TNFAIP1 and negatively regulated its expression. MiR-93 overexpression prevented DEHP-induced neurotoxicity by downregulating TNFAIP1 and then activating CK2/Akt/CREB pathway. These data indicate that DEHP upregulates TNFAIP1 expression by downregulating miR-93, thus promoting ubiquitin-mediated degradation of CK2β, subsequently inhibiting Akt/CREB pathway, and finally inducing learning and memory impairment. Therefore, miR-93 can relieve DEHP-induced neurotoxicity and may be used as a potential molecular target for prevention and treatment of related neurological disorders.
Collapse
Affiliation(s)
- Feng Qiu
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Simei He
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Zilong Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Siyu Dai
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Jin Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Ning Liu
- School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Zhiwei Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Xiang Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Shuanglin Xiang
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Chenxi Wei
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
| |
Collapse
|
10
|
Cui X, Zhao Y, Hao N, Zhao W. A multi-framework for bisphenols based on their high performance and environmental friendliness: Design, screening, and recommendations. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131709. [PMID: 37267645 DOI: 10.1016/j.jhazmat.2023.131709] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/04/2023]
Abstract
Bisphenols (BPs) have gained significant attention due to their extensive use in the production of medical equipment, packaging materials, and everyday commodities. Urgent attention is required for assessing and identifying the risks associated with BP exposure to the environment and human health, as well as developing regulatory strategies. In this paper, 29 common BPs were selected as the research object, high-performance BP substitutes with environmental and human health friendliness characteristics were designed and screened. The above eight BP substitutes were considered as examples, and the first-level evaluation indicators of BPs and their substitutes were predicted using a random forest classification/regression model. Subsequently, the key indicators affecting the first-level evaluation indicators were ranked. The ranking results were environmental friendliness (64.30%) > human health risk (18.00%) > functionality (17.69%), indicating that environmental friendliness was the main influencing factor for the first-level evaluation indicators of BPs and their substitutes. Therefore, the study employed density functional theory (DFT) to simulate the biodegradation pathways of BPs and their substitutes in contaminated soil and landfill leachate, using Derivative-50 as an example. Furthermore, the environmental risk associated with the degradation products was evaluated, and regulatory recommendations based on risk identification were proposed.
Collapse
Affiliation(s)
- Xiran Cui
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Yuanyuan Zhao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Ning Hao
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Wenjin Zhao
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| |
Collapse
|
11
|
Vogel N, Lange R, Schmidt P, Rodriguez Martin L, Remy S, Springer A, Puklová V, Černá M, Rudnai P, Középesy S, Janasik B, Ligocka D, Fábelová L, Kolena B, Petrovicova I, Jajcaj M, Eštóková M, Esteban-Lopez M, Castaño A, Tratnik JS, Stajnko A, Knudsen LE, Toppari J, Main KM, Juul A, Andersson AM, Jørgensen N, Frederiksen H, Thomsen C, Sakhi AK, Åkesson A, Hartmann C, Dewolf MC, Koppen G, Biot P, Den Hond E, Voorspoels S, Gilles L, Govarts E, Murawski A, Gerofke A, Weber T, Rüther M, Gutleb AC, Guignard C, Berman T, Koch HM, Kolossa-Gehring M. Exposure to Phthalates in European Children, Adolescents and Adults since 2005: A Harmonized Approach Based on Existing HBM Data in the HBM4EU Initiative. TOXICS 2023; 11:241. [PMID: 36977006 PMCID: PMC10057641 DOI: 10.3390/toxics11030241] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Phthalates are mainly used as plasticizers and are associated inter alia with adverse effects on reproductive functions. While more and more national programs in Europe have started monitoring internal exposure to phthalates and its substitute 1,2-Cyclohexanedicarboxylic acid (DINCH), the comparability of results from such existing human biomonitoring (HBM) studies across Europe is challenging. They differ widely in time periods, study samples, degree of geographical coverage, design, analytical methodology, biomarker selection, and analytical quality assurance level. The HBM4EU initiative has gathered existing HBM data of 29 studies from participating countries, covering all European regions and Israel. The data were prepared and aggregated by a harmonized procedure with the aim to describe-as comparably as possible-the EU-wide general population's internal exposure to phthalates from the years 2005 to 2019. Most data were available from Northern (up to 6 studies and up to 13 time points), Western (11; 19), and Eastern Europe (9; 12), e.g., allowing for the investigation of time patterns. While the bandwidth of exposure was generally similar, we still observed regional differences for Butyl benzyl phthalate (BBzP), Di(2-ethylhexyl) phthalate (DEHP), Di-isononyl phthalate (DiNP), and Di-isobutyl phthalate (DiBP) with pronounced decreases over time in Northern and Western Europe, and to a lesser degree in Eastern Europe. Differences between age groups were visible for Di-n-butyl phthalate (DnBP), where children (3 to 5-year olds and 6 to 11-year olds) had lower urinary concentrations than adolescents (12 to 19-year-olds), who in turn had lower urinary concentrations than adults (20 to 39-year-olds). This study is a step towards making internal exposures to phthalates comparable across countries, although standardized data were not available, targeting European data sets harmonized with respect to data formatting and calculation of aggregated data (such as developed within HBM4EU), and highlights further suggestions for improved harmonization in future studies.
Collapse
Affiliation(s)
- Nina Vogel
- German Environment Agency (UBA), Department of Toxicology, Health-Related Environmental Monitoring, 14195 Berlin, Germany
| | - Rosa Lange
- German Environment Agency (UBA), Department of Toxicology, Health-Related Environmental Monitoring, 14195 Berlin, Germany
| | - Phillipp Schmidt
- German Environment Agency (UBA), Department of Toxicology, Health-Related Environmental Monitoring, 14195 Berlin, Germany
| | | | - Sylvie Remy
- Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Andrea Springer
- German Environment Agency (UBA), Department of Toxicology, Health-Related Environmental Monitoring, 14195 Berlin, Germany
| | - Vladimíra Puklová
- National Institute of Public Health, Centre for Health and Environment, 10000 Prague, Czech Republic
| | - Milena Černá
- National Institute of Public Health, Centre for Health and Environment, 10000 Prague, Czech Republic
| | - Péter Rudnai
- National Public Health Center, Environmental Health Unit of the Department of Public Health Laboratory, 1097 Budapest, Hungary
| | - Szilvia Középesy
- National Public Health Center, Environmental Health Unit of the Department of Public Health Laboratory, 1097 Budapest, Hungary
| | - Beata Janasik
- Nofer Institute of Occupational Medicine, 91-348 Lodz, Poland
| | - Danuta Ligocka
- Nofer Institute of Occupational Medicine, 91-348 Lodz, Poland
| | - Lucia Fábelová
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, 83303 Bratislava, Slovakia
| | - Branislav Kolena
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 94901 Nitra, Slovakia
| | - Ida Petrovicova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 94901 Nitra, Slovakia
| | - Michal Jajcaj
- Public Health Authority, Department of Environment and Health, 83105 Bratislava, Slovakia
| | - Milada Eštóková
- Public Health Authority, Department of Environment and Health, 83105 Bratislava, Slovakia
| | | | | | - Janja Snoj Tratnik
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - Anja Stajnko
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - Lisbeth E. Knudsen
- Department of Public Health, University of Copenhagen, 1165 Copenhagen, Denmark
| | - Jorma Toppari
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, 20520 Turku, Finland
- Department of Pediatrics, Turku University Hospital, 20521 Turku, Finland
| | - Katharina M. Main
- Department of Growth and Reproduction, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
- International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Anders Juul
- Department of Growth and Reproduction, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
- International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Anna-Maria Andersson
- Department of Growth and Reproduction, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
- International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
| | - Niels Jørgensen
- Department of Growth and Reproduction, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
- International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
- International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
| | - Cathrine Thomsen
- Department of Food Safety, Norwegian Institute of Public Health, 0456 Oslo, Norway
| | - Amrit Kaur Sakhi
- Department of Food Safety, Norwegian Institute of Public Health, 0456 Oslo, Norway
| | - Agneta Åkesson
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | | | - Gudrun Koppen
- Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Pierre Biot
- Federal Public Service Health, Food Chain Safety and Environment, 1060 Brussels, Belgium
| | - Elly Den Hond
- Department of Environment and Health, Provincial Institute of Hygiene (PIH), 2000 Antwerp, Belgium
| | - Stefan Voorspoels
- Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Liese Gilles
- Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Eva Govarts
- Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Aline Murawski
- German Environment Agency (UBA), Department of Toxicology, Health-Related Environmental Monitoring, 14195 Berlin, Germany
| | - Antje Gerofke
- German Environment Agency (UBA), Department of Toxicology, Health-Related Environmental Monitoring, 14195 Berlin, Germany
| | - Till Weber
- German Environment Agency (UBA), Department of Toxicology, Health-Related Environmental Monitoring, 14195 Berlin, Germany
| | - Maria Rüther
- German Environment Agency (UBA), Department of Toxicology, Health-Related Environmental Monitoring, 14195 Berlin, Germany
| | - Arno C. Gutleb
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, L-4422 Belvaux, Luxembourg
| | - Cedric Guignard
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, L-4422 Belvaux, Luxembourg
| | - Tamar Berman
- Department of Environmental Health, Ministry of Health, Jerusalem 9446724, Israel
| | - Holger M. Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance—Institute of the Ruhr University Bochum (IPA), 44789 Bochum, Germany
| | - Marike Kolossa-Gehring
- German Environment Agency (UBA), Department of Toxicology, Health-Related Environmental Monitoring, 14195 Berlin, Germany
| |
Collapse
|
12
|
Feng W, Xu T, Zuo J, Luo M, Mao G, Chen Y, Ding Y, Okeke ES, Wu X, Yang L. The potential mechanisms of TBBPA bis(2-hydroxyethyl) ether induced developmental neurotoxicity in juvenile zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2023; 265:109530. [PMID: 36473636 DOI: 10.1016/j.cbpc.2022.109530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/06/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
TBBPA bis(2-hydroxyethyl) ether (TBBPA-DHEE), one of the main derivatives of TBBPA, has been widely detected in environmental samples and been discovered to be potential neurotoxic. In this study, the juvenile zebrafish were selected as the research subject to explore the neurotoxicity and its mechanism of low-dose TBBPA-DHEE exposure, and to reveal the neurotoxicity susceptibility in different sexes. Behavioral studies revealed that TBBPA-DHEE could significantly reduce the swimming velocity, maximum acceleration and cumulative duration of high-speed mobility, significantly increasing the cumulative duration of low-speed mobility and average social distance. It significantly reduced the contents of ATP, glutamate and Ca2+ in the whole brain. The histopathological study demonstrated that TBBPA-DHEE could cause brain tissue damage in female and male juvenile zebrafish. The comprehensive data analysis indicated that female zebrafish were more susceptible to TBBPA-DHEE exposure than male zebrafish. Transcriptomic analysis showed that TBBPA-DHEE could significantly affect the expressions of behavioral and development-related genes. Furthermore, female and male juvenile zebrafish have different molecular mechanisms of neurotoxicity. For female juvenile zebrafish, the potential mechanism of neurotoxicity could be that it interfered with the feedback regulation of nerves by affecting the related genes expressions in the signaling pathways such as Ca2+ signaling, Wnt signaling and synapses. For male juvenile zebrafish, the potential mechanism of neurotoxicity may be through affecting the expression of related genes in hormones and neuro-related genes. This research could reveal the potential neurotoxicity of TBBPA-DHEE to aquatic organisms, which will be helpful to reveal the health effects of the emerging environmental pollutants.
Collapse
Affiliation(s)
- Weiwei Feng
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Tong Xu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Jiali Zuo
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Mengna Luo
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Guanghua Mao
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Yao Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Yangyang Ding
- Laboratory Animal Research Center, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Emmanuel Sunday Okeke
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China; Department of Biochemistry, Faculty of Biological Sciences & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria
| | - Xiangyang Wu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| |
Collapse
|
13
|
van der Schyff V, Kalina J, Govarts E, Gilles L, Schoeters G, Castaño A, Esteban-López M, Kohoutek J, Kukučka P, Covaci A, Koppen G, Andrýsková L, Piler P, Klánová J, Jensen TK, Rambaud L, Riou M, Lamoree M, Kolossa-Gehring M, Vogel N, Weber T, Göen T, Gabriel C, Sarigiannis DA, Sakhi AK, Haug LS, Murinova LP, Fabelova L, Tratnik JS, Mazej D, Melymuk L. Exposure to flame retardants in European children - Results from the HBM4EU aligned studies. Int J Hyg Environ Health 2023; 247:114070. [PMID: 36442457 PMCID: PMC9758617 DOI: 10.1016/j.ijheh.2022.114070] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/29/2022] [Accepted: 11/03/2022] [Indexed: 11/26/2022]
Abstract
Many legacy and emerging flame retardants (FRs) have adverse human and environmental health effects. This study reports legacy and emerging FRs in children from nine European countries from the HBM4EU aligned studies. Studies from Belgium, Czech Republic, Germany, Denmark, France, Greece, Slovenia, Slovakia, and Norway conducted between 2014 and 2021 provided data on FRs in blood and urine from 2136 children. All samples were collected and analyzed in alignment with the HBM4EU protocols. Ten halogenated FRs were quantified in blood, and four organophosphate flame retardants (OPFR) metabolites quantified in urine. Hexabromocyclododecane (HBCDD) and decabromodiphenyl ethane (DBDPE) were infrequently detected (<16% of samples). BDE-47 was quantified in blood from Greece, France, and Norway, with France (0.36 ng/g lipid) having the highest concentrations. BDE-153 and -209 were detected in <40% of samples. Dechlorane Plus (DP) was quantified in blood from four countries, with notably high median concentrations of 16 ng/g lipid in Slovenian children. OPFR metabolites had a higher detection frequency than other halogenated FRs. Diphenyl phosphate (DPHP) was quantified in 99% of samples across 8 countries at levels ∼5 times higher than other OPFR metabolites (highest median in Slovenia of 2.43 ng/g lipid). FR concentrations were associated with lifestyle factors such as cleaning frequency, employment status of the father of the household, and renovation status of the house, among others. The concentrations of BDE-47 in children from this study were similar to or lower than FRs found in adult matrices in previous studies, suggesting lower recent exposure and effectiveness of PBDE restrictions.
Collapse
Affiliation(s)
| | - Jiři Kalina
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, 2400, Belgium
| | - Liese Gilles
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, 2400, Belgium
| | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, 2400, Belgium,Department of Biomedical Sciences, University of Antwerp, 2020, Antwerp, Belgium
| | - Argelia Castaño
- National Centre for Environmental Health, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Marta Esteban-López
- National Centre for Environmental Health, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Jiři Kohoutek
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Petr Kukučka
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, 2610 Wilrijk, Belgium
| | - Gudrun Koppen
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, 2400, Belgium
| | - Lenka Andrýsková
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Pavel Piler
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Jana Klánová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Tina Kold Jensen
- Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, 5000, Denmark
| | - Loic Rambaud
- Santé Publique France, French Public Health Agency (ANSP), Saint-Maurice, 94415, France
| | - Margaux Riou
- Santé Publique France, French Public Health Agency (ANSP), Saint-Maurice, 94415, France
| | - Marja Lamoree
- Vrije Universiteit, Amsterdam Institute for Life and Environment, Section Chemistry for Environment & Health, De Boelelaan 1108, 1081 HZ, Amsterdam, Netherlands
| | | | - Nina Vogel
- German Environment Agency (UBA), 06844 Dessau-Roßlau, Germany
| | - Till Weber
- German Environment Agency (UBA), 06844 Dessau-Roßlau, Germany
| | - Thomas Göen
- IPASUM - Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Henkestrasse 9-11, 91054, Erlangen, Germany
| | - Catherine Gabriel
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece,HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th km Thessaloniki-Thermi Road, 57001, Greece
| | - Dimosthenis A. Sarigiannis
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece,HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th km Thessaloniki-Thermi Road, 57001, Greece,Environmental Health Engineering, Institute of Advanced Study, Palazzo del Broletto, Piazza Della Vittoria 15, 27100, Pavia, Italy
| | - Amrit Kaur Sakhi
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Line Småstuen Haug
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | | | - Lucia Fabelova
- Faculty of Public Health, Slovak Medical University, Bratislava, 833 03, Slovakia
| | - Janja Snoj Tratnik
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, 1000, Slovenia
| | - Darja Mazej
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, 1000, Slovenia
| | - Lisa Melymuk
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic,Corresponding author.
| |
Collapse
|
14
|
Fichter SC, Groth K, Fiedler N, Kolossa-Gehring M, Dębiak M. Lysmeral Exposure in Children and Adolescences Participating in the German Environmental Survey (2012-2015): Integrating Sex/Gender into Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:17072. [PMID: 36554956 PMCID: PMC9778794 DOI: 10.3390/ijerph192417072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/24/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Comprehensive consideration of the biological and social diversities of sex and gender as well as their interdependencies is mostly missing in human biomonitoring (HBM) studies. Using the INGER sex/gender concept as theoretical background, we analyzed differences in exposure to lysmeral, a compound commonly found as a fragrance in cosmetics, personal care, and household products, in 2294 children and adolescents in Germany using decision tree, regression, and mediation analysis. The variables "sex assigned at birth" and "age", as well as well as use of personal care products and fabric conditioner proved to have the highest explanatory value. Mediating effects of behaviour associated with societal gender expectations were observed, as the use of cosmetics correlated highly with lysmeral metabolites concentrations in girls between 6 and 17 years, with the strongest effect in adolescents between 14 and 17 years old. In the youngest age group (3-5 years) boys showed higher concentration of the metabolite tert-butylbenzoic acid (TBBA) compared to girls of the same age but only if TBBA urine concentrations were normalized on creatinine. Our study offers the first retrospective sex/gender assessment of HBM data. It demonstrates the possibilities to rethink and broaden sex/gender analysis in existing HBM-studies and highlights the need for inclusion of new sex/gender concepts in the design of new studies.
Collapse
|
15
|
Carli F, Tait S, Busani L, Ciociaro D, Della Latta V, Pala AP, Deodati A, Raffaelli A, Pratesi F, Conte R, Maranghi F, Tassinari R, Fabbrizi E, Toffol G, Cianfarani S, La Rocca C, Gastaldelli A. Exposure to Endocrine Disruptors (Di(2-Ethylhexyl)phthalate (DEHP) and Bisphenol A (BPA)) in Women from Different Residing Areas in Italy: Data from the LIFE PERSUADED Project. Int J Mol Sci 2022; 23:16012. [PMID: 36555656 PMCID: PMC9783390 DOI: 10.3390/ijms232416012] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/30/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Phthalates and bisphenol A (BPA) are plasticizers used in many industrial products that can act as endocrine disruptors and lead to metabolic diseases. During the LIFE PERSUADED project, we measured the urinary concentrations of BPA and Di(2-ethylhexyl)phthalate (DEHP) metabolites in 900 Italian women representative of the Italian female adult population (living in the north, centre, and south of Italy in both rural and urban areas). The whole cohort was exposed to DEHP and BPA with measurable levels above limit of detection in more than 99% and 95% of the samples, respectively. The exposure patterns differed for the two chemicals in the three macro-areas with the highest urinary levels for DEHP in south compared to central and northern Italy and for BPA in northern compared to central and southern Italy. BPA levels were higher in women living in urban areas, whereas no difference between areas was observed for DEHP. The estimated daily intake of BPA was 0.11 μg/kg per day, about 36-fold below the current temporary tolerable daily intake of 4 μg/kg per day established by the EFSA in 2015. The analysis of cumulative exposure showed a positive correlation between DEHP and BPA. Further, the reduction of exposure to DEHP and BPA, through specific legislative measures, is necessary to limit the harmfulness of these substances.
Collapse
Affiliation(s)
- Fabrizia Carli
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - Sabrina Tait
- Centre for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Luca Busani
- Centre for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Demetrio Ciociaro
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | | | - Anna Paola Pala
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - Annalisa Deodati
- Dipartimento Pediatrico, Universitario Ospedaliero “Bambino Gesù” Children’s Hospital, 00165 Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Andrea Raffaelli
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - Filippo Pratesi
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - Raffaele Conte
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - Francesca Maranghi
- Centre for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Roberta Tassinari
- Centre for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Enrica Fabbrizi
- Unità Operativa Dipartimentale di Pediatria, Asur Marche Area Vasta 3, Ospedale di Civitanova Marche, 62012 (MC), Italy
| | | | - Stefano Cianfarani
- Dipartimento Pediatrico, Universitario Ospedaliero “Bambino Gesù” Children’s Hospital, 00165 Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Department of Women’s and Children’s Health, Karolinska Institute and University Hospital, 171 77 Stockholm, Sweden
| | - Cinzia La Rocca
- Centre for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Amalia Gastaldelli
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | | |
Collapse
|
16
|
Wu Q, Yang T, Chen L, Dai Y, Wei H, Jia F, Hao Y, Li L, Zhang J, Wu L, Ke X, Yi M, Hong Q, Chen J, Fang S, Wang Y, Wang Q, Jin C, Hu R, Chen J, Li T. Early life exposure to triclosan from antimicrobial daily necessities may increase the potential risk of autism spectrum disorder: A multicenter study in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114197. [PMID: 36274318 DOI: 10.1016/j.ecoenv.2022.114197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Autism spectrum disorders (ASD) are a group of complex neurodevelopmental disorders with unclear etiologies. Our recent work indicated that maternal exposure to triclosan (TCS) significantly increased the autistic-like behavior in rats, possibly through disrupting neuronal retinoic acid signaling. Although environmental endocrine disruptors (EEDs) have been associated with autism in humans, the relationship between TCS, one of the EEDs found in antibacterial daily necessities, and autism has received little attention. OBJECTIVE The aims of this multicenter study were to evaluate TCS concentrations in typically developing (TD) children and ASD children, and to determine the relationship between TCS levels and the core symptoms of ASD children. METHODS A total of 1345 children with ASD and 1183 TD children were enrolled from 13 cities in China. Ages ranged between 2 and 7 years. A questionnaire was used to investigate the maternal use of antibacterial daily necessities (UADN) during pregnancy. The core symptoms of ASD were evaluated using the Autism Behavior Checklist (ABC), Childhood Autism Rating Scale (CARS), Social Response Scale (SRS), and the Children Neuropsychological and Behavior Scale-Revision 2016 (CNBS-R2016). The TCS concentration was measured using LC-MS/MS. RESULTS Maternal UADN during pregnancy may be an unrecognized potential environmental risk factor for ASD (OR=1.267, P = 0.023). Maternal UADN during pregnancy strongly correlated with TCS levels in the offspring (Adjusted β = 0.277, P < 0.001). TCS concentration was higher in ASD children (P = 0.005), and positively correlated with ABC (Sensory subscales: P = 0.03; Social self-help subscales: P = 0.011) and SRS scale scores (Social awareness subscales: P = 0.045; Social communication subscales: P = 0.001; Autism behavior mannerisms subscales: P = 0.006; SRS total score: P = 0.003) in ASD children. This association was more pronounced in boys than in girls. CONCLUSION To our knowledge, this is the first case-control study to examine the correlation between TCS and ASD. Our results suggest that maternal UADN during pregnancy may be a potential risk of ASD in offspring. Further detection of TCS levels showed that maternal UADN during pregnancy may be associated with excessive TCS exposure. In addition, the level of TCS in children with ASD is higher than TD children. The higher levels of TCS in children with ASD may be significantly associated with more pronounced core symptoms, and this association was more significant in male children with ASD.
Collapse
Affiliation(s)
- Qionghui Wu
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Ting Yang
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Li Chen
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Ying Dai
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Hua Wei
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Feiyong Jia
- Department of Developmental and Behavioral Pediatrics, the First Hospital of Jilin University, Changchun, China
| | - Yan Hao
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Li
- Department of Children Rehabilitation, Hainan Women and Children's Medical Center, Haikou, China
| | - Jie Zhang
- Children Health Care Center, Xi'an Children's Hospital, Xi'an, China
| | - Lijie Wu
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin, China
| | - Xiaoyan Ke
- Child Mental Health Research Center of Nanjing Brain Hospital, Nanjing, China
| | - Mingji Yi
- Department of Child Health Care, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qi Hong
- Maternal and Child Health Hospital of Baoan, Shenzhen, China
| | - Jinjin Chen
- Department of Child Healthcare, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shuanfeng Fang
- Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yichao Wang
- NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Qi Wang
- Deyang Maternity & Child Healthcare Hospital, Deyang, Sichuan, China
| | - Chunhua Jin
- Department of Children Health Care, Capital Institute of Pediatrics, Beijing, China
| | - Ronggui Hu
- University of Chinese Academy of Sciences; State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Jie Chen
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Tingyu Li
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China.
| |
Collapse
|
17
|
Liao Q, Huang H, Zhang X, Ma X, Peng J, Zhang Z, Chen C, Lv Y, Zhu X, Zheng J, Zeng X, Xing X, Deng Q, Dong G, Wei Q, Hou M, Xiao Y. Assessment of health risk and dose-effect of DNA oxidative damage for the thirty chemicals mixture of parabens, triclosan, benzophenones, and phthalate esters. CHEMOSPHERE 2022; 308:136394. [PMID: 36099984 DOI: 10.1016/j.chemosphere.2022.136394] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Humans are constantly exposed to parabens (PBs), triclosan (TCS), benzophenones (BPs), and phthalate esters (PAEs) due to the widespread existence of these chemicals in personal care products (PCPs), and the high frequency of usage for humans. Previous studies indicated each class of the above-mentioned chemicals can exhibit potential adverse effects on humans, in particular DNA oxidative damage. However, the health risk assessment of combined exposures to multiple PCPs is limited, especially the overall dose-effect of mixtures of these chemicals on DNA oxidative damage. In this study, we measured the urinary levels of 6 PBs, TCS, 8 BPs, 15 metabolites of PAEs (mono-PAEs), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) from 299 adults simultaneously. PBs, TCS, BPs, and mono-PAEs were frequently detected in urinary samples with median concentrations of 52.888, 0.737, 1.305, and 141.381 ng/ml, suggesting a broad, low-level exposure among participants. Risk assessments indicated approximately 22% and 15% of participants suffered health risks (Hazard index >1) from exposure to TCS and PAEs. The relationship between 8-OHdG levels and chemical exposure was estimated by Bayesian kernel machine regression (BKMR) models. It indicated an overall positive correlation between the mixture of these chemicals and 8-OHdG, with methylparaben and mono-benzyl phthalate contributing the most to this association. Of note, sex-related differences were observed, in which exposure to PCPs led to higher health risks and more pronounced dose-effect on DNA damage in the female population. Our novel findings reveal the health risks of exposure to low-level PCPs mixtures and further point out the overall dose-response relationship between DNA oxidative damage and PCP mixtures.
Collapse
Affiliation(s)
- Qilong Liao
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Hehai Huang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Xue Zhang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Xiaoju Ma
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Jing Peng
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Zhaorui Zhang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Chuanying Chen
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Yanrong Lv
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Xiaohui Zhu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Jing Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Xiaowen Zeng
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Xiumei Xing
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Qifei Deng
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Guanghui Dong
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Qing Wei
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Mengjun Hou
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Yongmei Xiao
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
18
|
Stuchlík Fišerová P, Melymuk L, Komprdová K, Domínguez-Romero E, Scheringer M, Kohoutek J, Přibylová P, Andrýsková L, Piler P, Koch HM, Zvonař M, Esteban-López M, Castaño A, Klánová J. Personal care product use and lifestyle affect phthalate and DINCH metabolite levels in teenagers and young adults. ENVIRONMENTAL RESEARCH 2022; 213:113675. [PMID: 35700762 DOI: 10.1016/j.envres.2022.113675] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Humans are widely exposed to phthalates and their novel substitutes, and considering the negative health effects associated with some phthalates, it is crucial to understand population levels and exposure determinants. This study is focused on 300 urine samples from teenagers (aged 12-17) and 300 from young adults (aged 18-37) living in Czechia collected in 2019 and 2020 to assess 17 plasticizer metabolites as biomarkers of exposure. We identified widespread phthalate exposure in the study population. The diethyl phthalate metabolite monoethyl phthalate (MEP) and three di (2-ethylhexyl) phthalate metabolites were detected in the urine of >99% of study participants. The highest median concentrations were found for metabolites of low-molecular-weight (LMW) phthalates: mono-n-butyl phthalate (MnBP), monoisobutyl phthalate (MiBP) and MEP (60.7; 52.6 and 17.6 μg/L in young adults). 1,2-cyclohexanedicarboxylic acid diisononyl ester (DINCH) metabolites were present in 68.2% of the samples with a median of 1.24 μg/L for both cohorts. Concentrations of MnBP and MiBP were similar to other European populations, but 5-6 times higher than in populations in North America. We also observed large variability in phthalate exposures within the study population, with 2-3 orders of magnitude differences in urinary metabolites between high and low exposed individuals. The concentrations varied with season, gender, age, and lifestyle factors. A relationship was found between high levels of MEP and high overall use of personal care products (PCPs). Cluster analysis suggested that phthalate exposures depend on season and multiple lifestyle factors, like time spent indoors and use of PCPs, which combine to lead to the observed widespread presence of phthalate metabolites in both study populations. Participants who spent more time indoors, particularly noticeably during colder months, had higher levels of high-molecular weight phthalate metabolites, whereas participants with higher PCP use, particularly women, tended to have higher concentration of LMW phthalate metabolites.
Collapse
Affiliation(s)
| | - Lisa Melymuk
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic.
| | - Klára Komprdová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | | | - Martin Scheringer
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Jiří Kohoutek
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Petra Přibylová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Lenka Andrýsková
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Pavel Piler
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Holger M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance - Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, Bochum, Germany
| | - Martin Zvonař
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; Faculty of Sports, Masaryk University, Kamenice, Brno, Czech Republic
| | - Marta Esteban-López
- National Centre for Environmental Health, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Argelia Castaño
- National Centre for Environmental Health, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Jana Klánová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| |
Collapse
|
19
|
Pagoni A, Arvaniti OS, Kalantzi OI. Exposure to phthalates from personal care products: Urinary levels and predictors of exposure. ENVIRONMENTAL RESEARCH 2022; 212:113194. [PMID: 35358548 DOI: 10.1016/j.envres.2022.113194] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/14/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Phthalates are a large group of chemicals used in many everyday consumer products such as food packaging, household cleaners, cosmetics, fragrances and personal care products (PCPs). A number of diseases such as obesity, hypertension, as well as reproductive system effects and endocrine disorders have been linked to phthalate exposure through the use of PCPs, due to their frequent use and high phthalate content. In this study we review available literature on phthalates and their metabolites in urine and report the various determinants of exposure through the use of PCPs in infants, toddlers, children and adults. The range of creatinine-adjusted concentrations for each phthalate was 1.5-14956.1 μg/g for MEP, 0.4-94.5 μg/g for MEHP, 0.39-425.9 μg/g for MEHHP, 0.5-481.3 μg/g for MEOHP, 0.1-755.1 μg/g for MBzP, and 0.3-401.4 μg/g for MiBP. Time of sampling, frequency of use, race and age are critical factors that influence phthalate concentrations. Using PCPs 48 h before urine collection, using a combination of PCPs (i.e., particularly leave-on versus rinse-off products), being younger (i.e., children compared to their mothers), and being a woman of colour (i.e., Mexican-American and black versus white) leads to higher phthalate levels in urine. The most striking association between any phthalate and PCPs was observed between MEP and perfumes or fragrance-containing products such as shampoos, body lotions and hair products. Future studies should focus on different types and brands of PCPs (i.e., branded versus generic), explore possible ethnic/racial differences and the applicability of non-invasive matrices such as nails and hair for phthalate biomonitoring, as well as intervention studies that explore behavioural changes.
Collapse
Affiliation(s)
- Alexandra Pagoni
- Department of Environment, University of the Aegean, 81100, Mytilene, Greece
| | - Olga S Arvaniti
- Department of Agricultural Development, Agrofood and Management of Natural Resources, National and Kapodistrian University of Athens, 34400, Psachna, Greece
| | | |
Collapse
|
20
|
Lee S, Lee KM, Han SM, Lee HJ, Sung C, Min H, Im H, Han SB, Cha S, Lee J. Comprehensive LC-MS/MS method combined with tandem hybrid hydrolysis for multiple exposure assessment of multiclass environmental pollutants. ENVIRONMENTAL RESEARCH 2022; 211:113053. [PMID: 35240112 DOI: 10.1016/j.envres.2022.113053] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Environmental pollutants (EPOLs), such as phthalates, volatile organic compounds, phenols, parabens, polycyclic aromatic hydrocarbons, pyrethroids, and environmental tobacco smoke, are highly heterogeneous compounds. Recently, attention has been drawn to the assessment of the combinatory effects of multiple EPs. To correlate multiple exposures with potential health implications, advanced comprehensive analytical methods covering multiclass EPOLs are essential. However, because of several technical problems associated with enzyme hydrolysis, simultaneous extraction, and multiresidue liquid chromatography-tandem mass spectrometry analysis, it is difficult to establish a comprehensive method covering a number of EPOLs in a single sample preparation and analytical run. We developed tandem hybrid hydrolysis, modified direct injection, and a comprehensive mobile phase to overcome these technical problems and established a comprehensive analytical method for simultaneous biomonitoring of multiclass EPOLs. Tandem hybrid hydrolysis using β-glucuronidase and consecutive acid hydrolysis allowed selective hydrolysis of glucuronide- and sulfate-conjugated metabolites without phthalate degradation. The comprehensive mobile phase composed of 0.01% acetic acid and acetonitrile enabled us to simultaneously analyze 86 EPOLs, with good chromatographic behavior and ionization efficiency. Modified direct injection allowed a small amount of sample and simultaneous urinary extraction. The method was validated and applied to 39 urine samples from 19 mother-newborn pairs for multiple exposure assessment. Results showed that BP-3, a general component in sunblock products, and monoethyl phthalate, a metabolite of diethyl phthalate, exhibit a clear positive correlation between mothers and newborns. Therefore, the developed method has potential as a novel analytical tool for long-term, large-scale, and data-rich human biomonitoring of EPOLs.
Collapse
Affiliation(s)
- Seunghwa Lee
- Doping Control Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, South Korea
| | - Kang Mi Lee
- Doping Control Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, South Korea
| | - Sang Moon Han
- Doping Control Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, South Korea
| | - Hyeon-Jeong Lee
- Doping Control Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, South Korea
| | - Changmin Sung
- Doping Control Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, South Korea
| | - Hophil Min
- Doping Control Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, South Korea
| | - Hosub Im
- Institute for Life & Environmental Technology, Smartive Corporation, 155, Misagangbyeon-hangang-ro, Hanam-si, Gyeonggi-do, South Korea
| | - Sang Beom Han
- Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, South Korea
| | - Sangwon Cha
- Department of Chemistry, Dongguk University, 30, Pildong-ro 1-gil, Jung-gu, Seoul, 04620, South Korea
| | - Jaeick Lee
- Doping Control Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, South Korea.
| |
Collapse
|
21
|
Ringbeck B, Bury D, Ikeda-Araki A, Ait Bamai Y, Ketema RM, Miyashita C, Brüning T, Kishi R, Koch HM. Nonylphenol exposure in 7-year-old Japanese children between 2012 and 2017- Estimation of daily intakes based on novel urinary metabolites. ENVIRONMENT INTERNATIONAL 2022; 161:107145. [PMID: 35168185 DOI: 10.1016/j.envint.2022.107145] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/23/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Nonylphenol (NP) has been under scrutiny for decades due to its endocrine-disrupting properties and its ubiquity in the environment. Despite its widespread occurrence, robust and reliable exposure data are rare. In this study, we used human biomonitoring (HBM) measuring the novel urinary alkyl-chain-oxidized biomarkers OH-NP and oxo-NP to determine NP exposure in 7-year-old Japanese children. The new biomarkers are advantageous over measuring unchanged NP because they are not prone to external contamination. We analyzed 180 first morning void urine samples collected between 2012 and 2017. OH-NP and oxo-NP were detected in 100% and 66% of samples at median concentrations of 2.69 and 0.36 µg/L, respectively. 10-fold concentration differences between OH-NP and oxo-NP are in line with recent findings on human NP metabolism. Based on OH-NP we back-calculated median and maximum NP daily intakes (DI) of 0.14 and 0.95 µg/(kg bw*d). These DIs are rather close to but still below the current provisional tolerable daily intake of 5 µg/(kg bw*d) by the Danish Environmental Protection Agency. Between 2012 and 2017 the DIs decreased by an average of 4.7% per year. We observed no seasonal changes or gender differences and questionnaire data on food consumption, housing characteristics or pesticide use showed no clear associations with NP exposure. Urinary OH-NP was weakly associated with the oxidative stress (lipid peroxidation) biomarkers N-ε-hexanoyl-lysine (HEL) and trans-4-hydroxy-2-nonenal (HNE) (Spearman ρ = 0.30 and 0.22, respectively), but not with 8-hydroxy-2'-deoxyguanosine (8-OHdG). Further research is needed to identify and understand the major sources of NP exposure and to investigate a potential role in oxidative stress. This study is the first to investigate NP exposure in Japanese children based on robust and sensitive HBM data. It is a first step to fill the long-standing gap in quantitative human NP exposure monitoring and risk assessment.
Collapse
Affiliation(s)
- Benedikt Ringbeck
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany.
| | - Daniel Bury
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany.
| | - Atsuko Ikeda-Araki
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12 Nishi 7, Sapporo, Japan; Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Sapporo, Japan.
| | - Yu Ait Bamai
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12 Nishi 7, Sapporo, Japan.
| | - Rahel Mesfin Ketema
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12 Nishi 7, Sapporo, Japan; Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Sapporo, Japan.
| | - Chihiro Miyashita
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12 Nishi 7, Sapporo, Japan.
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany.
| | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12 Nishi 7, Sapporo, Japan.
| | - Holger M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany.
| |
Collapse
|
22
|
Huang Z, Fu W, Dou L, Bao H, Wu W, Su P, Huang K, Zhu P, Sheng J, Xu Y, Tao F, Hao J. Prenatal Bisphenol A Exposure and Early Childhood Behavior and Cognitive Function: A Chinese Birth Cohort Study. Neuroendocrinology 2022; 112:311-323. [PMID: 33910209 DOI: 10.1159/000516881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/28/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Biomonitoring of bisphenol A (BPA) in human blood is still scarce, although already noticeable. We aimed to examine the associations between prenatal serum BPA concentrations and behavior and cognitive function in preschool children. METHODS A total of 1,782 mother-child pairs with complete demographic information, blood samples, and psychological measurements were included from the China-Anhui Birth Cohort (C-ABCS). We detected serum BPA concentrations and assessed children's neurodevelopment using a set of psychometric scales. RESULTS The median prenatal maternal serum BPA concentration was 0.23 (P25, P75: 0.07, 0.52) ng/mL, with a detection frequency of 85.19%. Compared with the girls with the lowest concentrations, those with highest BPA concentrations had increased risks of inhibitory self-control impairment [relative risk (RR) = 3.66, 95% confidence interval (CI): 1.53, 7.58], emergent metacognition impairment (RR = 1.70, 95% CI: 1.07, 2.78), conduct problem (RR = 1.68, 95% CI: 1.12, 2.39), peer relationship problem (RR = 2.57, 95% CI: 1.33, 4.47), higher total difficulties score (RR = 1.76, 95% CI: 1.12, 2.67), and higher impact factor score (RR = 1.52, 95% CI: 1.11, 2.05), while the boys with the highest prenatal BPA concentrations had an increased risk of conduct problem compared with those with the lowest concentrations (RR = 1.59, 95% CI: 1.09, 2.24) (P-interaction = 0.011). After stratification by age, high prenatal BPA concentrations were associated with increased ADHD (RR = 4.44, 95% CI: 1.54, 10.85) among children aged 3 years, not among children aged 4 years. CONCLUSION Our study revealed the sex-specific and age-specific impacts of prenatal BPA exposure on preschool children's cognitive and behavioral development.
Collapse
Affiliation(s)
- Zhaohui Huang
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
- Anhui Provincial Center for Women and Child Health, Hefei, China
| | - Weinan Fu
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Lianjie Dou
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| | - Huihui Bao
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Wanke Wu
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Puyu Su
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Kun Huang
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Peng Zhu
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Jie Sheng
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Yuanyuan Xu
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Fangbiao Tao
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Jiahu Hao
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| |
Collapse
|
23
|
Lee I, Pälmke C, Ringbeck B, Ihn Y, Gotthardt A, Lee G, Alakeel R, Alrashed M, Tosepu R, Jayadipraja EA, Tantrakarnapa K, Kliengchuay W, Kho Y, Koch HM, Choi K. Urinary Concentrations of Major Phthalate and Alternative Plasticizer Metabolites in Children of Thailand, Indonesia, and Saudi Arabia, and Associated Risks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16526-16537. [PMID: 34846872 DOI: 10.1021/acs.est.1c04716] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Phthalates are widely used in consumer products and are well-known for adverse endocrine outcomes. Di-(2-ethylhexyl) phthalate (DEHP), one of the most extensively used phthalates, has been rapidly substituted with alternative plasticizers in many consumer products. The aim of this study was to assess urinary phthalate and alternative plasticizer exposure and associated risks in children of three Asian countries with different geographical, climate, and cultural characteristics. Children were recruited from elementary schools of Saudi Arabia (n = 109), Thailand (n = 104), and Indonesia (n = 89) in 2017-2018, and their urine samples were collected. Metabolites of major phthalates and alternative plasticizers were measured in the urine samples by HPLC-MS/MS. Urinary metabolite levels differed substantially between the three countries. Metabolite levels of diisononyl phthalate (DiNP), diisodecyl phthalate (DiDP), di(2-ethylhexyl) terephthalate (DEHTP), and 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH) were the highest in Saudi children: Median urinary concentrations of oxo-MiNP, OH-MiDP, 5cx-MEPTP, and OH-MINCH were 8.3, 8.4, 128.0, and 2.9 ng/mL, respectively. Urinary DEHP metabolite concentrations were the highest in the Indonesian children. The hazard index (HI) derived for the plasticizers with antiandrogenicity based reference doses (RfDAA) was >1 in 86%, 80%, and 49% of the Saudi, Indonesian, and Thai children, respectively. DEHP was identified as a common major risk driver for the children of all three countries, followed by DnBP and DiBP depending on the country. Among alternative plasticizers, urinary DEHTP metabolites were detected at levels comparable to those of DEHP metabolites or higher among the Saudi children, and about 4% of the Saudi children exceeded the health based human biomonitoring (HBM)-I value. Priority plasticizers that were identified among the children of three countries warrant refined exposure assessment for source identification and relevant exposure reduction measures.
Collapse
Affiliation(s)
- Inae Lee
- School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Claudia Pälmke
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bochum 44789, Germany
| | - Benedikt Ringbeck
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bochum 44789, Germany
| | - Yunchul Ihn
- School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Alexandra Gotthardt
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bochum 44789, Germany
| | - Gowoon Lee
- School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Raid Alakeel
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - May Alrashed
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Medical and Molecular Genetics Research, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ramadhan Tosepu
- Department of Environmental Health, Faculty of Public Health, University of Halu Oleo, Kendari 93232, Indonesia
| | | | - Kraichat Tantrakarnapa
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Ratchathewi 10400, Thailand
| | - Wissanupong Kliengchuay
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Ratchathewi 10400, Thailand
| | - Younglim Kho
- Department of Health, Environment and Safety, Eulji University, Seongnam 13135, Republic of Korea
| | - Holger M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bochum 44789, Germany
| | - Kyungho Choi
- School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
24
|
Yang D, Kong S, Wang F, Tse LA, Tang Z, Zhao Y, Li C, Li M, Li Z, Lu S. Urinary triclosan in south China adults and implications for human exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117561. [PMID: 34126513 DOI: 10.1016/j.envpol.2021.117561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/14/2021] [Accepted: 06/06/2021] [Indexed: 06/12/2023]
Abstract
Triclosan (TCS) is widely applied in personal care products (PCPs) as an antimicrobial preservative. Due to its toxicity and potential risk to human health, TCS has attracted mounting concerns in recent years. However, biomonitoring of TCS in large human populations remains limited in China. In this study, 1163 adults in South China were recruited and urinary TCS concentrations were determined. TCS was detected in 99.5% of urine samples, indicating broad exposure in the study population. Urinary concentrations of TCS ranged from below the limit of detection (LOD) to 270 μg/L, with a median value of 3.67 μg/L. Urinary TCS concentrations from individuals were all lower than the Biomonitoring Equivalents reference dose, suggesting relatively low health risk in the participants. TCS concentrations did not differ significantly between sexes or education levels (p > 0.05). Nevertheless, marital status and age were found to be positively influence TCS levels (p < 0.001). After adjustment for body mass index (BMI), age was determined to be positively associated with TCS concentrations (p < 0.05), particularly in the age group from 31 to 51 years old. This study provides a baseline of urinary TCS exposure in South China general adult populations.
Collapse
Affiliation(s)
- Dongfeng Yang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China; Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Sifang Kong
- School of Traffic & Environment, Shenzhen Institute of Information Technology, Shenzhen, China
| | - Feng Wang
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, New Territories, Hong Kong
| | - Lap Ah Tse
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, New Territories, Hong Kong
| | - Zhi Tang
- School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yang Zhao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Chun Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Minhui Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Zihan Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
25
|
Garí M, Moos R, Bury D, Kasper-Sonnenberg M, Jankowska A, Andysz A, Hanke W, Nowak D, Bose-O’Reilly S, Koch HM, Polanska K. Human-Biomonitoring derived exposure and Daily Intakes of Bisphenol A and their associations with neurodevelopmental outcomes among children of the Polish Mother and Child Cohort Study. Environ Health 2021; 20:95. [PMID: 34433458 PMCID: PMC8390261 DOI: 10.1186/s12940-021-00777-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Bisphenol A (BPA) is an industrial chemical mostly used in the manufacture of plastics, resins and thermal paper. Several studies have reported adverse health effects with BPA exposures, namely metabolic disorders and altered neurodevelopment in children, among others. The aim of this study was to explore BPA exposure, its socio-demographic and life-style related determinants, and its association with neurodevelopmental outcomes in early school age children from Poland. METHODS A total of 250 urine samples of 7 year-old children from the Polish Mother and Child Cohort Study (REPRO_PL) were analyzed for BPA concentrations using high performance liquid chromatography with online sample clean-up coupled to tandem mass spectrometry (online-SPE-LC-MS/MS). Socio-demographic and lifestyle-related data was collected by questionnaires or additional biomarker measurements. Emotional and behavioral symptoms in children were assessed using mother-reported Strengths and Difficulties Questionnaire (SDQ). Cognitive and psychomotor development was evaluated by Polish adaptation of the Intelligence and Development Scales (IDS) performed by trained psychologists. RESULTS Urinary BPA concentrations and back-calculated daily intakes (medians of 1.8 μg/l and 46.3 ng/kg bw/day, respectively) were similar to other European studies. Urinary cotinine levels and body mass index, together with maternal educational level and socio-economic status, were the main determinants of BPA levels in Polish children. After adjusting for confounding factors, BPA has been found to be positively associated with emotional symptoms (β: 0.14, 95% CI: 0.022; 0.27). Cognitive and psychomotor development were not found to be related to BPA levels. CONCLUSIONS This study represents the first report of BPA levels and their determinants in school age children in Poland. The exposure level was found to be related to child emotional condition, which can have long-term consequences including social functioning and scholastic achievements. Further monitoring of this population in terms of overall chemical exposure is required.
Collapse
Affiliation(s)
- Mercè Garí
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich. Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany
| | - Rebecca Moos
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bochum, Germany
| | - Daniel Bury
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bochum, Germany
| | - Monika Kasper-Sonnenberg
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bochum, Germany
| | - Agnieszka Jankowska
- Department of Environmental and Occupational Health Hazards, Nofer Institute of Occupational Medicine (NIOM), Lodz, Poland
| | - Aleksandra Andysz
- Department of Health and Work Psychology, Nofer Institute of Occupational Medicine (NIOM), Lodz, Poland
| | - Wojciech Hanke
- Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine (NIOM), Lodz, Poland
| | - Dennis Nowak
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Stephan Bose-O’Reilly
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Holger M. Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bochum, Germany
| | - Kinga Polanska
- Department of Environmental and Occupational Health Hazards, Nofer Institute of Occupational Medicine (NIOM), Lodz, Poland
| |
Collapse
|
26
|
Martínez MÁ, González N, Martí A, Marquès M, Rovira J, Kumar V, Nadal M. Human biomonitoring of bisphenol A along pregnancy: An exposure reconstruction of the EXHES-Spain cohort. ENVIRONMENTAL RESEARCH 2021; 196:110941. [PMID: 33647302 DOI: 10.1016/j.envres.2021.110941] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
This study was aimed at reconstructing the exposure to bisphenol (BPA) of 60 pregnant women from the EXHES-Spain cohort. A biomonitoring study was conducted by determining BPA levels in urine samples over the three trimesters of pregnancy. Moreover, the correlations between BPA levels and the role of different potential exposure sources, with special emphasis on the dietary intake, were also studied. Urine samples were subjected to dispersive liquid-liquid microextraction and the subsequent analysis via gas chromatography-mass spectrometry. BPA was detected in 76% of the urine samples. A significant decrease of urinary BPA levels was observed along pregnancy, as mean concentrations of creatinine-adjusted BPA were 4.64, 4.84 and 2.51 μg/g in the first, second and third trimester, respectively. This decrease was essentially associated with changes in the dietary habits of the pregnant women, including a lower intake of canned food and drinks. However, the potential role of other pregnancy-related biochemical or physiological factors should not be disregarded. Very interestingly, significant differences in urine BPA levels were found according to the fruit consumption pattern, as women who ate more citrus fruits showed lower BPA concentrations in urine. The reconstructed exposure to BPA was estimated in 0.072, 0.069 and 0.038 μg BPA/kg of body weight/day in the first, second and third trimesters, respectively. These values are far below the temporary tolerable daily intake (t-TDI) established by the EFSA.
Collapse
Affiliation(s)
- María Ángeles Martínez
- Environmental Engineering Laboratory, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain; Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana. Hospital Sant Joan de Reus, Reus, Spain. Institut d'Investigació Pere Virgili (IISPV). Reus, Spain
| | - Neus González
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - Anna Martí
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - Montse Marquès
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - Joaquim Rovira
- Environmental Engineering Laboratory, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain.
| | - Vikas Kumar
- Environmental Engineering Laboratory, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain
| | - Martí Nadal
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| |
Collapse
|
27
|
Minatoya M, Kishi R. A Review of Recent Studies on Bisphenol A and Phthalate Exposures and Child Neurodevelopment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18073585. [PMID: 33808331 PMCID: PMC8036555 DOI: 10.3390/ijerph18073585] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/20/2021] [Accepted: 03/25/2021] [Indexed: 01/17/2023]
Abstract
Purpose of Review: Bisphenol A and phthalate have been found in the environment, as well as in humans. In this narrative review pre- and postnatal bisphenol A and phthalate exposures, their relationship to neurodevelopment, and the behavioral outcomes of children are elucidated, focusing in particular on the recent case-control, cross-sectional, and longitudinal studies. This review also introduces some of the possible mechanisms behind the observed associations between exposures and outcomes. Recent Findings: Although bisphenol A and phthalate exposure have been reported to influence neurobehavioral development in children, there are various kinds of test batteries for child neurodevelopmental assessment at different ages whose findings have been inconsistent among studies. In addition, the timing and number of exposure assessments have varied. Summary: Overall, this review suggests that prenatal exposure to bisphenol A and phthalates may contribute to neurobehavioral outcomes in children. The evidence is still limited; however, Attention Deficit Hyperactivity Disorder (ADHD) symptoms, especially among boys, constantly suggested association with both prenatal and concurrent exposure to bisphenol A. Although there is limited evidence on the adverse effects of prenatal and postnatal bisphenol A and phthalate exposures provided, pregnant women and young children should be protected from exposure based on a precautionary approach.
Collapse
|
28
|
Ding Y, Xu T, Mao G, Chen Y, Qiu X, Yang L, Zhao T, Xu X, Feng W, Wu X. Di-(2-ethylhexyl) phthalate-induced hepatotoxicity exacerbated type 2 diabetes mellitus (T2DM) in female pubertal T2DM mice. Food Chem Toxicol 2021; 149:112003. [PMID: 33484791 DOI: 10.1016/j.fct.2021.112003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 01/10/2021] [Accepted: 01/14/2021] [Indexed: 12/25/2022]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP), one of the most common plasticizers, is closely associated with a high prevalence of pubertal type 2 diabetes mellitus (T2DM). Numerous studies have indicated that DEHP-induced metabolic toxicity exhibits sex differences. In this study, the sex differences in the effect of DEHP on pubertal T2DM (P-T2DM) mice, the susceptibility of female P-T2DM mice to DEHP-induced metabolic toxicity, and the underlying mechanisms were investigated. DEHP exposure exacerbated metabolic disorders in female P-T2DM mice. Factorial analysis showed that female P-T2DM mice were more sensitive to DEHP exposure than female normal mice and male P-T2DM mice. It was determined by integrated biomarker response results that female P-T2DM mice had higher risks of developing T2DM, metabolic disorders, cardiovascular events and hepatotoxicity than male P-T2DM mice. Moreover, hepatic transcriptome analysis emphasized the effects of DEHP on the expression of oxidative injury- and metabolic function-related genes. Western blotting indicated that DEHP activated Jun-N-terminal kinase (JNK) and impaired insulin sensitivity in the liver, which were the main causes of DEHP-exacerbated metabolic abnormalities in P-T2DM mice. Our study revealed that compared with normal mice and male P-T2DM mice, female P-T2DM mice tend to suffer from increased DEHP-induced metabolic toxicity, which was primarily attributed to hepatotoxicity.
Collapse
Affiliation(s)
- Yangyang Ding
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Tong Xu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guanghua Mao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yao Chen
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China; Institute of Environmental health and Ecological Security, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xuchun Qiu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China; Institute of Environmental health and Ecological Security, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaoxiao Xu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Weiwei Feng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China; Institute of Environmental health and Ecological Security, Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Xiangyang Wu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China; Institute of Environmental health and Ecological Security, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
29
|
Johnson CL, Jazan E, Kong SW, Pennell KD. A two-step gas chromatography-tandem mass spectrometry method for measurement of multiple environmental pollutants in human plasma. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:3266-3279. [PMID: 32914305 PMCID: PMC7790997 DOI: 10.1007/s11356-020-10702-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
Individuals are exposed to a wide variety of chemicals over their lifetime, yet current understanding of mixture toxicology is still limited. We present a two-step analytical method using a gas chromatograph-triple quadrupole mass spectrometer that requires less than 1 mL of sample. The method is applied to 183 plasma samples from a study population of children with autism spectrum disorder, their parents, and unrelated neurotypical children. We selected 156 environmental chemical compounds and ruled out chemicals with detection rates less than 20% of our study cohort (n = 61), as well as ones not amenable to the selected extraction and analytical methods (n = 34). The targeted method then focused on remaining chemicals (n = 61) plus 8 additional polychlorinated biphenyls (PCBs). Persistent pollutants, such as p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) and PCB congeners 118 and 180, were detected at high frequencies and several previously unreported chemicals, including 2,4,6-trichlorophenol, isosafrole, and hexachlorobutadiene, were frequently detected in our study cohort. This work highlights the benefits of employing a multi-step analytical method in exposure studies and demonstrates the efficacy of such methods for reporting novel information on previously unstudied pollutant exposures.
Collapse
Affiliation(s)
- Caitlin L Johnson
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA, 02155, USA
| | - Elisa Jazan
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA, 02155, USA
| | - Sek Won Kong
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.
| | - Kurt D Pennell
- School of Engineering, Brown University, Box D, 184 Hope Street, Providence, RI, 02912, USA.
| |
Collapse
|
30
|
Hart LB, Dziobak MK, Pisarski EC, Wirth EF, Wells RS. Sentinels of synthetics - a comparison of phthalate exposure between common bottlenose dolphins (Tursiops truncatus) and human reference populations. PLoS One 2020; 15:e0240506. [PMID: 33057361 PMCID: PMC7561143 DOI: 10.1371/journal.pone.0240506] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/29/2020] [Indexed: 11/26/2022] Open
Abstract
Phthalates are chemical esters used as additives in common consumer goods, such as plastics, household cleaners, and personal care products. Phthalates are not chemically bound to the items to which they are added and can easily leach into the surrounding environment. Anthropogenic drivers, such as coastal plastic pollution and wastewater runoff, increase the exposure potential for coastal marine fauna. Phthalate exposure in free-ranging bottlenose dolphins has been the focus of recent study, with indications of heightened exposure to certain phthalate compounds. The objective of this study was to compare urinary phthalate metabolite concentrations among bottlenose dolphins (Tursiops truncatus) sampled in Sarasota Bay, FL, to levels reported in human samples collected as part of the Centers for Disease Control and Prevention's (CDC) National Health and Nutrition Examination Survey (NHANES). Monoethyl phthalate (MEP) and mono-(2-ethylhexyl) phthalate (MEHP) were the most prevalent metabolites detected in dolphin urine (n = 51; MEP = 29.41%; MEHP = 54.90%). The geometric mean (GM) concentration of MEP was significantly lower for dolphins (GM = 4.51 ng/mL; 95% CI: 2.77-7.34 ng/mL) compared to humans (p<0.05), while dolphin concentrations of MEHP (GM = 4.57 ng/mL; 95% CI: 2.37-8.80 ng/mL) were significantly higher than levels reported in NHANES (p<0.05). Health impacts to bottlenose dolphins resulting from elevated exposure to the MEHP parent compound (diethyl-2-ethylhexyl phthalate, DEHP) are currently unknown. However, given the evidence of endocrine disruption, reproductive impairment, and abnormal development in humans, pursuing investigations of potential health effects in exposed bottlenose dolphins would be warranted.
Collapse
Affiliation(s)
- Leslie B. Hart
- Department of Health and Human Performance, College of Charleston, Charleston, SC, United States of America
| | - Miranda K. Dziobak
- Environmental and Sustainability Studies Graduate Program, College of Charleston, Charleston, SC, United States of America
| | - Emily C. Pisarski
- CSS Inc., NOAA NCCOS Charleston Lab, Charleston, SC, United States of America
| | - Edward F. Wirth
- National Oceanic and Atmospheric Administration, NOAA NCCOS Charleston Lab, Charleston, SC, United States of America
| | - Randall S. Wells
- Chicago Zoological Society’s Sarasota Dolphin Research Program, c/o Mote Marine Laboratory, Sarasota, FL, United States of America
| |
Collapse
|
31
|
Pirard C, Dufour P, Charlier C. Background contamination of perfluoralkyl substances in a Belgian general population. Toxicol Lett 2020; 333:13-21. [PMID: 32659468 DOI: 10.1016/j.toxlet.2020.07.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 07/02/2020] [Accepted: 07/09/2020] [Indexed: 10/23/2022]
Abstract
The few Belgian studies on the human exposure to perfluoroalkyl substances (PFASs) have until now concerned the Northern part of Belgium (Flanders), while data related to Wallonia (South region) are missing. To fill this gap, 8 perfluorinated carboxylic acids and 3 perfluorinated alkyl sulfonates were measured in the serum of 242 adults (>18 years old) recruited in 2015 and living in the Province of Liege. Some multivariate regression models were also built with the PFAS levels and the participant's answers to a questionnaire about their diet and lifestyle habits in order to identify some predictors of exposure. The results obtained showed that although PFAS levels observed in our population seemed to be similar or lower than those reported in other countries, and especially lower than in the Northern part of Belgium, half of the population showed PFOS and PFOA serum levels above the health guidance values set by the German HBM Commission. As expected, age and gender were the main covariates explaining the different PFAS serum levels between participants, while breastfeeding (for women), consumption of fish and seafood, consumption of rice, and use of nail polish seemed also to impact the PFAS body burden of our population. Nevertheless, the statistical models were poorly predictive suggesting that the main sources of exposure were not taken into account.
Collapse
Affiliation(s)
- Catherine Pirard
- Laboratory of Clinical, Forensic and Environmental Toxicology, CHU of Liege, B35, 4000, Liege, Belgium.
| | - Patrice Dufour
- Laboratory of Clinical, Forensic and Environmental Toxicology, CHU of Liege, B35, 4000, Liege, Belgium
| | - Corinne Charlier
- Laboratory of Clinical, Forensic and Environmental Toxicology, CHU of Liege, B35, 4000, Liege, Belgium
| |
Collapse
|
32
|
Kim K, Bennett DH, Calafat AM, Hertz-Picciotto I, Shin HM. Temporal trends and determinants of serum concentrations of per- and polyfluoroalkyl substances among Northern California mothers with a young child, 2009-2016. ENVIRONMENTAL RESEARCH 2020; 186:109491. [PMID: 32361076 PMCID: PMC7363519 DOI: 10.1016/j.envres.2020.109491] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND/OBJECTIVE Human exposure to per- and polyfluoroalkyl substances (PFAS) has changed since the early 2000s, in part, because of the phase-out and replacement of some long-chain PFAS. Studies of PFAS exposure and its temporal changes have been limited to date mostly to adults and pregnant women. We examined temporal trends and determinants of PFAS serum concentrations among mothers with a young child who participated in the CHARGE (CHildhood Autism Risk from Genetics and Environment) case-control study. METHODS We quantified nine PFAS in serum samples collected from 2009 to 2016 in 450 Northern California mothers when their child was 2-5 years old. With five compounds that were detected in more than 50% of the samples, we performed multiple regression to estimate least square geometric means (LSGMs) of PFAS concentrations with adjustment for sampling year and other characteristics that may affect maternal concentrations (e.g., breastfeeding duration). We also used time-related regression coefficients to calculate percent changes over the study period. RESULTS LSGM concentrations of perfluorooctanoate (PFOA), perfluorooctane sulfonate (PFOS), and perfluorohexane sulfonate (PFHxS) decreased over the study period [percent change (95% confidence interval): -10.7% (-12.7%, -8.7%); -10.8% (-12.9%, -8.5%); -8.0% (-10.5%, -5.5%), respectively]. On the other hand, perfluorononanoate (PFNA) and perfluorodecanoate (PFDA) showed mixed time trends. Among the selected covariates, longer breastfeeding duration was associated with decreased maternal serum concentrations of PFOA, PFOS, PFHxS, PFNA and PFDA. CONCLUSIONS Our study demonstrated that body burden of some common long-chain PFAS among California mothers with a young child decreased over the study period and that breastfeeding appears to contribute to the elimination of PFAS in lactating mothers.
Collapse
Affiliation(s)
- Kyunghoon Kim
- Department of Earth and Environmental Sciences, University of Texas, Arlington, TX, USA
| | - Deborah H Bennett
- Department of Public Health Sciences, University of California, Davis, CA, USA
| | | | - Irva Hertz-Picciotto
- Department of Public Health Sciences, University of California, Davis, CA, USA; UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, Sacramento, CA, USA
| | - Hyeong-Moo Shin
- Department of Earth and Environmental Sciences, University of Texas, Arlington, TX, USA.
| |
Collapse
|
33
|
Martínez MA, Rovira J, Sharma RP, Schuhmacher M, Kumar V. Reconstruction of phthalate exposure and DINCH metabolites from biomonitoring data from the EXHES cohort of Tarragona, Spain: A case study on estimated vs reconstructed DEHP using the PBPK model. ENVIRONMENTAL RESEARCH 2020; 186:109534. [PMID: 32361526 DOI: 10.1016/j.envres.2020.109534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/12/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
Phthalates are known endocrine disruptors (EDs) and are associated with potential diseases, such as obesity and diabetes. In 2002, the plasticizer 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH) was introduced as an alternative to phthalates in the European market. The objective of this study was to evaluate the total exposure to phthalate and DINCH metabolites from EXHES Tarragona, Spain cohort of pregnant women. On the one hand, the analytical determination of phthalate and DINCH metabolites in urine was carried out. On the other hand, the reconstructed exposure was calculated for phthalates and DINCH using their metabolites concentration measured in the urine. Thirteen different phthalate metabolites and two metabolites of DINCH were measured and detected in almost all pregnant women's urine samples (n = 60). There were significant correlations between metabolites of the same parent compounds, and also between DEHP and MBzP metabolites, DiNP and BBZP metabolites, and DEHP and DiNP metabolites respectively. The exposure of pregnant women to phthalate and DINCH parent compounds were also back calculated using the levels of each metabolite found in pregnant women urine (reconstructed exposure). Besides, to demonstrate the utility of this approach, the physiologically based pharmacokinetic (PBPK) model was used to predict the cumulative amount of MEHP (a principal metabolite of DEHP in urine). To proceed with that, DEHP reconstructed exposure and estimated exposure from the same cohort (previously studied by the same authors) were simulated using the PBPK model. Results showed that the reconstructed-PBPK simulation was closer to the 24 h biomonitoring data than the estimated PBPK-simulation., This clearly shows that the combination of reconstructed exposure with the PBPK model is a good tool to predict chemicals exposure. However, some discrepancies between simulated and biomonitored values were found. This can be associated with other sources that contribute to the total exposure and emphasises the need to consider multi-routes exposure for the widely distributed chemicals like phthalates and DINCH.
Collapse
Affiliation(s)
- M A Martínez
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain.
| | - J Rovira
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain.
| | - R Prasad Sharma
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain
| | - M Schuhmacher
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain.
| | - V Kumar
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain; IISPV, Hospital Universitari Sant Joan de Reus, Universitat Rovira I Virgili, Reus, Spain.
| |
Collapse
|
34
|
Li X, Shang Y, Yao W, Li Y, Tang N, An J, Wei Y. Comparison of Transcriptomics Changes Induced by TCS and MTCS Exposure in Human Hepatoma HepG2 Cells. ACS OMEGA 2020; 5:10715-10724. [PMID: 32455190 PMCID: PMC7240827 DOI: 10.1021/acsomega.0c00075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/24/2020] [Indexed: 05/06/2023]
Abstract
Triclosan (TCS) has been a widely used antibacterial agent in medical and personal care products in the last few decades. Methyl TCS (MTCS) is the major biotransformation product of TCS through replacement of the hydroxyl group with methoxy. Previous studies revealed that MTCS showed reduced toxicity but enhanced environmental persistence, when compared with TCS. Till date, the toxicological molecular mechanisms of TCS and MTCS remain to be clarified. This study aimed to investigate the transcriptomic changes in HepG2 cells induced by TCS and MTCS using microarray chips and to identify key target genes and related signal pathways. The microarray data showed that there were 1664 and 7144 differentially expressed genes (DEGs) in TCS- and MTCS-treated groups, respectively. Gene ontology (GO) enrichment and Kyoto Encyclopedia of genes and genomes (KEGG) analysis revealed that TCS and MTCS induced overlapping as well as distinct transcriptome signatures in HepG2 cells. Both TCS and MTCS could result in various biological responses in HepG2 cells mainly responding to biosynthetic and metabolic processes but probably through different regulatory pathways. Among the selected 50 GO terms, 9 GO terms belonging to the cellular component category were only enriched in the MTCS group, which are mainly participating in the regulation of cellular organelle's function. KEGG analysis showed that 19 and 59 pathway terms were separately enriched in TCS and MTCS groups, with only seven identical pathways. The selected 10 TCS-specific signal pathways are mainly involved in cell proliferation and apoptosis, while the selected 10 MTCS-specific pathways mainly take part in the regulation of protein synthesis and modification. The overall data suggested that MTCS induced more enriched DEGs, GO terms, and pathway terms than TCS. In conclusion, compared with TCS, MTCS presents lower polarity and stronger lipophilicity, enabling MTCS to cause more extensive transcriptomic changes in HepG2 cells, activate differentiated signal pathways, and finally lead to differences in biological responses.
Collapse
Affiliation(s)
- Xiaoqian Li
- State
Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yu Shang
- School
of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Weiwei Yao
- School
of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yi Li
- State
Key Laboratory of Severe Weather & Key Laboratory of Atmospheric
Chemistry of CMA, Chinese Academy of Meteorological
Sciences, Beijing 100081, China
| | - Ning Tang
- Institute
of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Jing An
- School
of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yongjie Wei
- State
Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
35
|
Tang Z, Chai M, Wang Y, Cheng J. Phthalates in preschool children's clothing manufactured in seven Asian countries: Occurrence, profiles and potential health risks. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121681. [PMID: 31757725 DOI: 10.1016/j.jhazmat.2019.121681] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Phthalates could be introduced into clothing as chemical additives or impurities, becoming a potential source of human exposure. We measured the concentrations of 15 phthalates in new preschool children's clothing manufactured in seven Asian countries. Phthalates were prevalent in all samples, and total concentrations were 2.92-223 μg/g, indicating a moderate contamination level. Bis(2-ethylhexyl) phthalate, di(isobutyl) phthalate and di-n-butyl phthalate were the most abundant phthalates measured, representing a median of 48.5 %, 13.6 % and 13.4 % of the total concentrations, respectively. Total concentrations did not differ significantly by country of manufacture, while the concentrations of individual phthalates and their composition profiles varied widely. We also found differing phthalate levels by item type, fabric composition, and color. Under the assumed two exposure scenarios, the median of summed dermal exposure doses of six phthalate were 539 and 950 ng/kg of body weight per day, respectively. When children wore trousers, long-sleeved shirts, briefs and socks at the same time, the reproductive risks exceeded acceptable level, although the carcinogenic risk of DEHP was low. Our results suggested that new clothing is an important route of phthalate exposure to preschool children. More research is required to investigate the contaminations and associated with risks in child clothing.
Collapse
Affiliation(s)
- Zhenwu Tang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China; College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Miao Chai
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yuwen Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Jiali Cheng
- Key Laboratory of Trace Element Nutrition of National Health Commission, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China.
| |
Collapse
|
36
|
Skledar DG, Mašič LP. In vitro estrogenic activity of binary and multicomponent mixtures with bisphenol A. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:135211. [PMID: 31869609 DOI: 10.1016/j.scitotenv.2019.135211] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
Bisphenol A and its analogs are environmental contaminants with well known estrogenic and anti-androgenic activities. In studies of human biomonitoring, simultaneous exposure to multiple bisphenols was shown in different biological samples, at picomolar to low nanomolar concentrations. Evaluation of their combined toxicities will therefore be a more realistic and reliable predictor for estimation of health risks than evaluation of only the single chemicals. In the present study, estrogenic activities of individual bisphenols were evaluated, along with their binary and multicomponent mixtures including three- and four-component mixtures, using the Organisation for Economic Co-operation and Development validated transactivation assay with the hERα-Hela9903 cell line. Concentration-dependent estrogenic activity was confirmed for all of the tested bisphenols, in the nanomolar to micromolar range. Estrogenic activities of binary and multicomponent mixtures followed a concentration addition model. Although exposure to individual bisphenols remains below their effective doses, we demonstrate that as a mixture, they can contribute additively to toxicity. This study thus emphasizes the importance of mixture toxicity evaluation for risk assessment of compounds that act like the bisphenols.
Collapse
Affiliation(s)
- Darja Gramec Skledar
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Lucija Peterlin Mašič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
37
|
Schwedler G, Rucic E, Lange R, Conrad A, Koch HM, Pälmke C, Brüning T, Schulz C, Schmied-Tobies MIH, Daniels A, Kolossa-Gehring M. Phthalate metabolites in urine of children and adolescents in Germany. Human biomonitoring results of the German Environmental Survey GerES V, 2014-2017. Int J Hyg Environ Health 2020; 225:113444. [PMID: 32058939 DOI: 10.1016/j.ijheh.2019.113444] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 01/20/2023]
Abstract
During the population representative German Environmental Survey of Children and Adolescents (GerES V, 2014-2017) 2256 first-morning void urine samples from 3 to 17 years old children and adolescents were analysed for 21 metabolites of 11 different phthalates (di-methyl phthalate (DMP), di-ethyl phthalate (DEP), butylbenzyl phthalate (BBzP), di-iso-butyl phthalate (DiBP), di-n-butyl phthalate (DnBP), di-cyclohexyl phthalate (DCHP), di-n-pentyl phthalate (DnPeP), di-(2-ethylhexyl) phthalate (DEHP), di-iso-nonyl phthalate (DiNP), di-iso-decyl phthalate (DiDP) and di-n-octyl phthalate (DnOP)). Metabolites of DMP, DEP, BBzP, DiBP, DnBP, DEHP, DiNP and DiDP were found in 97%-100% of the participants, DCHP and DnPeP in 6%, and DnOP in none of the urine samples. Geometric means (GM) were highest for metabolites of DiBP (MiBP: 26.1 μg/L), DEP (MEP: 25.8 μg/L), DnBP (MnBP: 20.9 μg/L), and DEHP (cx-MEPP: 11.9 μg/L). For all phthalates but DEP, GMs were consistently higher in the 3-5 years old children than in the 14-17 years old adolescents. For DEHP, the age differences were most pronounced. All detectable phthalate biomarker concentrations were positively associated with the levels of the respective phthalate in house dust. In GerES V we found considerably lower phthalate biomarker levels than in the preceding GerES IV (2003-2006). GMs of biomarker levels in GerES V were only 18% (BBzP), 23% (MnBP), 23% (DEHP), 29% (MiBP) and 57% (DiNP) of those measured a decade earlier in GerES IV. However, some children and adolescents still exceeded health-based guidance values in the current GerES V. 0.38% of the participants had levels of DnBP, 0.08% levels of DEHP and 0.007% levels of DiNP which were higher than the respective health-based guidance values. Accordingly, for these persons an impact on health cannot be excluded with sufficient certainty. The ongoing and substantial exposure of vulnerable children and adolescents to many phthalates confirms the need of a continued monitoring of established phthalates, whether regulated or not, as well as of potential substitutes. With this biomonitoring approach we provide a picture of current individual and cumulative exposure developments and body burdens to phthalates, thus providing support for timely and effective chemicals policies and legislation.
Collapse
Affiliation(s)
| | - Enrico Rucic
- German Environment Agency (UBA), Berlin, Germany
| | - Rosa Lange
- German Environment Agency (UBA), Berlin, Germany
| | - André Conrad
- German Environment Agency (UBA), Berlin, Germany
| | - Holger M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bochum, Germany
| | - Claudia Pälmke
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bochum, Germany
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bochum, Germany
| | | | | | - Anja Daniels
- German Environment Agency (UBA), Berlin, Germany
| | | |
Collapse
|
38
|
Tang Z, Chai M, Cheng J, Wang Y, Huang Q. Occurrence and Distribution of Phthalates in Sanitary Napkins from Six Countries: Implications for Women's Health. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13919-13928. [PMID: 31694371 DOI: 10.1021/acs.est.9b03838] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chemicals in feminine hygiene products can exert adverse health effects as a result of strong absorptive capacity of the vagina and vulva. However, little information is available on phthalates in sanitary napkins. We measured the concentrations of 15 phthalates in sanitary napkins collected from six countries and found total concentrations in the range of 1733-11942 ng/g. Di(isobutyl)phthalate (DiBP), bis(2-ethylhexyl)phthalate (DEHP), and di-n-butyl phthalate (DnBP) were the dominant congeners, representing a median of 27.3, 26.7, and 20.4% of the total median phthalate concentrations across all countries, respectively. The phthalates likely originated mainly from the introduction in the manufacturing process, and some may have been from the use of plastic or paper materials. The estimated intake (at the 90th percentile) of DiBP, DnBP, and DEHP from sanitary napkins approximately represented 6.35-23.6, 3.35-9.90, and 1.06-9.57%, respectively, of the total exposure, indicating that sanitary napkins are a relevant source of exposure to these chemicals. The calculated health risks of phthalates in sanitary napkins were generally low, but the carcinogenic risks in some samples exceeded acceptable levels. More research is required to investigate the contaminations in sanitary napkins and those associated with risks to women.
Collapse
Affiliation(s)
- Zhenwu Tang
- College of Life and Environmental Sciences , Minzu University of China , Beijing 100081 , China
- College of Environmental Science and Engineering , North China Electric Power University , Beijing 102206 , China
| | - Miao Chai
- College of Environmental Science and Engineering , North China Electric Power University , Beijing 102206 , China
| | - Jiali Cheng
- Key Laboratory of Trace Element Nutrition of the National Health Commission, National Institute for Nutrition and Health , Chinese Center for Disease Control and Prevention , Beijing 100050 , China
| | - Yuwen Wang
- College of Environmental Science and Engineering , North China Electric Power University , Beijing 102206 , China
| | - Qifei Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment , Chinese Research Academy of Environmental Sciences , Beijing 100012 , China
| |
Collapse
|
39
|
Karzi V, Tzatzarakis M, Katsikantami I, Stavroulaki A, Alegakis A, Vakonaki E, Xezonaki P, Sifakis S, Rizos A, Tsatsakis A. Investigating exposure to endocrine disruptors via hair analysis of pregnant women. ENVIRONMENTAL RESEARCH 2019; 178:108692. [PMID: 31520825 DOI: 10.1016/j.envres.2019.108692] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/22/2019] [Accepted: 08/24/2019] [Indexed: 06/10/2023]
Abstract
The aim of this study was the monitoring of the levels of parabens (PBs) and triclosan (TCS) in head hair samples of women collected during the first months of their pregnancy. Personal details concerning somatometric and demographic characteristics, dietary habits, use of personal care products and the medical and obstetrical history of the pregnant women as well as infants' somatometric characteristics and health condition were recorded through relevant questionnaires. Ninety five hair samples were collected, extracted by solid-liquid extraction and analysed using a liquid chromatography-mass spectrometry system (LC-MS). Analysis revealed high percentage of positive samples for all tested compounds (90-100% except from BePB (15.8%)). The mean concentration levels were 4501.2 pg/mg (17.6-27,437.0 pg/mg) for MePB; 510.1 pg/mg (11.0-4224.5 pg/mg) for EtPB; 22.9 pg/mg (2.1-66.6 pg/mg) for BePB; 237.1 pg/mg (1.8-2513.7 pg/mg) for BuPB and 245.0 pg/mg (8.8-8070.2 pg/mg) for TCS. Statistical analysis of both analytical results and questionnaires' data showed that the frequent use of personal care and hygiene products, such as makeup, hairspray and sunscreens, is correlated with higher levels of PBs in hair of the pregnant women. Additionally, positive correlation was observed between the BePB levels in hair and the infants' height. Finally, no other correlation was observed between endocrine disruptors' levels in maternal hair and infants' somatometric characteristics or health condition. Our study is the first one that determined PBs and TCS levels in hair samples, simultaneously. At the same time, correlation of the detected levels with the use of personal care products was accomplished, leading to significant association of BePB levels in hair of pregnant women with infants' height.
Collapse
Affiliation(s)
- Vasiliki Karzi
- Laboratory of Toxicology Science and Research, Medicine School, University of Crete, Heraklion, Crete, GR, 70013, Greece; Department of Chemistry, University of Crete and Foundation for Research and Technology - Hellas (FORTH-IESL), GR, 71003, Heraklion, Crete, Greece
| | - Manolis Tzatzarakis
- Laboratory of Toxicology Science and Research, Medicine School, University of Crete, Heraklion, Crete, GR, 70013, Greece
| | - Ioanna Katsikantami
- Laboratory of Toxicology Science and Research, Medicine School, University of Crete, Heraklion, Crete, GR, 70013, Greece; Department of Chemistry, University of Crete and Foundation for Research and Technology - Hellas (FORTH-IESL), GR, 71003, Heraklion, Crete, Greece
| | - Athina Stavroulaki
- Laboratory of Toxicology Science and Research, Medicine School, University of Crete, Heraklion, Crete, GR, 70013, Greece
| | - Athanasios Alegakis
- Laboratory of Toxicology Science and Research, Medicine School, University of Crete, Heraklion, Crete, GR, 70013, Greece
| | - Elena Vakonaki
- Laboratory of Toxicology Science and Research, Medicine School, University of Crete, Heraklion, Crete, GR, 70013, Greece
| | | | | | - Apostolos Rizos
- Department of Chemistry, University of Crete and Foundation for Research and Technology - Hellas (FORTH-IESL), GR, 71003, Heraklion, Crete, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology Science and Research, Medicine School, University of Crete, Heraklion, Crete, GR, 70013, Greece.
| |
Collapse
|