1
|
Wang L, Gui J, Tian B, Ding R, Wang W, Jiang C, Zhang S, Zhang X, Liu J, Jiang L. Particulate matter induced cognitive impairments via endoplasmic reticulum stress-mediated damage to mitochondria-associated endoplasmic reticulum membranes in immature rats. Toxicology 2024; 509:153979. [PMID: 39442789 DOI: 10.1016/j.tox.2024.153979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/12/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
Particulate matter (PM) exposure has been increasingly recognized as detrimental to cognitive function and is associated with neurodevelopmental disorders. Mitochondria-associated endoplasmic reticulum membranes (MAMs) form an integrated interface between mitochondria and the endoplasmic reticulum (ER), facilitating crucial cellular functions. Prolonged ER stress (ERS) is implicated in various pathological states in the nervous system. MAMs and ERS may play vital roles in adverse effects of early-life PM exposure on cognitive abilities. This study investigated whether ERS plays a role in PM-induced MAMs dysfunction, leading to neuronal damage and cognitive impairments in early postnatal rats. Using a rat model with PM exposure concentrations of 2 and 10 mg/kg from postnatal Day 3 (PND3) to PND28, we observed that PM exposure resulted in anxiety-like behavior and impaired spatial working memory. The protein levels of ERS markers, including GRP78 and CHOP, were significantly increased in response to PM exposure. Western blot, transmission electron microscopy (TEM), and immunofluorescence analyses revealed decreased MAMs-related proteins and disrupted MAM structure and function caused by PM exposure. Administration of the ERS inhibitor 4-phenylbutyric acid (4-PBA) ameliorated these effects, restoring MAMs integrity and improving cognitive deficits. These findings highlighted the key role of ERS-MAMs dysfunction in PM-induced neurotoxicity and cognitive impairments, providing a new perspective and strategy for the prevention of cognitive deficits in early age with PM exposure.
Collapse
Affiliation(s)
- Lingman Wang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Jianxiong Gui
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Bing Tian
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Ran Ding
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Wandi Wang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Chunxue Jiang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Shengxuan Zhang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Xiaofang Zhang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Jie Liu
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China.
| | - Li Jiang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China.
| |
Collapse
|
2
|
Yuan A, Halabicky O, Liu J. Association between air pollution exposure and brain cortical thickness throughout the lifespan: A systematic review. Neuroscience 2024; 559:209-219. [PMID: 39236801 DOI: 10.1016/j.neuroscience.2024.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/12/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Increasing research has focused on the impact of air pollution on brain health. As the prevalence of air pollution is increasing alongside other environmental harms, the importance of studying the effects of these changes on human health has become more significant. Additionally, gaining insight into how air pollution exposure, measured at different points in the lifespan, can affect brain structure is critical, as this could be a precursor to cognitive decline later in life. The purpose of this review was to synthesize the literature on the association between air pollutant exposure and cortical thickness, a structural change with known associations with later cognition and neurodegenerative disease. After screening, twelve studies were included in this systematic review. Across a majority of studies, results suggest significant associations between increasing air pollution exposure and decreases in cortical thickness, primarily in areas such as prefrontal cortex, precuneus, and temporal regions of the brain. These results did differ somewhat between age groups and different air pollutants, with the most prominent results being found with exposure to PM2.5, the smallest particulate matter size included in the review. In the future, it is important to continue studying cortical thickness as it is essential to brain functioning and can be influential in disease progression. Furthermore, conducting more longitudinal studies in which air pollution is measured as a cumulation throughout the lifespan would help elucidate when exposure is most impactful and when brain structural changes become observable.
Collapse
Affiliation(s)
- Aurora Yuan
- University of Pennsylvania, College of Arts & Sciences, 249 S 36th St, Philadelphia, PA 19104, United States
| | - Olivia Halabicky
- University of Michigan, School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, United States
| | - Jianghong Liu
- University of Pennsylvania, School of Nursing, 418 Curie Blvd, Philadelphia, PA 19104, United States.
| |
Collapse
|
3
|
Mundorf A, Merklein SA, Rice LC, Desmond JE, Peterburs J. Early Adversity Affects Cerebellar Structure and Function-A Systematic Review of Human and Animal Studies. Dev Psychobiol 2024; 66:e22556. [PMID: 39378310 DOI: 10.1002/dev.22556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/23/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024]
Abstract
Recent research has highlighted cerebellar involvement in cognition and several psychiatric conditions such as mood and anxiety disorders and schizophrenia. Attention-deficit/hyperactivity disorder and autism spectrum disorder have been linked to reduced cerebellar volume as well. Cerebellar alterations are frequently present after early adversity in humans and animals, but a systematic integration of results is lacking. To this end, a systematic literature search was conducted in PubMed, Web of Science, and EBSCO databases using the keywords "early adversity OR early life stress" AND "cerebellum OR cerebellar." A total of 45 publications met the inclusion criteria: 25 studies investigated human subjects and 20 reported results from animal models. Findings in healthy subjects show bilateral volume reduction and decreased functional connectivity within the cerebellum and between the cerebellum and frontal regions after adversity throughout life, especially when adversity was assessed with the Childhood Trauma Questionnaire. In clinical populations, adults demonstrate increased cerebellar volume and functional connectivity after adversity, whereas pediatric patients show reduced cerebellar volume. Animal findings reveal cerebellar alterations without necessarily co-occurring pathological behavior, highlighting alterations in stress hormone receptor levels, cell density, and neuroinflammation markers. Cerebellar alterations after early adversity are robust findings across human and animal studies and occur independent of clinical symptoms.
Collapse
Affiliation(s)
- Annakarina Mundorf
- Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Institute for Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Sarah A Merklein
- Institute for Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
- Department of Psychology, Medical School Hamburg, Hamburg, Germany
| | - Laura C Rice
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - John E Desmond
- Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jutta Peterburs
- Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Institute for Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
4
|
Morrel J, Overholtzer LN, Sukumaran K, Cotter DL, Cardenas-Iniguez C, Tyszka JM, Schwartz J, Hackman DA, Chen JC, Herting MM. Outdoor Air Pollution Relates to Amygdala Subregion Volume and Apportionment in Early Adolescents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.617429. [PMID: 39463957 PMCID: PMC11507665 DOI: 10.1101/2024.10.14.617429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Background Outdoor air pollution is associated with an increased risk for psychopathology. Although the neural mechanisms remain unclear, air pollutants may impact mental health by altering limbic brain regions, such as the amygdala. Here, we examine the association between ambient air pollution exposure and amygdala subregion volumes in 9-10-year-olds. Methods Cross-sectional Adolescent Brain Cognitive DevelopmentSM (ABCD) Study® data from 4,473 participants (55.4% male) were leveraged. Air pollution was estimated for each participant's primary residential address. Using the probabilistic CIT168 atlas, we quantified total amygdala and 9 distinct subregion volumes from T1- and T2-weighted images. First, we examined how criteria pollutants (i.e., fine particulate matter [PM2.5], nitrogen dioxide, ground-level ozone) and 15 PM2.5 components related with total amygdala volumes using linear mixed-effect (LME) regression. Next, partial least squares correlation (PLSC) analyses were implemented to identify relationships between co-exposure to criteria pollutants as well as PM2.5 components and amygdala subregion volumes. We also conducted complementary analyses to assess subregion apportionment using amygdala relative volume fractions (RVFs). Results No significant associations were detected between pollutants and total amygdala volumes. Using PLSC, one latent dimension (LD) (52% variance explained) captured a positive association between calcium and several basolateral subregions. LDs were also identified for amygdala RVFs (ranging from 30% to 82% variance explained), with PM2.5 and component co-exposure associated with increases in lateral, but decreases in medial and central, RVFs. Conclusions Fine particulate and its components are linked with distinct amygdala differences, potentially playing a role in risk for adolescent mental health problems.
Collapse
Affiliation(s)
- Jessica Morrel
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - L. Nate Overholtzer
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- USC-Caltech MD-PhD Program, Los Angeles, CA, USA
| | - Kirthana Sukumaran
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Devyn L. Cotter
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Carlos Cardenas-Iniguez
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - J. Michael Tyszka
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Daniel A. Hackman
- USC Suzanne Dworak-Peck School of Social Work, University of Southern California, Los Angeles, CA, USA
| | - Jiu-Chiuan Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Neurology, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Megan M. Herting
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
5
|
Alcala CS, Lane JM, Midya V, Eggers S, Wright RO, Rosa MJ. Exploring the link between the pediatric exposome, respiratory health, and executive function in children: a narrative review. Front Public Health 2024; 12:1383851. [PMID: 39478741 PMCID: PMC11521889 DOI: 10.3389/fpubh.2024.1383851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 09/25/2024] [Indexed: 11/02/2024] Open
Abstract
Asthma is a highly prevalent inflammatory condition, significantly affecting nearly six million U.S. children and impacting various facets of their developmental trajectories including neurodevelopment. Evidence supports a link between pediatric environmental exposures in two key areas: asthma and executive function (E.F.). E.F.s are a collective of higher-order cognitive processes facilitating goal-oriented behaviors. Studies also identify asthma-associated E.F. impairments in children. However, limited research has evaluated the inter-relationships among environmental exposures, asthma, and E.F. in children. This review explored relevant research to identify and connect the potential mechanisms and pathways underlying these dynamic associations. The review suggests that the role of the pediatric exposome may function through (1) several underlying biological pathways (i.e., the lung-brain axis, neuroendocrine system, and hypoxia), which could drive asthma and maladaptive E.F. in children and (2) the relationships between the exposome, asthma, and E.F. is a bidirectional linkage. The review reveals essential synergistic links between asthma and E.F. deficits, highlighting the potential role of the pediatric exposome.
Collapse
Affiliation(s)
- Cecilia S. Alcala
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jamil M. Lane
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Vishal Midya
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Shoshannah Eggers
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA, United States
| | - Robert O. Wright
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Institute for Climate Change, Environmental Health, and Exposomics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Maria José Rosa
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Institute for Climate Change, Environmental Health, and Exposomics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
6
|
Zhou X, Guo Z, Ling Y, Teng W, Cui J, Yan Z, Hou X, Cen W, Long N, Li W, Yang H, Chu L. Causal effect of air pollution on the risk of brain health and potential mediation by gut microbiota. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117080. [PMID: 39332203 DOI: 10.1016/j.ecoenv.2024.117080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/21/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
OBJECTIVE Epidemiologic investigations have examined the correlation between air pollution and neurologic disorders and neuroanatomic structures. Increasing evidence underscores the profound influence of the gut microbiota on brain health. However, the existing evidence is equivocal, and a causal link remains uncertain. This study aimed: to determine if there is a causal connection between four key air pollutants, and 42 neurologic diseases, and 1325 distinct brain structures; and to explore the potential role of the gut microbiota in mediating these associations. METHODS Univariable Mendelian randomization (UVMR) and multivariable Mendelian randomization (MVMR) models were deployed to estimate the causal impact of air pollutants (including particulate matter [PM] with aerodynamic diameters <2.5 μm [PM2.5], and <10 μm [PM10]; PM2.5 absorbance; and nitrogen oxides [NOx]) on brain health through various Mendelian randomization methodologies. Lastly, the mediating role of the gut microbiome in the connections between the identified pollutants and neurologic diseases and brain structures was systematically examined. RESULTS The potential causal associations of PM2.5, PM2.5 absorbance, PM10, and exposure to NOx, with the risks of intracerebral hemorrhage, hippocampal perivascular spaces, large artery strokes, generalized epilepsy with tonic-clonic seizures, Alzheimer's disease, multiple sclerosis, anorexia nervosa, post-traumatic stress disorder (PTSD), and 420 brain structures, were investigated by UVMR analysis. Following adjustment for air pollutants by MVMR analysis, the genetic correlations between PM10 exposure and PTSD and multiple sclerosis remained significant and robust. Importantly, we observed that phylum Lentisphaerae may mediate the association between PM10 and multiple sclerosis. Additionally, PM2.5 absorbance with a greater risk of reduced thickness in the left anterior transverse temporal gyrus of Heschl and a decreased area in the right sulcus intermedius primus of Jensen, mediated by genus Senegalimassilia and genus Lachnospiraceae UCG010, respectively. Finally, we provided evidence that Clostridium innocuum and genus Ruminococcus2 may partly mediate the causal effect of NOx on altered thickness in the left transverse temporal cortex and area in the right sulcus intermedius primus of Jensen, respectively. CONCLUSION This study established a genetic connection between air pollution and brain health, implicating the gut microbiota as a potential mediator in the relationship between air pollution, neurologic disorders, and altered brain structures.
Collapse
Affiliation(s)
- Xingwang Zhou
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, PR China
| | - Zhengshan Guo
- The Institute of Public Administration, Southwest University of Finance and Economics, Chengdu, Sichuan, PR China
| | - Yuanguo Ling
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, PR China
| | - Wei Teng
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, PR China
| | - Junshuan Cui
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, PR China
| | - Zhangwei Yan
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, PR China
| | - Xianwen Hou
- Department of Neurosurgery, Qianxi People's Hospital, Qianxi, Guizhou, PR China
| | - Wu Cen
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, PR China
| | - Niya Long
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, PR China
| | - Wenyan Li
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, PR China
| | - Hua Yang
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, PR China
| | - Liangzhao Chu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, PR China.
| |
Collapse
|
7
|
Parenteau AM, Hang S, Swartz JR, Wexler AS, Hostinar CE. Clearing the air: A systematic review of studies on air pollution and childhood brain outcomes to mobilize policy change. Dev Cogn Neurosci 2024; 69:101436. [PMID: 39244820 PMCID: PMC11407021 DOI: 10.1016/j.dcn.2024.101436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 06/14/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024] Open
Abstract
Climate change, wildfires, and environmental justice concerns have drawn increased attention to the impact of air pollution on children's health and development. Children are especially vulnerable to air pollution exposure, as their brains and bodies are still developing. The objective of this systematic review was to synthesize available empirical evidence on the associations between air pollution exposure and brain outcomes in developmental samples (ages 0-18 years old). Studies were identified by searching the PubMed and Web of Science Core Collection databases and underwent a two-phase screening process before inclusion. 40 studies were included in the review, which included measures of air pollution and brain outcomes at various points in development. Results linked air pollution to varied brain outcomes, including structural volumetric and cortical thickness differences, alterations in white matter microstructure, functional network changes, metabolic and molecular effects, as well as tumor incidence. Few studies included longitudinal changes in brain outcomes. This review also suggests methodologies for incorporating air pollution measures in developmental cognitive neuroscience studies and provides specific policy recommendations to reduce air pollution exposure and promote healthy brain development by improving access to clean air.
Collapse
Affiliation(s)
| | - Sally Hang
- Psychology Department, University of California, Davis, USA
| | - Johnna R Swartz
- Department of Human Ecology, University of California, Davis, USA
| | - Anthony S Wexler
- Air Quality Research Center, Mechanical and Aerospace Engineering, University of California, Davis, USA
| | | |
Collapse
|
8
|
Liu W, Liu T, Si X, Liang J, Yan X, Zhang J, Pang B, Luo W, Liu J, Yang H, Shi P. Multi-omic characterization of air pollution effects: Applications of AirSigOmniTWP Hub. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116939. [PMID: 39191137 DOI: 10.1016/j.ecoenv.2024.116939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024]
Abstract
Air pollution, particularly fine particulate matter and gaseous pollutants including NO2 and NOx, presents significant public health challenges. While the harmful effects of these pollutants are well-documented, the molecular mechanisms underlying their impact on health remain incompletely understood. In this study, we utilized genome-wide association study (GWAS) data from the UK Biobank, expression quantitative trait loci (eQTL) data from the Genotype-Tissue Expression (GTEx) project, and protein quantitative trait loci (pQTL) data from the Atherosclerosis Risk in Communities (ARIC) study to conduct comprehensive analyses using the Unified Test for Molecular Signatures (UTMOST), Transcriptome-wide Association Studies (TWAS), and Proteome-wide Association Studies (PWAS). To integrate and synthesize these analyses, we developed the AirSigOmniTWP Hub, a specialized platform designed to consolidate and interpret the results from UTMOST, TWAS, and PWAS. TWAS analysis identified a significant association between PM10 exposure and the gene INO80E in females (P = 4.37×10⁻⁵, FDR = 0.0383), suggesting a potential role in chromatin remodeling. PWAS analysis revealed a significant association between NOx exposure and the gene PIP in females (P = 2.28×10⁻⁵, FDR = 0.0299), implicating its involvement in inflammatory pathways. Additionally, UTMOST analyses uncovered significant associations between various pollutants and genes including NCOA4P3 and SPATS2L with PM2.5 exposure, indicating potential mechanisms related to transcriptional regulation and gene-environment interactions.
Collapse
Affiliation(s)
- Wei Liu
- Department of Biomedical-Engineering, School of Intelligent Medicine, China Medical University, Shenyang 110122, PR China
| | - Tong Liu
- Department of Clinical Medicine, the Fourth Clinical Medical School, China Medical University, Shenyang 110122, PR China
| | - Xinxin Si
- Department of Clinical Medicine, the Fourth Clinical Medical School, China Medical University, Shenyang 110122, PR China
| | - Jiaxing Liang
- Department of Clinical Medicine, Shengjing Hospital, China Medical University, Shenyang 110122, PR China
| | - Xia Yan
- Department of Clinical Medicine, the First Clinical College, China Medical University, Shenyang 110122, PR China
| | - Juexin Zhang
- Department of Clinical Medicine, the Fourth Clinical Medical School, China Medical University, Shenyang 110122, PR China
| | - Bing Pang
- Department of Clinical Medicine, the Fourth Clinical Medical School, China Medical University, Shenyang 110122, PR China
| | - Wenmin Luo
- Department of Clinical Medicine, the Fourth Clinical Medical School, China Medical University, Shenyang 110122, PR China
| | - Junhong Liu
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Huazhe Yang
- Department of Biophysics, School of Intelligent Medicine, China Medical University, Shenyang 110122, PR China
| | - Peng Shi
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, PR China.
| |
Collapse
|
9
|
Polemiti E, Hese S, Schepanski K, Yuan J, Schumann G. How does the macroenvironment influence brain and behaviour-a review of current status and future perspectives. Mol Psychiatry 2024; 29:3268-3286. [PMID: 38658771 PMCID: PMC11449798 DOI: 10.1038/s41380-024-02557-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
The environment influences brain and mental health, both detrimentally and beneficially. Existing research has emphasised the individual psychosocial 'microenvironment'. Less attention has been paid to 'macroenvironmental' challenges, including climate change, pollution, urbanicity, and socioeconomic disparity. Notably, the implications of climate and pollution on brain and mental health have only recently gained prominence. With the advent of large-scale big-data cohorts and an increasingly dense mapping of macroenvironmental parameters, we are now in a position to characterise the relation between macroenvironment, brain, and behaviour across different geographic and cultural locations globally. This review synthesises findings from recent epidemiological and neuroimaging studies, aiming to provide a comprehensive overview of the existing evidence between the macroenvironment and the structure and functions of the brain, with a particular emphasis on its implications for mental illness. We discuss putative underlying mechanisms and address the most common exposures of the macroenvironment. Finally, we identify critical areas for future research to enhance our understanding of the aetiology of mental illness and to inform effective interventions for healthier environments and mental health promotion.
Collapse
Affiliation(s)
- Elli Polemiti
- Centre of Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Clinical Neuroscience CCM, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Sören Hese
- Institute of Geography, Friedrich Schiller University Jena, Jena, Germany
| | | | - Jiacan Yuan
- Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences & CMA-FDU Joint Laboratory of Marine Meteorology & IRDR-ICOE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Gunter Schumann
- Centre of Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Clinical Neuroscience CCM, Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Centre for Population Neuroscience and Stratified Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Morrel J, Dong M, Rosario MA, Cotter DL, Bottenhorn KL, Herting MM. A Systematic Review of Air Pollution Exposure and Brain Structure and Function during Development. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.13.24313629. [PMID: 39314970 PMCID: PMC11419233 DOI: 10.1101/2024.09.13.24313629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Objectives Air pollutants are known neurotoxicants. In this updated systematic review, we evaluate new evidence since our 2019 systematic review on the effect of outdoor air pollution exposure on childhood and adolescent brain structure and function as measured by magnetic resonance imaging (MRI). Methods Using PubMed and Web of Science, we conducted an updated literature search and systematic review of articles published through March 2024, using key terms for air pollution and functional and/or structural MRI. Two raters independently screened all articles using Covidence and implemented the risk of bias instrument for systematic reviews informing the World Health Organization Global Air Quality Guidelines. Results We identified 222 relevant papers, and 14 new studies met our inclusion criteria. Including six studies from our 2019 review, the 20 publications to date include study populations from the United States, Netherlands, Spain, and United Kingdom. Studies investigated exposure periods spanning pregnancy through early adolescence, and estimated air pollutant exposure levels via personal monitoring, geospatial residential estimates, or school courtyard monitors. Brain MRI occurred when children were on average 6-14.7 years old; however, one study assessed newborns. Several MRI modalities were leveraged, including structural morphology, diffusion tensor imaging, restriction spectrum imaging, arterial spin labeling, magnetic resonance spectroscopy, as well as resting-state and task-based functional MRI. Air pollutants were associated with widespread brain differences, although the magnitude and direction of findings are largely inconsistent, making it difficult to draw strong conclusions. Conclusion Prenatal and childhood exposure to outdoor air pollution is associated with structural and functional brain variations. Compared to our initial 2019 review, publications doubled-an increase that testifies to the importance of this public health issue. Further research is needed to clarify the effects of developmental timing, along with the downstream implications of outdoor air pollution exposure on children's cognitive and mental health.
Collapse
Affiliation(s)
- Jessica Morrel
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Michelle Dong
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael A. Rosario
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Devyn L. Cotter
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Katherine L. Bottenhorn
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
- Department of Psychology, Florida International University, Miami, FL, USA
| | - Megan M. Herting
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
11
|
Cajachagua-Torres KN, Quezada-Pinedo HG, Wu T, Trasande L, Ghassabian A. Exposure to Endocrine Disruptors in Early life and Neuroimaging Findings in Childhood and Adolescence: a Scoping Review. Curr Environ Health Rep 2024; 11:416-442. [PMID: 39078539 PMCID: PMC11324673 DOI: 10.1007/s40572-024-00457-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2024] [Indexed: 07/31/2024]
Abstract
PURPOSE OF REVIEW: Evidence suggests neurotoxicity of endocrine disrupting chemicals (EDCs) during sensitive periods of development. We present an overview of pediatric population neuroimaging studies that examined brain influences of EDC exposure during prenatal period and childhood. RECENT FINDINGS: We found 46 studies that used magnetic resonance imaging (MRI) to examine brain influences of EDCs. These studies showed associations of prenatal exposure to phthalates, organophosphate pesticides (OPs), polyaromatic hydrocarbons and persistent organic pollutants with global and regional brain structural alterations. Few studies suggested alteration in functional MRI associated with prenatal OP exposure. However, studies on other groups of EDCs, such as bisphenols, and those that examined childhood exposure were less conclusive. These findings underscore the potential profound and lasting effects of prenatal EDC exposure on brain development, emphasizing the need for better regulation and strategies to reduce exposure and mitigate impacts. More studies are needed to examine the influence of postnatal exposure to EDC on brain imaging.
Collapse
Affiliation(s)
- Kim N Cajachagua-Torres
- Department of Pediatrics, NYU Grossman School of Medicine, 555 First Avenue, New York, NY, 10016, USA.
- Department of Pediatrics, Erasmus MC, Erasmus University Rotterdam, Rotterdam, The Netherlands.
| | - Hugo G Quezada-Pinedo
- Department of Pediatrics, Erasmus MC, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Tong Wu
- Department of Radiology and Nuclear Medicine, Erasmus MC, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Leonardo Trasande
- Department of Pediatrics, NYU Grossman School of Medicine, 555 First Avenue, New York, NY, 10016, USA
- Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Akhgar Ghassabian
- Department of Pediatrics, NYU Grossman School of Medicine, 555 First Avenue, New York, NY, 10016, USA
- Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
12
|
Cory-Slechta DA, Marvin E, Welle K, Goeke C, Chalupa D, Oberdörster G, Sobolewski M. Male-biased vulnerability of mouse brain tryptophan/kynurenine and glutamate systems to adolescent exposures to concentrated ambient ultrafine particle air pollution. Neurotoxicology 2024; 104:20-35. [PMID: 39002649 PMCID: PMC11377152 DOI: 10.1016/j.neuro.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/27/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
Air pollution (AP) exposures have been associated with numerous neurodevelopmental and psychiatric disorders, including autism spectrum disorder, attention deficit hyperactivity disorder and schizophrenia, all male-biased disorders with onsets from early life to late adolescence/early adulthood. While prior experimental studies have focused on effects of AP exposures during early brain development, brain development actually extends well into early adulthood. The current study in mice sought to extend the understanding of developmental brain vulnerability during adolescence, a later but significant period of brain development and maturation to the ultrafine particulate (UFPs) component of AP, considered its most reactive component. Additionally, it examined adolescent response to UFPs when preceded by earlier developmental exposures, to ascertain the trajectory of effects and potential enhancement or mitigation of adverse consequences. Outcomes focused on shared features associated with multiple neurodevelopmental disorders. For this purpose, C57Bl/6 J mice of both sexes were exposed to ambient concentrated UFPs or filtered air from PND (postnatal day) 4-7 and PND10-13, and again at PND39-42 and 45-49, resulting in 3 exposure postnatal/adolescent treatment groups per sex: Air/Air, Air/UFP, and UFP/UFP. Features common to neurodevelopmental disorders were examined at PND50. Mass exposure concentration from postnatal exposure averaged 44.34 μg/m3 and the adolescent exposure averaged 49.18 μg/m3. Male brain showed particular vulnerability to UFP exposures in adolescence, with alterations in frontal cortical and striatal glutamatergic and tryptophan/serotonergic neurotransmitters and concurrent reductions in levels of astrocytes in corpus callosum and in serum cytokine levels, with combined exposures resulting in significant reductions in corpus callosum myelination and serum corticosterone. Reductions in serum corticosterone in males correlated with reductions in neurotransmitter levels, and reductions in striatal glutamatergic function specifically correlated with reductions in corpus callosum astrocytes. UFP-induced changes in neurotransmitter levels in males were mitigated by prior postnatal exposure, suggesting potential adaptation, whereas reductions in corticosterone and in corpus callosum neuropathological effects were further strengthened by combined postnatal and adolescent exposures. UFP-induced changes in females occurred primarily in striatal dopamine systems and as reductions in serum cytokines only in response to combined postnatal and adolescent exposures. Findings in males underscore the importance of more integrated physiological assessments of mechanisms of neurotoxicity. Further, these findings provide biological plausibility for an accumulating epidemiologic literature linking air pollution to neurodevelopmental and psychiatric disorders. As such, they support a need for consideration of the regulation of the UFP component of air pollution.
Collapse
Affiliation(s)
- D A Cory-Slechta
- Department of Environmental Medicine, University of Rochester Medical School, Box EHSC, Rochester, NY 14642, United States.
| | - E Marvin
- Department of Environmental Medicine, University of Rochester Medical School, Box EHSC, Rochester, NY 14642, United States
| | - K Welle
- Mass Spectrometry Resource Laboratory, University of Rochester Medical School, Box EHSC, Rochester, NY 14642, United States
| | - C Goeke
- Department of Environmental Medicine, University of Rochester Medical School, Box EHSC, Rochester, NY 14642, United States
| | - D Chalupa
- Department of Environmental Medicine, University of Rochester Medical School, Box EHSC, Rochester, NY 14642, United States
| | - G Oberdörster
- Department of Environmental Medicine, University of Rochester Medical School, Box EHSC, Rochester, NY 14642, United States
| | - M Sobolewski
- Department of Environmental Medicine, University of Rochester Medical School, Box EHSC, Rochester, NY 14642, United States
| |
Collapse
|
13
|
Herting MM, Bottenhorn KL, Cotter DL. Outdoor air pollution and brain development in childhood and adolescence. Trends Neurosci 2024; 47:593-607. [PMID: 39054161 PMCID: PMC11324378 DOI: 10.1016/j.tins.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/26/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024]
Abstract
Exposure to outdoor air pollution has been linked to adverse health effects, including potential widespread impacts on the CNS. Ongoing brain development may render children and adolescents especially vulnerable to neurotoxic effects of air pollution. While mechanisms remain unclear, promising advances in human neuroimaging can help elucidate both sensitive periods and neurobiological consequences of exposure to air pollution. Herein we review the potential influences of air pollution exposure on neurodevelopment, drawing from animal toxicology and human neuroimaging studies. Due to ongoing cellular and system-level changes during childhood and adolescence, the developing brain may be more sensitive to pollutants' neurotoxic effects, as a function of both timing and duration, with relevance to cognition and mental health. Building on these foundations, the emerging field of environmental neuroscience is poised to further decipher which air toxicants are most harmful and to whom.
Collapse
Affiliation(s)
- Megan M Herting
- Department of Populations and Public Health Sciences, University of Southern California, Los Angeles, CA, USA.
| | - Katherine L Bottenhorn
- Department of Populations and Public Health Sciences, University of Southern California, Los Angeles, CA, USA; Department of Psychology, Florida International University, Miami, FL, USA
| | - Devyn L Cotter
- Department of Populations and Public Health Sciences, University of Southern California, Los Angeles, CA, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
14
|
Cotter DL, Ahmadi H, Cardenas-Iniguez C, Bottenhorn KL, Gauderman WJ, McConnell R, Berhane K, Schwartz J, Hackman DA, Chen JC, Herting MM. Exposure to multiple ambient air pollutants changes white matter microstructure during early adolescence with sex-specific differences. COMMUNICATIONS MEDICINE 2024; 4:155. [PMID: 39090375 PMCID: PMC11294340 DOI: 10.1038/s43856-024-00576-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 07/09/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Air pollution is ubiquitous, yet questions remain regarding its impact on the developing brain. Large changes occur in white matter microstructure across adolescence, with notable differences by sex. METHODS We investigate sex-stratified effects of annual exposure to fine particulate matter (PM2.5), nitrogen dioxide (NO2), and ozone (O3) at ages 9-10 years on longitudinal patterns of white matter microstructure over a 2-year period. Diffusion-weighted imaging was collected on 3T MRI scanners for 8182 participants (1-2 scans per subject; 45% with two scans) from the Adolescent Brain Cognitive Development (ABCD) Study®. Restriction spectrum imaging was performed to quantify intracellular isotropic (RNI) and directional (RND) diffusion. Ensemble-based air pollution concentrations were assigned to each child's primary residential address. Multi-pollutant, sex-stratified linear mixed-effect models assessed associations between pollutants and RNI/RND with age over time, adjusting for sociodemographic factors. RESULTS Here we show higher PM2.5 exposure is associated with higher RND at age 9 in both sexes, with no significant effects of PM2.5 on RNI/RND change over time. Higher NO2 exposure is associated with higher RNI at age 9 in both sexes, as well as attenuating RNI over time in females. Higher O3 exposure is associated with differences in RND and RNI at age 9, as well as changes in RND and RNI over time in both sexes. CONCLUSIONS Criteria air pollutants influence patterns of white matter maturation between 9-13 years old, with some sex-specific differences in the magnitude and anatomical locations of affected tracts. This occurs at concentrations that are below current U.S. standards, suggesting exposure to low-level pollution during adolescence may have long-term consequences.
Collapse
Affiliation(s)
- Devyn L Cotter
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hedyeh Ahmadi
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Carlos Cardenas-Iniguez
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Katherine L Bottenhorn
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Psychology, Florida International University, Miami, FL, USA
| | - W James Gauderman
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rob McConnell
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kiros Berhane
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Daniel A Hackman
- USC Suzanne Dworak-Peck School of Social Work, University of Southern California, Los Angeles, CA, USA
| | - Jiu-Chiuan Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Neurology, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Megan M Herting
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Children's Hospital Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Cotter DL, Morrel J, Sukumaran K, Cardenas-Iniguez C, Schwartz J, Herting MM. Prenatal and childhood air pollution exposure, cellular immune biomarkers, and brain connectivity in early adolescents. Brain Behav Immun Health 2024; 38:100799. [PMID: 39021436 PMCID: PMC11252082 DOI: 10.1016/j.bbih.2024.100799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction Ambient air pollution is a neurotoxicant with hypothesized immune-related mechanisms. Adolescent brain structural and functional connectivity may be especially vulnerable to ambient pollution due to the refinement of large-scale brain networks during this period, which vary by sex and have important implications for cognitive, behavioral, and emotional functioning. In the current study we explored associations between air pollutants, immune markers, and structural and functional connectivity in early adolescence by leveraging cross-sectional sex-stratified data from the Adolescent Brain Cognitive Development℠ Study®. Methods Pollutant concentrations of fine particulate matter, nitrogen dioxide, and ozone were assigned to each child's primary residential address during the prenatal period and childhood (9-10 years-old) using an ensemble-based modeling approach. Data collected at 11-13 years-old included resting-state functional connectivity of the default mode, frontoparietal, and salience networks and limbic regions of interest, intracellular directional and isotropic diffusion of available white matter tracts, and markers of cellular immune activation. Using partial least squares correlation, a multivariate data-driven method that identifies important variables within latent dimensions, we investigated associations between 1) pollutants and structural and functional connectivity, 2) pollutants and immune markers, and 3) immune markers and structural and functional connectivity, in each sex separately. Results Air pollution exposure was related to white matter intracellular directional and isotropic diffusion at ages 11-13 years, but the direction of associations varied by sex. There were no associations between pollutants and resting-state functional connectivity at ages 11-13 years. Childhood exposure to nitrogen dioxide was negatively correlated with white blood cell count in males. Immune biomarkers were positively correlated with white matter intracellular directional diffusion in females and both white matter intracellular directional and isotropic diffusion in males. Lastly, there was a reliable negative correlation between lymphocyte-to-monocyte ratio and default mode network resting-state functional connectivity in females, as well as a compromised immune marker profile associated with lower resting-state functional connectivity between the salience network and the left hippocampus in males. In post-hoc exploratory analyses, we found that the PLSC-identified white matter tracts and resting-state networks related to processing speed and cognitive control performance from the NIH Toolbox. Conclusions We identified novel links between childhood nitrogen dioxide and cellular immune activation in males, and brain network connectivity and immune markers in both sexes. Future research should explore the potentially mediating role of immune activity in how pollutants affect neurological outcomes as well as the potential consequences of immune-related patterns of brain connectivity in service of improved brain health for all.
Collapse
Affiliation(s)
- Devyn L. Cotter
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jessica Morrel
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kirthana Sukumaran
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Carlos Cardenas-Iniguez
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Megan M. Herting
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Children's Hospital Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
16
|
Wu T, Huang J, Li Y, Guo Y, Wang H, Zhang Y. Prenatal acetaminophen exposure and the developing ovary: Time, dose, and course consequences for fetal mice. Food Chem Toxicol 2024; 189:114679. [PMID: 38657942 DOI: 10.1016/j.fct.2024.114679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
Acetaminophen is an emerging endocrine disrupting chemical and has been detected in various natural matrices. Numerous studies have documented developmental toxicity associated with prenatal acetaminophen exposure (PAcE). In this study, we established a PAcE Kunming mouse model at different time (middle pregnancy and third trimester), doses (low, middle, high) and courses (single or multi-) to systematically investigate their effects on fetal ovarian development. The findings indicated PAcE affected ovarian development, reduced fetal ovarian oocyte number and inhibited cell proliferation. A reduction in mRNA expression was observed for genes associated with oocyte markers (NOBOX and Figlα), follicular development markers (BMP15 and GDF9), and pre-granulosa cell steroid synthase (SF1 and StAR). Notably, exposure in middle pregnancy, high dose, multi-course resulted in the most pronounced inhibition of oocyte development; exposure in third trimester, high dose and multi-course led to the most pronounced inhibition of follicular development; and in third trimester, low dose and single course, the inhibition of pre-granulosa cell function was most pronounced. Mechanistic investigations revealed that PAcE had the most pronounced suppression of the ovarian Notch signaling pathway. Overall, PAcE caused fetal ovarian multicellular toxicity and inhibited follicular development with time, dose and course differences.
Collapse
Affiliation(s)
- Tiancheng Wu
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jing Huang
- Department of Otorhinolaryngology and HN Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Yating Li
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yu Guo
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Hui Wang
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| | - Yuanzhen Zhang
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China; Clinical Research Center for Prenatal Diagnosis and Birth Health of Hubei Province, Wuhan, 430071, China; Clinical Research Center for Reproductive Science and Birth Health of Wuhan, Wuhan, 430071, China.
| |
Collapse
|
17
|
Bottenhorn KL, Sukumaran K, Cardenas-Iniguez C, Habre R, Schwartz J, Chen JC, Herting MM. Air pollution from biomass burning disrupts early adolescent cortical microarchitecture development. ENVIRONMENT INTERNATIONAL 2024; 189:108769. [PMID: 38823157 DOI: 10.1016/j.envint.2024.108769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/08/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024]
Abstract
Exposure to outdoor particulate matter (PM2.5) represents a ubiquitous threat to human health, and particularly the neurotoxic effects of PM2.5 from multiple sources may disrupt neurodevelopment. Studies addressing neurodevelopmental implications of PM exposure have been limited by small, geographically limited samples and largely focus either on macroscale cortical morphology or postmortem histological staining and total PM mass. Here, we leverage residentially assigned exposure to six, data-driven sources of PM2.5 and neuroimaging data from the longitudinal Adolescent Brain Cognitive Development Study (ABCD Study®), collected from 21 different recruitment sites across the United States. To contribute an interpretable and actionable assessment of the role of air pollution in the developing brain, we identified alterations in cortical microstructure development associated with exposure to specific sources of PM2.5 using multivariate, partial least squares analyses. Specifically, average annual exposure (i.e., at ages 8-10 years) to PM2.5 from biomass burning was related to differences in neurite development across the cortex between 9 and 13 years of age.
Collapse
Affiliation(s)
- Katherine L Bottenhorn
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA; Department of Psychology, Florida International University, Miami, FL, USA.
| | - Kirthana Sukumaran
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Carlos Cardenas-Iniguez
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Rima Habre
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA; Spatial Sciences Institute, University of Southern California, Los Angeles, CA, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jiu-Chiuan Chen
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA; Department of Neurology, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Megan M Herting
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
18
|
Bottenhorn KL, Sukumaran K, Cardenas-Iniguez C, Habre R, Schwartz J, Chen JC, Herting MM. Air pollution from biomass burning disrupts early adolescent cortical microarchitecture development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.21.563430. [PMID: 38798573 PMCID: PMC11118378 DOI: 10.1101/2023.10.21.563430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Exposure to outdoor particulate matter (PM 2.5 ) represents a ubiquitous threat to human health, and particularly the neurotoxic effects of PM 2.5 from multiple sources may disrupt neurodevelopment. Studies addressing neurodevelopmental implications of PM exposure have been limited by small, geographically limited samples and largely focus either on macroscale cortical morphology or postmortem histological staining and total PM mass. Here, we leverage residentially assigned exposure to six, data-driven sources of PM 2.5 and neuroimaging data from the longitudinal Adolescent Brain Cognitive Development Study (ABCD Study®), collected from 21 different recruitment sites across the United States. To contribute an interpretable and actionable assessment of the role of air pollution in the developing brain, we identified alterations in cortical microstructure development associated with exposure to specific sources of PM 2.5 using multivariate, partial least squares analyses. Specifically, average annual exposure (i.e., at ages 8-10 years) to PM 2.5 from biomass burning was related to differences in neurite development across the cortex between 9 and 13 years of age.
Collapse
|
19
|
Smith OV, Penhale SH, Ott LR, Rice DL, Coutant AT, Glesinger R, Wilson TW, Taylor BK. Everyday home radon exposure is associated with altered structural brain morphology in youths. Neurotoxicology 2024; 102:114-120. [PMID: 38703899 PMCID: PMC11139553 DOI: 10.1016/j.neuro.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
The refinement of brain morphology extends across childhood, and exposure to environmental toxins during this period may alter typical trends. Radon is a highly common radiologic toxin with a well-established role in cancer among adults. However, effects on developmental populations are understudied in comparison. This study investigated whether home radon exposure is associated with altered brain morphology in youths. Fifty-four participants (6-14 yrs, M=10.52 yrs, 48.15% male, 89% White) completed a T1-weighted MRI and home measures of radon. We observed a significant multivariate effect of home radon concentrations, which was driven by effects on GMV. Specifically, higher home radon was associated with smaller GMV (F=6.800, p=.012, ηp2=.13). Conversely, there was a trending radon-by-age interaction on WMV, which reached significance when accounting for the chronicity of radon exposure (F=4.12, p=.049, ηp2=.09). We found that youths with above-average radon exposure showed no change in WMV with age, whereas low radon was linked with normative, age-related WMV increases. These results suggest that everyday home radon exposure may alter sensitive structural brain development, impacting developmental trajectories in both gray and white matter.
Collapse
Affiliation(s)
- OgheneTejiri V Smith
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Samantha H Penhale
- Clinical and Health Psychology Department, University of Florida, Gainesville, FL, USA
| | - Lauren R Ott
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town NE, USA
| | - Danielle L Rice
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Anna T Coutant
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Ryan Glesinger
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE, USA
| | - Brittany K Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE, USA.
| |
Collapse
|
20
|
Feng Y, Wan Y, Wang H, Jiang Q, Zhu K, Xiang Z, Liu R, Zhao S, Zhu Y, Song R. Dyslexia is associated with urinary polycyclic aromatic hydrocarbon metabolite concentrations of children from China: Data from the READ program. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123538. [PMID: 38341065 DOI: 10.1016/j.envpol.2024.123538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
It has been found that exposure to polycyclic aromatic hydrocarbons (PAHs) is associated with the risk of certain childhood neurodevelopmental disorders. However, no research has investigated the relationship between exposure to PAHs and children's dyslexia odds. The objective of this research was to investigate whether urinary mono-hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) are associated with increased dyslexia odds in Chinese children. We recruited 1,089 children (542 dyslexic children and 547 non-dyslexic children) for this case-control study. Ten OH-PAHs were measured in the participants' urine samples, which were collected between November 2017 and March 2023. Odds ratios (ORs) of the associations between the OH-PAHs and dyslexia were calculated using logistic regression models, after adjustment for the potential confounding factors. A significant association was found between urinary concentrations of 2-hydroxynaphthalene (2-OHNap) and the elevated odds of dyslexia. The children in the highest quartile of 2-OHNap had a higher OR of dyslexia (1.87, 95% CI: 1.07-3.27) than those in the lowest quartile (P-trend = 0.02) after adjustment for the covariates. After excluding children with maternal disorders during pregnancy, logistic regression analyses showed similar results. Our results suggested a possible association between PAH exposure and the elevated odds of dyslexia.
Collapse
Affiliation(s)
- Yanan Feng
- Department of Maternal and Child Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Department of Nursing, Medical School, Shihezi University, Shihezi, 832003, China
| | - Yanjian Wan
- Center for Public Health Laboratory Service, Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei, 430024, China
| | - Haoxue Wang
- Department of Maternal and Child Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Jiang
- Department of Maternal and Child Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kaiheng Zhu
- Department of Maternal and Child Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhen Xiang
- Department of Maternal and Child Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rundong Liu
- Department of Maternal and Child Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shuai Zhao
- Department of Maternal and Child Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ying Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430072, China
| | - Ranran Song
- Department of Maternal and Child Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
21
|
Baranyi G, Williamson L, Feng Z, Carnell E, Vieno M, Dibben C. Higher air pollution exposure in early life is associated with worse health among older adults: A 72-year follow-up study from Scotland. Health Place 2024; 86:103208. [PMID: 38367322 DOI: 10.1016/j.healthplace.2024.103208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/19/2024]
Abstract
Air pollution increases the risk of mortality and morbidity. However, limited evidence exists on the very long-term associations between early life air pollution exposure and health, as well as on potential pathways. This study explored the relationship between fine particle (PM2.5) exposure at age 3 and limiting long-term illness (LLTI) at ages 55, 65 and 75 using data from the Scottish Longitudinal Study Birth Cohort 1936, a representative administrative cohort study. We found that early life PM2.5 exposure was associated with higher odds of LLTI in mid-to-late adulthood (OR = 1.10, 95% CI: 1.06, 1.14 per 10 μg m-3 increment) among the 2085 participants, with stronger associations among those growing up in disadvantaged families. Path analyses suggested that 15-21% of the association between early life PM2.5 concentrations and LLTI at age 65 (n = 1406) was mediated through childhood cognitive ability, educational qualifications, and adult social position. Future research should capitalise on linked administrative and health data, and explore causal mechanisms between environment and specific health conditions across the life course.
Collapse
Affiliation(s)
- Gergő Baranyi
- Centre for Research on Environment, Society and Health, School of GeoSciences, The University of Edinburgh, Edinburgh, United Kingdom.
| | - Lee Williamson
- Centre for Research on Environment, Society and Health, School of GeoSciences, The University of Edinburgh, Edinburgh, United Kingdom; Longitudinal Studies Centre - Scotland, School of GeoSciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Zhiqiang Feng
- Centre for Research on Environment, Society and Health, School of GeoSciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Edward Carnell
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, United Kingdom
| | - Massimo Vieno
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, United Kingdom
| | - Chris Dibben
- Centre for Research on Environment, Society and Health, School of GeoSciences, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
22
|
Ahlers NE, Lin J, Weiss SJ. WITHDRAWN: Exposure to Ambient Particulate Matter during Pregnancy: Implications for Infant Telomere Length. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.09.17.23295692. [PMID: 37790308 PMCID: PMC10543047 DOI: 10.1101/2023.09.17.23295692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
This manuscript has been withdrawn by the authors as it was submitted and made public without the full consent of all the authors. Therefore, the authors do not wish this work to be cited as reference for the project. If you have any questions, please contact the corresponding author. The authors have an approved version for citation that is peer reviewed. Ahlers, N.E.; Lin, J.; Weiss, S.J. Exposure to Ambient Particulate Matter during Pregnancy: Implications for Infant Telomere Length. Air 2024, 2, 24-37. https://doi.org/10.3390/air2010002.
Collapse
|
23
|
Campbell CE, Cotter DL, Bottenhorn KL, Burnor E, Ahmadi H, Gauderman WJ, Cardenas-Iniguez C, Hackman D, McConnell R, Berhane K, Schwartz J, Chen JC, Herting MM. Air pollution and age-dependent changes in emotional behavior across early adolescence in the U.S. ENVIRONMENTAL RESEARCH 2024; 240:117390. [PMID: 37866541 PMCID: PMC10842841 DOI: 10.1016/j.envres.2023.117390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/24/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023]
Abstract
Recent studies have linked air pollution to increased risk for behavioral problems during development, albeit with inconsistent findings. Additional longitudinal studies are needed that consider how emotional behaviors may be affected when exposure coincides with the transition to adolescence - a vulnerable time for developing mental health difficulties. This study investigates if annual average PM2.5 and NO2 exposure at ages 9-10 years moderates age-related changes in internalizing and externalizing behaviors over a 2-year follow-up period in a large, nationwide U.S. sample of participants from the Adolescent Brain Cognitive Development (ABCD) Study®. Air pollution exposure was estimated based on the residential address of each participant using an ensemble-based modeling approach. Caregivers answered questions from the Child Behavior Checklist (CBCL) at the baseline, 1-year follow-up, and 2-year follow-up visits, for a total of 3 waves of data; from the CBCL we obtained scores on internalizing and externalizing problems plus 5 syndrome scales (anxious/depressed, withdrawn/depressed, rule-breaking behavior, aggressive behavior, and attention problems). Zero-inflated negative binomial models were used to examine both the main effect of age as well as the interaction of age with each pollutant on behavior while adjusting for various socioeconomic and demographic characteristics. Against our hypothesis, there was no evidence that greater air pollution exposure was related to more behavioral problems with age over time.
Collapse
Affiliation(s)
- Claire E Campbell
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089-2520, USA
| | - Devyn L Cotter
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089-2520, USA
| | - Katherine L Bottenhorn
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA; Department of Psychology, Florida International University, Miami, FL, USA
| | - Elisabeth Burnor
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Hedyeh Ahmadi
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - W James Gauderman
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Carlos Cardenas-Iniguez
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Daniel Hackman
- Suzanne Dworak-Peck School of Social Work, University of Southern California, Los Angeles, CA, 90089, USA
| | - Rob McConnell
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Kiros Berhane
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Jiu-Chiuan Chen
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA; Department of Neurology, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90063, USA
| | - Megan M Herting
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA; Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA.
| |
Collapse
|
24
|
Zhang J, Chen Z, Shan D, Wu Y, Zhao Y, Li C, Shu Y, Linghu X, Wang B. Adverse effects of exposure to fine particles and ultrafine particles in the environment on different organs of organisms. J Environ Sci (China) 2024; 135:449-473. [PMID: 37778818 DOI: 10.1016/j.jes.2022.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 10/03/2023]
Abstract
Particulate pollution is a global risk factor that seriously threatens human health. Fine particles (FPs) and ultrafine particles (UFPs) have small particle diameters and large specific surface areas, which can easily adsorb metals, microorganisms and other pollutants. FPs and UFPs can enter the human body in multiple ways and can be easily and quickly absorbed by the cells, tissues and organs. In the body, the particles can induce oxidative stress, inflammatory response and apoptosis, furthermore causing great adverse effects. Epidemiological studies mainly take the population as the research object to study the distribution of diseases and health conditions in a specific population and to focus on the identification of influencing factors. However, the mechanism by which a substance harms the health of organisms is mainly demonstrated through toxicological studies. Combining epidemiological studies with toxicological studies will provide a more systematic and comprehensive understanding of the impact of PM on the health of organisms. In this review, the sources, compositions, and morphologies of FPs and UFPs are briefly introduced in the first part. The effects and action mechanisms of exposure to FPs and UFPs on the heart, lungs, brain, liver, spleen, kidneys, pancreas, gastrointestinal tract, joints and reproductive system are systematically summarized. In addition, challenges are further pointed out at the end of the paper. This work provides useful theoretical guidance and a strong experimental foundation for investigating and preventing the adverse effects of FPs and UFPs on human health.
Collapse
Affiliation(s)
- Jianwei Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Zhao Chen
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Dan Shan
- Department of Medical, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, China
| | - Yang Wu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Yue Zhao
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Chen Li
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; National Demonstration Center for Experimental Preventive Medicine Education (Tianjin Medical University), Tianjin 300070, China
| | - Yue Shu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Xiaoyu Linghu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Baiqi Wang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; National Demonstration Center for Experimental Preventive Medicine Education (Tianjin Medical University), Tianjin 300070, China.
| |
Collapse
|
25
|
Backhouse EV, Bauermeister S, Wardlaw JM. Lifetime influences on imaging markers of adverse brain health and vascular disease. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2023; 6:100194. [PMID: 38292018 PMCID: PMC10827485 DOI: 10.1016/j.cccb.2023.100194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/13/2023] [Accepted: 12/11/2023] [Indexed: 02/01/2024]
Abstract
Cerebral small vessel disease (cSVD) is highly prevalent in the general population, increases with age and vascular risk factor exposure, and is a common cause of stroke and dementia. There is great variation in cSVD burden experienced in older age, and maintaining brain health across the life course requires looking beyond an individual's current clinical status and traditional vascular risk factors. Of particular importance are social determinants of health which can be more important than healthcare or lifestyle choices in influencing later life health outcomes, including brain health. In this paper we discuss the social determinants of cerebrovascular disease, focusing on the impact of socioeconomic status on markers of cSVD. We outline the potential mechanisms behind these associations, including early life exposures, health behaviours and brain reserve and maintenance, and we highlight the importance of public health interventions to address the key determinants and risk factors for cSVD from early life stages.
Collapse
Affiliation(s)
- Ellen V Backhouse
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
- MRC UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Sarah Bauermeister
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
- MRC UK Dementia Research Institute, University of Oxford, Oxford OX3 7JX, UK
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
- MRC UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
26
|
Pandipati S, Leong M, Basu R, Abel D, Hayer S, Conry J. Climate change: Overview of risks to pregnant persons and their offspring. Semin Perinatol 2023; 47:151836. [PMID: 37863676 DOI: 10.1016/j.semperi.2023.151836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Climate change is one of the greatest challenges confronting humanity. Pregnant persons, their unborn children, and offspring are particularly vulnerable, as evidenced by adverse perinatal outcomes and increased rates of childhood illnesses. Environmental inequities compound the problem of maternal health inequities, and have given rise to the environmental justice movement. The International Federation of Gynecology and Obstetrics and other major medical societies have worked to heighten awareness and address the deleterious health effects of climate change and toxic environmental exposures. As part of routine prenatal, neonatal, and pediatric care, neonatal-perinatal care providers should incorporate discussions with their patients and families on potential harms and also identify actions to mitigate climate change effects on their health. This article provides clinicians with an overview of how climate change affects their patients, practical guidance in caring for them, and a frame setting of the articles to follow. Clinicians have a critical role to play, and the time to act is now.
Collapse
Affiliation(s)
- Santosh Pandipati
- Maternal-Fetal Medicine, Obstetrix of San Jose, e-Lōvu Health, United States.
| | - Melanie Leong
- Attending Neonatologist, Neonatal ECMO Services, The Regional Neonatal Center of Maria Fareri Children's Hospital at Westchester Medical Center, New York Medical College, United States; Assistant Professor of Pediatrics, New York Medical College, United States
| | - Rupa Basu
- Air and Climate Epidemiology Section, Office of Environmental Health Hazard Assessment, California EPA, United States
| | - David Abel
- Maternal-Fetal Medicine, Oregon Health Sciences University, United States
| | - Sarena Hayer
- Obstetrics & Gynecology, Oregon Health Sciences University, United States
| | - Jeanne Conry
- International Federation of Gynecology and Obstetrics, United States
| |
Collapse
|
27
|
Baranyi G, Williamson L, Feng Z, Tomlinson S, Vieno M, Dibben C. Early life PM 2.5 exposure, childhood cognitive ability and mortality between age 11 and 86: A record-linkage life-course study from Scotland. ENVIRONMENTAL RESEARCH 2023; 238:117021. [PMID: 37659643 DOI: 10.1016/j.envres.2023.117021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/04/2023]
Abstract
BACKGROUND Living in areas with high air pollution concentrations is associated with all-cause and cause-specific mortality. Exposure in sensitive developmental periods might be long-lasting but studies with very long follow-up are rare, and mediating pathways between early life exposure and life-course mortality are not fully understood. METHODS Data were drawn from the Scottish Longitudinal Study Birth Cohort of 1936, a representative record-linkage study comprising 5% of the Scottish population born in 1936. Participants had valid age 11 cognitive ability test scores along with linked mortality data until age 86. Fine particle (PM2.5) concentrations estimated with the EMEP4UK atmospheric chemistry transport model were linked to participants' residential address derived from the National Identity Register in 1939 (age 3). Confounder-adjusted Cox regression estimated associations between PM2.5 and mortality; regression-based causal mediation analysis explored mediation through childhood cognitive ability. RESULTS The final sample consisted of 2734 individuals with 1608 deaths registered during the 1,833,517 person-months at risk follow-up time. Higher early life PM2.5 exposure increased the risk of all-cause mortality (HR = 1.03, 95% CI: 1.01-1.04 per 10 μg m-3 increment), associations were stronger for mortality between age 65 and 86. PM2.5 increased the risk of cancer-related mortality (HR = 1.05, 95% CI: 1.02-1.08), especially for lung cancer among females (HR = 1.11, 95% CI: 1.02-1.21), but not for cardiovascular and respiratory diseases. Higher PM2.5 in early life (≥50 μg m-3) was associated with lower childhood cognitive ability, which, in turn, increased the risk of all-cause mortality and mediated 25% of the total associations. CONCLUSIONS In our life-course study with 75-year of continuous mortality records, we found that exposure to air pollution in early life was associated with higher mortality in late adulthood, and that childhood cognitive ability partly mediated this relationship. Findings suggest that past air pollution concentrations will likely impact health and longevity for decades to come.
Collapse
Affiliation(s)
- Gergő Baranyi
- Centre for Research on Environment, Society and Health, School of Geosciences, The University of Edinburgh, Edinburgh, UK.
| | - Lee Williamson
- Centre for Research on Environment, Society and Health, School of Geosciences, The University of Edinburgh, Edinburgh, UK; Longitudinal Studies Centre - Scotland, School of GeoSciences, The University of Edinburgh, Edinburgh, UK
| | - Zhiqiang Feng
- Centre for Research on Environment, Society and Health, School of Geosciences, The University of Edinburgh, Edinburgh, UK
| | - Sam Tomlinson
- UK Centre for Ecology & Hydrology, Library Ave, Bailrigg, Lancaster, UK
| | - Massimo Vieno
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, UK
| | - Chris Dibben
- Centre for Research on Environment, Society and Health, School of Geosciences, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
28
|
Tokuda N, Ishikawa R, Yoda Y, Araki S, Shimadera H, Shima M. Association of air pollution exposure during pregnancy and early childhood with children's cognitive performance and behavior at age six. ENVIRONMENTAL RESEARCH 2023; 236:116733. [PMID: 37507042 DOI: 10.1016/j.envres.2023.116733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND The impact of air pollution on neurodevelopment in children has attracted much attention in recent times. We aim to clarify the association between prenatal and postnatal air pollutant exposure and children's cognitive performance and behavior at age six. METHODS This study was conducted based on a birth cohort study in Japan. Children's intelligence quotient (IQ) was assessed using the Wechsler Intelligence Scale for Children and a score <85 was deemed as low intelligence. A score ≥60 on the Child Behavior Checklist indicated behavioral problems. Exposure to outdoor fine particulate matter (PM2.5) during pregnancy and early childhood was estimated using a spatiotemporal model, while indoor concentrations of air pollutants inside subjects' homes were measured for a week when the child was of ages 1.5 and 3. The associations of exposure to air pollution during pregnancy and after childbirth with cognitive performance and behavior were analyzed using logistic regression models. RESULTS The estimated exposure to outdoor PM2.5 during pregnancy and early childhood was not associated with decreased cognitive performance. However, exposure during the first trimester, 0-1 and 3-5 years of age was associated with children's externalizing problems (odds ratios (ORs) were 2.77 [95% confidence interval (CI): 1.05-7.29], 1.66 [95%CI: 1.05-2.62], and 1.80 [95%CI: 1.19-2.74] per interquartile range (IQR) increase, respectively). Exposure to indoor PM2.5 and coarse particles after childbirth was associated with lower full scale IQ (ORs were 1.46 [95%CI: 1.03-2.08] and 1.85 [95%CI: 1.12-3.07] per IQR increase, respectively). However, some inverse associations were also observed. CONCLUSIONS These results suggest associations between prenatal and postnatal exposure to outdoor air pollution and behavioral problems, and between indoor air pollution after childbirth and cognitive performance at age six. However, the effects of exposure to outdoor PM2.5 during pregnancy on cognitive performance were not observed.
Collapse
Affiliation(s)
- Narumi Tokuda
- Department of Public Health, School of Medicine, Hyogo Medical University, Nishinomiya, 663-8501, Japan; Hyogo Regional Center for the Japan Environment and Children's Study, Hyogo Medical University, Nishinomiya, 663-8501, Japan
| | - Rina Ishikawa
- Hyogo Regional Center for the Japan Environment and Children's Study, Hyogo Medical University, Nishinomiya, 663-8501, Japan
| | - Yoshiko Yoda
- Department of Public Health, School of Medicine, Hyogo Medical University, Nishinomiya, 663-8501, Japan
| | - Shin Araki
- Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Hikari Shimadera
- Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Masayuki Shima
- Department of Public Health, School of Medicine, Hyogo Medical University, Nishinomiya, 663-8501, Japan; Hyogo Regional Center for the Japan Environment and Children's Study, Hyogo Medical University, Nishinomiya, 663-8501, Japan.
| |
Collapse
|
29
|
Polemiti E, Hese S, Schepanski K, Yuan J, Schumann G. How does the macroenvironment influence brain and behaviour - a review of current status and future perspectives. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.09.23296785. [PMID: 37873310 PMCID: PMC10593044 DOI: 10.1101/2023.10.09.23296785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The environment influences mental health, both detrimentally and beneficially. Current research has emphasized the individual psychosocial 'microenvironment'. Less attention has been paid to 'macro-environmental' challenges including climate change, pollution, urbanicity and socioeconomic disparity. With the advent of large-scale big-data cohorts and an increasingly dense mapping of macroenvironmental parameters, we are now in a position to characterise the relation between macroenvironment, brain, and behaviour across different geographic and cultural locations globally. This review synthesises findings from recent epidemiological and neuroimaging studies, aiming to provide a comprehensive overview of the existing evidence between the macroenvironment and the structure and functions of the brain, with a particular emphasis on its implications for mental illness. We discuss putative underlying mechanisms and address the most common exposures of the macroenvironment. Finally, we identify critical areas for future research to enhance our understanding of the aetiology of mental illness and to inform effective interventions for healthier environments and mental health promotion.
Collapse
Affiliation(s)
- Elli Polemiti
- Centre of Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Clinical Neuroscience, Charité, Universitätsmedizin Berlin, Germany
| | - Soeren Hese
- Institute of Geography, Friedrich Schiller University Jena, Germany
| | | | - Jiacan Yuan
- Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences & CMA-FDU Joint Laboratory of Marine Meteorology & IRDR-ICOE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Gunter Schumann
- Centre of Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Clinical Neuroscience, Charité, Universitätsmedizin Berlin, Germany
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | | |
Collapse
|
30
|
Herting M, Cotter D, Ahmadi H, Cardenas-Iniguez C, Bottenhorn K, Gauderman WJ, McConnell R, Berhane K, Schwartz J, Hackman D, Chen JC. Sex-specific effects in how childhood exposures to multiple ambient air pollutants affect white matter microstructure development across early adolescence. RESEARCH SQUARE 2023:rs.3.rs-3213618. [PMID: 37645919 PMCID: PMC10462194 DOI: 10.21203/rs.3.rs-3213618/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Ambient air pollution is ubiquitous, yet questions remain as to how it might impact the developing brain. Large changes occur in the brain's white matter (WM) microstructure across adolescence, with noticeable differences in WM integrity in male and female youth. Here we report sex-stratified effects of fine particulate matter (PM2.5), nitrogen dioxide (NO2), and ozone (O3) on longitudinal patterns of WM microstructure from 9-13 years-old in 8,182 (49% female) participants using restriction spectrum imaging. After adjusting for key sociodemographic factors, multi-pollutant, sex-stratified models showed that one-year annual exposure to PM2.5 and NO2 was associated with higher, while O3 was associated with lower, intracellular diffusion at age 9. All three pollutants also affected trajectories of WM maturation from 9-13 years-old, with some sex-specific differences in the number and anatomical locations of tracts showing altered trajectories of intracellular diffusion. Concentrations were well-below current U.S. standards, suggesting exposure to these criteria pollutants during adolescence may have long-term consequences on brain development.
Collapse
|
31
|
Leong M, Karr CJ, Shah SI, Brumberg HL. Before the first breath: why ambient air pollution and climate change should matter to neonatal-perinatal providers. J Perinatol 2023; 43:1059-1066. [PMID: 36038659 PMCID: PMC9421104 DOI: 10.1038/s41372-022-01479-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/14/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022]
Abstract
Common outdoor air pollutants present threats to fetal and neonatal health, placing neonatal-perinatal clinical specialists in an important role for harm reduction through patient counseling and advocacy. Climate change is intertwined with air pollution and influences air quality. There is increasing evidence demonstrating the unique vulnerability in the development of adverse health consequences from exposures during the preconception, prenatal, and early postnatal periods, as well as promising indications that policies aimed at addressing these toxicants have improved birth outcomes. Advocacy by neonatal-perinatal providers articulating the potential impact of pollutants on newborns and mothers is essential to promoting improvements in air quality and reducing exposures. The goal of this review is to update neonatal-perinatal clinical specialists on the key ambient air pollutants of concern, their sources and health effects, and to outline strategies for protecting patients and communities from documented adverse health consequences.
Collapse
Affiliation(s)
- Melanie Leong
- Division of Neonatology, Maria Fareri Children's Hospital, Westchester Medical Center and Department of Pediatrics, New York Medical College, Valhalla, NY, USA.
| | - Catherine J Karr
- Departments of Pediatrics and Environmental and Occupational Health Sciences and Northwest Pediatric Environmental Health Specialty Unit, University of Washington, Seattle, WA, USA
| | - Shetal I Shah
- Division of Neonatology, Maria Fareri Children's Hospital, Westchester Medical Center and Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | - Heather L Brumberg
- Division of Neonatology, Maria Fareri Children's Hospital, Westchester Medical Center and Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
32
|
Shih P, Chiang TL, Wu CD, Shu BC, Lung FW, Guo YL. Air pollution during the perinatal period and neurodevelopment in children: A national population study in Taiwan. Dev Med Child Neurol 2023; 65:783-791. [PMID: 36349526 DOI: 10.1111/dmcn.15430] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/11/2022]
Abstract
AIM To evaluate the association between ambient particulate matter no larger than 2.5 μm in diameter (PM2.5 ) during the prenatal and postnatal periods and infant neurodevelopmental parameters. METHOD We conducted a population-based birth cohort study using the Taiwan Birth Cohort Study. Participants were assessed for developmental conditions through home interviews at 6 months and 18 months of age. Exposure to PM2.5 of mothers and infants during perinatal periods was estimated using hybrid kriging/land-use regression. The exposure was linked to each participant by home address. Logistic regression was then conducted to determine the risk of neurodevelopmental delay in relation to PM2.5 . RESULTS A total of 17 683 term singletons without congenital malformations were included in the final analysis. PM2.5 during the second trimester was associated with increased risks of delays in gross motor neurodevelopmental milestones (adjusted odds ratio [aOR] 1.09 per 10 μg/m3 increase in exposure to PM2.5 ). Delayed fine motor development was also found to be related to exposure to PM2.5 in the second and third trimesters (aOR 1.06), as was personal-social skill (aOR 1.11 for the second trimester and 1.06 for the third). These neurodevelopmental parameters were unrelated to postnatal PM2.5 exposure. INTERPRETATION Exposure to ambient PM2.5 during pregnancy was significantly related to delay in gross motor, fine motor, and personal-social development in this population-based study. WHAT THIS PAPER ADDS Prenatal exposure to higher PM2.5 was associated with increased risk of delayed early neurodevelopment. The critical period for delayed gross motor development was the second trimester. The critical period for fine motor and personal-social development was the second and third trimesters.
Collapse
Affiliation(s)
- Ping Shih
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Environmental and Occupational Medicine, National Taiwan University, Taipei, Taiwan
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Tung-Liang Chiang
- Institute of Health Policy and Management, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Chih-Da Wu
- Department of Geomatics, National Cheng Kung University, Tainan, Taiwan
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Bih-Ching Shu
- Institute of Allied Health Sciences, Department of Nursing, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - For-Wey Lung
- Calo Psychiatric Center, Pingtung, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
| | - Yue Leon Guo
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Environmental and Occupational Medicine, National Taiwan University, Taipei, Taiwan
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
33
|
Campbell CE, Cotter DL, Bottenhorn KL, Burnor E, Ahmadi H, Gauderman WJ, Cardenas-Iniguez C, Hackman D, McConnell R, Berhane K, Schwartz J, Chen JC, Herting MM. Air pollution and emotional behavior in adolescents across the U.S. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.19.23288834. [PMID: 37162908 PMCID: PMC10168412 DOI: 10.1101/2023.04.19.23288834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Recent studies have linked air pollution to increased risk for behavioral problems during development, albeit with inconsistent findings. Additional longitudinal studies are needed that consider how emotional behaviors may be affected when exposure coincides with the transition to adolescence - a vulnerable time for developing mental health difficulties. This study examines how annual average PM2.5 and NO2 exposure at ages 9-10 years relates to internalizing and externalizing behaviors over a 2-year follow-up period in a large, nationwide U.S. sample of participants from the Adolescent Brain Cognitive Development (ABCD) Study®. Air pollution exposure was estimated based on the residential address of each participant using an ensemble-based modeling approach. Caregivers answered questions from the Child Behavior Checklist (CBCL) at baseline and annually for two follow-up sessions for a total of 3 waves of data; from the CBCL we obtained scores on internalizing and externalizing problems plus 5 syndrome scales (anxious/depressed, withdrawn/depressed, rule-breaking behavior, aggressive behavior, and attention problems). Zero-inflated negative binomial models were used to examine both the main effect of age as well as the interaction of age with each pollutant on behavior while adjusting for various socioeconomic and demographic characteristics. Overall, the pollution effects moderated the main effects of age with higher levels of PM2.5 and NO2 leading to an even greater likelihood of having no behavioral problems (i.e., score of zero) with age over time, as well as fewer problems when problems are present as the child ages. Albeit this was on the order equal to or less than a 1-point change. Thus, one year of annual exposure at 9-10 years is linked with very small change in emotional behaviors in early adolescence, which may be of little clinical relevance.
Collapse
Affiliation(s)
- Claire E Campbell
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, USA 90089-2520
| | - Devyn L Cotter
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, USA 90089-2520
| | - Katherine L Bottenhorn
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
- Department of Psychology, Florida International University, Miami, FL, USA
| | - Elisabeth Burnor
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Hedyeh Ahmadi
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - W James Gauderman
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Carlos Cardenas-Iniguez
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Daniel Hackman
- Suzanne Dworak-Peck School of Social Work, University of Southern California, Los Angeles, CA 90089
| | - Rob McConnell
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Kiros Berhane
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Jiu-Chiuan Chen
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
- Department of Neurology, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
| | - Megan M Herting
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
- Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| |
Collapse
|
34
|
Wiegersma AM, Boots A, Langendam MW, Limpens J, Shenkin SD, Korosi A, Roseboom TJ, de Rooij SR. Do prenatal factors shape the risk for dementia?: A systematic review of the epidemiological evidence for the prenatal origins of dementia. Soc Psychiatry Psychiatr Epidemiol 2023:10.1007/s00127-023-02471-7. [PMID: 37029828 DOI: 10.1007/s00127-023-02471-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 03/30/2023] [Indexed: 04/09/2023]
Abstract
PURPOSE Prenatal factors such as maternal stress, infection and nutrition affect fetal brain development and may also influence later risk for dementia. The purpose of this systematic review was to provide an overview of all studies which investigated the association between prenatal factors and later risk for dementia. METHODS We systematically searched MEDLINE and Embase for original human studies reporting on associations between prenatal factors and dementia from inception to 23 November 2022. Prenatal factors could be any factor assessed during pregnancy, at birth or postnatally, provided they were indicative of a prenatal exposure. Risk of bias was assessed using the Newcastle Ottawa Scale. We followed PRISMA guidelines for reporting. RESULTS A total of 68 studies met eligibility criteria (including millions of individuals), assessing maternal age (N = 30), paternal age (N = 22), birth order (N = 15), season of birth (N = 16), place of birth (N = 13), prenatal influenza pandemic (N = 1) or Chinese famine exposure (N = 1), birth characteristics (N = 3) and prenatal hormone exposure (N = 4). We observed consistent results for birth in a generally less optimal environment (e.g. high infant mortality area) being associated with higher dementia risk. Lower and higher birth weight and prenatal famine exposure were associated with higher dementia risk. The studies on season of birth, digit ratio, prenatal influenza pandemic exposure, parental age and birth order showed inconsistent results and were hampered by relatively high risk of bias. CONCLUSION Our findings suggest that some prenatal factors, especially those related to a suboptimal prenatal environment, are associated with an increased dementia risk. As these associations may be confounded by factors such as parental socioeconomic status, more research is needed to examine the potential causal role of the prenatal environment in dementia.
Collapse
Affiliation(s)
- Aline Marileen Wiegersma
- Epidemiology and Data Science, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.
- Amsterdam Public Health Research Institute, Aging & Later Life, Health Behaviors & Chronic Diseases, Amsterdam, The Netherlands.
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands.
| | - Amber Boots
- Epidemiology and Data Science, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Aging & Later Life, Health Behaviors & Chronic Diseases, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
| | - Miranda W Langendam
- Epidemiology and Data Science, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Methodology, Amsterdam, The Netherlands
| | - Jacqueline Limpens
- Medical Library, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Susan D Shenkin
- Geriatric Medicine, Usher Institute, University of Edinburgh, Edinburgh, Scotland, UK
| | - Aniko Korosi
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Tessa J Roseboom
- Epidemiology and Data Science, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Obstetrics and Gynaecology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Aging & Later Life, Health Behaviors & Chronic Diseases, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
| | - Susanne R de Rooij
- Epidemiology and Data Science, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Aging & Later Life, Health Behaviors & Chronic Diseases, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
| |
Collapse
|
35
|
Bos B, Barratt B, Batalle D, Gale-Grant O, Hughes EJ, Beevers S, Cordero-Grande L, Price AN, Hutter J, Hajnal JV, Kelly FJ, David Edwards A, Counsell SJ. Prenatal exposure to air pollution is associated with structural changes in the neonatal brain. ENVIRONMENT INTERNATIONAL 2023; 174:107921. [PMID: 37058974 PMCID: PMC10410199 DOI: 10.1016/j.envint.2023.107921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Prenatal exposure to air pollution is associated with adverse neurologic consequences in childhood. However, the relationship between in utero exposure to air pollution and neonatal brain development is unclear. METHODS We modelled maternal exposure to nitrogen dioxide (NO2) and particulate matter (PM2.5 and PM10) at postcode level between date of conception to date of birth and studied the effect of prenatal air pollution exposure on neonatal brain morphology in 469 (207 male) healthy neonates, with gestational age of ≥36 weeks. Infants underwent MR neuroimaging at 3 Tesla at 41.29 (36.71-45.14) weeks post-menstrual age (PMA) as part of the developing human connectome project (dHCP). Single pollutant linear regression and canonical correlation analysis (CCA) were performed to assess the relationship between air pollution and brain morphology, adjusting for confounders and correcting for false discovery rate. RESULTS Higher exposure to PM10 and lower exposure to NO2 was strongly canonically correlated to a larger relative ventricular volume, and moderately associated with larger relative size of the cerebellum. Modest associations were detected with higher exposure to PM10 and lower exposure to NO2 and smaller relative cortical grey matter and amygdala and hippocampus, and larger relaive brainstem and extracerebral CSF volume. No associations were found with white matter or deep grey nuclei volume. CONCLUSIONS Our findings show that prenatal exposure to air pollution is associated with altered brain morphometry in the neonatal period, albeit with opposing results for NO2 and PM10. This finding provides further evidence that reducing levels of maternal exposure to particulate matter during pregnancy should be a public health priority and highlights the importance of understanding the impacts of air pollution on this critical development window.
Collapse
Affiliation(s)
- Brendan Bos
- MRC Centre for Environment and Health, Imperial College London, UK
| | - Ben Barratt
- MRC Centre for Environment and Health, Imperial College London, UK
| | - Dafnis Batalle
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK; Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Oliver Gale-Grant
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK; Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Emer J Hughes
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Sean Beevers
- MRC Centre for Environment and Health, Imperial College London, UK
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK; Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid and CIBER-BBN, Madrid, Spain
| | - Anthony N Price
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Jana Hutter
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Frank J Kelly
- MRC Centre for Environment and Health, Imperial College London, UK
| | - A David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK.
| |
Collapse
|
36
|
Sukumaran K, Cardenas-Iniguez C, Burnor E, Bottenhorn KL, Hackman DA, McConnell R, Berhane K, Schwartz J, Chen JC, Herting MM. Ambient fine particulate exposure and subcortical gray matter microarchitecture in 9- and 10-year-old children across the United States. iScience 2023; 26:106087. [PMID: 36915692 PMCID: PMC10006642 DOI: 10.1016/j.isci.2023.106087] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/16/2022] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
Neuroimaging studies showing the adverse effects of air pollution on neurodevelopment have largely focused on smaller samples from limited geographical locations and have implemented univariant approaches to assess exposure and brain macrostructure. Herein, we implement restriction spectrum imaging and a multivariate approach to examine how one year of annual exposure to daily fine particulate matter (PM2.5), daily nitrogen dioxide (NO2), and 8-h maximum ozone (O3) at ages 9-10 years relates to subcortical gray matter microarchitecture in a geographically diverse subsample of children from the Adolescent Brain Cognitive Development (ABCD) Study℠. Adjusting for confounders, we identified a latent variable representing 66% of the variance between one year of air pollution and subcortical gray matter microarchitecture. PM2.5 was related to greater isotropic intracellular diffusion in the thalamus, brainstem, and accumbens, which related to cognition and internalizing symptoms. These findings may be indicative of previously identified air pollution-related risk for neuroinflammation and early neurodegenerative pathologies.
Collapse
Affiliation(s)
- Kirthana Sukumaran
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
| | - Carlos Cardenas-Iniguez
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
| | - Elisabeth Burnor
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
| | - Katherine L. Bottenhorn
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
- Department of Psychology, Florida International University, Miami, FL 33199, USA
| | - Daniel A. Hackman
- Suzanne Dworak-Peck School of Social Work, University of Southern California, Los Angeles, CA 90089, USA
| | - Rob McConnell
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
| | - Kiros Berhane
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Jiu-Chiuan Chen
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
- Department of Neurology, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
| | - Megan M. Herting
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
- Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| |
Collapse
|
37
|
Abstract
Air pollution is a complex mixture of gases and particulate matter, with adsorbed organic and inorganic contaminants, to which exposure is lifelong. Epidemiological studies increasingly associate air pollution with multiple neurodevelopmental disorders and neurodegenerative diseases, findings supported by experimental animal models. This breadth of neurotoxicity across these central nervous system diseases and disorders likely reflects shared vulnerability of their inflammatory and oxidative stress-based mechanisms and a corresponding ability to produce brain metal dyshomeo-stasis. Future research to define the responsible contaminants of air pollution underlying this neurotoxicity is critical to understanding mechanisms of these diseases and disorders and protecting public health.
Collapse
Affiliation(s)
- Deborah A Cory-Slechta
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA;
| | - Alyssa Merrill
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA;
| | - Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA;
| |
Collapse
|
38
|
Wylie AC, Short SJ. Environmental Toxicants and the Developing Brain. Biol Psychiatry 2023; 93:921-933. [PMID: 36906498 DOI: 10.1016/j.biopsych.2023.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Early life represents the most rapid and foundational period of brain development and a time of vulnerability to environmental insults. Evidence indicates that greater exposure to ubiquitous toxicants like fine particulate matter (PM2.5), manganese, and many phthalates is associated with altered developmental, physical health, and mental health trajectories across the lifespan. Whereas animal models offer evidence of their mechanistic effects on neurological development, there is little research that evaluates how these environmental toxicants are associated with human neurodevelopment using neuroimaging measures in infant and pediatric populations. This review provides an overview of 3 environmental toxicants of interest in neurodevelopment that are prevalent worldwide in the air, soil, food, water, and/or products of everyday life: fine particulate matter (PM2.5), manganese, and phthalates. We summarize mechanistic evidence from animal models for their roles in neurodevelopment, highlight prior research that has examined these toxicants with pediatric developmental and psychiatric outcomes, and provide a narrative review of the limited number of studies that have examined these toxicants using neuroimaging with pediatric populations. We conclude with a discussion of suggested directions that will move this field forward, including the incorporation of environmental toxicant assessment in large, longitudinal, multimodal neuroimaging studies; the use of multidimensional data analysis strategies; and the importance of studying the combined effects of environmental and psychosocial stressors and buffers on neurodevelopment. Collectively, these strategies will improve ecological validity and our understanding of how environmental toxicants affect long-term sequelae via alterations to brain structure and function.
Collapse
Affiliation(s)
- Amanda C Wylie
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Frank Porter Graham Child Development Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Sarah J Short
- Department of Educational Psychology, University of Wisconsin-Madison, Madison, Wisconsin; Center for Health Minds, University of Wisconsin-Madison, Madison, Wisconsin.
| |
Collapse
|
39
|
Wiegersma AM, Boots A, Roseboom TJ, de Rooij SR. Exposure to the Dutch Famine in Early Gestation and Cognitive Function and Decline in Older Age. Nutrients 2023; 15:nu15020293. [PMID: 36678168 PMCID: PMC9867093 DOI: 10.3390/nu15020293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/30/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
People exposed to the 1944-1945 Dutch famine in early gestation performed worse on a selective attention task at age 58 and reported more cognitive problems at age 72. We here hypothesized that undernutrition in early gestation is associated with poorer cognitive functioning in older age and a higher rate of cognitive decline. We tested this hypothesis in the Dutch famine birth cohort in men and women combined and separately. We assessed cognitive function using a Stroop-like, trail-making and 15-word task (at ages 68 and 74) and the Montreal cognitive assessment as well as self-perceived cognitive problems (at age 74) in 73 men (n = 34) and women (n = 39). We compared cognitive function and decline (change in cognitive function between age 68 and 74) between those exposed in early gestation and those not exposed (born before or conceived after the famine). Although in both men and women cognitive function declined from age 68 to 74, cognitive task scores and the rate of decline did not differ between those exposed or unexposed to famine. At age 74, men exposed to famine in early gestation more often reported cognitive problems, although this was not statistically different from unexposed men (OR 3.1 [95%CI 0.7 to 13.0]). We did not find evidence of increased cognitive decline after prenatal undernutrition. Selective participation and mortality may have hampered our ability to detect potential true effects. The self-perceived cognitive problems among men who had been exposed to famine in early gestation might be an indication of future dementia risk.
Collapse
Affiliation(s)
- Aline Marileen Wiegersma
- Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Aging & Later Life, Health Behaviors & Chronic Diseases, 1007 MB Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, 1105 AZ Amsterdam, The Netherlands
- Correspondence:
| | - Amber Boots
- Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Aging & Later Life, Health Behaviors & Chronic Diseases, 1007 MB Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, 1105 AZ Amsterdam, The Netherlands
| | - Tessa J. Roseboom
- Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Aging & Later Life, Health Behaviors & Chronic Diseases, 1007 MB Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, 1105 AZ Amsterdam, The Netherlands
- Obstetrics and Gynaecology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Susanne R. de Rooij
- Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Aging & Later Life, Health Behaviors & Chronic Diseases, 1007 MB Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
40
|
Fowler CH, Bagdasarov A, Camacho NL, Reuben A, Gaffrey MS. Toxicant exposure and the developing brain: A systematic review of the structural and functional MRI literature. Neurosci Biobehav Rev 2023; 144:105006. [PMID: 36535373 PMCID: PMC9922521 DOI: 10.1016/j.neubiorev.2022.105006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 09/29/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Youth worldwide are regularly exposed to pollutants and chemicals (i.e., toxicants) that may interfere with healthy brain development, and a surge in MRI research has begun to characterize the neurobiological consequences of these exposures. Here, a systematic review following PRISMA guidelines was conducted on developmental MRI studies of toxicants with known or suspected neurobiological impact. Associations were reviewed for 9 toxicant classes, including metals, air pollution, and flame retardants. Of 1264 identified studies, 46 met inclusion criteria. Qualitative synthesis revealed that most studies: (1) investigated air pollutants or metals, (2) assessed exposures prenatally, (3) assessed the brain in late middle childhood, (4) took place in North America or Western Europe, (5) drew samples from existing cohort studies, and (6) have been published since 2017. Given substantial heterogeneity in MRI measures, toxicant measures, and age groups assessed, more research is needed on all toxicants reviewed here. Future studies should also include larger samples, employ personal exposure monitoring, study independent samples in diverse world regions, and assess toxicant mixtures.
Collapse
Affiliation(s)
| | | | | | - Aaron Reuben
- Duke University, 417 Chapel Drive, Durham, NC 27708, USA
| | | |
Collapse
|
41
|
Zundel CG, Ryan P, Brokamp C, Heeter A, Huang Y, Strawn JR, Marusak HA. Air pollution, depressive and anxiety disorders, and brain effects: A systematic review. Neurotoxicology 2022; 93:272-300. [PMID: 36280190 PMCID: PMC10015654 DOI: 10.1016/j.neuro.2022.10.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022]
Abstract
Accumulating data suggest that air pollution increases the risk of internalizing psychopathology, including anxiety and depressive disorders. Moreover, the link between air pollution and poor mental health may relate to neurostructural and neurofunctional changes. We systematically reviewed the MEDLINE database in September 2021 for original articles reporting effects of air pollution on 1) internalizing symptoms and behaviors (anxiety or depression) and 2) frontolimbic brain regions (i.e., hippocampus, amygdala, prefrontal cortex). One hundred and eleven articles on mental health (76% human, 24% animals) and 92 on brain structure and function (11% human, 86% animals) were identified. For literature search 1, the most common pollutants examined were PM2.5 (64.9%), NO2 (37.8%), and PM10 (33.3%). For literature search 2, the most common pollutants examined were PM2.5 (32.6%), O3 (26.1%) and Diesel Exhaust Particles (DEP) (26.1%). The majority of studies (73%) reported higher internalizing symptoms and behaviors with higher air pollution exposure. Air pollution was consistently associated (95% of articles reported significant findings) with neurostructural and neurofunctional effects (e.g., increased inflammation and oxidative stress, changes to neurotransmitters and neuromodulators and their metabolites) within multiple brain regions (24% of articles), or within the hippocampus (66%), PFC (7%), and amygdala (1%). For both literature searches, the most studied exposure time frames were adulthood (48% and 59% for literature searches 1 and 2, respectively) and the prenatal period (26% and 27% for literature searches 1 and 2, respectively). Forty-three percent and 29% of studies assessed more than one exposure window in literature search 1 and 2, respectively. The extant literature suggests that air pollution is associated with increased depressive and anxiety symptoms and behaviors, and alterations in brain regions implicated in risk of psychopathology. However, there are several gaps in the literature, including: limited studies examining the neural consequences of air pollution in humans. Further, a comprehensive developmental approach is needed to examine windows of susceptibility to exposure and track the emergence of psychopathology following air pollution exposure.
Collapse
Affiliation(s)
- Clara G Zundel
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA.
| | - Patrick Ryan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Cole Brokamp
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Autumm Heeter
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA.
| | - Yaoxian Huang
- Department of Civil and Environmental Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI, USA.
| | - Jeffrey R Strawn
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Anxiety Disorders Research Program, Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA.
| | - Hilary A Marusak
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA; Merrill Palmer Skillman Institute for Child and Family Development, Wayne State University, Detroit, MI, USA; Translational Neuroscience Program, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
42
|
Armas FV, D’Angiulli A. Neuroinflammation and Neurodegeneration of the Central Nervous System from Air Pollutants: A Scoping Review. TOXICS 2022; 10:666. [PMID: 36355957 PMCID: PMC9698785 DOI: 10.3390/toxics10110666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
In this scoping review, we provide a selective mapping of the global literature on the effects of air pollution on the life-span development of the central nervous system. Our synthesis first defines developmental neurotoxicants and the model effects of particulate matter. We then discuss air pollution as a test bench for neurotoxicants, including animal models, the framework of systemic inflammation in all affected organs of the body, and the cascade effects on the developing brain, with the most prevalent neurological structural and functional outcomes. Specifically, we focus on evidence on magnetic resonance imaging and neurodegenerative diseases, and the links between neuronal apoptosis and inflammation. There is evidence of a developmental continuity of outcomes and effects that can be observed from utero to aging due to severe or significant exposure to neurotoxicants. These substances alter the normal trajectory of neurological aging in a propulsive way towards a significantly higher rate of acceleration than what is expected if our atmosphere were less polluted. The major aggravating role of this neurodegenerative process is linked with the complex action of neuroinflammation. However, most recent evidence learned from research on the effects of COVID-19 lockdowns around the world suggests that a short-term drastic improvement in the air we breathe is still possible. Moreover, the study of mitohormesis and vitagenes is an emerging area of research interest in anti-inflammatory and antidegenerative therapeutics, which may have enormous promise in combatting the deleterious effects of air pollution through pharmacological and dietary interventions.
Collapse
Affiliation(s)
| | - Amedeo D’Angiulli
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
43
|
Peterson BS, Bansal R, Sawardekar S, Nati C, Elgabalawy ER, Hoepner LA, Garcia W, Hao X, Margolis A, Perera F, Rauh V. Prenatal exposure to air pollution is associated with altered brain structure, function, and metabolism in childhood. J Child Psychol Psychiatry 2022; 63:1316-1331. [PMID: 35165899 DOI: 10.1111/jcpp.13578] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND Prenatal exposure to air pollution disrupts cognitive, emotional, and behavioral development. The brain disturbances associated with prenatal air pollution are largely unknown. METHODS In this prospective cohort study, we estimated prenatal exposures to fine particulate matter (PM2.5 ) and polycyclic aromatic hydrocarbons (PAH), and then assessed their associations with measures of brain anatomy, tissue microstructure, neurometabolites, and blood flow in 332 youth, 6-14 years old. We then assessed how those brain disturbances were associated with measures of intelligence, ADHD and anxiety symptoms, and socialization. RESULTS Both exposures were associated with thinning of dorsal parietal cortices and thickening of postero-inferior and mesial wall cortices. They were associated with smaller white matter volumes, reduced organization in white matter of the internal capsule and frontal lobe, higher metabolite concentrations in frontal cortex, reduced cortical blood flow, and greater microstructural organization in subcortical gray matter nuclei. Associations were stronger for PM2.5 in boys and PAH in girls. Youth with low exposure accounted for most significant associations of ADHD, anxiety, socialization, and intelligence measures with cortical thickness and white matter volumes, whereas it appears that high exposures generally disrupted these neurotypical brain-behavior associations, likely because strong exposure-related effects increased the variances of these brain measures. CONCLUSIONS The commonality of effects across exposures suggests PM2.5 and PAH disrupt brain development through one or more common molecular pathways, such as inflammation or oxidative stress. Progressively higher exposures were associated with greater disruptions in local volumes, tissue organization, metabolite concentrations, and blood flow throughout cortical and subcortical brain regions and the white matter pathways interconnecting them. Together these affected regions comprise cortico-striato-thalamo-cortical circuits, which support the regulation of thought, emotion, and behavior.
Collapse
Affiliation(s)
- Bradley S Peterson
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA.,Department of Psychiatry, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Ravi Bansal
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA.,Department of Pediatrics, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Siddhant Sawardekar
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Carlo Nati
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Eman R Elgabalawy
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Lori A Hoepner
- Department of Environmental and Occupational Health Sciences, SUNY Downstate School of Public Health, Brooklyn, NY, USA
| | - Wanda Garcia
- Heilbrunn Department of Population and Family Health, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Xuejun Hao
- Department of Psychiatry, Columbia Presbyterian Medical Center & New York State Psychiatric Institute, New York, NY, USA
| | - Amy Margolis
- Department of Psychiatry, Columbia Presbyterian Medical Center & New York State Psychiatric Institute, New York, NY, USA
| | - Frederica Perera
- Columbia Center for Children's Environmental Health, New York, NY, USA.,Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Virginia Rauh
- Heilbrunn Department of Population and Family Health, Mailman School of Public Health, Columbia University, New York, NY, USA.,Columbia Center for Children's Environmental Health, New York, NY, USA
| |
Collapse
|
44
|
Xie M, Zhao Z, Dai M, Wu Y, Huang Y, Liu Y, Tang Y, Xiao L, Wei W, Zhang G, Du X, Li C, Guo W, Ma X, Deng W, Wang Q, Li T. Associations between urban birth or childhood trauma and first-episode schizophrenia mediated by low IQ. SCHIZOPHRENIA 2022; 8:89. [PMID: 36309513 PMCID: PMC9617944 DOI: 10.1038/s41537-022-00289-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/17/2022] [Indexed: 11/09/2022]
Abstract
Exposure to urban birth, childhood trauma, and lower Intelligence Quotient (IQ) were the most well-established risk factors for schizophrenia in developed countries. In developing countries, whether urban birth is a risk factor for schizophrenia and how these factors are related to one another remain unclear. This study aimed to investigate whether IQ mediates the relationship between urban birth or childhood trauma and first-episode schizophrenia (FES) in China. Birthplace, childhood trauma questionnaire (CTQ), and IQ were collected from 144 patients with FES and 256 healthy controls (HCs). Hierarchical logistic regression analysis was conducted to investigate the associations between birthplace, childhood trauma, IQ, and FES. Furthermore, mediation analysis was used to explore the mediation of IQ in the relationship between birthplace or childhood trauma and FES. After adjusting for age, sex and educational attainment, the final model identified urban birth (odds ratio (OR) = 3.15, 95% CI = 1.54, 6.44) and childhood trauma (OR = 2.79, 95% CI = 1.92, 4.06) were associated an elevated risk for FES. The 52.94% total effect of birthplace on the risk of FES could be offset by IQ (indirect effect/direct effect). The association between childhood trauma and FES could be partly explained by IQ (22.5%). In total, the mediation model explained 70.5% of the total variance in FES. Our study provides evidence that urban birth and childhood trauma are associated with an increased risk of FES. Furthermore, IQ mediates the relationship between urban birth or childhood trauma and FES.
Collapse
Affiliation(s)
- Min Xie
- grid.412901.f0000 0004 1770 1022Mental Health Center, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan China
| | - Zhengyang Zhao
- grid.412901.f0000 0004 1770 1022Mental Health Center, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan China
| | - Minhan Dai
- grid.412901.f0000 0004 1770 1022Mental Health Center, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan China
| | - Yulu Wu
- grid.412901.f0000 0004 1770 1022Mental Health Center, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan China
| | - Yunqi Huang
- grid.412901.f0000 0004 1770 1022Mental Health Center, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan China
| | - Yunjia Liu
- grid.412901.f0000 0004 1770 1022Mental Health Center, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan China
| | - Yiguo Tang
- grid.412901.f0000 0004 1770 1022Mental Health Center, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan China
| | - Liling Xiao
- grid.412901.f0000 0004 1770 1022Mental Health Center, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan China
| | - Wei Wei
- grid.412901.f0000 0004 1770 1022Mental Health Center, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan China
| | - Guangya Zhang
- grid.263761.70000 0001 0198 0694Department of Psychiatry, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Xiangdong Du
- grid.263761.70000 0001 0198 0694Department of Psychiatry, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Chuanwei Li
- grid.263761.70000 0001 0198 0694Department of Psychiatry, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Wanjun Guo
- grid.13402.340000 0004 1759 700XAffiliated Mental Health Centre & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, 310013 Hangzhou, Zhejiang China
| | - Xiaohong Ma
- grid.412901.f0000 0004 1770 1022Mental Health Center, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan China
| | - Wei Deng
- grid.13402.340000 0004 1759 700XAffiliated Mental Health Centre & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, 310013 Hangzhou, Zhejiang China
| | - Qiang Wang
- grid.412901.f0000 0004 1770 1022Mental Health Center, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan China
| | - Tao Li
- grid.13402.340000 0004 1759 700XAffiliated Mental Health Centre & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, 310013 Hangzhou, Zhejiang China
| |
Collapse
|
45
|
Li N, Song Q, Su W, Guo X, Wang H, Liang Q, Liang M, Qu G, Ding X, Zhou X, Sun Y. Exposure to indoor air pollution from solid fuel and its effect on depression: a systematic review and meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:49553-49567. [PMID: 35593981 DOI: 10.1007/s11356-022-20841-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
A growing body of research has investigated the relationship between indoor air pollution from solid fuel and depression risk. Our study aimed to elucidate the relationship between indoor air pollution from solid fuel and depression in observational studies. The effect of indoor air pollution on depression was estimated using pooled odds ratios (ORs) with 95% confidence intervals (CIs). Heterogeneity was evaluated by the I-squared value (I2), and the random-effects model was adopted as the summary method. We finalized nine articles with 70,214 subjects. The results showed a statistically positive relationship between the use of household solid fuel and depression (OR = 1.22, 95% CI = 1.09-1.36). Subgroup analysis based on fuel type groups demonstrated that indoor air pollution from solid fuel was a higher risk to depression (OR = 1.24, 95% CI = 1. 10-1.39; I2 = 67.0%) than that from biomass (OR = 1.18, 95% CI = 0.96-1.45; I2 = 66.5%). In terms of fuel use, the use of solid fuel for cooking and heating increased depression risk, and the pooled ORs were 1.21 (95% CI = 1.08-1.36) and 1.23 (95% CI = 1.13-1.34). Exposure to indoor air pollution from solid fuel might increase depression risk.
Collapse
Affiliation(s)
- Ning Li
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Qiuxia Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Wanying Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Xianwei Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Hao Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Qiwei Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
- Anhui Provincial Children's Hospital/Children's Hospital of Anhui Medical University, Hefei, 230051, People's Republic of China
| | - Mingming Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Guangbo Qu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Xiuxiu Ding
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Xiaoqin Zhou
- Chaohu Hospital, Anhui Medical University, Hefei, 238000, Anhui, People's Republic of China
| | - Yehuan Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China.
- Chaohu Hospital, Anhui Medical University, Hefei, 238000, Anhui, People's Republic of China.
- Center for Evidence-Based Practice, Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China.
| |
Collapse
|
46
|
Lo CC, Liu WT, Lu YH, Wu D, Wu CD, Chen TC, Fang YT, Lo YC, Chen YY, Kang L, Tsai CY, Lee YL, Chuang KJ, Ho KF, Chang TY, Chuang HC. Air pollution associated with cognitive decline by the mediating effects of sleep cycle disruption and changes in brain structure in adults. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:52355-52366. [PMID: 35258725 DOI: 10.1007/s11356-022-19482-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
The effects of air pollution on sleep and dementia remain unclear. The objective of this study was to investigate the effects of air pollution on cognitive function as mediated by the sleep cycle. A cross-sectional study design was conducted to recruit 4866 subjects on which PSG had been performed. Fifty of them were further given a cognitive function evaluation by the MMSE and CASI as well as brain images by CT and MRI. Associations of 1-year air pollution parameters with sleep parameters, cognitive function, and brain structure were examined. We observed that O3 was associated with a decrease in arousal, an increase in the N1 stage, and a decrease in the N2 stage of sleep. NO2 was associated with an increase in the N1 stage, a decrease in the N2 stage, and an increase in REM. PM2.5 was associated with a decrease in the N1 stage, increases in the N2 and N3 stages, and a decrease in REM. The N1 and N2 stages were associated with cognitive decline, but REM was associated with an increase in cognitive function. The N1 stage was a mediator of the effects of PM2.5 on the concentration domain of the MMSE. O3 was associated with an increase in the pars orbitalis volume of the left brain. NO2 was associated with increases in the rostral middle frontal volume, supramarginal gyrus volume, and transverse temporal volume of the left brain, and the pars opercularis volume of the right brain. PM2.5 was associated with increases in the pars triangularis volume of the left brain and the fusiform thickness of the right brain. In conclusion, we observed that air pollution was associated with cognitive decline by mediating effects on the sleep cycle with changes in the brain structure in controlling executive, learning, and language functions in adults.
Collapse
Affiliation(s)
- Chen-Chen Lo
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
- Sleep Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Wen-Te Liu
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
- Sleep Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Yueh-Hsun Lu
- Department of Radiology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Dean Wu
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Chih-Da Wu
- Department of Geomatics, National Cheng Kung University, Tainan, Taiwan
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Ting-Chieh Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Ting Fang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Chun Lo
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Industrial Ph.D. Program of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Lo Kang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
- Sleep Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Cheng-Yu Tsai
- Department of Civil and Environmental Engineering, Imperial College London, London, UK
| | - Yueh-Lun Lee
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kai-Jen Chuang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kin-Fai Ho
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Ta-Yuan Chang
- Department of Occupational Safety and Health, College of Public Health, China Medical University, Taichung, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
47
|
Calderón-Garcidueñas L, Ayala A. Air Pollution, Ultrafine Particles, and Your Brain: Are Combustion Nanoparticle Emissions and Engineered Nanoparticles Causing Preventable Fatal Neurodegenerative Diseases and Common Neuropsychiatric Outcomes? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6847-6856. [PMID: 35193357 DOI: 10.1021/acs.est.1c04706] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Exposure to particulate matter (PM) pollution damages the human brain. Fossil fuel burning for transportation energy accounts for a significant fraction of urban air and climate pollution. While current United States (US) standards limit PM ambient concentrations and emissions, they do not regulate explicitly ultrafine particles (UFP ≤ 100 nm in diameter). There is a growing body of evidence suggesting UFP may play a bigger role inflicting adverse health impacts than has been recognized, and in this perspective, we highlight effects on the brain, particularly of young individuals. UFP penetrate the body through nasal/olfactory, respiratory, gastrointestinal, placenta, and brain-blood barriers, translocating in the bloodstream and reaching the glymphatic and central nervous systems. We discuss one case study. The 21.8 million residents in the Metropolitan Mexico City (MMC) are regularly exposed to fine PM (PM2.5) above the US 12 μg/m3 annual average standards. Alzheimer's disease (AD), Parkinson's disease (PD), and TAR DNA-binding protein (TDP-43) pathologies and nanoparticles (NP ≤ 50 nm in diameter) in critical brain organelles have been documented in MMC children and young adult autopsies. MMC young residents have cognitive and olfaction deficits, altered gait and equilibrium, brainstem auditory evoked potentials, and sleep disorders. Higher risk of AD and vascular dementia associated with residency close to high traffic roadways have been documented. The US is not ready or prepared to adopt ambient air quality or emission standards for UFP and will continue to focus regulations only on the total mass of PM2.5 and PM10. Thus, this approach raises the question: are we dropping the ball? As research continues to answer the remaining questions about UFP sources, exposures, impacts, and controls, the precautionary principle should call us to accelerate and expand policy interventions to abate or eliminate UFP emissions and to mitigate UFP exposures. For residents of highly polluted cities, particularly in the developing world where there is likely older and dirtier vehicles, equipment, and fuels in use and less regulatory oversight, we should embark in a strong campaign to raise public awareness of the associations between high PM pollution, heavy traffic, UFP, NP, and neuropsychiatric outcomes, including dementia. Neurodegenerative diseases evolving from childhood in polluted, anthropogenic, and industrial environments ought to be preventable.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- University of Montana, Missoula, Montana 59812, United States
- Universidad del Valle de México, 14370 Mexico City, México
| | - Alberto Ayala
- Sacramento Metropolitan Air Quality Management District, Sacramento, California 95814, United States
- West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
48
|
Pérez-Crespo L, Kusters MSW, López-Vicente M, Lubczyńska MJ, Foraster M, White T, Hoek G, Tiemeier H, Muetzel RL, Guxens M. Exposure to traffic-related air pollution and noise during pregnancy and childhood, and functional brain connectivity in preadolescents. ENVIRONMENT INTERNATIONAL 2022; 164:107275. [PMID: 35580436 DOI: 10.1016/j.envint.2022.107275] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The amount of people affected by traffic-related air pollution and noise is continuously increasing, but limited research has been conducted on the association between these environmental exposures and functional brain connectivity in children. OBJECTIVE This exploratory study aimed to analyze the associations between the exposure to traffic-related air pollution and noise during pregnancy and childhood, and functional brain connectivity amongst a wide-swath of brain areas in preadolescents from 9 to 12 years of age. METHODS We used data of 2,197 children from the Generation R Study. Land use regression models were applied to estimate nitrogen oxides and particulate matter levels at participant's homes for several time periods: pregnancy, birth to 3 years, 3 to 6 years, and 6 years of age to the age at magnetic resonance imaging (MRI) assessment. Existing noise maps were used to estimate road traffic noise exposure at participant's homes for the same time periods. Resting-state functional MRI was obtained at 9-12 years of age. Pair-wise correlation coefficients of the blood-oxygen-level-dependent signals between 380 brain areas were calculated. Linear regressions were run and corrected for multiple testing. RESULTS Preadolescents exposed to higher levels of NO2, NOx, and PM2.5 absorbance, from birth to 3 years, and from 3 to 6 years of age showed higher correlation coefficients among several brain regions (e.g. from 0.16 to 0.19 higher correlation coefficient related to PM2.5 absorbance exposure, depending on the brain connection). Overall, most identified associations were between brain regions of the task positive and task negative networks, and were mainly inter-network (20 of 26). Slightly more than half of the connections were intra-hemispheric (14 of 26), predominantly in the right hemisphere. Road traffic noise was not associated with functional brain connectivity. CONCLUSIONS This exploratory study found that exposure to traffic-related air pollution during the first years of life was related to higher functional brain connectivity predominantly in brain areas located in the task positive and task negative networks, in preadolescents from 9 to 12 years of age. These results could be an indicator of differential functional connectivity in children exposed to higher levels of air pollution.
Collapse
Affiliation(s)
- Laura Pérez-Crespo
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| | - Michelle S W Kusters
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| | - Mónica López-Vicente
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands; The Generation R Study Group, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| | - Małgorzata J Lubczyńska
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Foraster
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; PHAGEX Research Group, Blanquerna School of Health Science, Universitat Ramon Lull (URL), Barcelona, Spain.
| | - Tonya White
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC Rotterdam, The Netherlands.
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands.
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands; Department of Social and Behavioral Science, Harvard T.H. Chan School of Public Health Boston, USA.
| | - Ryan L Muetzel
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| | - Mònica Guxens
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
49
|
Margolis AE, Liu R, Conceição VA, Ramphal B, Pagliaccio D, DeSerisy ML, Koe E, Selmanovic E, Raudales A, Emanet N, Quinn AE, Beebe B, Pearson BL, Herbstman JB, Rauh VA, Fifer WP, Fox NA, Champagne FA. Convergent neural correlates of prenatal exposure to air pollution and behavioral phenotypes of risk for internalizing and externalizing problems: Potential biological and cognitive pathways. Neurosci Biobehav Rev 2022; 137:104645. [PMID: 35367513 DOI: 10.1016/j.neubiorev.2022.104645] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/20/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023]
Abstract
Humans are ubiquitously exposed to neurotoxicants in air pollution, causing increased risk for psychiatric outcomes. Effects of prenatal exposure to air pollution on early emerging behavioral phenotypes that increase risk of psychopathology remain understudied. We review animal models that represent analogues of human behavioral phenotypes that are risk markers for internalizing and externalizing problems (behavioral inhibition, behavioral exuberance, irritability), and identify commonalities among the neural mechanisms underlying these behavioral phenotypes and the neural targets of three types of air pollutants (polycyclic aromatic hydrocarbons, traffic-related air pollutants, fine particulate matter < 2.5 µm). We conclude that prenatal exposure to air pollutants increases risk for behavioral inhibition and irritability through distinct mechanisms, including altered dopaminergic signaling and hippocampal morphology, neuroinflammation, and decreased brain-derived neurotrophic factor expression. Future studies should investigate these effects in human longitudinal studies incorporating complex exposure measurement methods, neuroimaging, and behavioral characterization of temperament phenotypes and neurocognitive processing to facilitate efforts aimed at improving long-lasting developmental benefits for children, particularly those living in areas with high levels of exposure.
Collapse
Affiliation(s)
- Amy E Margolis
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Ran Liu
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Vasco A Conceição
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Bruce Ramphal
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - David Pagliaccio
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Mariah L DeSerisy
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA; Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Emily Koe
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Ena Selmanovic
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Amarelis Raudales
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Nur Emanet
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Aurabelle E Quinn
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Beatrice Beebe
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Brandon L Pearson
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Julie B Herbstman
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA; Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Virginia A Rauh
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, NY, USA; Heilbrunn Department of Population & Family Health, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - William P Fifer
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Pediatrics, Columbia University Medical Center, New York, NY, USA; Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, USA
| | - Nathan A Fox
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA; Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD, USA
| | | |
Collapse
|
50
|
Margolis AE, Cohen JW, Ramphal B, Thomas L, Rauh V, Herbstman J, Pagliaccio D. Prenatal Exposure to Air Pollution and Early Life Stress Effects on Hippocampal Subregional Volumes and Associations with Visual-Spatial Reasoning. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022; 2:292-300. [PMID: 35978944 PMCID: PMC9380862 DOI: 10.1016/j.bpsgos.2022.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Children from economically distressed families and neighborhoods are at risk for stress and pollution exposure and potential neurotoxic sequelae. We examine dimensions of early-life stress affecting hippocampal volumes, how prenatal exposure to air pollution might magnify these effects, and associations between hippocampal volumes and visuospatial reasoning. Methods Fifty-three Hispanic/Latinx and/or Black children of ages 7 to 9 years were recruited from a longitudinal birth cohort for magnetic resonance imaging and cognitive assessment. Exposure to airborne polycyclic aromatic hydrocarbons was measured during the third trimester of pregnancy. Maternal report of psychosocial stress was collected at child age 5 and served as measures of early-life stress. Whole hippocampus and subfield volumes were extracted using FreeSurfer. Wechsler performance IQ measured visuospatial reasoning. Results Maternal perceived stress associated with smaller right hippocampal volume among their children (B = −0.57, t34 = −3.05, 95% CI, −0.95 to −0.19). Prenatal polycyclic aromatic hydrocarbon moderated the association between maternal perceived stress and right CA1, CA3, and CA4/dentate gyrus volumes (B ≥ 0.68, t33 ≥ 2.17) such that higher prenatal polycyclic aromatic hydrocarbon exposure magnified negative associations between stress and volume, whereas this was buffered at lower exposure. Right CA3 and CA4/dentate gyrus volumes (B ≥ 0.35, t33 > 2.16) were associated with greater performance IQ. Conclusions Prenatal and early-life exposures to chemical and social stressors are likely compounding. Socioeconomic deprivation and disparities increase risk of these exposures that exert critical neurobiological effects. Developing deeper understandings of these complex interactions will facilitate more focused public health strategies to protect and foster the development of children at greatest risk of mental and physical effects associated with poverty.
Collapse
Affiliation(s)
- Amy E. Margolis
- New York State Psychiatric Institute and Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
- Address correspondence to Amy Margolis, Ph.D.
| | - Jacob W. Cohen
- New York State Psychiatric Institute and Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Bruce Ramphal
- New York State Psychiatric Institute and Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Lauren Thomas
- New York State Psychiatric Institute and Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Virginia Rauh
- Department of Population and Family Health, Mailman School of Public Health, Columbia University, New York, New York
| | - Julie Herbstman
- Columbia Center for Children’s Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - David Pagliaccio
- New York State Psychiatric Institute and Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| |
Collapse
|