1
|
Song H, Chen SF, Si G, Bhatt K, Chen SH, Chen WJ. Removal of environmental pollutants using biochar: current status and emerging opportunities. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:384. [PMID: 39167116 DOI: 10.1007/s10653-024-02142-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024]
Abstract
In recent times, biochar has emerged as a novel approach for environmental remediation due to its exceptional adsorption capacity, attributed to its porous structure formed by the pyrolysis of biomass at elevated temperatures in oxygen-restricted conditions. This characteristic has driven its widespread use in environmental remediation to remove pollutants. When biochar is introduced into ecosystems, it usually changes the makeup of microbial communities by offering a favorable habitat. Its porous structure creates a protective environment that shields them from external pressures. Consequently, microorganisms adhering to biochar surfaces exhibit increased resilience to environmental conditions, thereby enhancing their capacity to degrade pollutants. During this process, pollutants are broken down into smaller molecules through the collaborative efforts of biochar surface groups and microorganisms. Biochar is also often used in conjunction with composting techniques to enhance compost quality by improving aeration and serving as a carrier for slow-release fertilizers. The utilization of biochar to support sustainable agricultural practices and combat environmental contamination is a prominent area of current research. This study aims to examine the beneficial impacts of biochar application on the absorption and breakdown of contaminants in environmental and agricultural settings, offering insights into its optimization for enhanced efficacy.
Collapse
Affiliation(s)
- Haoran Song
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Shao-Fang Chen
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Guiling Si
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Kalpana Bhatt
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Shao-Hua Chen
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Wen-Juan Chen
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Bertrand C, Aviron S, Pelosi C, Faburé J, Le Perchec S, Mamy L, Rault M. Effects of plant protection products on ecosystem functions provided by terrestrial invertebrates. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34534-w. [PMID: 39141266 DOI: 10.1007/s11356-024-34534-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/24/2024] [Indexed: 08/15/2024]
Abstract
Plant protection products (PPP) are extensively used to protect plants against harmful organisms, but they also have unintended effects on non-target organisms, especially terrestrial invertebrates. The impact of PPP on ecosystem functions provided by these non-target invertebrates remains, however, unclear. The objectives of this article were to review PPP impacts on the ecosystem functions provided by pollinators, predators and parasitoids, and soil organisms, and to identify the factors that aggravate or mitigate PPP effects. The literature highlights that PPP alter several ecosystem functions: provision and maintenance of biodiversity, pollination, biotic interactions and habitat completeness in terrestrial ecosystems, and organic matter and soil structure dynamics. However, there are still a few studies dealing with ecosystem functions, with sometimes contradictory results, and consequences on agricultural provisioning services remain unclear. The model organisms used to assess PPP ecotoxicological effects are still limited, and should be expanded to better cover the wide functional diversity of terrestrial invertebrates. Data are lacking on PPP sublethal, transgenerational, and "cocktail" effects, and on their multitrophic consequences. In empirical assessments, studies on PPP unintended effects should consider agricultural-pedoclimatic contexts because they influence the responses of non-target organisms and associated ecosystem functions to PPP. Modeling might be a promising way to account for the complex interactions among PPP mixtures, biodiversity, and ecosystem functioning.
Collapse
Affiliation(s)
- Colette Bertrand
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | - Stéphanie Aviron
- INRAE, Institut Agro Rennes-Angers, ESA, UMR 0980 BAGAP, 35042, Rennes, France
| | - Céline Pelosi
- UMR EMMAH, INRAE, Avignon Université, 84000, Avignon, France
| | - Juliette Faburé
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | | | - Laure Mamy
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | - Magali Rault
- Univ Avignon, Aix Marseille Univ, CNRS, IMBE, Pôle Agrosciences, 301 Rue Baruch de Spinoza, BP 21239, 84916, Avignon, IRD, France.
| |
Collapse
|
3
|
Pelosi C, Gavinelli F, Petit-Dit-Grezeriat L, Serbource C, Schoffer JT, Ginocchio R, Yáñez C, Concheri G, Rault M, van Gestel CAM. Copper toxicity to earthworms: A comprehensive review and meta-analysis. CHEMOSPHERE 2024; 362:142765. [PMID: 38969228 DOI: 10.1016/j.chemosphere.2024.142765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/07/2024]
Abstract
Copper can accumulate in agricultural topsoil through the use of Cu-based fungicides, which may harm soil organisms such as earthworms. This study aimed at reviewing the effects of copper on earthworms at different levels of biological organization, and to determine critical values of copper toxicity to earthworms using a meta-analysis and accounting for lethal and sub-lethal effects and different earthworm species and exposure conditions. Endpoints at the sub-individual level were more sensitive than at higher levels of organization. At the individual level, the most sensitive endpoints were reproduction and growth (hatching success, hatchling growth). Hormetic growth was clearly recognized at copper concentrations less than 80 mg kg-1 in dry soil. However, effects at the sub-individual level already occurred at lower concentrations. Considering all the exposure conditions, the calculated weighted means were 113 mg Cu kg-1 dry soil (95% CI -356; 582) for the LC50 (lethal concentration for 50% of the exposed individuals), 94.6 mg Cu kg-1 dry soil (95% CI 14.0; 175) for the EC50 reproduction, and 144 mg Cu kg-1 dry soil (95% CI -12.6; 301) for the EC50 growth or weight change. When accounting for the origin of the soil, earthworms were five times more sensitive to copper (LC50) in natural than in artificial soils. The different factors affecting Cu toxicity to earthworms explain the high variability of these values, making it difficult to derive thresholds. However, considering the potential negative effects of copper on earthworms, attention should be given to the more sustainable use of human-contributed copper in agricultural soils.
Collapse
Affiliation(s)
- C Pelosi
- INRAE, Avignon Université, UMR EMMAH, F-84000, Avignon, France.
| | - F Gavinelli
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Università degli Studi di Padova, Viale dell'Università 16, 35020, Legnaro, PD, Italy
| | - L Petit-Dit-Grezeriat
- INRAE, Avignon Université, UMR EMMAH, F-84000, Avignon, France; Avignon Univ, Aix Marseille Univ, CNRS, IRD, IMBE, Pôle Agrosciences, 301 rue Baruch de Spinoza, BP 21239, 84916, Avignon, France
| | - C Serbource
- INRAE, Avignon Université, UMR EMMAH, F-84000, Avignon, France
| | - J T Schoffer
- Center of Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, Santiago, Chile; Escuela de Agronomía, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Sede Providencia, Manuel Montt 948, Santiago, Chile
| | - R Ginocchio
- Center of Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, Santiago, Chile; Facultad de Agronomía y Sistemas Naturales, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - C Yáñez
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - G Concheri
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Università degli Studi di Padova, Viale dell'Università 16, 35020, Legnaro, PD, Italy
| | - M Rault
- Avignon Univ, Aix Marseille Univ, CNRS, IRD, IMBE, Pôle Agrosciences, 301 rue Baruch de Spinoza, BP 21239, 84916, Avignon, France
| | - C A M van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081, HZ, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Liu JY, Sayes CM. Modeling mixtures interactions in environmental toxicology. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104380. [PMID: 38309542 DOI: 10.1016/j.etap.2024.104380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
In the environment, organisms are exposed to mixtures of different toxicants, which may interact in ways that are difficult to predict when only considering each component individually. Adapting and expanding tools from pharmacology, the toxicology field uses analytical, graphical, and computational methods to identify and quantify interactions in multi-component mixtures. The two general frameworks are concentration addition, where components have similar modes of action and their effects sum together, or independent action, where components have dissimilar modes of action and do not interact. Other interaction behaviors include synergism and antagonism, where the combined effects are more or less than the additive sum of individual effects. This review covers foundational theory, methods, an in-depth survey of original research from the past 20 years, current trends, and future directions. As humans and ecosystems are exposed to increasingly complex mixtures of environmental contaminants, analyzing mixtures interactions will continue to become a more critical aspect of toxicological research.
Collapse
Affiliation(s)
- James Y Liu
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Christie M Sayes
- Department of Environmental Science, Baylor University, Waco, TX, USA.
| |
Collapse
|
5
|
Demir E, Turna Demir F. Genotoxicity responses of single and mixed exposure to heavy metals (cadmium, silver, and copper) as environmental pollutants in Drosophila melanogaster. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104390. [PMID: 38367919 DOI: 10.1016/j.etap.2024.104390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Heavy metals are now persistently present in living things' environments, in addition to their potential toxicity. Therefore, the aim of this study was to utilize D. melanogaster to determine the biological effects induced by different heavy metals including cadmium chloride (CdCl2), copper (II) sulfate pentahydrate (CuSO 4.5 H2O), and silver nitrate (AgNO3). In vivo experiments were conducted utilizing three low and environmentally relevant concentrations from 0.01 to 0.5 mM under single and combined exposure scenarios on D. melanogaster larvae. The endpoints measured included viability, reactive oxygen species (ROS) generation and genotoxic effects using Comet assay and the wing-spot test. Results indicated that tested heavy metals were not toxic in the egg-to adult viability. However, combined exposure (CdCl2+AgNO3 and CdCl2+AgNO3+CuSO 4.5 H2O) resulted in significant genotoxic and unfavorable consequences, as well as antagonistic and/or synergistic effects on oxidative damage and genetic damage.
Collapse
Affiliation(s)
- Eşref Demir
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Vocational School of Health Services, Antalya Bilim University, Dosemealti, Antalya 07190, Turkey.
| | - Fatma Turna Demir
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA; Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Vocational School of Health Services, Antalya Bilim University, Dosemealti, Antalya 07190, Turkey
| |
Collapse
|
6
|
Pesce S, Mamy L, Sanchez W, Artigas J, Bérard A, Betoulle S, Chaumot A, Coutellec MA, Crouzet O, Faburé J, Hedde M, Leboulanger C, Margoum C, Martin-Laurent F, Morin S, Mougin C, Munaron D, Nélieu S, Pelosi C, Leenhardt S. The use of copper as plant protection product contributes to environmental contamination and resulting impacts on terrestrial and aquatic biodiversity and ecosystem functions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-32145-z. [PMID: 38324154 DOI: 10.1007/s11356-024-32145-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 01/18/2024] [Indexed: 02/08/2024]
Abstract
Copper-based plant protection products (PPPs) are widely used in both conventional and organic farming, and to a lesser extent for non-agricultural maintenance of gardens, greenspaces, and infrastructures. The use of copper PPPs adds to environmental contamination by this trace element. This paper aims to review the contribution of these PPPs to the contamination of soils and waters by copper in the context of France (which can be extrapolated to most of the European countries), and the resulting impacts on terrestrial and aquatic biodiversity, as well as on ecosystem functions. It was produced in the framework of a collective scientific assessment on the impacts of PPPs on biodiversity and ecosystem services in France. Current science shows that copper, which persists in soils, can partially transfer to adjacent aquatic environments (surface water and sediment) and ultimately to the marine environment. This widespread contamination impacts biodiversity and ecosystem functions, chiefly through its effects on phototrophic and heterotrophic microbial communities, and terrestrial and aquatic invertebrates. Its effects on other biological groups and biotic interactions remain relatively under-documented.
Collapse
Affiliation(s)
| | - Laure Mamy
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | | | - Joan Artigas
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome Et Environnement (LMGE), 63000, Clermont-Ferrand, France
| | - Annette Bérard
- INRAE, Avignon Université, UMR EMMAH, 84000, Avignon, France
| | - Stéphane Betoulle
- Université de Reims Champagne-Ardenne, Normandie Université, ULH, INERIS, SEBIO, UMR-I 02, 51100, Reims, France
| | | | - Marie-Agnès Coutellec
- DECOD (Ecosystem Dynamics and Sustainability), INRAE, Institut Agro-Agrocampus Ouest, IFREMER, Rennes, France
| | - Olivier Crouzet
- OFB, Direction Recherche Et Appui Scientifique, Service Santé-Agri, 78610, Auffargis, France
| | - Juliette Faburé
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | | | | | | | - Fabrice Martin-Laurent
- Agroécologie, Institut Agro, INRAE, Université Bourgogne-Franche-Comté, 21110, Dijon, France
| | | | - Christian Mougin
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | | | - Sylvie Nélieu
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | - Céline Pelosi
- INRAE, Avignon Université, UMR EMMAH, 84000, Avignon, France
| | - Sophie Leenhardt
- INRAE, Directorate for Collective Scientific Assessment, Foresight and Advanced Studies, 75338, Paris, France
| |
Collapse
|
7
|
Ouhajjou M, Edahbi M, Hachimi H. First surveillance of pesticides in soils of the perimeter of Tadla, a Moroccan sugar beet intensive area. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:28. [PMID: 38066302 DOI: 10.1007/s10661-023-12182-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023]
Abstract
With the long-term application of pesticides on sugar beet farms in the irrigated perimeter of Tadla in Morocco for over 50 years, pesticide monitoring is necessary to assess soil health. The objective of our study was to monitor multiple pesticide residues in topsoil samples collected from post-harvest sugar beet fields and verify their migration to deep soil layers. Topsoil and deep soil samples were collected from arbitrarily selected sugar beet fields in the IPT. In this study, a target-screening method was applied. All target pesticides were detected in soil samples, with tefluthrin being the most frequently detected pesticide. The residue with the highest concentration in soil samples was DDE. All the soil samples contained a mixture of pesticide residues, with a maximum of 13 residues per sample. The total pesticide content decreased toward more profound layers of soil, except in one field where it reached a concentration of 348 µg/kg at the deeper soil layer. For pesticides detected at the three soil depths, only tefluthrin concentration increased in the deep soil layer. The results provide comprehensive and precise information on the pesticide residue status in sugar beet soils warning against the multiple risks that this contamination can cause. This study indicates the need of regular monitoring of pesticides over a large area of the perimeter to enable decision-makers to pronounce the impacts of the extension and intensification of sugar beet cultivation at the irrigated perimeter of Tadla.
Collapse
Affiliation(s)
- Majda Ouhajjou
- Systems Engineering Laboratory (LGS), Sultan Moulay Slimane University of Beni Mellal, Beni Mellal, Morocco.
| | - Mohamed Edahbi
- Higher School of Technology (ESTFBS), Sultan Moulay Slimane University of Beni Mellal, Beni Mellal, Morocco
| | - Hanaa Hachimi
- Systems Engineering Laboratory (LGS), Sultan Moulay Slimane University of Beni Mellal, Beni Mellal, Morocco
| |
Collapse
|
8
|
Rocha GS, de Palma Lopes LF, de Medeiros JF, Montagner CC, Gaeta Espíndola EL. Environmental concentrations of cadmium and fipronil, isolated and combined, impair the survival and reproduction of a Neotropical freshwater copepod. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122415. [PMID: 37604390 DOI: 10.1016/j.envpol.2023.122415] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/04/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
Anthropogenic activities such as agriculture and industry increase contaminants that reach the water bodies, potentially threatening the biota. Most likely, these pollutants occur in complex mixtures. The effects on organisms can be potentiated (synergism) or reduced (antagonism) according to the interaction between the stressors or the species. Cadmium (Cd) is a toxic metal present in phosphate fertilizers, and fipronil is an insecticide broadly used in sugarcane crops. Copepods are important energy transfer links in aquatic environments, and effects on this group impact the whole trophic chain. In this study, we evaluated the responses of the freshwater Calanoida copepod Notodiaptomus iheringi, naturally present in water bodies that can be affected by sugarcane cultures in Brazil. The organisms were exposed to environmental concentrations of Cd and fipronil, isolated and in the mixture, in acute (48 h) and sub-chronic (8 d) tests. Our data indicate that both contaminants affect the survival of the organisms in acute or sub-chronic exposures. Cadmium did not affect egg production or hatching, while fipronil impacted these endpoints negatively. The Cd-fipronil combination resulted in antagonistic responses in survival (acute and sub-chronic) and egg production. A synergistic response was observed in egg hatching. Our results suggest that Cd presents a protective effect in the mixture with fipronil; however, it is not enough to prevent egg-hatching inhibition. These responses highlight how tricky it is to deal with pollutants' interaction in environmental concentrations since synergism is the most common response to metal-pesticide mixtures. Our data point out N. iheringi as a sensitive organism in the presence of contaminants and reflects the threat of chemical mixtures in concentrations found in water bodies close to sugarcane crops in Brazil.
Collapse
Affiliation(s)
- Giseli Swerts Rocha
- NEEA/CRHEA, Escola de Engenharia de São Carlos, Universidade de São Paulo (EESC/USP), Avenida Trabalhador Sãocarlense, 400, Parque Arnold Schmidt, CEP, 13566-590, São Carlos-SP, Brazil.
| | - Laís Fernanda de Palma Lopes
- NEEA/CRHEA, Escola de Engenharia de São Carlos, Universidade de São Paulo (EESC/USP), Avenida Trabalhador Sãocarlense, 400, Parque Arnold Schmidt, CEP, 13566-590, São Carlos-SP, Brazil.
| | | | - Cassiana C Montagner
- Instituto de Química, Universidade Estadual de Campinas (UNICAMP), CEP, 13083-970, Campinas-SP, Brazil.
| | - Evaldo Luiz Gaeta Espíndola
- NEEA/CRHEA, Escola de Engenharia de São Carlos, Universidade de São Paulo (EESC/USP), Avenida Trabalhador Sãocarlense, 400, Parque Arnold Schmidt, CEP, 13566-590, São Carlos-SP, Brazil.
| |
Collapse
|
9
|
Khan K, Zeb M, Younas M, Sharif HMA, Yaseen M, Al-Sehemi AG, Kavil YN, Shah NS, Cao X, Maryam A, Qasim M. Heavy metals in five commonly consumed fish species from River Swat, Pakistan, and their implications for human health using multiple risk assessment approaches. MARINE POLLUTION BULLETIN 2023; 195:115460. [PMID: 37660661 DOI: 10.1016/j.marpolbul.2023.115460] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/20/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
This study analyzed the levels of heavy metals bioaccumulation in commonly consumed riverine fish species, including G. cavia, T. macrolepis, G. gotyla, S. plagiostomus, and M. armatus from River Swat in Pakistan, and quantify their potential risk to children and adults in general and fisherfolk communities using multiple pollution and risk assessment approaches. The highest metal detected by inductive coupled plasma mass spectrometry (ICP-MS) was Zn, which ranged from 49.61 to 116.83 mg/kg, followed by Fe (19.25-101.33 mg/kg) > Mn (5.25-40.35 mg/kg) > Cr (3.05-14.59 mg/kg) > Ni (4.26-11.80 mg/kg) > Al (1.59-12.25 mg/kg) > Cu (1.24-8.59 mg/kg) > Pb (0.29-1.95 mg/kg) > Co (0.08-0.46 mg/kg) > Cd (0.01-0.29 mg/kg), demonstrating consistent fluctuation with the safe recommendations of global regulatory bodies. The average bioaccumulation factor (BAF) values in the examined fish species were high (BAF > 5000) for Pb, Zn, Mn, Cu, Cr, Ni, and Cd, bioaccumulate (1000 > BAF < 5000) for Co, and probable accumulative (BAF <1000) for Fe, and Al, while the overall ∑heavy metals pollution index (MPI) values were greater than one (MPI > 1) indicating sever heavy metals toxicity in G. cavia, followed by S. plagiostomus, M. armatus, G. gotyla, and T. macrolepis. The multivariate Pearson's correlation analysis identified the correlation coefficients between heavy metal pairs (NiCr, CuCr, PbCr, AlCo, CuNi, and PbNi), the hierarchical cluster analysis (CA) determined the origin by categorizing heavy metal accumulation into Cluster-A, Cluster-B, and Cluster-C, and the principal component analysis (PCA) discerned nearby weathering, mining, industrial, municipal, and agricultural activities as the potential sources of heavy metals bioaccumulation in riverine fish. As per human risk perspective, S.plagiostomus contributed significantly to the estimated daily intake (EDI) of heavy metals, followed by G.cavia > M.armatus > G.gotyla > T.macrolepis in dependent children and adults of the fisherfolk followed by the general population. The non-carcinogenic target hazard quotient (THQ) and hazard index (HI) values for heavy metal intake through fish exposure were < 1, while the carcinogenic risk (CR) for individual metal intake and the total carcinogenic risk (TCR) for cumulative Cr, Cd, and Pb intake were within the risk threshold of 10-6-10-4, suggesting an acceptable to high non-carcinogenic and carcinogenic risk for both children and adults in the fisherfolk, followed by the general population.
Collapse
Affiliation(s)
- Kifayatullah Khan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Environmental and Conservation Sciences, University of Swat, Swat 19120, Pakistan.
| | - Maria Zeb
- Department of Environmental and Conservation Sciences, University of Swat, Swat 19120, Pakistan
| | - Muhammad Younas
- Department of Environmental and Conservation Sciences, University of Swat, Swat 19120, Pakistan
| | - Hafiz Muhammad Adeel Sharif
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Muhammad Yaseen
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia; Department of Chemistry, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Yasar N Kavil
- Marine Chemistry Department, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia
| | - Noor Samad Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, 61100, Pakistan
| | - Xianghui Cao
- China Institute of Geo-Environment Monitoring, Beijing 100081, China
| | - Afsheen Maryam
- Department of Environmental and Conservation Sciences, University of Swat, Swat 19120, Pakistan; Department of Environmental Science-ACES-b (Institutionen för miljövetenskap), Stockholm University, Stockholm 106 91, Sweden
| | - Muhammad Qasim
- Department of Environmental and Conservation Sciences, University of Swat, Swat 19120, Pakistan
| |
Collapse
|
10
|
Sruthi SN, Ramasamy EV, Shyleshchandran MN. Bioaccumulation of pesticide residue in earthworms collected from the agricultural soils of Kuttanad-a unique agroecosystem in India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:94940-94949. [PMID: 37542694 DOI: 10.1007/s11356-023-28944-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/19/2023] [Indexed: 08/07/2023]
Abstract
Earthworms encompass significant soil faunal biomass and have tremendous potential to provide vital ecosystem services. Earthworms are considered bioindicators of chemical contaminants and can provide early warnings of ecosystem deterioration. Studies pertaining to the accumulation of pesticide residues in earthworm in biomass in agrarian ecosystems are scarce. The Kuttanad agroecosystem (KAE), situated on the southwest coast of India, is one of the few regions globally supporting farming on land below the mean sea level. This investigation was conducted to assess the bioaccumulation of pesticide residues in earthworms from the KAE. The earthworms species Glyphidrilus annandalei collected from agricultural soils of the study area were analyzed for the presence of pesticides residues such as α-BHC, γ-BHC, atrazine, heptachlor, α-chlordane, γ-chlordane, 4,4-DDE, 4,4-DDD, 4,4-DDT, β-endosulfan, and endrin ketone in their biomass. Analysis of the earthworm samples using a gas chromatograph revealed the presence of ten pesticide residues with notable concentrations (α-BHC, 0.36 ng/g; γ-BHC, 0.41 ng/g; heptachlor, 0.10 ng/g; atrazine, 0.89 ng/g; α-chlordane, 0.07 ng/g; γ-chlordane, 0.10 ng/g; 4,4-DDE, 0.05 ng/g; 4,4-DDD, 0.11 ng/g; 4,4-DDT, 0.31 ng/g; β-endosulfan, 0.19 ng/g; and endrin ketone, 0.13 ng/g). Six groups of pesticide residues are ΣBHC, ΣDDT, atrazine, Σchlordane, endrin ketone, and β-endosulfan were observed during bioaccumulation factor analysis, and the results show the following trend: atrazine > ΣBHC > ΣDDT > Σchlordane > Σendosulfan > Σendrin. As earthworms are a crucial component of this region's food chains, bioaccumulation of pesticide residues in earthworms can pause adverse consequences. Increasing trends in pesticide application in the KAE and bioaccumulation of pesticide residues in earthworm biomass can affect the entire food web.
Collapse
|
11
|
Ding F, Wang G, Liu S, He ZL. Key factors influencing arsenic phytotoxicity thresholds in south China acidic soils. Heliyon 2023; 9:e19905. [PMID: 37809576 PMCID: PMC10559317 DOI: 10.1016/j.heliyon.2023.e19905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/22/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Arsenic (As) toxicity threshold values (TTVs) for plants are fundamental to both establishing regional As reference values in soil and performing risk assessment. However, TTVs vary with plant species and soil types. In this study, a hydroponic experiment with 16 plant species was conducted to screen the most As-sensitive plant species. The results showed that the EC20 (available As concentration at which shoot biomass or height is inhibited by 20%) values were 1.38-104.4 mg L-1 for shoot height and 0.24-42.87 mg L-1 for shoot fresh biomass. Rice was more sensitive to As toxicity than the other species. Therefore, it was chosen as the ecological receptor in the pot experiment on As phytotoxicity in nine types of soils collected from Fujian Province in South China. The EC10 and EC20 with respect to rice shoot height were 3.72-29.11 mg kg-1 and 7.12-45.60 mg kg-1, respectively. Stepwise regression analysis indicated that free iron oxide concentration is the major factor that affects As bioavailability in soil, and ECx (x = 10, 20, and 50) of soil available As for shoot height was positively related to free iron oxide concentration in soil. In addition, soil cation exchange capacity, clay (<0.002 mm) content, and exchangeable magnesium content are also important factors influencing As phytotoxicity in acidic soils. The regression models can be used to predict As phytotoxicity in acidic soils.
Collapse
Affiliation(s)
- Fenghua Ding
- Institute of Ecology, Lishui University, Lishui, Zhejiang 323000, China
- Department of Resources and Environmental Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Institute of Food and Agricultural Sciences, Indian River Research and Education Center, University of Florida, Fort Pierce, FL 34951, USA
| | - Guo Wang
- Department of Resources and Environmental Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Shuxin Liu
- Department of Environmental Engineering, Lishui Vocational & Technical College, Lishui, Zhejiang 323000, China
| | - Zhenli L. He
- Institute of Food and Agricultural Sciences, Indian River Research and Education Center, University of Florida, Fort Pierce, FL 34951, USA
| |
Collapse
|
12
|
Mesquita AF, Jesus F, Gonçalves FJM, Gonçalves AMM. Ecotoxicological and biochemical effects of a binary mixture of pesticides on the marine diatom Thalassiosira weissflogii in a scenario of global warming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162737. [PMID: 36907391 DOI: 10.1016/j.scitotenv.2023.162737] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/20/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Under the current scenario of global warming, it is ecologically relevant to understand how increased temperature influences the combined toxicity of pesticides to aquatic species. Hence, this work aims to: a) determine the temperature effect (15 °C, 20 °C and 25 °C) on the toxicity of two pesticides (oxyfluorfen and Copper (Cu)), on the growth of Thalassiosira weissflogii; b) assess whether temperature affects the type of toxicity interaction between these chemicals; and c) assess the temperature effect on biochemical responses (fatty acids (FA) and sugar profiles) of the pesticides on T. weissflogii. Temperature increased the tolerance of the diatoms to the pesticides with EC50 values between 3.176 and 9.929 μg L-1 for oxyfluorfen and 42.50-230.75 μg L-1 for Cu, respectively, at 15 °C and 25 °C. The mixtures toxicity was better described by the IA model, but temperature altered the type of deviation from dose ratio (15 °C and 20 °C) to antagonism (25 °C). Temperature, as well as the pesticide concentrations, affected the FA and sugar profiles. Increased temperature increased saturated FA and decreased unsaturated FA; it also affected the sugar profiles with a pronounced minimum at 20 °C. Results highlight effects on the nutritional value of these diatoms, with potential repercussion on food webs.
Collapse
Affiliation(s)
- Andreia F Mesquita
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Fátima Jesus
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Fernando J M Gonçalves
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana M M Gonçalves
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; University of Coimbra, MARE-Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
13
|
Matos GSBD, Brasil Neto AB, Gama MAP, Gonçalves DAM, Cardoso DFSR, Ramos HMN. Soil potentially toxic element contents in an area under different land uses in the Brazilian Amazon. Heliyon 2023; 9:e17108. [PMID: 37441406 PMCID: PMC10333436 DOI: 10.1016/j.heliyon.2023.e17108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
Soil pollution with potentially toxic elements (PTE) from incipient basic sanitation, dumps and industrial activities developed in the Amazon has been of international interest due to health and environmental issues. This study aimed to evaluate the concentration of PTE in five adjacent land occupations (a dump, a alumina refinery area and three residential centers) in the municipality of Barcarena, Amazon Region, Brazil. In a total area of 912 ha, 274 soil samples were collected at a depth of 0-0.2 m. Afterwards, the concentrations of As, Ba, Pb, Co, Cu, Cr, Hg, Ni and Zn were determined. The results were explored using descriptive and multivariate statistics, as well as geostatistical. Considering the data by location, maximum concentrations exceeding the prevention values of Brazilian soils were found for Cu, Ni and Zn in Dump (148; 42.8 and 356 mg kg-1), for Cu and Hg in Bom Futuro (333 and 1.99 mg kg-1) and for Cu in Itupanema (91.2 mg kg-1). Cu, Hg, Pb and Zn were grouped in the same principal component and showed the highest similarity measure in the cluster analysis. The interpolation point maps of the two principal components and of the individual concentrations of the PTEs showed the area of influence of the dump as the main reason for the increase in soil contamination. These results show the need for public policies aimed at the proper disposal of solid waste, in order to promote the reduction of pollutants in the soil, health and well-being for the local population, and also the environmental quality of the study area.
Collapse
Affiliation(s)
- Gilson Sergio Bastos de Matos
- Federal Rural University of Amazonia, Institute of Agrarian Sciences, Av. Presidente Tancredo Neves, 2501, 66077-830 Belém, PA, Brazil
| | - Alberto Bentes Brasil Neto
- Federal Institute of Education, Science and Technology of Pará, Av. Mal. Castelo Branco, 621, 68020-570 Santarém, PA, Brazil
| | - Marcos André Piedade Gama
- Federal Rural University of Amazonia, Institute of Agrarian Sciences, Av. Presidente Tancredo Neves, 2501, 66077-830 Belém, PA, Brazil
| | - Deyvison Andrey Medrado Gonçalves
- Federal Rural University of Amazonia, Institute of Agrarian Sciences, Av. Presidente Tancredo Neves, 2501, 66077-830 Belém, PA, Brazil
| | - Diego Fabricio Santa Rosa Cardoso
- Federal Rural University of Amazonia, Institute of Agrarian Sciences, Av. Presidente Tancredo Neves, 2501, 66077-830 Belém, PA, Brazil
| | - Helen Monique Nascimento Ramos
- Amazon Environmental Research Institute, Vitta Office Building - Av. Rômulo Maiorana, 700 - Room 1011 - Marco, Belém, PA, 66093-672, Brazil
| |
Collapse
|
14
|
Zhang Y, Tan Z, Qin K, Liu C. Effect of Cd/Cu on the toxicity and stereoselective environmental behavior of dinotefuran in earthworms Eisenia foetida. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115022. [PMID: 37207576 DOI: 10.1016/j.ecoenv.2023.115022] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/21/2023]
Abstract
Pesticides and heavy metals commonly coexist in soil. In this study, the influence of Cd and Cu on the toxicity of rac-dinotefuran and the enantioselective behavior of dinotefuran enantiomers in soil-earthworm microcosms were investigated. The acute toxic tests showed that S-dinotefuran has higher toxic than that of R-dinotefuran. The rac-dinotefuran and Cd has an antagonistic effect on earthworms, and the Cu and rac-dinotefuran has a synergistic effect. Earthworms maybe promoted the enantioselective behavior of dinotefuran in soil. Co-exposure to Cd or Cu inhibited the dissipation of dinotefuran enantiomers (S-dinotefuran and R-enantiomers), and slightly reduced the enantioselectivity in soil. The earthworms were found to be preferentially enriched with S-dinotefuran. However, Cd or Cu attenuated the accumulation of dinotefuran enantiomers in earthworms and decreased the enantioselectivity. The effect of Cd and Cu on the environmental behaviors of dinotefuran enantiomers were correlated positively with the dose of Cd/Cu. These results showed that Cd and Cu alter the environmental behaviors and the toxicity of dinotefuran enantiomers in soil-earthworm microcosms. Thus, the influence of coexistent heavy metals on the ecological risk assessment of chiral pesticides should be considered.
Collapse
Affiliation(s)
- Yirong Zhang
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China
| | - Zhenchao Tan
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China
| | - Kaikai Qin
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China
| | - Chenglan Liu
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China.
| |
Collapse
|
15
|
Zhang W, Wang J, Zhu L, Wang J, Mao S, Yan X, Wen S, Wang L, Dong Z, Kim YM. New insights into the effects of antibiotics and copper on microbial community diversity and carbon source utilization. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023:10.1007/s10653-023-01491-1. [PMID: 36939996 DOI: 10.1007/s10653-023-01491-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
Residual antibiotics (ABs) and heavy metals (HMs) are continuously released from soil, reflecting their intensive use and contamination of water and soil, posing an environmental problem of great concern. Relatively few studies exist of the functional diversity of soil microorganisms under the combined action of ABs and HMs. To address this deficiency, BIOLOG ECO microplates and the Integrated Biological Responses version 2 (IBRv2) method were used to comprehensively explore the effects of single and combined actions of copper (Cu) and enrofloxacin (ENR), oxytetracycline (OTC), and sulfadimidine (SM2) on the soil microbial community. The results showed that the high concentration (0.80 mmol/kg) compound group had a significant effect on average well color development (AWCD) and OTC showed a dose-response relationship. The results of IBRv2 analysis showed that the single treatment group of ENR or SM2 had a significant effect on soil microbial communities, and the IBRv2 of E1 was 5.432. Microbes under ENR, SM2, and Cu stress had more types of available carbon sources, and all treatment groups were significantly more enriched with microorganisms having D-mannitol and L-asparagine as carbon sources. This study confirms that the combined effects of ABs and HMs can inhibit or promote the function of soil microbial communities. In addition, this paper will provide new insights into IBRv2 as an effective method to evaluate the impacts of contaminants on soil health.
Collapse
Affiliation(s)
- Wenjie Zhang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
| | - Jinhua Wang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China.
| | - Lusheng Zhu
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
| | - Jun Wang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
| | - Shushuai Mao
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
| | - Xiaojing Yan
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
| | - Shengfang Wen
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
| | - Lanjun Wang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
| | - Zikun Dong
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-Gu, Seoul, 04763, Republic of Korea
| |
Collapse
|
16
|
Gudeta K, Kumar V, Bhagat A, Julka JM, Bhat SA, Ameen F, Qadri H, Singh S, Amarowicz R. Ecological adaptation of earthworms for coping with plant polyphenols, heavy metals, and microplastics in the soil: A review. Heliyon 2023; 9:e14572. [PMID: 36994405 PMCID: PMC10040515 DOI: 10.1016/j.heliyon.2023.e14572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
In recent years, soil pollution by massive accumulation of heavy metals (HMs), microplastics, and refractory hydrocarbon chemicals has become an emerging and global concern, drawing worldwide attention. These pollutants influence soil diversity by hindering the reproduction, abundance, thereby affecting aboveground productivity. The scientific community has recently emphasized the contribution of earthworms to heavy metal accumulation, microplastic degradation, and the decomposition of organic matter in the soil, which helps maintain the soil structure. This review paper aimed to compile scientific facts on how earthworms cope with the effect of HMs, microplastics, and plant polyphenols so that vermiremediation could be widely applied for well-being of the soil ecosystem by environmentalists. Earthworms have special surface-active metabolites in their guts called drilodefensins that help them defend themselves against the oxidative action of plant polyphenols. They also combat the effects of toxic microplastics, and other oxidative compounds by elevating the antioxidant activities of their enzymes and converting them into harmless compounds or useful nutrients. Moreover, earthworms also act as biofilters, bioindicators, bioaccumulators, and transformers of oxidative polyphenols, microplastics, toxic HMs, and other pollutant hydrocarbons. Microorganisms (fungi and bacteria) in earthworms' gut of also assist in the fixation, accumulation, and transformation of these toxicants to prevent their effects. As a potential organism for application in ecotoxicology, it is recommended to propagate earthworms in agricultural fields; isolate, and culture enormously in industry, and inoculate earthworms in the polluted soil, thereby abate toxicity and minimizing the health effect caused by these pollutants as well enhance the productivity of crops.
Collapse
Affiliation(s)
- Kasahun Gudeta
- Shoolini University of Biotechnology and Management Sciences, School of Biological and Environmental Sciences, Solan, 173229, Himachal Pradesh, India
- Adama Science and Technology University, Department of Applied Biology, P.O. Box 1888, Adama, Ethiopia
| | - Vineet Kumar
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Kishangarh, Ajmer, 305817, Rajasthan, India
| | - Ankeet Bhagat
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Jatinder Mohan Julka
- Shoolini University of Biotechnology and Management Sciences, School of Biological and Environmental Sciences, Solan, 173229, Himachal Pradesh, India
| | - Sartaj Ahmad Bhat
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Corresponding author.
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Humaira Qadri
- Department of Environmental Sciences, J&K Higher Education Department, Govt. Degree College, Baramulla, 193101, Kashmir, Jammu and Kashmir, India
| | - Sumit Singh
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, 10-748, Poland
| |
Collapse
|
17
|
Naseer A, Andleeb S, Basit A, Ali S, Ud-Din MS, Ali NM, Liaqat I, Nazir A. Efficacy of cow and buffalo dung on vermiremediation and phytoremediation of heavy metals via Fourier-transform infrared spectroscopy and comet assay. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:37912-37928. [PMID: 36575256 DOI: 10.1007/s11356-022-24714-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Heavy metal contamination raised significant concerns throughout the world. The current research aimed to evaluate the impact of organic manure (cow dung and buffalo dung) on vermiremediation and phytoremediation and to remediate heavy metals, i.e., cadmium, lead, and chromium, from artificial contaminated soil via both remediation techniques. The impact of livestock manure was evaluated for the first time which could be effective in in situ as well as ex situ studies. Eisenia fetida, Pheretima lignicola, and Spinacia oleracea were used for the remediation process. Results revealed that E. fetida tolerated lead at 280 mg, cadmium at 150 mg, and chromium at 860 mg compared to P. lignicola. The growth and reproduction of E. fetida were efficient in the cow dung manure compared to buffalo dung. Similarly, seed germination and growth of Spinacia oleracea were better in cow dung media compared to buffalo dung. Bioaccumulation factor showed that E. fetida showed a higher accumulation of heavy metals in their tissues when vermi + phytoremediation was jointly applied (9.50 mg/l of Pb, 24.166 of Cd, and 6.695 of Cr). Fourier-transform infrared spectroscopy indicated that heavy metals had no drastic effects on E. fetida and S. oleracea. Similarly, comet assay revealed that heavy metals had no genotoxic effect on the E. fetida and S. oleracea. It was concluded that both E. fetida and S. oleracea are appropriate for heavy metals remediation in cow dung manure.
Collapse
Affiliation(s)
- Anum Naseer
- Biotechnology and Vermi-Technology Laboratory, Department of Zoology, University of Azad Jammu and Kashmir, King Abdullah Campus, Chattar Kalas, Muzaffarabad, 13100, Pakistan
| | - Saiqa Andleeb
- Biotechnology and Vermi-Technology Laboratory, Department of Zoology, University of Azad Jammu and Kashmir, King Abdullah Campus, Chattar Kalas, Muzaffarabad, 13100, Pakistan.
| | - Abdul Basit
- Biotechnology and Vermi-Technology Laboratory, Department of Zoology, University of Azad Jammu and Kashmir, King Abdullah Campus, Chattar Kalas, Muzaffarabad, 13100, Pakistan
| | - Shaukat Ali
- Department of Zoology, Government College University, Lahore, Pakistan
| | | | - Nazish Mazhar Ali
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Iram Liaqat
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Aisha Nazir
- Institute of Botany, University of Punjab, Quaid-E-Azam Campus, Lahore, Pakistan
| |
Collapse
|
18
|
Kayiranga A, Li Z, Isabwe A, Ke X, Simbi CH, Ifon BE, Yao H, Wang B, Sun X. The Effects of Heavy Metal Pollution on Collembola in Urban Soils and Associated Recovery Using Biochar Remediation: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3077. [PMID: 36833771 PMCID: PMC9966961 DOI: 10.3390/ijerph20043077] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Heavy metal pollution in urban soil continues to be a global issue that poses a serious hazard to invertebrates and human lives through oral ingestion and inhalation of soil particles. Though the toxicity of several heavy metals on invertebrates like Collembola has been studied, lead (Pb) and cadmium (Cd) have been extensively studied due to their high toxicity to collembolans. As a ubiquitous soil organism all over the world, collembolans have been used as a model species to study the effects of heavy metals on invertebrate communities. To reduce the effects of heavy metals on ecosystem functions, biotic and abiotic measures have been used for heavy metal remediation; biochar seems to be the most effective approach that not only increases the physical absorption of heavy metals but also indirectly benefits soil organisms. In this study, we briefly reviewed the application of biochar in Pb and Cd polluted soil and showed its potential in soil remediation. Furthermore, we outlined the potentially toxic effects of Pb- and Cd-polluted urban soil on the collembolan species. We searched peer-reviewed publications that investigated: (1) the level of Pb and Cd contamination on urban soil in different cities around the world; and (2) the different sources of Pb and Cd as well as factors influencing their toxicity to collembolan communities. The obtained information offers new perspectives on the interactions and effects between collembolans, Pb, and Cd, and their remediation in urban soils.
Collapse
Affiliation(s)
- Alexis Kayiranga
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhu Li
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Alain Isabwe
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Xin Ke
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Claudien Habimana Simbi
- University of Chinese Academy of Sciences, Beijing 100049, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Binessi Edouard Ifon
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haifeng Yao
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Wang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Xin Sun
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Wu S, Li X, Fan H, Dong Y, Wang Y, Bai Z, Zhuang X. Engineering artificial microbial consortia based on division of labor promoted simultaneous removal of Cr(VI)-atrazine combined pollution. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130221. [PMID: 36367470 DOI: 10.1016/j.jhazmat.2022.130221] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/04/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Combined pollution caused by organic pollutants and heavy metals is common in polluted sites and wastewater. Engineering artificial microbial consortia offers a promising approach to address this complex issue. However, the mutualistic interactions and the critical function of specific microbe within microbial consortia remain unclear. In this study, based on division of labor, we respectively co-cultured two Cr(VI)-reducing strains, Paenarthrobacter nitroguajacolicus C1 and Pseudomonas putida C2, with an atrazine-degrading strain, Paenarthrobacter ureafaciens AT. After 5 days, up to 95 % Cr(VI) and 100 % atrazine were removed from the cocultures. Strain AT degraded nearly all atrazine and contributed only to a fraction of Cr(VI) reduction, whereas C1 promoted 41 % Cr(VI) transformation to Cr(III) fixed in cells, and C2 promoted 91 % Cr(VI) transformation to soluble Cr(III). Metabolic analyses of the cocultures and monocultures demonstrated that AT provided C1 with isopropylamine by passive diffusion and C2 with other effective nitrogen resources by cell-cell surface contact to promote their growth. Soil experiments also showed that treatments with AT and C2 achieved the highest Cr(VI) reduction and no atrazine residue. Our results indicate that engineering artificial microbial consortia based on division of labor and metabolic interactions is effective in promoting highly efficient bioremediation of combined pollution.
Collapse
Affiliation(s)
- Shanghua Wu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xianglong Li
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haonan Fan
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuzhu Dong
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaxin Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihui Bai
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuliang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
20
|
Kanniah P, Balakrishnan S, Subramanian ER, Sudalaimani DK, Radhamani J, Sivasubramaniam S. Preliminary investigation on the impact of engineered PVP-capped and uncapped silver nanoparticles on Eudrilus eugeniae, a terrestrial ecosystem model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:25239-25255. [PMID: 35829879 DOI: 10.1007/s11356-022-21898-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Recently, the production of silver nanoparticles and their commercial products has generated increased concern and caused a hazardous impact on the ecosystem. Therefore, the present study examines the toxic effect of chemically engineered silver nanoparticles (SNPs) and polyvinylpyrrolidone-capped silver nanoparticles (PVP-SNPs) on the earthworm Eudrilus eugeniae (E. eugeniae). The SNPs and PVP-SNPs were synthesized, and their characterization was determined by UV-vis spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and transmission electron microscopy. The toxicity of SNPs and PVP-SNPs was evaluated using E. eugeniae. The present result indicates that the lethal concentration (LC50) of SNPs and PVP-SNPs were achieved at 22.66 and 43.27 μg/mL, respectively. The activity of antioxidant enzymes including superoxide dismutase (SOD) and catalase (CAT) was increased in SNPs compared to PVP-SNPs. Importantly, we have noticed that the E. eugeniae can amputate its body segments after exposure to SNPs and PVP-SNPs. This exciting phenomenon is named "autotomy," which describes a specific feature of E. eugeniae to escape from the toxic contaminants and predators. Accordingly, we have suggested this unique behavior may facilitate to assess the toxic effect of SNPs and PVP-SNPs in E. eugeniae.
Collapse
Affiliation(s)
- Paulkumar Kanniah
- Department of Biotechnology, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, Tamil Nadu, India.
| | - Subburathinam Balakrishnan
- Department of Biotechnology, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, Tamil Nadu, India
| | - Elaiya Raja Subramanian
- Department of Biotechnology, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, Tamil Nadu, India
| | - Dinesh Kumar Sudalaimani
- Department of Biotechnology, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, Tamil Nadu, India
| | - Jila Radhamani
- Department of Biotechnology, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, Tamil Nadu, India
| | - Sudhakar Sivasubramaniam
- Department of Biotechnology, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, Tamil Nadu, India
| |
Collapse
|
21
|
da Silva EM, Gomes NA, do Nascimento SC, Nóbrega BMDA, de Melo MC, Monteiro VED. Ecotoxicological responses of Daphnia magna and Eisenia andrei in landfill leachate. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1299-1309. [PMID: 36136137 DOI: 10.1007/s10646-022-02587-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Leachate toxicity using bioindicators such as microcrustaceans and earthworms has not been fully elucidated. These bioindicators are traditionally determined through physicochemical and microbiological analyses. The ecotoxicological assessment of leachate using indicator organisms from different environments is a technique to ensure the treatment and safe disposal of this effluent with minimum impact on human health and the environment. The current study aimed to evaluate the ecotoxicological responses of Daphnia magna and Eisenia andrei in landfill leachate, identifying which organism was more sensitive to this effluent. The leachate used in ecotoxicological tests was collected at the Campina Grande Sanitary Landfill (ASCG), Paraíba, Brazil. The leachate sample contained a high content of organic matter in the form of chemical oxygen demand (19496.86 mg.L-1) and ammoniacal nitrogen (2198.00 mg.NL-1), in addition to metals with carcinogenic potential, such as Cr (0.64 mg.L-1) and Fe (1.16 mg.L-1). The exposure of Daphnia magna to the leachate showed that the effluent is harmful to aquatic organisms, obtaining an EC 50, 48 h = 1.22%, FT of 128 and a TU of 81.96%. Among the contaminant concentrations tested in Eisenia andrei, 57% (59.28 mL.kg-1) caused the highest lethality, causing the death of 21 earthworms within 72 hours of exposure. The avoidance test showed that exposure to leachate concentrations between 10.38 and 39.86 mL.kg-1 led to the leakage of earthworms, and habitat loss was observed at a concentration of 55.80 mL.kg-1, in which leak response (LR) ≥80% was obtained. This study demonstrates that the mentioned organisms are suitable for ecotoxicological tests in landfill leachate. Moreover, the microcrustacean Daphnia magna showed the most significant sensitivity, presenting a rapid ecotoxicological response to the leachate.
Collapse
Affiliation(s)
- Elisângela Maria da Silva
- Department of Civil and Environmental Engineering, Universidade Federal de Campina Grande, Campina Grande, 58410050, Brazil
| | - Naiara Angelo Gomes
- Department of Civil and Environmental Engineering, Universidade Federal de Campina Grande, Campina Grande, 58410050, Brazil
| | - Samanda Costa do Nascimento
- Department of Civil and Environmental Engineering, Universidade Federal de Campina Grande, Campina Grande, 58410050, Brazil
| | | | - Márcio Camargo de Melo
- Department of Civil Engineering, Universidade Federal de Campina Grande, Campina Grande, 58175000, Brazil
| | | |
Collapse
|
22
|
Liang X, Zhou D, Wang J, Li Y, Liu Y, Ning Y. Evaluation of the toxicity effects of microplastics and cadmium on earthworms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155747. [PMID: 35533859 DOI: 10.1016/j.scitotenv.2022.155747] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/07/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs) and heavy metal pollution have become research hotspots in recent years. This study focused on the comprehensive evaluation of the toxicity effect on Eisenia fetida under combined exposure to MPs and the heavy metal cadmium (Cd). With Cd concentration, MPs concentration and MPs partical size as stress factors, the TOPSIS model was constructed to explore the toxicity levels of the stress factors. A short-term co-exposure test and a long-term co-exposure test were designed by orthogonal combination tests with equivalent toxicity levels. The activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), glutathione peroxidase (GPX), glutathione S transferase (GST), and acetylcholinesterase (AChE) and the contents of protein (TP), glutathione (GSH), and malondialdehyde (MDA) in earthworms were determined. Integrated biological responses version 2 (IBRv2) was used to evaluate the toxicity of MPs and Cd combined exposure on earthworms. The results showed that the toxicity ratio of Cd concentration, MPs concentration and MPs partical size was 46 to 29 to 25. Combined exposure to MPs and Cd enhanced the activities of SOD, POD, CAT, GPX and GST, MDA and GSH contents also increased, while the AChE activities were inhibited. SOD, GPX and GST play important roles in the resistance of earthworms to pollutant stress. During short-term co-exposure, Cd concentration had antagonistic effects with on MPs concentration and MPs partical size, while they showed synergistic effects during long-term co-exposure.
Collapse
Affiliation(s)
- Xiaoyan Liang
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Dongxing Zhou
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jiahao Wang
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yunfei Li
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yu Liu
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yucui Ning
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
23
|
Teng M, Zhao X, Wang C, Zhou L, Wu X, Wu F. Combined toxicity of chlorpyrifos, abamectin, imidacloprid, and acetamiprid on earthworms (Eisenia fetida). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:54348-54358. [PMID: 35297002 DOI: 10.1007/s11356-021-18025-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Mixed pesticides have been broadly used in agriculture. However, assessing the combined effects of pesticides in the environment is essential for potential risk assessment, though the task is far from complete. Median lethal concentrations of pesticides as well as acetylcholinesterase (AChE) levels and cellulose activities were measured in earthworms (Eisenia fetida) individually and jointly exposed to pesticides imidacloprid (IMI), acetamiprid (ACE), chlorpyrifos (CRF), and abamectin (ABM)). A 3:1 mixture of CRF and IMI had additive effects, while a 3:1 mixture of CRF and ACE had synergic effects. The joint effects of ABM with IMI or with ACE were synergistic. As CRF concentration increased, AChE activities were significantly decreased. For high concentrations of IMI, AChE activities under combined CRF and IMI applications were significantly inhibited following increased exposure time. Moreover, the cellulase activities under combined applications of CRF with IMI or with ACE had similar effects. This study provides basic data for scientifically evaluating the environmental risk and safety of combined uses of pesticides.
Collapse
Affiliation(s)
- Miaomiao Teng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Dayang Fang 8#, Beijing, 100012, Chaoyang District, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Dayang Fang 8#, Beijing, 100012, Chaoyang District, China.
| | - Chen Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Dayang Fang 8#, Beijing, 100012, Chaoyang District, China
| | - Lingfeng Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Dayang Fang 8#, Beijing, 100012, Chaoyang District, China
| | - Xiaowei Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Dayang Fang 8#, Beijing, 100012, Chaoyang District, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Dayang Fang 8#, Beijing, 100012, Chaoyang District, China
| |
Collapse
|
24
|
Panico SC, van Gestel CAM, Verweij RA, Rault M, Bertrand C, Menacho Barriga CA, Coeurdassier M, Fritsch C, Gimbert F, Pelosi C. Field mixtures of currently used pesticides in agricultural soil pose a risk to soil invertebrates. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119290. [PMID: 35436506 DOI: 10.1016/j.envpol.2022.119290] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/17/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Massive use of pesticides in conventional agriculture leads to accumulation in soil of complex mixtures, triggering questions about their potential ecotoxicological risk. This study assessed cropland soils containing pesticide mixtures sampled from conventional and organic farming systems at La Cage and Mons, France. The conventional agricultural field soils contained more pesticide residues (11 and 17 versus 3 and 11, respectively) and at higher concentrations than soils from organic fields (mean 6.6 and 10.5 versus 0.2 and 0.6 μg kg-1, respectively), including systemic insecticides belonging to neonicotinoids, carbamate herbicides and broad-spectrum fungicides mostly from the azole family. A risk quotient (RQi) approach evaluated the toxicity of the pesticide mixtures in soil, assuming concentration addition. Based on measured concentrations, both conventional agricultural soils posed high risks to soil invertebrates, especially due to the presence of epoxiconazole and imidacloprid, whereas soils under organic farming showed negligible to medium risk. To confirm the outcome of the risk assessment, toxicity of the soils was determined in bioassays following standardized test guidelines with seven representative non-target invertebrates: earthworms (Eisenia andrei, Lumbricus rubellus, Aporrectodea caliginosa), enchytraeids (Enchytraeus crypticus), Collembola (Folsomia candida), oribatid mites (Oppia nitens), and snails (Cantareus aspersus). Collembola and enchytraeid survival and reproduction and land snail growth were significantly lower in soils from conventional compared to organic agriculture. The earthworms displayed different responses: L. rubellus showed higher mortality on soils from conventional agriculture and large body mass loss in all field soils, E. andrei showed considerable mass loss and strongly reduced reproduction, and A. caliginosa showed significantly reduced acetylcholinesterase activity in soils from conventional agriculture. The oribatid mites did not show consistent differences between organic and conventional farming soils. These results highlight that conventional agricultural practices pose a high risk for soil invertebrates and may threaten soil functionality, likely due to additive or synergistic "cocktail effects".
Collapse
Affiliation(s)
- Speranza C Panico
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands; Department of Biology, University of Naples Federico II, Via Cinthia, 80126, Naples, Italy
| | - Cornelis A M van Gestel
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands.
| | - Rudo A Verweij
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands
| | - Magali Rault
- Univ Avignon, Aix Marseille Univ, CNRS, IRD, IMBE, Pôle Agrosciences, 301 rue Baruch de Spinoza, BP 21239, 84916, Avignon, France
| | - Colette Bertrand
- UMR 1402 ECOSYS, INRAe, AgroParisTech, Université Paris-Saclay, 78026, Versailles, France
| | - Carlos A Menacho Barriga
- UMR 6249 Chrono-environnement CNRS - Université de Franche-Comté Usc INRAe, 16 route de Gray, 25030, Besançon, cedex, France
| | - Michaël Coeurdassier
- UMR 6249 Chrono-environnement CNRS - Université de Franche-Comté Usc INRAe, 16 route de Gray, 25030, Besançon, cedex, France
| | - Clémentine Fritsch
- UMR 6249 Chrono-environnement CNRS - Université de Franche-Comté Usc INRAe, 16 route de Gray, 25030, Besançon, cedex, France
| | - Frédéric Gimbert
- UMR 6249 Chrono-environnement CNRS - Université de Franche-Comté Usc INRAe, 16 route de Gray, 25030, Besançon, cedex, France
| | - Céline Pelosi
- UMR 1114 EMMAH, INRAe, Avignon Université, 84914, Avignon, France
| |
Collapse
|
25
|
Vivekanandhan P, Swathy K, Murugan AC, Krutmuang P. Insecticidal Efficacy of Metarhizium anisopliae Derived Chemical Constituents against Disease-Vector Mosquitoes. J Fungi (Basel) 2022; 8:300. [PMID: 35330302 PMCID: PMC8950813 DOI: 10.3390/jof8030300] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 02/01/2023] Open
Abstract
Insecticides can cause significant harm to both terrestrial and aquatic environments. The new insecticides derived from microbial sources are a good option with no environmental consequences. Metarhizium anisopliae (mycelia) ethyl acetate extracts were tested on larvae, pupae, and adult of Anopheles stephensi (Liston, 1901), Aedes aegypti (Meigen, 1818), and Culex quinquefasciatus (Say, 1823), as well as non-target species Eudrilus eugeniae (Kinberg, 1867) and Artemia nauplii (Linnaeus, 1758) at 24 h post treatment under laboratory condition. In bioassays, Metarhizium anisopliae extracts had remarkable toxicity on all mosquito species with LC50 values, 29.631 in Ae. aegypti, 32.578 in An. stephensi and 48.003 in Cx. quinquefasciatus disease-causing mosquitoes, in A. nauplii shows (5.33-18.33 %) mortality were produced by the M. anisopliae derived crude extract. The LC50 and LC90 values were, 620.481; 6893.990 μg/mL. No behavioral changes were observed. A low lethal effect was observed in E. eugeniae treated with the fungi metabolites shows a 14.0 % mortality. The earthworm E. eugeniae mid-gut histology revealed that M. anisopliae extracts had no more harmful effects on the epidermis, circular muscle, setae, mitochondrion, and intestinal lumen tissues than chemical pesticides. By Liquid chromatography mass spectrometry (LC-MS) analysis, camphor (25.4 %), caprolactam (20.68 %), and monobutyl phthalate (19.0 %) were identified as significant components of M. anisopliae metabolites. Fourier transform infrared (FT-IR) spectral investigations revealed the presence of carboxylic acid, amides, and phenol groups, all of which could be involved in mosquito toxicity. The M. anisopliae derived chemical constituents are effective on targeted pests, pollution-free, target-specific, and are an alternative chemical insecticide.
Collapse
Affiliation(s)
- Perumal Vivekanandhan
- Society for Research and Initiatives for Sustainable Technologies and Institutions, Grambharti, Amarapur, Gujarat-382735, India; (K.S.); (A.C.M.)
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kannan Swathy
- Society for Research and Initiatives for Sustainable Technologies and Institutions, Grambharti, Amarapur, Gujarat-382735, India; (K.S.); (A.C.M.)
| | - Amarchand Chordia Murugan
- Society for Research and Initiatives for Sustainable Technologies and Institutions, Grambharti, Amarapur, Gujarat-382735, India; (K.S.); (A.C.M.)
| | - Patcharin Krutmuang
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
26
|
Characteristics of Soil Macrofauna and Its Coupling Relationship with Environmental Factors in the Loess Area of Northern Shaanxi. SUSTAINABILITY 2022. [DOI: 10.3390/su14052484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Even with the in-depth implementation of forestry ecological projects, such as restoring farmland to forest (grass) in the loess area of northern Shaanxi, the characteristics of soil macrofauna communities and their coupling relationship with environmental factors after vegetation restoration in the study area are yet obscure. However, the soil macrofauna community characteristics are of great significance for evaluating the effectiveness of vegetation restoration in the study area. Therefore, the study aims to reveal the characteristics of the soil macrofauna community and their coupling relationships with the environment in the loess area of northern Shaanxi. In this study, all organisms of the five typical vegetation types in the study area were collected by manual sorting (Armeniaca sibirica and Populus simonii mixed forest (M), Robinia pseudoacacia (P), Populus simonii (S), Populus hopeiensis (H) and Hippophae rhamnoides (R)), and the adjacent abandoned grassland (G) was used as a control group. The group number and the individual number of soil macrofauna of different vegetation types in the study area and their coupling relationships with environmental factors are studied, and the following conclusions were drawn. (1) The study shows that there are certain differences in the environmental factors of different vegetation types in the study area, which include the significant differences in the alkaline nitrogen content of various vegetation types (p < 0.05). (2) The effects of different vegetation on soil macrofauna community were different. There were no significant differences in the soil macrofauna community structure between Armeniaca sibirica and Populus simonii mixed forest, Robinia pseudoacacia, Populus simonii and Populus hopeiensis, but there was a large difference from that of the abandoned grasslands. The community density of soil macrofauna in Armeniaca sibirica and Populus simonii mixed forest and Populus simonii were significantly higher than that in the abandoned grassland (p < 0.05), but the other indexes showed no significant differences. The Shannon–Wiener index of Robinia pseudoacacia and Populus hopeiensis were much lower than that of the abandoned grassland (p < 0.05). (3) The diversity of soil macrofauna communities was mainly affected by pH, alkaline nitrogen, potassium available, vegetation coverage and litter production. (4) Different groups of soil macrofauna were closely related and reacted differently to environmental factors, and vegetation coverage, litter production and alkaline nitrogen content were the key factors affecting the composition of soil macrofauna communities.
Collapse
|
27
|
Kumari M, Kumar A. Estimating combined health risks of nanomaterials and antibiotics from natural water: a proposed framework. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:13845-13856. [PMID: 34596816 DOI: 10.1007/s11356-021-16795-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Nanoparticles (NPs) are one of the major class of emerging contaminants identified in aquatic environment. There is a probability that they can co-exist with other chemical pollutants like antibiotics (ABs) as ABs-NPs complexes in natural water systems. If these complexes are taken up via inadvertent ingestion of contaminated water, it might show detrimental effects on human health. To address this challenging issue, this study developed a risk framework to assess the combined exposure of ABs and NPs in natural waters for the first time. The six-step framework was applied to a hypothetical exposure of NPs (copper oxide, CuO; zinc oxide, ZnO; iron oxide, Fe3O4; and titanium oxide, TiO2) and ABs (ciprofloxacin, CIP; ofloxacin, OFX; norfloxacin, NOR; and levofloxacin, LEVO) to estimate human health risks for two different exposure scenarios. Risk estimation was also conducted for the released fragments of ABs, NPs and metal ions in the human digestive system. Mixture toxicity risk assessment was conducted for three different combinations: (i) ABs and metal ions, (ii) ABs and NPs, and (iii) NPs and metals ions. Although the expected risk values were observed to be less than 1 (both hazard quotients and hazard interactions less than 1) for all the conditions and assumptions made, still a thorough monitoring and analysis of the studied contaminants in water is required to protect humans from their adverse effects, if any. Maximum allowable concentrations (Cmax) at which no risk can occur to humans was found to be (maximum values): ABs (233.8 µg/L, NOR); metal ions (1.02 × 109 mg/L, Ti2+ ions), and NPs (6.68 × 105 mg/L, TiO2), respectively.
Collapse
Affiliation(s)
- Minashree Kumari
- Environment Engineering Section, Department of Civil Engineering, Indian Institute of Technology Delhi, Hauz Khas, Delhi, 110016, India.
| | - Arun Kumar
- Environment Engineering Section, Department of Civil Engineering, Indian Institute of Technology Delhi, Hauz Khas, Delhi, 110016, India
| |
Collapse
|
28
|
Liu L, He S, Tang M, Zhang M, Wang C, Wang Z, Sun F, Yan Y, Li H, Lin K. Pseudo toxicity abatement effect of norfloxacin and copper combined exposure on Caenorhabditis elegans. CHEMOSPHERE 2022; 287:132019. [PMID: 34450372 DOI: 10.1016/j.chemosphere.2021.132019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
The coexistence of antibiotics and heavy metals may result in complex ecotoxicological effects on living organisms. In this work, the combined toxic effects of norfloxacin (NOR) and copper (Cu) on Caenorhabditis elegans (C. elegans) were investigated due to the highly possible co-pollution tendency. The results indicated that locomotion behaviors (frequency of head thrash and body bend) of C. elegans were more sensitive as the exposure time of NOR or Cu prolonged. Meanwhile, the physiological indexes (locomotion behaviors, body length) of C. elegans were more sensitive to the combined pollution that with lower Cu dosage (0.0125 μM), in prolonged exposure experiments. In addition, the toxic effects of NOR-Cu on physiological indexes of C. elegans seemed to be alleviated during prolonged exposure when Cu was 1.25 μM. Similarly, the ROS production and apoptosis level almost unchanged with the addition of NOR compared with Cu (1.25 μM) exposure groups, but both significantly higher than the control groups. Furthermore, compared with Cu (0.0125 μM and 1.25 μM) exposure experiments, the addition of NOR had resulted in the genetic expression decrease of hsp-16.1, hsp-16.2, hsp-16.48, and the oxidative stress in C. elegans seems to be alleviated. However, the significantly decreased of ape-1 and sod-3 expression indicated the disruption of ROS defense mechanism. The irregular change in ace-1 and ace-2 gene expressions in NOR-Cu (0.0125 μM) would result in the locomotion behaviors disorders of C. elegans, and this also explains why C. elegans are more sensitive to the combination of NOR and lower concentration of Cu.
Collapse
Affiliation(s)
- Lili Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Siqi He
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Mingqi Tang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Meng Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Chen Wang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Zhiping Wang
- School of Environment Science and Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Feifei Sun
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ying Yan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hui Li
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Kuangfei Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
29
|
Xiao R, Ali A, Xu Y, Abdelrahman H, Li R, Lin Y, Bolan N, Shaheen SM, Rinklebe J, Zhang Z. Earthworms as candidates for remediation of potentially toxic elements contaminated soils and mitigating the environmental and human health risks: A review. ENVIRONMENT INTERNATIONAL 2022; 158:106924. [PMID: 34634621 DOI: 10.1016/j.envint.2021.106924] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/02/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Global concerns towards potentially toxic elements (PTEs) are steadily increasing due to the significant threats that PTEs pose to human health and environmental quality. This calls for immediate, effective and efficient remediation solutions. Earthworms, the 'ecosystem engineers', can modify and improve soil health and enhance plant productivity. Recently, considerable attention has been paid to the potential of earthworms, alone or combined with other soil organisms and/or soil amendments, to remediate PTEs contaminated soils. However, the use of earthworms in the remediation of PTEs contaminated soil (i.e., vermiremediation) has not been thoroughly reviewed to date. Therefore, this review discusses and provides comprehensive insights into the suitability of earthworms as potential candidates for bioremediation of PTEs contaminated soils and mitigating environmental and human health risks. Specifically, we reviewed and discussed: i) the occurrence and abundance of earthworms in PTEs contaminated soils; ii) the influence of PTEs on earthworm communities in contaminated soils; iii) factors affecting earthworm PTEs accumulation and elimination, and iv) the dynamics and fate of PTEs in earthworm amended soils. The technical feasibility, knowledge gaps, and practical challenges have been worked out and critically discussed. Therefore, this review could provide a reference and guidance for bio-restoration of PTEs contaminated soils and shall also help developing innovative and applicable solutions for controlling PTEs bioavailability for the remediation of contaminated soils and the mitigation of the environment and human risks.
Collapse
Affiliation(s)
- Ran Xiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Amjad Ali
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yaqiong Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Hamada Abdelrahman
- Cairo University, Faculty of Agriculture, Soil Science Department, Giza 12613, Egypt
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yanbing Lin
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Nanthi Bolan
- School of Agriculture and Environment, Institute of Agriculture, University of Western Australia, Perth WA 6009, Australia
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt.
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul 05006, Republic of Korea.
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
30
|
Pescatore T, Di Nica V, Finizio A, Ademollo N, Spataro F, Rauseo J, Patrolecco L. Sub-lethal effects of soil multiple contamination on the avoidance behaviour of Eisenia fetida. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112861. [PMID: 34628156 DOI: 10.1016/j.ecoenv.2021.112861] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/25/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Natural ecosystems are frequently exposed to complex mixtures of different chemicals. However, the environmental risk assessment is mainly based on data from individual substances. In this study, the individual and combined effects on the terrestrial earthworm E. fetida exposed to the anionic surfactant sodium lauryl ether sulphate (SLES) and the pesticides chlorpyrifos (CPF) and imidacloprid (IMI) were investigated, by using the avoidance behaviour as endpoint. Earthworms were exposed to a soil artificially contaminated with five sub-lethal concentrations of each contaminant, both as single substances and in combination of binary and ternary mixtures. Overall results showed that IMI provoked the highest avoidance effect on earthworms, with a concentration value that induced an avoidance rate of 50% of treated organisms (AC50) of 1.30 mg/kg, followed by CPF (AC50 75.26 mg/kg) and SLES (AC50 139.67 mg/kg). The application of the Combination Index (CI) method, indicated that a deviation from the additive response occurred for most of the tested chemical mixtures, leading to synergistic or antagonistic avoidance responses. Synergistic effects were produced by the exposure to the two lowest concentrations of the CPF+IMI mixture, and by the highest concentrations of SLES+CPF and SLES+CPF+IMI mixtures. On the contrary, antagonistic effects were observed at the lowest concentrations of the binary mixtures containing the SLES and at almost all the tested concentrations of the SLES+CPF+IMI mixture (with the exception of the highest tested concentration). These results show that the avoidance test is suitable to assess the detrimental effects exerted on earthworms by chemical mixtures in soil ecosystems and the use of behavioural endpoints can increase the ecological significance of environmental risk assessment procedures.
Collapse
Affiliation(s)
- Tanita Pescatore
- Institute of Polar Sciences - National Research Council (ISP-CNR), Rome, Italy; Department of Ecological and Biological Science (DEB-Tuscia University), Viterbo, Italy
| | - Valeria Di Nica
- Department of Earth and Environmental Sciences, University of Milano Bicocca, Milan, Italy.
| | - Antonio Finizio
- Department of Earth and Environmental Sciences, University of Milano Bicocca, Milan, Italy
| | - Nicoletta Ademollo
- Institute of Polar Sciences - National Research Council (ISP-CNR), Rome, Italy
| | - Francesca Spataro
- Institute of Polar Sciences - National Research Council (ISP-CNR), Rome, Italy
| | - Jasmin Rauseo
- Institute of Polar Sciences - National Research Council (ISP-CNR), Rome, Italy
| | - Luisa Patrolecco
- Institute of Polar Sciences - National Research Council (ISP-CNR), Rome, Italy
| |
Collapse
|
31
|
Chang X, Sun Y, Zhao L, Li X, Yang S, Weng L, Li Y. Exposure to fomesafen alters the gut microbiota and the physiology of the earthworm Pheretima guillelmi. CHEMOSPHERE 2021; 284:131290. [PMID: 34198065 DOI: 10.1016/j.chemosphere.2021.131290] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/04/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
The application of herbicide fomesafen plays a crucial role in ensuring global soybean productivity in modern agriculture, but it results in both adverse effects on soil ecosystems and phytotoxicity to succeeding crops. Soil pollution due to herbicides has raised much concern worldwide. However, there has been little investigations concerning their effects on soil fauna, especially on the gut microbial communities of earthworms. In this study, the soil endogeic earthworm Pheretima guillelmi was incubated for 20 days in natural and fomesafen-polluted soils to investigate the effects of the herbicide on gut bacterial microbiota and the earthworm's physiological indices, including energy resource (protein) and antioxidant enzyme (superoxide dismutase, SOD) of earthworms in the soil ecosystem. A significantly different and smaller microbial community was presented in the earthworm's gut compared with the cast and the surrounding soil, with exposure to fomesafen further reducing the bacterial diversity and altering the gut community composition. This was observed as significant changes in the relative abundance of the phyla Actinobacteria, Firmicutes, and Proteobacteria as well as the genera Bacillus, Microvirga, Blastococcus, Nocardioides, and Gaiella. Moreover, exposure to fomesafen reduced earthworms' energy resources and activated the antioxidant system, with both effects being significantly correlated with the gut microbial diversity. These findings unravel the fact that exposure to the herbicide fomesafen may affect non-target soil fauna via changes in their microbiota and physiological indices, thereby contributing new knowledge regarding the adverse impacts of fomesafen on the terrestrial ecosystem.
Collapse
Affiliation(s)
- Xingping Chang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China
| | - Yang Sun
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China.
| | - Lixia Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China
| | - Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China
| | - Side Yang
- Jilin Agricultural University, Changchun, 130118, China
| | - Liping Weng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China; Department of Soil Quality, Wageningen University, Wageningen, the Netherlands
| | - Yongtao Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China; College of Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
32
|
Česynaitė J, Praspaliauskas M, Pedišius N, Sujetovienė G. Biological assessment of contaminated shooting range soil using earthworm biomarkers. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:2024-2035. [PMID: 34533675 DOI: 10.1007/s10646-021-02463-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Environmental contamination at shooting ranges is a widely known ecological problem. The aim of the study was to evaluate the extent of contamination and the ecotoxicity of a shooting range soil assessing the physiological and biochemical effects on earthworm Eisenia fetida (Savigny). Adult E. fetida were exposed to the soils collected from different distances of the shooting range for 28 days. High concentrations of Pb (53023 mg kg-1), increased concentrations of Ni (12 mg kg-1) and Sb (600 mg kg-1), significantly higher soil organic matter content (7.2%) and density (6.14 g cm-3) were determined in the backstop berm soil. Significant weight loss (44.4%) of the adult earthworms after 28 days of exposure occurred in the most contaminated shooting range soil and significantly higher concentrations of Pb (3101 mg kg-1), Cu (51 mg kg-1), Ni (2 mg kg-1), and Sb (20 mg kg-1) were determined in the tissues of worms, and no juveniles found there. Juveniles exposed to the less contaminated soil of the shooting range (A, B and C) accumulated significant concentrations of Pb, Cu, Fe, Mn, and Zn. The antioxidant enzymatic activity (glutathione-s-transferase (GST)) decreased, and lipid peroxidation increased as indicated by an increase in malondialdehyde (MDA) level in earthworms exposed to the contaminated soil. A compensatory mechanism between the activities of glutathione reductase (GR) and GST in earthworms exposed to these soils was confirmed.
Collapse
Affiliation(s)
- Jūratė Česynaitė
- Department of Environmental Sciences, Vytautas Magnus University, University 10, Academy, Kaunas, Lithuania
| | - Marius Praspaliauskas
- Lithuanian Energy Institute, Laboratory of Heat-Equipment Research and Testing, Breslaujos 3, Kaunas, Lithuania
| | - Nerijus Pedišius
- Lithuanian Energy Institute, Laboratory of Heat-Equipment Research and Testing, Breslaujos 3, Kaunas, Lithuania
| | - Gintarė Sujetovienė
- Department of Environmental Sciences, Vytautas Magnus University, University 10, Academy, Kaunas, Lithuania.
| |
Collapse
|
33
|
Lykogianni M, Bempelou E, Karamaouna F, Aliferis KA. Do pesticides promote or hinder sustainability in agriculture? The challenge of sustainable use of pesticides in modern agriculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148625. [PMID: 34247073 DOI: 10.1016/j.scitotenv.2021.148625] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 05/20/2023]
Abstract
Sustainable agriculture aims to meet the food needs of the growing world population while ensuring minimal impact on the environment and humans as well as productivity. Although pesticides represent the backbone of the agri-food sector in its endeavor to secure food production their application is perceived by many as an obstacle towards the achievement of sustainability; the main concerns are linked with their adverse effects on human health and the environment. Τhis review aims to present the status of chemical plant protection and provide insights into the use of pesticides within the context of sustainable agriculture. It mainly focuses on the strengthened legislation frameworks, which especially in the European Union and the United States of America ensure the placement in the market of pesticides with acceptable toxicological and environmental profiles without compromising crop production. Furthermore, the implementation of Integrated Pest Management principles plays a key role in the sustainable use of pesticides. The stringent regulatory requirements have resulted in the dramatic increase of the associated effort and costs in pesticide research and development (R&D) of improved products. Nevertheless, the investment of leading agrochemical companies in the R&D of new pesticides remains high. All the above set the ground for the sustainable use of pesticides in crop production while their successful application remains a challenge.
Collapse
Affiliation(s)
- Maira Lykogianni
- Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, Iera odos 75, 118 55 Athens, Greece; Laboratory of Efficacy Assessment of Pesticides, Scientific Directorate of Pesticides Assessment and Phytopharmacy, Benaki Phytopathological Institute, 8 St. Delta str., 145 61, Kifissia, Attica, Greece.
| | - Eleftheria Bempelou
- Laboratory of Pesticide Residues, Scientific Directorate of Pesticides Assessment and Phytopharmacy, Benaki Phytopathological Institute, 8 St. Delta str., 145 61, Kifissia, Attica, Greece.
| | - Filitsa Karamaouna
- Laboratory of Efficacy Assessment of Pesticides, Scientific Directorate of Pesticides Assessment and Phytopharmacy, Benaki Phytopathological Institute, 8 St. Delta str., 145 61, Kifissia, Attica, Greece.
| | - Konstantinos A Aliferis
- Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, Iera odos 75, 118 55 Athens, Greece; Department of Plant Science, McGill University, Macdonald Campus, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada.
| |
Collapse
|
34
|
Cao Y, Zhao M, Ma X, Song Y, Zuo S, Li H, Deng W. A critical review on the interactions of microplastics with heavy metals: Mechanism and their combined effect on organisms and humans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147620. [PMID: 34029813 DOI: 10.1016/j.scitotenv.2021.147620] [Citation(s) in RCA: 177] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 05/22/2023]
Abstract
Although individual toxicity of microplastics (MPs) to organism has been widely studied, limited knowledge is available on the interactions between heavy metals and MPs, as well as potential biological impacts from their combinations. The interaction between MPs and heavy metals may alter their environmental behaviors, bioavailability and potential toxicity, leading to ecological risks. In this paper, an overview of different sources of heavy metals on MPs is provided. Then the recent achievements in adsorption isotherms, adsorption kinetics and interaction mechanism between MPs and heavy metals are discussed. Besides, the factors that influence the adsorption of heavy metals on MPs such as polymer properties, chemical properties of heavy metals, and other environmental factors are also considered. Furthermore, potential combined toxic effects from MPs and heavy metals on organisms and human health are further summarized.
Collapse
Affiliation(s)
- Yanxiao Cao
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China.
| | - Mengjie Zhao
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Xianying Ma
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Yongwei Song
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Shihan Zuo
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Honghu Li
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Wenzhuo Deng
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China
| |
Collapse
|
35
|
Bhandari G, Atreya K, Vašíčková J, Yang X, Geissen V. Ecological risk assessment of pesticide residues in soils from vegetable production areas: A case study in S-Nepal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147921. [PMID: 34134388 DOI: 10.1016/j.scitotenv.2021.147921] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/03/2021] [Accepted: 05/15/2021] [Indexed: 06/12/2023]
Abstract
Pesticides pose a serious risk to ecosystems. In this study, we used European Food Safety Authority methods, such as risk quotient (RQ) and toxicity exposure ratios (TER), to assess the potential ecological risks of 15 pesticide residues detected in agricultural soils in the Gaidahawa Rural Municipality of Nepal. The mean and maximum concentrations of the detected pesticide residues in the soil were used for risk characterization related to soil organisms. RQmean, TERmean and RQmaximum, TERmaximum were used to determine general and the worst-case scenarios, respectively. Of all the detected pesticides in soils, the no observed effect concentration (NOEC) for 27% of the pesticides was not available in literature for the tested soil organisms and their TER and RQ could not be calculated. RQ threshold value of ≥1 indicates high risk for organisms. Similarly, TER threshold value of ≥5, which is acceptable trigger point value for chronic exposure, indicates an acceptable risk. The results showed that the worst-case scenario (RQmaximum) indicated a high risk for soil organisms from chlorpyrifos [RQmaximum > 9 at depths (cm) of 0-5, 15-20 and 35-40 soil layer]; imidacloprid (1.78 in the 35-40 cm soil layer) and profenofos (3.37 in the 0-5 cm and 1.09 in the 35-40 cm soil layer). Likewise, for all the soil depths, the calculated TER for both the general and worst-case scenarios for chlorpyrifos ranged from 0.37 to 3.22, indicating chronic toxicity to F. candida. Furthermore, the risk of organophosphate pesticides for soil organisms in the sampling sites was mainly due to chlorpyrifos, except for two study sites where the risk was from profenofos. Ecological risk assessment (EcoRA) of the pesticide use in the study area indicated that the EFSA soil organisms were at risk at some of the localities where farmers practiced conventional farming.
Collapse
Affiliation(s)
- Govinda Bhandari
- Soil Physics and Land Management (SLM), Wageningen University and Research, the Netherlands; Progressive Sustainable Developers Nepal (PSD-Nepal), P.O. Box 23883, Kathmandu 31, Nepal.
| | - Kishor Atreya
- School of Forestry and Natural Resource Management, Institute of Forestry (IOF), Tribhuvan University (TU), Kathmandu, Nepal
| | - Jana Vašíčková
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Czech Republic
| | - Xiaomei Yang
- Soil Physics and Land Management (SLM), Wageningen University and Research, the Netherlands; College of Natural Resources and Environment, Northwest A&F University, 712100 Yangling, China
| | - Violette Geissen
- Soil Physics and Land Management (SLM), Wageningen University and Research, the Netherlands
| |
Collapse
|
36
|
Touzout N, Mehallah H, Moralent R, Moulay M, Nemmiche S. Phytotoxic evaluation of neonicotinoid imidacloprid and cadmium alone and in combination on tomato (Solanum lycopersicum L.). ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1126-1137. [PMID: 34085160 DOI: 10.1007/s10646-021-02421-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Neonicotinoids and heavy metals pollution exist simultaneously in agro ecosystem. However, little is known about their combined ecotoxicological effects on non-target crop plants. We have selected imidacloprid (IMI) and cadmium (Cd), applied alone and in combination, to evaluate their effect on growth, physiological and biochemical parameters of tomato. Results showed that the single application of contaminants (IMI and/or Cd) adversely affected both the growth and chlorophyll pigment, and Cd alone application was more phytotoxic than IMI. However, their combined action aggravated the inhibitory effect and indicate a synergistic effect, but it exerted antagonistic effects on chlorophyll pigment inhibition compared with IMI and Cd alone treatments. Both chemicals increased hydrogen peroxide level and generated lipid peroxidation, and the co-contamination exacerbates oxidative stress by their synergistic effect. Those results implicate that disturbance of cellular redox status is the plausible mechanism for IMI and Cd induced toxicity. In conclusion, the single or combined IMI and Cd cause negative effects on tomatoes.
Collapse
Affiliation(s)
- Nabil Touzout
- Faculty of Nature and Life Sciences, Department of Agronomy, University of Mostaganem, Mostaganem, 27000, Algeria
| | - Hafidha Mehallah
- Faculty of Nature and Life Sciences, Department of Biology, University of Mostaganem, Mostaganem, 27000, Algeria
| | - Radia Moralent
- Faculty of Nature and Life Sciences, Department of Biology, University of Mostaganem, Mostaganem, 27000, Algeria
| | - Mohammed Moulay
- Faculty of Nature and Life Sciences, Department of Biology, University of Mostaganem, Mostaganem, 27000, Algeria
- Stem Cells Research Group, KFMRC, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Saïd Nemmiche
- Faculty of Nature and Life Sciences, Department of Biology, University of Mostaganem, Mostaganem, 27000, Algeria.
| |
Collapse
|
37
|
Soroldoni S, Honscha LC, Reis FO, Duarte FA, da Silva FMR, Pinho GLL. Antifouling paint particles in soils: toxic impact that goes beyond the aquatic environment. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1161-1169. [PMID: 33973134 DOI: 10.1007/s10646-021-02418-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Antifouling paint particles (APPs) originate from vessel maintenance and cleaning activities and their potentially toxic components are found at high concentrations in nearby soils, yet no studies have investigated their toxicity to soil organisms. We investigated the effects of exposure to soils containing APPs on the mortality, biomass, and reproductive performance of the earthworm Eisenia andrei. Earthworms were exposed to contaminated soil from a boatyard and non-contaminated soils treated with different concentrations of APPs (0.01, 0.14 and 1.50%, w/w) for 56 days. An ecological risk assessment using a Hazard Quotient (HQ) was also carried out. Exposure to contaminated soils reduced worm survival, biomass, and reproductive performance and these effects were concentration-dependent. The HQ was high in soil samples with APPs in both acute and chronic tests, and copper contributed the most to the HQ. Copper, zinc, and lead had the highest concentrations and exceeded the Brazilian legal limits. A principal component analysis (PCA) was performed and showed that biomass and number of juveniles parameters was associated with the metals Cu, Sn and Zn, while the mortality parameter had no association with any analyzed metal. These findings highlighted that the synergistic effects of compounds present in the APPs, such as the booster biocides DCOIT, and metal mixtures should not be overlooked. We conclude that soils contaminated with APPs are toxic to earthworms. This reveals that the ecological impact of APPs goes beyond effects on aquatic environments, compromising key organisms of edaphic ecological processes.
Collapse
Affiliation(s)
- Sanye Soroldoni
- Laboratório de Microcontaminantes Orgânicos e Ecotoxicologia Aquática-Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), Av. Itália, Km 8, Carreiros, Rio Grande, RS, 96203-900, Brazil.
- Programa de Pós-graduação em Oceanologia, Instituto de Oceanografia, Universidade Federal do Rio Grande, Rio Grande, Brazil.
| | - Laiz Coutelle Honscha
- Programa de Pós-graduação em Ciências Da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Brazil
- Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Fernanda Oliveira Reis
- Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil
- Programa de Pós-graduação em Biologia Animal, Universidade Federal de Pelotas, Capão do Leão, Brazil
| | - Fabio Andrei Duarte
- Departamento de Química, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Flávio Manoel Rodrigues da Silva
- Programa de Pós-graduação em Ciências Da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Brazil
- Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil
- Programa de Pós-graduação em Biologia Animal, Universidade Federal de Pelotas, Capão do Leão, Brazil
| | - Grasiela Lopes Leães Pinho
- Laboratório de Microcontaminantes Orgânicos e Ecotoxicologia Aquática-Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), Av. Itália, Km 8, Carreiros, Rio Grande, RS, 96203-900, Brazil
- Programa de Pós-graduação em Oceanologia, Instituto de Oceanografia, Universidade Federal do Rio Grande, Rio Grande, Brazil
| |
Collapse
|
38
|
Recent Achievements in Electrochemical and Surface Plasmon Resonance Aptasensors for Mycotoxins Detection. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9070180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mycotoxins are secondary metabolites of fungi that contaminate agriculture products. Their release in the environment can cause severe damage to human health. Aptasensors are compact analytical devices that are intended for the fast and reliable detection of various species able to specifically interact with aptamers attached to the transducer surface. In this review, assembly of electrochemical and surface plasmon resonance (SPR) aptasensors are considered with emphasis on the mechanism of signal generation. Moreover, the properties of mycotoxins and the aptamers selected for their recognition are briefly considered. The analytical performance of biosensors developed within last three years makes it possible to determine mycotoxin residues in water and agriculture/food products on the levels below their maximal admissible concentrations. Requirements for the development of sample treatment and future trends in aptasensors are also discussed.
Collapse
|
39
|
Geissen V, Silva V, Lwanga EH, Beriot N, Oostindie K, Bin Z, Pyne E, Busink S, Zomer P, Mol H, Ritsema CJ. Cocktails of pesticide residues in conventional and organic farming systems in Europe - Legacy of the past and turning point for the future. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 278:116827. [PMID: 33744785 DOI: 10.1016/j.envpol.2021.116827] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/21/2021] [Accepted: 02/21/2021] [Indexed: 05/21/2023]
Abstract
Considering that pesticides have been used in Europe for over 70 years, a system for monitoring pesticide residues in EU soils and their effects on soil health is long overdue. In an attempt to address this problem, we tested 340 EU agricultural topsoil samples for multiple pesticide residues. These samples originated from 4 representative EU case study sites (CSS), which covered 3 countries and four of the main EU crops: vegetable and orange production in Spain (S-V and S-O, respectively), grape production in Portugal (P-G), and potato production in the Netherlands (N-P). Soil samples were collected between 2015 and 2018 after harvest or before the start of the growing season, depending on the CSS. Conventional and organic farming results were compared in S-V, S-O and N-P. Soils from conventional farms presented mostly mixtures of pesticide residues, with a maximum of 16 residues/sample. Soils from organic farms had significantly fewer residues, with a maximum of 5 residues/sample. The residues with the highest frequency of detection and the highest content in soil were herbicides: glyphosate and its main metabolite AMPA (P-G, N-P, S-O), and pendimethalin (S-V). Total residue content in soil reached values of 0.8 mg kg-1 for S-V, 2 mg kg-1 for S-O and N-P, and 12 mg kg-1 for P-G. Organic soils presented 70-90% lower residue concentrations than the corresponding conventional soils. There is a severe knowledge gap concerning the effects of the accumulated and complex mixtures of pesticide residues found in soil on soil biota and soil health. Safety benchmarks should be defined and introduced into (soil) legislation as soon as possible. Furthermore, the process of transitioning to organic farming should take into consideration the residue mixtures at the conversion time and their residence time in soil.
Collapse
Affiliation(s)
- Violette Geissen
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, the Netherlands
| | - Vera Silva
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, the Netherlands.
| | - Esperanza Huerta Lwanga
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, the Netherlands; Agroecología, El Colegio de La Frontera Sur - Unidad Campeche, Campeche, Mexico
| | - Nicolas Beriot
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, the Netherlands; Sustainable Use, Management and Reclamation of Soil and Water Research Group, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Klaas Oostindie
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, the Netherlands
| | - Zhaoqi Bin
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, the Netherlands
| | - Erin Pyne
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, the Netherlands
| | - Sjors Busink
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, the Netherlands
| | - Paul Zomer
- Wageningen Food Safety Research, Part of Wageningen University & Research Wageningen, the Netherlands
| | - Hans Mol
- Wageningen Food Safety Research, Part of Wageningen University & Research Wageningen, the Netherlands
| | - Coen J Ritsema
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
40
|
Lisbôa RDM, Storck TR, Silveira ADO, Wolff D, Tiecher TL, Brunetto G, Clasen B. Ecotoxicological responses of Eisenia andrei exposed in field-contaminated soils by sanitary sewage. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 214:112049. [PMID: 33647852 DOI: 10.1016/j.ecoenv.2021.112049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/12/2021] [Accepted: 02/08/2021] [Indexed: 05/21/2023]
Abstract
The disposal of untreated sanitary sewage in the soil has several consequences for human health and leads to environmental risks; thus, it is necessary investigating, monitoring and remediating the affected sites. The aims of the current study are to evaluate ecotoxicological effects on Eisenia andrei earthworms exposed to soil subjected to sources of sanitary sewage discharge and to investigate whether prevention values established by the Brazilian legislation for soil quality, associated with the incidence of chemical substances in it, are satisfactory enough to assure the necessary quality for different organisms. Earthworms' behavior, reproduction, acetylcholinesterase activity, catalase, superoxide dismutase and malondialdehyde levels were evaluated. The reproduction and behavior of earthworms exposed to sanitary sewage were adversely affected. Increased superoxide dismutase and catalase activity acted as antioxidant defense mechanism. Significantly increased lipid peroxidation levels and acetylcholinesterase activity inhibition have indicated lipid peroxidation in cell membrane and neurotransmission changes, respectively. Results have confirmed that sanitary sewage induced oxidative stress in earthworms. In addition, based on biochemical data analysis, the integrated biomarker response (IBR) has evidenced different toxicity levels in earthworms between the investigated points. Finally, results have indicated that effluents released into the soil, without proper treatment, lead to contaminant accumulation due to soil saturation and it can hinder different processes and biological development taking place in the soil. In addition, the current study has shown that physical-chemical analyses alone are not enough to assess soil quality, since it is also requires adopting an ecotoxicological approach. Brazilian legislation focused on soil quality must be revised and new guiding values must be proposed.
Collapse
Affiliation(s)
- Roberta de Moura Lisbôa
- Pós-Graduate Program in Civil Engineering (PPGEC), Technology Center, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, RS, Brazil
| | - Tamiris Rosso Storck
- Pós-Graduate Program in Environmental Engineering (PPGEAmb), Technology Center, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, RS, Brazil
| | - Andressa de Oliveira Silveira
- Pós-Graduate Program in Environmental Engineering (PPGEAmb), Technology Center, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, RS, Brazil
| | - Delmira Wolff
- Pós-Graduate Program in Civil Engineering (PPGEC), Technology Center, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, RS, Brazil; Pós-Graduate Program in Environmental Engineering (PPGEAmb), Technology Center, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, RS, Brazil
| | - Tadeu Luis Tiecher
- Rio Grande do Sul Federal Institute, Campus Restinga, Porto Alegre 91791-508, RS, Brazil
| | - Gustavo Brunetto
- Soil Science Department, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Barbara Clasen
- Pós-Graduate Program in Environmental Engineering (PPGEAmb), Technology Center, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, RS, Brazil; State University of Rio Grande do Sul, Environmental Science Department, Porto Alegre 90010-191, RS, Brazil.
| |
Collapse
|
41
|
Urionabarrenetxea E, Garcia-Velasco N, Anza M, Artetxe U, Lacalle R, Garbisu C, Becerril T, Soto M. Application of in situ bioremediation strategies in soils amended with sewage sludges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:144099. [PMID: 33421774 DOI: 10.1016/j.scitotenv.2020.144099] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
Increasing soil loss and the scarcity of useful land requires new reusing strategies. Thus, recovery of polluted soils recovery offers a chance for economic and social regeneration. With this objective, different soil cleaning technologies have been developed during the last few decades. On one hand, classical physical and/or chemical technologies can be found which are efficient, but have high costs and impacts upon ecosystems. On the other hand, biological methods (such as phytoremediation, bioremediation and vermiremediation) are relatively cost effective and eco-friendly, but also more time-consuming. These biological methods and their yields have been widely studied but little is known about the interaction between different soil cleaning methods. The combination of different biological strategies could lead to an improvement in remediation performance. Hence, in the present work, different micro-, vermi- and phyto-remediation combinations are applied in a sewage sludge polluted landfill in Gernika-Lumo (Basque Country) which was used as a disposal point for decades, in search of the treatment (single) or combination (dual or triple) of treatments with best remediation yields. Eight experimental groups were applied (n=3) placing earthworms (E), bacteria (B), plants (P), bacteria+earthworms (B+E), bacteria+plants (B+P), plants+earthworms (P+E) plants+bacteria+earthworms (P+B+E) and a non-treated (N.T.) group in the experimental plot (Landfill 17), for 12 months. In order to assess the efficiency of each treatment, a complete characterization (chemical and ecotoxicological) was carried out before and after remediation. Results showed high removal rates for dieldrin (between 50% and 78%) in all the experimental groups. In contrast, removal rates around 20-25% were achieved for heavy metals (Cd 15%-35%; Ni 24%-37%; Pb 15%-33%; Cr 7%-39%) and benzo(a)pyrene (19.5%-28%). The highest reductions were observed in dual (P+E, B+E) and triple (P+B+E) treatments. The best elimination yields were obtained after P+B+E treatment, as highlighted by the battery of ecotoxicological tests and bioassays performed with earthworms, plants and bacteria.
Collapse
Affiliation(s)
- Erik Urionabarrenetxea
- Cell Biology in Environmental Toxicology (CBET) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology & Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080 Bilbao, Basque Country, Spain
| | - Nerea Garcia-Velasco
- Cell Biology in Environmental Toxicology (CBET) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology & Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080 Bilbao, Basque Country, Spain
| | - Mikel Anza
- NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, P812, E-48160 Derio, Basque Country, Spain
| | - Unai Artetxe
- Ecofisko Research Group, Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), P.O. Box 644, E-48080 Bilbao, Basque Country, Spain
| | - Rafael Lacalle
- Ecofisko Research Group, Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), P.O. Box 644, E-48080 Bilbao, Basque Country, Spain
| | - Carlos Garbisu
- NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, P812, E-48160 Derio, Basque Country, Spain
| | - Txema Becerril
- Ecofisko Research Group, Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), P.O. Box 644, E-48080 Bilbao, Basque Country, Spain
| | - Manu Soto
- Cell Biology in Environmental Toxicology (CBET) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology & Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080 Bilbao, Basque Country, Spain.
| |
Collapse
|
42
|
Distribution of organochlorine pesticide pollution in water, sediment, mollusk, and fish at Saguling Dam, West Java, Indonesia. Toxicol Res 2021; 38:149-157. [PMID: 35419272 PMCID: PMC8960551 DOI: 10.1007/s43188-021-00094-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/10/2021] [Accepted: 02/22/2021] [Indexed: 10/21/2022] Open
Abstract
This study aims to determine the distribution of organochlorine pesticide pollution in water, sediments, mollusks, and fish at Saguling Dam as baseline data of organochlorine pollution. Samples were obtained from 12 locations, with 9 and 3 sampling points inside and outside the dam, respectively. Measurement of organochlorine residues was carried out using methods of extraction, purification, evaporation, and gas chromatography. Results showed the presence of several types of organochlorine compounds, namely, lindane, aldrin, dieldrin, heptachlor, dichlorodiphenyltrichloroethane (DDT), and endosulfan. Aldrin was dominant in water (2-37 μg/L) and sediments (2-1438 μg/L), while DDT and heptachlor were dominant organochlorine compounds in mollusks (13-2758 µg/L) and fish (11-104 μg/L), respectively. Sediments demonstrated higher organochlorine concentrations than water, mollusk, and fish. The distribution of organochlorine was affected by land use around the Citarum watershed and pollutant input from tributaries.
Collapse
|
43
|
Alengebawy A, Abdelkhalek ST, Qureshi SR, Wang MQ. Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. TOXICS 2021; 9:42. [PMID: 33668829 PMCID: PMC7996329 DOI: 10.3390/toxics9030042] [Citation(s) in RCA: 458] [Impact Index Per Article: 152.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/19/2022]
Abstract
Environmental problems have always received immense attention from scientists. Toxicants pollution is a critical environmental concern that has posed serious threats to human health and agricultural production. Heavy metals and pesticides are top of the list of environmental toxicants endangering nature. This review focuses on the toxic effect of heavy metals (cadmium (Cd), lead (Pb), copper (Cu), and zinc (Zn)) and pesticides (insecticides, herbicides, and fungicides) adversely influencing the agricultural ecosystem (plant and soil) and human health. Furthermore, heavy metals accumulation and pesticide residues in soils and plants have been discussed in detail. In addition, the characteristics of contaminated soil and plant physiological parameters have been reviewed. Moreover, human diseases caused by exposure to heavy metals and pesticides were also reported. The bioaccumulation, mechanism of action, and transmission pathways of both heavy metals and pesticides are emphasized. In addition, the bioavailability in soil and plant uptake of these contaminants has also been considered. Meanwhile, the synergistic and antagonistic interactions between heavy metals and pesticides and their combined toxic effects have been discussed. Previous relevant studies are included to cover all aspects of this review. The information in this review provides deep insights into the understanding of environmental toxicants and their hazardous effects.
Collapse
Affiliation(s)
- Ahmed Alengebawy
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China;
| | - Sara Taha Abdelkhalek
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.T.A.); (S.R.Q.)
- Department of Entomology, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Sundas Rana Qureshi
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.T.A.); (S.R.Q.)
| | - Man-Qun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.T.A.); (S.R.Q.)
| |
Collapse
|
44
|
Yan X, Wang J, Zhu L, Wang J, Li S, Kim YM. Oxidative stress, growth inhibition, and DNA damage in earthworms induced by the combined pollution of typical neonicotinoid insecticides and heavy metals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:141873. [PMID: 32911142 DOI: 10.1016/j.scitotenv.2020.141873] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Heavy metals pollution of soil and widespread application of neonicotinoid insecticides have caused environmental problems worldwide. To evaluate ecological toxicity resulting from the combined pollution of neonicotinoids and heavy metals, typical representatives of neonicotinoid insecticides (imidacloprid, thiamethoxam, dinotefuran) and heavy metals (cadmium, copper, zinc) were selected as soil pollutants; earthworms were used as test organisms. Analysis of the main and interaction effects of a combined pollution process were performed using a uniform design method. Results showed that the reactive oxygen species (ROS) content of earthworms in most treatment groups was higher during exposure than that of the control group. The malondialdehyde (MDA) and ROS content of earthworms demonstrated relatively low values on the 21st day and increased by the 28th day. The interaction between dinotefuran and Cd had significant antagonistic effects on ROS and MDA. The combined pollution adversely affected both the growth and genes of earthworms and also caused damage to the epidermis, midgut, and DNA. The interaction between imidacloprid and Cd was synergistic to ROS, weight inhibition rate, and Olive tail moment (OTM), but was antagonistic to MDA. Of all the single and combined exposures, Zn as a single chemical affected ROS and DNA damage the most, and MDA was significantly enhanced by imidacloprid. Composite pollutants may create different primary effects and interactions causing potential harm to soil organisms.
Collapse
Affiliation(s)
- Xiaojing Yan
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, China.
| | - Jinhua Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, China.
| | - Lusheng Zhu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, China.
| | - Jun Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, China.
| | - Shuyan Li
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, China.
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
45
|
Seaf El-Nasr TA, Gomaa H, Emran MY, Motawea MM, Ismail ARAM. Recycling of Nanosilica from Agricultural, Electronic, and Industrial Wastes for Wastewater Treatment. WASTE RECYCLING TECHNOLOGIES FOR NANOMATERIALS MANUFACTURING 2021:325-362. [DOI: 10.1007/978-3-030-68031-2_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
46
|
Heavy Metals Removal Using Carbon Based Nanocomposites. ENVIRONMENTAL REMEDIATION THROUGH CARBON BASED NANO COMPOSITES 2021. [DOI: 10.1007/978-981-15-6699-8_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
47
|
Teng H, Yuan Y, Zhang T, Chang X, Wang D. Evaluation of the sublethal effect of tetrachlorantraniliprole on Spodoptera exigua and its potential toxicity to two non-target organisms. PLoS One 2020; 15:e0242052. [PMID: 33166345 PMCID: PMC7652279 DOI: 10.1371/journal.pone.0242052] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 10/27/2020] [Indexed: 11/18/2022] Open
Abstract
Tetrachlorantraniliprole (TCAP) is a novel anthranilic diamide insecticide that specifically targets the ryanodine receptors of lepidopteran insect species with excellent insecticidal activity. Previous studies have reported the sublethal effects of multiple diamides on several lepidopteran species, whereas the sublethal and non-target effects of TCAP remain largely unknown. We assessed the sublethal effects of TCAP on Spodoptera exigua. We also investigated the effects of TCAP on non-target Harmonia axyridis and Eisenia fetida, S. exigua was more sensitive to TCAP than to chlorantraniliprole, as the LC50 (10.371 μg L-1 at 72 h) of TCAP was relatively lower. Compared with those of the control, sublethal concentrations of TCAP (LC10 and LC30) not only prolonged the duration of the larval and pupal stages as well as the mean generation time but also reduced certain population parameters. On the other hand, TCAP exposure, even at the highest concentration, did not induce toxic effects in H. axyridis ladybugs (1st instar larvae and adults) or E. fetida earthworms. Taken together, our results suggest that TCAP can be used as a novel and promising component of the integrated pest management (IPM) program against S. exigua due to its robust target effects and negligible non-target risks.
Collapse
Affiliation(s)
- Haiyuan Teng
- Institute of Eco-Environmental and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yongda Yuan
- Institute of Eco-Environmental and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Tianshu Zhang
- Institute of Eco-Environmental and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xiaoli Chang
- Institute of Eco-Environmental and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Dongsheng Wang
- Institute of Eco-Environmental and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
48
|
Zeb A, Li S, Wu J, Lian J, Liu W, Sun Y. Insights into the mechanisms underlying the remediation potential of earthworms in contaminated soil: A critical review of research progress and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140145. [PMID: 32927577 DOI: 10.1016/j.scitotenv.2020.140145] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
In recent years, soil pollution is a major global concern drawing worldwide attention. Earthworms can resist high concentrations of soil pollutants and play a vital role in removing them effectively. Vermiremediation, using earthworms to remove contaminants from soil or help to degrade non-recyclable chemicals, is proved to be an alternative, low-cost technology for treating contaminated soil. However, knowledge about the mechanisms and framework of the vermiremediation various organic and inorganic contaminants is still limited. Therefore, we reviewed the research progress of effects of soil contaminants on earthworms and potential of earthworm used for remediation soil contaminated with heavy metals, polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), polycyclic aromatic hydrocarbons (PAHs), pesticides, as well as crude oil. Especially, the possible processes, mechanisms, advantages and limitations, and how to boost the efficiency of vermiremediation are well addressed in this review. Finally, future prospects of vermiremediation soil contamination are listed to promote further studies and application of vermiremediation in contaminated soils.
Collapse
Affiliation(s)
- Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Song Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiani Wu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiapan Lian
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Yuebing Sun
- Key Laboratory of Original Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|
49
|
Liu T, Liu Y, Fang K, Zhang X, Wang X. Transcriptome, bioaccumulation and toxicity analyses of earthworms (Eisenia fetida) affected by trifloxystrobin and trifloxystrobin acid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:115100. [PMID: 32806466 DOI: 10.1016/j.envpol.2020.115100] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
As a promising fungicide, the potential environmental risk of trifloxystrobin (TFS) and its main metabolism trifloxystrobin acid (TFSA) in soil environment should be given special attention. The present study investigated the potential risks of TFS and TFSA in soil environment to earthworms (Eisenia fetida) through measuring several biomarkers. Residual analysis showed that TFSA was more stable than TFS in artificial soil with half-lives ranging from 138.6 to 231.0 d and 20.4-24.7 d, respectively. Additionally, the accumulation of TFS in earthworms increased in the beginning and then decreased from day 14, while that of TFSA continuously increased. At concentrations of 4.0 mg/kg and 10.0 mg/kg, the weight and lysosomal membrane stability of earthworms were reduced; however, the superoxide dismutase (SOD) activity, glutathione-S-transferase (GST) activity and malondialdehyde (MDA) content in earthworms were enhanced by TFS and TFSA. Moreover, the growth inhibition effect and the oxidative damage level induced by TFSA to earthworms were higher than those induced by TFS. The transcriptome analysis date indicated that the differentially expressed genes (DEGs) in both TFS and TFSA treatments were mainly enriched in ribosome pathway and lysosome pathway, finally affecting the protein synthesis and proteolysis in earthworms. The findings of the present study indicated that TFSA may pose a higher risk in the soil environment than TFS.
Collapse
Affiliation(s)
- Tong Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao, 266101, PR China
| | - Yalei Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao, 266101, PR China
| | - Kuan Fang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao, 266101, PR China
| | - Xiaolian Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao, 266101, PR China
| | - Xiuguo Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao, 266101, PR China.
| |
Collapse
|
50
|
Lekvongphiboon P, Praphairaksit N. Combined toxicity of imidacloprid and cadmium on histopathology and acetylcholinesterase activity in aquatic oligochaetes (Tubifex tubifex Müller, 1774). ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:3431-3441. [PMID: 32358658 DOI: 10.1007/s10653-020-00585-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Imidacloprid is one of the neonicotinoid insecticides that has been applied in many farmlands and was detected in many water resources worldwide. However, not only this insecticide but also cadmium was found in the agricultural wastewater in close proximity to industrial areas. This research aims to investigate the acute toxicity of imidacloprid and cadmium on the biochemical changes, pathological changes and accumulation of cadmium in Tubifex tubifex after 24- and 48-h exposure. The results show that combined toxicity of two chemicals was synergistic. In combined toxicity test, cadmium accumulation and acetylcholinesterase activity in worm tissue were significantly increased when compared with the single test. The severity of histopathology shows a dose-dependent relationship. Epidermal and gut cell degeneration, hyperplasia of epidermal and gut cells, irregular surface of the epidermis, overexpression of chloragosome and nerve degeneration were observed. Overall, this research provides useful bio-markers to assess the toxicity of imidacloprid and cadmium on the aquatic environment.
Collapse
Affiliation(s)
- Pakorn Lekvongphiboon
- Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, 10300, Thailand
| | - Nalena Praphairaksit
- Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, 10300, Thailand.
| |
Collapse
|