1
|
Tonolo F, Fiorese F, Rilievo G, Grinzato A, Latifidoost Z, Nikdasti A, Cecconello A, Cencini A, Folda A, Arrigoni G, Marin O, Rigobello MP, Magro M, Vianello F. Bioactive peptides from food waste: New innovative bio-nanocomplexes to enhance cellular uptake and biological effects. Food Chem 2025; 463:141326. [PMID: 39316902 DOI: 10.1016/j.foodchem.2024.141326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/28/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
Mastitis is the most important bovine disease, causing dramatic economic losses to the dairy industry, worldwide. This study explores the valorization of whey from cows affected by mastitis, through a novel separation approach. Surface Active Maghemite Nanoparticles (SAMNs) were used as magnetic baits to selectively bind bioactive peptides with potential health benefits. Advanced techniques such as HPLC and LC-MS/MS highlighted SAMN capability of isolating a restricted group of peptides, drastically diverging from the control profile (Solid Phase Extraction, SPE) and characterized by a peculiar acidic residue distribution. Most importantly, both magnetically purified and nano-immobilized peptides (SAMN@peptides) showed protective activity against oxidative stress and inflammation, when tested on Caco-2 cells; with SAMN@peptides being associated with the strongest biological effect. SAMNs exhibited excellent characteristics, they are environmentally sustainable, and their synthesis is cost-effective prompting at a scalable and selective tool for capturing bioactive peptides, with potential applications in functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Federica Tonolo
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy.
| | - Federico Fiorese
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Graziano Rilievo
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - Alessandro Grinzato
- ESRF: European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Zahra Latifidoost
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - Ali Nikdasti
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - Alessandro Cecconello
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - Aura Cencini
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - Alessandra Folda
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Giorgio Arrigoni
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Oriano Marin
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Maria Pia Rigobello
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Massimiliano Magro
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy.
| | - Fabio Vianello
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| |
Collapse
|
2
|
Amahrous A, Taib M, Meftah S, Oukani E, Lahboub B. ChemicalComposition, Health Benefits and Future Prospects of Hairless Canary Seed (Phalariscanariensis L.): A Review. J Oleo Sci 2024; 73:1361-1375. [PMID: 39414460 DOI: 10.5650/jos.ess24108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024] Open
Abstract
The increasing global population and the rise of health-conscious consumers have led to a growing demand for innovative foods and functional ingredients. Hairless canary seed (Phalaris canariensis L.), which has recently obtained regulatory food approval from Health Canada and the United States Food and Drug Administration (US-FDA), has the potential to meet these demands due to its unique nutrient profile and characteristics. Canary seed stands out among cereals and pseudo-cereals (gluten-free cereals) as it has the highest protein content and is gluten-free. Additionally, it contains significant amounts of tryptophan, an amino acid typically lacking in cereals. It is considered a true cereal grain that can be processed into flour, starch, and oil for various food and non-food applications. This article provides a comprehensive overview of the chemical composition, functional properties, and biological activities of canary seeds. It also explores the processing methods for incorporating these seeds into food and cosmetic products. Furthermore, suggestions for future research directions are presented to enhance the utilization of this plant. Overall, it is evident that Phalaris canariensis holds considerable potential as a sustainable crop that can be further developed.
Collapse
Affiliation(s)
- Ayoub Amahrous
- Laboratory of Applied Chemistry and Environment, Hassan 1st University Faculty of Science and Technology
| | - Mehdi Taib
- Laboratory of Applied Chemistry and Environment, Hassan 1st University Faculty of Science and Technology
| | - Said Meftah
- Laboratory of Applied Chemistry and Environment, Hassan 1st University Faculty of Science and Technology
| | - Elhassan Oukani
- Laboratory of Applied Chemistry and Environment, Hassan 1st University Faculty of Science and Technology
| | - Bouyazza Lahboub
- Laboratory of Applied Chemistry and Environment, Hassan 1st University Faculty of Science and Technology
| |
Collapse
|
3
|
Xu Z, Han S, Guan S, Zhang R, Chen H, Zhang L, Han L, Tan Z, Du M, Li T. Preparation, design, identification and application of self-assembly peptides from seafood: A review. Food Chem X 2024; 23:101557. [PMID: 39007120 PMCID: PMC11239460 DOI: 10.1016/j.fochx.2024.101557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024] Open
Abstract
Hydrogels formed by self-assembling peptides with low toxicity and high biocompatibility have been widely used in food and biomedical fields. Seafood contains rich protein resources and is also one of the important sources of natural bioactive peptides. The self-assembled peptides in seafood have good functional activity and are very beneficial to human health. In this review, the sequence of seafood self-assembly peptide was introduced, and the preparation, screening, identification and characterization. The rule of self-assembled peptides was elucidated from amino acid sequence composition, amino acid properties (hydrophilic, hydrophobic and electric), secondary structure, interaction and peptide properties (hydrophilic and hydrophobic). It was introduced that the application of hydrogels formed by self-assembled peptides, which lays a theoretical foundation for the development of seafood self-assembled peptides in functional foods and the application of biological materials.
Collapse
Affiliation(s)
- Zhe Xu
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116029, China
- Institute of Bast Fiber Crops & Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Shiying Han
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116029, China
| | - Shuang Guan
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116029, China
| | - Rui Zhang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Hongrui Chen
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Xihua University, Chengdu, Sichuan 611130, China
| | - Lijuan Zhang
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116029, China
| | - Lingyu Han
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116029, China
| | - Zhijian Tan
- Institute of Bast Fiber Crops & Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Tingting Li
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116029, China
| |
Collapse
|
4
|
Peres Fabbri L, Cavallero A, Vidotto F, Gabriele M. Bioactive Peptides from Fermented Foods: Production Approaches, Sources, and Potential Health Benefits. Foods 2024; 13:3369. [PMID: 39517152 PMCID: PMC11545331 DOI: 10.3390/foods13213369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Microbial fermentation is a well-known strategy for enhancing the nutraceutical attributes of foods. Among the fermentation outcomes, bioactive peptides (BAPs), short chains of amino acids resulting from proteolytic activity, are emerging as promising components thanks to their bioactivities. Indeed, BAPs offer numerous health benefits, including antimicrobial, antioxidant, antihypertensive, and anti-inflammatory properties. This review focuses on the production of bioactive peptides during the fermentation process, emphasizing how different microbial strains and fermentation conditions influence the quantity and quality of these peptides. Furthermore, it examines the health benefits of BAPs from fermented foods, highlighting their potential in disease prevention and overall health promotion. Additionally, this review addresses the challenges and future directions in this field. This comprehensive overview underscores the promise of fermented foods as sustainable and potent sources of bioactive peptides, with significant implications for developing functional foods and nutraceuticals.
Collapse
Affiliation(s)
| | | | | | - Morena Gabriele
- Institute of Agricultural Biology and Biotechnology, National Research Council, 56124 Pisa, Italy (A.C.); (F.V.)
| |
Collapse
|
5
|
Scalcon V, Fiorese F, Albanesi M, Folda A, Betti G, Bellamio M, Feller E, Lodovichi C, Arrigoni G, Marin O, Rigobello MP. By-Products Valorization: Peptide Fractions from Milk Permeate Exert Antioxidant Activity in Cellular and In Vivo Models. Antioxidants (Basel) 2024; 13:1221. [PMID: 39456474 PMCID: PMC11504225 DOI: 10.3390/antiox13101221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The discarding of agri-food by-products is a stringent problem due to their high environmental impact. Recovery strategies can lead to a reduction of waste and result in new applications. Agri-food waste represents a source of bioactive molecules, which could promote health benefits. The primary goal of this research has been the assessment of the antioxidant activity of milk permeate, a dairy farm by-product, and the isolation and identification of peptide fractions endowed with antioxidant activity. The chromatographic extraction of the peptide fractions was carried out, and the peptides were identified by mass spectrometry. The fractions showed radical scavenging activity in vitro. Moreover, the results in the Caco-2 cell model demonstrated that the peptide fractions were able to protect from oxidative stress by stimulating the Keap1/Nrf2 antioxidant signaling pathway, increasing the transcription of antioxidant enzymes. In addition, the bioactive peptides can affect cellular metabolism, increasing mitochondrial respiration. The action of the peptide fractions was also assessed in vivo on a zebrafish model and resulted in the protection of the whole organism from the adverse effects of acute cold stress, highlighting their strong capability to protect from an oxidative insult. Altogether, the results unveil novel recovery strategies for food by-products as sources of antioxidant bioactive peptides that might be utilized for the development of functional foods.
Collapse
Affiliation(s)
- Valeria Scalcon
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35132 Padova, Italy
| | - Federico Fiorese
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35132 Padova, Italy
| | - Marica Albanesi
- Padova Neuroscience Center (PNC), University of Padova, Via Orus 2, 35129 Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Via Giuseppe Orus, 2, 35129 Padova, Italy
| | - Alessandra Folda
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35132 Padova, Italy
| | - Gianfranco Betti
- Centrale del Latte d’Italia S.p.A., Sede di Firenze, Via dell’Olmatello 20, 50127 Firenze, Italy
| | - Marco Bellamio
- Centrale del Latte d’Italia S.p.A., Sede di Vicenza, Via Faedo 60, 36100 Vicenza, Italy
| | - Emiliano Feller
- Centrale del Latte d’Italia S.p.A., Sede di Vicenza, Via Faedo 60, 36100 Vicenza, Italy
| | - Claudia Lodovichi
- Padova Neuroscience Center (PNC), University of Padova, Via Orus 2, 35129 Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Via Giuseppe Orus, 2, 35129 Padova, Italy
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche (CNR), Viale G. Colombo 3, 35121 Padova, Italy
| | - Giorgio Arrigoni
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35132 Padova, Italy
| | - Oriano Marin
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35132 Padova, Italy
| | - Maria Pia Rigobello
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35132 Padova, Italy
| |
Collapse
|
6
|
Jo DM, Khan F, Park SK, Ko SC, Kim KW, Yang D, Kim JY, Oh GW, Choi G, Lee DS, Kim YM. From Sea to Lab: Angiotensin I-Converting Enzyme Inhibition by Marine Peptides-Mechanisms and Applications. Mar Drugs 2024; 22:449. [PMID: 39452857 PMCID: PMC11509120 DOI: 10.3390/md22100449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024] Open
Abstract
To reveal potent ACE inhibitors, researchers screen various bioactive peptides from several sources, and more attention has been given to aquatic sources. This review summarizes the recent research achievements on marine peptides with ACE-inhibitory action and application. Marine peptides are considered excellent bioactives due to their large structural diversity and unusual bioactivities. The mechanisms by which these marine peptides inhibit ACE include competitive binding to ACEs' active site, interfering with ACE conformational changes, and avoiding the identification of substrates. The unique 3D attributes of marine peptides confer inhibition advantages toward ACE activity. Because IC50 values of marine peptides' interaction with ACE are low, structure-based research assumes that the interaction between ACE and peptides increased the therapeutic application. Numerous studies on marine peptides focused on the sustainable extraction of ACE-inhibitory peptides produced from several fish, mollusks, algae, and sponges. Meanwhile, their potential applications and medical benefits are worth investigating and considering. Due to these peptides exhibiting antioxidant, antihypertensive, and even antimicrobial properties simultaneously, their therapeutic potential for cardiovascular disease and other illnesses only increases. In addition, as marine peptides show better pharmacological benefits, they have increased absorption rates and low toxicity and could perhaps be modified for better stability and bioefficacy. Biotechnological advances in peptide synthesis and formulation have greatly facilitated the generation of peptide-based ACE inhibitors from marine sources, which subsequently offer new treatment models. This article gives a complete assessment of the present state of knowledge about marine organism peptides as ACE inhibitors. In addition, it emphasizes the relevance of additional investigation into their mechanisms of action, the optimization of manufacturing processes, and assessment in in vivo, preclinical, and clinical settings, underlining the urgency and value of this study. Using marine peptides for ACE inhibition not only broadens the repertory of bioactive compounds but also shows promise for tackling the global health burden caused by cardiovascular diseases.
Collapse
Affiliation(s)
- Du-Min Jo
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea; (D.-M.J.); (S.-C.K.); (K.W.K.); (D.Y.); (J.-Y.K.); (G.-W.O.); (G.C.); (D.-S.L.)
| | - Fazlurrahman Khan
- Ocean and Fisheries Development International Cooperation Institute, Pukyong National University, Busan 48513, Republic of Korea
- International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Seul-Ki Park
- Smart Food Manufacturing Project Group, Korea Food Research Institute, Wanju 55365, Republic of Korea;
| | - Seok-Chun Ko
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea; (D.-M.J.); (S.-C.K.); (K.W.K.); (D.Y.); (J.-Y.K.); (G.-W.O.); (G.C.); (D.-S.L.)
| | - Kyung Woo Kim
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea; (D.-M.J.); (S.-C.K.); (K.W.K.); (D.Y.); (J.-Y.K.); (G.-W.O.); (G.C.); (D.-S.L.)
| | - Dongwoo Yang
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea; (D.-M.J.); (S.-C.K.); (K.W.K.); (D.Y.); (J.-Y.K.); (G.-W.O.); (G.C.); (D.-S.L.)
| | - Ji-Yul Kim
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea; (D.-M.J.); (S.-C.K.); (K.W.K.); (D.Y.); (J.-Y.K.); (G.-W.O.); (G.C.); (D.-S.L.)
| | - Gun-Woo Oh
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea; (D.-M.J.); (S.-C.K.); (K.W.K.); (D.Y.); (J.-Y.K.); (G.-W.O.); (G.C.); (D.-S.L.)
| | - Grace Choi
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea; (D.-M.J.); (S.-C.K.); (K.W.K.); (D.Y.); (J.-Y.K.); (G.-W.O.); (G.C.); (D.-S.L.)
| | - Dae-Sung Lee
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea; (D.-M.J.); (S.-C.K.); (K.W.K.); (D.Y.); (J.-Y.K.); (G.-W.O.); (G.C.); (D.-S.L.)
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
7
|
Vijayanand M, Issac PK, Velayutham M, Shaik MR, Hussain SA, Guru A. Exploring the neuroprotective potential of KC14 peptide from Cyprinus carpio against oxidative stress-induced neurodegeneration by regulating antioxidant mechanism. Mol Biol Rep 2024; 51:990. [PMID: 39287730 DOI: 10.1007/s11033-024-09905-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Oxidative stress, a condition characterized by excessive production of reactive oxygen species (ROS), can cause significant damage to cellular macromolecules, leading to neurodegeneration. This underscores the need for effective antioxidant therapies that can mitigate oxidative stress and its associated neurodegenerative effects. KC14 peptide derived from liver-expressed antimicrobial peptide-2 A (LEAP 2 A) from Cyprinus carpio L. has been identified as a potential therapeutic agent. This study focuses on the antioxidant and neuroprotective properties of the KC14 peptide is to evaluate its effectiveness against oxidative stress and neurodegeneration. METHODS The antioxidant capabilities of KC14 were initially assessed through in silico docking studies, which predicted its potential to interact with oxidative stress-related targets. Subsequently, the peptide was tested at concentrations ranging from 5 to 45 µM in both in vitro and in vivo experiments. In vivo studies involved treating H2O2-induced zebrafish larvae with KC14 peptide to analyze its effects on oxidative stress and neuroprotection. RESULTS KC14 peptide showed a protective effect against the developmental malformations caused by H2O2 stress, restored antioxidant enzyme activity, reduced neuronal damage, and lowered lipid peroxidation and nitric oxide levels in H2O2-induced larvae. It enhanced acetylcholinesterase activity and significantly reduced intracellular ROS levels (p < 0.05) dose-dependently. Gene expression studies showed up-regulation of antioxidant genes with KC14 treatment under H2O2 stress. CONCLUSIONS This study highlights the potent antioxidant activity of KC14 and its ability to confer neuroprotection against oxidative stress can provide a novel therapeutic agent for combating neurodegenerative diseases induced by oxidative stress.
Collapse
Affiliation(s)
- Madhumitha Vijayanand
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Praveen Kumar Issac
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India.
| | - Manikandan Velayutham
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Shaik Althaf Hussain
- Department of Zoology, College of Science, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia
| | - Ajay Guru
- Department of Cariology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai, India
| |
Collapse
|
8
|
Wang D, Huang X, Marnila P, Hiidenhovi J, Välimaa AL, Granato D, Mäkinen S. Baltic herring hydrolysates: Identification of peptides, in silico DPP-4 prediction, and their effects on an in vivo mice model of obesity. Food Res Int 2024; 191:114696. [PMID: 39059907 DOI: 10.1016/j.foodres.2024.114696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Baltic herring is the main catch in the Baltic Sea; however, its usage could be improved due to the low processing rate. Previously we have shown that whole Baltic herring hydrolysates (BHH) and herring byproducts hydrolysates (BHBH) by commercial enzymes consisted of bioactive peptides and had moderate bioactivity in in vitro dipeptidyl peptidase (DPP)-4 assay. In this study, we identified the hydrolysate peptides by LC-MS/MS and predicted the potential bioactive DPP-4 inhibitory peptides using in silico tools. Based on abundance, peptide length and stability, 86 peptides from BHBH and 80 peptides from BHH were proposed to be novel DPP-4 inhibitory peptides. BHH was fed to a mice intervention of a high-fat, high-fructose diet to validate the bioactivity. The results of the glucose tolerance and insulin tolerance improved. Plasma DPP-4 activities, C-peptide levels, and HOMA-IR scores significantly decreased, while plasma glucagon-like peptide-1 content increased. In conclusion, BHH is an inexpensive and sustainable source of functional antidiabetic ingredients.
Collapse
Affiliation(s)
- Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China.
| | - Xin Huang
- Food and Bioproducts, Production Systems Unit, Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland.
| | - Pertti Marnila
- Food and Bioproducts, Production Systems Unit, Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland.
| | - Jaakko Hiidenhovi
- Food and Bioproducts, Production Systems Unit, Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland.
| | - Anna-Liisa Välimaa
- Food and Bioproducts, Production Systems Unit, Natural Resources Institute Finland (Luke), FI-90570 Oulu, Finland.
| | - Daniel Granato
- Bioactivity and Applications Lab, Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, V94 T9PX Limerick, Ireland.
| | - Sari Mäkinen
- Food and Bioproducts, Production Systems Unit, Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland.
| |
Collapse
|
9
|
Geng Y, Zheng Y, Zhou R, Ma M. Effect of supercritical carbon dioxide on protein structure modification and antimicrobial peptides production of Mongolian cheese and its in vitro digestion. Food Res Int 2024; 191:114714. [PMID: 39059962 DOI: 10.1016/j.foodres.2024.114714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/17/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
The aim of this research was to investigate the effects of supercritical carbon dioxide (SC-CO2) treatment on protein structure in Mongolian cheese. The peptides during the digestive process of the SC-CO2 treated cheese were also studied. SC-CO2 technology was utilized to treat Mongolian cheese at three temperatures (45, 55 and 65 °C) and three pressures (7.5, 12.5 and 17.5 MPa). The results of fluorescence, ultraviolet-visible, Fourier transform infrared spectroscopy and free sulfhydryl groups showed that SC-CO2, particularly at 65 °C and 17.5 MPa, modified the protein structure in Mongolian cheese effectively. The data of LC-MS/MS-based peptidomics showed that the content of antimicrobial peptides found in the SC-CO2 treated Mongolian cheese was 1.55 times that of the untreated Mongolian cheese; the content of unique antimicrobial peptides in the digested SC-CO2 treated Mongolian cheese was 1.46 times that of the digested untreated Mongolian cheese, which proved that SC-CO2 could help produce antimicrobial peptides in cheese not only during the process of SC-CO2 treatment but during subsequent simulated gastrointestinal digestion as well. In conclusion, SC-CO2 could be considered a promising method to develop cheese products with potential health benefits.
Collapse
Affiliation(s)
- Yawen Geng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yuanrong Zheng
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Ran Zhou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China; Quality Supervision, Inspection and Testing Center for Cold Storage and Refrigeration Equipment, Ministry of Agriculture, Shanghai, China.
| | - Ming Ma
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
10
|
Elisha C, Bhagwat P, Pillai S. Emerging production techniques and potential health promoting properties of plant and animal protein-derived bioactive peptides. Crit Rev Food Sci Nutr 2024:1-30. [PMID: 39206881 DOI: 10.1080/10408398.2024.2396067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Bioactive peptides (BPs) are short amino acid sequences that that are known to exhibit physiological characteristics such as antioxidant, antimicrobial, antihypertensive and antidiabetic properties, suggesting that they could be exploited as functional foods in the nutraceutical industry. These BPs can be derived from a variety of food sources, including milk, meat, marine, and plant proteins. In the past decade, various methods including in silico, in vitro, and in vivo techniques have been explored to unravel underlying mechanisms of BPs. To forecast interactions between peptides and their targets, in silico methods such as BIOPEP, molecular docking and Quantitative Structure-Activity Relationship modeling have been employed. Additionally, in vitro research has examined how BPs affect enzyme activities, protein expressions, and cell cultures. In vivo studies on the contrary have appraised the impact of BPs on animal models and human subjects. Hence, in the light of recent literature, this review examines the multifaceted aspects of BPs production from milk, meat, marine, and plant proteins and their potential bioactivities. We envisage that the various concepts discussed will contribute to a better understanding of the food derived BP production, which could pave a way for their potential applications in the nutraceutical industry.
Collapse
Affiliation(s)
- Cherise Elisha
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Prashant Bhagwat
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Santhosh Pillai
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| |
Collapse
|
11
|
Morena F, Cencini C, Calzoni E, Martino S, Emiliani C. A Novel Workflow for In Silico Prediction of Bioactive Peptides: An Exploration of Solanum lycopersicum By-Products. Biomolecules 2024; 14:930. [PMID: 39199318 PMCID: PMC11352670 DOI: 10.3390/biom14080930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Resource-intensive processes currently hamper the discovery of bioactive peptides (BAPs) from food by-products. To streamline this process, in silico approaches present a promising alternative. This study presents a novel computational workflow to predict peptide release, bioactivity, and bioavailability, significantly accelerating BAP discovery. The computational flowchart has been designed to identify and optimize critical enzymes involved in protein hydrolysis but also incorporates multi-enzyme screening. This feature is crucial for identifying the most effective enzyme combinations that yield the highest abundance of BAPs across different bioactive classes (anticancer, antidiabetic, antihypertensive, anti-inflammatory, and antimicrobial). Our process can be modulated to extract diverse BAP types efficiently from the same source. Here, we show the potentiality of our method for the identification of diverse types of BAPs from by-products generated from Solanum lycopersicum, the widely cultivated tomato plant, whose industrial processing generates a huge amount of waste, especially tomato peel. In particular, we optimized tomato by-products for bioactive peptide production by selecting cultivars like Line27859 and integrating large-scale gene expression. By integrating these advanced methods, we can maximize the value of by-products, contributing to a more circular and eco-friendly production process while advancing the development of valuable bioactive compounds.
Collapse
Affiliation(s)
- Francesco Morena
- Section of Biochemistry and Molecular Biology, Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (C.C.); (E.C.); (S.M.)
| | - Chiara Cencini
- Section of Biochemistry and Molecular Biology, Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (C.C.); (E.C.); (S.M.)
| | - Eleonora Calzoni
- Section of Biochemistry and Molecular Biology, Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (C.C.); (E.C.); (S.M.)
| | - Sabata Martino
- Section of Biochemistry and Molecular Biology, Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (C.C.); (E.C.); (S.M.)
- Centro di Eccellenza su Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Carla Emiliani
- Section of Biochemistry and Molecular Biology, Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (C.C.); (E.C.); (S.M.)
- Centro di Eccellenza su Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| |
Collapse
|
12
|
Ichim N, Marín F, Orenes-Piñero E. Potential Impact of Bioactive Peptides from Foods in the Treatment of Hypertension. Mol Nutr Food Res 2024; 68:e2400084. [PMID: 38923775 DOI: 10.1002/mnfr.202400084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/09/2024] [Indexed: 06/28/2024]
Abstract
SCOPE High blood pressure (BP) is the main preventable risk factor for cardiovascular diseases (CVDs). Much research is aimed at finding natural alternatives to control or prevent hypertension (HT), since some hypertensive patients do not respond to current pharmacological treatments or show undesirable side effects. METHODS AND RESULTS Forty relevant articles have been selected from various scientific literature databases. The results reveal that angiotensin-converting enzyme (ACE) inhibition is the most reported mechanism of action of antihypertensive peptides. The active peptides have a great variety of origins. Biopeptides with a molecular weight of <3 kDa, short chain <20 amino acids, and a hydrophobic amino acid sequence at the C- and N-terminus exhibit higher antihypertensive activity. They also show good stability to enzymatic hydrolysis and gastrointestinal digestion, and no toxicity. To determine antihypertensive effectiveness, in vitro and in vivo animal studies are the most frequent developed, with few in silico studies and only one human clinical trial. CONCLUSION There is interesting potential for antihypertensive peptides as promising natural candidates for the development of functional foods, nutraceuticals and drugs for preventive or therapeutic treatment of hypertension. The aim of this review is to study the role of food-derived bioactive peptides in HT.
Collapse
Affiliation(s)
- Natalia Ichim
- Department of Biochemistry and Molecular Biology-A, University of Murcia, Murcia, 30071, Spain
| | - Francisco Marín
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, 30120, Spain
| | - Esteban Orenes-Piñero
- Department of Biochemistry and Molecular Biology-A, University of Murcia, Murcia, 30071, Spain
- Proteomic Unit, Instituto Murciano de Investigaciones Biosanitarias Pascual Parrilla (IMIB-Pascual Parrilla), Murcia, Spain
| |
Collapse
|
13
|
Apud GR, Kristof I, Ledesma SC, Stivala MG, Aredes Fernandez PA. Health-promoting peptides in fermented beverages. Rev Argent Microbiol 2024; 56:336-345. [PMID: 38599912 DOI: 10.1016/j.ram.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/15/2023] [Accepted: 02/03/2024] [Indexed: 04/12/2024] Open
Abstract
Since ancient times, the consumption of fermented low-alcoholic beverages has enjoyed widespread popularity in various countries, because of their distinct flavors and health benefits. Several studies have demonstrated that light to moderate alcohol consumption is associated with beneficial effects on human health, mainly in cardiovascular disease prevention. Fermented beverages have different non-ethanol components that confer beneficial health effects. These bioactive compounds are mainly peptides that have often been overlooked or poorly explored in numerous fermented beverages. The aim of this review is to provide knowledge and generate interest in the biological activities of peptides that are present and/or released during the fermentation process of widely consumed traditional fermented beverages. Additionally, a brief description of the microorganisms involved in these beverages is provided. Furthermore, this review also explores topics related to the detection, isolation, and identification of peptides, addressing the structure-activity relationships of both antioxidant and angiotensin-converting enzyme inhibitory (ACE-I) activities.
Collapse
Affiliation(s)
- Gisselle Raquel Apud
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, 4000 San Miguel de Tucumán, Argentina
| | - Irina Kristof
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, 4000 San Miguel de Tucumán, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Silvana Cecilia Ledesma
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, 4000 San Miguel de Tucumán, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Maria Gilda Stivala
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, 4000 San Miguel de Tucumán, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Pedro Adrian Aredes Fernandez
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, 4000 San Miguel de Tucumán, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
14
|
Ospina-Quiroga JL, Coronas-Lozano C, García-Moreno PJ, Guadix EM, Almécija-Rodríguez MDC, Pérez-Gálvez R. Use of olive and sunflower protein hydrolysates for the physical and oxidative stabilization of fish oil-in-water emulsions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5541-5552. [PMID: 38362946 DOI: 10.1002/jsfa.13384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 01/31/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Olive and sunflower seeds are by-products generated in large amounts by the plant oil industry. The technological and biological properties of plant-based substrates, especially protein hydrolysates, have increased their use as functional ingredients for food matrices. The present study evaluates the physical and oxidative stabilities of 50 g kg-1 fish oil-in-water emulsions where protein hydrolysates from olive and sunflower seeds were incorporated at 20 g kg-1 protein as natural emulsifiers. The goal was to investigate the effect of protein source (i.e. olive and sunflower seeds), enzyme (i.e. subtilisin and trypsin) and degree of hydrolysis (5%, 8% and 11%) on the ability of the hydrolysate to stabilize the emulsion and retard lipid oxidation over a 7-day storage period. RESULTS The plant protein hydrolysates displayed different emulsifying and antioxidant capacities when incorporated into the fish oil-in-water emulsions. The hydrolysates with degrees of hydrolysis (DH) of 5%, especially those from sunflower seed meal, provided higher physical stability, regardless of the enzymatic treatment. For example, the average D [2, 3] values for the emulsions containing sunflower subtilisin hydrolysates at DH 5% only slightly increased from 1.21 ± 0.02 μm (day 0) to 2.01 ± 0.04 μm (day 7). Moreover, the emulsions stabilized with sunflower or olive seed hydrolysates at DH 5% were stable against lipid oxidation throughout the storage experiment, with no significant variation in the oxidation indices between days 0 and 4. CONCLUSION The results of the present study support the use of sunflower seed hydrolysates at DH 5% as natural emulsifiers for fish oil-in-water emulsions, providing both physical and chemical stability against lipid oxidation. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | | | | | | | - Raúl Pérez-Gálvez
- Department of Chemical Engineering, University of Granada, Granada, Spain
| |
Collapse
|
15
|
Zhang X, Nan S, Zhang L, Chen C, Zhang W, Nie C. Cottonseed meal protein hydrolysate influences growth performance, carcass characteristics, serum biochemical indices, and intestinal morphology in yellow-feather broilers. J Anim Physiol Anim Nutr (Berl) 2024. [PMID: 38825860 DOI: 10.1111/jpn.13995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/04/2024]
Abstract
This study investigated the effects of cottonseed meal protein hydrolysate (CPH) on the growth performance, carcass characteristics, serum biochemical indices, intestinal morphology, and enzyme activities of yellow-feather broilers. We randomly divided 240 chicks into four groups, each with six replicates: a basal diet with 0% (CON), 1% (LCPH), 3% (MCPH), or 5% (HCPH) CPH. The trail spanned 63 days and included three phases: Days 1-21, 22-42, and 43-63. Increased average daily gain (ADG) and decreased ratio of feed to gain (F/G) with LCPH were observed in 21-day-old broilers (P < 0.05). MCPH led to higher ADG and average daily feed intake (ADFI) in 42-day-old broilers (P < 0.05). Additionally, CPH supplementation resulted in increased dressing percentage, percentage of half-eviscerated yield, percentage of eviscerated yield, breast muscle rate, and leg muscle rate were observed (P < 0.05) with diet. The serum levels of total protein (TP), high-density lipoprotein cholesterol (HDL-C), calcium (Ca), and phosphorus (P) were enhanced, and blood urea nitrogen (BUN) and triglyceride (TG) levels decreased with diet and CPH (P < 0.05). CPH increased the length of the jejunum and ileum and the weight of the duodenum, jejunum, and ileum in 21-day-old broilers (P < 0.05). Alterations in the duodenal villus structure in broilers occurred on Days 21 and 42, and the CPH groups performed better; however, a similar change occurred in the jejunum on Days 42 and 63 (P < 0.05). MCPH and HCPH enhanced trypsin activity in the duodenum of 21-day-old and 63-day-old broilers (p < 0.05). Chymotrypsin activity increased (P > 0.05) in the duodenum of 63-day-old broilers fed MCPH. Lipase activity increased (P < 0.05) in the jejuna of 21-day-old broilers treated with HCPH. CPH increased trypsin activity in the ilea of 21-day-old broilers (P < 0.05). These results showed that CPH influenced the growth performance, carcass characteristics, serum biochemical indices, and intestinal morphology of yellow-feather broilers, which are related to growth stage. The recommended CPH level in broilers is 1% before 21 days of age and 3% after 21 days of age.
Collapse
Affiliation(s)
- Xiaoyang Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Shanshan Nan
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Li Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Cheng Chen
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Wenju Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Cunxi Nie
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
16
|
Kumari S, Pandey A, Soni A, Mahala A, Kumar A, Dey K. Assessment of functional efficacy of sheep plasma protein hydrolysates and their utilization in mutton sausage. Meat Sci 2024; 212:109469. [PMID: 38428152 DOI: 10.1016/j.meatsci.2024.109469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/02/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
The present study examines the bioactive potential of sheep plasma protein hydrolysates (SPPH) produced by in-vitro gastrointestinal digestion as antioxidants, antimicrobials, anti-obesity agents, and inhibitors of lipid oxidation in sausage to address the oxidative stability and shelf-life issues of mutton. The antioxidant and antimicrobial activities, indicate a positive relationship between the degree of hydrolysis and digestion duration. The study finds that SPPH has a potent inhibitory effect on pancreatic lipase and cholesterol esterase. It has higher oil holding capacity than sheep plasma protein, observed at one hour of hydrolysis time. SPPH exhibit an improved behavior in foaming properties along alkaline pH and digestion time while display lower emulsifying activity and stability with hydrolysis advancement. The SPPH act as a natural preservative in developing functional mutton sausage by inhibiting lipid-oxidation. This study showed that the recovery of SPPH can be a cost-effective and sustainable strategy for generating available ingredients for enhanced shelf-life of meat products.
Collapse
Affiliation(s)
- Sarita Kumari
- Department of Livestock Products Technology, Post- Graduate Institute of Veterinary Education & Research, Rajasthan University of Veterinary and Animal Science, Rajasthan 334001, India
| | - Anurag Pandey
- Department of Livestock Products Technology, Post- Graduate Institute of Veterinary Education & Research, Rajasthan University of Veterinary and Animal Science, Rajasthan 334001, India.
| | - Arvind Soni
- Section of Livestock Products Technology, ICAR-Central Sheep and Wool Research Institute, Avikanagar, Rajasthan 304501, India
| | - Anurag Mahala
- Division of Animal Genetics Breeding, ICAR-Central Sheep and Wool Research Institute, Avikanagar, Rajasthan 304501, India
| | - Arun Kumar
- Division of Animal Genetics Breeding, ICAR-Central Sheep and Wool Research Institute, Avikanagar, Rajasthan 304501, India
| | - Kushankur Dey
- Centre for Food & Agri-business Management, Indian Institute of Management, Lucknow, Uttar Pradesh 226013, India.
| |
Collapse
|
17
|
Cao J, Xiang B, Dou B, Hu J, Zhang L, Kang X, Lyu M, Wang S. Novel Angiotensin-Converting Enzyme-Inhibitory Peptides Obtained from Trichiurus lepturus: Preparation, Identification and Potential Antihypertensive Mechanism. Biomolecules 2024; 14:581. [PMID: 38785988 PMCID: PMC11117660 DOI: 10.3390/biom14050581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Peptides possessing antihypertensive attributes via inhibiting the angiotensin-converting enzyme (ACE) were derived through the enzymatic degradation of Trichiurus lepturus (ribbonfish) using alkaline protease. The resulting mixture underwent filtration using centrifugation, ultrafiltration tubes, and Sephadex G-25 gels. Peptides exhibiting ACE-inhibitory properties and DPPH free-radical-scavenging abilities were isolated and subsequently purified via LC/MS-MS, leading to the identification of over 100 peptide components. In silico screening yielded five ACE inhibitory peptides: FAGDDAPR, QGPIGPR, IFPRNPP, AGFAGDDAPR, and GPTGPAGPR. Among these, IFPRNPP and AGFAGDDAPR were found to be allergenic, while FAGDDAPRR, QGPIGPR, and GPTGPAGP showed good ACE-inhibitory effects. IC50 values for the latter peptides were obtained from HUVEC cells: FAGDDAPRR (IC50 = 262.98 μM), QGPIGPR (IC50 = 81.09 μM), and GPTGPAGP (IC50 = 168.11 μM). Peptide constituents derived from ribbonfish proteins effectively modulated ACE activity, thus underscoring their therapeutic potential. Molecular docking and modeling corroborated these findings, emphasizing the utility of functional foods as a promising avenue for the treatment and prevention of hypertension, with potential ancillary health benefits and applications as substitutes for synthetic drugs.
Collapse
Affiliation(s)
- Jiaming Cao
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (J.C.); (B.X.); (B.D.); (J.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Boyuan Xiang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (J.C.); (B.X.); (B.D.); (J.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Baojie Dou
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (J.C.); (B.X.); (B.D.); (J.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jingfei Hu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (J.C.); (B.X.); (B.D.); (J.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Lei Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (J.C.); (B.X.); (B.D.); (J.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xinxin Kang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (J.C.); (B.X.); (B.D.); (J.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (J.C.); (B.X.); (B.D.); (J.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (J.C.); (B.X.); (B.D.); (J.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
18
|
Tonolo F, Coletta S, Fiorese F, Grinzato A, Albanesi M, Folda A, Ferro S, De Mario A, Piazza I, Mammucari C, Arrigoni G, Marin O, Cestonaro G, Nataloni L, Costanzo E, Lodovichi C, Rigobello MP, de Bernard M. Sunflower seed-derived bioactive peptides show antioxidant and anti-inflammatory activity: From in silico simulation to the animal model. Food Chem 2024; 439:138124. [PMID: 38064839 DOI: 10.1016/j.foodchem.2023.138124] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/09/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024]
Abstract
The evolving field of food technology is increasingly dedicated to developing functional foods. This study explored bioactive peptides from sunflower protein isolate (SPI), obtained from defatted flour, a by-product of the oil processing industry. SPI underwent simulated gastrointestinal digestion and the obtained peptide-enriched fraction (PEF) showed antioxidant properties in vivo, in zebrafish. Among the peptides present in PEF identified by mass spectrometry analysis, we selected those with antioxidant properties by in silico evaluation, considering their capability to interact with Keap1, key protein in the regulation of antioxidant response. The selected peptides were synthesized and evaluated in a cellular model. As a result, DVAMPVPK, VETGVIKPG, TTHTNPPPEAE, LTHPQHQQQGPSTG and PADVTPEEKPEV activated Keap1/Nrf2 pathway leading to Antioxidant Response Element-regulated enzymes upregulation. Since the crosstalk between Nrf2 and NF-κB is well known, the potential anti-inflammatory activity of the peptides was assessed and principally PADVTPEEKPEV showed good features both as antioxidant and anti-inflammatory molecule.
Collapse
Affiliation(s)
- Federica Tonolo
- Department of Biomedical Sciences, Via Ugo Bassi 58/B, 35131 Padova, Italy; Department of Compared Biomedicine and Food Science, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - Sara Coletta
- Department of Biology, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Federico Fiorese
- Department of Biomedical Sciences, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Alessandro Grinzato
- ESRF: European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Marica Albanesi
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy; Padova Neuroscience Center, Università degli Studi di Padova, Padova, Italy
| | - Alessandra Folda
- Department of Biomedical Sciences, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Stefania Ferro
- Department of Biomedical Sciences, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Agnese De Mario
- Department of Biomedical Sciences, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Ilaria Piazza
- Department of Biomedical Sciences, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Cristina Mammucari
- Department of Biomedical Sciences, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Giorgio Arrigoni
- Department of Biomedical Sciences, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Oriano Marin
- Department of Biomedical Sciences, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Giulia Cestonaro
- Cereal Docks S.p.A. - Research & Innovation Department, Via Innovazione 1, 36043 Camisano Vicentino, VI, Italy
| | - Luigi Nataloni
- Cereal Docks S.p.A, Via Innovazione 1, Camisano Vicentino, VI 36043, Italy
| | - Enrico Costanzo
- Cereal Docks S.p.A. - Research & Innovation Department, Via Innovazione 1, 36043 Camisano Vicentino, VI, Italy
| | - Claudia Lodovichi
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy; Padova Neuroscience Center, Università degli Studi di Padova, Padova, Italy; Institute of Neuroscience, Consiglio Nazionale delle Ricerche (CNR), Padova, Italy
| | | | | |
Collapse
|
19
|
Jin H, Zhao H, Shi R, Fan F, Cheng W. Unlocking the Therapeutic Potential of a Manila Clam-Derived Antioxidant Peptide: Insights into Mechanisms of Action and Cytoprotective Effects against Oxidative Stress. Foods 2024; 13:1160. [PMID: 38672836 PMCID: PMC11049014 DOI: 10.3390/foods13081160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/23/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
Reactive oxygen species (ROS) are implicated in various pathological conditions due to their ability to induce oxidative damage to cellular components. In this study, we investigated the antioxidant properties of a peptide isolated from the hydrolysate of Manila clam (Ruditapes philippinarum) muscle. Purification steps yielded RPTE2-2-4, exhibiting potent scavenging activities against DPPH•, HO•, and O2•-, akin to Vitamin C. Structural analysis showed that the isolated peptide, LFKKNLLTL, exhibited characteristics associated with antioxidant activity, including a short peptide length and the presence of aromatic and hydrophobic amino acid residues. Moreover, our study demonstrated the cytoprotective effects of the peptide against H2O2-induced oxidative stress in HepG2 cells. Pretreatment with the peptide resulted in a dose-dependent reduction in intracellular ROS levels and elevation of glutathione (GSH) levels, indicating its ability to modulate cellular defense mechanisms against oxidative damage. Furthermore, the peptide stimulated the expression of the cytoprotective enzyme heme oxygenase-1 (HO-1), further reinforcing its antioxidant properties. Overall, our findings highlight the potential of the Manila clam-derived peptide as a natural antioxidant agent with therapeutic implications for oxidative stress-related diseases. Further investigation into its mechanisms of action and in vivo efficacy is warranted to validate its therapeutic potential.
Collapse
Affiliation(s)
- Hong Jin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.J.); (H.Z.)
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Huishuang Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.J.); (H.Z.)
| | - Rui Shi
- ChiBi Public Inspection and Testing Center, Xianning 437300, China;
| | - Fengjiao Fan
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Wenjian Cheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.J.); (H.Z.)
| |
Collapse
|
20
|
Chen L, Hu Z, Rong Y, Lou B. Deep2Pep: A deep learning method in multi-label classification of bioactive peptide. Comput Biol Chem 2024; 109:108021. [PMID: 38308955 DOI: 10.1016/j.compbiolchem.2024.108021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/27/2023] [Accepted: 01/18/2024] [Indexed: 02/05/2024]
Abstract
Functional peptides are easy to absorb and have low side effects, which has attracted increasing interest from pharmaceutical scientists. However, due to the limitations in the laboratory funding and human resources, it is difficult to screen the functional peptides from a large number of peptides with unknown functions. With the development of machine learning and Deep learning, the combination of computational methods and biological information provides an effective method for identifying peptide functions. To explore the value of multi-functional active peptides, a new deep learning method named Deep2Pep (Deep learning to Peptides) was constructed, which was based on sequence encoding, embedding, and language tokenizer. It can achieve predictions of peptides on antimicrobial, antihypertensive, antioxidant and antihyperglycemic by converting sequence information into digital vectors, combined BiLSTM, attention-residual algorithm, and BERT Encoder. The results showed that Deep2Pep had a Hamming Loss of 0.095, subset Accuracy of 0.737, and Macro F1-Score of 0.734. which outperformed other models. BiLSTM played a primary role in Deep2Pep, which BERT encoder was in an auxiliary position. Deep learning algorithms was used in this study to accurately predict the four active functions of peptides, and it was expected to provide effective references for predicting multi-functional peptides.
Collapse
Affiliation(s)
- Lihua Chen
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Zhenkang Hu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yuzhi Rong
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Bao Lou
- Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
21
|
Manzoor M, Singh J, Bhat ZF, Jaglan S. Multifunctional apple seed protein hydrolysates: Impact of enzymolysis on the biochemical, techno-functional and in vitro α-glucosidase, pancreatic lipase and angiotensin-converting enzyme inhibition activities. Int J Biol Macromol 2024; 257:128553. [PMID: 38056736 DOI: 10.1016/j.ijbiomac.2023.128553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/19/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
The work was designed to assess the amelioration effect of papain hydrolysis on the biochemical, techno-functional, and biological properties of apple seed protein isolate (API) after 0-90 min of hydrolysis. Hydrolysis significantly enhanced the nutritional value (protein content ˃ 90 %) while decreasing the average particle size. With increasing hydrolysis time, FTIR analysis revealed a transition from α-helix to β-turn structure, indicating the unfolding of protein structure. This structural alteration positively influenced the functional characteristics, with samples hydrolyzed for 90 min exhibiting excellent solubility, higher water and oil absorption capacity, foaming capacity, and increased emulsifying activity index. Moreover, samples hydrolyzed for 90 min displayed the highest α-glucosidase (29.62-57.43 %), pancreatic lipase inhibition (12.87-31.08 %), and ACE inhibition (25.32-62.70 %) activity. Interestingly, the inhibiting ability of protein hydrolysates against α-glucosidase and ACE was more effective than pancreatic lipase, suggesting their usefulness as a functional ingredient, particularly in type II diabetes and hypertension management.
Collapse
Affiliation(s)
- Mehnaza Manzoor
- Division of Food Science and Technology, Sher-e-Kashmir University of Agriculture Science and Technology, Jammu 180009, India; Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
| | - Jagmohan Singh
- Division of Food Science and Technology, Sher-e-Kashmir University of Agriculture Science and Technology, Jammu 180009, India.
| | - Zuhaib F Bhat
- Division of Livestock Product Technology, Sher-e-Kashmir University of Agriculture Science and Technology, Jammu, India.
| | - Sundeep Jaglan
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
| |
Collapse
|
22
|
Tachie CYE, Onuh JO, Aryee ANA. Nutritional and potential health benefits of fermented food proteins. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1223-1233. [PMID: 37740932 DOI: 10.1002/jsfa.13001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/07/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND Protein fermentation continues to gain popularity as a result of several factors, including the cost-effectiveness of the process and the positive correlation of fermented protein consumption, with a reduced risk of developing diet-related diseases such as diabetes and cardiovascular disorders, as well as their enhanced nutritional and techno-functional properties. Nonetheless, the nutritional and health benefits of food protein fermentation such as enhanced nutrient bioavailability, reduced antinutritional factors (ANFs) and enriched bioactive peptides (BAPs) are often overlooked. The present study reviewed recent work on the influence of protein fermentation on nutrition and health. In total, 322 eligible studies were identified on the Scopus and Google Scholar databases out of which 69 studies were evaluated based on our inclusion criteria. RESULTS Fermented protein ingredients and products show reduced ANF content, enhanced digestibility and bioavailability, and increased antioxidant and other biological activities, such as probiotic, prebiotic, angiotensin-converting enzyme inhibitory and antihypertensive properties. In addition, co-products in protein fermentation such as BAPs possess and could contribute additional sensory and flavor properties, degrade toxins, and reduce allergens in foods. CONCLUSION Thus, fermentation is not only a method for food preservation, but also serves as a means for producing functional food products for consumer health promotion and nutrition enrichment. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Christabel Y E Tachie
- Delaware State University, College of Agriculture, Science and Technology, Food Science & Biotechnology Program, Department of Human Ecology, Dover, DE, USA
| | - John O Onuh
- Department of Food and Nutritional Sciences, College of Agriculture, Environment and Nutrition Science, Tuskegee University, Tuskegee, AL, USA
| | - Alberta N A Aryee
- Delaware State University, College of Agriculture, Science and Technology, Food Science & Biotechnology Program, Department of Human Ecology, Dover, DE, USA
| |
Collapse
|
23
|
Wong YH, Lee SH. Short Fragmented Peptides from Pardachirus Marmoratus Exhibit Stronger Anticancer Activities in In Silico Residue Replacement and Analyses. Curr Drug Discov Technol 2024; 21:e220224227304. [PMID: 38409702 DOI: 10.2174/0115701638290855240207114727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND Cancer is a worldwide issue. It has been observed that conventional therapies face many problems, such as side effects and drug resistance. Recent research reportedly used marine-derived products to treat various diseases and explored their potential in treating cancers. OBJECTIVE This study aims to discover short-length anticancer peptides derived from pardaxin 6 through an in silico approach. METHODS Fragmented peptides ranging from 5 to 15 amino acids were derived from the pardaxin 6 parental peptide. These peptides were further replaced with one residue and, along with the original fragmented peptides, were predicted for their SVM scores and physicochemical properties. The top 5 derivative peptides were further examined for their toxicity, hemolytic probability, peptide structures, docking models, and energy scores using various web servers. The trend of in silico analysis outputs across 5 to 15 amino acid fragments was further analyzed. RESULTS Results showed that when the amino acids were increased, SVM scores of the original fragmented peptides were also increased. Designed peptides had increased SVM scores, which was aligned with previous studies where the single residue replacement transformed the non-anticancer peptide into an anticancer agent. Moreover, in vitro studies validated that the designed peptides retained or enhanced anticancer effects against different cancer cell lines. Interestingly, a decreasing trend was observed in those fragmented derivative peptides. CONCLUSION Single residue replacement in fragmented pardaxin 6 was found to produce stronger anticancer agents through in silico predictions. Through bioinformatics tools, fragmented peptides improved the efficiency of marine-derived drugs with higher efficacy and lower hemolytic effects in treating cancers.
Collapse
Affiliation(s)
- Yong Hui Wong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, 47500, Malaysia
| | - Sau Har Lee
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, 47500, Malaysia
- Digital Health and Medical Advancements Impact Lab, Taylor's University, Subang Jaya, 47500, Malaysia
| |
Collapse
|
24
|
Tacias-Pascacio VG, Castañeda-Valbuena D, Tavano O, Murcia ÁB, Torrestina-Sánchez B, Fernandez-Lafuente R. Peptides with biological and technofunctional properties produced by bromelain hydrolysis of proteins from different sources: A review. Int J Biol Macromol 2023; 253:127244. [PMID: 37806416 DOI: 10.1016/j.ijbiomac.2023.127244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
Bromelains are cysteine peptidases with endopeptidase action (a subfamily of papains), obtained from different parts of vegetable belonging to the Bromeliaceae family. They have some intrinsic medical activity, but this review is focused on their application (individually or mixed with other proteases) to produce bioactive peptides. When compared to other proteases, perhaps due to the fact that they are commercialized as an extract containing several proteases, the hydrolysates produced by this enzyme tends to have higher bioactivities than other common proteases. The peptides and the intensity of their final properties depend on the substrate protein and reaction conditions, being the degree of hydrolysis a determining parameter (but not always positive or negative). The produced peptides may have diverse activities such as antioxidant, antitumoral, antihypertensive or antimicrobial ones, among others or they may be utilized to improve the organoleptic properties of foods and feeds. Evolution of the use of this enzyme in this application is proposed to be based on a more intense direct application of Bromeliaceae extract, without the cost associated to enzyme purification, and the use of immobilized biocatalysts of the enzyme by simplifying the enzyme recovery and reuse, and also making the sequential hydrolysis using diverse proteases possible.
Collapse
Affiliation(s)
- Veymar G Tacias-Pascacio
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Daniel Castañeda-Valbuena
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Olga Tavano
- Faculty of Nutrition, Alfenas Federal Univ., 700 Gabriel Monteiro da Silva St, Alfenas, MG 37130-000, Brazil
| | - Ángel Berenguer Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Alicante, Spain
| | | | | |
Collapse
|
25
|
Bellaver EH, Kempka AP. Potential of milk-derived bioactive peptides as antidiabetic, antihypertensive, and xanthine oxidase inhibitors: a comprehensive bibliometric analysis and updated review. Amino Acids 2023; 55:1829-1855. [PMID: 37938416 DOI: 10.1007/s00726-023-03351-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/17/2023] [Indexed: 11/09/2023]
Abstract
Bioactive peptides consist of small protein fragments, which are inactive in their original conformation, and they become active when released from these through enzymatic hydrolysis or fermentation processes. The bioactivity of such peptides has been extensively reported in the literature as contributors to organic homeostasis processes, as well as in immunomodulation, organism defense against oxidative processes, among others. In this study, reports of the activity of BPs isolated from milk with the potential glycemic control, antihypertensive activity, and inhibitors of uric acid formation were compiled. A systematic literature review and bibliometric analysis were conducted, using the PICO strategy for the research. The temporal analysis of publications revealed a growing interest in the investigation of bioactive peptides with potential antidiabetic, antihypertensive, and xanthine oxidase inhibitory activities, using dairy sources as products for their extraction. The literature analysis also revealed an increase in research involving non-bovine dairy products for bioactive peptide extraction. The collaboration network among authors exhibited weaknesses in scientific cooperation. Regarding the analysis of keywords, the usage of terms such as "bioactive peptides", "antioxidant", "antihypertensive", and "diabetes" was evident, constituting the main research clusters. Peptides with low molecular weight, typically < 10 kDa, of hydrophobic nature with aliphatic and aromatic chains, have significant implications in molecular interactions for the required activities. Although there is a growing interest in the industry regarding the utilization of bioactive peptides as potential drugs, there is a need to address gaps related to elucidating their interactions with cellular targets and their use in human therapy.
Collapse
Affiliation(s)
- Emyr Hiago Bellaver
- Department of Animal Production and Food Science, Multicentric Graduate Program in Biochemistry and Molecular Biology Santa Catarina State University, Lages, SC, Brazil
| | - Aniela Pinto Kempka
- Department of Animal Production and Food Science, Multicentric Graduate Program in Biochemistry and Molecular Biology Santa Catarina State University, Lages, SC, Brazil.
- Department of Food Engineering and Chemical Engineering, Santa Catarina State University, Fernando de Noronha Street, BR 282, Km 573.5, Pinhalzinho, SC, 89870-000, Brazil.
| |
Collapse
|
26
|
Ramírez-Guzmán N, Torres-León C, Aguillón-Gutiérrez D, Aguirre-Joya JA. Insects, Plants, and Microorganisms from Dry Lands as Novel Sources of Proteins and Peptides for Human Consumption. Foods 2023; 12:4284. [PMID: 38231705 DOI: 10.3390/foods12234284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 01/19/2024] Open
Abstract
Protein malnutrition is present in developing countries but also in developed ones due to actual eating habits involving insufficient protein intake. In addition to this, it is estimated by the Food and Agricultural Organization of the United Nations that the world's population will increase to 9.1 billion people in less than 30 years. This poses a significant challenge in terms of nourishing the population. Different strategies have been proposed to address this challenge, including exploring novel protein sources such as plants. For instance, Prosopis alba pods have an 85.5% protein content. Other examples are microorganisms, such as Halobacillus adaensis which produces 571 U/mL of protease, and insects such as those belonging to the Orthoptera order, like grasshoppers, which have a protein content of 65.96%. These sources have been found in dry lands and are being explored to address this challenge.
Collapse
Affiliation(s)
- Nathiely Ramírez-Guzmán
- Center for Interdisciplinary Studies and Research (CEII-UAdeC), Universidad Autónoma de Coahuila, Saltillo 25280, Mexico
| | - Cristian Torres-León
- Reaserch Center and Ethnobiological Garden (CIJE), Universidad Autónoma de Coahuila, Viesca 27480, Mexico
| | - David Aguillón-Gutiérrez
- Reaserch Center and Ethnobiological Garden (CIJE), Universidad Autónoma de Coahuila, Viesca 27480, Mexico
| | | |
Collapse
|
27
|
Bankole AO, Irondi EA, Awoyale W, Ajani EO. Application of natural and modified additives in yogurt formulation: types, production, and rheological and nutraceutical benefits. Front Nutr 2023; 10:1257439. [PMID: 38024362 PMCID: PMC10646222 DOI: 10.3389/fnut.2023.1257439] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Yogurt, a popular fermented dairy product, is of different types and known for its nutritional and nutraceutical benefits. However, incorporating additives into yogurt has been adopted to improve its functionality and nutraceutical properties. Additives incorporated in yogurt may be natural or modified. The incorporation of diverse natural additives in yogurt formulation, such as moringa, date palm, grape seeds and argel leaf extracts, cornelian cherry paste, mulberry fruit and leaf powder, lentil flour, different types of fibers, lemongrass and spearmint essential oils, and honey, has been reported. Similarly, modified additives, such as β-glucan, pectin, inulin, sodium alginate, and gelatin, are also added to enhance the physicochemical, textural, sensory, and rheological properties of yogurt. Although additives are traditionally added for their technological impact on the yogurt, studies have shown that they influence the nutritional and nutraceutical properties of yogurt, when added. Hence, yogurts enriched with functional additives, especially natural additives, have been reported to possess an improved nutritional quality and impart several health benefits to consumers. These benefits include reducing the risk of cardiovascular disease, cancer, osteoporosis, oxidative stress, and hyperglycemia. This current review highlights the common types of yogurt, the production process, and the rheological and nutraceutical benefits of incorporating natural and modified additives into yogurt.
Collapse
Affiliation(s)
| | | | - Wasiu Awoyale
- Department of Food Science and Technology, Kwara State University, Ilorin, Nigeria
| | | |
Collapse
|
28
|
Ma Z, Mondor M, Goycoolea Valencia F, Hernández-Álvarez AJ. Current state of insect proteins: extraction technologies, bioactive peptides and allergenicity of edible insect proteins. Food Funct 2023; 14:8129-8156. [PMID: 37656123 DOI: 10.1039/d3fo02865h] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
This review aims to provide an updated overview of edible insect proteins and the bioactivity of insect-derived peptides. The essential amino acid content of edible insects is compared with well-known protein sources to demonstrate that edible insects have the potential to cover the protein quality requirements for different groups of the population. Then the current methodologies for insect protein extraction are summarized including a comparison of the protein extraction yield and the final protein content of the resulting products for each method. Furthermore, in order to improve our understanding of insect proteins, their functional properties (such as solubility, foaming capacity, emulsifying, gelation, water holding capacity and oil holding capacity) are discussed. Bioactive peptides can be released according to various enzymatic hydrolysis protocols. In this context, the bioactive properties of insect peptides (antihypertensive, antidiabetic, antioxidant and anti-inflammatory properties) have been discussed. However, the allergens present in insect proteins are still a major concern and an unsolved issue for insect-based product consumption; thus, an analysis of cross reactivity and the different methods available to reduce allergenicity are proposed. Diverse studies of insect protein hydrolysates/peptides have been ultimately promoting the utilization of insect proteins for future perspectives and the emerging processing technologies to enhance the wider utilization of insect proteins for different purposes.
Collapse
Affiliation(s)
- Zidan Ma
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK.
| | - Martin Mondor
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Hyacinthe, QC, J2S 8E3, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC, G1V 0A6, Canada
| | | | | |
Collapse
|
29
|
Fashakin OO, Tangjaidee P, Unban K, Klangpetch W, Khumsap T, Sringarm K, Rawdkuen S, Phongthai S. Isolation and Identification of Antioxidant Peptides Derived from Cricket ( Gryllus bimaculatus) Protein Fractions. INSECTS 2023; 14:674. [PMID: 37623384 PMCID: PMC10455153 DOI: 10.3390/insects14080674] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 08/26/2023]
Abstract
Crickets contain high protein content that can be used to improve nutrition but are less exploited. This study was conducted to isolate different Cricket Protein Fractions including albumin, globulin, glutelin, and prolamin. All fractions were characterized and hydrolyzed by commercial enzymes. The results showed that the glutelin fractions had the highest extraction yields with 53.9 ± 2.12% (p < 0.05). Moreover, glutelin hydrolysate fraction prepared by Alcalase with a 16.35 ±0.29% hydrolysis degree was selected for further purification because of their high antioxidant activities, including ABTS radical-scavenging activity (0.44-0.55 µmol Trolox eq./g) and metal chelating activity (1721.99-1751.71 µmol EDTA eq./g). Two active fractions, GA-1 (<3 kDa) and GA-2 (<3 kDa), were collected from the consecutive purification of glutelin hydrolysates, which included processes such as membrane ultrafiltration and gel filtration. The fractions were analyzed by LC-MS/MS to obtain 10 peptides with 3-13 amino acids identified as TEAPLNPK, EVGA, KLL, TGNLPGAAHPLLL, AHLLT, LSPLYE, AGVL, VAAV, VAGL, and QLL with a molecular weight range of 359.23-721.37 Da in the two fractions. The amino acid sequence shows a prevalence of hydrophobic amino acids (50-100%) such as valine and leucine in the peptide chains, accounting for its high antioxidant activity. In conclusion, cricket glutelin hydrolysate prepared by Alcalase can serve as an alternative source of potent edible bioactive peptides in functional food products.
Collapse
Affiliation(s)
- Olumide Oluwatoyosi Fashakin
- Master’s Degree Program in Food Science and Technology (International Program), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Pipat Tangjaidee
- Division of Food Science and Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.T.); (K.U.); (W.K.); (T.K.)
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Kridsada Unban
- Division of Food Science and Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.T.); (K.U.); (W.K.); (T.K.)
| | - Wannaporn Klangpetch
- Division of Food Science and Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.T.); (K.U.); (W.K.); (T.K.)
| | - Tabkrich Khumsap
- Division of Food Science and Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.T.); (K.U.); (W.K.); (T.K.)
| | - Korawan Sringarm
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Saroat Rawdkuen
- Unit of Innovative Food Packaging and Biomaterials, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand;
| | - Suphat Phongthai
- Division of Food Science and Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.T.); (K.U.); (W.K.); (T.K.)
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand;
| |
Collapse
|
30
|
Li D, Cao J, Zhang J, Mu T, Wang R, Li H, Tang H, Chen L, Lin X, Peng X, Zhao K. The Effects and Regulatory Mechanism of Casein-Derived Peptide VLPVPQK in Alleviating Insulin Resistance of HepG2 Cells. Foods 2023; 12:2627. [PMID: 37444365 DOI: 10.3390/foods12132627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
The liver plays a key role in keeping the homeostasis of glucose and lipid metabolism. Insulin resistance of the liver induced by extra glucose and lipid ingestion contributes greatly to chronic metabolic disease, which is greatly threatening to human health. The small peptide, VLPVPQK, originating from casein hydrolysates of milk, shows various health-promoting functions. However, the effects of VLPVPQK on metabolic disorders of the liver are still not fully understood. Therefore, in the present study, the effects and regulatory mechanism of VLPVPQK on insulin-resistant HepG2 cells was further investigated. The results showed that VLPVPQK exerted strong scavenging capacities against various free radicals, including oxygen radicals, hydroxyl radicals, and cellular reactive oxygen species. In addition, supplementation of VLPVPQK (62.5, 125, and 250 μM) significantly reversed the high glucose and fat (30 mM glucose and 0.2 mM palmitic acid) induced decrement of glucose uptake in HepG2 cells without affecting cell viability. Furthermore, VLPVPQK intervention affected the transcriptomic profiling of the cells. The differentially expressed (DE) genes (FDR < 0.05, and absolute fold change (FC) > 1.5) between VLPVPQK and the model group were mostly enriched in the carbohydrate metabolism-related KEGG pathways. Interestingly, the expression of two core genes (HKDC1 and G6PC1) involved in the above pathways was dramatically elevated after VLPVPQK intervention, which played a key role in regulating glucose metabolism. Furthermore, supplementation of VLPVPQK reversed the high glucose and fat-induced depression of AKR1B10. Overall, VLPVPQK could alleviate the metabolic disorder of hepatocytes by elevating the glucose uptake and eliminating the ROS, while the HKDC1 and AKR1B10 genes might be the potential target genes and play important roles in the process.
Collapse
Affiliation(s)
- Dapeng Li
- College of Life Science, Yantai University, Yantai 264005, China
| | - Jianxin Cao
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Jin Zhang
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tong Mu
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Rubin Wang
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Huanhuan Li
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Honggang Tang
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lihong Chen
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiuyu Lin
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xinyan Peng
- College of Life Science, Yantai University, Yantai 264005, China
| | - Ke Zhao
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
31
|
Qu T, He S, Wu Y, Wang Y, Ni C, Wen S, Cui B, Cheng Y, Wen L. Transcriptome Analysis Reveals the Immunoregulatory Activity of Rice Seed-Derived Peptide PEP1 on Dendritic Cells. Molecules 2023; 28:5224. [PMID: 37446885 DOI: 10.3390/molecules28135224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Some food-derived bioactive peptides exhibit prominent immunoregulatory activity. We previously demonstrated that the rice-derived PEP1 peptide, GIAASPFLQSAAFQLR, has strong immunological activity. However, the mechanism of this action is still unclear. In the present study, full-length transcripts of mouse dendritic cells (DC2.4) treated with PEP1 were sequenced using the PacBio sequencing platform, and the transcriptomes were compared via RNA sequencing (RNA-Seq). The characteristic markers of mature DCs, the cluster of differentiation CD86, and the major histocompatibility complex (MHC-II), were significantly upregulated after the PEP1 treatment. The molecular docking suggested that hydrogen bonding and electrostatic interactions played important roles in the binding between PEP1, MHC-II, and the T-cell receptor (TCR). In addition, the PEP1 peptide increased the release of anti-inflammatory factors (interleukin-4 and interleukin-10) and decreased the release of pro-inflammatory factors (interleukin-6 and tumor necrosis factor-α). Furthermore, the RNA-seq results showed the expression of genes involved in several signaling pathways, such as the NF-κB, MAPK, JAK-STAT, and TGF-β pathways, were regulated by the PEP1 treatment, and the changes confirmed the immunomodulatory effect of PEP1 on DC2.4 cells. This findings revealed that the PEP1 peptide, derived from the byproduct of rice processing, is a potential natural immunoregulatory alternative for the treatment of inflammation.
Collapse
Affiliation(s)
- Tingmin Qu
- School of Food Science and Bioengineering, Hunan Provincial Key Laboratory of Cytochemistry, Changsha University of Science & Technology, Changsha 410114, China
| | - Shuwen He
- School of Food Science and Bioengineering, Hunan Provincial Key Laboratory of Cytochemistry, Changsha University of Science & Technology, Changsha 410114, China
| | - Ying Wu
- School of Food Science and Bioengineering, Hunan Provincial Key Laboratory of Cytochemistry, Changsha University of Science & Technology, Changsha 410114, China
| | - Yingying Wang
- School of Food Science and Bioengineering, Hunan Provincial Key Laboratory of Cytochemistry, Changsha University of Science & Technology, Changsha 410114, China
| | - Ce Ni
- School of Food Science and Bioengineering, Hunan Provincial Key Laboratory of Cytochemistry, Changsha University of Science & Technology, Changsha 410114, China
| | - Shiyu Wen
- School of Food Science and Bioengineering, Hunan Provincial Key Laboratory of Cytochemistry, Changsha University of Science & Technology, Changsha 410114, China
| | - Bo Cui
- School of Food Science and Engineering, Qilu University of Technology, Jinan 250353, China
| | - Yunhui Cheng
- School of Food Science and Bioengineering, Hunan Provincial Key Laboratory of Cytochemistry, Changsha University of Science & Technology, Changsha 410114, China
- School of Food Science and Engineering, Qilu University of Technology, Jinan 250353, China
| | - Li Wen
- School of Food Science and Bioengineering, Hunan Provincial Key Laboratory of Cytochemistry, Changsha University of Science & Technology, Changsha 410114, China
| |
Collapse
|
32
|
Manzoor M, Mir RA, Farooq A, Hami A, Pakhtoon MM, Sofi SA, Malik FA, Hussain K, Bhat MA, Sofi NR, Pandey A, Khan MK, Hamurcu M, Zargar SM. Shifting archetype to nature's hidden gems: from sources, purification to uncover the nutritional potential of bioactive peptides. 3 Biotech 2023; 13:252. [PMID: 37388856 PMCID: PMC10299963 DOI: 10.1007/s13205-023-03667-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 06/11/2023] [Indexed: 07/01/2023] Open
Abstract
Contemporary scientific findings revealed that our daily food stuffs are enriched by encrypted bioactive peptides (BPs), evolved by peptide linkage of amino acids or encrypted from the native protein structures. Remarkable to these BPs lies in their potential health benefiting biological activities to serve as nutraceuticals or a lead addition to the development of functional foods. The biological activities of BPs vary depending on the sequence as well as amino acid composition. Existing database records approximately 3000 peptide sequences which possess potential biological activities such as antioxidants, antihypertensive, antithrombotic, anti-adipogenics, anti-microbials, anti-inflammatory, and anti-cancerous. The growing evidences suggest that BPs have very low toxicity, higher accuracy, less tissue accretion, and are easily degraded in the disposed environment. BPs are nowadays evolved as biologically active molecules with potential scope to reduce microbial contamination as well as ward off oxidation of foods, amend diverse range of human diseases to enhance the overall quality of human life. Against the clinical and health perspectives of BPs, this review aimed to elaborate current evolution of nutritional potential of BPs, studies pertaining to overcome limitations with respect to special focus on emerging extraction, protection and delivery tools of BPs. In addition, the nano-delivery mechanism of BP and its clinical significance is detailed. The aim of current review is to augment the research in the field of BPs production, identification, characterisation and to speed up the investigation of the incredible potentials of BPs as potential nutritional and functional food ingredient.
Collapse
Affiliation(s)
- Madhiya Manzoor
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, Kashmir(J&K) 190025 India
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, Central University of Kashmir, Tulmulla, Kashmir(J&K) 191131 India
| | - Asmat Farooq
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, Kashmir(J&K) 190025 India
- Division of Biochemistry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu (SKUAST-J), Chatha, Jammu (J&K) 180009 India
| | - Ammarah Hami
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, Kashmir(J&K) 190025 India
| | - Mohammad Maqbool Pakhtoon
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, Kashmir(J&K) 190025 India
- Department of Life Sciences, Rabindranath Tagore University, Bhopal, 462045 India
| | - Sajad Ahmad Sofi
- Department of Food Technology, Islamic University of Science and Technology Awantipora, Awantipora, Kashmir(J&K) 192122 India
| | - Firdose Ahmad Malik
- Division of Vegetable Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, Kashmir(J&K) 190025 India
| | - khursheed Hussain
- MAR&ES, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Gurez, Shalimar, Kashmir(J&K) 190025 India
| | - M. Ashraf Bhat
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, Kashmir(J&K) 190025 India
| | - Najeebul Rehmen Sofi
- MRCFC, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Khudwani, Shalimar, J&K India
| | - Anamika Pandey
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, 42079 Turkey
| | - Mohd. Kamran Khan
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, 42079 Turkey
| | - Mehmet Hamurcu
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, 42079 Turkey
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, Kashmir(J&K) 190025 India
| |
Collapse
|
33
|
Arouna N, Gabriele M, Tomassi E, Pucci L. Traditional Fermentation Affects the Nutraceutical Properties of Parkia biglobosa Seeds. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023:10.1007/s11130-023-01064-8. [PMID: 37378802 DOI: 10.1007/s11130-023-01064-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/08/2023] [Indexed: 06/29/2023]
Abstract
Parkia biglobosa seeds (African locust bean) play a crucial role in the diet and health of Western African populations. The seeds are spontaneously fermented to produce condiments used for food seasoning and stews preparation. Hence, to understand the health benefits of seed-based products from P. biglobosa, total polyphenol content, in vitro and ex vivo antioxidant properties, as well as antihypertensive activity, of fermented and non-fermented seeds were investigated. The Folin-Ciocalteu method was used to determine total polyphenol content; 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) tests were used to estimate the in vitro antioxidant activity. The ex vivo antioxidant and antihypertensive activities were evaluated by using cellular antioxidant activity in human red blood cells (CAA-RBC) and angiotensin-converting enzyme (ACE) inhibitory activity assays, respectively. The fermented seeds showed a huge increase in polyphenol content and in vitro antioxidant activities compared to non-fermented ones. The fermented seeds showed a higher potency of biological antioxidant activity than non-fermented ones by exhibiting greater protection of erythrocytes from oxidative damage at a very low dose of extracts. Both fermented and non-fermented seeds have been shown to contain peptides with ACE-inhibitory activity; however, the non-fermented seeds exerted a higher ACE-inhibitory activity than fermented ones. In conclusion, traditional fermentation positively impacted the nutraceutical and health benefits of P. biglobosa seeds. However, the non-fermented seeds should not be ignored. Both fermented and non-fermented seeds can be used as valuable ingredients for the formulation of functional foods.
Collapse
Affiliation(s)
- Nafiou Arouna
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100 - 80055, Portici, Naples, Italy
| | - Morena Gabriele
- Institute of Agricultural Biology and Biotechnology, Italian National Research Council, Via Moruzzi 1, Pisa, 56124, Italy.
| | - Elena Tomassi
- Institute of Agricultural Biology and Biotechnology, Italian National Research Council, Via Moruzzi 1, Pisa, 56124, Italy
| | - Laura Pucci
- Institute of Agricultural Biology and Biotechnology, Italian National Research Council, Via Moruzzi 1, Pisa, 56124, Italy
| |
Collapse
|
34
|
Rivero-Pino F, Villanueva Á, Montserrat-de-la-Paz S, Sanchez-Fidalgo S, Millán-Linares MC. Evidence of Immunomodulatory Food-Protein Derived Peptides in Human Nutritional Interventions: Review on the Outcomes and Potential Limitations. Nutrients 2023; 15:2681. [PMID: 37375585 DOI: 10.3390/nu15122681] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The immune system is somehow related to all the metabolic pathways, in a bidirectional way, and the nutritional interventions affecting these pathways might have a relevant impact on the inflammatory status of the individuals. Food-derived peptides have been demonstrated to exert several bioactivities by in vitro or animal studies. Their potential to be used as functional food is promising, considering the simplicity of their production and the high value of the products obtained. However, the number of human studies performed until now to demonstrate effects in vivo is still scarce. Several factors must be taken into consideration to carry out a high-quality human study to demonstrate immunomodulatory-promoting properties of a test item. This review aims to summarize the recent human studies published in which the purpose was to demonstrate bioactivity of protein hydrolysates, highlighting the main results and the limitations that can restrict the relevance of the studies. Results collected are promising, although in some studies, physiological changes could not be observed. When responses were observed, they sometimes did not refer to relevant parameters and the immunomodulatory properties could not be clearly established with the current evidence. Well-designed clinical trials are needed in order to evaluate the role of protein hydrolysates in immunonutrition.
Collapse
Affiliation(s)
- Fernando Rivero-Pino
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Álvaro Villanueva
- Department of Food & Health, Instituto de la Grasa (IG-CSIC), Campus Universitario Pablo de Olavide, Ctra. Utrera Km. 1, 41013 Seville, Spain
| | - Sergio Montserrat-de-la-Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Susana Sanchez-Fidalgo
- Department of Preventive Medicine and Public Health, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Maria C Millán-Linares
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| |
Collapse
|
35
|
Xu S, Zhao Y, Song W, Zhang C, Wang Q, Li R, Shen Y, Gong S, Li M, Sun L. Improving the Sustainability of Processing By-Products: Extraction and Recent Biological Activities of Collagen Peptides. Foods 2023; 12:foods12101965. [PMID: 37238782 DOI: 10.3390/foods12101965] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Society and consumers are increasingly concerned about food safety and the sustainability of food production systems. A significant amount of by-products and discards are generated during the processing of aquatic animals, which still needs to be fully utilized by the food industry. The management and sustainable use of these resources are essential to avoiding environmental pollution and resource waste. These by-products are rich in biologically active proteins, which can be converted into peptides by enzymatic hydrolysis or fermentation treatment. Therefore, exploring the extraction of collagen peptides from these by-products using an enzymatic hydrolysis technology has attracted a wide range of attention from numerous researchers. Collagen peptides have been found to possess multiple biological activities, including antioxidant, anticancer, antitumor, hypotensive, hypoglycemic, and anti-inflammatory properties. These properties can enhance the physiological functions of organisms and make collagen peptides useful as ingredients in food, pharmaceuticals, or cosmetics. This paper reviews the general methods for extracting collagen peptides from various processing by-products of aquatic animals, including fish skin, scales, bones, and offal. It also summarizes the functional activities of collagen peptides as well as their applications.
Collapse
Affiliation(s)
- Shumin Xu
- College of Life Science, Yantai University, No. 30, Qing Quan Road, Yantai 264005, China
| | - Yuping Zhao
- College of Life Science, Yantai University, No. 30, Qing Quan Road, Yantai 264005, China
| | - Wenshan Song
- Marine Biomedical Research Institute of Qingdao, No. 23, Hong Kong East Road, Qingdao 266073, China
| | - Chengpeng Zhang
- College of Life Science, Yantai University, No. 30, Qing Quan Road, Yantai 264005, China
| | - Qiuting Wang
- College of Life Science, Yantai University, No. 30, Qing Quan Road, Yantai 264005, China
| | - Ruimin Li
- College of Life Science, Yantai University, No. 30, Qing Quan Road, Yantai 264005, China
| | - Yanyan Shen
- College of Life Science, Yantai University, No. 30, Qing Quan Road, Yantai 264005, China
| | - Shunmin Gong
- College of Life Science, Yantai University, No. 30, Qing Quan Road, Yantai 264005, China
| | - Mingbo Li
- College of Life Science, Yantai University, No. 30, Qing Quan Road, Yantai 264005, China
| | - Leilei Sun
- College of Life Science, Yantai University, No. 30, Qing Quan Road, Yantai 264005, China
| |
Collapse
|
36
|
Di C, Jia W. Food-derived bioactive peptides as momentous food components: Can functional peptides passed through the PI3K/Akt/mTOR pathway and NF-κB pathway to repair and protect the skeletal muscle injury? Crit Rev Food Sci Nutr 2023; 64:9210-9227. [PMID: 37171059 DOI: 10.1080/10408398.2023.2209192] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Muscle injury is defined as an overuse injury or traumatic distraction of a muscle, which is latent in any sport event, from amateur to large events. Based on previous numbers of muscle injuries and time spent to the athletes' recovery, the use of dietary functional factors intervention strategies is essential to enhance the recovery process and health. In recent years, there has been increasing evidence that biologically active peptides played an important role in sports nutrition and muscle injure recovery. Food-derived bioactive peptides were physiologically active peptides mostly derived from proteins following hydrolysis, which could be resorbed in intact form to reduce muscle damage following exercise and induce beneficial adaptions within the connective tissue. However, the complexity of the histoarchitectural considerations for skeletal muscle injuries and the repair mechanism of damaged skeletal muscle were not well known. In the following overview, the potential mechanisms and possible limitations regarding the damaged skeletal muscle metabolism were summarized, which aimed to present an overview of the nutritional strategies and recommendations after a muscular sports injury, emphasizing the use of main bioactive peptides. In addition, this review will provide implications for the studies of dietary bioactive peptides in the future.
Collapse
Affiliation(s)
- Chenna Di
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, China
| | - Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an, China
| |
Collapse
|
37
|
Gabriele M, Arouna N, Árvay J, Longo V, Pucci L. Sourdough Fermentation Improves the Antioxidant, Antihypertensive, and Anti-Inflammatory Properties of Triticum dicoccum. Int J Mol Sci 2023; 24:ijms24076283. [PMID: 37047259 PMCID: PMC10094579 DOI: 10.3390/ijms24076283] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
The fermentation process has been widely used to improve plant-based foods’ nutritional and nutraceutical properties. This study aimed to investigate and compare the impact of sourdough fermentation on the bioactive content and profile, antioxidant and antihypertensive activities, as well as the anti-inflammatory properties of fermented (FS) and non-fermented (NFS) flour from Tuscan Triticum dicoccum wheat (spelt) on tumor necrosis factor-alpha (TNF-α)-inflamed human intestinal epithelial cells (HT-29). FS showed significantly higher total phenolic and flavonoid content, in vitro and ex vivo antioxidant activities, and ACE-inhibitory activities than NFS. Gallic acid was identified by HPLC-DAD as the most representative polyphenol, followed by rutin, trans-ferulic acid, iso-quercitrin, and quercetin, in the fermented spelt sample. Instead, rutin and gallic acid were identified as the predominant compounds in the non-fermented ones. Moreover, FS exhibited a better protective effect on inflamed HT-29 cells by significantly counteracting the TNFα-induced alterations, lowering the expression of IL-8, COX-2, and ICAM-1 inflammatory mediator while enhancing antioxidant enzyme HO-1 gene expression. In conclusion, sourdough fermentation positively affected the nutraceutical and functional properties of spelt, which may represent a valuable ingredient for the formulation of functional foods and a key product for managing hypertension and inflammatory intestinal diseases.
Collapse
Affiliation(s)
- Morena Gabriele
- Italian National Research Council, Institute of Agricultural Biology and Biotechnology, Via Moruzzi 1, 56124 Pisa, Italy; (V.L.); (L.P.)
- Correspondence: ; Tel.: +39-050-6212752
| | - Nafiou Arouna
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Naples, Italy;
| | - Július Árvay
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, 949 76 Nitra, Slovakia;
| | - Vincenzo Longo
- Italian National Research Council, Institute of Agricultural Biology and Biotechnology, Via Moruzzi 1, 56124 Pisa, Italy; (V.L.); (L.P.)
| | - Laura Pucci
- Italian National Research Council, Institute of Agricultural Biology and Biotechnology, Via Moruzzi 1, 56124 Pisa, Italy; (V.L.); (L.P.)
| |
Collapse
|
38
|
Dou B, Wu X, Xia Z, Wu G, Guo Q, Lyu M, Wang S. Multiple Bioactivities of Peptides from Hydrolyzed Misgurnus anguillicaudatus. Molecules 2023; 28:molecules28062589. [PMID: 36985560 PMCID: PMC10053552 DOI: 10.3390/molecules28062589] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Misgurnus anguillicaudatus (loach) is a widely distributed benthic fish in Asia. In this study, the alkaline protease was used to hydrolyze loach, and the hydrolysate products of different molecular weights were obtained by membrane separation. In vitro antioxidant assays showed that the <3 kDa fraction (SLH-1) exhibited the strongest antioxidant activity (DPPH, hydroxyl radical and superoxide radical scavenging ability, and reducing power), while SLH-1 was purified by gel filtration chromatography, and peptide sequences were identified by LC-MS/MS. A total of six peptides with antioxidant activity were identified, namely SERDPSNIKWGDAGAQ (D-1), TVDGPSGKLWR (D-2), NDHFVKL (D-3), AFRVPTP (D-4), DAGAGIAL (D-5), and VSVVDLTVR (D-6). In vitro angiotensin-converting enzyme (ACE) inhibition assay and pancreatic cholesterol esterase (CE) inhibition assay, peptide D-4 (IC50 95.07 μg/mL, 0.12 mM) and D-2 inhibited ACE, and peptide D-2 (IC50 3.19 mg/mL, 2.62 mM), D-3, and D-6 acted as pancreatic CE inhibitors. The inhibitory mechanisms of these peptides were investigated by molecular docking. The results showed that the peptides acted by binding to the key amino acids of the catalytic domain of enzymes. These results could provide the basis for the nutritional value and promote the type of healthy products from hydrolyzed loach.
Collapse
Affiliation(s)
- Baojie Dou
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xudong Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zihan Xia
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Guanghao Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Quanyou Guo
- East China Sea Fishery Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Correspondence: (M.L.); (S.W.)
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Correspondence: (M.L.); (S.W.)
| |
Collapse
|
39
|
Tonolo F, Grinzato A, Bindoli A, Rigobello MP. From In Silico to a Cellular Model: Molecular Docking Approach to Evaluate Antioxidant Bioactive Peptides. Antioxidants (Basel) 2023; 12:antiox12030665. [PMID: 36978913 PMCID: PMC10045749 DOI: 10.3390/antiox12030665] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/10/2023] Open
Abstract
The increasing need to counteract the redox imbalance in chronic diseases leads to focusing research on compounds with antioxidant activity. Among natural molecules with health-promoting effects on many body functions, bioactive peptides are gaining interest. They are protein fragments of 2–20 amino acids that can be released by various mechanisms, such as gastrointestinal digestion, food processing and microbial fermentation. Recent studies report the effects of bioactive peptides in the cellular environment, and there is evidence that these compounds can exert their action by modulating specific pathways. This review focuses on the newest approaches to the structure–function correlation of the antioxidant bioactive peptides, considering their molecular mechanism, by evaluating the activation of specific signaling pathways that are linked to antioxidant systems. The correlation between the results of in silico molecular docking analysis and the effects in a cellular model was highlighted. This knowledge is fundamental in order to propose the use of bioactive peptides as ingredients in functional foods or nutraceuticals.
Collapse
Affiliation(s)
- Federica Tonolo
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università, 35020 Padova, Italy
| | - Alessandro Grinzato
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Alberto Bindoli
- Institute of Neuroscience (CNR), Viale G. Colombo 3, 35131 Padova, Italy
| | - Maria Pia Rigobello
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy
- Correspondence:
| |
Collapse
|
40
|
Application of ultrasonication as pre-treatment for freeze drying: An innovative approach for the retention of nutraceutical quality in foods. Food Chem 2023; 404:134571. [DOI: 10.1016/j.foodchem.2022.134571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/23/2022] [Accepted: 10/08/2022] [Indexed: 11/22/2022]
|
41
|
Bioactive peptides derived from fermented foods: Preparation and biological activities. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
42
|
Xu Y, Amakye WK, Xiao G, Liu X, Ren J, Wang M. Intestinal absorptivity-increasing effects of sodium N-[8-(2-hydroxybenzoyl)amino]-caprylate on food-derived bioactive peptide. Food Chem 2023; 401:134059. [DOI: 10.1016/j.foodchem.2022.134059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/20/2022] [Accepted: 08/27/2022] [Indexed: 10/14/2022]
|
43
|
In Silico Prospecting for Novel Bioactive Peptides from Seafoods: A Case Study on Pacific Oyster ( Crassostrea gigas). Molecules 2023; 28:molecules28020651. [PMID: 36677709 PMCID: PMC9867001 DOI: 10.3390/molecules28020651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Pacific oyster (Crassostrea gigas), an abundant bivalve consumed across the Pacific, is known to possess a wide range of bioactivities. While there has been some work on its bioactive hydrolysates, the discovery of bioactive peptides (BAPs) remains limited due to the resource-intensive nature of the existing discovery pipeline. To overcome this constraint, in silico-based prospecting is employed to accelerate BAP discovery. Major oyster proteins were digested virtually under a simulated gastrointestinal condition to generate virtual peptide products that were screened against existing databases for peptide bioactivities, toxicity, bitterness, stability in the intestine and in the blood, and novelty. Five peptide candidates were shortlisted showing antidiabetic, anti-inflammatory, antihypertensive, antimicrobial, and anticancer potential. By employing this approach, oyster BAPs were identified at a faster rate, with a wider applicability reach. With the growing market for peptide-based nutraceuticals, this provides an efficient workflow for candidate scouting and end-use investigation for targeted functional product preparation.
Collapse
|
44
|
Isolation of a Novel Anti-Diabetic α-Glucosidase Oligo-Peptide Inhibitor from Fermented Rice Bran. Foods 2023; 12:foods12010183. [PMID: 36613397 PMCID: PMC9818066 DOI: 10.3390/foods12010183] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
At present, the incidence rate of diabetes is increasing gradually, and inhibiting α-glucosidase is one of the effective methods used to control blood sugar. This study identified new peptides from rice bran fermentation broth and evaluated their inhibitory activity and mechanism against α-glucosidase. Rice bran was fermented with Bacillus subtilis MK15 and the polypeptides of <3 kDa were isolated by ultrafiltration and chromatographic column, and were then subjected to LC-MS/MS mass spectrometry analysis. The results revealed that the oligopeptide GLLGY showed the greatest inhibitory activity in vitro. Docking studies with GLLGY on human α-glucosidase (PDB ID 5NN8) suggested a binding energy of −7.1 kcal/mol. GLLGY acts as a non-competitive inhibitor and forms five hydrogen bonds with Asp282, Ser523, Asp616, and His674 of α-glucosidase. Moreover, it retained its inhibitory activity even in a simulated digestion environment in vitro. The oligopeptide GLLGY could be developed into a potential anti-diabetic agent.
Collapse
|
45
|
Mardani M, Badakné K, Farmani J, Aluko RE. Antioxidant peptides: Overview of production, properties, and applications in food systems. Compr Rev Food Sci Food Saf 2023; 22:46-106. [PMID: 36370116 DOI: 10.1111/1541-4337.13061] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/23/2022] [Accepted: 09/19/2022] [Indexed: 11/13/2022]
Abstract
In recent years, several studies have reported the beneficial effects of antioxidant peptides in delaying oxidation reactions. Thus, a growing number of food proteins have been investigated as suitable sources for obtaining these antioxidant peptides. In this study, some of the most critical developments in the discovery of peptidic antioxidants are discussed. Initially, the primary methods to release, purify, and identify these antioxidant peptides from various food-derived sources are reviewed. Then, computer-based screening methods of the available peptides are summarized, and methods to interpret their structure-activity relationship are illustrated. Finally, approaches to the large-scale production of these bioactive peptides are described. In addition, the applications of these antioxidants in food systems are discussed, and gaps, future challenges, and opportunities in this field are highlighted. In conclusion, various food items can be considered promising sources to obtain these novel antioxidant peptides, which present various opportunities for food applications in addition to health promotion. The lack of in-depth data on the link between the structure and activity of these antioxidants, which is critical for the prediction of possible bioactive amino acid sequences and their potency in food systems and in vivo conditions (rather than in vitro systems), requires further attention. Consequently, future collaborative research activities between the industry and academia are required to realize the commercialization objectives of these novel antioxidant peptides.
Collapse
Affiliation(s)
- Mohsen Mardani
- Department of Cereal and Industrial Plant Processing, Faculty of Food Science, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Katalin Badakné
- Department of Cereal and Industrial Plant Processing, Faculty of Food Science, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Jamshid Farmani
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
46
|
Qi X, Chen H, Guan K, Sun Y, Wang R, Ma Y. Identification, inhibitory mechanism and transepithelial transport of xanthine oxidase inhibitory peptides from whey protein after simulated gastrointestinal digestion and intestinal absorption. Food Res Int 2022; 162:111959. [DOI: 10.1016/j.foodres.2022.111959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/02/2022] [Accepted: 09/18/2022] [Indexed: 11/04/2022]
|
47
|
Dang J, Du S, Wang L. Screening and Identification of Novel Soluble Epoxide Hydrolase Inhibitors from Corn Gluten Peptides. Foods 2022; 11:foods11223695. [PMID: 36429288 PMCID: PMC9689838 DOI: 10.3390/foods11223695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
The objective of this study was to investigate the soluble epoxide hydrolase (sEH) inhibitory properties of corn gluten peptides. In total, 400 dipeptides and 8000 tripeptides were first virtually screened by molecular docking and 30 potential sEH inhibitory peptides were selected. Among them, WEY, WWY, WYW, YFW, and YFY showed the highest sEH inhibitory activities with IC50 values of 55.41 ± 1.55, 68.80 ± 7.72, 70.66 ± 9.90, 96.00 ± 7.5, and 94.06 ± 12.86 μM, respectively. These five peptides all behaved as mixed-type inhibitors and were predicted to form hydrogen bond interactions mainly with Asp333, a key residue located in the catalytic active site of sEH. Moreover, it was found that the corn gluten hydrolysates of Alcalase, Flavourzyme, pepsin and pancreatin all exhibited high sEH inhibitory activities, with IC50 values of 1.07 ± 0.08, 1.19 ± 0.24, and 1.46 ± 0.31 mg/mL, respectively. In addition, the sEH inhibitory peptides WYW, YFW, and YFY were successfully identified from the corn gluten hydrolysates by Alcalase using nano-LC-MS/MS. This study demonstrated the sEH inhibitory capacity of peptides for the first time and corn gluten might be a promising food protein source for discovering novel natural sEH inhibitory peptides.
Collapse
Affiliation(s)
- Jiamin Dang
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Shuangkui Du
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
- Engineering Research Center of Grain and Oil Functionalized Processing, Universities of Shaanxi Province, Xianyang 712100, China
| | - Liying Wang
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
- Engineering Research Center of Grain and Oil Functionalized Processing, Universities of Shaanxi Province, Xianyang 712100, China
- Correspondence: ; Tel.: +86-029-87880246
| |
Collapse
|
48
|
Brandelli A, Daroit DJ. Unconventional microbial proteases as promising tools for the production of bioactive protein hydrolysates. Crit Rev Food Sci Nutr 2022; 64:4714-4745. [PMID: 36377687 DOI: 10.1080/10408398.2022.2145262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Enzymatic hydrolysis is the most prominent strategy to release bioactive peptides from different food proteins and protein-rich by-products. Unconventional microbial proteases (UMPs) have gaining increased attention for such purposes, particularly from the 2010s. In this review, we present and discuss aspects related to UMPs production, and their use to obtain bioactive protein hydrolysates. Antioxidant and anti-hypertensive potentials, commonly evaluated through in vitro testing, are mainly reported. The in vivo bioactivities of protein hydrolysates and peptides produced through UMPs action are highlighted. In addition to bioactivities, enzymatic hydrolysis acts by modulating the functional properties of proteins for potential food uses. The compiled literature indicates that UMPs are promising biocatalysts to generate bioactive protein hydrolysates, adding up to commercially available enzymes. From the recent interest on this topic, continuous and in-depth research is needed to advance toward the applicability and commercial utility of both UMPs and obtained hydrolysates.
Collapse
Affiliation(s)
- Adriano Brandelli
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de Alimentos (ICTA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Daniel Joner Daroit
- Programa de Pós-Graduação em Ambiente e Tecnologias Sustentáveis (PPGATS), Universidade Federal da Fronteira Sul (UFFS), Cerro Largo, Brazil
| |
Collapse
|
49
|
Li D, Xu XY, Yang Y, Wu N, Ma ZQ, Zuo F, Zhang N. Separation and purification of antioxidant peptides from purple speckled kidney bean by macroporous adsorption resin and analysis of amino acid composition. Front Nutr 2022; 9:1001456. [PMID: 36438729 PMCID: PMC9693755 DOI: 10.3389/fnut.2022.1001456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/06/2022] [Indexed: 08/02/2023] Open
Abstract
The protein hydrolysate of purple speckled kidney bean (PSKB) was used as the raw material in this study, and the antioxidant peptide of the PSKB protein hydrolysate was purified using macroporous resin. The XAD-7HP macroporous resin was selected as the best purification material, and the static adsorption-desorption of the purified PSKB antioxidant peptide was optimized. The optimum static adsorption and desorption conditions were as follows: the adsorption capacity reached 11.93 ± 0.11 mg/ml at pH 7 for 24 h, and the desorption capacity was 5.24 ± 0.04 mg/ml with 60% ethanol for 30 min. Under this condition, the amount of antioxidant peptide obtained by adsorption-desorption was the highest. The optimum process conditions were as follows: the appropriate flow rate was 1 ml/min, and the optimal injection volume was 40 ml. The adsorption amount at this time can reach 12.19 ± 0.15 mg/ml. The components with an elution time of 10-30 min were separated using the reversed-phase high-performance liquid chromatography (RP-HPLC) technique to obtain three main components, namely, RP1, RP2, and RP3. The DPPH free radical scavenging ability reached 56.26 ± 0.56, 66.42 ± 0.56, and 78.57 ± 0.56%, respectively, which were 36.65, 46.34 ± 0.56, and 54.39 ± 0.56% higher than those before purification. The amino acid sequences of the three components were identified as Phe-Leu-Val-Asp-Arg-Ile, Phe-Leu-Val-Ala-Pro-Asp-Asp, and Lys-Asp-Arg-Val-Ile-Ser-Glu-Leu.
Collapse
Affiliation(s)
- Dan Li
- School of Food Science, Heilongjiang Bayi Agriculture University, Daqing, China
- National Cereal Engineering Technology Research Center, Heilongjiang Bayi Agriculture University, Daqing, China
| | - Xin-yu Xu
- National Cereal Engineering Technology Research Center, Heilongjiang Bayi Agriculture University, Daqing, China
- School of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Yang Yang
- School of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Na Wu
- School of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Zhan-qian Ma
- School of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Feng Zuo
- School of Food Science, Heilongjiang Bayi Agriculture University, Daqing, China
- National Cereal Engineering Technology Research Center, Heilongjiang Bayi Agriculture University, Daqing, China
| | - Na Zhang
- School of Food Engineering, Harbin University of Commerce, Harbin, China
| |
Collapse
|
50
|
Effects of autochthonous strains mixture on gut microbiota and metabolic profile in cobia (Rachycentron canadum). Sci Rep 2022; 12:17410. [PMID: 36258024 PMCID: PMC9579153 DOI: 10.1038/s41598-022-19663-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/01/2022] [Indexed: 01/12/2023] Open
Abstract
The fish immune system is a topic or subject that offers a unique understanding of defensive system evolution in vertebrate heredity. While gut microbiota plays several roles in fish: well-being, promoting health and growth, resistance to bacterial invasion, regulation of energy absorption, and lipid metabolism. However, studies on fish gut microbiota face practical challenges due to the large number of fish varieties, fluctuating environmental conditions, and differences in feeding habits. This study was carried out to evaluate the impacts of supplemented three autochthonous strains, Bacillus sp. RCS1, Pantoea agglomerans RCS2, and Bacillus cereus RCS3 mixture diet on cobia fish (Rachycentron canadum). Also, chromatography, mass spectrometry and high throughput sequencing were combined to explore composition and metabolite profile of gut microbiota in juvenile cobia fed with supplemented diet. In the trial group, juvenile cobia received diets supplemented with 1 × 1012 CFU mL-1 autochthonous strains for ten weeks and a control diet without supplementation. Juvenile cobia receiving diets supplementation exhibited significantly improved growth than those without additives (control). Haematological indices, such as red blood cells, white blood cells, corpuscular haemoglobin concentration, mean corpuscular volume, haemoglobin, and mean corpuscular haemoglobin, were higher in the supplemented group. Similarly, digestive enzymes (trypsin, lipase, amylase, pepsin and cellulose, activities) activities were higher in supplemented diet with an indigenous isolates mixture. Serum biochemical parameters albumin, globulin, and total protein were significantly higher, while triglyceride, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and cholesterol showed no significant difference. On the other hand, glucose was significantly (P < 0.05) higher in the group without supplementation. On gene expression in the midgut, Immunoglobulin, Colony-stimulating factor receptor 1, major histocompatibility complex 1 were up-regulated by native isolates while T cell receptor beta, and Major histocompatibility complex 2 showed no significant difference. Gut bacterial composition was altered in fish receiving supplemented diet with autochthonous strains. Metabolomics also revealed that some metabolic pathways were considerably enriched in fish fed with supplemented diet; pathway analysis based on Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment revealed that differentially expressed metabolites were involved in galactose metabolism, tryptophan metabolism, carbohydrate digestion and absorption, purine metabolism, and ABC transporters. Functional analysis of bacterial community showed that differences in enriched metabolic pathways generally comprised carbohydrate and its metabolites, nucleotide and its metabolites, amino acid and its metabolites, heterocyclic compounds, and tryptamines, cholines, pigments. The current investigation results showed that autochthonous strains mixture has significantly enhanced the growth, survival, and innate and adaptive immunities of juvenile cobia.
Collapse
|