1
|
Butler B, Renney M, Bennett K, Charpentier G, Nance E. A rotenone organotypic whole hemisphere slice model of mitochondrial abnormalities in the neonatal brain. J Biol Eng 2024; 18:67. [PMID: 39543609 PMCID: PMC11566268 DOI: 10.1186/s13036-024-00465-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024] Open
Abstract
Mitochondrial abnormalities underscore a variety of neurologic injuries and diseases and are well-studied in adult populations. Clinical studies identify critical roles of mitochondria in a wide range of developmental brain injuries, but models that capture mitochondrial abnormalities in systems representative of the neonatal brain environment are lacking. Here, we develop an organotypic whole-hemisphere (OWH) brain slice model of mitochondrial dysfunction in the neonatal brain. We extended the utility of complex I inhibitor rotenone (ROT), canonically used in models of adult neurodegenerative diseases, to inflict mitochondrial damage in OWH slices from term-equivalent rats. We quantified whole-slice health over 6 days of exposure for a range of doses represented in ROT literature. We identified 50 nM ROT as a suitable exposure level for OWH slices to inflict injury without compromising viability. At the selected exposure level, we confirmed exposure- and time-dependent mitochondrial responses showing differences in mitochondrial fluorescence and nuclear localization using MitoTracker imaging in live OWH slices and dysregulated mitochondrial markers via RT-qPCR screening. We leveraged the regional structures present in OWH slices to quantify cell density and cell death in the cortex and the midbrain regions, observing higher susceptibilities to damage in the midbrain as a function of exposure and culture time. We supplemented these findings with analysis of microglia and mature neurons showing time-, region-, and exposure-dependent differences in microglial responses. We demonstrated changes in tissue microstructure as a function of region, culture time, and exposure level using live-video epifluorescence microscopy of extracellularly diffusing nanoparticle probes in live OWH slices. Our results highlight severity-, time-, and region-dependent responses and establish a complimentary model system of mitochondrial abnormalities for high-throughput or live-tissue experimental needs.
Collapse
Affiliation(s)
- Brendan Butler
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Malcolm Renney
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Kristin Bennett
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Gisele Charpentier
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Elizabeth Nance
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA.
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA.
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
2
|
Guerrero I, Yoval-Sánchez B, Konrad C, Manfredi G, Wittig I, Galkin A. Sex-dependent differences in macaque brain mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149494. [PMID: 38960079 PMCID: PMC11567146 DOI: 10.1016/j.bbabio.2024.149494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/23/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Mitochondrial bioenergetics in females and males is different. However, whether mitochondria from male and female brains display differences in enzymes of oxidative phosphorylation remains unknown. Therefore, we characterized mitochondrial complexes from the brains of male and female macaques (Macaca mulatta). Cerebral tissue from male macaques exhibits elevated content and activity of mitochondrial complex I (NADH:ubiquinone oxidoreductase) and higher activity of complex II (succinate dehydrogenase) compared to females. No significant differences between sexes were found in the content of α-ketoglutarate dehydrogenase or in the activities of cytochrome c oxidase and F1Fo ATPase. Our results underscore the need for further investigations to elucidate sex-related mitochondrial differences in humans.
Collapse
Affiliation(s)
- Ivan Guerrero
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| | - Belem Yoval-Sánchez
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| | - Csaba Konrad
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| | - Giovanni Manfredi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| | - Ilka Wittig
- Functional Proteomics, Institute for Cardiovascular Physiology, Goethe University, Frankfurt, Germany; German Center for Cardiovascular Research (DZHK), Partner site Rhein Main, Frankfurt, Germany
| | - Alexander Galkin
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA.
| |
Collapse
|
3
|
Adlimoghaddam A, Fayazbakhsh F, Mohammadi M, Babaei Z, Behrooz AB, Tabasi F, Guan T, Beheshti I, Aghaei M, Klionsky DJ, Albensi BC, Ghavami S. Sex and Region-Specific Disruption of Autophagy and Mitophagy in Alzheimer's Disease: Linking Cellular Dysfunction to Cognitive Decline. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.621097. [PMID: 39554142 PMCID: PMC11565785 DOI: 10.1101/2024.10.30.621097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Macroautophagy and mitophagy are critical processes in Alzheimer's disease (AD), yet their links to behavioral outcomes, particularly sex-specific differences, are not fully understood. This study investigates autophagy (LC3B-II, SQSTM1) and mitophagy (BNIP3L, BNIP3, BCL2L13) markers in the cortex and hippocampus of male and female 3xTg-AD mice, using western blotting, transmission electron microscopy (TEM), and behavioral tests (novel object recognition and novel object placement). Significant sex-specific differences emerged: female 3xTg-AD mice exhibited autophagosome accumulation due to impaired degradation in the cortex, while males showed fewer autophagosomes, especially in the hippocampus, without significant degradation changes. TEM analyses demonstrated variations in mitochondrial and mitophagosome numbers correlated with memory outcomes. Females had enhanced mitophagy, with higher BNIP3L and BCL2L13 levels, whereas males showed elevated BNIP3 dimers. Cognitive deficits in females correlated with mitochondrial dysfunction in the cortex, while in males, higher LC3B-II levels associated positively with cognitive performance, suggesting protective autophagy effects. Using machine learning, we predicted mitophagosome and mitochondrial numbers based on behavioral data, pioneering a predictive approach to cellular outcomes in AD. These findings underscore the importance of sex-specific regulation of autophagy and mitophagy in AD and support personalized therapeutic approaches targeting these pathways. Integrating machine learning emphasizes its potential to advance neurodegenerative research. Abstract Figure
Collapse
|
4
|
Bauzá-Thorbrügge M, Amengual-Cladera E, Galmés-Pascual BM, Morán-Costoya A, Gianotti M, Valle A, Proenza AM, Lladó I. Impact of Sex on the Therapeutic Efficacy of Rosiglitazone in Modulating White Adipose Tissue Function and Insulin Sensitivity. Nutrients 2024; 16:3063. [PMID: 39339665 PMCID: PMC11434741 DOI: 10.3390/nu16183063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Obesity and type 2 diabetes mellitus are global public health issues. Although males show higher obesity and insulin resistance prevalence, current treatments often neglect sex-specific differences. White adipose tissue (WAT) is crucial in preventing lipotoxicity and inflammation and has become a key therapeutic target. Rosiglitazone (RSG), a potent PPARγ agonist, promotes healthy WAT growth and mitochondrial function through MitoNEET modulation. Recent RSG-based strategies specifically target white adipocytes, avoiding side effects. Our aim was to investigate whether sex-specific differences in the insulin-sensitizing effects of RSG exist on WAT during obesity and inflammation. We used Wistar rats of both sexes fed a high-fat diet (HFD, 22.5% fat content) for 16 weeks. Two weeks before sacrifice, a group of HFD-fed rats received RSG treatment (4 mg/kg of body weight per day) within the diet. HFD male rats showed greater insulin resistance, inflammation, mitochondrial dysfunction, and dyslipidemia than females. RSG had more pronounced effects in males, significantly improving insulin sensitivity, fat storage, mitochondrial function, and lipid handling in WAT while reducing ectopic fat deposition and enhancing adiponectin signaling in the liver. Our study suggests a significant sexual dimorphism in the anti-diabetic effects of RSG on WAT, correlating with the severity of metabolic dysfunction.
Collapse
Affiliation(s)
- Marco Bauzá-Thorbrügge
- Grupo de Metabolismo Energético y Nutrición, Departamento de Biología Fundamental y Ciencias de la Salud, IUNICS, Universidad de las Islas Baleares, 07122 Palma, Balearic Islands, Spain (E.A.-C.); (A.M.-C.); (M.G.); (A.V.); (I.L.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Balearic Islands, Spain
| | - Emilia Amengual-Cladera
- Grupo de Metabolismo Energético y Nutrición, Departamento de Biología Fundamental y Ciencias de la Salud, IUNICS, Universidad de las Islas Baleares, 07122 Palma, Balearic Islands, Spain (E.A.-C.); (A.M.-C.); (M.G.); (A.V.); (I.L.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Balearic Islands, Spain
| | - Bel Maria Galmés-Pascual
- Grupo de Metabolismo Energético y Nutrición, Departamento de Biología Fundamental y Ciencias de la Salud, IUNICS, Universidad de las Islas Baleares, 07122 Palma, Balearic Islands, Spain (E.A.-C.); (A.M.-C.); (M.G.); (A.V.); (I.L.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Balearic Islands, Spain
| | - Andrea Morán-Costoya
- Grupo de Metabolismo Energético y Nutrición, Departamento de Biología Fundamental y Ciencias de la Salud, IUNICS, Universidad de las Islas Baleares, 07122 Palma, Balearic Islands, Spain (E.A.-C.); (A.M.-C.); (M.G.); (A.V.); (I.L.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Balearic Islands, Spain
| | - Magdalena Gianotti
- Grupo de Metabolismo Energético y Nutrición, Departamento de Biología Fundamental y Ciencias de la Salud, IUNICS, Universidad de las Islas Baleares, 07122 Palma, Balearic Islands, Spain (E.A.-C.); (A.M.-C.); (M.G.); (A.V.); (I.L.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Balearic Islands, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Adamo Valle
- Grupo de Metabolismo Energético y Nutrición, Departamento de Biología Fundamental y Ciencias de la Salud, IUNICS, Universidad de las Islas Baleares, 07122 Palma, Balearic Islands, Spain (E.A.-C.); (A.M.-C.); (M.G.); (A.V.); (I.L.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Balearic Islands, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ana Maria Proenza
- Grupo de Metabolismo Energético y Nutrición, Departamento de Biología Fundamental y Ciencias de la Salud, IUNICS, Universidad de las Islas Baleares, 07122 Palma, Balearic Islands, Spain (E.A.-C.); (A.M.-C.); (M.G.); (A.V.); (I.L.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Balearic Islands, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Isabel Lladó
- Grupo de Metabolismo Energético y Nutrición, Departamento de Biología Fundamental y Ciencias de la Salud, IUNICS, Universidad de las Islas Baleares, 07122 Palma, Balearic Islands, Spain (E.A.-C.); (A.M.-C.); (M.G.); (A.V.); (I.L.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Balearic Islands, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
5
|
Schneider Gasser EM, Schaer R, Mueller FS, Bernhardt AC, Lin HY, Arias-Reyes C, Weber-Stadlbauer U. Prenatal immune activation in mice induces long-term alterations in brain mitochondrial function. Transl Psychiatry 2024; 14:289. [PMID: 39009558 PMCID: PMC11251165 DOI: 10.1038/s41398-024-03010-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/23/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
Prenatal exposure to infections is a risk factor for neurodevelopmental disorders in offspring, and alterations in mitochondrial function are discussed as a potential underlying factor. Here, using a mouse model of viral-like maternal immune activation (MIA) based on poly(I:C) (POL) treatment at gestational day (GD) 12, we show that adult offspring exhibit behavioral deficits, such as reduced levels of social interaction. In addition, we found increased nicotinamidadenindinucleotid (NADH)- and succinate-linked mitochondrial respiration and maximal electron transfer capacity in the prefrontal cortex (PFC) and in the amygdala (AMY) of males and females. The increase in respiratory capacity resulted from an increase in mitochondrial mass in neurons (as measured by complex IV activity and transcript expression), presumably to compensate for a reduction in mitochondrion-specific respiration. Moreover, in the PFC of control (CON) male offspring a higher excess capacity compared to females was observed, which was significantly reduced in the POL-exposed male offspring, and, along with a higher leak respiration, resulted in a lower mitochondrial coupling efficiency. Transcript expression of the uncoupling proteins (UCP4 and UCP5) showed a reduction in the PFC of POL male mice, suggesting mitochondrial dysfunction. In addition, in the PFC of CON females, a higher expression of the antioxidant enzyme superoxide dismutase (SOD1) was observed, suggesting a higher antioxidant capacity as compared to males. Finally, transcripts analysis of genes involved in mitochondrial biogenesis and dynamics showed reduced expression of fission/fusion transcripts in PFC of POL offspring of both sexes. In conclusion, we show that MIA causes alterations in neuronal mitochondrial function and mass in the PFC and AMY of adult offspring with some effects differing between males and females.
Collapse
Affiliation(s)
- Edith M Schneider Gasser
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Zurich, 8057, Switzerland.
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, 8057, Switzerland.
- Department of Pediatrics, Faculty of Medicine, Université Laval, Québec, QC, Canada.
- Neuroscience Center Zurich, University of Zurich, and ETH, Zurich, 8057, Switzerland.
| | - Ron Schaer
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Zurich, 8057, Switzerland
| | - Flavia S Mueller
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Zurich, 8057, Switzerland
| | - Alexandra C Bernhardt
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Zurich, 8057, Switzerland
| | - Han-Yu Lin
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Zurich, 8057, Switzerland
| | | | - Ulrike Weber-Stadlbauer
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Zurich, 8057, Switzerland
- Neuroscience Center Zurich, University of Zurich, and ETH, Zurich, 8057, Switzerland
| |
Collapse
|
6
|
Crooijmans KLHA, Iñiguez C, Withworth KW, Estarlich M, Lertxundi A, Fernández-Somoano A, Tardón A, Ibarluzea J, Sunyer J, Guxens M, Binter AC. Nitrogen dioxide exposure, attentional function, and working memory in children from 4 to 8 years: Periods of susceptibility from pregnancy to childhood. ENVIRONMENT INTERNATIONAL 2024; 186:108604. [PMID: 38564945 DOI: 10.1016/j.envint.2024.108604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/18/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Air pollution exposure during pregnancy and childhood has been linked to executive function impairment in children, however, very few studies have assessed these two exposure periods jointly to identify susceptible periods of exposure. We sought to identify potential periods of susceptibility of nitrogen dioxide (NO2) exposure from conception to childhood on attentional function and working memory in school-aged children. METHODS Within the Spanish INMA Project, we estimated residential daily NO2 exposures during pregnancy and up to 6 years of childhood using land use regression models (n = 1,703). We assessed attentional function at 4-6 years and 6-8 years, using the Conners Kiddie Continuous Performance Test and the Attention Network Test, respectively, and working memory at 6-8 years, using the N-back task. We used distributed lag non-linear models to assess the periods of susceptibility of each outcome, adjusting for potential confounders and correcting for multiple testing. We also stratified all models by sex. RESULTS Higher exposure to NO2 between 1.3 and 1.6 years of age was associated with higher hit reaction time standard error (HRT-SE) (0.14 ms (95 % CI 0.05; 0.22) per 10 μg/m3 increase in NO2) and between 1.5 and 2.2 years of age with more omission errors (1.02 (95 % CI 1.01; 1.03) of the attentional function test at 4-6 years. Higher exposure to NO2 between 0.3 and 2.2 years was associated with higher HRT-SE (10.61 ms (95 % CI 3.46; 17.75) at 6-8 years only in boys. We found no associations between exposure to NO2 and working memory at 6-8 years. CONCLUSION Our findings suggest that NO2 exposure during the first two years of life is associated with poorer attentional function in children from 4 to 8 years of age, especially in boys. These findings highlight the importance of exploring long-term effects of traffic-related air pollution exposure in older age groups.
Collapse
Affiliation(s)
- Kellie L H A Crooijmans
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Iñiguez
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Department of Statistics and Operational Research, University of Valencia, Valencia, Spain; Epidemiology and Environmental Health Joint Research Unit, Jaume I University - University of Valencia, FISABIO, Valencia, Spain
| | - Kristina W Withworth
- Department of Medicine, Section of Epidemiology and Population Sciences and Center for Precision Environmental Health, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Marisa Estarlich
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, Jaume I University - University of Valencia, FISABIO, Valencia, Spain; Department of Infirmary and Chiropody, University of Valencia, C/Menendez Pelayo, s/n 46010 Valencia, Spain
| | - Aitana Lertxundi
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Department of Preventive Medicine and Public Health, University of the Basque Country (UPV/EHU), Leioa, Spain; Group of Environmental Epidemiology and Child Development, Biodonostia Health Research Institute, San Sebastian, Spain
| | - Ana Fernández-Somoano
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; IUOPA-Department of Medicine, University of Oviedo, Julian Clavería Street s/n, 33006 Oviedo, Asturias, Spain
| | - Adonina Tardón
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; IUOPA-Department of Medicine, University of Oviedo, Julian Clavería Street s/n, 33006 Oviedo, Asturias, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Roma Avenue s/n. 33001, Oviedo, Asturias, Spain
| | - Jesús Ibarluzea
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Group of Environmental Epidemiology and Child Development, Biodonostia Health Research Institute, San Sebastian, Spain; Ministry of Health of the Basque Government, Sub-Directorate for Public Health and Addictions of Gipuzkoa, 20013 San Sebastian, Spain; Faculty of Psychology, Universidad del País Vasco (UPV/EHU), San Sebastian, Spain
| | - Jordi Sunyer
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Mònica Guxens
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands.
| | - Anne-Claire Binter
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
7
|
Kane MS, Benavides GA, Osuma E, Johnson MS, Collins HE, He Y, Westbrook D, Litovsky SH, Mitra K, Chatham JC, Darley-Usmar V, Young ME, Zhang J. The interplay between sex, time of day, fasting status, and their impact on cardiac mitochondrial structure, function, and dynamics. Sci Rep 2023; 13:21638. [PMID: 38062139 PMCID: PMC10703790 DOI: 10.1038/s41598-023-49018-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/03/2023] [Indexed: 12/18/2023] Open
Abstract
Mitochondria morphology and function, and their quality control by mitophagy, are essential for heart function. We investigated whether these are influenced by time of the day (TOD), sex, and fed or fasting status, using transmission electron microscopy (EM), mitochondrial electron transport chain (ETC) activity, and mito-QC reporter mice. We observed peak mitochondrial number at ZT8 in the fed state, which was dependent on the intrinsic cardiac circadian clock, as hearts from cardiomyocyte-specific BMAL1 knockout (CBK) mice exhibit different TOD responses. In contrast to mitochondrial number, mitochondrial ETC activities do not fluctuate across TOD, but decrease immediately and significantly in response to fasting. Concurrent with the loss of ETC activities, ETC proteins were decreased with fasting, simultaneous with significant increases of mitophagy, mitochondrial antioxidant protein SOD2, and the fission protein DRP1. Fasting-induced mitophagy was lost in CBK mice, indicating a direct role of BMAL1 in regulating mitophagy. This is the first of its kind report to demonstrate the interactions between sex, fasting, and TOD on cardiac mitochondrial structure, function and mitophagy. These studies provide a foundation for future investigations of mitochondrial functional perturbation in aging and heart diseases.
Collapse
Affiliation(s)
- Mariame S Kane
- Department of Pathology, University of Alabama at Birmingham, 901 19th Street S., Birmingham, AL, BMRII-53435294-0017, USA
- Birmingham VA Health Care System (BVACS), Birmingham, USA
| | - Gloria A Benavides
- Department of Pathology, University of Alabama at Birmingham, 901 19th Street S., Birmingham, AL, BMRII-53435294-0017, USA
| | - Edie Osuma
- Department of Pathology, University of Alabama at Birmingham, 901 19th Street S., Birmingham, AL, BMRII-53435294-0017, USA
- Baylor College of Medicine, Houston, USA
| | - Michelle S Johnson
- Department of Pathology, University of Alabama at Birmingham, 901 19th Street S., Birmingham, AL, BMRII-53435294-0017, USA
| | - Helen E Collins
- Department of Pathology, University of Alabama at Birmingham, 901 19th Street S., Birmingham, AL, BMRII-53435294-0017, USA
- Department of Medicine, University of Louisville, Louisville, USA
| | - Yecheng He
- Department of Pathology, University of Alabama at Birmingham, 901 19th Street S., Birmingham, AL, BMRII-53435294-0017, USA
- Department of Clinical Medicine, Suzhou Vocational Health College, Suzhou, Jiangsu, China
| | - David Westbrook
- Department of Pathology, University of Alabama at Birmingham, 901 19th Street S., Birmingham, AL, BMRII-53435294-0017, USA
| | - Silvio H Litovsky
- Department of Pathology, University of Alabama at Birmingham, 901 19th Street S., Birmingham, AL, BMRII-53435294-0017, USA
| | - Kasturi Mitra
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
- Ashoka University, Sonipat, NCR (Delhi), India
| | - John C Chatham
- Department of Pathology, University of Alabama at Birmingham, 901 19th Street S., Birmingham, AL, BMRII-53435294-0017, USA
| | - Victor Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, 901 19th Street S., Birmingham, AL, BMRII-53435294-0017, USA
| | - Martin E Young
- Department of Medicine, University of Alabama at Birmingham, 703 19th St. S., ZRB 308, Birmingham, AL, 35294, USA.
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, 901 19th Street S., Birmingham, AL, BMRII-53435294-0017, USA.
| |
Collapse
|
8
|
Jamwal S, Blackburn JK, Elsworth JD. Age-associated sex difference in the expression of mitochondria-based redox sensitive proteins and effect of pioglitazone in nonhuman primate brain. Biol Sex Differ 2023; 14:65. [PMID: 37770961 PMCID: PMC10540392 DOI: 10.1186/s13293-023-00551-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 09/13/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Paraoxonase 2 (PON2) and neuronal uncoupling proteins (UCP4 and UCP5) possess antioxidant, anti-apoptotic activities and minimize accumulation of reactive oxygen species in mitochondria. While age and sex are risk factors for several disorders that are linked with oxidative stress, no study has explored the age- and sex-dependent expression of PON2 isoforms, UCP4 and UCP5 in primate brain or identified a drug to activate UCP4 and UCP5 in vivo. Preclinical studies suggest that the peroxisome proliferator-activated receptor gamma agonist, pioglitazone (PIO), can be neuroprotective, although the mechanism responsible is unclear. Our previous studies demonstrated that pioglitazone activates PON2 in primate brain and we hypothesized that pioglitazone also induces UCP4/5. This study was designed to elucidate the age- and sex-dependent expression of PON2 isoforms, UCP4 and UCP5, in addition to examining the impact of systemic PIO treatment on UCP4 and UCP5 expression in primate brain. METHODS Western blot technique was used to determine the age- and sex-dependent expression of UCP4 and UCP5 in substantia nigra and striatum of African green monkeys. In addition, we tested the impact of daily oral pioglitazone (5 mg/kg/day) or vehicle for 1 or 3 weeks on expression of UCP4 and UCP5 in substantia nigra and striatum in adult male monkeys. PIO levels in plasma and cerebrospinal fluid (CSF) were determined using LC-MS. RESULTS We found no sex-based difference in the expression of PON2 isoforms, UCP4 and UCP5 in striatum and substantia nigra of young monkeys. However, we discovered that adult female monkeys exhibit greater expression of PON2 isoforms than males in substantia nigra and striatum. Our data also revealed that adult male monkeys exhibit greater expression of UCP4 and UCP5 than females in substantia nigra but not in striatum. PIO increased UCP4 and UCP5 expression in substantia nigra and striatum at 1 week, but after 3 weeks of treatment this activation had subsided. CONCLUSIONS Our findings demonstrate a sex-, age- and region-dependent profile to the expression of PON2, UCP4 and UCP5. These data establish a biochemical link between PPARγ, PON2, UCP4 and UCP5 in primate brain and demonstrate that PON2, UCP4 and UCP5 can be pharmacologically stimulated in vivo, revealing a novel mechanism for observed pioglitazone-induced neuroprotection. We anticipate that these outcomes will contribute to the development of novel neuroprotective treatments for Parkinson's disease and other CNS disorders.
Collapse
Affiliation(s)
- Sumit Jamwal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Jennifer K Blackburn
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - John D Elsworth
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
9
|
Allegra A, Caserta S, Genovese S, Pioggia G, Gangemi S. Gender Differences in Oxidative Stress in Relation to Cancer Susceptibility and Survival. Antioxidants (Basel) 2023; 12:1255. [PMID: 37371985 DOI: 10.3390/antiox12061255] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Genetic, developmental, biochemical, and environmental variables interact intricately to produce sex differences. The significance of sex differences in cancer susceptibility is being clarified by numerous studies. Epidemiological research and cancer registries have revealed over the past few years that there are definite sex variations in cancer incidence, progression, and survival. However, oxidative stress and mitochondrial dysfunction also have a significant impact on the response to treatment of neoplastic diseases. Young women may be more protected from cancer than men because most of the proteins implicated in the regulation of redox state and mitochondrial function are under the control of sexual hormones. In this review, we describe how sexual hormones control the activity of antioxidant enzymes and mitochondria, as well as how they affect several neoplastic diseases. The molecular pathways that underlie the gender-related discrepancies in cancer that have been identified may be better understood, which may lead to more effective precision medicine and vital information on treatment options for both males and females with neoplastic illnesses.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood 'Gaetano Barresi', University of Messina, 98125 Messina, Italy
| | - Santino Caserta
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood 'Gaetano Barresi', University of Messina, 98125 Messina, Italy
| | - Sara Genovese
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy
| |
Collapse
|
10
|
Kerr NR, Kelty TJ, Mao X, Childs TE, Kline DD, Rector RS, Booth FW. Selective breeding for physical inactivity produces cognitive deficits via altered hippocampal mitochondrial and synaptic function. Front Aging Neurosci 2023; 15:1147420. [PMID: 37077501 PMCID: PMC10106691 DOI: 10.3389/fnagi.2023.1147420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/14/2023] [Indexed: 04/05/2023] Open
Abstract
Physical inactivity is the 4th leading cause of death globally and has been shown to significantly increase the risk for developing Alzheimer's Disease (AD). Recent work has demonstrated that exercise prior to breeding produces heritable benefits to the brains of offspring, suggesting that the physical activity status of previous generations could play an important role in one's brain health and their subsequent risk for neurodegenerative diseases. Thus, our study aimed to test the hypothesis that selective breeding for physical inactivity, or for high physical activity, preference produces heritable deficits and enhancements to brain health, respectively. To evaluate this hypothesis, male and female sedentary Low Voluntary Runners (LVR), wild type (WT), and High Voluntary Runner (HVR) rats underwent cognitive behavioral testing, analysis of hippocampal neurogenesis and mitochondrial respiration, and molecular analysis of the dentate gyrus. These analyses revealed that selecting for physical inactivity preference has produced major detriments to cognition, brain mitochondrial respiration, and neurogenesis in female LVR while female HVR display enhancements in brain glucose metabolism and hippocampal size. On the contrary, male LVR and HVR showed very few differences in these parameters relative to WT. Overall, we provide evidence that selective breeding for physical inactivity has a heritable and detrimental effect on brain health and that the female brain appears to be more susceptible to these effects. This emphasizes the importance of remaining physically active as chronic intergenerational physical inactivity likely increases susceptibility to neurodegenerative diseases for both the inactive individual and their offspring.
Collapse
Affiliation(s)
- Nathan R. Kerr
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
| | - Taylor J. Kelty
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Xuansong Mao
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
| | - Thomas E. Childs
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
| | - David D. Kline
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| | - R. Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
- Research Service, Harry S. Truman Memorial Veterans Hospital, University of Missouri, Columbia, MO, United States
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO, United States
| | - Frank W. Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| |
Collapse
|
11
|
Zagmutt S, Mera P, González-García I, Ibeas K, Romero MDM, Obri A, Martin B, Esteve-Codina A, Soler-Vázquez MC, Bastias-Pérez M, Cañes L, Augé E, Pelegri C, Vilaplana J, Ariza X, García J, Martinez-González J, Casals N, López M, Palmiter R, Sanz E, Quintana A, Herrero L, Serra D. CPT1A in AgRP neurons is required for sex-dependent regulation of feeding and thirst. Biol Sex Differ 2023; 14:14. [PMID: 36966335 PMCID: PMC10040140 DOI: 10.1186/s13293-023-00498-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/10/2023] [Indexed: 03/27/2023] Open
Abstract
BACKGROUND Fatty acid metabolism in the hypothalamus has an important role in food intake, but its specific role in AgRP neurons is poorly understood. Here, we examined whether carnitinea palmitoyltransferase 1A (CPT1A), a key enzyme in mitochondrial fatty acid oxidation, affects energy balance. METHODS To obtain Cpt1aKO mice and their control littermates, Cpt1a(flox/flox) mice were crossed with tamoxifen-inducible AgRPCreERT2 mice. Food intake and body weight were analyzed weekly in both males and females. At 12 weeks of age, metabolic flexibility was determined by ghrelin-induced food intake and fasting-refeeding satiety tests. Energy expenditure was analyzed by calorimetric system and thermogenic activity of brown adipose tissue. To study fluid balance the analysis of urine and water intake volumes; osmolality of urine and plasma; as well as serum levels of angiotensin and components of RAAS (renin-angiotensin-aldosterone system) were measured. At the central level, changes in AgRP neurons were determined by: (1) analyzing specific AgRP gene expression in RiboTag-Cpt1aKO mice obtained by crossing Cpt1aKO mice with RiboTag mice; (2) measuring presynaptic terminal formation in the AgRP neurons with the injection of the AAV1-EF1a-DIO-synaptophysin-GFP in the arcuate nucleus of the hypothalamus; (3) analyzing AgRP neuronal viability and spine formations by the injection AAV9-EF1a-DIO-mCherry in the arcuate nucleus of the hypothalamus; (4) analyzing in situ the specific AgRP mitochondria in the ZsGreen-Cpt1aKO obtained by breeding ZsGreen mice with Cpt1aKO mice. Two-way ANOVA analyses were performed to determine the contributions of the effect of lack of CPT1A in AgRP neurons in the sex. RESULTS Changes in food intake were just seen in male Cpt1aKO mice while only female Cpt1aKO mice increased energy expenditure. The lack of Cpt1a in the AgRP neurons enhanced brown adipose tissue activity, mainly in females, and induced a substantial reduction in fat deposits and body weight. Strikingly, both male and female Cpt1aKO mice showed polydipsia and polyuria, with more reduced serum vasopressin levels in females and without osmolality alterations, indicating a direct involvement of Cpt1a in AgRP neurons in fluid balance. AgRP neurons from Cpt1aKO mice showed a sex-dependent gene expression pattern, reduced mitochondria and decreased presynaptic innervation to the paraventricular nucleus, without neuronal viability alterations. CONCLUSIONS Our results highlight that fatty acid metabolism and CPT1A in AgRP neurons show marked sex differences and play a relevant role in the neuronal processes necessary for the maintenance of whole-body fluid and energy balance.
Collapse
Affiliation(s)
- Sebastián Zagmutt
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Paula Mera
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Ismael González-García
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Kevin Ibeas
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - María Del Mar Romero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Arnaud Obri
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Beatriz Martin
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - M Carmen Soler-Vázquez
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Marianela Bastias-Pérez
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Laia Cañes
- Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Biomédica Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Elisabeth Augé
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Carme Pelegri
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Neurosciences of the Universitat de Barcelona, Barcelona, Spain
| | - Jordi Vilaplana
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Neurosciences of the Universitat de Barcelona, Barcelona, Spain
| | - Xavier Ariza
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Inorganic & Organic Chemistry, Faculty of Chemistry, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Jordi García
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Inorganic & Organic Chemistry, Faculty of Chemistry, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - José Martinez-González
- Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Biomédica Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Núria Casals
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Basic Sciences, Faculty of Medicine & Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain
| | - Miguel López
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Richard Palmiter
- Department of Biochemistry, Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Elisenda Sanz
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Albert Quintana
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Dolors Serra
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain.
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
12
|
Tiberi J, Cesarini V, Stefanelli R, Canterini S, Fiorenza MT, Rosa PL. Sex differences in antioxidant defence and the regulation of redox homeostasis in physiology and pathology. Mech Ageing Dev 2023; 211:111802. [PMID: 36958540 DOI: 10.1016/j.mad.2023.111802] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 03/25/2023]
Abstract
Reactive oxygen species (ROS) is a term that defines a group of unstable compounds derived from exogenous sources or endogenous metabolism. Under physiological conditions, low levels of ROS play a key role in the regulation of signal transduction- or transcription-mediated cellular responses. In contrast, excessive and uncontrolled loading of ROS results in a pathological state known as oxidative stress (OS), a leading contributor to aging and a pivotal factor for the onset and progression of many disorders. Evolution has endowed cells with an antioxidant system involved in stabilizing ROS levels to a specific threshold, preserving ROS-induced signalling function and limiting negative side effects. In mammals, a great deal of evidence indicates that females defence against ROS is more proficient than males, determining a longer lifespan and lower incidence of most chronic diseases. In this review, we will summarize the most recent sex-related differences in the regulation of redox homeostasis. We will highlight the peculiar aspects of the antioxidant defence in sex-biased diseases whose onset or progression is driven by OS, and we will discuss the molecular, genetic, and evolutionary determinants of female proficiency to cope with ROS.
Collapse
Affiliation(s)
- Jessica Tiberi
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, Rome, Italy; PhD program in Behavioral Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Valeriana Cesarini
- Department of Biomedicine Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy
| | - Roberta Stefanelli
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Sonia Canterini
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, Rome, Italy; European Center for Brain Research, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Maria Teresa Fiorenza
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, Rome, Italy; European Center for Brain Research, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Piergiorgio La Rosa
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, Rome, Italy; European Center for Brain Research, IRCCS Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
13
|
Torres AK, Jara C, Llanquinao J, Lira M, Cortés-Díaz D, Tapia-Rojas C. Mitochondrial Bioenergetics, Redox Balance, and Calcium Homeostasis Dysfunction with Defective Ultrastructure and Quality Control in the Hippocampus of Aged Female C57BL/6J Mice. Int J Mol Sci 2023; 24:ijms24065476. [PMID: 36982549 PMCID: PMC10056753 DOI: 10.3390/ijms24065476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/15/2023] Open
Abstract
Aging is a physiological process that generates progressive decline in many cellular functions. There are many theories of aging, and one of great importance in recent years is the mitochondrial theory of aging, in which mitochondrial dysfunction that occurs at advanced age could be responsible for the aged phenotype. In this context, there is diverse information about mitochondrial dysfunction in aging, in different models and different organs. Specifically, in the brain, different studies have shown mitochondrial dysfunction mainly in the cortex; however, until now, no study has shown all the defects in hippocampal mitochondria in aged female C57BL/6J mice. We performed a complete analysis of mitochondrial function in 3-month-old and 20-month-old (mo) female C57BL/6J mice, specifically in the hippocampus of these animals. We observed an impairment in bioenergetic function, indicated by a decrease in mitochondrial membrane potential, O2 consumption, and mitochondrial ATP production. Additionally, there was an increase in ROS production in the aged hippocampus, leading to the activation of antioxidant signaling, specifically the Nrf2 pathway. It was also observed that aged animals had deregulation of calcium homeostasis, with more sensitive mitochondria to calcium overload and deregulation of proteins related to mitochondrial dynamics and quality control processes. Finally, we observed a decrease in mitochondrial biogenesis with a decrease in mitochondrial mass and deregulation of mitophagy. These results show that during the aging process, damaged mitochondria accumulate, which could contribute to or be responsible for the aging phenotype and age-related disabilities.
Collapse
Affiliation(s)
- Angie K. Torres
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Universidad San Sebastián, Santiago 7510156, Chile
| | - Claudia Jara
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Universidad San Sebastián, Santiago 7510156, Chile
| | - Jesús Llanquinao
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Universidad San Sebastián, Santiago 7510156, Chile
| | - Matías Lira
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Universidad San Sebastián, Santiago 7510156, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Avda. Zañartu 1482, Ñuñoa, Santiago 7780272, Chile
| | - Daniela Cortés-Díaz
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Universidad San Sebastián, Santiago 7510156, Chile
| | - Cheril Tapia-Rojas
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Universidad San Sebastián, Santiago 7510156, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Avda. Zañartu 1482, Ñuñoa, Santiago 7780272, Chile
- Correspondence:
| |
Collapse
|
14
|
Cui SS, Jiang QW, Chen SD. Sex difference in biological change and mechanism of Alzheimer’s disease: from macro- to micro-landscape. Ageing Res Rev 2023; 87:101918. [PMID: 36967089 DOI: 10.1016/j.arr.2023.101918] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 02/16/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and numerous studies reported a higher prevalence and incidence of AD among women. Although women have longer lifetime, longevity does not wholly explain the higher frequency and lifetime risk in women. It is important to understand sex differences in AD pathophysiology and pathogenesis, which could provide foundation for future clinical AD research. Here, we reviewed the most recent and relevant literature on sex differences in biological change of AD from macroscopical neuroimaging to microscopical pathologic change (neuronal degeneration, synaptic dysfunction, amyloid-beta and tau accumulation). We also discussed sex differences in cellular mechanisms related to AD (neuroinflammation, mitochondria dysfunction, oxygen stress, apoptosis, autophagy, blood-brain-barrier dysfunction, gut microbiome alteration, bulk and single cell/nucleus omics) and possible causes underlying these differences including sex-chromosome, sex hormone and hypothalamic-pituitary- adrenal (HPA) axis effects.
Collapse
Affiliation(s)
- Shi-Shuang Cui
- Department of Neurology & Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Geriatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qian-Wen Jiang
- Department of Neurology & Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Geriatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Sheng-Di Chen
- Department of Neurology & Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
15
|
Bartha V, Exner L, Basrai M, Bischoff SC, Schweikert D, Adolph M, Bruckner T, Grueninger D, Klein D, Meller C, Woelber JP, Wolff D. Changes in serum omega fatty acids on a Mediterranean diet intervention in patients with gingivitis: An exploratory study. J Periodontal Res 2022; 57:1198-1209. [PMID: 36156799 DOI: 10.1111/jre.13056] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/06/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Omega-6 and omega-3 polyunsaturated fatty acids (PUFAs) are precursors of pro- and anti-inflammatory lipid mediators. Serum PUFA levels could influence the severity of inflammatory oral diseases, such as gingivitis. OBJECTIVE The study analyzed serum PUFA levels in a six-week randomized controlled trial in individuals on the Mediterranean diet (MedD), associations with the intake of specific foods, and possible correlations with oral inflammatory parameters. METHODS Data from 37 study participants on either a MedD (MedDG; n = 18) or a "Western diet" in the control group (CG, n = 19) were analyzed. Dental examinations and serum analyses were performed at two time points, T1 (baseline) and T2 (week 6). Serum PUFA status, adherence to the MedD, and data from a Food Frequency Questionnaire were analyzed. RESULTS Within the MedDG omega-6 fatty acid levels decreased significantly. In the overall sample, the proportional decrease in sites with bleeding on probing correlated weakly to moderately with the decrease in total omega-6 fatty acid level (Spearman's ρ = 0.274) and the decrease in gingival index correlated moderately with the decrease in linoleic acid level (Spearman's ρ = 0.351). Meat and fast-food consumption correlated positively with levels of various omega-6 fatty acids, whereas nut, fish, and dairy product consumption correlated positively with omega-3 levels. CONCLUSION Adherence to a MedD was associated with a decrease in serum omega-6 levels, which positively affected the omega-6/omega-3 ratio. The MedD associated reduction in serum omega-6 levels may be a mechanism that favorably affects gingival inflammatory parameters.
Collapse
Affiliation(s)
- Valentin Bartha
- Department for Conservative Dentistry, University Hospital of Heidelberg, Heidelberg, Germany
- Department for Conservative Dentistry, University Hospital Tuebingen, Tübingen, Germany
| | - Lea Exner
- Department for Conservative Dentistry, University Hospital Tuebingen, Tübingen, Germany
| | - Maryam Basrai
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Stephan C Bischoff
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Daniela Schweikert
- Department of Nutrition Management and Nutrition Support Team, University Hospital Tuebingen, Tübingen, Germany
| | - Michael Adolph
- Department of Nutrition Management and Nutrition Support Team, University Hospital Tuebingen, Tübingen, Germany
| | - Thomas Bruckner
- Institute of Medical Biometry, Faculty of Medicine - University of Heidelberg, Heidelberg, Germany
| | - Dirk Grueninger
- Centre of Laboratory Diagnostics MVZ Clotten, Freiburg, Germany
| | - Daniel Klein
- Department for Conservative Dentistry, University Hospital Tuebingen, Tübingen, Germany
| | - Christian Meller
- Department for Conservative Dentistry, University Hospital Tuebingen, Tübingen, Germany
| | - Johan Peter Woelber
- Department of Operative Dentistry and Periodontology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Diana Wolff
- Department for Conservative Dentistry, University Hospital of Heidelberg, Heidelberg, Germany
| |
Collapse
|
16
|
Long-term sulforaphane-treatment restores redox homeostasis and prevents cognitive decline in middleaged female and male rats, but cannot revert previous damage in old animals. Biogerontology 2022; 23:587-613. [PMID: 35960458 DOI: 10.1007/s10522-022-09984-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/02/2022] [Indexed: 11/02/2022]
Abstract
Aging is a complex and detrimental process, which disrupts most organs and systems within the organisms. The nervous system is morphologically and functionally affected during normal aging, and oxidative stress has been involved in age-related damage, leading to cognitive decline and neurodegenerative processes. Sulforaphane (SFN) is a hormetin that activates the antioxidant and anti-inflammatory responses. So, we aimed to evaluate if SFN long-term treatment was able to prevent age-associated cognitive decline in adult and old female and male rats. Memory was evaluated in adult (15-month-old), and old (21-month-old) female and male Wistar rats after three months of SFN treatment. Young rats (4-month-old) were used as age controls. The antioxidant response induction, the redox state (GSH/GSSG), and oxidative damage were determined in the brain cortex (Cx) and hippocampus (Hc). Our results showed that SFN restored redox homeostasis in the Cx and Hc of adult rats, thus preventing cognitive decline in both sexes; however, the redox responses were not the same in males and females. Old rats were not able to recover their redox state as adults did, but they had a mild improvement. These results suggest that SFN mainly prevents rather than reverts neural damage; though, there might also be a range of opportunities to use hormetins like SFN, to improve redox modulation in old animals.
Collapse
|
17
|
Tang X, Song ZH, Cardoso MA, Zhou JB, Simó R. The relationship between uric acid and brain health from observational studies. Metab Brain Dis 2022; 37:1989-2003. [PMID: 35670991 DOI: 10.1007/s11011-022-01016-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 05/09/2022] [Indexed: 11/29/2022]
Abstract
This study conducts a systematic literature review and meta-analysis regarding the potential influence of serum uric acid levels on cerebral small vessel diseases and the cognitive status in the prodromal stages of dementia. We identified four different cerebral small vessel diseases and three specific domains of cognitive performance to be considered in the literature search. The analysis contained 14 studies (13 cross-sectional design and one longitudinal design) with 11,502 participants measuring the relationship between uric acid and cerebral small vessel disease. In both continuous and categorical analyses, significant associations were found between hyperuricemia and cerebral small vessel diseases (continuous data: pooled OR: 1.00, 95%CI: 1.00-1.01 and categorical data: pooled OR: 1.42, 95%CI: 1.15-1.75). For the relationship between uric acid and cognitive performance, 19 studies with 49,901 participants were considered, including eight cohort studies, and 11 cross-sectional studies. The cross-sectional data showed that a marginal relationship existed between uric acid and global cognition (β: 0.00, 95%CI: -0.01-0.00). The pooled analysis of cohort studies indicated that higher uric acid had a deleterious effect on attention and executive function (continuous data: β: -0.02, 95%CI: -0.04-0.00 and categorical data: β: -0.03, 95%CI: -0.07-0.00). Conclusion: Our study indicated that a higher level of uric acid had an adverse effect on brain health. Furthermore, a high level of uric acid is related to cognitive decline in attention and executive function, which may exist a long time before the diagnosis of dementia.
Collapse
Affiliation(s)
- Xingyao Tang
- Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhi-Hui Song
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Marly Augusto Cardoso
- Department of Nutrition, School of Public Health, University of Sao Paulo, Sao Paulo, Brazil
| | - Jian-Bo Zhou
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, No1. Dongjiaomingxiang, Dongcheng District, Beijing, 100073, China.
| | - Rafael Simó
- Endocrinology and Nutrition Department, Hospital Universitari Vall d'Hebron. Diabetes and Metabolism Research Unit, Vall d'Hebron Institut de Recerca (VHIR). Universitat Autònoma de Barcelona, Passeig de La Vall d'Hebron, 119, 08035, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes Y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
18
|
PI(18:1/18:1) is a SCD1-derived lipokine that limits stress signaling. Nat Commun 2022; 13:2982. [PMID: 35624087 PMCID: PMC9142606 DOI: 10.1038/s41467-022-30374-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/27/2022] [Indexed: 02/07/2023] Open
Abstract
Cytotoxic stress activates stress-activated kinases, initiates adaptive mechanisms, including the unfolded protein response (UPR) and autophagy, and induces programmed cell death. Fatty acid unsaturation, controlled by stearoyl-CoA desaturase (SCD)1, prevents cytotoxic stress but the mechanisms are diffuse. Here, we show that 1,2-dioleoyl-sn-glycero-3-phospho-(1’-myo-inositol) [PI(18:1/18:1)] is a SCD1-derived signaling lipid, which inhibits p38 mitogen-activated protein kinase activation, counteracts UPR, endoplasmic reticulum-associated protein degradation, and apoptosis, regulates autophagy, and maintains cell morphology and proliferation. SCD1 expression and the cellular PI(18:1/18:1) proportion decrease during the onset of cell death, thereby repressing protein phosphatase 2 A and enhancing stress signaling. This counter-regulation applies to mechanistically diverse death-inducing conditions and is found in multiple human and mouse cell lines and tissues of Scd1-defective mice. PI(18:1/18:1) ratios reflect stress tolerance in tumorigenesis, chemoresistance, infection, high-fat diet, and immune aging. Together, PI(18:1/18:1) is a lipokine that links fatty acid unsaturation with stress responses, and its depletion evokes stress signaling. Fatty acid unsaturation by stearoyl-CoA desaturase 1 (SCD1) protects against cellular stress through unclear mechanisms. Here the authors show 1,2-dioleoyl-sn-glycero-3-phospho-(1’-myo-inositol) is an SCD1-derived signaling lipid that regulates stress-adaption, protects against cell death and promotes proliferation.
Collapse
|
19
|
Sex disparities in DNA damage response pathways: Novel determinants in cancer formation and therapy. iScience 2022; 25:103875. [PMID: 35243237 PMCID: PMC8858993 DOI: 10.1016/j.isci.2022.103875] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
20
|
Martinez-Bernabe T, Sastre-Serra J, Ciobu N, Oliver J, Pons DG, Roca P. Estrogen Receptor Beta (ERβ) Maintains Mitochondrial Network Regulating Invasiveness in an Obesity-Related Inflammation Condition in Breast Cancer. Antioxidants (Basel) 2021; 10:antiox10091371. [PMID: 34573003 PMCID: PMC8466315 DOI: 10.3390/antiox10091371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022] Open
Abstract
Obesity, a physiological situation where different proinflammatory cytokines and hormones are secreted, is a major risk factor for breast cancer. Mitochondrial functionality exhibits a relevant role in the tumorigenic potential of a cancer cell. In the present study, it has been examined the influence of an obesity-related inflammation ELIT treatment (17β-estradiol, leptin, IL-6, and TNFα), which aims to stimulate the hormonal conditions of a postmenopausal obese woman on the mitochondrial functionality and invasiveness of MCF7 and T47D breast cancer cell lines, which display a different ratio of both estrogen receptor isoforms, ERα and ERβ. The results showed a decrease in mitochondrial functionality, with an increase in oxidative stress and invasiveness and motility, in the MCF7 cell line (high ERα/ERβ ratio) compared to a maintained status in the T47D cell line (low ERα/ERβ ratio) after ELIT treatment. In addition, breast cancer biopsies were analyzed, showing that breast tumors of obese patients present a high positive correlation between IL-6 receptor and ERβ and have an increased expression of cytokines, antioxidant enzymes, and mitochondrial biogenesis and dynamics genes. Altogether, giving special importance to ERβ in the pathology of obese patients with breast cancer is necessary, approaching to personalized medicine.
Collapse
Affiliation(s)
- Toni Martinez-Bernabe
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Illes Balears, Spain; (T.M.-B.); (J.S.-S.); (N.C.); (J.O.); (P.R.)
- Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, Edificio S, 07120 Palma de Mallorca, Illes Balears, Spain
| | - Jorge Sastre-Serra
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Illes Balears, Spain; (T.M.-B.); (J.S.-S.); (N.C.); (J.O.); (P.R.)
- Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, Edificio S, 07120 Palma de Mallorca, Illes Balears, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto Salud Carlos III, 28029 Madrid, Madrid, Spain
| | - Nicolae Ciobu
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Illes Balears, Spain; (T.M.-B.); (J.S.-S.); (N.C.); (J.O.); (P.R.)
| | - Jordi Oliver
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Illes Balears, Spain; (T.M.-B.); (J.S.-S.); (N.C.); (J.O.); (P.R.)
- Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, Edificio S, 07120 Palma de Mallorca, Illes Balears, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto Salud Carlos III, 28029 Madrid, Madrid, Spain
| | - Daniel Gabriel Pons
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Illes Balears, Spain; (T.M.-B.); (J.S.-S.); (N.C.); (J.O.); (P.R.)
- Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, Edificio S, 07120 Palma de Mallorca, Illes Balears, Spain
- Correspondence: ; Tel.: +34-9711-73149
| | - Pilar Roca
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Illes Balears, Spain; (T.M.-B.); (J.S.-S.); (N.C.); (J.O.); (P.R.)
- Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, Edificio S, 07120 Palma de Mallorca, Illes Balears, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto Salud Carlos III, 28029 Madrid, Madrid, Spain
| |
Collapse
|
21
|
Rong N, Zhao P, Yang J, Fan QL, Zhang Q, Han ZG, Cai J, Zhu DS. The U-Shaped Association Between Serum Uric Acid and Red Blood Cell Distribution Width in Acute Ischemic Stroke. Front Physiol 2021; 12:631369. [PMID: 34413783 PMCID: PMC8369338 DOI: 10.3389/fphys.2021.631369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 06/30/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: The U-shaped association between serum uric acid (SUA) and the functional outcome has been found in acute ischemic stroke (AIS). However, it is unclear if SUA is associated with red blood cell morphology in AIS. This study aimed to determine the relationship between SUA and red blood cell distribution width (RDW) in patients with AIS. Methods: A cross-sectional study including 438 consecutive patients with AIS was conducted. SUA and RDW, biochemical parameters that reflect the heterogeneity of red blood cell volume, were evaluated on admission. We evaluated the association between SUA and RDW through linear curve fitting analyses and two-piecewise regression analyses. Results: The association between SUA levels and RDW followed a U-shape in all patients. In females, the values of RDW significantly decreased with the increment of SUA (per mg/dl: β, -1.45; 95% CI: -2.15 to -0.75; p < 0.001) in patients with SUA <3.86 mg/dl and increased with the increment of SUA (per mg/dl: β, 0.60; 95% CI: 0.22-0.97; p = 0.002) in patients with SUA ≥ 3.86 mg/dl. Similar results were observed in males with the turning point of SUA = 4.82 mg/dl. After adjusting for potential confounders, a U-shaped association between SUA and RDW was maintained in females, but no statistical significance was maintained in patients with SUA ≥ 4.82 mg/dl in males (p = 0.206). Conclusion: In the sample of patients with AIS, we found a U-shaped relationship between SUA levels and RDW, with the turning point of SUA (3.96 mg/dl in females and 4.82 mg/dl in males) by the threshold effect analysis.
Collapse
Affiliation(s)
- Ning Rong
- Department of Neurology, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,School of Clinical Medicine, Dali University, Dali, China
| | - Pei Zhao
- Department of Neurology, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jin Yang
- Department of Neurology, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qing-Lei Fan
- Department of Neurology, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qiang Zhang
- School of Clinical Medicine, Dali University, Dali, China
| | - Zhi-Gang Han
- Department of Radiology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jian Cai
- Department of Neurology, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - De-Sheng Zhu
- Department of Neurology, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
22
|
Impact of intrauterine fetal resuscitation with oxygen on oxidative stress in the developing rat brain. Sci Rep 2021; 11:9798. [PMID: 33963277 PMCID: PMC8105387 DOI: 10.1038/s41598-021-89299-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/23/2021] [Indexed: 12/16/2022] Open
Abstract
Use of maternal oxygen for intrauterine resuscitation is contentious because of the lack of evidence for its efficacy and the possibility of fetal harm through oxidative stress. Because the developing brain is rich in lipids and low in antioxidants, it remains vulnerable to oxidative stress. Here, we tested this hypothesis in a term pregnant rat model with oxytocin-induced fetal distress followed by treatment with either room air or 100% oxygen for 6 h. Fetal brains from both sexes were subjected to assays for biomarkers of oxidative stress (4-hydroxynonenal, protein carbonyl, or 8-hydroxy-2'-deoxyguanosine), expression of genes mediating oxidative stress, and mitochondrial oxidative phosphorylation. Contrary to our hypothesis, maternal hyperoxia was not associated with increased biomarkers of oxidative stress in the fetal brain. However, there was significant upregulation of the expression of select genes mediating oxidative stress, of which some were male-specific. These observations, however, were not accompanied by changes in the expression of proteins from the mitochondrial electron transport chain. In summary, maternal hyperoxia in the setting of acute uteroplacental ischemia-hypoxia does not appear to cause oxidative damage to the developing brain.
Collapse
|
23
|
Strasser B, Pesta D, Rittweger J, Burtscher J, Burtscher M. Nutrition for Older Athletes: Focus on Sex-Differences. Nutrients 2021; 13:nu13051409. [PMID: 33922108 PMCID: PMC8143537 DOI: 10.3390/nu13051409] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
Regular physical exercise and a healthy diet are major determinants of a healthy lifespan. Although aging is associated with declining endurance performance and muscle function, these components can favorably be modified by regular physical activity and especially by exercise training at all ages in both sexes. In addition, age-related changes in body composition and metabolism, which affect even highly trained masters athletes, can in part be compensated for by higher exercise metabolic efficiency in active individuals. Accordingly, masters athletes are often considered as a role model for healthy aging and their physical capacities are an impressive example of what is possible in aging individuals. In the present review, we first discuss physiological changes, performance and trainability of older athletes with a focus on sex differences. Second, we describe the most important hormonal alterations occurring during aging pertaining regulation of appetite, glucose homeostasis and energy expenditure and the modulatory role of exercise training. The third part highlights nutritional aspects that may support health and physical performance for older athletes. Key nutrition-related concerns include the need for adequate energy and protein intake for preventing low bone and muscle mass and a higher demand for specific nutrients (e.g., vitamin D and probiotics) that may reduce the infection burden in masters athletes. Fourth, we present important research findings on the association between exercise, nutrition and the microbiota, which represents a rapidly developing field in sports nutrition.
Collapse
Affiliation(s)
- Barbara Strasser
- Medical Faculty, Sigmund Freud Private University, A-1020 Vienna, Austria
- Correspondence: ; Tel.: +43-(0)1-798-40-98
| | - Dominik Pesta
- Institute of Aerospace Medicine, German Aerospace Center (DLR), D-51147 Cologne, Germany; (D.P.); (J.R.)
- Centre for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, D-50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), D-50931 Cologne, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, D-40225 Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), D-85764 Neuherberg, Germany
- Department of Sport Science, University of Innsbruck, A-6020 Innsbruck, Austria;
| | - Jörn Rittweger
- Institute of Aerospace Medicine, German Aerospace Center (DLR), D-51147 Cologne, Germany; (D.P.); (J.R.)
| | - Johannes Burtscher
- Department of Biomedical Sciences, University of Lausanne, CH-1015 Lausanne, Switzerland;
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, A-6020 Innsbruck, Austria;
| |
Collapse
|
24
|
Smarr BL, Ishami AL, Schirmer AE. Lower variability in female students than male students at multiple timescales supports the use of sex as a biological variable in human studies. Biol Sex Differ 2021; 12:32. [PMID: 33888158 PMCID: PMC8061019 DOI: 10.1186/s13293-021-00375-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Men have been, and still are, included in more studies than women, in large part because of the lingering belief that ovulatory cycles result in women showing too much variability to be economically viable subjects. This belief has scientific and social consequences, and yet, it remains largely untested. Recent work in rodents has shown either that there is no appreciable difference in overall variability across a wealth of traits, or that in fact males may show more variability than females. METHODS We analyzed learning management system logins associated to gender records spanning 2 years from 13,777 students at Northeastern Illinois University. These data were used to assess variability in daily rhythms in a heterogeneous human population. RESULTS At the population level, men are more likely than women to show extreme chronotypes (very early or very late phases of activity). Men were also found to be more variable than women across and within individuals. Variance correlated negatively with academic performance, which also showed a gender difference. Whereas a complaint against using female subjects is that their variance is the driver of statistical sex differences, only 6% of the gender performance difference is potentially accounted for by variance, suggesting that variability is not the driver of sex differences here. CONCLUSIONS Our findings do not support the idea that women are more behaviorally variable than men and may support the opposite. Our findings support including sex as a biological variable and do not support variance-based arguments for the exclusion of women as research subjects.
Collapse
Affiliation(s)
- Benjamin L Smarr
- Department of Bioengineering and the Halıcıoğlu Data Science Institute, University of California San Diego, 9500 Gilman Drive Drive, La Jolla, CA, 92093, USA.
| | - Annick Laure Ishami
- Department of Biology, Northeastern Illinois University, 5500 N. St. Louis Ave, Chicago, IL, 60625, USA
| | - Aaron E Schirmer
- Department of Biology, Northeastern Illinois University, 5500 N. St. Louis Ave, Chicago, IL, 60625, USA
| |
Collapse
|
25
|
Altered Metabolic Flexibility in Inherited Metabolic Diseases of Mitochondrial Fatty Acid Metabolism. Int J Mol Sci 2021; 22:ijms22073799. [PMID: 33917608 PMCID: PMC8038842 DOI: 10.3390/ijms22073799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 12/14/2022] Open
Abstract
In general, metabolic flexibility refers to an organism's capacity to adapt to metabolic changes due to differing energy demands. The aim of this work is to summarize and discuss recent findings regarding variables that modulate energy regulation in two different pathways of mitochondrial fatty metabolism: β-oxidation and fatty acid biosynthesis. We focus specifically on two diseases: very long-chain acyl-CoA dehydrogenase deficiency (VLCADD) and malonyl-CoA synthetase deficiency (acyl-CoA synthetase family member 3 (ACSF3)) deficiency, which are both characterized by alterations in metabolic flexibility. On the one hand, in a mouse model of VLCAD-deficient (VLCAD-/-) mice, the white skeletal muscle undergoes metabolic and morphologic transdifferentiation towards glycolytic muscle fiber types via the up-regulation of mitochondrial fatty acid biosynthesis (mtFAS). On the other hand, in ACSF3-deficient patients, fibroblasts show impaired mitochondrial respiration, reduced lipoylation, and reduced glycolytic flux, which are compensated for by an increased β-oxidation rate and the use of anaplerotic amino acids to address the energy needs. Here, we discuss a possible co-regulation by mtFAS and β-oxidation in the maintenance of energy homeostasis.
Collapse
|
26
|
Gusdon AM, Hui Y, Chen J, Mathews CE, Qu S. Mitochondrial haplogroup G is associated with nonalcoholic fatty liver disease, while haplogroup A mitigates the effects of PNPLA3. Endocrinol Diabetes Metab 2021; 4:e00187. [PMID: 33532620 PMCID: PMC7831202 DOI: 10.1002/edm2.187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/05/2020] [Accepted: 08/29/2020] [Indexed: 12/17/2022] Open
Abstract
Objectives Mitochondrial dysfunction plays a pivotal role in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). We hypothesized that mitochondrial DNA (mtDNA) haplogroups affect the risk of NAFLD in Han Chinese patients and interact with PNPLA3 genotypes. Design NAFLD and control patients were recruited from a tertiary care centre. The mitochondrial genome was amplified in overlapping segments and sequenced. Mitochondrial haplogroups were determined using Mitomaster. PNPLA3 rs738409 genotyping was performed using restriction fragment length polymorphism analysis. Patients We enrolled 655 NAFLD patients and 504 controls. Results More NAFLD patients encoded haplogroup G; odds ratio (OR) 1.85 (95% confidence interval [CI] 1.16, 2.80). Subhaplogroup G3 was present more frequently in NAFLD patients (25.8% vs 6.5%). The PNPLA3 CG genotype resulted in an OR of 1.66 (95% CI 1.25, 2.21), and the GG genotype resulted in an OR of 2.33 (95% CI 1.72, 3.17) for NAFLD. Patients with mitochondrial haplogroup A had a significantly higher frequency of genotype GG. Among patients with haplogroup A, no PNPLA3 genotype was associated with increased NAFLD risk (CG: OR 1.17, 95% CI 0.55, 2.34; GG: OR 1.04 95% CI 0.66, 2.65). Excluding haplogroup A, the OR for CG was 1.58 (95% CI 1.18, 2.12), and the OR for GG was 1.81 (95% CI 1.30, 2.51). Conclusion Haplogroup G was associated with an increased risk of NAFLD PNPLA3 GG genotype was overrepresented among patients encoding haplogroup A and was not associated with NAFLD risk among haplogroup A patients. Mitochondrial genetics influence NAFLD risk and interact with PNPLA3 genotypes.
Collapse
Affiliation(s)
- Aaron M. Gusdon
- Department of NeurosurgeryMischer Neuroscience AssociatesUniversity of Texas Health Science Center at HoustonHoustonTXUSA
| | - You Hui
- Department of EndocrinologyShanghai Tenth People's HospitalTongji UniversityShanghaiChina
| | - Jing Chen
- Department of Pathology, Immunology and Laboratory MedicineUniversity of Florida College of MedicineGainesvilleFLUSA
| | - Clayton E. Mathews
- Department of Pathology, Immunology and Laboratory MedicineUniversity of Florida College of MedicineGainesvilleFLUSA
| | - Shen Qu
- Department of EndocrinologyShanghai Tenth People's HospitalTongji UniversityShanghaiChina
| |
Collapse
|
27
|
Early Onset of Sex-Dependent Mitochondrial Deficits in the Cortex of 3xTg Alzheimer's Mice. Cells 2020; 9:cells9061541. [PMID: 32599904 PMCID: PMC7349170 DOI: 10.3390/cells9061541] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/09/2020] [Accepted: 06/18/2020] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is a major public health concern worldwide. Advanced age and female sex are two of the most prominent risk factors for AD. AD is characterized by progressive neuronal loss, especially in the cortex and hippocampus, and mitochondrial dysfunction has been proposed to be an early event in the onset and progression of the disease. Our results showed early perturbations in mitochondrial function in 3xTg mouse brain, with the cortex being more susceptible to mitochondrial changes than the hippocampus. In the cortex of 3xTg females, decreased coupled and uncoupled respiration were evident early (at 2 months of age), while in males it appeared later at 6 months of age. We observed increased coupled respiration in the hippocampus of 2-month-old 3xTg females, but no changes were detected later in life. Changes in mitochondrial dynamics were indicated by decreased mitofusin (Mfn2) and increased dynamin related protein 1 (Drp1) (only in females) in the hippocampus and cortex of 3xTg mice. Our findings highlight the importance of controlling and accounting for sex, brain region, and age in studies examining brain bioenergetics using this common AD model in order to more accurately evaluate potential therapies and improve the sex-specific translatability of preclinical findings.
Collapse
|
28
|
Jung JH, Chung SJ, Yoo HS, Lee YH, Baik K, Ye BS, Sohn YH, Lee PH. Sex-specific association of urate and levodopa-induced dyskinesia in Parkinson's disease. Eur J Neurol 2020; 27:1948-1956. [PMID: 32441832 DOI: 10.1111/ene.14337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/14/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE As a major antioxidant, uric acid (UA) is known to be associated with the clinical progression of Parkinson's disease (PD). This study investigated whether baseline UA levels are associated with the risk for levodopa-induced dyskinesia (LID) in PD in a sex-dependent manner. METHODS In all, 152 patients with de novo PD (78 males and 74 females) who were followed up for >2 years were enrolled. The effect of baseline serum UA levels on LID-free survival was assessed by Cox regression, separately for sex, whilst being adjusted for potential confounding factors. The optimal UA level cut-off value to determine the high-risk group for LID was set using Contal and O'Quigley's method. RESULTS Levodopa-induced dyskinesia developed in 23 (29.5%) male patients and 30 (40.5%) female patients. Cox regression showed a significant interaction between UA level and sex. Higher UA levels were associated with a higher risk for LID in male PD patients (hazard ratio 1.380; 95% confidence interval 1.038-1.835; P = 0.027), although this relationship was not observed in female PD patients. The optimal UA level cut-off for LID in male PD was 7.2 mg/dl, and the high UA group had a 5.7-fold higher risk of developing LID than the low UA group. CONCLUSIONS Contrary to a presumptive beneficial role of UA, the present study demonstrated that higher UA levels are associated with increased risk of LID occurrence in male patients with PD, suggesting a sex-dependent role of UA in LID.
Collapse
Affiliation(s)
- J H Jung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - S J Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.,Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea
| | - H S Yoo
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Y H Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - K Baik
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - B S Ye
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Y H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - P H Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
29
|
Noiret A, Puch L, Riffaud C, Costantini D, Riou JF, Aujard F, Terrien J. Sex-Specific Response to Caloric Restriction After Reproductive Investment in Microcebus murinus: An Integrative Approach. Front Physiol 2020; 11:506. [PMID: 32612534 PMCID: PMC7308708 DOI: 10.3389/fphys.2020.00506] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/24/2020] [Indexed: 12/22/2022] Open
Abstract
In seasonal environments, males and females usually maintain high metabolic activity during the whole summer season, exhausting their energy reserves. In the global warming context, unpredictability of food availability during summer could dramatically challenge the energy budget of individuals. Therefore, one can predict that resilience to environmental stress would be dramatically endangered during summer. Here, we hypothesized that females could have greater capacity to survive harsh conditions than males, considering the temporal shift in their respective reproductive energy investment, which can challenge them differently, as well as enhanced flexibility in females' physiological regulation. We tackled this question on the gray mouse lemur (Microcebus murinus), focusing on the late summer period, after the reproductive effort. We monitored six males and six females before and after a 2-weeks 60% caloric restriction (CR), measuring different physiological and cellular parameters in an integrative and comparative multiscale approach. Before CR, females were heavier than males and mostly characterized by high levels of energy expenditure, a more energetic mitochondrial profile and a downregulation of blood antioxidants. We observed a similar energy balance between sexes due to CR, with a decrease in metabolic activity over time only in males. Oxidative damage to DNA was also reduced by different pathways between sexes, which may reflect variability in their physiological status and life-history traits at the end of summer. Finally, females' mitochondria seemed to exhibit greater flexibility and greater metabolic potential than males in response to CR. Our results showed strong differences between males and females in response to food shortage during late summer, underlining the necessity to consider sex as a factor for population dynamics in climate change models.
Collapse
Affiliation(s)
- Aude Noiret
- Unité Mécanismes Adaptatifs et Evolution (MECADEV), Muséum National d'Histoire Naturelle, CNRS UMR 7179, Brunoy, France
| | - Laura Puch
- Unité Mécanismes Adaptatifs et Evolution (MECADEV), Muséum National d'Histoire Naturelle, CNRS UMR 7179, Brunoy, France
| | - Coralie Riffaud
- Unité Mécanismes Adaptatifs et Evolution (MECADEV), Muséum National d'Histoire Naturelle, CNRS UMR 7179, Brunoy, France
| | - David Costantini
- Unité Physiologie Moléculaire et Adaptation (PhyMA), Muséum National d'Histoire Naturelle, CNRS UMR 7221, Paris, France
| | - Jean-Francois Riou
- Unité Structure et Instabilité des Génomes (STRING), Muséum National d'Histoire Naturelle, CNRS UMR 7196, INSERM U1154, Paris, France
| | - Fabienne Aujard
- Unité Mécanismes Adaptatifs et Evolution (MECADEV), Muséum National d'Histoire Naturelle, CNRS UMR 7179, Brunoy, France
| | - Jeremy Terrien
- Unité Mécanismes Adaptatifs et Evolution (MECADEV), Muséum National d'Histoire Naturelle, CNRS UMR 7179, Brunoy, France
| |
Collapse
|
30
|
Frapin M, Guignard S, Meistermann D, Grit I, Moullé VS, Paillé V, Parnet P, Amarger V. Maternal Protein Restriction in Rats Alters the Expression of Genes Involved in Mitochondrial Metabolism and Epitranscriptomics in Fetal Hypothalamus. Nutrients 2020; 12:nu12051464. [PMID: 32438566 PMCID: PMC7284977 DOI: 10.3390/nu12051464] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/18/2022] Open
Abstract
Fetal brain development is closely dependent on maternal nutrition and metabolic status. Maternal protein restriction (PR) is known to be associated with alterations in the structure and function of the hypothalamus, leading to impaired control of energy homeostasis and food intake. The objective of this study was to identify the cellular and molecular systems underlying these effects during fetal development. We combined a global transcriptomic analysis on the fetal hypothalamus from a rat model of maternal PR with in vitro neurosphere culture and cellular analyses. Several genes encoding proteins from the mitochondrial respiratory chain complexes were overexpressed in the PR group and mitochondrial metabolic activity in the fetal hypothalamus was altered. The level of the N6-methyladenosine epitranscriptomic mark was reduced in the PR fetuses, and the expression of several genes involved in the writing/erasing/reading of this mark was indeed altered, as well as genes encoding several RNA-binding proteins. Additionally, we observed a higher number of neuronal-committed progenitors at embryonic day 17 (E17) in the PR fetuses. Together, these data strongly suggest a metabolic adaptation to the amino acid shortage, combined with the post-transcriptional control of protein expression, which might reflect alterations in the control of the timing of neuronal progenitor differentiation.
Collapse
Affiliation(s)
- Morgane Frapin
- Nantes Université, INRAE, IMAD, CRNH-O, UMR 1280, PhAN, F-44000 Nantes, France; (M.F.); (S.G.); (I.G.); (V.S.M.); (V.P.); (P.P.)
| | - Simon Guignard
- Nantes Université, INRAE, IMAD, CRNH-O, UMR 1280, PhAN, F-44000 Nantes, France; (M.F.); (S.G.); (I.G.); (V.S.M.); (V.P.); (P.P.)
| | | | - Isabelle Grit
- Nantes Université, INRAE, IMAD, CRNH-O, UMR 1280, PhAN, F-44000 Nantes, France; (M.F.); (S.G.); (I.G.); (V.S.M.); (V.P.); (P.P.)
| | - Valentine S. Moullé
- Nantes Université, INRAE, IMAD, CRNH-O, UMR 1280, PhAN, F-44000 Nantes, France; (M.F.); (S.G.); (I.G.); (V.S.M.); (V.P.); (P.P.)
| | - Vincent Paillé
- Nantes Université, INRAE, IMAD, CRNH-O, UMR 1280, PhAN, F-44000 Nantes, France; (M.F.); (S.G.); (I.G.); (V.S.M.); (V.P.); (P.P.)
| | - Patricia Parnet
- Nantes Université, INRAE, IMAD, CRNH-O, UMR 1280, PhAN, F-44000 Nantes, France; (M.F.); (S.G.); (I.G.); (V.S.M.); (V.P.); (P.P.)
| | - Valérie Amarger
- Nantes Université, INRAE, IMAD, CRNH-O, UMR 1280, PhAN, F-44000 Nantes, France; (M.F.); (S.G.); (I.G.); (V.S.M.); (V.P.); (P.P.)
- Correspondence:
| |
Collapse
|
31
|
Rubin JB, Lagas JS, Broestl L, Sponagel J, Rockwell N, Rhee G, Rosen SF, Chen S, Klein RS, Imoukhuede P, Luo J. Sex differences in cancer mechanisms. Biol Sex Differ 2020; 11:17. [PMID: 32295632 PMCID: PMC7161126 DOI: 10.1186/s13293-020-00291-x] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 03/18/2020] [Indexed: 02/07/2023] Open
Abstract
We now know that cancer is many different diseases, with great variation even within a single histological subtype. With the current emphasis on developing personalized approaches to cancer treatment, it is astonishing that we have not yet systematically incorporated the biology of sex differences into our paradigms for laboratory and clinical cancer research. While some sex differences in cancer arise through the actions of circulating sex hormones, other sex differences are independent of estrogen, testosterone, or progesterone levels. Instead, these differences are the result of sexual differentiation, a process that involves genetic and epigenetic mechanisms, in addition to acute sex hormone actions. Sexual differentiation begins with fertilization and continues beyond menopause. It affects virtually every body system, resulting in marked sex differences in such areas as growth, lifespan, metabolism, and immunity, all of which can impact on cancer progression, treatment response, and survival. These organismal level differences have correlates at the cellular level, and thus, males and females can fundamentally differ in their protections and vulnerabilities to cancer, from cellular transformation through all stages of progression, spread, and response to treatment. Our goal in this review is to cover some of the robust sex differences that exist in core cancer pathways and to make the case for inclusion of sex as a biological variable in all laboratory and clinical cancer research. We finish with a discussion of lab- and clinic-based experimental design that should be used when testing whether sex matters and the appropriate statistical models to apply in data analysis for rigorous evaluations of potential sex effects. It is our goal to facilitate the evaluation of sex differences in cancer in order to improve outcomes for all patients.
Collapse
Affiliation(s)
- Joshua B Rubin
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA.
- Department of Neuroscience, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA.
| | - Joseph S Lagas
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Lauren Broestl
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Jasmin Sponagel
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Nathan Rockwell
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Gina Rhee
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Sarah F Rosen
- Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Si Chen
- Department of Biomedical Engineering, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Robyn S Klein
- Department of Neuroscience, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
- Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Princess Imoukhuede
- Department of Biomedical Engineering, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Jingqin Luo
- Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| |
Collapse
|
32
|
Sexual hormones regulate the redox status and mitochondrial function in the brain. Pathological implications. Redox Biol 2020; 31:101505. [PMID: 32201220 PMCID: PMC7212485 DOI: 10.1016/j.redox.2020.101505] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 02/11/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022] Open
Abstract
Compared to other organs, the brain is especially exposed to oxidative stress. In general, brains from young females tend to present lower oxidative damage in comparison to their male counterparts. This has been attributed to higher antioxidant defenses and a better mitochondrial function in females, which has been linked to neuroprotection in this group. However, these differences usually disappear with aging, and the incidence of brain pathologies increases in aged females. Sexual hormones, which suffer a decrease with normal aging, have been proposed as the key factors involved in these gender differences. Here, we provide an overview of redox status and mitochondrial function regulation by sexual hormones and their influence in normal brain aging. Furthermore, we discuss how sexual hormones, as well as phytoestrogens, may play an important role in the development and progression of several brain pathologies, including neurodegenerative diseases such as Alzheimer's and Parkinson's diseases, stroke or brain cancer. Sex hormones are reduced with aging, especially in females, affecting redox balance. Normal aging is associated to a worse redox homeostasis in the brain. Young females show better mitochondrial function and higher antioxidant defenses. Development of brain pathologies is influenced by sex hormones and phytoestrogens.
Collapse
|
33
|
Berry A, Marconi M, Musillo C, Chiarotti F, Bellisario V, Matarrese P, Gambardella L, Vona R, Lombardi M, Foglieni C, Cirulli F. Trehalose administration in C57BL/6N old mice affects healthspan improving motor learning and brain anti-oxidant defences in a sex-dependent fashion: a pilot study. Exp Gerontol 2020; 129:110755. [DOI: 10.1016/j.exger.2019.110755] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/04/2019] [Accepted: 10/14/2019] [Indexed: 01/31/2023]
|
34
|
Wehbe Z, Alatibi K, Jellusova J, Spiekerkoetter U, Tucci S. The fate of medium-chain fatty acids in very long-chain acyl‑CoA dehydrogenase deficiency (VLCADD): A matter of sex? Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1591-1605. [PMID: 31394165 DOI: 10.1016/j.bbalip.2019.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/10/2019] [Accepted: 08/02/2019] [Indexed: 12/22/2022]
Abstract
Medium-chain-triglycerides (MCT) are widely applied in the treatment of long-chain fatty acid oxidation disorders (lcFAOD). Long-term treatment with MCT led to a sexually dimorphic response in the mouse model of very-long-chain-acyl-CoA-dehydrogenase-deficiency (VLCAD-/-) with the subsequent development of a metabolic syndrome in female mice. In order to evaluate the molecular mechanisms responsible for this sex specific response we performed a comprehensive metabolic phenotyping, SILAC-based quantitative proteomics and characterized the involved signaling pathways by western blot analysis and gene expression. WT and VLCAD-/- mice showed strong sex-dependent differences in basal metabolism and expression of proteins involved in the distinct metabolic pathways, even more prominent after treatment with octanoate. The investigation of molecular mechanisms responsible for the sexual dimorphisms delineated the selective activation of the ERK/mTORc1 signaling pathway leading to an increased biosynthesis and elongation of fatty acids in VLCAD-/- females. In contrast, octanoate induced the activation of ERK/PPARγ pathway and the subsequent upregulation of peroxisomal β‑oxidation in males. We here provide first evidence that sex has to be considered as important variable in disease phenotype. These findings may have implications on treatment strategies in the different sexes.
Collapse
Affiliation(s)
- Zeinab Wehbe
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Mathildenstrasse 1, Freiburg, Germany; University of Freiburg, Faculty of Biology, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | - Khaled Alatibi
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Mathildenstrasse 1, Freiburg, Germany; University of Freiburg, Faculty of Biology, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | - Julia Jellusova
- Department of Molecular Immunology, Institute of Biology III at the Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, Albert-Ludwigs-University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany
| | - Ute Spiekerkoetter
- Department of General Pediatrics and Adolescent Medicine, Center for Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Mathildenstrasse 1, Freiburg, Germany
| | - Sara Tucci
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Mathildenstrasse 1, Freiburg, Germany.
| |
Collapse
|
35
|
Mohajeri M, Martín-Jiménez C, Barreto GE, Sahebkar A. Effects of estrogens and androgens on mitochondria under normal and pathological conditions. Prog Neurobiol 2019; 176:54-72. [DOI: 10.1016/j.pneurobio.2019.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 02/23/2019] [Accepted: 03/05/2019] [Indexed: 02/06/2023]
|
36
|
Bai Y, Wang S, Wu F, Xie X, Wang Y, Yang Y. The Changes of Mitochondria in Substantia Nigra and Anterior Cerebral Cortex of Hepatic Encephalopathy Induced by Thioacetamide. Anat Rec (Hoboken) 2019; 302:1169-1177. [PMID: 30290401 PMCID: PMC6899860 DOI: 10.1002/ar.23932] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/22/2018] [Accepted: 02/03/2018] [Indexed: 01/10/2023]
Abstract
Hepatic encephalopathy (HE) is a neuropsychiatric syndrome resulting from chronic or acute liver failure. Under the condition of HE, various factors such as reactive oxygen species, inflammatory factors, ammonia poisoning and amino acids alteration lead to changes of mitochondria. Selective depletion of damaged mitochondrion is essential for maintaining the morphology and function of mitochondria and cells. In this study, molecular biology analysis was used to analyze the mitochondrial morphology in the substantia nigra (SN) and anterior cerebral cortex (ACC) of the HE mice. The results revealed that the drp1, mfn1 and mfn2 increased in mRNA level of SN, which indicated the changes of mitochondrial morphology in HE mice. The drp1 and mfn2 genes were up‐regulated, then, the Opa1 exhibited no significant change in the ACC of HE mice. Further study demonstrated that the mitochondrial autophagy related genes, pink1 and parkin, increased in SN, while the parkin reduced in ACC of HE mice. In addition, uncoupling protein (ucp2) increased in mRNA level of SN and ACC, and the ucp4 had no change or reduced in SN and ACC, respectively. These findings suggested that the mitochondrial dynamics is different in the SN and ACC of HE mice. Therefore, our results indicated that mitochondrial dynamics provided a potential treatment strategy for HE through the fission, fusion and autophagy of genes. Anat Rec, 302:1169–1177, 2019. © 2018 The Authors. The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.
Collapse
Affiliation(s)
- Yunhu Bai
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China.,Department of general surgery, People's Liberation Army's 153rd hospital, Zhengzhou, China
| | - Shengming Wang
- Department of Anatomy and K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, China
| | - Feifei Wu
- Department of Anatomy and K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, China
| | - Xiangjun Xie
- Department of Preventive Medicine, The Fourth Military Medical University, Xi'an, China
| | - Yayun Wang
- Department of Anatomy and K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, China
| | - Yanling Yang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
37
|
Dong Y, Digman MA, Brewer GJ. Age- and AD-related redox state of NADH in subcellular compartments by fluorescence lifetime imaging microscopy. GeroScience 2019; 41:51-67. [PMID: 30729413 DOI: 10.1007/s11357-019-00052-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 01/17/2019] [Indexed: 02/06/2023] Open
Abstract
Nicotinamide adenine dinucleotide (reduced form: NADH) serves as a vital redox-energy currency for reduction-oxidation homeostasis and fulfilling energetic demands. While NADH exists as free and bound forms, only free NADH is utilized for complex I to power oxidative phosphorylation, especially important in neurons. Here, we studied how much free NADH remains available for energy production in mitochondria of old living neurons. We hypothesize that free NADH in neurons from old mice is lower than the levels in young mice and even lower in neurons from the 3xTg-AD Alzheimer's disease (AD) mouse model. To assess free NADH, we used lifetime imaging of NADH autofluorescence with 2-photon excitation to be able to resolve the pool of NADH in mitochondria, cytoplasm, and nuclei. Primary neurons from old mice were characterized by a lower free/bound NADH ratio than young neurons from both non-transgenic (NTg) and more so in 3xTg-AD mice. Mitochondrial compartments maintained 26 to 41% more reducing NADH redox state than cytoplasm for each age, genotype, and sex. Aging diminished the mitochondrial free NADH concentration in NTg neurons by 43% and in 3xTg-AD by 50%. The lower free NADH with age suggests a decline in capacity to regenerate free NADH for energetic supply to power oxidative phosphorylation which further worsens in AD. Applying this non-invasive approach, we showed the most explicit measures yet of bioenergetic deficits in free NADH with aging at the subcellular level in live neurons from in-bred mice and an AD model.
Collapse
Affiliation(s)
- Yue Dong
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Michelle A Digman
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA.,Laboratory of Fluorescence Dynamics, Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Gregory J Brewer
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA. .,MIND Institute, Center for Neurobiology of Learning and Memory, University of California, Irvine, CA, USA.
| |
Collapse
|
38
|
Mishra S, Nyomba BLG. Prohibitin: A hypothetical target for sex-based new therapeutics for metabolic and immune diseases. Exp Biol Med (Maywood) 2019; 244:157-170. [PMID: 30717609 PMCID: PMC6405819 DOI: 10.1177/1535370219828362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
IMPACT STATEMENT Traditional sex-related biases in research are now obsolete, and it is important to identify the sex of humans, animals, and even cells in research protocols, due to the role of sex as a fundamental facet of biology, predisposition to disease, and response to therapy. Genetic sex, epigenetics and hormonal regulations, generate sex-dimorphisms. Recent investigations acknowledge sex differences in metabolic and immune health as well as chronic diseases. Prohibitin, an evolutionarily conserved molecule, has pleotropic functions in mitochondrial housekeeping, plasma membrane signaling, and nuclear genetic transcription. Studies in adipocytes, macrophages, and transgenic mice indicate that prohibitin interacts with sex steroids and plays a role in mediating sex differences in adipose tissues and immune cell types. Prohibitin may, depending on context, modulate predisposition to chronic metabolic diseases and malignancy and, because of these attributes, could be a target for sex-based therapies of metabolic and immune-related diseases as well as cancer.
Collapse
Affiliation(s)
- Suresh Mishra
- Department of Internal Medicine, University of Manitoba,
Manitoba R3A1R9, Canada
- Department of Physiology & Pathophysiology, University of
Manitoba, Manitoba R3E0J9, Canada
| | - BL Grégoire Nyomba
- Department of Internal Medicine, University of Manitoba,
Manitoba R3A1R9, Canada
| |
Collapse
|
39
|
Sex-dependent effect on mitochondrial and oxidative stress parameters in the hypothalamus induced by prepubertal stress and access to high fat diet. Neurochem Int 2019; 124:114-122. [PMID: 30639195 DOI: 10.1016/j.neuint.2019.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 01/03/2019] [Accepted: 01/07/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Some factors related to lifestyle, including stress and high-fat diet (HFD) consumption, are associated with higher prevalence of obesity. These factors can lead to an imbalance between ROS production and antioxidant defenses and to mitochondrial dysfunctions, which, in turn, could cause metabolic impairments, favoring the development of obesity. However, little is known about the interplay between these factors, particularly at early ages, and whether long-term sex-specific changes may occur. Here, we evaluated whether social isolation during the prepubertal period only, associated or not with chronic HFD, can exert long-term effects on oxidative status parameters and on mitochondrial function in the whole hypothalamus, in a sex-specific manner. METHODS Wistar male and female rats were divided into two groups (receiving standard chow or standard chow + HFD), that were subdivided into exposed or not to social isolation during the prepubertal period. Oxidative status parameters, and mitochondrial function were evaluated in the hypothalamus in the adult age. RESULTS Regarding antioxidant enzymes activities, HFD decreased GPx activity in the hypothalamus, while increasing SOD activity in females. Females also presented increased total thiols; however, non-protein thiols were lower. Main effects of stress and HFD were observed in TBARS levels in males, with both factors decreasing this parameter. Additionally, HFD increased complex IV activity, and decreased mitochondrial mass in females. Complex I-III activity was higher in males compared to females. CONCLUSION Stress during the prepubertal period and chronic consumption of HFD had persistent sex-specific effects on oxidative status, as well as on its consequences for the cell and for mitochondrial function. HFD had more detrimental effects on females, inducing oxidative imbalance, which resulted in damage to the mitochondria. This HFD-induced imbalance may be related to the development of obesity.
Collapse
|
40
|
Ruszkiewicz JA, Miranda-Vizuete A, Tinkov AA, Skalnaya MG, Skalny AV, Tsatsakis A, Aschner M. Sex-Specific Differences in Redox Homeostasis in Brain Norm and Disease. J Mol Neurosci 2019; 67:312-342. [DOI: 10.1007/s12031-018-1241-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/10/2018] [Indexed: 12/12/2022]
|
41
|
Cheng CJ, Nelson JF. Physiological basis for sex-specific differences in longevity. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2018.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
42
|
Gaignard P, Liere P, Thérond P, Schumacher M, Slama A, Guennoun R. Role of Sex Hormones on Brain Mitochondrial Function, with Special Reference to Aging and Neurodegenerative Diseases. Front Aging Neurosci 2017; 9:406. [PMID: 29270123 PMCID: PMC5725410 DOI: 10.3389/fnagi.2017.00406] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 11/24/2017] [Indexed: 01/18/2023] Open
Abstract
The mitochondria have a fundamental role in both cellular energy supply and oxidative stress regulation and are target of the effects of sex steroids, particularly the neuroprotective ones. Aging is associated with a decline in the levels of different steroid hormones, and this decrease may underline some neural dysfunctions. Besides, modifications in mitochondrial functions associated with aging processes are also well documented. In this review, we will discuss studies that describe the modifications of brain mitochondrial function and of steroid levels associated with physiological aging and with neurodegenerative diseases. A special emphasis will be placed on describing and discussing our recent findings concerning the concomitant study of mitochondrial function (oxidative phosphorylation, oxidative stress) and brain steroid levels in both young (3-month-old) and aged (20-month-old) male and female mice.
Collapse
Affiliation(s)
- Pauline Gaignard
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, Le Kremlin-Bicêtre, France
- Biochemistry Laboratory, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Philippe Liere
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Patrice Thérond
- Biochemistry Laboratory, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Michael Schumacher
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Abdelhamid Slama
- Biochemistry Laboratory, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Rachida Guennoun
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, Le Kremlin-Bicêtre, France
| |
Collapse
|
43
|
Grimm A, Eckert A. Brain aging and neurodegeneration: from a mitochondrial point of view. J Neurochem 2017; 143:418-431. [PMID: 28397282 PMCID: PMC5724505 DOI: 10.1111/jnc.14037] [Citation(s) in RCA: 382] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/27/2017] [Accepted: 04/06/2017] [Indexed: 12/16/2022]
Abstract
Aging is defined as a progressive time-related accumulation of changes responsible for or at least involved in the increased susceptibility to disease and death. The brain seems to be particularly sensitive to the aging process since the appearance of neurodegenerative diseases, including Alzheimer's disease, is exponential with the increasing age. Mitochondria were placed at the center of the 'free-radical theory of aging', because these paramount organelles are not only the main producers of energy in the cells, but also to main source of reactive oxygen species. Thus, in this review, we aim to look at brain aging processes from a mitochondrial point of view by asking: (i) What happens to brain mitochondrial bioenergetics and dynamics during aging? (ii) Why is the brain so sensitive to the age-related mitochondrial impairments? (iii) Is there a sex difference in the age-induced mitochondrial dysfunction? Understanding mitochondrial physiology in the context of brain aging may help identify therapeutic targets against neurodegeneration. This article is part of a series "Beyond Amyloid".
Collapse
Affiliation(s)
- Amandine Grimm
- University of BaselTransfaculty Research PlatformMolecular & Cognitive NeuroscienceNeurobiology Laboratory for Brain Aging and Mental HealthBaselSwitzerland
- University of BaselPsychiatric University ClinicsBaselSwitzerland
| | - Anne Eckert
- University of BaselTransfaculty Research PlatformMolecular & Cognitive NeuroscienceNeurobiology Laboratory for Brain Aging and Mental HealthBaselSwitzerland
- University of BaselPsychiatric University ClinicsBaselSwitzerland
| |
Collapse
|
44
|
Bauzá-Thorbrügge M, M Galmés-Pascual B, Sbert-Roig M, J García-Palmer F, Gianotti M, M Proenza A, Lladó I. Antioxidant peroxiredoxin 3 expression is regulated by 17beta-estradiol in rat white adipose tissue. J Steroid Biochem Mol Biol 2017; 172:9-19. [PMID: 28529127 DOI: 10.1016/j.jsbmb.2017.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/26/2017] [Accepted: 05/16/2017] [Indexed: 11/18/2022]
Abstract
Peroxiredoxin 3 (PRX3) plays a role as a regulator of the adipocyte mitochondrial function due to its antioxidant activity. We have previously reported the existence of a sexual dimorphism in the mitochondrial oxidative stress status of many rat tissues such as white (WAT) and brown (BAT) adipose tissues. The aim was to elucidate whether sex hormones may play a role in PRX3 expression in the adipose tissues of rats. In in vivo experiments, male and female standard diet fed rats, high fat diet (HFD) fed rats and rosiglitazone-supplemented HFD (HDF+Rsg) fed rats, as well as ovariectomized (OVX) and 17beta-estradiol-supplemented OVX (OVX+E2) female rats were used. 3T3-L1 adipocytes and brown adipocyte primary culture were used to study the roles of both E2 and testosterone in in vitro experiments. PRX3 levels were greater in the WAT of female rats than in males. This sexual dimorphism disappeared by HFD feeding but was magnified with Rsg supplementation. PRX3 sexual dimorphism was not observed in BAT, and neither HFD nor ovariectomy modified PRX3 levels. Rsg increased Prx3 expression in the BAT of both sexes. In vitro studies supported the results obtained in vivo and confirmed the contribution of E2 to sex differences in WAT Prx3 expression. Finally, we reported an E2 upregulation of both PRX3 and thioredoxin 2 (TRX2) in WAT but not in BAT that could play a key role in the sex dimorphism reported in the antioxidant defence of WAT in order to palliate the detrimental effect of the oxidative stress.
Collapse
Affiliation(s)
- Marco Bauzá-Thorbrügge
- Grup Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Bel M Galmés-Pascual
- Grup Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Miquel Sbert-Roig
- Grup Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Francisco J García-Palmer
- Grup Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBERobn, CB06/03/0043), Instituto de Salud Carlos III, Spain
| | - Magdalena Gianotti
- Grup Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBERobn, CB06/03/0043), Instituto de Salud Carlos III, Spain.
| | - Ana M Proenza
- Grup Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBERobn, CB06/03/0043), Instituto de Salud Carlos III, Spain
| | - Isabel Lladó
- Grup Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBERobn, CB06/03/0043), Instituto de Salud Carlos III, Spain
| |
Collapse
|
45
|
Nacka-Aleksić M, Stojanović M, Simić L, Bufan B, Kotur-Stevuljević J, Stojić-Vukanić Z, Dimitrijević M, Ražić S, Leposavić G. Sex as a determinant of age-related changes in rat spinal cord inflammation-oxidation state. Biogerontology 2017; 18:821-839. [PMID: 28825141 DOI: 10.1007/s10522-017-9726-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/09/2017] [Indexed: 02/07/2023]
Abstract
To close the gap in our knowledge of sex influence on age-related changes in inflammation-oxidation state in spinal cord (SC) relevant to inflammation/oxidative-stress associated neuropathologies, 2-3 month-old (young) and 18-20 month-old (old) rats, exhibiting increased level of IL-6, a commonly used marker of inflamm-aging, were examined for inflammatory/redox status, and the underlying regulatory networks' molecules expression. With age, rat SC microglia became sensitized ("primed"), while SC tissue shifted towards mild inflammatory state, with increased levels of proinflammatory IL-1β (key marker of microglial systemic inflammation-induced neurotoxicity), which was more prominent in males. This, most likely, reflected age- and sex-related impairment in the expression of CX3CR1, the receptor for fractalkine (CX3CL1), the soluble factor which regulates microglial activation and diminishes production of IL-1β (central for fractalkine neuroprotection). Considering that (i) age-related changes in SC IL-1β expression were not followed by complementary changes in SC IL-6 expression, and (ii) the reversal in the direction of the sex bias in circulating IL-6 level and SC IL-1β expression, it seems obvious that there are tissue-specific differences in the proinflammatory cytokine profile. Additionally, old male rat SC exhibited greater oxidative damage than female, reflecting, most likely, their lower capacity to maintain the pro-oxidant-antioxidant balance. In conclusion, these findings, apart from highlighting the significance of sex for age-associated changes in SC inflammation-oxidation, may be relevant for understating sex differences in human inflammation/oxidative-stress related SC diseases, and consequently, for optimizing their prevention/therapy.
Collapse
Affiliation(s)
- Mirjana Nacka-Aleksić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Marija Stojanović
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Lidija Simić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Biljana Bufan
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | | | - Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Mirjana Dimitrijević
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Slavica Ražić
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Gordana Leposavić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
46
|
Djordjevic J, Thomson E, Chowdhury SR, Snow WM, Perez C, Wong TP, Fernyhough P, Albensi BC. Brain region- and sex-specific alterations in mitochondrial function and NF-κB signaling in the TgCRND8 mouse model of Alzheimer's disease. Neuroscience 2017; 361:81-92. [PMID: 28802916 DOI: 10.1016/j.neuroscience.2017.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/28/2017] [Accepted: 08/03/2017] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common late onset neurodegenerative disorder with indications that women are disproportionately affected. Mitochondrial dysfunction has been one of the most discussed hypotheses associated with the early onset and progression of AD, and it has been attributed to intraneuronal accumulation of amyloid β (Aβ). It was suggested that one of the possible mediators for Aβ-impaired mitochondrial function is the nuclear factor kappa B (NF-κB) signaling pathway. NF-κB plays important roles in brain inflammation and antioxidant defense, as well as in the regulation of mitochondrial function, and studies have confirmed altered NF-κB signaling in AD brain. In this study, we looked for sex-based differences in impaired bioenergetic processes and NF-κB signaling in the AD-like brain using transgenic (Tg) CRND8 mice that express excessive brain Aβ, but without tau pathology. Our results show that mitochondrial dysfunction is not uniform in affected brain regions. We observed increased basal and coupled respiration in the hippocampus of TgCRND8 females only, along with a decreased Complex II-dependent respiratory activity. Cortical mitochondria from TgCRND8 mice have reduced uncoupled respiration capacity, regardless of sex. The pattern of changes in NF-κB signaling was the same in both brain structures, but was sex specific. Whereas in females there was an increase in all three subunits of NF-κB, in males we observed increase in p65 and p105, but no changes in p50 levels. These results demonstrate that mitochondrial function and inflammatory signaling in the AD-like brain is region- and sex-specific, which is an important consideration for therapeutic strategies.
Collapse
Affiliation(s)
- Jelena Djordjevic
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, Winnipeg, MB, Canada; Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB, Canada.
| | - Ella Thomson
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | - Subir Roy Chowdhury
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | - Wanda M Snow
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, Winnipeg, MB, Canada; Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - Claudia Perez
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | - Tak Pan Wong
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Paul Fernyhough
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, Winnipeg, MB, Canada; Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - Benedict C Albensi
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, Winnipeg, MB, Canada; Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
47
|
Jeong S, Yoo TG, Nam Y, Kim SH, Lee JE, Kim S, Lim J, Kwon H, Park J. Sex‐dependent effects of uric acid on cerebral microbleed: a cross‐sectional study in the general population. Eur J Neurol 2017; 24:1300-1306. [DOI: 10.1111/ene.13378] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/27/2017] [Indexed: 12/20/2022]
Affiliation(s)
- S.‐M. Jeong
- Department of Family Medicine Seoul National University Hospital Seoul Korea
| | - T. G. Yoo
- Department of Family Medicine Seoul National University Hospital Seoul Korea
| | - Y.‐S. Nam
- JW Lee Center for Global Medicine Seoul National University College of Medicine Seoul Korea
| | - S. H. Kim
- Department of Family Medicine Seoul National University Hospital Seoul Korea
| | - J. E. Lee
- Department of Family Medicine Seoul National University Hospital Seoul Korea
| | - S. Kim
- Department of Family Medicine Seoul National University Hospital Seoul Korea
| | - J.‐S. Lim
- Department of Neurology Hallym University Sacred Heart Hospital Anyang Korea
| | - H.‐M. Kwon
- Department of Neurology Seoul National University College of Medicine and Boramae Medical Center Seoul Korea
| | - J.‐H. Park
- Department of Family Medicine Seoul National University Hospital Seoul Korea
| |
Collapse
|
48
|
Galmés-Pascual BM, Nadal-Casellas A, Bauza-Thorbrügge M, Sbert-Roig M, García-Palmer FJ, Proenza AM, Gianotti M, Lladó I. 17β-estradiol improves hepatic mitochondrial biogenesis and function through PGC1B. J Endocrinol 2017; 232:297-308. [PMID: 27885055 DOI: 10.1530/joe-16-0350] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/24/2016] [Indexed: 11/08/2022]
Abstract
Sexual dimorphism in mitochondrial biogenesis and function has been described in many rat tissues, with females showing larger and more functional mitochondria. The family of the peroxisome proliferator-activated receptor gamma coactivator 1 (PGC1) plays a central role in the regulatory network governing mitochondrial biogenesis and function, but little is known about the different contribution of hepatic PGC1A and PGC1B in these processes. The aim of this study was to elucidate the role of 17β-estradiol (E2) in mitochondrial biogenesis and function in liver and assess the contribution of both hepatic PGC1A and PGC1B as mediators of these effects. In ovariectomized (OVX) rats (half of which were treated with E2) estrogen deficiency led to impaired mitochondrial biogenesis and function, increased oxidative stress, and defective lipid metabolism, but was counteracted by E2 treatment. In HepG2 hepatocytes, the role of E2 in enhancing mitochondrial biogenesis and function was confirmed. These effects were unaffected by the knockdown of PGC1A, but were impaired when PGC1B expression was knocked down by specific siRNA. Our results reveal a widespread protective role of E2 in hepatocytes, which is explained by enhanced mitochondrial content and oxidative capacity, lower hepatic lipid accumulation, and a reduction of oxidative stress. We also suggest a novel hepatic protective role of PGC1B as a modulator of E2 effects on mitochondrial biogenesis and function supporting activation of PGC1B as a therapeutic target for hepatic mitochondrial disorders.
Collapse
Affiliation(s)
- Bel M Galmés-Pascual
- Departament de Biologia Fonamental i Ciències de la SalutGrup Metabolisme Energètic i Nutrició, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Illes Balears, Spain
- Institut d'Investigació Sanitària de Palma (IdISPa)Hospital Universitari Son Espases, Palma de Mallorca, Illes Balears, Spain
| | - Antonia Nadal-Casellas
- Departament de Biologia Fonamental i Ciències de la SalutGrup Metabolisme Energètic i Nutrició, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Illes Balears, Spain
| | - Marco Bauza-Thorbrügge
- Departament de Biologia Fonamental i Ciències de la SalutGrup Metabolisme Energètic i Nutrició, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Illes Balears, Spain
- Institut d'Investigació Sanitària de Palma (IdISPa)Hospital Universitari Son Espases, Palma de Mallorca, Illes Balears, Spain
| | - Miquel Sbert-Roig
- Departament de Biologia Fonamental i Ciències de la SalutGrup Metabolisme Energètic i Nutrició, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Illes Balears, Spain
- Institut d'Investigació Sanitària de Palma (IdISPa)Hospital Universitari Son Espases, Palma de Mallorca, Illes Balears, Spain
| | - Francisco J García-Palmer
- Departament de Biologia Fonamental i Ciències de la SalutGrup Metabolisme Energètic i Nutrició, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Illes Balears, Spain
- Institut d'Investigació Sanitària de Palma (IdISPa)Hospital Universitari Son Espases, Palma de Mallorca, Illes Balears, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBERobn, CB06/03/0043)Instituto de Salud Carlos III, Madrid, Spain
| | - Ana M Proenza
- Departament de Biologia Fonamental i Ciències de la SalutGrup Metabolisme Energètic i Nutrició, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Illes Balears, Spain
- Institut d'Investigació Sanitària de Palma (IdISPa)Hospital Universitari Son Espases, Palma de Mallorca, Illes Balears, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBERobn, CB06/03/0043)Instituto de Salud Carlos III, Madrid, Spain
| | - Magdalena Gianotti
- Departament de Biologia Fonamental i Ciències de la SalutGrup Metabolisme Energètic i Nutrició, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Illes Balears, Spain
- Institut d'Investigació Sanitària de Palma (IdISPa)Hospital Universitari Son Espases, Palma de Mallorca, Illes Balears, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBERobn, CB06/03/0043)Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel Lladó
- Departament de Biologia Fonamental i Ciències de la SalutGrup Metabolisme Energètic i Nutrició, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Illes Balears, Spain
- Institut d'Investigació Sanitària de Palma (IdISPa)Hospital Universitari Son Espases, Palma de Mallorca, Illes Balears, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBERobn, CB06/03/0043)Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
49
|
Targeting antioxidant enzyme expression as a therapeutic strategy for ischemic stroke. Neurochem Int 2016; 107:23-32. [PMID: 28043837 DOI: 10.1016/j.neuint.2016.12.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/05/2016] [Accepted: 12/17/2016] [Indexed: 11/24/2022]
Abstract
During ischemic stroke, neurons and glia are subjected to damage during the acute and neuroinflammatory phases of injury. Production of reactive oxygen species (ROS) from calcium dysregulation in neural cells and the invasion of activated immune cells are responsible for stroke-induced neurodegeneration. Scientists have failed thus far to identify antioxidant-based drugs that can enhance neural cell survival and improve recovery after stroke. However, several groups have demonstrated success in protecting against stroke by increasing expression of antioxidant enzymes in neural cells. These enzymes, which include but are not limited to enzymes in the glutathione peroxidase, catalase, and superoxide dismutase families, degrade ROS that otherwise damage cellular components such as DNA, proteins, and lipids. Several groups have identified cellular therapies including neural stem cells and human umbilical cord blood cells, which exert neuroprotective and oligoprotective effects through the release of pro-survival factors that activate PI3K/Akt signaling to upregulation of antioxidant enzymes. Other studies demonstrate that treatment with soluble factors released by these cells yield similar changes in enzyme expression after stroke. Treatment with the cytokine leukemia inhibitory factor increases the expression of peroxiredoxin IV and metallothionein III in glia and boosts expression of superoxide dismutase 3 in neurons. Through cell-specific upregulation of these enzymes, LIF and other Akt-inducing factors have the potential to protect multiple cell types against damage from ROS during the early and late phases of ischemic damage.
Collapse
|
50
|
Heemann FM, da Silva ACA, Salomon TB, Putti JS, Engers VK, Hackenhaar FS, Benfato MS. Redox changes in the brains of reproductive female rats during aging. Exp Gerontol 2016; 87:8-15. [PMID: 27871821 DOI: 10.1016/j.exger.2016.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/04/2016] [Accepted: 11/10/2016] [Indexed: 12/30/2022]
Abstract
Reproduction is a critical and demanding phase of an animal's life. In mammals, females usually invest much more in parental care than males, and lactation is the most energetically demanding period of a female's life. Here, we tested whether oxidative stress is a consequence of reproduction in the brains of female Wistar rats. We evaluated the activities of glutathione peroxidase, glutathione S-transferase, and superoxide dismutase; H2O2 consumption; protein carbonylation; NO2 & NO3 levels; and total glutathione, as well as sex hormone levels in brain tissue of animals at 3, 6, 12, and 24months of age. Animals were grouped according to reproductive experience: breeders or non-breeders. Most of the studied parameters showed a difference between non-breeders and breeders at 12 and 24months. At 24months of age, breeders showed higher superoxide dismutase activity, H2O2 consumption, glutathione peroxidase activity, and carbonyl levels than non-breeders. In 12-month-old non-breeders, we observed a higher level of H2O2 consumption and higher superoxide dismutase and glutathione peroxidase activities than breeders. By evaluating the correlation network, we found that there were a larger number of influential nodes and positive links in breeder animals than in non-breeders, indicating a greater number of redox changes in breeder animals. Here, we also demonstrated that the aging process caused higher oxidative damage and higher antioxidant defenses in the brains of breeder female rats at 24months, suggesting that the reproduction process is costly, at least for the female brain. This study shows that there is a strong potential for a link between the cost of reproduction and oxidative stress.
Collapse
Affiliation(s)
- Fernanda Maciel Heemann
- Laboratório de Estresse Oxidativo, Departamento de Biofísica, IB, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ana Carolina Almeida da Silva
- Laboratório de Estresse Oxidativo, Departamento de Biofísica, IB, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tiago Boeira Salomon
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Estresse Oxidativo, Departamento de Biofísica, IB, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jordana Salete Putti
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Estresse Oxidativo, Departamento de Biofísica, IB, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Vanessa Krüger Engers
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Estresse Oxidativo, Departamento de Biofísica, IB, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fernanda Schäfer Hackenhaar
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Estresse Oxidativo, Departamento de Biofísica, IB, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mara Silveira Benfato
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Estresse Oxidativo, Departamento de Biofísica, IB, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|