1
|
Kumar K, Fornace AJ, Suman S. 8-OxodG: A Potential Biomarker for Chronic Oxidative Stress Induced by High-LET Radiation. DNA 2024; 4:221-238. [PMID: 39268222 PMCID: PMC11391509 DOI: 10.3390/dna4030015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Oxidative stress-mediated biomolecular damage is a characteristic feature of ionizing radiation (IR) injury, leading to genomic instability and chronic health implications. Specifically, a dose- and linear energy transfer (LET)-dependent persistent increase in oxidative DNA damage has been reported in many tissues and biofluids months after IR exposure. Contrary to low-LET photon radiation, high-LET IR exposure is known to cause significantly higher accumulations of DNA damage, even at sublethal doses, compared to low-LET IR. High-LET IR is prevalent in the deep space environment (i.e., beyond Earth's magnetosphere), and its exposure could potentially impair astronauts' health. Therefore, the development of biomarkers to assess and monitor the levels of oxidative DNA damage can aid in the early detection of health risks and would also allow timely intervention. Among the recognized biomarkers of oxidative DNA damage, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OxodG) has emerged as a promising candidate, indicative of chronic oxidative stress. It has been reported to exhibit differing levels following equivalent doses of low- and high-LET IR. This review discusses 8-OxodG as a potential biomarker of high-LET radiation-induced chronic stress, with special emphasis on its potential sources, formation, repair mechanisms, and detection methods. Furthermore, this review addresses the pathobiological implications of high-LET IR exposure and its association with 8-OxodG. Understanding the association between high-LET IR exposure-induced chronic oxidative stress, systemic levels of 8-OxodG, and their potential health risks can provide a framework for developing a comprehensive health monitoring biomarker system to safeguard the well-being of astronauts during space missions and optimize long-term health outcomes.
Collapse
Affiliation(s)
- Kamendra Kumar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Albert J Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Shubhankar Suman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
2
|
Li J, Hu W, Liu M, Tian Y, He M, Liu H. Simultaneous determination of folic acid photolysis products and oxidized guanine derivatives in plasma by liquid chromatography-tandem mass spectrometry. J Sep Sci 2024; 47:e2300763. [PMID: 38576331 DOI: 10.1002/jssc.202300763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/27/2024] [Accepted: 01/28/2024] [Indexed: 04/06/2024]
Abstract
Folic acid (FA) is easily photodegraded to yield 6-formylpterin and pterin-6-carboxylic acid, which can generate reactive oxygen species and result in the formation of oxidized guanine derivatives such as 8-hydroxy-2'-deoxyguanosine and 8-hydroxy-guanosine. In this study, we developed a simple, rapid, and sensitive liquid chromatography-tandem mass spectrometry strategy for the simultaneous determination of FA photolysis products and oxidized guanine derivatives in plasma samples. Chromatographic separation was performed on a Waters HSS T3 column (2.1 × 100 mm, 5.0 μm) with gradient elution at a flow rate of 0.25 mL/min. Plasma samples were first pretreated with 1% formic acid, followed by protein precipitation with methanol. The developed method showed good linear relationships between 1 and 2000 ng/mL (r2 > 0.99). The intra- and inter-day precisions ranged from 2.6% to 7.5% and from 2.5% to 6.5%, respectively. Recoveries of the analytes were between 75.4% and 112.4% with the relative standard deviation < 9.1%. Finally, the method was applied to quantify FA photolysis products and oxidized guanine derivatives in rats with light and non-light conditions.
Collapse
Affiliation(s)
- Juan Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, P. R. China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, P. R. China
| | - Wenchao Hu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, P. R. China
| | - Mengxue Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, P. R. China
| | - Yingqi Tian
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, P. R. China
| | - Manni He
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, P. R. China
| | - Hongmin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, P. R. China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, P. R. China
| |
Collapse
|
3
|
Hu CW, Chang YJ, Chang WH, Cooke MS, Chen YR, Chao MR. A Novel Adductomics Workflow Incorporating FeatureHunter Software: Rapid Detection of Nucleic Acid Modifications for Studying the Exposome. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:75-89. [PMID: 38153287 DOI: 10.1021/acs.est.3c04674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Exposure to the physicochemical agents that interact with nucleic acids (NA) may lead to modification of DNA and RNA (i.e., NA modifications), which have been associated with various diseases, including cancer. The emerging field of NA adductomics aims to identify both known and unknown NA modifications, some of which may also be associated with proteins. One of the main challenges for adductomics is the processing of massive and complex data generated by high-resolution tandem mass spectrometry (HR-MS/MS). To address this, we have developed a software called "FeatureHunter", which provides the automated extraction, annotation, and classification of different types of key NA modifications based on the MS and MS/MS spectra acquired by HR-MS/MS, using a user-defined feature list. The capability and effectiveness of FeatureHunter was demonstrated by analyzing various NA modifications induced by formaldehyde or chlorambucil in mixtures of calf thymus DNA, yeast RNA and proteins, and by analyzing the NA modifications present in the pooled urines of smokers and nonsmokers. The incorporation of FeatureHunter into the NA adductomics workflow offers a powerful tool for the identification and classification of various types of NA modifications induced by reactive chemicals in complex biological samples, providing a valuable resource for studying the exposome.
Collapse
Affiliation(s)
- Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Yuan-Jhe Chang
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Wei-Hung Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, Tampa, Florida 33620, United States
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| |
Collapse
|
4
|
Wu H, Zhang Y, Xu H, Xu B, Chen J, Guo L, Liu Q, Xie J. Urinary Profile of Alkylated DNA Adducts and DNA Oxidative Damage in Sulfur Mustard-Exposed Rats Revealed by Mass Spectrometry Quantification. Chem Res Toxicol 2023; 36:1495-1502. [PMID: 37625021 DOI: 10.1021/acs.chemrestox.3c00135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Alkylation reagents, represented by sulfur mustard (SM), can damage DNA molecules directly as well as lead to oxidative stress, causing DNA lesions indirectly. Correspondingly, two types of biomarkers including alkylated DNA adducts and oxidative DNA adducts are commonly involved in the research of DNA damage evaluation caused by these agents. However, the correlations and differences of the occurrence, duration, severity, and traceability between alkylation and oxidation lesions on the DNA molecular level reflected by these two types of biomarkers have not been systematically studied. A simultaneous determination method for four alkylated DNA adducts, i.e., N7-(2-hydroxyethylthioethyl)2'-guanine (N7-HETEG), O6-(2-hydroxyethylthioethyl)-2'-guanine (O6-HETEG), N3-(2-hydroxyethylthioethyl)-2'-adenine (N3-HETEA), and bis(2-ethyl-N7-guanine)thioether (Bis-G), and the oxidative adduct 8-hydroxy-2'-deoxyguanosine (8-OH-dG) in urine samples by isotope-dilution high-performance liquid chromatography-tandem mass spectrometry (ID-HPLC-MS/MS) was built with a lower limit of detection of 0.02 ng/mL (except Bis-G, 0.05 ng/mL) and a recovery of 79-111%. The profile of these adducts was simultaneously monitored in urine samples after SD rats' dermal exposure to SM in three dose levels (1, 3, and 10 mg/kg). The time-effect and dose-effect experiments revealed that when exposed to SM, DNA alkylation lesions would happen earlier than those of oxidation. For the two types of biomarkers, alkylated DNA adducts showed an obvious dose-effect relationship and could be used as internal exposure dose and effect biomarkers, while 8-OH-dG did not show a correlation with exposure dose, demonstrating that it was more suitable as a biomarker for DNA oxidative lesions but not an indicator for the extent of cytotoxicity and internal exposure.
Collapse
Affiliation(s)
- Haijiang Wu
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Yajiao Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Hua Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Bin Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Jia Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Lei Guo
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Qin Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Jianwei Xie
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| |
Collapse
|
5
|
Zheng X, Zhang W, Hu Y, Zhao Z, Wu J, Zhang X, Hao F, Han J, Xu J, Hao W, Wang R, Tian M, Radak Z, Nakabeppu Y, Boldogh I, Ba X. DNA repair byproduct 8-oxoguanine base promotes myoblast differentiation. Redox Biol 2023; 61:102634. [PMID: 36827746 PMCID: PMC9982643 DOI: 10.1016/j.redox.2023.102634] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Muscle contraction increases the level of reactive oxygen species (ROS), which has been acknowledged as key signaling entities in muscle remodeling and to underlie the healthy adaptation of skeletal muscle. ROS inevitably endows damage to various cellular molecules including DNA. DNA damage ought to be repaired to ensure genome integrity; yet, how DNA repair byproducts affect muscle adaptation remains elusive. Here, we showed that exercise elicited the generation of 8-oxo-7,8-dihydroguanine (8-oxoG), that was primarily found in mitochondrial genome of myofibers. Upon exercise, TA muscle's 8-oxoG excision capacity markedly enhanced, and in the interstitial fluid of TA muscle from the post-exercise mice, the level of free 8-oxoG base was significantly increased. Addition of 8-oxoG to myoblasts triggered myogenic differentiation via activating Ras-MEK-MyoD signal axis. 8-Oxoguanine DNA glycosylase1 (OGG1) silencing from cells or Ogg1 KO from mice decreased Ras activation, ERK phosphorylation, MyoD transcriptional activation, myogenic regulatory factors gene (MRFs) expression. In reconstruction experiments, exogenously added 8-oxoG base enhanced the expression of MRFs and accelerated the recovery of the injured skeletal muscle. Collectively, these data not only suggest that DNA repair metabolite 8-oxoG function as a signal entity for muscle remodeling and contribute to exercise-induced adaptation of skeletal muscle, but also raised the potential for utilizing 8-oxoG in clinical treatment to skeletal muscle damage-related disorders.
Collapse
Affiliation(s)
- Xu Zheng
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China; School of Life Sciences, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Wenhe Zhang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Yinchao Hu
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China; School of Life Sciences, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Zhexuan Zhao
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China; School of Life Sciences, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Jiaxin Wu
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China; School of Life Sciences, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Xiaoqing Zhang
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China; School of Life Sciences, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Fengqi Hao
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China; School of Physical Education, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Jinling Han
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China; School of Life Sciences, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Jing Xu
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China; School of Life Sciences, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Wenjing Hao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ruoxi Wang
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Meihong Tian
- School of Physical Education, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, H-1123, Budapest, Hungary
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX77555, USA
| | - Xueqing Ba
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China; School of Life Sciences, Northeast Normal University, Changchun, Jilin, 130024, China.
| |
Collapse
|
6
|
Bláhová L, Janoš T, Mustieles V, Rodríguez-Carrillo A, Fernández MF, Bláha L. Rapid extraction and analysis of oxidative stress and DNA damage biomarker 8-hydroxy-2'-deoxyguanosine (8-OHdG) in urine: Application to a study with pregnant women. Int J Hyg Environ Health 2023; 250:114175. [PMID: 37105016 DOI: 10.1016/j.ijheh.2023.114175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/28/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
Oxidative stress is an important toxicity and genotoxicity mechanism of many chronic adverse health outcomes. This study developed a sensitive extraction method for urine matrix (based on lyophilization, without the need for pre-cleaning by solid phase extraction), coupled to LC-MS/MS analysis of the biomarker 8-hydroxy-2'-deoxyguanosine (8-OHdG). The methodology was validated in urine samples from a cohort of Spanish pregnant women collected during the first, second and third trimester of pregnancy, and urine samples collected within 24 h after delivery (n = 85). A detection and quantification limit of 0.01 and 0.05 μg/L, respectively, were established. The median 8-OHdG concentration was 2.18 μg/L (range 0.33-7.79); and the corresponding creatinine-adjusted concentrations ranged from 1.04 to 13.12 with median of 4.48 μg 8-OHdG/g creatinine. The concentrations of non-adjusted 8-OHdG significantly decreased (p < 0.05) in the 3rd trimester and post-delivery urine samples when compared to the 1st trimester levels. 8-OHdG concentrations were further studied in placenta samples matching the same urine samples (n = 26), with a median value of 1.3 ng 8-OHdG/g of tissue. Placental 8-OHdG concentrations were correlated with urinary levels of non-adjusted 8-OHdG in the 3rd trimester. Considering the small cohort size, results must be interpreted with caution, however statistical analyses revealed elevated urinary non-adjusted 8-OHdG levels in the 1st trimester of mothers that delivered boys compared to those who delivered girls (p < 0.01). Increased urinary non-adjusted 8-OHdG concentrations at the time of delivery were significantly associated with clinical records (any type of clinical record during pregnancy; p < 0.05). The novel extraction and analytical method for the assessment of 8-OHdG is applicable for sensitive analysis of multiple analytes or biomarkers in urine matrix. This method could also be applied for other matrices such as blood or tissues. Our findings show that 8-OHdG in urine of pregnant women could predict oxidative stress in placenta and can be related to characteristics such as maternal obesity, mode of delivery and newborn sex.
Collapse
Affiliation(s)
- Lucie Bláhová
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Tomáš Janoš
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Vicente Mustieles
- Center for Biomedical Research & School of Medicine, University of Granada, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | - Andrea Rodríguez-Carrillo
- Center for Biomedical Research & School of Medicine, University of Granada, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | - Mariana F Fernández
- Center for Biomedical Research & School of Medicine, University of Granada, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | - Luděk Bláha
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| |
Collapse
|
7
|
Zeng F, Parker K, Zhan Y, Miller M, Zhu MY. Upregulated DNA Damage-Linked Biomarkers in Parkinson's Disease Model Mice. ASN Neuro 2023; 15:17590914231152099. [PMID: 36683340 PMCID: PMC9880594 DOI: 10.1177/17590914231152099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/24/2023] Open
Abstract
SUMMARY STATEMENT The present study examined expression of DNA damage markers in VMAT2 Lo PD model mice. The results demonstrate there is a significant increase in these DNA damage markers mostly in the brain regions of 18- and 23-month-old model mice, indicating oxidative stress-induced DNA lesion is an important pathologic feature of this mouse model.
Collapse
Affiliation(s)
- Fei Zeng
- Department of Neurology, Renmin Hospital of the Wuhan University,
Wuhan, China
- Departments of Biomedical Sciences, Quillen College of Medicine, East Tennessee State
University, Johnson City, TN, USA
| | - Karsten Parker
- Departments of Biomedical Sciences, Quillen College of Medicine, East Tennessee State
University, Johnson City, TN, USA
| | - Yanqiang Zhan
- Department of Neurology, Renmin Hospital of the Wuhan University,
Wuhan, China
- Departments of Biomedical Sciences, Quillen College of Medicine, East Tennessee State
University, Johnson City, TN, USA
| | - Matthew Miller
- Departments of Biomedical Sciences, Quillen College of Medicine, East Tennessee State
University, Johnson City, TN, USA
| | - Meng-Yang Zhu
- Departments of Biomedical Sciences, Quillen College of Medicine, East Tennessee State
University, Johnson City, TN, USA
| |
Collapse
|
8
|
Ranjan N, Singh PK, Maurya NS. Pharmaceuticals in water as emerging pollutants for river health: A critical review under Indian conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114220. [PMID: 36332401 DOI: 10.1016/j.ecoenv.2022.114220] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 09/07/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The wastewaters from pharmaceutical manufacturing units, hospitals, and domestic sewage contaminated with excretal matters of medicine users are the prime sources of pharmaceutical pollutants (PPs) in natural water bodies. In the present study, PPs have been considered one of the emerging pollutants (EPs) and a cause of concern in river health assessment. Beyond the reported increase in antibiotic-resistant bacteria (ABRB), PPs have been found adversely affecting the biotic diversity in such water environments. Considering Algae, Macroinvertebrates, and Fishes as three distinct trophic level indicators, the present study puts forward a framework for showing River Health Condition (RHC) based on the calculation of a River Health Index (RHI). The RHI is calculated using six Indicator Group Scores (IGS) which individually reflect river health in a defined category of water quality characteristics. While Dissolved Oxygen Related Parameters (DORP), Nutrients (NT), and PPs are taken as causative agents affecting RHCs, scores of Algal-Bacterial (AB) symbiosis, Macroinvertebrates (MI), and Fishes (F) are considered as an effect of such environmental conditions. Current wastewater treatment technologies are also not very effective in the removal of PPs. The objective of the present study is to review the harmful effects of PPs on the aquatic environment, particularly on the chemical and biotic indicators of river health. Based on predicted no-effect concentrations (PNEC) for algae, macroinvertebrates, and fishes in the aquatic environment and measured environmental concentration (MEC) in the river, the estimated risk quotient (RQ) for norfloxacin in the Isakavagu-Nakkavagu stream of river Godavari, Hyderabad is found 293 for algae, 39 for MI, and 335 for fish. Among PPs, in Indian rivers, the presence of caffeine is the most frequent, with algae at the highest level of risk (RQmax= 24.5). Broadly six PPs, including azithromycin, caffeine, diclofenac, naproxen, norfloxacin, and sulfamethoxazole are found above PNEC values in Indian rivers. The application of IGS and RHI in understanding and presenting the river health condition (RHC) through colored hexagons has been demonstrated for the river Ganga near Varanasi (India) as an example. Identification of critical indicator groups, based on IGS provides a scientific basis for planned intervention for river health restoration to achieve an acceptable category.
Collapse
Affiliation(s)
- Nitin Ranjan
- Department of Civil Engineering, IIT(BHU), Varanasi 221005, India.
| | | | | |
Collapse
|
9
|
Cui Y, Wang Y. Mass spectrometry-based DNA adductomics. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
10
|
Zou Y, Ma X, Yu S, Qiu L. Is pre-heat necessary for the measurement of 8-oxo-7,8-dihydroguanosine and 8-oxo-7,8-dihydro-2'-deoxyguanosine in urine samples. J Clin Lab Anal 2022; 36:e24674. [PMID: 36036744 PMCID: PMC9550956 DOI: 10.1002/jcla.24674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/21/2022] [Accepted: 08/14/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND It is currently unclear for the necessary of pre-heating urine samples for the accurate determination of 8-oxo-7,8-dihydroguanosine (8-oxoG) and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG). Thus, we conducted this study to evaluate the effect of pre-heat (i.e., to 37°C) on the accurate measurement of 8-oxoG and 8-oxodG in frozen urine samples. METHODS Random urine samples from six healthy volunteers, six patients with renal dysfunction, and six patients with systematic diseases such as diabetes were collected, split, and stored at -80°C for up to 1 month. The frozen samples were thawed at room temperature (RT) or 37°C for different time, 10-fold diluted with ddH2O containing 1% formic acid, and determined by self-established LC-MS/MS method coupled with an ACQUITY™ Primer HSS T3 column. RESULTS Thawing the samples at RT for 30 or 120 min, or at 37°C for 15 or 90 min did not affect the determination of 8-oxoG and 8-oxodG in urine samples. Moreover, no significant difference between thawing the urine samples at RT and 37°C was found after storing at -80°C for 1-3 months. CONCLUSION It is not always necessary to pre-heat the frozen urine samples to release 8-oxoG and 8-oxodG from precipitates, which is associated with different pre-treatment and determination methods.
Collapse
Affiliation(s)
- Yutong Zou
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoli Ma
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.,Medical Science Research Center, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Songlin Yu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Ling Qiu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.,State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Liu CC, Wu CF, Lee YC, Huang TY, Huang ST, Wang HS, Jhan JH, Huang SP, Li CC, Juan YS, Hsieh TJ, Tsai YC, Chen CC, Wu MT. Genetic Polymorphisms of MnSOD Modify the Impacts of Environmental Melamine on Oxidative Stress and Early Kidney Injury in Calcium Urolithiasis Patients. Antioxidants (Basel) 2022; 11:antiox11010152. [PMID: 35052656 PMCID: PMC8773063 DOI: 10.3390/antiox11010152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 02/01/2023] Open
Abstract
Environmental melamine exposure increases the risks of oxidative stress and early kidney injury. Manganese superoxide dismutase (MnSOD), glutathione peroxidase, and catalase can protect the kidneys against oxidative stress and maintain normal function. We evaluated whether their single-nucleotide polymorphisms (SNPs) could modify melamine’s effects. A total of 302 patients diagnosed with calcium urolithiasis were enrolled. All patients provided one-spot overnight urine samples to measure their melamine levels, urinary biomarkers of oxidative stress and renal tubular injury. Median values were used to dichotomize levels into high and low. Subjects carrying the T allele of rs4880 and high melamine levels had 3.60 times greater risk of high malondialdehyde levels than those carrying the C allele of rs4880 and low melamine levels after adjustment. Subjects carrying the G allele of rs5746136 and high melamine levels had 1.73 times greater risk of high N-Acetyl-β-d-glucosaminidase levels than those carrying the A allele of rs5746136 and low melamine levels. In conclusion, the SNPs of MnSOD, rs4880 and rs5746136, influence the risk of oxidative stress and renal tubular injury, respectively, in calcium urolithiasis patients. In the context of high urinary melamine levels, their effects on oxidative stress and renal tubular injury were further increased.
Collapse
Affiliation(s)
- Chia-Chu Liu
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; (C.-C.L.); (C.-F.W.); (S.-T.H.); (T.-J.H.); (Y.-C.T.); (C.-C.C.)
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; (Y.-C.L.); (T.-Y.H.); (S.-P.H.); (C.-C.L.); (Y.-S.J.)
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
- Department of Urology, Pingtung Hospital, Ministry of Health and Welfare, Pingtung City 900, Taiwan
| | - Chia-Fang Wu
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; (C.-C.L.); (C.-F.W.); (S.-T.H.); (T.-J.H.); (Y.-C.T.); (C.-C.C.)
- International Master Program of Translational Medicine, National United University, Miaoli 360, Taiwan
| | - Yung-Chin Lee
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; (Y.-C.L.); (T.-Y.H.); (S.-P.H.); (C.-C.L.); (Y.-S.J.)
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
- Department of Urology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung City 812, Taiwan; (H.-S.W.); (J.-H.J.)
| | - Tsung-Yi Huang
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; (Y.-C.L.); (T.-Y.H.); (S.-P.H.); (C.-C.L.); (Y.-S.J.)
| | - Shih-Ting Huang
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; (C.-C.L.); (C.-F.W.); (S.-T.H.); (T.-J.H.); (Y.-C.T.); (C.-C.C.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| | - Hsun-Shuan Wang
- Department of Urology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung City 812, Taiwan; (H.-S.W.); (J.-H.J.)
| | - Jhen-Hao Jhan
- Department of Urology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung City 812, Taiwan; (H.-S.W.); (J.-H.J.)
| | - Shu-Pin Huang
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; (Y.-C.L.); (T.-Y.H.); (S.-P.H.); (C.-C.L.); (Y.-S.J.)
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| | - Ching-Chia Li
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; (Y.-C.L.); (T.-Y.H.); (S.-P.H.); (C.-C.L.); (Y.-S.J.)
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| | - Yung-Shun Juan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; (Y.-C.L.); (T.-Y.H.); (S.-P.H.); (C.-C.L.); (Y.-S.J.)
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| | - Tusty-Jiuan Hsieh
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; (C.-C.L.); (C.-F.W.); (S.-T.H.); (T.-J.H.); (Y.-C.T.); (C.-C.C.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| | - Yi-Chun Tsai
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; (C.-C.L.); (C.-F.W.); (S.-T.H.); (T.-J.H.); (Y.-C.T.); (C.-C.C.)
- Department of Internal Medicine, Divisions of Nephrology and General Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| | - Chu-Chih Chen
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; (C.-C.L.); (C.-F.W.); (S.-T.H.); (T.-J.H.); (Y.-C.T.); (C.-C.C.)
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Miaoli 350, Taiwan
| | - Ming-Tsang Wu
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; (C.-C.L.); (C.-F.W.); (S.-T.H.); (T.-J.H.); (Y.-C.T.); (C.-C.C.)
- Environmental and Occupational Medicine and Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
- Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
- Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
- Correspondence: ; Tel.: +886-7-3121101 (ext. 2315)
| |
Collapse
|
12
|
Tsai HJ, Wu CF, Hsiung CA, Lee CH, Wang SL, Chen ML, Chen CC, Huang PC, Wang YH, Chen YA, Chen BH, Chuang YS, Hsieh HM, Wu MT. Longitudinal changes in oxidative stress and early renal injury in children exposed to DEHP and melamine in the 2011 Taiwan food scandal. ENVIRONMENT INTERNATIONAL 2022; 158:107018. [PMID: 34991270 DOI: 10.1016/j.envint.2021.107018] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/15/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
In 2011, phthalates, mainly di-(2-ethylhexyl) phthalate (DEHP), were found to have been added to a variety of foods in Taiwan, increasing the risk of microalbuminuria in children. Exposure to melamine perhaps modifies that risk. This prospective cohort study investigates whether renal injury resulting from exposure to DEHP-tainted foods from the 2011 Taiwan Food Scandal is reversed over time. The temporal and interactive effects of past daily DEHP intake, current daily DEHP intake, and urinary melamine levels on oxidative stress and renal injury were also examined. Two hundred possibly DEHP-affected children (aged < 18 years) were enrolled in the first survey wave (August 2012-January 2013), with 170 and 159 children in the second (July 2014-February 2015) and third waves (May 2016-October 2016), respectively. The first wave comprised questionnaires that were used to collect information about possible past daily DEHP intake from DEHP-tainted foods. One-spot first morning urine samples were collected to measure melamine levels, phthalate metabolites, and markers indicating oxidative stress (malondialdehyde and 8-oxo-2'-deoxyguanosine), and renal injury (albumin/creatinine ratio (ACR) and N-acetyl-beta-D-glucosaminidase) in all three waves. Generalized estimating equation (GEE) modeling revealed that both past daily DEHP intake and time might affect urinary ACR. However, most interactions were negative and significant correlation was observed only during the second wave (P for interaction = 0.014) in the group with the highest past daily DEHP intake (>50 μg/kg/day). Urinary melamine levels were found to correlate significantly with both urinary ACR and oxidative stress markers. The highest impact associated with exposure to DEHP-tainted foods in increasing urinary ACR of children was observed during the first wave, and the effect may partially diminish over time. These results suggest that continuous monitoring of renal health and other long-term health consequences is required in individuals who were affected by the scandal in 2011.
Collapse
Affiliation(s)
- Hui-Ju Tsai
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Family Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Family Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Fang Wu
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; International Master Program of Translational Medicine, National United University, Miaoli, Taiwan
| | - Chao A Hsiung
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Chieng-Hung Lee
- Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Li Wang
- Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Mei-Lien Chen
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chu-Chih Chen
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Po-Chin Huang
- Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Yin-Han Wang
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Yuh-An Chen
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Bai-Hsiun Chen
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Laboratory Medicine and Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yun-Shiuan Chuang
- Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hui-Min Hsieh
- Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Tsang Wu
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan; PhD Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Rapid Screening Research Center for Toxicology and Biomedicine, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
13
|
Chang YJ, Cooke MS, Chen YR, Yang SF, Li PS, Hu CW, Chao MR. Is high resolution a strict requirement for mass spectrometry-based cellular DNA adductomics? CHEMOSPHERE 2021; 274:129991. [PMID: 33979922 PMCID: PMC8119933 DOI: 10.1016/j.chemosphere.2021.129991] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/31/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Exposure to endogenous and exogenous factors can result in the formation of a wide variety of DNA adducts, and these may lead to gene mutations, thereby contributing to the development of cancer. DNA adductomics, a novel tool for exposomics, aims to detect the totality of DNA adducts. Liquid chromatography-high resolution mass spectrometry (LC-HRMS) is the state-of-the-art method for DNA adductomic analysis, although its high cost has limited widespread use. In this study, we compared the analytical performance between HRMS and the more popular/accessible triple-quadrupole MS (QqQ-MS). We initially developed and optimized a hybrid quadrupole-linear ion trap-orbitrap MS (Q-LIT-OT-MS) method, considering the detection of both purine and pyrimidine adducts. LC-Q-LIT-OT-MS and LC-QqQ-MS methods were compared by non-targeted screening of formaldehyde-induced DNA adducts. Using the results from Q-LIT-OT-MS as the gold standard, QqQ-MS successfully detected 12 out of 18 formaldehyde-induced DNA adducts/inter-strand crosslinks (ICLs). QqQ-MS however also produced nine false-positive results owing to the inherent instrumental mass resolution limits. To discriminate the false-positive results from the accurate ones, we firstly introduced a statistical analysis, partial least squares-discriminant analysis, which efficiently excluded the false signals. Six DNA adducts/ICLs were not detected by QqQ-MS, due to insufficient sensitivity. This could be overcome by employing a selected reaction monitoring scan mode with multiple injections. Overall, this study demonstrated that high resolution may not be a strict requirement for MS-based DNA adductomics. LC-QqQ-MS with statistical analysis, could also provide a comparable performance as HRMS for pre-screening purposes.
Collapse
Affiliation(s)
- Yuan-Jhe Chang
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, 402, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Shun-Fa Yang
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, 402, Taiwan; Institute of Medicine, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Pei-Shan Li
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung, 402, Taiwan.
| | - Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, 402, Taiwan; Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan.
| |
Collapse
|
14
|
Mello LD. Potential contribution of ELISA and LFI assays to assessment of the oxidative stress condition based on 8-oxodG biomarker. Anal Biochem 2021; 628:114215. [PMID: 33957135 DOI: 10.1016/j.ab.2021.114215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 01/13/2023]
Abstract
Immunoassays have been extensively applied in the medical diagnostic field. Enzyme-Linked Immunosorbent Assay (ELISA) and Lateral Flow Immunochemical Assay (LFIA) are methods that have been well established to analysis of clinical substances such as protein, hormones, drugs, identification of antibodies and in the quantification of antigen. Over the past years, the application of these methods has been extended to assess the clinical oxidative stress condition based on monitoring of the 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) biomarker levels. The present manuscript provides an overview of the current immunoassays based on ELISA and LFIA technologies applied for a quantitative analysis of the 8-oxodG. The discussion focuses on the principles of development, improvement and analytical performance of these assays. The relationship of the molecule 8-oxodG as a clinical biomarker of the assessment of the oxidative stress condition is also discussed. Commercially available products to 8-oxodG analysis are also presented.
Collapse
|
15
|
Shih YM, Chang YJ, Cooke MS, Pan CH, Hu CH, Chao MR, Hu CW. Alkylating and oxidative stresses in smoking and non-smoking patients with COPD: Implications for lung carcinogenesis. Free Radic Biol Med 2021; 164:99-106. [PMID: 33418114 PMCID: PMC7897309 DOI: 10.1016/j.freeradbiomed.2020.12.442] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 02/07/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a disease characterized by chronic inflammation and irreversible airway obstruction. Cigarette smoking is the predominant risk factor for developing COPD. It is well-known that the COPD is also strongly associated with an increased risk of developing lung cancer. Cigarette smoke contains elevated concentrations of oxidants and various carcinogens (e.g., tobacco-derived nitrosamines) that can cause oxidative and alkylating stresses, which can also arise from inflammation. However, it is surprising that, except for oxidative stress, little information is available on the burden of alkylating stress and the detoxification efficiency of tobacco-derived carcinogens in COPD patients. In this study, we used LC-MS/MS to measure the archetypical tobacco-specific carcinogenic 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), its major metabolite, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), three biomarkers of oxidative stress (8-oxo-7,8-dihydroguanine, 8-oxoGua; 8-oxo-7,8-dihydro-2'-deoxyguanosine, 8-oxodGuo; 8-oxo-7,8-dihydroguanosine, 8-oxoGuo) and two biomarkers of alkylating stress (N7-methylguanine, N7-MeGua and N3-methyladenine, N3-MeAde), in the urine of smoking and non-smoking COPD patients and healthy controls. Our results showed that not only was oxidative stress significantly elevated in the COPD patients compared to the controls, but also alkylating stress. Significantly, levels of alkylating stress (i.e., N7-MeGua) were highly correlated with the COPD severity and not affected by age and smoking status. Furthermore, COPD smokers had significantly higher ratios of free NNAL to the total NNAL than control smokers, implying a lower detoxification efficiency of NNK in COPD smokers. This ratio was even higher in COPD smokers with stages 3-4 than in COPD smokers with stages 1-2. Taken together, our results demonstrated that the detoxification efficiency of tobacco-derived carcinogens (e.g., NNK) was associated with the pathogenesis and possibly the progression of COPD. In addition to oxidative stress, alkylating stress derived from chronic inflammation appears to be also dominant in COPD patients.
Collapse
Affiliation(s)
- Ying-Ming Shih
- Department of Public Health, Chung Shan Medical University, Taichung, 402, Taiwan; Division of Chest Medicine, Department of Internal Medicine, Changhua Christian Hospital, Changhua, 500, Taiwan
| | - Yuan-Jhe Chang
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Chih-Hong Pan
- Institute of Labor, Occupational Safety and Health, Ministry of Labor, New Taipei City, 221, Taiwan
| | - Ching-Hsuan Hu
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang Gung Medical College and Chang Gung University, Taoyuan, 333, Taiwan
| | - Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, 402, Taiwan.
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung, 402, Taiwan; Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan.
| |
Collapse
|
16
|
Chao MR, Evans MD, Hu CW, Ji Y, Møller P, Rossner P, Cooke MS. Biomarkers of nucleic acid oxidation - A summary state-of-the-art. Redox Biol 2021; 42:101872. [PMID: 33579665 PMCID: PMC8113048 DOI: 10.1016/j.redox.2021.101872] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
Oxidatively generated damage to DNA has been implicated in the pathogenesis of a wide variety of diseases. Increasingly, interest is also focusing upon the effects of damage to the other nucleic acids, RNA and the (2′-deoxy-)ribonucleotide pools, and evidence is growing that these too may have an important role in disease. LC-MS/MS has the ability to provide absolute quantification of specific biomarkers, such as 8-oxo-7,8-dihydro-2′-deoxyGuo (8-oxodG), in both nuclear and mitochondrial DNA, and 8-oxoGuo in RNA. However, significant quantities of tissue are needed, limiting its use in human biomonitoring studies. In contrast, the comet assay requires much less material, and as little as 5 μL of blood may be used, offering a minimally invasive means of assessing oxidative stress in vivo, but this is restricted to nuclear DNA damage only. Urine is an ideal matrix in which to non-invasively study nucleic acid-derived biomarkers of oxidative stress, and considerable progress has been made towards robustly validating these measurements, not least through the efforts of the European Standards Committee on Urinary (DNA) Lesion Analysis. For urine, LC-MS/MS is considered the gold standard approach, and although there have been improvements to the ELISA methodology, this is largely limited to 8-oxodG. Emerging DNA adductomics approaches, which either comprehensively assess the totality of adducts in DNA, or map DNA damage across the nuclear and mitochondrial genomes, offer the potential to considerably advance our understanding of the mechanistic role of oxidatively damaged nucleic acids in disease. Oxidatively damaged nucleic acids are implicated in the pathogenesis of disease. LC-MS/MS, comet assay and ELISA are often used to study oxidatively damaged DNA. Urinary oxidatively damaged nucleic acids non-invasively reflect oxidative stress. DNA adductomics will aid understanding the role of ROS damaged DNA in disease.
Collapse
Affiliation(s)
- Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, 402, Taiwan; Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Mark D Evans
- Leicester School of Allied Health Sciences, Faculty of Health & Life Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH, United Kingdom
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Yunhee Ji
- Department of Environmental Health Sciences, Florida International University, Miami, FL, 33199, USA
| | - Peter Møller
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, DK, 1014, Copenhagen K, Denmark
| | - Pavel Rossner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, 142 20, Prague, Czech Republic
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|
17
|
Andries A, Rozenski J, Vermeersch P, Mekahli D, Van Schepdael A. Recent progress in the LC-MS/MS analysis of oxidative stress biomarkers. Electrophoresis 2020; 42:402-428. [PMID: 33280143 DOI: 10.1002/elps.202000208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/17/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022]
Abstract
The presence of a dynamic and balanced equilibrium between the production of reactive oxygen (ROS) and nitrogen (RNS) species and the in-house antioxidant defense mechanisms is characteristic for a healthy body. During oxidative stress (OS), this balance is switched to increased production of ROS and RNS, exceeding the capacity of physiological antioxidant systems. This can cause damage to biological molecules, leading to loss of function and even cell death. Nowadays, there is increasing scientific and clinical interest in OS and the associated parameters to measure the degree of OS in biofluids. An increasing number of reports using LC-MS/MS methods for the analysis of OS biomarkers can be found. Since bioanalysis is usually complicated by matrix effects, various types of cleanup procedures are used to effectively separate the biomarkers from the matrix. This is an essential part of the analysis to prepare a reproducible and homogenous solution suitable for injection onto the column. The present review gives a summary of the chromatographic methods used for the determination of OS biomarkers in both urine and plasma, serum, and whole blood samples. The first part mainly describes the biological background of the different OS biomarkers, while the second part reports examples of chromatographic methods for the analysis of different metabolites connected with OS in biofluids, covering a period from 2015 till early 2020. The selected examples mainly include LC-MS/MS methods for isoprostanes, oxidized proteins, oxidized lipoproteins, and DNA/RNA biomarkers. The last part explains the clinical relevance of this review.
Collapse
Affiliation(s)
- Asmin Andries
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven - University of Leuven, Leuven, Belgium
| | - Jef Rozenski
- KU Leuven - Rega Institute for Medical Research, Medicinal Chemistry, Leuven, Belgium
| | - Pieter Vermeersch
- Clinical Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium.,Center for Metabolic Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Djalila Mekahli
- Department of Development and Regeneration, Laboratory of Pediatrics, PKD group, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Ann Van Schepdael
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
18
|
Wu CF, Hsiung CA, Tsai HJ, Cheng CM, Chen BH, Hu CW, Huang YL, Wu MT. Decreased levels of urinary di-2-ethylhexyl phthalate (DEHP) metabolites and biomarkers of oxidative stress in children exposed to DEHP-tainted foods in Taiwan in 2011: A 44-month follow-up. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115204. [PMID: 32745991 DOI: 10.1016/j.envpol.2020.115204] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/05/2020] [Accepted: 07/06/2020] [Indexed: 05/20/2023]
Abstract
A major health scandal involving DEHP-tainted (di-2-ethylhexyl phthalate) foodstuffs occurred in Taiwan in 2011. We investigated temporal relationships between urinary DEHP metabolites and biomarkers of oxidative stress in two cohorts of potentially affected children during that food scandal. One cohort was collected from Kaohsiung Medical University Hospital in southern Taiwan between May and June of 2011 (the KMUH cohort). This cohort was followed up at 2, 6, and 44 months. The other cohort was collected from a nationwide health survey conducted by Taiwan's National Health Research Institutes (the NHRI cohort) for potentially affected people between August 2012 and January 2013. Both cohorts only included children 10 years old and younger who had provided enough urine for analysis of urinary DEHP oxidative metabolites and two markers of oxidative stress: 8-oxo-2'-deoxyguanosine (8-OHdG) and malondialdehyde (MDA). The KMUH cohort had a simultaneous and significant decrease in urinary DEHP metabolites, 8-OHdG, and MDA, with the lowest concentrations found at the 6-month follow up and maintained until the 44-month follow up, consistent with those from NHRI cohort at ∼15-18 months post-scandal (p > 0.05). There were decreases in both DEHP metabolites and oxidative stress markers across the populations, but no association was observed between DEHP metabolites and oxidative stress markers in individuals in the two cohorts. Continued follow-up is needed to determine long-term health consequences in these children.
Collapse
Affiliation(s)
- Chia-Fang Wu
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Chao A Hsiung
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, Miaoli, Taiwan.
| | - Hui-Ju Tsai
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Ching-Mei Cheng
- Department of Laboratory Medicine, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung, Taiwan.
| | - Bai-Hsiun Chen
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shun Medical University, Taichung, Taiwan.
| | - Yeou-Lih Huang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Ming-Tsang Wu
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Public Health, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Ph.D. Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
19
|
Zhang X, Li L. The Significance of 8-oxoGsn in Aging-Related Diseases. Aging Dis 2020; 11:1329-1338. [PMID: 33014540 PMCID: PMC7505272 DOI: 10.14336/ad.2019.1021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/21/2019] [Indexed: 01/10/2023] Open
Abstract
Aging is a common risk factor for the occurrence and development of many diseases, such as Parkinson’s disease, Alzheimer’s disease, diabetes, hypertension, atherosclerosis and coronary heart disease, and cancer, among others, and is a key problem threatening the health and life expectancy of the elderly. Oxidative damage is an important mechanism involved in aging. The latest discovery pertaining to oxidative damage is that 8-oxoGsn (8-oxo-7,8-dihydroguanosine), an oxidative damage product of RNA, can represent the level of oxidative stress. The significance of RNA oxidative damage to aging has not been fully explained, but the relationship between the accumulation of 8-oxoGsn, a marker of RNA oxidative damage, and the occurrence of diseases has been confirmed in many aging-related diseases. Studying the aging mechanism, monitoring the aging level of the body and exploring the corresponding countermeasures are of great significance for achieving healthy aging and promoting public health and social development. This article reviews the progress of research on 8-oxoGsn in aging-related diseases.
Collapse
Affiliation(s)
- Xinmu Zhang
- Department of Medical Oncology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Lin Li
- Department of Medical Oncology, Beijing Hospital, National Center of Gerontology, Beijing, China
| |
Collapse
|
20
|
Liu CC, Hsieh TJ, Wu CF, Lee CH, Tsai YC, Huang TY, Wen SC, Lee CH, Chien TM, Lee YC, Huang SP, Li CC, Chou YH, Wu WJ, Wu MT. Interrelationship of environmental melamine exposure, biomarkers of oxidative stress and early kidney injury. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122726. [PMID: 32348942 DOI: 10.1016/j.jhazmat.2020.122726] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/30/2020] [Accepted: 04/11/2020] [Indexed: 06/11/2023]
Abstract
Melamine contamination has remained pervasive in the environment even after the 2008 toxic milk scandal. Exposure to chronic low dosages of melamine is known to induce renal tubular damage, increasing the risk of stone formation and early kidney injury. This damage may come about via increased oxidative stress, but no studies of this possibility have been performed in humans. We conducted two human studies in 80 workers from melamine tableware factories (melamine workers) and 309 adult patients with calcium urolithiasis (stone patients) to evaluate the relationships between urinary melamine levels and two urinary biomarkers of oxidative stress, 8-oxo-2'-deoxyguanosine (8-OHdG) and malondialdehyde (MDA). Both human studies showed urinary melamine levels to be significantly and positively correlated with urinary 8-OHdG and MDA, indicating melamine exposure can increase oxidative stress. Additionally, we used structure equation modeling to evaluate relative contribution of type of melamine-induced oxidative stress on renal tubular injury and found that MDA mediated 36 %-53 % of the total effect of melamine on a biomarker of renal tubular injury, N-Acetyl-β-d Glucosaminidase (NAG). In conclusion, our findings suggest exposure to low-dose melamine can increase oxidative stress and increase the risk of early damage to kidneys in humans.
Collapse
Affiliation(s)
- Chia-Chu Liu
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan; Department of Urology, Pingtung Hospital, Ministry of Health and Welfare, Pingtung City, Taiwan.
| | - Tusty-Jiuan Hsieh
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan.
| | - Chia-Fang Wu
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan.
| | - Chien-Hung Lee
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan; Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung City, Taiwan.
| | - Yi-Chun Tsai
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan; Divisions of Nephrology and General Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan.
| | - Tsung-Yi Huang
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan.
| | - Sheng-Chen Wen
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan.
| | - Cheng-Hsueh Lee
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan.
| | - Tsu-Ming Chien
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan.
| | - Yung-Chin Lee
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan; Department of Urology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung City, Taiwan.
| | - Shu-Pin Huang
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan.
| | - Ching-Chia Li
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan.
| | - Yii-Her Chou
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan.
| | - Wen-Jeng Wu
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan.
| | - Ming-Tsang Wu
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan; Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung City, Taiwan; PhD Program of Environmental and Occupational Medicine and Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan; Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan.
| |
Collapse
|
21
|
Watanabe S, Kawasaki Y, Kawai K. Salivary 8-hydroxyguanine as a lifestyle-related oxidative stress biomarker in workers. J Clin Biochem Nutr 2020; 66:57-61. [PMID: 32001957 PMCID: PMC6983431 DOI: 10.3164/jcbn.19-72] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 09/20/2019] [Indexed: 01/16/2023] Open
Abstract
Oxidative stress is a risk factor for lifestyle-related diseases, such as cancer. Investigations of the factors that increase or decrease oxidative stress contribute to disease prevention. In the present study, we focused on the 8-hydroxyguanine (8-OHGua) in saliva, as a new oxidative stress biomarker. The relationship between lifestyles and salivary 8-OHGua levels in 541 Japanese subjects was analyzed. The salivary 8-OHGua levels were significantly elevated in older persons, as well as those who smoke, have hypertension, or excess visceral fat. By contrast, statistically significant lower levels of 8-OHGua were observed in persons who moderately exercised or recently drank green tea or coffee. The direct collection of saliva, without any special collecting device, was suitable for the 8-OHGua analysis. The present results suggest that oxidative stress can be measured in a non-invasive manner with easily collectable saliva, and the salivary 8-OHGua may be a useful biomarker for lifestyle-related disease prevention.
Collapse
Affiliation(s)
- Sintaroo Watanabe
- Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu-shi, Fukuoka 807-8555, Japan.,Japan Marine United Corporation Kure Shipyard, 2-1 Showa-cho, Kure-shi, Hiroshima 737-0027, Japan
| | - Yuya Kawasaki
- Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu-shi, Fukuoka 807-8555, Japan
| | - Kazuaki Kawai
- Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu-shi, Fukuoka 807-8555, Japan
| |
Collapse
|
22
|
Hu CW, Chang YJ, Yen CC, Chen JL, Muthukumaran RB, Chao MR. 15N-labelled nitrite/nitrate tracer analysis by LC-MS/MS: Urinary and fecal excretion of nitrite/nitrate following oral administration to mice. Free Radic Biol Med 2019; 143:193-202. [PMID: 31398501 DOI: 10.1016/j.freeradbiomed.2019.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/30/2019] [Accepted: 08/06/2019] [Indexed: 12/21/2022]
Abstract
Determination of the modulation of nitrite and nitrate levels in biological samples usually poses a major challenge, owing to their high background concentrations. To effectively investigate the variation of nitrite/nitrate in vivo, in this study, we developed a15N-labelled nitrite/nitrate tracer analysis using LC-MS/MS following the derivatization with 2,3-diaminonaphthalene. This method allows for the determination of 15N-labelled nitrite/nitrate as 15N-2,3-naphthotriazole (15N-NAT) that can efficiently differentiate newly introduced nitrite/nitrate from the background nitrite/nitrate in biological matrices. We also investigated the contribution of background 14N-NAT isotopomers to 15N-NAT, which has long been overlooked in the literature. Our results indicated that the contribution of background 14N-NAT isotopomers to 15N-NAT is significant. Such contribution is constant (~2.2% under positive ion mode and 1.1% under negative ion mode), and does not depend upon the concentration of 14N-NAT or the sample matrix measured. An equation has been therefore developed, for the first time, to correct the contribution of background 14N-NAT isotopomers to 15N-NAT. With the proposed 15N-labelled nitrite/nitrate tracer analysis, the amount and percentage distribution of 15NO2- and 15NO3-, both in urine and feces, after oral administration of 15N-labelled nitrite/nitrate are clearly demonstrated. The excretions of 15NO2- and 15NO3- were significantly increased with the increasing dose implying that the dietary nitrite/nitrate intake is an important source in urine/feces. The present method allows for the simple, reliable and accurate quantification of 15NO2- and 15NO3-, and it should also be useful to trace the biotransformation of nitrite and nitrate in vivo.
Collapse
Affiliation(s)
- Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Yuan-Jhe Chang
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Cheng-Chieh Yen
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Jian-Lian Chen
- School of Pharmacy, China Medical University, Taichung, 404, Taiwan
| | | | - Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, 402, Taiwan; Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan.
| |
Collapse
|
23
|
Tang Y, Zhang JL. Recent developments in DNA adduct analysis using liquid chromatography coupled with mass spectrometry. J Sep Sci 2019; 43:31-55. [PMID: 31573133 DOI: 10.1002/jssc.201900737] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/04/2019] [Accepted: 09/27/2019] [Indexed: 12/15/2022]
Abstract
The formation of DNA adducts by genotoxic agents is an early event in cancer development, and it may lead to gene mutations, thereby initiating tumor development. The measurement of DNA adducts can provide critical information about the genotoxic potential of a chemical and its mechanism of carcinogenesis. In recent decades, liquid chromatography coupled with mass spectrometry has become the most important technique for analyzing DNA adducts. The improvements in resolution achievable with new chromatographic separation techniques coupled with the high specificity and sensitivity and wide dynamic range of new mass spectrometry systems have been used for both qualitative and quantitative analyses of DNA adducts. This review discusses the challenges in qualitative and quantitative analyses of DNA adducts by liquid chromatography coupled with mass spectrometry and highlights recent developments towards overcoming the limitations of liquid chromatography coupled with mass spectrometry methods. The key steps and new solutions, such as sample preparation, mass spectrometry fragmentation, and method validation, are summarized. In addition, the fundamental principles and latest advances in DNA adductomic approaches are reviewed.
Collapse
Affiliation(s)
- Yu Tang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Jin-Lan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, P. R. China
| |
Collapse
|
24
|
Jeng HAC, Lin WY, Chao MR, Lin WY, Pan CH. Semen quality and sperm DNA damage associa -revised - final-finalted with oxidative stress in relation to exposure to polycyclic aromatic hydrocarbons. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 53:1221-1228. [PMID: 30623705 DOI: 10.1080/10934529.2018.1528035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/28/2018] [Indexed: 06/09/2023]
Abstract
The cross-sectional study aimed to assess whether oxidative stress induced by exposure to polycyclic aromatic hydrocarbons (PAHs) affect semen quality and sperm DNA integrity. A total of 106 who met the inclusion criteria, were recruited from a coke-oven plant during their annual health checkup. The human subjects were grouped into the high exposure group, the low exposure group and the control based on PAH concentrations surrounding their employment locations. Semen quality, oxidative stress status, and sperm DNA damage [DNA fragmentation and 8-hydroxy-2'-deoxyguanosine (8-oxodGuo)] were assessed. Urinary 1-hydroxypyren (1-OHP) was used to assess human subject exposure to PAHs. The high exposure group experienced significantly lower sperm motility and normal morphology than the control (P = 0.046 and 0.049, respectively). The high exposure group also had significantly higher 8-oxoGuo concentrations in sperm than the control (P = 0.027). Urinary 1-OHP concentration was associated with decreased motility and less normal morphology, along with increased sperm oxidative damage and ROS concentrations. Oxidative stress induced by exposure to PAHs was associated with decreased sperm quality.
Collapse
Affiliation(s)
- Hueiwang Anna C Jeng
- a School of Community and Environmental Health , College of Health Sciences, Old Dominion University , Norfolk , Virginia , USA
| | - Wen Y Lin
- b Department of Occupational Medicine , Kaohsiung Medical University Hospital , Kaohsiung , Taiwan
| | - Mu R Chao
- c Department of Occupational Safety and Health , Chung Shan Medical University , Taichung , Taiwan
| | - Wen Y Lin
- b Department of Occupational Medicine , Kaohsiung Medical University Hospital , Kaohsiung , Taiwan
| | - Chih H Pan
- d Institute of Occupational Safety and Health, Council of Labor Affairs, Executive Yuan , Taipei , Taiwan
| |
Collapse
|
25
|
|
26
|
Shih YM, Cooke MS, Pan CH, Chao MR, Hu CW. Clinical relevance of guanine-derived urinary biomarkers of oxidative stress, determined by LC-MS/MS. Redox Biol 2018; 20:556-565. [PMID: 30508700 PMCID: PMC6279954 DOI: 10.1016/j.redox.2018.11.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/18/2018] [Accepted: 11/23/2018] [Indexed: 12/13/2022] Open
Abstract
A reliable and fast liquid chromatography-tandem mass spectrometry method has been developed for the simultaneous determination of three oxidized nucleic acid damage products in urine, 8-oxoguanine (8-oxoGua), 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) and 8-oxo-7,8-dihydroguanosine (8-oxoGuo). We applied this method to assess the effect of various urine workup procedures on the urinary concentrations of the oxidized nucleic acid products. Our results showed that frozen urine samples must be warmed (i.e., to 37 °C) to re-dissolve any precipitates prior to analysis. We showed that common workup procedures, such as thawing at room temperature or dilution with deionized water, are not capable of releasing fully the oxidized nucleic acid products from the precipitates, and result in significant underestimation (up to ~ 100% for 8-oxoGua, ~ 86% for both 8-oxodGuo and 8-oxoGuo). With this method, we further assessed and compared the ability of the three oxidized nucleic acid products, as well as malondialdehyde (MDA, a product of lipid peroxidation), to biomonitor oxidative stress in vivo. We measured a total of 315 urine samples from subjects with burdens of oxidative stress from low to high, including healthy subjects, patients with chronic obstructive pulmonary disease (COPD), and patients on mechanical ventilation (MV). The results showed that both the MV and COPD patients had significantly higher urinary levels of 8-oxoGua, 8-oxodGuo, and 8-oxoGuo (P < 0.001), but lower MDA levels, compared to healthy controls. Receiver operating characteristic curve analysis revealed that urinary 8-oxoGuo is the most sensitive biomarker for oxidative stress with area under the curve (AUC) of 0.91, followed by 8-oxodGuo (AUC: 0.80) and 8-oxoGua (AUC: 0.76). Interestingly, MDA with AUC of 0.34 failed to discriminate the patients from healthy controls. Emerging evidence suggests a potential clinical utility for the measurement of urinary 8-oxoGuo, and to a lesser extent 8-oxodGuo, which is strongly supported by our findings.
Collapse
Affiliation(s)
- Ying-Ming Shih
- Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan; Division of Chest Medicine, Department of Internal Medicine, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Environmental Health Sciences, and Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Chih-Hong Pan
- Institute of Labor, Occupational Safety and Health, Ministry of Labor, New Taipei City 221, Taiwan
| | - Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan.
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan; Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
| |
Collapse
|
27
|
Chao MR, Cooke MS, Kuo CY, Pan CH, Liu HH, Yang HJ, Chen SC, Chiang YC, Hu CW. Children are particularly vulnerable to environmental tobacco smoke exposure: Evidence from biomarkers of tobacco-specific nitrosamines, and oxidative stress. ENVIRONMENT INTERNATIONAL 2018; 120:238-245. [PMID: 30103123 DOI: 10.1016/j.envint.2018.08.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/02/2018] [Accepted: 08/02/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Worldwide, smoking is a major public health problem, with exposure to environmental tobacco smoke (ETS) affecting both smokers, and passive smokers, including children. Despite ETS also describing secondhand, and thirdhand smoke (SHS, and THS respectively), the health effects of exposure to passive smoking via these sources are not fully understood, particularly in children. Although cotinine, the primary proximate metabolite of nicotine, has been widely used as a biomarker of ETS exposure, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), the metabolite of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), provides a uniquely important contribution, both as a biomarker of exposure, and as a specific risk indicator for pulmonary carcinogenesis. METHODS We used LC-MS/MS to study NNK metabolites, cotinine, and 8-oxo-7,8-dihydro-2'-deoxyguanosine (a biomarker of oxidative stress), in the urine of 110 non-smoking adults (age range: 23-62) and 101 children (age range: 9-11), exposed to ETS. RESULTS In our study of passive smoking adults, and children exposed to ETS, we showed that although the children had a similar urinary level of cotinine compared to the adults, the children had approximately two times higher levels of urinary total NNAL (P = 0.002), and free NNAL (P = 0.01), than adults. The children also had three times lower ability to detoxify NNK than adults (P < 0.001). Furthermore, the children showed 1.5 times higher ratio of total NNAL/cotinine than adults (P = 0.01), implying that THS is another important source of ETS in this population. Furthermore, ETS exposure in children appeared to lead to an increase in levels of oxidative stress. CONCLUSIONS Taken together, our results demonstrate that, in children, THS may play an important role in the ETS exposure, and that children are at particular risk of ETS-induced health effects.
Collapse
Affiliation(s)
- Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan; Oxidative Stress Group, Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA; Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Chung-Yih Kuo
- Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Chih-Hong Pan
- Institute of Labor, Occupational Safety and Health, Ministry of Labor, New Taipei City 221, Taiwan
| | - Hung-Hsin Liu
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Hao-Jan Yang
- Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Szu-Chieh Chen
- Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Yi-Chen Chiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan; Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
| |
Collapse
|
28
|
Chang YJ, Cooke MS, Hu CW, Chao MR. Novel approach to integrated DNA adductomics for the assessment of in vitro and in vivo environmental exposures. Arch Toxicol 2018; 92:2665-2680. [PMID: 29943112 DOI: 10.1007/s00204-018-2252-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/20/2018] [Indexed: 11/30/2022]
Abstract
Adductomics is expected to be useful in the characterization of the exposome, which is a new paradigm for studying the sum of environmental causes of diseases. DNA adductomics is emerging as a powerful method for detecting DNA adducts, but reliable assays for its widespread, routine use are currently lacking. We propose a novel integrated strategy for the establishment of a DNA adductomic approach, using liquid chromatography-triple quadrupole tandem mass spectrometry (LC-QqQ-MS/MS), operating in constant neutral loss scan mode, screening for both known and unknown DNA adducts in a single injection. The LC-QqQ-MS/MS was optimized using a representative sample of 23 modified 2'-deoxyribonucleosides reflecting a range of biologically relevant DNA lesions. Six internal standards (ISTDs) were evaluated for their ability to normalize, and hence correct, possible variation in peak intensities arising from matrix effects, and the quantities of DNA injected. The results revealed that, with appropriate ISTDs adjustment, any bias can be dramatically reduced from 370 to 8.4%. Identification of the informative DNA adducts was achieved by triggering fragmentation spectra of target ions. The LC-QqQ-MS/MS method was successfully applied to in vitro and in vivo studies to screen for DNA adducts formed following representative environmental exposures: methyl methanesulfonate (MMS) and five N-nitrosamines. Interestingly, five new DNA adducts, induced by MMS, were discovered using our adductomic approach-an added strength. The proposed integrated strategy provides a path forward for DNA adductomics to become a standard method to discover differences in DNA adduct fingerprints between populations exposed to genotoxins, and facilitate the field of exposomics.
Collapse
Affiliation(s)
- Yuan-Jhe Chang
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Environmental Health Sciences, Florida International University, Miami, FL, 33199, USA.,Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
| | - Chiung-Wen Hu
- Oxidative Stress Group, Department of Environmental Health Sciences, Florida International University, Miami, FL, 33199, USA. .,Department of Public Health, Chung Shan Medical University, Taichung, 402, Taiwan.
| | - Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, 402, Taiwan. .,Oxidative Stress Group, Department of Environmental Health Sciences, Florida International University, Miami, FL, 33199, USA. .,Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan.
| |
Collapse
|
29
|
Hu CW, Chang YJ, Chen JL, Hsu YW, Chao MR. Sensitive Detection of 8-Nitroguanine in DNA by Chemical Derivatization Coupled with Online Solid-Phase Extraction LC-MS/MS. Molecules 2018. [PMID: 29517997 PMCID: PMC6017919 DOI: 10.3390/molecules23030605] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
8-Nitroguanine (8-nitroG) is a major mutagenic nucleobase lesion generated by peroxynitrite during inflammation and has been used as a potential biomarker to evaluate inflammation-related carcinogenesis. Here, we present an online solid-phase extraction (SPE) LC-MS/MS method with 6-methoxy-2-naphthyl glyoxal hydrate (MTNG) derivatization for a sensitive and precise measurement of 8-nitroG in DNA. Derivatization optimization revealed that an excess of MTNG is required to achieve complete derivatization in DNA hydrolysates (MTNG: 8-nitroG molar ratio of 3740:1). The use of online SPE effectively avoided ion-source contamination from derivatization reagent by washing away all unreacted MTNG before column chromatography and the ionization process in mass spectrometry. With the use of isotope-labeled internal standard, the detection limit was as low as 0.015 nM. Inter- and intraday imprecision was <5.0%. This method was compared to a previous direct LC-MS/MS method without derivatization. The comparison showed an excellent fit and consistency, suggesting that the present method has satisfactory effectiveness and reliability for 8-nitroG analysis. This method was further applied to determine the 8-nitroG in human urine. 8-NitroG was not detectable using LC-MS/MS with derivatization, whereas a significant false-positive signal was detected without derivatization. It highlights the use of MTNG derivatization in 8-nitroG analysis for increasing the method specificity.
Collapse
Affiliation(s)
- Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan.
| | - Yuan-Jhe Chang
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan.
| | - Jian-Lian Chen
- School of Pharmacy, China Medical University, Taichung 404, Taiwan.
| | - Yu-Wen Hsu
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan.
- Department of Optometry, Da-Yeh University, Changhua 515, Taiwan.
| | - Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan.
- Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
| |
Collapse
|
30
|
Increased Oxidative Damage of RNA in Early-Stage Nephropathy in db/db Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2353729. [PMID: 29201270 PMCID: PMC5671745 DOI: 10.1155/2017/2353729] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/03/2017] [Accepted: 09/12/2017] [Indexed: 11/18/2022]
Abstract
To evaluate RNA oxidation in the early stage of diabetic nephropathy, we applied an accurate method based on isotope dilution high-performance liquid chromatography-triple quadruple mass spectrometry to analyze the oxidatively generated guanine nucleosides in renal tissue and urine from db/db mice of different ages. We further investigated the relationship between these oxidative stress markers, microalbumin excretion, and histological changes. We found that the levels of 8-oxo-7,8-dihydroguanosine (8-oxoGuo) and 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo) were increased in the urine and renal tissue of db/db mice and db/db mice with early symptoms of diabetic nephropathy suffered from more extensive oxidative damage than lean littermate control db/m mice. Importantly, in contrast to the findings in db/m mice, the 8-oxoGuo levels in the urine and renal tissue of db/db mice were higher than those of 8-oxodGuo at four weeks. These results indicate that RNA oxidation is more apparent than DNA oxidation in the early stage of diabetic nephropathy. RNA oxidation may provide new insight into the pathogenesis of diabetic nephropathy, and urinary 8-oxoGuo may represent a novel, noninvasive, and easily detected biomarker of diabetic kidney diseases if further study could clarify its source and confirm these results in a large population study.
Collapse
|
31
|
The polymorphism XRCC1 Arg194Trp and 8-hydroxydeoxyguanosine increased susceptibility to arsenic-related renal cell carcinoma. Toxicol Appl Pharmacol 2017; 332:1-7. [DOI: 10.1016/j.taap.2017.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 01/31/2023]
|
32
|
Zhao G, Fu Y, Yu J, Wang S, Duan K, Xie F, Liu H. A Simple Method for the Determination of 8-Oxoguanosine, 8-Oxo-2′-Deoxyguanosine and 8-Iso-Prostaglandin F2α in Human Urine by UHPLC–MS/MS. Chromatographia 2017. [DOI: 10.1007/s10337-017-3254-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Hu CW, Chang YJ, Hsu YW, Chen JL, Wang TS, Chao MR. Comprehensive analysis of the formation and stability of peroxynitrite-derived 8-nitroguanine by LC-MS/MS: Strategy for the quantitative analysis of cellular 8-nitroguanine. Free Radic Biol Med 2016; 101:348-355. [PMID: 27989752 DOI: 10.1016/j.freeradbiomed.2016.10.505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 10/27/2016] [Accepted: 10/28/2016] [Indexed: 11/17/2022]
Abstract
Peroxynitrite is a major oxidizing and nitrating biological agent formed at sites of inflammation. Peroxynitrite can cause DNA damage and is thought to contribute to inflammation-related carcinogenesis. This study describes a sensitive and reliable liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the direct determination of peroxynitrite-derived 8-nitroguanine (8-nitroGua) in DNA hydrolysates. This method exhibited a sensitive detection limit of 3 fmol and inter- and intraday imprecision of <10% and was applied to systemically examine the formation and stability of peroxynitrite-derived 8-nitroGua in different DNA substrates under various conditions. The 8-nitroGua formation was maximal at pH 8. The formation rate of 8-nitroGua in different DNA substrates decreased in the order of monodeoxynucleoside>single-stranded DNA>double-stranded DNA. A stability test revealed that the half-life for the depurination of 8-nitroGua from DNA was short and affected by both the temperature and DNA structure. When present in monodeoxynucleoside, the half-life of 8-nitroGua was estimated to be ~6min at 25°C and 2.3h at ~0°C. In single-stranded DNA, the half-life varied from 1.6h at 37°C to 533h at -20°C, whereas the half-life increased from 2.4h at 37°C to 1115h at -20°C in double-stranded DNA. We demonstrated that the measurement of 8-nitroGua in isolated DNA is not practicable because 8-nitroGua is unstable and lost during DNA extraction from cell. Therefore, we suggest that directly detecting cellular 8-nitroGua following nuclear membrane lysis is an alternative measure of the nitrative damage of nucleic acids, accounting for both DNA and RNA lesions within cells.
Collapse
Affiliation(s)
- Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan; Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Yuan-Jhe Chang
- Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Yu-Wen Hsu
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan; Department of Optometry, Da-Yeh University, Changhua 515, Taiwan
| | - Jian-Lian Chen
- School of Pharmacy, China Medical University, Taichung 404, Taiwan
| | - Tsu-Shing Wang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402, Taiwan
| | - Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan.
| |
Collapse
|
34
|
Hu CW, Shih YM, Liu HH, Chiang YC, Chen CM, Chao MR. Elevated urinary levels of carcinogenic N-nitrosamines in patients with urinary tract infections measured by isotope dilution online SPE LC-MS/MS. JOURNAL OF HAZARDOUS MATERIALS 2016; 310:207-216. [PMID: 26937867 DOI: 10.1016/j.jhazmat.2016.02.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/15/2016] [Accepted: 02/21/2016] [Indexed: 06/05/2023]
Abstract
N-nitrosamines (NAms) are well-documented for their carcinogenic potential. Human exposure to NAms may arise from the daily environment and endogenous formation via the reaction of secondary amines with nitrites or from bacteria infection. We describe the use of isotope dilution online solid-phase extraction (SPE) LC-MS/MS to quantify nine NAms in human urine. This method was validated and further applied to healthy subjects and patients with urinary tract infection (UTI). N-nitrosodimethylamine (NDMA), N-nitrosomethylethylamine (NMEA), N-nitrosopyrrolidine (NPYR) and N-nitrosomorpholine (NMOR) were analyzed with an APCI source, while N-nitrosodiethylamine (NDEA), N-nitrosopiperidine (NPIP), N-nitrosodi-n-propylamine (NDPA), N-nitrosodibutylamine (NDBA) and N-nitrosodiphenylamine (NDPhA) were quantified with an ESI source, due to their effect on the sensitivity and chromatography. NDMA was the most abundant N-nitrosamine, while NDPhA was firstly identified in human. UTI patients had three to twelve-fold higher concentrations for NDMA, NPIP, NDEA, NMOR and NDBA in urine than healthy subjects, and the NAms were significantly decreased after antibiotics treatment. NDMA concentrations were also significantly correlated with the pH value, leukocyte esterase activity or nitrite in urines of UTI patients. Our findings by online SPE LC-MS/MS method evidenced that UTI patients experienced various NAms exposures, especially the potent carcinogen NDMA, which was likely induced by bacteria infection.
Collapse
Affiliation(s)
- Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Ying-Ming Shih
- Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan; Division of Chest Medicine, Department of Internal Medicine, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Hung-Hsin Liu
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Yi-Chen Chiang
- Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan; School of Public Health, Xiamen University, Xiamen 361102, Fujian, China
| | - Chih-Ming Chen
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan; Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
| |
Collapse
|
35
|
DNA Damage in Major Psychiatric Diseases. Neurotox Res 2016; 30:251-67. [PMID: 27126805 DOI: 10.1007/s12640-016-9621-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/31/2016] [Accepted: 04/09/2016] [Indexed: 12/21/2022]
Abstract
Human cells are exposed to exogenous insults and continuous production of different metabolites. These insults and unwanted metabolic products might interfere with the stability of genomic DNA. Recently, many studies have demonstrated that different psychiatric disorders show substantially high levels of oxidative DNA damage in the brain accompanied with morphological and functional alterations. It reveals that damaged genomic DNA may contribute to the pathophysiology of these mental illnesses. In this article, we review the roles of oxidative damage and reduced antioxidant ability in some vastly studied psychiatric disorders and emphasize the inclusion of treatment options involving DNA repair. In addition, while most currently used antidepressants are based on the manipulation of the neurotransmitter regulation in managing different mental abnormalities, they are able to prevent or reverse neurotoxin-induced DNA damage. Therefore, it may be plausible to target on genomic DNA alterations for psychiatric therapies, which is of pivotal importance for future antipsychiatric drug development.
Collapse
|
36
|
Chao MR, Shih YM, Hsu YW, Liu HH, Chang YJ, Lin BH, Hu CW. Urinary nitrite/nitrate ratio measured by isotope-dilution LC-MS/MS as a tool to screen for urinary tract infections. Free Radic Biol Med 2016; 93:77-83. [PMID: 26829019 DOI: 10.1016/j.freeradbiomed.2016.01.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/15/2016] [Accepted: 01/28/2016] [Indexed: 12/11/2022]
Abstract
Urinary tract infections (UTIs) are the most common type of nosocomial infection. Traditionally, the presence of white blood cells and microorganisms in the urine provides objective evidence for UTI diagnosis. Here, we describe the use of liquid chromatography-tandem mass spectrometry (LC-MS/MS) to measure the nitrite and nitrate levels in urine and investigate the potential of this method for UTI diagnosis. LC-MS/MS analysis was performed in positive electrospray ionization mode. After adding (15)N-labeled internal standards and derivatizing with 2,3-diaminonaphthalene (DAN), the urinary nitrite content was directly analyzed by LC-MS/MS, whereas the urinary nitrate was first reduced to nitrite before derivatization and LC-MS/MS analysis. The derivatization of nitrite and enzymatic reduction of nitrate were optimized. This method was then applied to 241 healthy subjects and 73 UTI patients. Optimization tests revealed that 1 mL of crude urine required at least 6.25 μmol of DAN to completely derivatize nitrite and 2.5 U of nitrate reductase to completely reduce nitrate to nitrite. Urinary analysis showed that the urinary concentration of nitrite and the nitrite/nitrate ratio were higher in UTI patients than in healthy subjects. Compared with the dipstick-based urinary nitrite test and using LC-MS/MS to determine the nitrite concentration (sensitivity: 23-25%), the nitrite/nitrate ratio was significantly more sensitive (95%) and exhibited a satisfactory specificity (91%) in the screening of UTIs. Taken together, the nitrite/nitrate ratio, which reflects the reducing ability of pathogenic bacteria, could be a better method for the diagnosis of UTIs that is not subject to variations in urine specimen quality.
Collapse
Affiliation(s)
- Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Ying-Ming Shih
- Division of Chest Medicine, Department of Internal Medicine, Changhua Christian Hospital, Changhua 500, Taiwan; Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Yu-Wen Hsu
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan; Department of Optometry, Da-Yeh University, Changhua 515, Taiwan
| | - Hung-Hsin Liu
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Yuan-Jhe Chang
- Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Bo-Huei Lin
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan; Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
| |
Collapse
|
37
|
Sertan Copoglu U, Virit O, Hanifi Kokacya M, Orkmez M, Bulbul F, Binnur Erbagci A, Semiz M, Alpak G, Unal A, Ari M, Savas HA. Increased oxidative stress and oxidative DNA damage in non-remission schizophrenia patients. Psychiatry Res 2015. [PMID: 26213375 DOI: 10.1016/j.psychres.2015.07.036] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Increasing evidence shows that oxidative stress plays a role in the pathophysiology of schizophrenia. But there is not any study which examines the effects of oxidative stress on DNA in schizophrenia patients. Therefore we aimed to assess the oxidative stress levels and oxidative DNA damage in schizophrenia patients with and without symptomatic remission. A total of 64 schizophrenia patients (38 with symptomatic remission and 26 without symptomatic remission) and 80 healthy volunteers were included in the study. 8-hydroxydeoxyguanosine (8-OHdG), total oxidant status (TOS) and total antioxidant status (TAS) were measured in plasma. TOS, oxidative stress index (OSI) and 8-OHdG levels were significantly higher in non-remission schizophrenic (Non-R-Sch) patients than in the controls. TOS and OSI levels were significantly higher in remission schizophrenic (R-Sch) patients than in the controls. TAS level were significantly lower and TOS and OSI levels were significantly higher in R-Sch patients than in Non-R-Sch patients. Despite the ongoing oxidative stress in patients with both R-Sch and Non-R-Sch, oxidative DNA damage was higher in only Non-R-Sch patients compared to controls. It is suggested that oxidative stress can cause the disease via DNA damage, and oxidative stress plays a role in schizophrenia through oxidative DNA damage.
Collapse
Affiliation(s)
- U Sertan Copoglu
- Department of Psychiatry, School of Medicine, Mustafa Kemal University, Hatay, Turkey.
| | - Osman Virit
- Department of Psychiatry, School of Medicine, Gaziantep University, Gaziantep, Turkey
| | - M Hanifi Kokacya
- Department of Psychiatry, School of Medicine, Mustafa Kemal University, Hatay, Turkey
| | - Mustafa Orkmez
- Department of Biochemistry, Sehitkamil State Hospital, Gaziantep, Turkey
| | - Feridun Bulbul
- Department of Psychiatry, School of Medicine, Gaziantep University, Gaziantep, Turkey
| | - A Binnur Erbagci
- Department of Biochemistry, School of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Murat Semiz
- Department of Psychiatry, Gulhane Military Medicine School, Ankara, Turkey
| | - Gokay Alpak
- Department of Psychiatry, School of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Ahmet Unal
- Department of Psychiatry, School of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Mustafa Ari
- Department of Psychiatry, School of Medicine, Mustafa Kemal University, Hatay, Turkey
| | - Haluk A Savas
- Department of Psychiatry, School of Medicine, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
38
|
Jeng HA, Pan CH, Chao MR, Lin WY. Sperm DNA oxidative damage and DNA adducts. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 794:75-82. [PMID: 26653986 DOI: 10.1016/j.mrgentox.2015.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 08/28/2015] [Accepted: 09/08/2015] [Indexed: 11/15/2022]
Abstract
The objective of this study was to investigate DNA damage and adducts in sperm from coke oven workers who have been exposed to polycyclic aromatic hydrocarbons. A longitudinal study was conducted with repeated measurements during spermatogenesis. Coke-oven workers (n=112) from a coke-oven plant served the PAH-exposed group, while administrators and security personnel (n=67) served the control. Routine semen parameters (concentration, motility, vitality, and morphology) were analyzed simultaneously; the assessment of sperm DNA integrity endpoints included DNA fragmentation, bulky DNA adducts, and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dGuo). The degree of sperm DNA fragmentation was measured using the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay and sperm chromatin structure assay (SCSA). The PAH-exposed group had a significant increase in bulky DNA adducts and 8-oxo-dGuo compared to the control subjects (Ps=0.002 and 0.045, respectively). Coke oven workers' percentages of DNA fragmentation and denaturation from the PAH-exposed group were not significantly different from those of the control subjects (Ps=0.232 and 0.245, respectively). Routine semen parameters and DNA integrity endpoints were not correlated. Concentrations of 8-oxo-dGuo were positively correlated with percentages of DNA fragmentation measured by both TUNEL and SCSA (Ps=0.045 and 0.034, respectively). However, the concentrations of 8-oxo-dGuo and percentages of DNA fragmentation did not correlate with concentrations of bulky DNA adducts. In summary, coke oven workers with chronic exposure to PAHs experienced decreased sperm DNA integrity. Oxidative stress could contribute to the degree of DNA fragmentation. Bulky DNA adducts may be independent of the formation of DNA fragmentation and oxidative adducts in sperm. Monitoring sperm DNA integrity is recommended as a part of the process of assessing the impact of occupational and environmental toxins on sperm.
Collapse
Affiliation(s)
- Hueiwang Anna Jeng
- School of Community and Environmental Health, College of Health Sciences, Old Dominion University, 4608 Hampton Boulevard, Health Sciences Building Room 3140 Norfolk, VA, USA.
| | - Chih-Hong Pan
- Institute of Labor, Occupational Safety and Health, Ministry of Labor, Taipei, Taiwan.
| | - Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, Taiwan
| | - Wen-Yi Lin
- Department of Occupational Medicine and Internal Medicine, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung, Taiwan
| |
Collapse
|
39
|
Chao MR, Hsu YW, Liu HH, Lin JH, Hu CW. Simultaneous Detection of 3-Nitrotyrosine and 3-Nitro-4-hydroxyphenylacetic Acid in Human Urine by Online SPE LC-MS/MS and Their Association with Oxidative and Methylated DNA Lesions. Chem Res Toxicol 2015; 28:997-1006. [DOI: 10.1021/acs.chemrestox.5b00031] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | - Yu-Wen Hsu
- Department
of Optometry, Da-Yeh University, Changhua 515, Taiwan
| | | | | | - Chiung-Wen Hu
- Department
of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| |
Collapse
|
40
|
Dizdaroglu M, Coskun E, Jaruga P. Measurement of oxidatively induced DNA damage and its repair, by mass spectrometric techniques. Free Radic Res 2015; 49:525-48. [PMID: 25812590 DOI: 10.3109/10715762.2015.1014814] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oxidatively induced damage caused by free radicals and other DNA-damaging agents generate a plethora of products in the DNA of living organisms. There is mounting evidence for the involvement of this type of damage in the etiology of numerous diseases including carcinogenesis. For a thorough understanding of the mechanisms, cellular repair, and biological consequences of DNA damage, accurate measurement of resulting products must be achieved. There are various analytical techniques, with their own advantages and drawbacks, which can be used for this purpose. Mass spectrometric techniques with isotope dilution, which include gas chromatography (GC) and liquid chromatography (LC), provide structural elucidation of products and ascertain accurate quantification, which are absolutely necessary for reliable measurement. Both gas chromatography-mass spectrometry (GC-MS) or liquid chromatography-mass spectrometry (LC-MS), in single or tandem versions, have been used for the measurement of numerous DNA products such as sugar and base lesions, 8,5'-cyclopurine-2'-deoxynucleosides, base-base tandem lesions, and DNA-protein crosslinks, in vitro and in vivo. This article reviews these techniques and their applications in the measurement of oxidatively induced DNA damage and its repair.
Collapse
Affiliation(s)
- M Dizdaroglu
- Biomolecular Measurement Division, National Institute of Standards and Technology , Gaithersburg, MD , USA
| | | | | |
Collapse
|
41
|
Trace analysis of methylated and hydroxymethylated cytosines in DNA by isotope-dilution LC–MS/MS: first evidence of DNA methylation in Caenorhabditis elegans. Biochem J 2014; 465:39-47. [DOI: 10.1042/bj20140844] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We developed an online solid-phase extraction LC–MS/MS method to simultaneously measure 5-methyl-2′-deoxycytidine and 5-hydroxymethyl-2′-deoxycytidine in DNA. We demonstrated that 5-methyl-2′-deoxycytidine is present in Caenorhabditis elegans and its level was regulated by decitabine or cadmium in a dose–response manner.
Collapse
|
42
|
Oxidatively induced DNA damage and its repair in cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 763:212-45. [PMID: 25795122 DOI: 10.1016/j.mrrev.2014.11.002] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 12/28/2022]
Abstract
Oxidatively induced DNA damage is caused in living organisms by endogenous and exogenous reactive species. DNA lesions resulting from this type of damage are mutagenic and cytotoxic and, if not repaired, can cause genetic instability that may lead to disease processes including carcinogenesis. Living organisms possess DNA repair mechanisms that include a variety of pathways to repair multiple DNA lesions. Mutations and polymorphisms also occur in DNA repair genes adversely affecting DNA repair systems. Cancer tissues overexpress DNA repair proteins and thus develop greater DNA repair capacity than normal tissues. Increased DNA repair in tumors that removes DNA lesions before they become toxic is a major mechanism for development of resistance to therapy, affecting patient survival. Accumulated evidence suggests that DNA repair capacity may be a predictive biomarker for patient response to therapy. Thus, knowledge of DNA protein expressions in normal and cancerous tissues may help predict and guide development of treatments and yield the best therapeutic response. DNA repair proteins constitute targets for inhibitors to overcome the resistance of tumors to therapy. Inhibitors of DNA repair for combination therapy or as single agents for monotherapy may help selectively kill tumors, potentially leading to personalized therapy. Numerous inhibitors have been developed and are being tested in clinical trials. The efficacy of some inhibitors in therapy has been demonstrated in patients. Further development of inhibitors of DNA repair proteins is globally underway to help eradicate cancer.
Collapse
|
43
|
Liu C, Zhang F, Munske G, Zhang H, Xian M. Isotope dilution mass spectrometry for the quantification of sulfane sulfurs. Free Radic Biol Med 2014; 76:200-7. [PMID: 25152234 PMCID: PMC4254298 DOI: 10.1016/j.freeradbiomed.2014.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/29/2014] [Accepted: 08/12/2014] [Indexed: 02/03/2023]
Abstract
Sulfane sulfurs are one type of important reactive sulfur species. These molecules have unique reactivity that allows them to attach reversibly to other sulfur atoms and exhibit regulatory effects in diverse biological systems. Recent studies have suggested that sulfane sulfurs are involved in signal transduction processes regulated by hydrogen sulfide (H2S). Accurate and reliable measurements of sulfane sulfurs in biological samples are thus needed to reveal their production and mechanisms of actions. Herein we report a convenient and accurate method for the determination of sulfane sulfur concentrations. The method employs a triphenylphosphine derivative (P2) to capture sulfane sulfurs as a stable phosphine sulfide product, PS2. The concentration of PS2 was then determined by isotope dilution mass spectrometry, using a (13)C3-labeled phosphine sulfide, PS1, as the internal standard. The specificity and efficiency of the method were proven by model reactions. It was also applied to the measurement of sulfane sulfurs in mouse tissues including brain, kidney, lung, liver, heart, spleen, and blood.
Collapse
Affiliation(s)
- Chunrong Liu
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA; Research Institute of Science and Technology, Central China Normal University, Wuhan 430079, China
| | - Faya Zhang
- Department of Pharmaceutical Sciences, Washington State University, Pullman, WA 99164, USA
| | - Gerhard Munske
- Center for Reproductive Biology, Molecular Biology and Genomics Core, Washington State University, Pullman, WA 99164, USA
| | - Hui Zhang
- Department of Pharmaceutical Sciences, Washington State University, Pullman, WA 99164, USA
| | - Ming Xian
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
44
|
Gavina JMA, Yao C, Feng YL. Recent developments in DNA adduct analysis by mass spectrometry: a tool for exposure biomonitoring and identification of hazard for environmental pollutants. Talanta 2014; 130:475-94. [PMID: 25159438 DOI: 10.1016/j.talanta.2014.06.050] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/19/2014] [Accepted: 06/22/2014] [Indexed: 02/08/2023]
Abstract
DNA adducts represent an important category of biomarkers for detection and exposure surveillance of potential carcinogenic and genotoxic chemicals in the environment. Sensitive and specific analytical methods are required to detect and differentiate low levels of adducts from native DNA from in vivo exposure. In addition to biomonitoring of environmental pollutants, analytical methods have been developed for structural identification of adducts which provides fundamental information for determining the toxic pathway of hazardous chemicals. In order to achieve the required sensitivity, mass spectrometry has been increasingly utilized to quantify adducts at low levels as well as to obtain structural information. Furthermore, separation techniques such as chromatography and capillary electrophoresis can be coupled to mass spectrometry to increase the selectivity. This review will provide an overview of advances in detection of adducted and modified DNA by mass spectrometry with a focus on the analysis of nucleosides since 2007. Instrument advances, sample and instrument considerations, and recent applications will be summarized in the context of hazard assessment. Finally, advances in biomonitoring applying mass spectrometry will be highlighted. Most importantly, the usefulness of DNA adducts measurement and detection will be comprehensively discussed as a tool for assessment of in vitro and in vivo exposure to environmental pollutants.
Collapse
Affiliation(s)
- Jennilee M A Gavina
- Exposure and Biomonitoring Division, Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, 50 Columbine Driveway, AL: 0800C, Ottawa, Ontario, Canada K1A 0K9
| | - Chunhe Yao
- Exposure and Biomonitoring Division, Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, 50 Columbine Driveway, AL: 0800C, Ottawa, Ontario, Canada K1A 0K9
| | - Yong-Lai Feng
- Exposure and Biomonitoring Division, Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, 50 Columbine Driveway, AL: 0800C, Ottawa, Ontario, Canada K1A 0K9.
| |
Collapse
|
45
|
8-Oxo-7,8-dihydroguanine and 8-oxo-7,8-dihydro-2'-deoxyguanosine concentrations in various human body fluids: implications for their measurement and interpretation. Arch Toxicol 2014; 89:201-10. [PMID: 24792325 DOI: 10.1007/s00204-014-1255-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/15/2014] [Indexed: 12/17/2022]
Abstract
8-Oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) is the most investigated product of oxidatively damaged DNA lesion that has been associated with the development of aging, cancer and some degenerative diseases. Here, we present the first liquid chromatography-tandem mass spectrometry method that enables the simultaneous measurement of its repair products in plasma and saliva, namely 8-oxo-7,8-dihydroguanine (8-oxoGua) and 8-oxodGuo. Using this method, we investigated the underlying transport mechanism of the repair products of oxidatively damaged DNA between cellular compartments and biological matrices. Plasma, saliva and urine samples were collected concurrently from 57 healthy subjects. Various deproteinization methods were evaluated, and the precipitants acetonitrile and sodium hydroxide-methanol were, respectively, selected for plasma and saliva samples due to their effect on recovery efficiencies and chromatography. The mean baseline concentrations of 8-oxoGua and 8-oxodGuo in plasma were demonstrated to be 0.21 and 0.016 ng/mL, respectively, while in saliva they were 0.85 and 0.010 ng/mL, respectively. A relatively high concentration of 8-oxoGua was found in saliva with a concentration factor (CF, concentration ratio of saliva to plasma) of 4 as compared to that of 8-oxodGuo (CF: 0.6), implying that 8-oxoGua in plasma may be actively transported to saliva, whereas 8-oxodGuo was most dependent on a passive diffusion. Good correlations between urine and plasma concentrations were observed for 8-oxoGua and 8-oxodGuo, suggesting that blood was a suitable matrix in addition to urine. Significant correlation between 8-oxoGua and 8-oxodGuo in urine was only observed when the concentrations were not corrected for urinary creatinine, raising the issue of applicability of urinary creatinine to adjust 8-oxoGua concentrations.
Collapse
|
46
|
Analysis of guanine oxidation products in double-stranded DNA and proposed guanine oxidation pathways in single-stranded, double-stranded or quadruplex DNA. Biomolecules 2014; 4:140-59. [PMID: 24970209 PMCID: PMC4030987 DOI: 10.3390/biom4010140] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 01/21/2014] [Accepted: 01/23/2014] [Indexed: 02/05/2023] Open
Abstract
Guanine is the most easily oxidized among the four DNA bases, and some guanine-rich sequences can form quadruplex structures. In a previous study using 6-mer DNA d(TGGGGT), which is the shortest oligomer capable of forming quadruplex structures, we demonstrated that guanine oxidation products of quadruplex DNA differ from those of single-stranded DNA. Therefore, the hotooxidation products of double-stranded DNA (dsDNA) may also differ from that of quadruplex or single-stranded DNA, with the difference likely explaining the influence of DNA structures on guanine oxidation pathways. In this study, the guanine oxidation products of the dsDNA d(TGGGGT)/d(ACCCCA) were analyzed using HPLC and electrospray ionization-mass spectrometry (ESI-MS). As a result, the oxidation products in this dsDNA were identified as 2,5-diamino-4H-imidazol-4-one (Iz), 8-oxo-7,8-dihydroguanine (8oxoG), dehydroguanidinohydantoin (Ghox), and guanidinohydantoin (Gh). The major oxidation products in dsDNA were consistent with a combination of each major oxidation product observed in single-stranded and quadruplex DNA. We previously reported that the kinds of the oxidation products in single-stranded or quadruplex DNA depend on the ease of deprotonation of the guanine radical cation (G•+) at the N1 proton. Similarly, this mechanism was also involved in dsDNA. Deprotonation in dsDNA is easier than in quadruplex DNA and more difficult in single-stranded DNA, which can explain the formation of the four oxidation products in dsDNA.
Collapse
|
47
|
Urinary excretion of oxidative damage markers in a rat model of vascularized composite allotransplantation. Plast Reconstr Surg 2013; 132:530e-541e. [PMID: 24076700 DOI: 10.1097/prs.0b013e3182a0141f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Vascularized composite allotransplantation is an emerging field of transplantation that provides a potential treatment for complex tissue defects after traumatic loss or tumor resection and for the repair of congenital abnormalities. However, vascularized composite allotransplantation recipients have suffered from acute and chronic graft rejection that is associated with oxidative stress. This study investigated the oxidative damage in a rat vascularized composite allotransplantation model by measuring three urinary biomarkers, 8-oxo-7,8-dihydroguanine (8-oxoGua), 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), and malondialdehyde. METHODS Rats received two different immunosuppressants, including cyclosporine A and mycophenolate mofetil after transplantation, with one group also receiving mesenchymal stem cells before transplantation. Urine was collected and analyzed for 8-oxo-7,8-dihydroguanine, 8-oxo-7,8-dihydro-2'-deoxyguanosine, and malondialdehyde by liquid chromatography coupled to tandem mass spectometry methods. RESULTS Rats undergoing vascularized composite allotransplantation had higher urinary levels of 8-oxo-7,8-dihydroguanine, 8-oxo-7,8-dihydro-2'-deoxyguanosine, and malondialdehyde compared with rats undergoing syngeneic transplantation. Cyclosporine A/mycophenolate mofetil following treatment prolonged the allograft survival in a dose-dependent manner. Compared with rats undergoing vascularized composite allotransplantation with cyclosporine A/mycophenolate mofetil treatment alone, rats undergoing mesenchymal stem cell combined treatment showed the longest allograft survival, and had approximately 50 percent lower urinary levels of malondialdehyde together with approximately 2.7-times higher levels of 8-oxo-7,8-dihydroguanine. CONCLUSIONS Mesenchymal stem cell combined treatment efficiently managed oxidative stress in rats undergoing vascularized composite allotransplantation, and urinary 8-oxo-7,8-dihydroguanine and malondialdehyde could be regarded as good responders to the mesenchymal stem cell therapy.
Collapse
|
48
|
Hu CW, Hsu YW, Chen JL, Tam LM, Chao MR. Direct analysis of tobacco-specific nitrosamine NNK and its metabolite NNAL in human urine by LC-MS/MS: evidence of linkage to methylated DNA lesions. Arch Toxicol 2013; 88:291-9. [PMID: 24057573 DOI: 10.1007/s00204-013-1137-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 09/12/2013] [Indexed: 12/22/2022]
Abstract
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and its urinary metabolite, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), are the most investigated carcinogenic biomarkers of tobacco-specific nitrosamines. Here, we report the development of a sensitive and selective assay based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) to simultaneously measure urinary NNK and NNAL. With the use of isotope internal standards and online solid-phase extraction, urine samples were directly analyzed without prior sample purification. The detection limits of this method were 0.13 and 0.19 pg on column for NNK and NNAL, respectively. Inter- and intra-day imprecision was <10 %. Mean recovery of NNK and NNAL in urine was 99-100 %. This method was applied to measure urinary NNK and NNAL in 101 smokers and 40 nonsmokers to assess tobacco exposure. Urinary nicotine, cotinine, N3-methyladenine (N3-MeA), and N7-methylguanine (N7-MeG) were also measured by isotope-dilution LC-MS/MS methods. The results showed that urinary NNK was not observed in all smokers. Urinary free NNAL (0.10 ± 0.09 ng/mg creatinine) and total NNAL (0.17 ± 0.14 ng/mg creatinine) were detected in all smokers. Urinary concentrations of NNAL were significantly correlated with nicotine, cotinine, N3-MeA, and N7-MeG in smokers (P < 0.001). This method enables the direct and simultaneous measurement of NNK and NNAL in urine using only 50 μL of urine. This study first demonstrated in human that urinary tobacco-specific nitrosamines metabolite (NNAL) are highly correlated with their resulting methylated DNA lesions in urine, which may help to substantiate an increased cancer risk associated with tobacco smoke exposure.
Collapse
Affiliation(s)
- Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung, 402, Taiwan
| | | | | | | | | |
Collapse
|
49
|
Hu CW, Lee H, Chen JL, Li YJ, Chao MR. Optimization of global DNA methylation measurement by LC-MS/MS and its application in lung cancer patients. Anal Bioanal Chem 2013; 405:8859-69. [PMID: 23978937 DOI: 10.1007/s00216-013-7305-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/10/2013] [Accepted: 08/13/2013] [Indexed: 01/03/2023]
Abstract
Global analyses of DNA methylation contribute important insights into biology and the wide-ranging role of DNA methylation. We describe the use of online solid-phase extraction and isotope-dilution liquid chromatography/tandem mass spectrometry (LC-MS/MS) for the simultaneous measurement of 5-methyl-2'-deoxycytidine (5-medC) and 2'-deoxycytidine (dC) in DNA. With the incorporation of isotope internal standards and online enrichment techniques, the detection limit of this method was estimated to be as low as 0.065 pg which enables human global DNA methylation detection using only picogram amounts of DNA. This method was applied to assess the optimal amounts of enzymes required for DNA digestion regarding an accurate global DNA methylation determination and completeness of digestion and to determine global methylation in human tumor adjacent lung tissue of 79 lung cancer patients. We further determined methylated (N7-methylguanine (N7-meG), O (6)-methylguanine (O (6)-meG), and N3-methyladenine (N3-meA)) and oxidized DNA lesions (8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG)) in lung cancer patients by LC-MS/MS. Optimization experiments revealed that dC was liberated from DNA much more readily than 5-medC by nuclease P1 and alkaline phosphatase (AP) in DNA, which could lead to an error in the global DNA methylation measurement following digestion with insufficient enzymes. Nuclease P1 showed more differential activity for 5-medC and dC than AP. Global DNA methylation levels in adenocarcinoma and squamous cell carcinoma patients were similar in the range of 3.16-4.01 %. Global DNA methylation levels were not affected by smoking and gender and were not correlated with N7-meG or 8-oxodG in lung cancer patients. Levels of O (6)-meG and N3-meA were however found to be undetectable in all lung tissue samples.
Collapse
Affiliation(s)
- Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung, 402, Taiwan
| | | | | | | | | |
Collapse
|
50
|
Sung CC, Hsu YC, Chen CC, Lin YF, Wu CC. Oxidative stress and nucleic acid oxidation in patients with chronic kidney disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:301982. [PMID: 24058721 PMCID: PMC3766569 DOI: 10.1155/2013/301982] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/16/2013] [Accepted: 07/22/2013] [Indexed: 12/19/2022]
Abstract
Patients with chronic kidney disease (CKD) have high cardiovascular mortality and morbidity and a high risk for developing malignancy. Excessive oxidative stress is thought to play a major role in elevating these risks by increasing oxidative nucleic acid damage. Oxidative stress results from an imbalance between reactive oxygen/nitrogen species (RONS) production and antioxidant defense mechanisms and can cause vascular and tissue injuries as well as nucleic acid damage in CKD patients. The increased production of RONS, impaired nonenzymatic or enzymatic antioxidant defense mechanisms, and other risk factors including gene polymorphisms, uremic toxins (indoxyl sulfate), deficiency of arylesterase/paraoxonase, hyperhomocysteinemia, dialysis-associated membrane bioincompatibility, and endotoxin in patients with CKD can inhibit normal cell function by damaging cell lipids, arachidonic acid derivatives, carbohydrates, proteins, amino acids, and nucleic acids. Several clinical biomarkers and techniques have been used to detect the antioxidant status and oxidative stress/oxidative nucleic acid damage associated with long-term complications such as inflammation, atherosclerosis, amyloidosis, and malignancy in CKD patients. Antioxidant therapies have been studied to reduce the oxidative stress and nucleic acid oxidation in patients with CKD, including alpha-tocopherol, N-acetylcysteine, ascorbic acid, glutathione, folic acid, bardoxolone methyl, angiotensin-converting enzyme inhibitor, and providing better dialysis strategies. This paper provides an overview of radical production, antioxidant defence, pathogenesis and biomarkers of oxidative stress in patients with CKD, and possible antioxidant therapies.
Collapse
Affiliation(s)
- Chih-Chien Sung
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu, Taipei 114, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei 114, Taiwan
| | - Yu-Chuan Hsu
- Division of Neurology, Department of Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 330, Taiwan
| | - Chun-Chi Chen
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu, Taipei 114, Taiwan
| | - Yuh-Feng Lin
- Division of Nephrology, Department of Medicine, Taipei Medical University-Shuang Ho Hospital, Ministry of Health and Welfare, New Taipei City 235, Taiwan
- Graduate Institute of Clinical Medical, Taipei Medical University, Taipei 110, Taiwan
| | - Chia-Chao Wu
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu, Taipei 114, Taiwan
- Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|