1
|
Zeng Q, Yang Y, Liu Y, Li Z, Li P, Zhou Z. Fish IL-26 collaborates with IL-10R2 and IL-20R1 to enhance gut mucosal barrier during the antibacterial innate immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 161:105249. [PMID: 39154973 DOI: 10.1016/j.dci.2024.105249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 08/20/2024]
Abstract
IL-26 is a cytokine that is crucial for the maintenance and function of the gut mucosal barrier. IL-26 signaling pathway relies on a heterodimeric receptor complex, which is composed of two distinct subunits, IL-10R2 and IL-20R1. However, there are no reports on the antibacterial immunity of IL-26 and its receptors in fish. For this purpose, in this study we identified IL-26 and its receptors IL-10R2 and IL-20R1 in Carassius cuvieri × Carassius auratus red var. (named WR-IL-26, WR-IL10R2 and WR-IL20R1, respectively). Phylogenetic analysis confirmed the conservation of these genes, with shared structural motifs similar to those found in higher vertebrates. Upon exposure to Aeromonas hydrophila, a common fish pathogen, there was a significant upregulation of WR-IL-26, WR-IL10R2 and WR-IL20R1 in the gut, indicating a potential role in the immune response to infection. A co-immunoprecipitation assay revealed that WR-IL-26 formed complexes with WR-IL10R2 and WR-IL20R1. In vivo experiments demonstrated that administration of WR-IL-26 activated the JAK1-STAT3 signaling pathway and protected the gut mucosa barrier from A. hydrophila infection. Conversely, silencing WR-IL10R2 and WR-IL20R1 via RNA interference significantly attenuated the activation of WR-IL-26-mediated JAK1-STAT3 pathway. These results provided new insights into the role of IL-26 and its receptors in the gut mucosa barrier and could offer novel therapeutic strategies for managing bacterial infections in aquaculture.
Collapse
Affiliation(s)
- Qiongyao Zeng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Ye Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Yujun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Zhengwei Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Pingyuan Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Zejun Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, 524088, Guangdong, China.
| |
Collapse
|
2
|
Cervera L, Arizcun M, Mercado L, Chaves-Pozo E, Cuesta A. Synthetic antimicrobial Nkl and Dic peptides are immunomodulatory but only Dic peptide can be therapeutic against nodavirus infection. FISH & SHELLFISH IMMUNOLOGY 2024; 152:109772. [PMID: 39019125 DOI: 10.1016/j.fsi.2024.109772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/10/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Aquaculture is a prosperous economic sector threatened by viral infections. Among the viruses threatening fish culture, Betanodavirus (NNV) is extremely important in the Mediterranean Sea affecting to highly traded species as European sea bass. In this context, application of antimicrobial peptides (AMPs) has arisen as a potential biotechnological tool. The aim of this work was to evaluate the therapeutic application of two European sea bass-derived AMPs, NK-lysin (Nkl) and dicentracin (Dic), against NNV infections. Synthetic Dic peptide was able to significantly reduce NNV-induced mortalities while Nkl failed to do so. Although neither Dic nor Nkl peptides were able to alter the transcriptional levels of NNV and the number of infected cells, Nkl seemed to increase the viral load per cell. Interestingly, both Nkl and Dic peptides showed immunomodulatory roles. For instance, our data revealed an interplay among different AMPs, at both gene and protein levels. Otherwise, Nkl and Dic peptides provoked an anti-inflammatory balance upon NNV infection, as well as the recruitment of macrophages and B cells to the target site of the infection, the brain. In conclusion, Dic can be proposed as a therapeutic candidate to combat NNV.
Collapse
Affiliation(s)
- Laura Cervera
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain; Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (COMU-IEO), CSIC, Carretera de la Azohía s/n, Puerto de Mazarrón, 30860, Murcia, Spain.
| | - Marta Arizcun
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (COMU-IEO), CSIC, Carretera de la Azohía s/n, Puerto de Mazarrón, 30860, Murcia, Spain.
| | - Luis Mercado
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| | - Elena Chaves-Pozo
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (COMU-IEO), CSIC, Carretera de la Azohía s/n, Puerto de Mazarrón, 30860, Murcia, Spain.
| | - Alberto Cuesta
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
3
|
Wu CC, Ding DS, Lo YH, Pan CY, Wen ZH. Padina Minor Extract Confers Resistance against Candida Albicans Infection: Evaluation in a Zebrafish Model. BIOLOGY 2024; 13:384. [PMID: 38927264 PMCID: PMC11201049 DOI: 10.3390/biology13060384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024]
Abstract
Padina minor is a seaweed rich in polysaccharides often used in food, feed, fertilizers, and antibacterial drugs. This study is the first to evaluate the effect of feeding zebrafish with Padina minor extract on preventing and treating C. albicans infections. This study evaluated the growth, survival, and disease resistance effects of P. minor extract on zebrafish. The fish were divided into four groups: three groups treated with 1%, 5%, or 10% P. minor extract and one untreated group (c, control). Subsequently, we analyzed how the extract affected the immune function of zebrafish infected with C. albicans. Based on the lethal concentration (LC50) calculated in the first stage, 1% was used as the effective therapeutic concentration. The results showed that the growth rate of the 1% feed group was the best, and no significant difference in survival rates between the four groups was observed. Feeding with 1% P. minor extract downregulated the expression of key inflammatory genes like tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), and IL-10, effectively preventing and treating C. albicans infections in zebrafish. This study is a preliminary evaluation of the therapeutic efficacy of P. minor extracts against C. albicans.
Collapse
Affiliation(s)
- Chang-Cheng Wu
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- Department of Obstetrics and Gynecology, Zuoying Armed Forces General Hospital, Kaohsiung 81342, Taiwan
| | - De-Sing Ding
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811213, Taiwan;
| | - Yi-Hao Lo
- Department of Family Medicine, Zuoying Armed Forces General Hospital, Kaohsiung 81342, Taiwan;
- Department of Nursing, Shu-Zen Junior of Medicine and Management, Kaohsiung 82144, Taiwan
| | - Chieh-Yu Pan
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811213, Taiwan;
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
4
|
Huang PW, Liou CY, Lee YC, Wei TY, Ho HC, Yang TY, Wang LC. The Evaluation of Teleost-Derived Antimicrobial Peptides Against Neisseria gonorrhoeae. Cureus 2024; 16:e57168. [PMID: 38681331 PMCID: PMC11056026 DOI: 10.7759/cureus.57168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2024] [Indexed: 05/01/2024] Open
Abstract
Introduction Gonorrhea has become an emerging sexually transmitted infection worldwide. The multi-antibiotic resistance facilitates the transmission; thus, new antibiotics or alternatives are needed. Antimicrobial peptides (AMP) are antimicrobials naturally secreted by the host as a defense material. Teleost-derived AMP have gained attention over the past two decades due to their potent efficacy toward microorganisms. This study examines teleost-derived AMP against Neisseria gonorrhoeae (GC), the responsible bacteria for gonorrhea, to evaluate the antibiotic potential as a future alternative for preventing gonorrhea. Methods Minimal inhibitory concentration (MIC) and time-killed assay were conducted to evaluate the inhibition concentration of each AMP. Transmission electron microscopy was used to confirm the potential mode of action. The inhibition of microcolony formation and adherence to epithelial cells were examined to assess the infection inhibition. Results Pardaxin-based (flatfish pardaxin {PB2}) and piscidin-based (striped bass piscidin 1 {PIS} and tilapia piscidin {TP} 4) AMP were effective toward GC under or equal to 7.5 μg/mL as of minimal inhibitory concentration. Transmission electron microscopy images revealed that these AMP attack bacterial membranes as membrane blebbing and breakage were observed. These AMP also effectively reduced the GC biofilm formation, as well as their adherence to human endocervical epithelial cells. Conclusion Pardaxin-based (PB2) and piscidin-based (PIS and TP4) teleost-derived AMP can inhibit GC and potentially serve as the new antibiotic alternative for preventing GC colonization and infection. This study will shed some light on the future development of teleost-derived AMP in treating gonorrhea and maintaining reproductive health.
Collapse
Affiliation(s)
- Po-Wei Huang
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, TWN
- Division of Urology, Department of Surgery, Zuoying Armed Forces General Hospital, Kaohsiung, TWN
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Kaohsiung, TWN
- Center of General Education, Shu-Zen Junior College of Medicine and Management, Kaohsiung, TWN
| | - Chung-Yi Liou
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, TWN
| | - Ying-Chen Lee
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, TWN
| | - Tzu-Yu Wei
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, TWN
| | - Han-Chen Ho
- Department of Anatomy, Tzu Chi University, Hualien, TWN
| | - Tsung-Ying Yang
- Department of Medical Laboratory Science, I-Shou University, Kaohsiung, TWN
| | - Liang-Chun Wang
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, TWN
| |
Collapse
|
5
|
Cervera L, Chaves-Pozo E, Cuesta A. Synthetic Antimicrobial Peptides Fail to Induce Leucocyte Innate Immune Functions but Elicit Opposing Transcriptomic Profiles in European Sea Bass and Gilthead Seabream. Mar Drugs 2024; 22:86. [PMID: 38393057 PMCID: PMC10889969 DOI: 10.3390/md22020086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Antimicrobial peptides (AMPs) are promising molecules in diverse fields, including aquaculture. AMPs possess lytic effects on a wide range of pathogens, resulting in a potential replacement for traditional antimicrobials in aquaculture. In addition, they also have modulatory effects on host immune responses. Thus, the objective of this work was to evaluate the immunomodulatory capability of three known synthetic AMPs derived from European sea bass, NK-lysin (Nkl), hepcidin (Hamp), and dicentracin (Dic), in head-kidney cell suspensions from European sea bass and gilthead seabream. The tested peptides were neither cytotoxic for European sea bass nor gilthead seabream cells and failed to modulate the respiratory burst and phagocytosis activities. However, they modified the pattern of transcription of immune-related genes differently in both species. Peptides were able to promote the expression of marker genes for anti-inflammatory (il10), antiviral (mx, irf3), cell-mediated cytotoxicity (nccrp1, gzmb), and antibody responses (ighm) in European sea bass, with the Nkl peptide being the most effective. Contrary to this, the effects of those peptides on gilthead seabream mainly resulted in the suppression of immune responses. To conclude, European sea bass-derived peptides can be postulated as potential tools for immunostimulation in European sea bass fish farms, but more efforts are required for their universal use in other species.
Collapse
Affiliation(s)
- Laura Cervera
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain; (L.C.); (A.C.)
- Centro Oceanográfico de Murcia (COMU-IEO), CSIC, Carretera de la Azohía s/n, Puerto de Mazarrón, 30860 Murcia, Spain
| | - Elena Chaves-Pozo
- Centro Oceanográfico de Murcia (COMU-IEO), CSIC, Carretera de la Azohía s/n, Puerto de Mazarrón, 30860 Murcia, Spain
| | - Alberto Cuesta
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain; (L.C.); (A.C.)
| |
Collapse
|
6
|
Zhan F, Zhou S, Shi F, Li Q, Lin L, Qin Z. Transcriptome analysis of Macrobrachium rosenbergii hemocytes in response to Staphylococcus aureus infection. FISH & SHELLFISH IMMUNOLOGY 2023:108927. [PMID: 37406892 DOI: 10.1016/j.fsi.2023.108927] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/27/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
The aquaculture industry has suffered significant financial losses as a result of disease outbreaks. In particular, disease outbreaks have become a major problem that can seriously affect the sustainable development of the Macrobrachium rosenbergii aquaculture industry. It is crucial to determine the defense mechanism of the host after pathogenic invasion in order to provide effective defense measures after disease outbreaks. Shrimp, like other invertebrates, primarily depend on their innate immune systems to defend against pathogens, and recognize and resist pathogens through humoral and cellular immune responses. In this investigation, we used RNA-seq technology to investigate the transcriptome of hemocytes from M. rosenbergii induced by Staphylococcus aureus. Our main targets were immune pathways and genes related to innate immunity. RNA-seq identified 209,069 and 204,775 unigenes in the control and experimental groups, respectively. In addition, we identified 547 and 1734 differentially expressed genes (DEGs) following S. aureus challenge after 6 and 12 h (h), respectively. GO and KEGG enrichment analysis revealed that the DEGs were significantly enriched in several biological signalling pathways, including NOD-like receptor, PI3K-Akt, Toll and Imd, IL-17, TGF-beta, RIG-I-like receptor, cAMP, apoptosis, and C-type lectin receptor. Sixteen DEGs were chosen at random for qPCR verification; these results concurred with those from sequencing. Our findings revealed that immune-related genes play an important role in antibacterial activities and have specific functions for gram-positive bacteria. These results provide more data for the prevention of M. rosenbergii diseases and offer a basis for the better prevention of diseases.
Collapse
Affiliation(s)
- Fanbin Zhan
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Shichun Zhou
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Fei Shi
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Qingqing Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China.
| | - Zhendong Qin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China.
| |
Collapse
|
7
|
Zhang Z, Zhou Y, Zhang H, Du X, Cao Z, Wu Y, Liu C, Sun Y. Antibacterial Activity and Mechanisms of TroHepc2-22, a Derived Peptide of Hepcidin2 from Golden Pompano ( Trachinotus ovatus). Int J Mol Sci 2023; 24:ijms24119251. [PMID: 37298202 DOI: 10.3390/ijms24119251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Hepcidin, a cysteine-rich antimicrobial peptide, has a highly conserved gene structure in teleosts, and it plays an essential role in host immune response against various pathogenic bacteria. Nonetheless, few studies on the antibacterial mechanism of hepcidin in golden pompano (Trachinotus ovatus) have been reported. In this study, we synthesized a derived peptide, TroHepc2-22, from the mature peptide of T. ovatus hepcidin2. Our results showed that TroHepc2-22 has superior antibacterial abilities against both Gram-negative (Vibrio harveyi and Edwardsiella piscicida) and Gram-positive (Staphylococcus aureus and Streptococcus agalactiae) bacteria. Based on the results of a bacterial membrane depolarization assay and propidium iodide (PI) staining assay in vitro, TroHepc2-22 displayed antimicrobial activity by inducing the bacterial membrane depolarization and changing the bacterial membrane permeability. Scanning electron microscopy (SEM) visualization illustrated that TroHepc2-22 brought about membrane rupturing and the leakage of the cytoplasm for the bacteria. In addition, TroHepc2-22 was verified to have hydrolytic activity on bacterial genomic DNA in view of the results of the gel retardation assay. In terms of the in vivo assay, the bacterial loads of V. harveyi in the tested immune tissues (liver, spleen, and head kidney) were significantly reduced in T. ovatus, revealing that TroHepc2-22 significantly enhanced the resistance against V. harveyi infection. Furthermore, the expressions of immune-related genes, including tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin 1-β (IL-1β), IL-6, Toll-like receptor 1 (TLR1), and myeloid differentiation factor 88 (MyD88) were significantly increased, indicating that TroHepc2-22 might regulate inflammatory cytokines and activate immune-related signaling pathways. To summarize, TroHepc2-22 possesses appreciable antimicrobial activity and plays a vital role in resisting bacterial infection. The observation of our present study unveils the excellent application prospect of hepcidin as a substitute for antibiotics to resist pathogenic microorganisms in teleosts.
Collapse
Affiliation(s)
- Zhengshi Zhang
- Sanya Nanfan Research Institute, Hainan University, Sanya 572022, China
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou 570228, China
| | - Yongcan Zhou
- Sanya Nanfan Research Institute, Hainan University, Sanya 572022, China
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou 570228, China
| | - Han Zhang
- Sanya Nanfan Research Institute, Hainan University, Sanya 572022, China
| | - Xiangyu Du
- Sanya Nanfan Research Institute, Hainan University, Sanya 572022, China
| | - Zhenjie Cao
- Sanya Nanfan Research Institute, Hainan University, Sanya 572022, China
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou 570228, China
| | - Ying Wu
- Sanya Nanfan Research Institute, Hainan University, Sanya 572022, China
| | - Chunsheng Liu
- Sanya Nanfan Research Institute, Hainan University, Sanya 572022, China
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou 570228, China
| | - Yun Sun
- Sanya Nanfan Research Institute, Hainan University, Sanya 572022, China
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou 570228, China
| |
Collapse
|
8
|
Cervera L, González-Fernández C, Cano D, Esteban MÁ, Mercado L, Chaves-Pozo E, Cuesta A. Immunity elicited by AMP-encoding plasmids fails to increase the protection of European sea bass against nodavirus. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108507. [PMID: 36581252 DOI: 10.1016/j.fsi.2022.108507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Antimicrobial peptides (AMPs) are a potent arm of the innate immune system that can directly kill pathogens and induce immunomodulation. In the marine aquaculture, European sea bass (Dicentrarchus labrax L.) is one of the most prosperous species but is highly susceptible to nodavirus (NNV), which produces high rates of mortality in larvae and juvenile stages. Thus, we aimed to evaluate whether AMPs exert immunomodulatory and/or NNV-preventive actions in sea bass. To do this, plasmids encoding the sea bass AMPs dicentracin (pDIC), beta-defensin (pDB1), hepcidin (pHAMP2) or NK-lysin (pNKL) were generated and intramuscularly injected into sea bass juveniles to evaluate their immunomodulatory and anti-NNV roles. Sea bass muscle transcribes the AMPs and produces an increase in their circulating levels, along with an increase of the antibacterial activity. Immune-related gene analysis revealed a great activation of the inflammatory response and the recruitment of neutrophilic granulocytes at the site of injection. However, AMP-encoding plasmids, namely pHAMP2, negatively affected to NNV disease by increasing fish mortality. In conclusion, plasmids encoding AMPs show immunostimulatory effects on European sea bass but do not improve the resistance to NNV.
Collapse
Affiliation(s)
- Laura Cervera
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Carmen González-Fernández
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Daniela Cano
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - M Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Luis Mercado
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Elena Chaves-Pozo
- Oceanographic Centre of Murcia, Spanish Institute of Oceanography, Spanish National Research Council (IEO-CSIC), Carretera de la Azohía s/n, Puerto de Mazarrón, 30860, Murcia, Spain
| | - Alberto Cuesta
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
9
|
Liu E, Huang T, Gu W, Wang G, Dong F, Ma H, Zhang L, He X, Yao Z, Jiao W, Li C, Wang B, Xu G. Molecular characterization and antibacterial immunity functional analysis of the antimicrobial peptide hepcidin from Coregonus ussuriensis berg. FISH & SHELLFISH IMMUNOLOGY 2022; 122:78-86. [PMID: 35051564 DOI: 10.1016/j.fsi.2022.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Antimicrobial peptides are immune system molecules existing in different organisms including mollusks, crustaceans and vertebrates. Hepcidins are a group of cysteine rich antimicrobial peptides, which plays an important role in fish response to a variety of pathogens. In this study, we cloned and identified Hepcidin from the Coregonus ussuriensis Berg, and its functions in vivo and in vitro was investigated. Our results showed that, CuHepc contains a 267 bp coding sequence (CDS) region that encodes 88 putative amino acids with a molecular weight of 9.77 kD. Hepcidin transcripts were most abundant in the liver of healthy C. ussuriensis Berg. The synthesized Hepcidin peptide exhibited a wide range of antibacterial activity against Gram-positive and Gram-negative bacteria in vitro, and the results of in vivo bacterial attack assays showed that the CuHepc gene was differentially up-regulated in the six tissues investigated after infection with Aeromonas hydrophila. To analyze the changes in protein levels in C. ussuriensis, we generated Hepc polyclonal antibodies in rabbits and verified that the protein expression was increased after bacterial infection with Western blot assay. MIC assay results showed a geometric mean value of 5.513 μM for CuHepc peptide. In the in vivo experiment, immune-related genes IL-10, NF-κB, TLR3 were up-regulated post-infection CuHepc peptide in liver and intestine. Finally, CuHepc peptide reduced the tissues microbial load compared to infection with Aeromonas hydrophila. The above results indicate that Hepc plays a role in the immune response of C. ussuriensis to exogenous disturbances, indicate that CuHepc might act a candidate for modulation of the innate immune system in C. ussuriensis.
Collapse
Affiliation(s)
- Enhui Liu
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, PR China
| | - Tianqing Huang
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, PR China
| | - Wei Gu
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, PR China
| | - Gaochao Wang
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, PR China
| | - Fulin Dong
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, PR China
| | - Haibing Ma
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, PR China
| | - Lanlan Zhang
- Heilongjiang Fisheries Technology Extension Center, Harbin, PR China
| | - Xianchen He
- Heilongjiang Aquatic Animal Resource Conservation Center, Harbin, PR China
| | - Zuochun Yao
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, PR China
| | - Wenlong Jiao
- Gansu Fisheries Research Institute, Lanzhou, PR China
| | - Chunyu Li
- Xinjiang Tianyun Organic Agriculture Limited Liability Company, Yili, PR China
| | - Bingqian Wang
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, PR China.
| | - Gefeng Xu
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, PR China.
| |
Collapse
|
10
|
Development of Disease-Resistance-Associated Microsatellite DNA Markers for Selective Breeding of Tilapia (Oreochromis spp.) Farmed in Taiwan. Genes (Basel) 2021; 13:genes13010099. [PMID: 35052439 PMCID: PMC8774982 DOI: 10.3390/genes13010099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 12/13/2022] Open
Abstract
There are numerous means to improve the tilapia aquaculture industry, and one is to develop disease resistance through selective breeding using molecular markers. In this study, 11 disease-resistance-associated microsatellite markers including 3 markers linked to hamp2, 4 linked to hamp1, 1 linked to pgrn2, 2 linked to pgrn1, and 1 linked to piscidin 4 (TP4) genes were established for tilapia strains farmed in Taiwan after challenge with Streptococcus inae. The correlation analysis of genotypes and survival revealed a total of 55 genotypes related to survival by the chi-square and Z-test. Although fewer markers were found in B and N2 strains compared with A strain, they performed well in terms of disease resistance. It suggested that this may be due to the low potency of some genotypes and the combinatorial arrangement between them. Therefore, a predictive model was built by the genotypes of the parental generation and the mortality rate of different combinations was calculated. The results show the same trend of predicted mortality in the offspring of three new disease-resistant strains as in the challenge experiment. The present findings is a nonkilling method without requiring the selection by challenge with bacteria or viruses and might increase the possibility of utilization of selective breeding using SSR markers in farms.
Collapse
|
11
|
Simora RMC, Wang W, Coogan M, El Husseini N, Terhune JS, Dunham RA. Effectiveness of Cathelicidin Antimicrobial Peptide against Ictalurid Catfish Bacterial Pathogens. JOURNAL OF AQUATIC ANIMAL HEALTH 2021; 33:178-189. [PMID: 34121235 DOI: 10.1002/aah.10131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
One of the major goals in aquaculture is to protect fish against infectious diseases as disease outbreaks could lead to economic losses if not controlled. Antimicrobial peptides (AMPs), a class of highly conserved peptides known to possess direct antimicrobial activities against invading pathogens, were evaluated for their ability to protect Channel Catfish Ictalurus punctatus and hybrid catfish (female Channel Catfish × male Blue Catfish I. furcatus) against infection caused by the fish pathogen Aeromonas hydrophila ML09-119. To identify effective peptides, the minimum inhibitory concentrations against bacterial pathogens Edwardsiella ictaluri S97-773, Edwardsiella piscicida E22-10, A. hydrophila ML09-119, Aeromonas veronii 03X03876, and Flavobacterium columnare GL-001 were determined in vitro. In general and overall, cathelicidins derived from alligator and sea snake exhibited more potent and rapid antimicrobial activities against the tested catfish pathogens as compared to cecropin and pleurocidin AMPs and ampicillin, the antibiotic control. When the peptides (2.5 µg of peptide/g of fish) were injected into fish and simultaneously challenged with A. hydrophila through immersion, increased survival rates in Channel Catfish and hybrid catfish were observed in both cathelicidin (alligator and sea snake) treatments as compared to other peptides and the infected control (P < 0.001) with alligator cathelicidin being the overall best treatment. Bacterial numbers in the kidney and liver of Channel Catfish and hybrid catfish also decreased (P < 0.05) for cathelicidin-injected groups at 24 and 48 h after challenge infection. These results show the potential of cathelicidin to protect catfish against bacterial infections and suggest that an approach overexpressing the peptide in transgenic fish, which is the long-term goal of this research program, may provide a method of decreasing bacterial disease problems in catfish as delivering the peptides via individual injection or feeding would not be economically feasible.
Collapse
Affiliation(s)
- Rhoda Mae C Simora
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, 36849, USA
- College of Fisheries and Ocean Sciences, University of the Philippines Visayas, Miagao, Iloilo, 5023, Philippines
| | - Wenwen Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, 36849, USA
| | - Michael Coogan
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, 36849, USA
| | - Nour El Husseini
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, 36849, USA
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, 20742, USA
| | - Jeffery S Terhune
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, 36849, USA
| | - Rex A Dunham
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, 36849, USA
| |
Collapse
|
12
|
Wang S, Xie S, Zhou A, Zhang C, Wen L, Xu G, Zou J. Effects of mixed antimicrobial peptide on the growth performance, antioxidant and immune responses and disease resistance of Pengze crucian carp (Carassius auratus var. Pengze). FISH & SHELLFISH IMMUNOLOGY 2021; 114:112-118. [PMID: 33905842 DOI: 10.1016/j.fsi.2021.04.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Antimicrobial peptides have broad-spectrum antibacterial properties and low drug resistance, and they demonstrate great potential as antibiotic substitutes. In this study, five dietary mixed antimicrobial peptide supplement groups were set and fed to Pengze crucian carp for 10 weeks. The 6 groups were G0 (control group) and 5 additional groups: G1 (100 mg/kg), G2 (200 mg/kg), G3 (400 mg/kg), G4 (800 mg/kg) and G5 (1600 mg/kg). The results showed that the final body weight (FBW), weight gain rate (WGR) and specific growth rate (SGR) of fish in G1 and G2 were higher than those of fish in the control group, and G1 was significantly higher than G0 (P < 0.05). In addition, the FBW, WGR, and SGR of the G3 group were significantly lower than those of the G0 group. The chymotrypsin, lipase and amylase activities of G1 and G2 were significantly upregulated compared with G0 and reached peak values in G1. The activity of T-AOC and SOD in the addition group was higher (except G2 and G4) than that in the control groups, and significantly increased in G3 compared to the control group. The activity of MDA in the addition group was lower than that in the control group (p > 0.05). The expression levels of TLR-4, MYD88 and TNF-α in the three organs of the addition group were higher than those in G0 and reached the peak value in G3 (p < 0.05). Furthermore, the expression levels of TLR-4, MYD88 and TNF-α in the three organs of G3 were significantly lower than those in G0 and lower than those in the other supplemented groups. The expression levels of IL-10 and IL-11 tended to be upregulated after A. hydrophila challenge, and G3 in different organs was significantly higher than that in other supplemented groups and G0. The results of this study show that an appropriate amount of mixed antimicrobial peptides can improve the growth performance and antioxidant and immune capabilities of Pengze crucian carp and can also play a positive role in the treatment of A. hydrophila infection.
Collapse
Affiliation(s)
- Shaodan Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Shaolin Xie
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Aiguo Zhou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Chaonan Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Liufa Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, China.
| | - Guohuan Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| | - Jixing Zou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
13
|
Zhong Z, Luo D, Luo N, Li B, Fu D, Fan L, Li Z, Chen W, Mao H. Serum Hepcidin-25 and Risk of Mortality in Patients on Peritoneal Dialysis. Front Med (Lausanne) 2021; 8:684548. [PMID: 34222290 PMCID: PMC8245702 DOI: 10.3389/fmed.2021.684548] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Increased serum hepcidin-25 level is associated with excess mortality in hemodialysis patients. However, there is a dearth of published information about its predictive effect for survival in patients on peritoneal dialysis (PD). The purpose of this study is to evaluate the association of serum hepcidin-25 with the risk of mortality in PD patients. Methods: Serum hepcidin-25 level was measured using an enzyme-linked immunosorbent assay in a prospective cohort study of PD patients with stored serum samples at baseline. Multivariate linear regression model was used to determine clinical characteristics associated with serum hepcidin-25 concentration. We evaluated the relationship between serum hepcidin-25 and all-cause mortality using a Cox proportional hazards model and the relationship between hepcidin-25 and cardiovascular (CV) and infection-related deaths using competing-risks regression models. Results: In total, 513 PD patients were included in this study. The median serum hepcidin-25 level was 40.9 (17.9-85.9) ng/mL. Body mass index and serum ferritin were positively correlated with serum hepcidin-25 levels. During a median follow-up period of 64.1 months, 122 (24%) patients died, including 61 (50%) CV deaths and 32 (26%) infection-related deaths. In multivariable analysis, patients with the highest tertile of serum hepcidin-25 had a greater risk of all-cause [adjusted hazard ratio (aHR) 1.85, 95% confidence interval (95%CI), 1.14 to 3.00, P = 0.013] and infection-related mortality (adjusted subdistribution hazard ratio [aSHR], 2.61; 95%CI, 1.01 to 6.76, P = 0.049) when compared with those in the second tertile. However, no significant relationship was observed between serum hepcidin-25 and CV mortality. Conclusions: Higher baseline serum hepcidin-25 level was associated with increased risk for all-cause and infection-related mortality in PD patients.
Collapse
Affiliation(s)
- Zhong Zhong
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Dan Luo
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Ning Luo
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Bin Li
- Clinical Trials Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dongying Fu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Li Fan
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Zhijian Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Wei Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Haiping Mao
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| |
Collapse
|
14
|
Ri S, Hwang W, Ri S, Shi W, Han Y, Tang Y, Zhang L, Yan M, Liu G. Cloning, characterization, and transcriptional activity of β-actin promoter of African catfish (Clarias gariepinus). Mol Biol Rep 2021; 48:2561-2571. [PMID: 33829356 DOI: 10.1007/s11033-021-06306-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/19/2021] [Indexed: 11/25/2022]
Abstract
Selection of suitable promoters is crucial for the efficient expression of exogenous genes in transgenic animals. Although one of the most effective promoters, the β-actin promoter, has been widely studied in fish species, it still remains unknown in the economical important African catfish (Clarias gariepinus). In this study, the β-actin promoter of African catfish (cgβ-actinP) was cloned and characterized. In addition, recombinant plasmid pcgβ-actinP-EGFP with enhanced green fluorescent protein (GFP) gene as the reporter gene was constructed to verify the transcriptional activity. We obtained a cgβ-actinP fragment length of 1405 bp, consisting 104 bp of the 5' proximal promoter, 96 bp of the first exon, and 1205 bp of the first intron. Similar to those of other fish species, cgβ-actinP contains three key transcription regulatory elements (CAAT box, CArG motif, and TATA box). GFP-specific fluorescent signals were detected in chicken embryonic fibroblasts cells (DF-1 cells) transfected with pcgβ-actinP-EGFP, which was approximately 1.11 times of the positive control. In addition, GFP was effectively expressed in zebrafish larvae microinjected with linearized cgβ-actinP-EGFP, with expression rate reaching approximately 49.84%. Our data indicate that cgβ-actinP could be a potential candidate promoter in the practice of constructing "all fish" transgenic fish.
Collapse
Affiliation(s)
- Sanghyok Ri
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
- College of Life Science, Kim Hyong Jik University of Education, Pyongyang, 99903, Democratic People's Republic of Korea
| | - Wenho Hwang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Sangryong Ri
- Faculty of Chemistry, Kim II Sung University, Pyongyang, 99903, Democratic People's Republic of Korea
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Lining Zhang
- Zhejiang Mariculture Research Institute, Wenzhou, 325005, PR China
| | - Maocang Yan
- Zhejiang Mariculture Research Institute, Wenzhou, 325005, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
15
|
Yuan J, Zheng Y, Gu Z. Effects of cypermethrin on the hepatic transcriptome and proteome of the red claw crayfish Cherax quadricarinatus. CHEMOSPHERE 2021; 263:128060. [PMID: 33297066 DOI: 10.1016/j.chemosphere.2020.128060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/05/2020] [Accepted: 08/17/2020] [Indexed: 06/12/2023]
Abstract
Cypermethrin (CYP) is a synthetic pyrethroid broadly used for pest control, however, it is extremely toxic to aquatic organisms. To assess the toxicity of CYP in red claw crayfish Cherax quadricarinatus, transcriptional and proteomic approaches combining two-dimensional polyacrylamide gel electrophoresis and tandem mass spectrometry were used to compare the hepatic expression profiles. A total of 41,349 unigenes and 8839 differentially expressed genes (DEGs) were obtained, which were enriched in the process. The category of 779 (0.625 ng L-1 CYP vs Con), 1963 (1.25 vs Con), and 2066 (1.25 vs 0.625) DEGs were screened. All findings suggested that CYP can induce antioxidant and biotransformation modulation variations in C. quadricarinatus to resist immunotoxicity and oxidative damages. The category of 196 (0.625 ng L-1 CYP vs Con) specific proteins were differentially expressed: 24 proteins were upregulated, and 20 proteins were downregulated relative to CYP. Protein identification indicated the KEGG pathways of the human immunodeficiency virus 1 infection, insulin signaling pathway, and influenza A enriched. From the differential expression of the selected nine proteins, the increased Loc113824800, Rps19, Atp2, Rps10, Hsp40, Brafldraft_124327, and the decreased Loc117331934, Loc113213835, and Loc106806551 revealed. While for the verification of the eight genes in transcriptome and the above nine genes in proteomic, specifically, gpx5, ggt, loc106458463, chelonianin decreased in the 0.625 ng L-1 CYP group. The transcripts of loc113816050, akr1d1 and gst, chelonianin and loc108675455 decreased and increased in the 1.25 ng L-1 CYP group, respectively. The present study reflects the overall change in cellular structure and metabolism related to the resistance of pyrethroid insecticides.
Collapse
Affiliation(s)
- Julin Yuan
- Zhejiang Institute of Freshwater Fisheries, Freshwater Fishery Healthy Breeding Laboratory of Ministry of Agriculture, Huzhou, Zhejiang, 313001, China
| | - Yao Zheng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Evironment Monitoring Center of Lower Reaches of Yangtze River, Ministry of Agriculture/Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors(Wuxi), Ministry of Agriculture/Wuxi Fishery College, Nanjing Agricultural University, Wuxi, Jiangsu, 214081, China
| | - Zhimin Gu
- Zhejiang Institute of Freshwater Fisheries, Freshwater Fishery Healthy Breeding Laboratory of Ministry of Agriculture, Huzhou, Zhejiang, 313001, China.
| |
Collapse
|
16
|
Chang CC, Lu YC, Wang CC, Ko TL, Chen JR, Wang W, Chen YL, Wang YW, Chang TH, Hsu HF, Houng JY. Antrodia cinnamomea Extraction Waste Supplementation Promotes Thermal Stress Tolerance and Tissue Regeneration Ability of Zebrafish. Molecules 2020; 25:molecules25184213. [PMID: 32937928 PMCID: PMC7571120 DOI: 10.3390/molecules25184213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/08/2020] [Accepted: 09/12/2020] [Indexed: 12/11/2022] Open
Abstract
Antrodia cinnamomea (AC) has been shown to have anti-inflammatory, anti-tumor, and immunomodulation activities. It is estimated that hundreds of metric tons of AC extraction waste (ACEW) are produced per year in Taiwan. This study aims to assess the feasibility of applying ACEW as feed supplement in the aquaculture industry. ACEW significantly inhibited the growth of microorganisms in the water tank, by around 39.4% reduction on the fifth day with feed supplemented of 10% ACEW. The feed conversion efficiency of zebrafish with 10% ACEW supplementation for 30 days was 1.22-fold compared to that of the control. ACEW dramatically improved the tolerances of zebrafish under the heat and cold stresses. When at water temperature extremes of 38 °C or 11 °C, compared to the 100% mortality rate in the control group, the 10% ACEW diet group still had 91.7% and 83.3% survival rates, respectively. In a caudal fin amputation test, the fin recovery of zebrafish was increased from 68.4% to 93% with 10% ACEW diet after 3-week regeneration. ACEW effectively down-regulated the gene expression of TNF-α, IL-1β, IL-6, and IL-10, and up-regulated the gene expression of IL-4/13A. Additionally, the supplement of ACEW in the feed can maintain and prevent the fish’s body weight from dropping too much under enteritis. Taken together, ACEW has beneficial potential in aquaculture.
Collapse
Affiliation(s)
- Chi-Chang Chang
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (C.-C.C.); (Y.-C.L.); (C.-C.W.); (T.-L.K.)
- Department of Obstetrics & Gynecology, E-Da Hospital, Kaohsiung 82445, Taiwan;
| | - Yung-Chuan Lu
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (C.-C.C.); (Y.-C.L.); (C.-C.W.); (T.-L.K.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, E-Da Hospital, Kaohsiung 82445, Taiwan
| | - Chih-Chun Wang
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (C.-C.C.); (Y.-C.L.); (C.-C.W.); (T.-L.K.)
- Department of Otolaryngology, E-Da Hospital, Kaohsiung 82445, Taiwan
| | - Tsui-Ling Ko
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (C.-C.C.); (Y.-C.L.); (C.-C.W.); (T.-L.K.)
| | - Jung-Ren Chen
- Department of Biological Science and Technology, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (J.-R.C.); (W.W.)
| | - Wei Wang
- Department of Biological Science and Technology, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (J.-R.C.); (W.W.)
| | - Ya-Ling Chen
- Department of Obstetrics & Gynecology, E-Da Hospital, Kaohsiung 82445, Taiwan;
| | - Yu-Wen Wang
- Department of Nutrition, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (Y.-W.W.); (H.-F.H.)
| | - Tzu-Hsien Chang
- Department of Chemical Engineering, I-Shou University, Kaohsiung 82445, Taiwan;
| | - Hsia-Fen Hsu
- Department of Nutrition, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (Y.-W.W.); (H.-F.H.)
| | - Jer-Yiing Houng
- Department of Nutrition, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (Y.-W.W.); (H.-F.H.)
- Department of Chemical Engineering, I-Shou University, Kaohsiung 82445, Taiwan;
- Correspondence: ; Tel.: +886-7-6151100 (ext. 7915)
| |
Collapse
|
17
|
Ghodsi Z, Kalbassi MR, Farzaneh P, Mobarez AM, Beemelmanns C, Amiri Moghaddam J. Immunomodulatory function of antimicrobial peptide EC-Hepcidin1 modulates the induction of inflammatory gene expression in primary cells of Caspian Trout (Salmo trutta caspius Kessler, 1877). FISH & SHELLFISH IMMUNOLOGY 2020; 104:55-61. [PMID: 32473358 DOI: 10.1016/j.fsi.2020.05.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/08/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Hepcidins, a group of antimicrobial peptides (AMPs), play a key role in the innate immune system of fishes and act against different pathogens. In this study, antimicrobial and immune-inflammatory activity of a synthetic EC-hepcidin1, previously identified from orange-spotted grouper, were evaluated. EC-hepcidin1 showed weak activity against the zoonotic fish pathogen Streptococcus iniae (MIC 100 μg mL-1 and MBC 150 μg mL-1). To study the effect of AMPs in general, and EC-hepcidin1 in particular, a primary cell culture (SC) from the fin tissue of the Caspian Trout (Salmo trutta caspius) was established. The neutral Red method on SC cells revealed that EC-hepcidin1 has no or very low cytotoxic properties. Treatment of cells with either EC-hepcidin1 (150 μg mL-1) or fish pathogen Streptococcus iniae (MOI = 10) and a mixture of both resulted in the up-regulation of gene expression of MHC-UBA, IL-6, and TNFα indicating the modulatory function on inflammatory processes. These findings indicate that EC-hepcidin1 might act as a candidate for modulation of the innate immune system in S. iniae-based infection.
Collapse
Affiliation(s)
- Zohreh Ghodsi
- Department of Aquaculture, Marine Sciences Faculty, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Kalbassi
- Department of Aquaculture, Marine Sciences Faculty, Tarbiat Modares University, Tehran, Iran.
| | - Parvaneh Farzaneh
- Human and Animal Cell Bank, Iranian Biological Resource Center, ACECR, Tehran, Iran
| | - Ashraf Mohebati Mobarez
- Department of Bacteriology, Medical Sciences Faculty, Tarbiat Modares University, Tehran, Iran
| | - Christine Beemelmanns
- Leibniz Institute for Natural Product Research and Infection Biology e.V. Hans-Knöll-Institute (HKI), Jena, Germany
| | - Jamshid Amiri Moghaddam
- Leibniz Institute for Natural Product Research and Infection Biology e.V. Hans-Knöll-Institute (HKI), Jena, Germany.
| |
Collapse
|
18
|
Shen Y, Liang W, Lin Y, Yang H, Chen X, Feng P, Zhang B, Zhu J, Zhang Y, Luo H. Single molecule real-time sequencing and RNA-seq unravel the role of long non-coding and circular RNA in the regulatory network during Nile tilapia (Oreochromis niloticus) infection with Streptococcus agalactiae. FISH & SHELLFISH IMMUNOLOGY 2020; 104:640-653. [PMID: 32544555 DOI: 10.1016/j.fsi.2020.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The tilapia aquaculture industry is facing heavy economic losses due to Streptococcus agalactiae (S. agalactiae) infections. While progress has been made in past years, the lack of a high-quality tilapia genome and transcript annotations makes systematic and comprehensive exploration for a non-coding RNA regulatory network associated with the infection process unfeasible, and it stunts further research focused on disease defense and treatment. Herein, single molecular real time sequencing (SMRT-Seq) and RNA-seq data were utilized to generate a high-quality transcript annotation. In addition, Changes in mRNA and non-coding RNA expression were also analyzed during a S. agalactiae infection in tilapia. FINDINGS In total, 16.79 Gb of clean data were obtained by sequencing on six SMRT cells, with 712,294 inserts (326,645 full-length non-chimeric reads and 354,188 non-full-length reads). A total of 197,952 consensus transcripts were obtained. Additionally, 55,857 transcript sequences were acquired, with 12,297 previously annotated and 43,560 newly identified transcripts. To further examine the immune response in Oreochromis niloticus following a S. agalactiae infection, a total of 470.62 Gb of clean data was generated by sequencing a library containing 18 S. agalactiae infected tilapia samples. Of the identified genes, 9911 were newly exploited, of which 7102 were functional annotated. Furthermore, 7874 mRNAs, 1281 long non-coding RNAs (out of 21,860 long non-coding RNAs), and 61 circular RNAs (out of 1026 circular RNAs) were found to be differentially expressed during infection, with the 1026 circRNAs not previously identified in tilapia. Moreover, k-means clustering and WGCNA analyses revealed that the immune response of tilapia to a S. agalactiae infection can be divided into three stages: cytokines driven rapid immune response, energy metabolism promotion, and the production of lysosomes and phagosomes. During this response, the head kidney and spleen have synergistic effects, while maintaining independent characteristics. Finally, lncRNA-mRNA (trans and cis), lncRNA-miRNA-mRNA, and circRNA-miRNA-mRNA regulatory networks were constructed and revealed that non-coding RNA is involved in the regulation of immune-related genes. CONCLUSIONS This study generated a greatly-improved transcript annotation for tilapia using long-read PacBio sequencing technology, and revealed the presence of a regulatory network comprised of non-coding RNAs in Nile tilapia infected with S. agalactiae.
Collapse
Affiliation(s)
- Yudong Shen
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Wanwen Liang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi, 530021, PR China
| | - Yong Lin
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi, 530021, PR China
| | - Huizan Yang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi, 530021, PR China
| | - Xiaohan Chen
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi, 530021, PR China
| | - Pengfei Feng
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi, 530021, PR China
| | - Bin Zhang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi, 530021, PR China
| | - Jiajie Zhu
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi, 530021, PR China
| | - Yongde Zhang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi, 530021, PR China.
| | - Honglin Luo
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi, 530021, PR China.
| |
Collapse
|
19
|
Phan-Aram P, Mahasri G, Kayansamruaj P, Amparyup P, Srisapoome P. Immune Regulation, but Not Antibacterial Activity, Is a Crucial Function of Hepcidins in Resistance against Pathogenic Bacteria in Nile Tilapia ( Oreochromis niloticus Linn.). Biomolecules 2020; 10:biom10081132. [PMID: 32751990 PMCID: PMC7464455 DOI: 10.3390/biom10081132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
In this study, the functions of a recombinant propeptide (rProOn-Hep1) and the synthetic FITC-labelled mature peptides sMatOn-Hep1 and sMatOn-Hep2 were analyzed. Moreover, sMatOn-Hep1 and sMatOn-Hep2 were mildly detected in the lymphocytes of peripheral blood mononuclear cells (PBMCs) and strongly detected in head kidney macrophages. The in vitro binding and antibacterial activities of these peptides were slightly effective against several pathogenic bacteria. Immune regulation by sMatOn-Hep1 was also analyzed, and only sMatOn-Hep1 significantly enhanced the phagocytic index in vitro (p < 0.05). Interestingly, intraperitoneal injection of sMatOn-Hep1 (10 or 100 µg) significantly elevated the phagocytic activity, phagocytic index, and lysozyme activity and clearly decreased the iron ion levels in the livers of the treated fish (p < 0.05). Additionally, sMatOn-Hep1 enhanced the expression levels of CC and CXC chemokines, transferrin and both On-Hep genes in the liver, spleen and head kidney, for 1–96 h after injection, but did not properly protect the experimental fish from S. agalactiae infection after 7 days of treatment. However, the injection of S. agalactiae and On-Heps indicated that 100 μg of sMatOn-Hep1 was very effective, while 100 μg of rProOn-Hep1 and sMatOn-Hep2 demonstrated moderate protection. Therefore, On-Hep is a crucial iron-regulating molecule and a key immune regulator of disease resistance in Nile tilapia.
Collapse
Affiliation(s)
- Pagaporn Phan-Aram
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, Bangkok 10900, Thailand; (P.P.-A.); (P.K.)
| | - Gunanti Mahasri
- Department of Fish Health Management and Aquaculture, Faculty of Fisheries and Marine, Universitas Airlangga, Campus C Mulyorejo, Surabaya 60115, Indonesia;
| | - Pattanapon Kayansamruaj
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, Bangkok 10900, Thailand; (P.P.-A.); (P.K.)
| | - Piti Amparyup
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand;
| | - Prapansak Srisapoome
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, Bangkok 10900, Thailand; (P.P.-A.); (P.K.)
- Correspondence:
| |
Collapse
|
20
|
Hu Y, Kurobe T, Liu X, Zhang YA, Su J, Yuan G. Hamp Type-1 Promotes Antimicrobial Defense via Direct Microbial Killing and Regulating Iron Metabolism in Grass Carp ( Ctenopharyngodon idella). Biomolecules 2020; 10:biom10060825. [PMID: 32481513 PMCID: PMC7356000 DOI: 10.3390/biom10060825] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/24/2020] [Accepted: 05/26/2020] [Indexed: 12/18/2022] Open
Abstract
Hepcidin is an antimicrobial peptide and regulator of iron homeostasis which has two isoforms in most fishes and some mammals. Previous studies have reported that the two hepcidin isoforms have different roles. Hamp type-1 plays a regulatory role in iron metabolism and hamp type-2 mostly performs an antimicrobial role. In this study, we found that Ctenopharyngodon idella (C. idella) have only one hepcidin isoform (hamp type-1), which showed both broad-spectrum antibacterial and iron regulatory functions. C. idella hepcidin mature peptide (hepcidin-25) and truncated peptide (hepcidin-20) exhibited bactericidal activities against both Gram-positive and Gram-negative bacteria in a dose-dependent manner in part through membrane rupture and binding to bacterial genomic DNA. The data from challenge tests demonstrated that the administration of hepcidin-25 significantly reduced mortality rates of C. idella by A. hydrophila infection, probably due to direct bactericidal activities of the peptide and a reduction of iron content in the fish serum. In addition, a comparison between hepcidin-20 and -25 suggests that the N terminal 5 amino acids play a critical role in reducing iron content in fish serum. Our findings revealed an important role of hamp type-1 in maintaining iron homeostasis and fighting against bacterial infections, suggesting the hepcidin has implications for the prevention and control of bacterial infection in aquaculture.
Collapse
Affiliation(s)
- Yazhen Hu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Y.H.); (X.L.); (Y.-A.Z.); (J.S.)
- Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan 430070, China
| | - Tomofumi Kurobe
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
| | - Xiaoling Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Y.H.); (X.L.); (Y.-A.Z.); (J.S.)
- Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan 430070, China
| | - Yong-An Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Y.H.); (X.L.); (Y.-A.Z.); (J.S.)
- Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan 430070, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Y.H.); (X.L.); (Y.-A.Z.); (J.S.)
- Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan 430070, China
| | - Gailing Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Y.H.); (X.L.); (Y.-A.Z.); (J.S.)
- Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan 430070, China
- Correspondence: ; Tel./Fax: +86-27-87285211
| |
Collapse
|
21
|
Shirdel I, Kalbassi MR, Hosseinkhani S, Paknejad H, Wink M. Cloning, characterization and tissue-specific expression of the antimicrobial peptide hepcidin from caspian trout (Salmo caspius) and the antibacterial activity of the synthetic peptide. FISH & SHELLFISH IMMUNOLOGY 2019; 90:288-296. [PMID: 31071462 DOI: 10.1016/j.fsi.2019.05.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/25/2019] [Accepted: 05/06/2019] [Indexed: 06/09/2023]
Abstract
Antimicrobial peptides have a wide range of antimicrobial activity and widely occur in different organisms including mollusks, crustaceans and vertebrates. Hepcidins are a group of cysteine-rich antimicrobial peptides that are active against a variety of pathogens including gram-positive and gram-negative bacteria, as well as viruses. In this study, the hepcidin gene of Caspian trout (CtHep) was identified and characterized. Our results showed that CtHep cDNA has a 267-bp Open Reading Frame (ORF), which is translated to 88 amino acids. The CtHep was classified in the HAMP1 class of hepcidins. Comparison of DNA and cDNA sequences showed that CtHep has 3 exons and 2 introns. The signal, prodomain and mature part of CtHep have 24, 39 and 25 amino acids, respectively. The mature peptide has a molecular weight of 2881.43 Da and a theoretical isoelectric point of 8.53. The expression of CtHep mRNA was detected in different tissues of healthy and infected fish. CtHep expression in the liver, head kidney, spleen and skin was significantly enhanced after bacterial challenge. Expression of CtHep in different embryonic development stages was also substantial. Antibacterial activity of synthetic CtHep peptides was investigated against a number of Gram-positive and Gram-negative bacteria. CtHep inhibited some pathogenic bacteria such as Streptococcus iniae and Aeromonas hydrophila. In the in vivo experiment, CtHep upregulated the cytokines IL-6 and TNF-α in both kidney and spleen tissues after 24 h of the peptide injection. In conclusion, our study showed that CtHep plays an important role in the immune system of Caspian trout and also in the embryonic stages. Moreover, CtHep peptide has a potential to be used as an antimicrobial therapeutic agent as well as an immunostimulant in aquaculture.
Collapse
Affiliation(s)
- Iman Shirdel
- Department of Fisheries, Marine Sciences Faculty, Tarbiat Modares University, Noor, Iran.
| | - Mohammad Reza Kalbassi
- Department of Fisheries, Marine Sciences Faculty, Tarbiat Modares University, Noor, Iran.
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Hamed Paknejad
- Department of Fisheries, Division of Genetics and Physiology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
22
|
Huang X, Hu B, Yang X, Gong L, Tan J, Deng L. The putative mature peptide of piscidin-1 modulates global transcriptional profile and proliferation of splenic lymphocytes in orange-spotted grouper (Epinephelus coioides). FISH & SHELLFISH IMMUNOLOGY 2019; 86:1035-1043. [PMID: 30592965 DOI: 10.1016/j.fsi.2018.12.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/21/2018] [Accepted: 12/23/2018] [Indexed: 06/09/2023]
Abstract
Piscidins are important components in protecting microbial infections in teleost. The present study purified and identified a truncated peptide, whose sequence was very close to that of putative mature peptide of epinecidin-1 (piscidin-1) in orange-spotted grouper (Epinephelus coioides), Epi-1 (also named as short form of ecPis-1, ecPis-1S). The immunomodulatory effects of ecPis-1S on splenic lymphocytes of orange-spotted grouper were explored in vitro. The transcriptome study was carried out by De novo transcriptome sequencing (RNA-Seq) in splenic lymphocytes of orange-spotted grouper. Regarding the profiles of gene expressions, 2994 genes were up-regulated and 2679 genes were down-regulated in the splenic lymphocytes stimulated by ecPis-1S. In the case of differential expression genes, 330 genes were involved in immune related pathways. Among them, 34 genes were involved in T cell receptor signaling pathway, 31 genes in natural killer cell mediated cytotoxicity and 23 genes in leukocyte transendothelial migration, respectively. Immune-related genes selected for qRT-PCR verification, such as interleukin-1β (il-1b), tumor necrosis factor α (tnfa), T cell antigen receptor (tcr), major histocompatibility complex class I (mhc I), and mhc II were significantly up-regulated by ecPis-1S (p < 0.05). ecPis-1S could significantly enhance the proliferation of splenic lymphocytes of orange-spotted grouper in vitro (p < 0.05). In addition, the result of qRT-PCR revealed that ecPis-1S also significantly up-regulated cell cycle-related genes, including cyclin A (cyca), cyclin-dependent kinase 2 (cdk2), cdk4, cell division cycle protein 6 (cdc6), and transforming growth factor β (tgfb) (p < 0.05), which suggested that ecPis-1S promoted the proliferation of lymphocytes by activating cell division cycle. In conclusion, the results indicated that the mature peptide of piscidin-1 in orange-spotted grouper could act as immune modulator and play an important role in regulation of the immune response in fish.
Collapse
Affiliation(s)
- Xiazi Huang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanology, Shenzhen University, Shenzhen, Guangdong, 518055, PR China
| | - Bochao Hu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanology, Shenzhen University, Shenzhen, Guangdong, 518055, PR China
| | - Xiaodong Yang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanology, Shenzhen University, Shenzhen, Guangdong, 518055, PR China
| | - Licai Gong
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanology, Shenzhen University, Shenzhen, Guangdong, 518055, PR China
| | - Jingyun Tan
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanology, Shenzhen University, Shenzhen, Guangdong, 518055, PR China
| | - Li Deng
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanology, Shenzhen University, Shenzhen, Guangdong, 518055, PR China.
| |
Collapse
|
23
|
Chen J, Nie L, Chen J. Mudskipper (Boleophthalmus pectinirostris) Hepcidin-1 and Hepcidin-2 Present Different Gene Expression Profile and Antibacterial Activity and Possess Distinct Protective Effect against Edwardsiella tarda Infection. Probiotics Antimicrob Proteins 2019; 10:176-185. [PMID: 29151250 DOI: 10.1007/s12602-017-9352-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Hepcidins are small cysteine-rich antimicrobial peptides that play an important role in fish immunity against pathogens. Most fish species have two or more hepcidin homologs that have distinct functions. This study investigated the immune functions of mudskipper (Boleophthalmus pectinirostris) hepcidin-1 (BpHep-1) and hepcidin-2 (BpHep-2) in vitro and in vivo. Upon infection with Edwardsiella tarda, the expression of BpHep-1 and BpHep-2 mRNA in immune tissues was significantly upregulated, but the expression profiles were different. Chemically synthesized BpHep-1 and BpHep-2 mature peptides exhibited selective antibacterial activity against various bacterial species, and BpHep-2 exhibited a stronger antibacterial activity and broader spectrum than BpHep-1. BpHep-1 and BpHep-2 both inhibited the growth of E. tarda in vitro, with the latter being more effective than the former. In addition, both peptides induced hydrolysis of purified bacterial genomic DNA (gDNA) or gDNA in live bacteria. In vivo, an intraperitoneal injection of 1.0 μg/g BpHep-2 significantly improved the survival rate of mudskippers against E. tarda infection compared with 0.1 μg/g BpHep-2 or 0.1 and 1.0 μg/g BpHep-1. Similarly, only BpHep-2 treatment effectively reduced the tissue bacterial load in E. tarda-infected mudskippers. Furthermore, treatment with 1.0 or 10.0 μg/ml BpHep-2 promoted the phagocytic and bactericidal activities of mudskipper monocytes/macrophages (MO/MФ). However, only the highest dose (10.0 μg/ml) of BpHep-1 enhanced phagocytosis, and BpHep-1 exerted no obvious effects on bactericidal activity. In conclusion, BpHep-2 is a stronger bactericide than BpHep-1 in mudskippers, and acts not only by directly killing bacteria but also through an immunomodulatory function on MO/MФ.
Collapse
Affiliation(s)
- Jie Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China.,Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, China
| | - Li Nie
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China. .,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
24
|
Wu SH, Lin HJ, Lin WF, Wu JL, Gong HY. A potent tilapia secreted granulin peptide enhances the survival of transgenic zebrafish infected by Vibrio vulnificus via modulation of innate immunity. FISH & SHELLFISH IMMUNOLOGY 2018; 75:74-90. [PMID: 29408220 DOI: 10.1016/j.fsi.2018.01.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/22/2017] [Accepted: 01/26/2018] [Indexed: 06/07/2023]
Abstract
Progranulin (PGRN) is a multi-functional growth factor that mediates cell proliferation, survival, migration, tumorigenesis, wound healing, development, and anti-inflammation activity. A novel alternatively spliced transcript from the short-form PGRN1 gene encoding a novel, secreted GRN peptide composed of 20-a.a. signal peptide and 41-a.a. GRN named GRN-41 was identified to be abundantly expressed in immune-related organs including spleen, head kidney, and intestine of Mozambique tilapia. The expression of GRN-41 and PGRN1 were further induced in the spleen of tilapia challenged with Vibrio vulnificus at 3 h post infection (hpi) and 6 hpi, respectively. In this study, we established three transgenic zebrafish lines expressing the secreted GRN-41, GRN-A and PGRN1 of Mozambique tilapia specifically in muscle. The relative percent of survival (RPS) was enhanced in adult transgenic zebrafish expressing tilapia GRN-41 (68%), GRN-A (32%) and PGRN1 (36%) compared with control transgenic zebrafish expressing AcGFP after challenge with V. vulnificus. It indicates tilapia GRN-41 is a potent peptide against V. vulnificus infection. The secreted tilapia GRN-41 can induce the expression of innate immune response-related genes, such as TNFa, TNFb, IL-8, IL-1β, IL-6, IL-26, IL-21, IL-10, complement C3, lysozyme (Lyz) and the hepatic antimicrobial peptide hepcidin (HAMP), in adult transgenic zebrafish without V. vulnificus infection. The tilapia GRN-41 peptide can enhance the innate immune response by further elevating TNFb, IL-1β, IL-8, IL-6, and HAMP expression in early responsive time to the V. vulnificus challenge in transgenic zebrafish. Our results suggest that the novel GRN-41 peptide generated from alternative splicing of the tilapia PGRN1 gene is a potent peptide that defends against V. vulnificus in the transgenic zebrafish model by modulation of innate immunity.
Collapse
Affiliation(s)
- Sheng-Han Wu
- Division of Life Science, Department of Aquaculture, College of Life Sciences, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Hong-Jie Lin
- Division of Life Science, Department of Aquaculture, College of Life Sciences, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Wen-Fu Lin
- Division of Life Science, Department of Aquaculture, College of Life Sciences, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Jen-Leih Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan; Department of Life Sciences and Biotechnology, College of Life Sciences, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Hong-Yi Gong
- Division of Life Science, Department of Aquaculture, College of Life Sciences, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan.
| |
Collapse
|
25
|
Wei X, Sarath Babu V, Lin L, Hu Y, Zhang Y, Liu X, Su J, Li J, Zhao L, Yuan G. Hepcidin protects grass carp (Ctenopharyngodon idellus) against Flavobacterium columnare infection via regulating iron distribution and immune gene expression. FISH & SHELLFISH IMMUNOLOGY 2018; 75:274-283. [PMID: 29452250 DOI: 10.1016/j.fsi.2018.02.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/09/2018] [Accepted: 02/11/2018] [Indexed: 06/08/2023]
Abstract
Columnaris disease (CD) caused by Flavobacterium columnare (F. columnare) is lack of knowledge on effective treatment measures. Bacterial pathogens require iron as an essential nutrient to infect the host. While hepcidin acts as a master regulator in iron metabolism, its contribution to host defense is emerging as complex and multifaceted. In vitro, recombinant Ctenopharyngodon idellus (C. idellus) hepcidin (CiHep) and synthetic CiHep both showed the ability to increase the expression of hepcidin and ferritin in C. idellus kidney cells, especially the recombinant CiHep. In vivo, recombinant CiHep improved the survival rate of C. idellus challenged with F. columnare. In addition, the fish fed diet containing recombinant CiHep (group H-1) had a higher survival rate than other pretreatment groups. The study showed that recombinant CiHep regulated iron metabolism causing iron redistribution, decreasing serum iron levels and increasing iron accumulation in the hepatopancreas. Moreover, the expression of iron-related genes was upregulated in various degrees at a different time except for group H-1. Immune-related genes were also evaluated, showing higher expression in the groups pretreated with CiHep at an early stage of infection. Of note, a clear upregulation of more immune genes occurred in the groups pretreated with recombinant CiHep than that pretreated with synthetic CiHep in the late stage of infection. In conclusion, the recombinant CiHep has a protective effect on the host response to bacterial pathogens. We speculate that hepcidin protects C. idellus against F. columnare infection via regulating the iron distribution and immune gene expression.
Collapse
Affiliation(s)
- Xiaolei Wei
- Department of Aquatic Animal Medicines, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - V Sarath Babu
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Li Lin
- Department of Aquatic Animal Medicines, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China
| | - Yazhen Hu
- Department of Aquatic Animal Medicines, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, China
| | - Yulei Zhang
- Department of Aquatic Animal Medicines, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiaoling Liu
- Department of Aquatic Animal Medicines, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, China
| | - Jianguo Su
- Department of Aquatic Animal Medicines, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, China
| | - Jun Li
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; School of Biological Sciences, Lake Superior State University, Sault Ste. Marie, MI 49783, USA; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China
| | - Lijuan Zhao
- Department of Aquatic Animal Medicines, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China.
| | - Gailing Yuan
- Department of Aquatic Animal Medicines, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, China.
| |
Collapse
|
26
|
Su BC, Lai YW, Chen JY, Pan CY. Transgenic expression of tilapia piscidin 3 (TP3) in zebrafish confers resistance to Streptococcus agalactiae. FISH & SHELLFISH IMMUNOLOGY 2018; 74:235-241. [PMID: 29317307 DOI: 10.1016/j.fsi.2018.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/06/2017] [Accepted: 01/04/2018] [Indexed: 06/07/2023]
Abstract
To study the biological role of tilapia piscidin 3 (TP3) in Streptococcus agalactiae infection in vivo, TP3/DsRed overexpressing transgenic zebrafish were generated. Under normal growth conditions, TP3/DsRed transgenic zebrafish exhibited an orange-red body color, without any other obvious abnormalities. However, when compared to wild type fish, TP3/DsRed transgenic zebrafish were resistant to S. agalactiae infection. After infection, the TP3 overexpressing fish exhibited higher expression of Toll-like receptor 4a (TLR4a), interleukin (IL)-10, IL-22, and C3b. Furthermore, TP3/DsRed transgenic zebrafish exhibited reduced induction of proinflammatory cytokines, including TNFα, IL-1β, IL-21, MyD88, and nuclear factor (NF)-κB. Taken together, our data show that TP3 overexpression in zebrafish can effectively suppress proinflammatory responses and enhance production of C3b. Together, these actions are conducive to the resolution of inflammation and bacterial clearance. We further postulate that TP3 may exert its anti-inflammatory effects by enhancing TLR4a-mediated negative regulation of NF-κB.
Collapse
Affiliation(s)
- Bor-Chyuan Su
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Jiaushi, Ilan, Taiwan
| | - Yung-Wei Lai
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Jiaushi, Ilan, Taiwan
| | - Jyh-Yih Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Jiaushi, Ilan, Taiwan.
| | - Chieh-Yu Pan
- Department and Graduate Institute of Aquaculture, National Kaohsiung Marine University, Kaohsiung, Taiwan 811, Taiwan.
| |
Collapse
|
27
|
Zhu J, Fu Q, Ao Q, Tan Y, Luo Y, Jiang H, Li C, Gan X. Transcriptomic profiling analysis of tilapia (Oreochromis niloticus) following Streptococcus agalactiae challenge. FISH & SHELLFISH IMMUNOLOGY 2017; 62:202-212. [PMID: 28111359 DOI: 10.1016/j.fsi.2017.01.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/11/2017] [Accepted: 01/15/2017] [Indexed: 06/06/2023]
Abstract
Innate immune system is the primary defense mechanism against pathogen infection in teleost, which are living in pathogen-rich aquatic environment. It has been long hypothesized that the disease resistance in teleost are strongly correlated to the activities of innate immune genes. Tilapia is an important economical fish around the world, especially in China, where the production accounts for nearly half of the global production. Recently, S. agalactiae has become one of the most serious bacterial diseases in southern China, resulted in high cumulative mortality and economic loss to tilapia industry. Therefore, we sought here to characterize the expression profiles of tilapia against S. agalactiae infection at whole transcriptome level by RNA-seq technology. A total of 2822 genes were revealed significantly expressed in tilapia spleen with a general trend of induction. Notably, most of the genes were rapidly the most induced at the early timepoint. The significantly changed genes highlighted the function of pathogen attachment and recognition, antioxidant/apoptosis, cytoskeletal rearrangement, and immune activation. Collectively, the induced expression patterns suggested the strong ability of tilapia to rapidly recognize the invasive bacteria, and activation of downstream immune signaling pathways to clear the bacteria and prevent the tissue damage and bacteria triggered cell apoptosis. Our results heighted important roles of novel candidate genes which were often missed in previous tilapia studies. Further studies are needed to characterize the molecular relationships between key immune genes and disease resistance, and to identify the candidate genes for molecular-assistant selection of disease-resistant broodstock and evaluation of disease prevention and treatment measures.
Collapse
Affiliation(s)
- Jiajie Zhu
- Guangxi Academy of Fishery Sciences, Guangxi Key Lab of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, Guangxi, 530021, China; Guangxi University, Nanning, Guangxi, 530004, China
| | - Qiang Fu
- Guangxi University, Nanning, Guangxi, 530004, China
| | - Qiuwei Ao
- Guangxi Academy of Fishery Sciences, Guangxi Key Lab of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, Guangxi, 530021, China
| | - Yun Tan
- Guangxi Academy of Fishery Sciences, Guangxi Key Lab of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, Guangxi, 530021, China
| | - Yongju Luo
- Guangxi Academy of Fishery Sciences, Guangxi Key Lab of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, Guangxi, 530021, China
| | | | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Xi Gan
- Guangxi Academy of Fishery Sciences, Guangxi Key Lab of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, Guangxi, 530021, China.
| |
Collapse
|
28
|
Chen YB, Hu J, Lyu QJ, Liu LJ, Wen LF, Yang XK, Zhao HH. The effects of Natucin C-Natucin P mixture on blood biochemical parameters, antioxidant activity and non-specific immune responses in tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2016; 55:367-373. [PMID: 27298271 DOI: 10.1016/j.fsi.2016.06.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/03/2016] [Accepted: 06/08/2016] [Indexed: 06/06/2023]
Abstract
Natucin C (NC) and Natucin P (NP) are two kinds of antimicrobial peptides (AMPs). In the present study, the effects of NC-NP mixture on a tilapia species (Oreochromis niloticus) were examined. Animals were fed with either a control diet or one of five AMP-supplemented diets for eight weeks. AMP-supplemented diets contained five increasing levels of NP from G1 to G5 and one level of NC (200 mg/kg). Results showed that fish in the G3, G4 and G5 groups had significantly higher levels of total protein (TP), albumin (ALB) and globulin (GLO) in serum than fish in the control group. Fish fed with G4 and G5 diets exhibited significantly higher high-density lipoprotein cholesterol (HDL-C) levels compared to the control fish. Lipopolysaccharide (LPS) levels in all AMP-supplemented groups were significantly lower than the control. In addition, the total antioxidant capacity (TAOC) and lysozyme (LZM) activities were significantly increased in fish fed with the G3 and G4 diets, respectively compared to the control. The serum malondialdehyde (MDA) levels in fish fed with AMP-supplemented diets were significantly decreased compared to those not supplemented with AMPs. Furthermore, the mRNA expressions of tumor necrosis factor alpha (TNF-α), interleukin-1-beta (IL-1β), gamma interferon (IFN-γ) and heat shock protein 70 (HSP70) in the hepatopancreas, spleen, kidney and gill were measured. Overall, the expression levels were enhanced in an NP dose-dependent and tissue-specific manner. The expressions of four genes in four organs (except IL-1β in spleen, and TNF-α and HSP70 in gill) were significantly upregulated in fish fed with the G5 diet. Fish fed with the G4 diet had increased expression levels of IL-1β in spleen and IFN-γ in kidney. The relative expression levels of TNF-α, IL-1β and HSP70 in the hepatopancreas in fish fed with the G3 diet were significantly upregulated compared to the control. Transcriptional levels of IL-1β and HSP70 in the hepatopancreas, IFN-γ and HSP70 in the kidney and IL-1β in the gills of fish fed with the G2 diet were upregulated. Taken together, our results indicated that the NC-NP mixture can enhance the antioxidant capacity and innate immune ability of O. niloticus, indicating that this mixture might be a potential alternative to antibiotics when used as a feed additive.
Collapse
Affiliation(s)
- Yi-Bin Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Juan Hu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Qing-Ji Lyu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Li-Jie Liu
- Marine Biology Institute & Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, Guangdong Province, PR China
| | - Liu-Fa Wen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Xian-Kuan Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Hui-Hong Zhao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China.
| |
Collapse
|
29
|
Identification of Novel Inflammatory Cytokines and Contribution of Keratinocyte-Derived Chemokine to Inflammation in Response to Vibrio vulnificus Infection in Mice. Inflammation 2016; 38:1864-73. [PMID: 25862020 DOI: 10.1007/s10753-015-0166-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Currently, only tumor necrosis factor alpha (TNF-α) and interleukin family cytokines have been found to be elicited in Vibrio vulnificus (V. vulnificus)-infected animal models and humans. However, multiple other cytokines are also involved in the immune and inflammatory responses to foreign microorganism infection. Antibody array technology, unlike traditional enzyme-linked immunosorbent assay (ELISA), is able to detect multiple cytokines at one time. Therefore, in this study, we examined the proinflammatory cytokine profile in the serum and liver homogenate samples of bacterial-infected mice using antibody array technology. We identified nine novel cytokines in response to V. vulnificus infection in mice. We found that keratinocyte-derived chemokine (KC) was the most elevated cytokine and demonstrated that KC played a very important role in the V. vulnificus infection-elicited inflammatory response in mice, as evidenced by the fact that the blocking of KC by anti-KC antibody reduced hepatic injury in vivo and that KC induced by V. vulnificus infection in AML-12 cells chemoattracted neutrophils. Our findings implicate that KC may serve as a novel diagnostic biomarker and a possible therapeutic target for V. vulnificus infection.
Collapse
|
30
|
Katzenback BA. Antimicrobial Peptides as Mediators of Innate Immunity in Teleosts. BIOLOGY 2015; 4:607-39. [PMID: 26426065 PMCID: PMC4690011 DOI: 10.3390/biology4040607] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/16/2015] [Accepted: 09/17/2015] [Indexed: 12/16/2022]
Abstract
Antimicrobial peptides (AMPs) have been identified throughout the metazoa suggesting their evolutionarily conserved nature and their presence in teleosts is no exception. AMPs are short (18–46 amino acids), usually cationic, amphipathic peptides. While AMPs are diverse in amino acid sequence, with no two AMPs being identical, they collectively appear to have conserved functions in the innate immunity of animals towards the pathogens they encounter in their environment. Fish AMPs are upregulated in response to pathogens and appear to have direct broad-spectrum antimicrobial activity towards both human and fish pathogens. However, an emerging role for AMPs as immunomodulatory molecules has become apparent—the ability of AMPs to activate the innate immune system sheds light onto the multifaceted capacity of these small peptides to combat pathogens through direct and indirect means. Herein, this review focuses on the role of teleost AMPs as modulators of the innate immune system and their regulation in response to pathogens or other exogenous molecules. The capacity to regulate AMP expression by exogenous factors may prove useful in modulating AMP expression in fish to prevent disease, particularly in aquaculture settings where crowded conditions and environmental stress pre-dispose these fish to infection.
Collapse
Affiliation(s)
- Barbara A Katzenback
- Department of Biology, University of Waterloo, 200 University Ave West, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
31
|
The Use of a Liposomal Formulation Incorporating an Antimicrobial Peptide from Tilapia as a New Adjuvant to Epirubicin in Human Squamous Cell Carcinoma and Pluripotent Testicular Embryonic Carcinoma Cells. Int J Mol Sci 2015; 16:22711-34. [PMID: 26393585 PMCID: PMC4613332 DOI: 10.3390/ijms160922711] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 09/09/2015] [Accepted: 09/11/2015] [Indexed: 02/06/2023] Open
Abstract
This study aims to explore the effects and mechanisms of hepcidin, a potential antimicrobial peptide from Tilapia, and epirubicin (Epi), an antineoplastic agent, on the generation of reactive oxygen species (ROS) and link the ROS levels to the reversal mechanisms of multidrug resistance (MDR) by epirubicin and hepcidin in human squamous cell carcinoma SCC15 and human embryonal carcinoma NT2D1 cells. The cells, pretreated with hepcidin, epirubicin, or a combination of these compounds in PEGylated liposomes, were used to validate the molecular mechanisms involved in inhibiting efflux transporters and inducing apoptosis as evaluated by cytotoxicity, intracellular accumulation, mRNA levels, cell cycle distribution, and caspase activity of this combination. We found that hepcidin significantly enhanced the cytotoxicity of epirubicin in liposomes. The co-incubation of epirubicin with hepcidin in liposomes intensified the ROS production, including hydrogen peroxide and superoxide free radicals. Hepcidin significantly increased epirubicin intracellular uptake into NT2D1 and SCC15 cells, as supported by the diminished mRNA expressions of MDR1, MDR-associated protein (MRP) 1, and MRP2. Hepcidin and/or epirubicin in liposomes triggered apoptosis, as verified by the reduced mitochondrial membrane potential, increased sub-G1 phase of cell cycle, incremental populations of apoptosis using annexin V/PI assay, and chromatin condensation. As far as we know, this is the first example showing that PEGylated liposomal TH1-5 and epirubicin gives rise to cell death in human squamous carcinoma and testicular embryonic carcinoma cells through the reduced epirubicin efflux via ROS-mediated suppression of P-gp and MRPs and concomitant initiation of mitochondrial apoptosis pathway. Hence, hepcidin in PEGylated liposomes may function as an adjuvant to anticancer drugs, thus demonstrating a novel strategy for reversing MDR.
Collapse
|
32
|
Chi JR, Liao LS, Wang RG, Jhu CS, Wu JL, Hu SY. Molecular cloning and functional characterization of the hepcidin gene from the convict cichlid (Amatitlania nigrofasciata) and its expression pattern in response to lipopolysaccharide challenge. FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:449-461. [PMID: 25280727 DOI: 10.1007/s10695-014-9996-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 09/23/2014] [Indexed: 06/03/2023]
Abstract
The hepcidin gene is widely expressed in many fish species and functions as an antimicrobial peptide, suggesting that it plays an important role in the innate immune system of fish. In the present study, the Amatitlania nigrofasciata hepcidin gene (AN-hepc) was cloned from the liver and its expression during an immune response was characterized. The results of quantitative PCR and RT-PCR showed that the AN-hepc transcript was most abundant in the liver. The expression of AN-hepc mRNA was significantly increased in the liver, stomach, heart, intestine, gill and muscle but was not significantly altered in the spleen, kidney, brain or skin after lipopolysaccharide challenge. The synthetic AN-hepc peptide showed a wide spectrum of antimicrobial activity in vitro toward gram-positive and gram-negative bacteria. In particular, this peptide demonstrated potent antimicrobial activity against the aquatic pathogens Vibrio alginolyticus, V. parahaemolyticus, V. vulnificus, Aeromonas hydrophila and Streptococcus agalactiae. The in vivo bacterial challenge results demonstrated that the synthetic AN-hepc peptide significantly improved the survival rate of S. agalactiae- and V. vulnificus-infected zebrafish. Taken together, these data indicate an important role for AN-hepc in the innate immunity of A. nigrofasciata and suggest its potential application in aquaculture for increasing resistance to disease.
Collapse
Affiliation(s)
- Jing-Ruei Chi
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
33
|
Masso-Silva JA, Diamond G. Antimicrobial peptides from fish. Pharmaceuticals (Basel) 2014; 7:265-310. [PMID: 24594555 PMCID: PMC3978493 DOI: 10.3390/ph7030265] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/06/2014] [Accepted: 02/18/2014] [Indexed: 12/21/2022] Open
Abstract
Antimicrobial peptides (AMPs) are found widely distributed through Nature, and participate in the innate host defense of each species. Fish are a great source of these peptides, as they express all of the major classes of AMPs, including defensins, cathelicidins, hepcidins, histone-derived peptides, and a fish-specific class of the cecropin family, called piscidins. As with other species, the fish peptides exhibit broad-spectrum antimicrobial activity, killing both fish and human pathogens. They are also immunomodulatory, and their genes are highly responsive to microbes and innate immuno-stimulatory molecules. Recent research has demonstrated that some of the unique properties of fish peptides, including their ability to act even in very high salt concentrations, make them good potential targets for development as therapeutic antimicrobials. Further, the stimulation of their gene expression by exogenous factors could be useful in preventing pathogenic microbes in aquaculture.
Collapse
Affiliation(s)
- Jorge A Masso-Silva
- Department of Pediatrics and Graduate School of Biomedical Sciences, Rutgers New Jersey Medical School, Newark, NJ 07101, USA.
| | - Gill Diamond
- Department of Oral Biology, University of Florida, Box 100424, Gainesville, FL 32610, USA.
| |
Collapse
|
34
|
Lin YH, Peng KC, Pan CY, Wen ZH, Chen JY. Expression characterization and promoter activity analysis of the tilapia (Oreochromis niloticus) myosin light chain 3 promoter in skeletal muscle of fish. Transgenic Res 2014; 23:125-34. [PMID: 24146265 DOI: 10.1007/s11248-013-9758-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 10/02/2013] [Indexed: 12/01/2022]
Abstract
A tilapia (Oreochromis niloticus) myosin light chain 3 (Mlc3) promoter region (~4.3 kb) was isolated and characterized. Sequence analysis of the clone revealed high similarity with a tilapia gene encoding the Mlc3 promoter region, exon 1, and intron 1. The clone contained several putative binding sequences for transcription factors, including MEF-2, MYOG, MyoD, PKNOX1, and AREB6. Deletion of a region of the tilapia Mlc3 promoter (801 to -3,881 bp) enhanced promoter activity, as determined by direct injection of a luciferase reporter construct into skeletal muscle of Archocentrus nigrofasciatus. These findings suggest that the region between -801 and -3,881 bp may contain negative regulatory elements. Stable germline transgenic strains of the ornamental fish species A. nigrofasciatus var. carrying the Taiwan coral red fluorescent protein (TcRFP) driven by the Mlc3 promoter were established. F1 adult transgenic A. nigrofasciatus var. exhibited brilliant pink fluorescence in skeletal muscles in the daylight. Therefore, our current study demonstrates the feasibility of using the tilapia Mlc3 promoter to drive fluorescence in new fish species, such as Perciformes.
Collapse
Affiliation(s)
- Yu-Ho Lin
- Marine Biomedical Laboratory and Center for Translational Biopharmaceuticals, Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, 70 Lien-Hai Rd, Kaohsiung, 804, Taiwan
| | | | | | | | | |
Collapse
|
35
|
Patterson H, Saralahti A, Parikka M, Dramsi S, Trieu-Cuot P, Poyart C, Rounioja S, Rämet M. Adult zebrafish model of bacterial meningitis in Streptococcus agalactiae infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 38:447-455. [PMID: 22867759 DOI: 10.1016/j.dci.2012.07.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 07/18/2012] [Accepted: 07/19/2012] [Indexed: 06/01/2023]
Abstract
Streptococcus agalactiae (Group B Streptococcus, GBS) is the major cause of severe bacterial disease and meningitis in newborns. The zebrafish (Danio rerio) has recently emerged as a valuable and powerful vertebrate model for the study of human streptococcal infections. In the present study we demonstrate that adult zebrafish are susceptible to GBS infection through the intraperitoneal and intramuscular routes of infection. Following intraperitoneal challenge with GBS, zebrafish developed a fulminant infection 24-48 h post-injection, with signs of pathogenesis including severe inflammation at the injection site and meningoencephalitis. Quantification of blood and brain bacterial load confirmed that GBS is capable of replicating in the zebrafish bloodstream and penetrating the blood-brain barrier, resulting in the induction of host inflammatory immune responses in the brain. Additionally, we show that GBS mutants previously described as avirulent in the mice model, have an impaired ability to cause meningitis in this new in vivo model. Taken together, our data demonstrates that adult zebrafish may be used as a bacterial meningitis model as a means for deciphering the pathogenesis and development of invasive GBS disease.
Collapse
Affiliation(s)
- Hayley Patterson
- Institute of Biomedical Technology, BioMediTech, University of Tampere, FI-33014 Tampere, Finland
| | | | | | | | | | | | | | | |
Collapse
|