1
|
Abdo SE, El-Nahas AF, Abdellatif RE, Mohamed R, Helal MA, Azzam MM, Di Cerbo A, El-Kassas S. Combined Dietary Spirulina platensis and Citrus limon Essential Oil Enhances the Growth, Immunity, Antioxidant Capacity and Intestinal Health of Nile Tilapia. Vet Sci 2024; 11:474. [PMID: 39453066 PMCID: PMC11512375 DOI: 10.3390/vetsci11100474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
The dietary presence of feed additives is crucial for boosting fish growth and immunity. Accordingly, this feeding trial aimed to investigate the effects of the separate and concurrent dietary supplementation of Spirulina platensis (SP) and bitter lemon (Citrus limon) peel essential oil (LEO) on the growth, immunity, antioxidant capacity, and intestinal health of Nile tilapia (Oreochromis niloticus). Four groups of male Nile tilapia were employed. The first group (control) was given the basal diet, while the second and third groups received the basal diet supplemented with LEO extract (1%) and SP (1 g/kg diet), respectively. The fourth group received the basal diet supplemented with a mix of LEO (1%) and SP at 1 g/kg. After two months of feeding, using LEO or/and SP improved the overall growth and immunological parameters, with their combination yielding the best outcomes. The supplementation of LEO or/and SP improved the Nile tilapia's growth metrics and transcriptomic levels of growth-regulating genes such as (oligo-peptide transporter 1 (Pep1), growth hormone receptors 1 (GHR1), and insulin-like growth factor (IGF1). The improved growth performance was linked to significant increases in the expression levels of mucin and fat metabolism-related genes. Moreover, fish supplemented with LEO, SP, or their combination showed enhanced non-specific immunological measures, including phagocytic and lysozyme activities and the mRNA copies of its regulating genes. Additionally, remarkable increases in the antioxidant enzyme activities and the mRNA levels of their related genes were detected. The complement (C3) gene's transcriptomic level was also significantly increased. Furthermore, the dietary supplementation of LEO, SP, or their combination improved the histological structures of the spleen, hepatopancreas, and intestine. The enhanced effects of LEO, SP, or their combination on fish immunity and growth are suggested to be due to their contents of bioactive compounds with anti-inflammatory, antioxidant, and antimicrobial properties. Thus, using the LOE and SP blends as feed additives is recommended for better growth and immunity of Nile tilapia.
Collapse
Affiliation(s)
- Safaa E. Abdo
- Genetics and Genetic Engineering, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (S.E.A.); (R.E.A.)
| | - Abeer F. El-Nahas
- Department of Animal Husbandry and Animal Wealth Development-Genetics, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt
| | - Rabab E. Abdellatif
- Genetics and Genetic Engineering, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (S.E.A.); (R.E.A.)
| | - Radi Mohamed
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Mohamed A. Helal
- Animal, Poultry and Fish Breeding and Production, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (M.A.H.); (S.E.-K.)
| | - Mahmoud M. Azzam
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Seham El-Kassas
- Animal, Poultry and Fish Breeding and Production, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (M.A.H.); (S.E.-K.)
| |
Collapse
|
2
|
Coli AP, Carneiro WF, da Silva KCD, Castro TFD, de Oliveira JPL, de Martins MSA, Murgas LDS. Spirulina (Arthrospira platensis) supplementation: Impact on growth, metabolism, and antioxidant status in zebrafish. J Anim Physiol Anim Nutr (Berl) 2024; 108:1189-1202. [PMID: 38628058 DOI: 10.1111/jpn.13964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/20/2024] [Accepted: 04/02/2024] [Indexed: 11/21/2024]
Abstract
Zebrafish (Danio rerio) is a valuable model for biomedical research because of its mammalian genetic similarities, rapid reproduction, and low maintenance costs. However, further investigation is required regarding their nutritional requirements and standardized laboratory diets. This study evaluated the metabolic and growth responses of zebrafish juveniles fed on diets supplemented with spirulina, Arthrospira platensis (SP) at different levels for 77 days. Six diets with SP inclusion levels of 0%, 2%, 4%, 6%, 8%, and 10% (SP0-SP10) were formulated. A total of 300 zebrafish juveniles with an average initial weight of 0.113 ± 0.10 g (mean ± SD) were randomly distributed across six groups, with five replicates per group, each containing 10 animals. After 77 days, the SP6 group demonstrated significantly enhanced growth performance compared with the other supplementation levels. The condition factor was markedly higher in the SP6 and SP8 groups than in the SP0 group. No significant effects on total cholesterol levels were observed, but the SP4, SP6, and SP10 diets decreased triglyceride levels. Lipase activity was higher in the SP6 and SP8 groups than in the control group, whereas amylase activity showed no significant differences between treatments. Catalase and superoxide dismutase activities were significantly higher in the SP8 and SP10 groups than in the SP0 and SP2 groups. Glutathione S-transferase activity was higher in the SP6, SP8, and SP10 groups than in the SP0 group. In addition, SP inclusion in zebrafish diets improved female gonadal development. In conclusion, this study indicates that SP supplementation has substantial potential as a growth promoter, positively influencing lipid metabolism and antioxidant enzyme activity without affecting zebrafish survival.
Collapse
Affiliation(s)
- Aline Pereira Coli
- Departamento de Medicina Veterinária, Universidade Federal de Lavras, Lavras, Minas Gerais, Brasil
| | - William Franco Carneiro
- Departamento de Medicina Veterinária, Universidade Federal de Lavras, Lavras, Minas Gerais, Brasil
| | | | | | | | | | - Luis David Solis Murgas
- Departamento de Medicina Veterinária, Universidade Federal de Lavras, Lavras, Minas Gerais, Brasil
| |
Collapse
|
3
|
Chen CC, Lin CY, Lu HY, Liou CH, Ho YN, Huang CW, Zhang ZF, Kao CH, Yang WC, Gong HY. Transcriptomics and gut microbiome analysis of the edible herb Bidens pilosa as a functional feed additive to promote growth and metabolism in tilapia (Oreochromis spp.). BMC Genomics 2024; 25:785. [PMID: 39138417 PMCID: PMC11323441 DOI: 10.1186/s12864-024-10674-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
To reduce the use of antibiotics and chemicals in aquaculture, an edible herb, Bidens pilosa, has been selected as a multifunctional feed additive. Although there has been considerable research into the effects of B. pilosa on poultry, the wider effects of B. pilosa, particularly on the growth and gut microbiota of fish, remain largely unexplored. We aimed to investigate the interactive effects between the host on growth and the gut microbiota using transcriptomics and the gut microbiota in B. pilosa-fed tilapia. In this study, we added 0.5% and 1% B. pilosa to the diet and observed that the growth performance of tilapia significantly increased over 8 weeks of feeding. Comparative transcriptome analysis was performed on RNA sequence profiles obtained from liver and muscle tissues. Functional enrichment analysis revealed that B. pilosa regulates several pathways and genes involved in amino acid metabolism, lipid metabolism, carbohydrate metabolism, endocrine system, signal transduction, and metabolism of other amino acids. The expression of the selected growth-associated genes was validated by qRT-PCR. The qRT-PCR results indicated that B. pilosa may enhance growth performance by activating the expression of the liver igf1 and muscle igf1rb genes and inhibiting the expression of the muscle negative regulator mstnb. Both the enhancement of liver endocrine IGF1/IGF1Rb signaling and the suppression of muscle autocrine/paracrine MSTN signaling induced the expression of myogenic regulatory factors (MRFs), myod1, myog and mrf4 in muscle to promote muscle growth in tilapia. The predicted function of the gut microbiota showed several significantly different pathways that overlapped with the KEGG enrichment results of differentially expressed genes in the liver transcriptomes. This finding suggested that the gut microbiota may influence liver metabolism through the gut-liver axis in B. pilosa-fed tilapia. In conclusion, dietary B. pilosa can regulate endocrine IGF1 signaling and autocrine/paracrine MSTN signaling to activate the expression of MRFs to promote muscle growth and alter the composition of gut bacteria, which can then affect liver amino acid metabolism, carbohydrate metabolism, endocrine system, lipid metabolism, metabolism of other amino acids, and signal transduction in the host, ultimately enhancing growth performance. Our results suggest that B. pilosa has the potential to be a functional additive that can be used as an alternative to reduce antibiotic use as a growth promoter in aquaculture.
Collapse
Affiliation(s)
- Che-Chun Chen
- Doctoral Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Chung-Yen Lin
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - Hsin-Yun Lu
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Chyng-Hwa Liou
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Ying-Ning Ho
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Chang-Wen Huang
- Doctoral Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Zhong-Fu Zhang
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Chih-Hsin Kao
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - Wen-Chin Yang
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
- Agriculture Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Hong-Yi Gong
- Doctoral Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, Taiwan.
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan.
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan.
| |
Collapse
|
4
|
Liu W, Yu H, Gurbazar D, Rinchindorj D, Kang W, Qi C, Chen H, Chang X, You H, Han Y, Li Z, R. G. A, Dong W. Anti-inflammatory effects and beneficial effects of the feed additive Urtica cannabina L. in zebrafish. PLoS One 2024; 19:e0307269. [PMID: 39018284 PMCID: PMC11253947 DOI: 10.1371/journal.pone.0307269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/12/2024] [Indexed: 07/19/2024] Open
Abstract
Urtica cannabina L. (UL) has been used clinically for centuries because of its anti-inflammatory properties. This study aimed to investigate the underlying mechanisms and anti-inflammatory effects of different UL concentrations in zebrafish. To elucidate UL's anti-inflammatory properties, two inflammation zebrafish models were designed 1) by severing the zebrafish's caudal fin to assess the repairing effect of UL on the tail inflammation, and 2) by inducing lipopolysaccharides (LPS)-mediated intestinal inflammation to assess the protective and reparative effects of UL on intestinal inflammation at the histological and genetic levels. Furthermore, the effect of UL on the LPS-induced intestinal flora changes was also assessed. After caudal fin resection, a scar formed on the tail of the zebrafish, and the area of the caudal fin increased by 1.30 times as much as that of the control group (P < 0.01). Moreover, this tail scar was alleviated after 10 mg/g UL supplementation but not after 30 mg/g UL dose. LPS decreased the feed intake and body weight of the zebrafish; however, these effects were reversed after 10 and 30 mg/g doses of UL. In addition, the LPS treatment also reduced the intestinal goblet cells by 49% in the zebrafish when compared with the control, which was significantly restored after 10 and 30 mg/g UL treatments. At the genetics level, the expression of the pro-inflammatory cytokine genes (TNF-α, IL6, and IL8) showed that 10 and 30 mg/g UL doses could rescue LPS-induced expression. The gut microbiota analysis revealed changes in the abundance of four major bacterial phyla in the 10 and 30 mg/g UL-treated groups, with an increased probiotic Bacteroidota and decreased pathogenic bacteria. These results indicate that UL strongly inhibits inflammation caused by caudal fin removal and LPS-induced inflammatory changes in the zebrafish intensity, suggesting that UL is a feed additive that could be developed to improve resistance to inflammation in livestock.
Collapse
Affiliation(s)
- Wuyun Liu
- Key Laboratory of Ecological Agriculture in Horqin Sandy Land, State Ethnic Affairs Commission, Wuhan, China
- College of Agriculture, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
- Mongolian University of Life Sciences, School of Animal science & Biotechnology, Ulaanbaatar, Mongolia
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Huarong Yu
- Key Laboratory of Ecological Agriculture in Horqin Sandy Land, State Ethnic Affairs Commission, Wuhan, China
- College of Agriculture, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - D. Gurbazar
- Mongolian University of Life Sciences, School of Animal science & Biotechnology, Ulaanbaatar, Mongolia
| | - D. Rinchindorj
- Mongolian University of Life Sciences, School of Animal science & Biotechnology, Ulaanbaatar, Mongolia
| | - Wei Kang
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Chelimuge Qi
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Hongsong Chen
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Xu Chang
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Huan You
- Tongliao Animal Husbandry Development Center, Tongliao, Inner Mongolia, China
| | - Yongmei Han
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Zhigang Li
- Key Laboratory of Ecological Agriculture in Horqin Sandy Land, State Ethnic Affairs Commission, Wuhan, China
- College of Agriculture, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Ahmed R. G.
- Faculty of Science, Zoology Department, Division of Anatomy and Embryology, Beni-Suef University, Beni-Suef, Egypt
| | - Wu Dong
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| |
Collapse
|
5
|
Radwan M, Moussa MA, Manaa EA, El-Sharkawy MA, Darweesh KF, Elraey SMA, Saleh NA, Mohammadein A, Al-Otaibi WM, Albadrani GM, Al-Ghadi MQ, Badawy LA, Abd El-Halim MO, Abdel-Daim MM, Mekky AE. Synergistic effect of green synthesis magnesium oxide nanoparticles and seaweed extract on improving water quality, health benefits, and disease resistance in Nile tilapia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116522. [PMID: 38843743 DOI: 10.1016/j.ecoenv.2024.116522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024]
Abstract
This study aimed to evaluate the effect of adding liquid extract of algae (Hypnea musciformis, Grateloupia acuminata, and Sargassum muticum) (HGS) and Magnesium oxide nanoparticles (MgO NPs) using this extract to rear water of Oreochromis niloticus, on improving culture water indices, growth performance, digestive enzyme, hemato-biochemical characters, immune, antioxidative responses, and resistance after challenged by Aeromonas hydrophila with specific refer to the potential role of the mixture in vitro as resistance against three strains bacteria (Aeromonas sobria, Pseudomonas fluorescens, P. aeruginosa) and one parasite (Cichlidogyrus tilapia). The first group represented control, HGS0, whereas the other group, HGS5, HGS10, and HGS15 mL-1 of liquid extract, as well as all groups with 7.5 μg mL-1 MgO-NPs added to culture water of O. niloticus, for 60 days. Data showed that increasing levels at HGS 10 and HGS15 mL-1 in to-culture water significantly enhanced growth-stimulating digestive enzyme activity and a significantly improved survival rate of O. niloticus after being challenged with A. hydrophila than in the control group. The total viability, coliform, fecal coliform count, and heavy metal in muscle partially decreased at HGS 10 and HGS15 mL-1 than in the control group. Correspondingly, the highest positive effect on hemato-biochemical indices was noticed at levels HGS 10 and HGS15 mL-1. Fish noticed an improvement in immune and antioxidant indices compared to control groups partially at HGS 10 and HGS15 mL-1. Interestingly, fish cultured in rearing water with the mixture provided downregulated the related inflammatory genes (HSP70, TNF, IL-1β, and IL-8) partially at HGS15 mL-1. In vitro, the mixture showed positive efficiency as an antibacterial and partially antiparasitic at HGS 10 and HGS15 mL-1. This study proposes utilizing a mixture of (HGS) and (MgO-NPs) with optimum levels of 10-15 mL-1 in cultured water to improve water indices, growth, health status, and increased resistance of O. niloticus against bacterial and parasitic infection.
Collapse
Affiliation(s)
- Mahmoud Radwan
- Marine Biology Branch, Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt.
| | - Moussa A Moussa
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Eman A Manaa
- Animal and Poultry Production, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Benha University, Toukh, 13736, Egypt
| | | | - Kareem F Darweesh
- Marine Biology Branch, Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Said M A Elraey
- Zoology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Nehad A Saleh
- Animal Hygiene, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Amaal Mohammadein
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | | | - Ghadeer M Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, 84428, Riyadh 11671, Saudi Arabia
| | - Muath Q Al-Ghadi
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Lobna A Badawy
- Department of Fish Resources and Aquaculture, Faculty of Environmental Agricultural Sciences, Arish University, El‑Arish, Egypt
| | - Marwa O Abd El-Halim
- Department of Zoonoses, Faculty of Veterinary Medicine, Benha University, Toukh, 13736, Egypt
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, PO Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Alsayed E Mekky
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| |
Collapse
|
6
|
Sun D, Hou D, Zheng Y, Xiang W, Huang Y, Wu H, Zou J. Multi-Omics Reveals the Effects of Spirulina platensis Powder Replacement of Fish Meal on Intestinal Metabolism and Stress in Zig-Zag Eel ( Mastacembelus armatus). Antioxidants (Basel) 2024; 13:851. [PMID: 39061919 PMCID: PMC11273650 DOI: 10.3390/antiox13070851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
The booming aquaculture industry has created a strong demand for fishmeal and increased environmental pressures. Spirulina, as a potential alternative to fishmeal, has been shown to have growth-promoting and animal health-enhancing properties. In this study, 600 large spiny loaches, divided into five experimental groups, F0, F1, F2, F3, and F4, were reared for 10 weeks using Spirulina platensis powder (SPP) as a substitute for 0%, 5%, 10%, 15%, and 20% of fishmeal, respectively. The results of intestinal physiological indexes showed that superoxide dismutase was lower than F0 in all treatment groups, and the activity of F3 was significantly lower than F0 (p < 0.05). The activity of malondialdehyde was significantly higher than that of F0 in all groups except F3 (p < 0.05). The addition of SPP also led to a decrease in the activity of acid phosphatase in the intestine, which was significantly lower in all treatment groups compared to the F0 group (p < 0.05). The results of serum physiology showed that the activity of superoxide dismutase in serum gradually increased with the increase in the percentage of SPP addition, and the F3 group produced a significant difference from the F0 group (p < 0.05). The transcriptomics results showed that DEGs in the low percentage substitution group (<15%) were mostly enriched in metabolism-related pathways, such as bile secretion; DEGs in the high percentage substitution group (>15%) were mostly enriched in inflammation-related pathways, such as complement p and coagulation cascades. Metabolomics confirmed that nicotinate and nicotinamide metabolism and glycerophospholipid metabolism were the two pathways that were significantly enriched in the treatment groups of fishmeal replacement by SPP. The present study demonstrated that a low percentage (<15%) of fishmeal replacement by SPP in feed mobilized MA digestive metabolism, whereas a high percentage (>15%) of replacement induced intestinal stress. Considering the health and farm efficiency aspects, the proportion of SPP in feed formulation for MA should be less than 15%.
Collapse
Affiliation(s)
- Di Sun
- College of Marine Sciences, South China Agricultural University, No. 483, Wushan Road, Wushan Street, Tianhe District, Guangzhou 510642, China; (D.S.); (D.H.); (Y.Z.)
| | - Dongqiang Hou
- College of Marine Sciences, South China Agricultural University, No. 483, Wushan Road, Wushan Street, Tianhe District, Guangzhou 510642, China; (D.S.); (D.H.); (Y.Z.)
| | - Yushun Zheng
- College of Marine Sciences, South China Agricultural University, No. 483, Wushan Road, Wushan Street, Tianhe District, Guangzhou 510642, China; (D.S.); (D.H.); (Y.Z.)
| | - Wenzhou Xiang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 164, West Xingang Road, Haizhu District, Guangzhou 510301, China;
| | - Yingshi Huang
- Faculty of Mathematics, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Hualian Wu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 164, West Xingang Road, Haizhu District, Guangzhou 510301, China;
| | - Jixing Zou
- College of Marine Sciences, South China Agricultural University, No. 483, Wushan Road, Wushan Street, Tianhe District, Guangzhou 510642, China; (D.S.); (D.H.); (Y.Z.)
| |
Collapse
|
7
|
Okasha LA, Abdellatif JI, Abd-Elmegeed OH, Sherif AH. Overview on the role of dietary Spirulina platensis on immune responses against Edwardsiellosis among Oreochromis niloticus fish farms. BMC Vet Res 2024; 20:290. [PMID: 38965554 PMCID: PMC11223423 DOI: 10.1186/s12917-024-04131-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024] Open
Abstract
Edwardsiellosis is a bacterial fish disease that mostly occurs in freshwater farms and is characterized by a high mortality rate. Edwardsiella tarda strain was recovered from 17 fish out of 50 Nile tilapia, which were harboring clinical signs of systemic septicemia. The level of un-ionized ammonia (NH3) in the fish farm's water was 0.11-0.15 mg/L, which was stressful for the Nile tilapia.Sequencing of the gyrB1 gene confirmed that the isolate was E. tarda JALO4, and it was submitted to NCBI under the accession number PP449014. The isolated E. tarda harbored the virulence gene edw1 AHL-synthase (quorum sensing). In addition, the isolate was sensitive to trimethoprim and sulfamethoxazole mean while it was intermediate to florfenicol. The median lethal dose (LD50) of E. tarda JALO4 was determined to be 1.7 × 105 CFU/mL in Nile tilapia.In the indoor experiment, Nile tilapia (45.05 ± 0.4 g), which received dietary Spirulina platensis (5 and 10 g/kg fish feed), showed optimum growth and feed utilization. Meanwhile, after receiving dietary S. platensis, the fish's feed conversion ratio (FCR) was significantly enhanced compared to the control, which was 1.94, 1.99, and 2.88, respectively. The expression of immune-related genes interleukin (IL)-1β and tumor necrosis factor (TNF)-α were upsurged in E. tarda-challenged fish with higher intensity in S. platensis groups. Dietary S. platensis at a dose of 10 g/kg fish feed could provide a relative protection level (RPL) of 22.2% Nile tilapia challenged against E. tarda. Nile tilapia experimentally infected E. tarda, drastically altering their behavior: higher operculum movement, low food apprehension, and abnormal swimming dietary S. platensis (10 g/kg fish feed) could rapidly restore normal status.It was concluded that Edwardsiellosis could alter Nile tilapia behavior with a high loss in fish population. Fish received dietary-S. platensis could rapidly restore normal behavior after E. tarda infection. It is recommended the incorporation of S. platensis at doses of 10 g/kg into the Nile tilapia diet to boost their immunity and counteract E. tarda infection.
Collapse
Affiliation(s)
- Lamiaa A Okasha
- Bacteriology unit, Animal Health Research Institute AHRI, Agriculture Research Center ARC, Kafrelsheikh, 12619, Egypt
| | - Jehan I Abdellatif
- Fish Diseases Department, Animal Health Research Institute AHRI, Agriculture Research Center ARC, Giza, Kafrelsheikh, 12619, Egypt
| | - Ola H Abd-Elmegeed
- Aquatic Animal Medicine and Management Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ahmed H Sherif
- Fish Diseases Department, Animal Health Research Institute AHRI, Agriculture Research Center ARC, Giza, Kafrelsheikh, 12619, Egypt.
| |
Collapse
|
8
|
Negm AE, Abo-Raya MH, Gabr AM, Baloza SH, El-Nokrashy A, Prince A, Arana D, Wang Y, Abdelazeem S, Albadrani GM, Al-Ghadi MQ, Abdeen A, Shukry M, El-Sayed Khalafallah MM. Effects of phytase enzyme supplementation on growth performance, intestinal morphology and metabolism in Nile tilapia (Oreochromis niloticus). J Anim Physiol Anim Nutr (Berl) 2024; 108:891-908. [PMID: 38356017 DOI: 10.1111/jpn.13939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024]
Abstract
Phytase is crucial in enhancing the bioavailability and release of phosphorus and other nutrients bound to phytic acid, making them more bioavailable for animal absorption. This study was carried out to inspect the effect of supplementing low phosphorus (P) diet with di-calcium phosphate (DCP) and liquid phytase enzyme (LP), which contains 1500 FTU/kg, on growth performance, intestinal morphometry, proximate body chemical composition, blood profile, immunity status, liver mitochondrial enzyme activities, the expression response and economic returns of Nile tilapia (Oreochromis niloticus). Three triplicate groups of fish (initial weight 5.405 ± 0.045 g, N = 90) were fed on three different diets for 90 days. The first was a control diet with zero DCP; the second was a control diet supplemented with 0.71% DCP; the third was a control diet supplemented with 0.03% LP. The groups were designated as CG, DCP and LP, respectively. Results showed that LP induced considerable improvements (p < 0.05) in FBW, body weight gain, weight gain rate, specific growth rate, HIS, viscero-somatic index, spleen-somatic index, feed conversion ratio, blood parameters and the histomorphometry assessment of intestinal villi absorptive capacity, compared with the other groups. Also, whole-body protein and lipid contents pointedly (p < 0.05) increased by LP, compared with the DCP group. A positive response (p < 0.05) to the phytase enzyme was noted in complexes I, III and IV of the mitochondrial liver complex enzyme activity. Likewise, the relative gene expression levels of (GHr-1, IGF-1, FAS and LPL) were notably (p < 0.05) upregulated by phytase enzyme, associated with DCP and control groups. Further, phytase recorded the highest total return and profit percentage. It can be concluded that Nile tilapia benefits from using phytase enzyme 1500 FTU/kg at 0.03% without adding DCP in terms of good performance and profits.
Collapse
Affiliation(s)
- Ahmed E Negm
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mohamed H Abo-Raya
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Asmaa M Gabr
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Samar H Baloza
- Genetic and Genetic Engineering, Animal Wealth Development Department, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Asmaa El-Nokrashy
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Abdelbary Prince
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | | | - Youji Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Shimaa Abdelazeem
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Ghadeer M Albadrani
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Muath Q Al-Ghadi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Malik M El-Sayed Khalafallah
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
9
|
Su M, Bastiaens L, Verspreet J, Hayes M. Applications of Microalgae in Foods, Pharma and Feeds and Their Use as Fertilizers and Biostimulants: Legislation and Regulatory Aspects for Consideration. Foods 2023; 12:3878. [PMID: 37893770 PMCID: PMC10606004 DOI: 10.3390/foods12203878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/24/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Microalgae are a rich resource of lipids, proteins, carbohydrates and pigments with nutritional and health benefits. They increasingly find use as ingredients in functional foods and feeds as well as in cosmetics and agricultural products including biostimulants. One of their distinct advantages is their ability to grow on wastewaters and other waste streams, and they are considered an environmentally friendly and cheap method to recover nutrients and remove pollutants from the environment. However, there are limits concerning their applications if grown on certain waste streams. Within, we collate an overview of existing algal applications and current market scenarios for microalgal products as foods and feeds along with relevant legislative requirements concerning their use in Europe and the United States. Microalgal compounds of interest and their extraction and processing methodologies are summarized, and the benefits and caveats of microalgae cultivated in various waste streams and their applications are discussed.
Collapse
Affiliation(s)
- Min Su
- The Food BioSciences Department Ashtown, Teagasc Food Research Centre, 15D05 Dublin, Ireland;
| | - Leen Bastiaens
- Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Joran Verspreet
- Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Maria Hayes
- The Food BioSciences Department Ashtown, Teagasc Food Research Centre, 15D05 Dublin, Ireland;
| |
Collapse
|
10
|
Hassanien HA, Alrashada YN, Abbas AO, Abdelwahab AM. Dietary propolis complementation relieves the physiological and growth deterioration induced by Flavobacterium columnare infection in juveniles of common carp (Cyprinus carpio). PLoS One 2023; 18:e0292976. [PMID: 37831671 PMCID: PMC10575500 DOI: 10.1371/journal.pone.0292976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
The current study was proposed to explore the role of dietary propolis (PR) supplementation in alleviating the negative effects of columnaris disease (CD) challenge on the growth performance, plasma biochemicals, antioxidant activity, stress indicators, and immunological reactions of common carp (Cyprinus carpio) fish. Five hundred forty common carp juveniles were evenly placed in thirty-six 100-L tanks and stocked for acclimatization to the lab conditions with a control diet within a started period of 14 days. Fish (average initial weight of 7.11±0.06 g) were randomly distributed into one of six treatment groups (6 replicate tanks × 15 fish per tank in each treatment group). Fish in the first group was assigned as a negative control without CD challenge or PR supplementation. Fish in the other five groups were challenged with CD by immersion of fish for 60 min into a 10-L water bath supplemented with 6×106 CFU/mL (median lethal dose, LD50) of pathogenic F. columnare bacteria. After infection, the fish were restored to their tanks and fed on a basal diet supplemented with PR at 0, 3, 6, 9, or 12 g/kg diet. The experimental period continued for 6 consecutive weeks in which the feed was introduced twice a day (8:00 and 15:00 h) at a rate of 2% of the fish biomass. Ten percent of water was siphoned and renewed after each meal every day, in addition to 50% of water refreshment after cleaning the tank every three days. The tanks were continuously aerated and provided with standard rearing conditions for carp fish (24.0±1.12°C, 7.7±0.22 pH, 6.3±0.16 mg/L O2, and 14L/10D photoperiod). The growth performance traits such as feed intake (FI), weight gain (WG), final weight (FW), specific growth rate (SGR), feed efficiency (FE), and cumulative mortality rates (CM) were recorded during the experimental period. At the end of the trial, blood samples were obtained from the fish to evaluate some plasma biochemicals, including aspartate aminotransaminase (AST), alanine aminotransferase (ALT), creatinine (CRE), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH), antioxidant biomarkers, including total antioxidant capacity (TAOC), total superoxide dismutase (TSOD), reduced glutathione (rGSH), and catalase (CAT), stress indicators, including heterophil to lymphocyte (H/L) ratio, cortisol (COR), malondialdehyde (MDA), and myeloperoxidase (MPO), and immunological reactions, including peripheral blood leukocyte proliferation (PBLP), phagocytosis activity (PHG), lysozyme activity (LYS), alternative complement hemolytic action (ACH50), and total immunoglobulin concentration (TIG). In addition, samples of infected fish gills were taken to quantify the number of F. columnare in the PR-supplemented groups using the quantitative real-time polymerase chain reaction (qPCR) technique. The results showed that incorporating PR into the dietary ingredients of common carp has a protective effect against the challenge with F. columnare infection. There were linear and quadratic positive trends (P < 0.05) in most parameters of growth performance, plasma biochemicals, antioxidant activity, stress indicators, and immunological reactions with the increased PR-supplemented levels in the diet of infected fish. The best results were obtained when using PR at 9 g/kg in the diet, while higher levels (12 g/kg PR) showed an adverse trend in the evaluated parameters. The FI, WG, FW, SGR, and FE were improved by approximately 37, 104, 34, 73, and 49% in the fish treated with 9 g/kg PR compared to none-PR-infected fish. In addition, adding PR at the 9 g/kg diet level was the best dose that reduced the H/L ratio, COR, MDA, and MPO by about 14, 52, 48, and 29%, respectively, in the infected fish. Furthermore, the mortality rate was reduced by 94%, and the number of pathogenic bacteria cells adherent to the fish gills was lowered by 96% in the infected fish treated with 9 g/kg PR compared to none-PR infected fish. Our results concluded that dietary supplementation with 9 g/kg PR could be a promising nutritional approach for improving the growth performance, physiological profile, and health status of common carp fish, particularly when challenged with F. columnare or similar bacterial infections.
Collapse
Affiliation(s)
- Hesham A. Hassanien
- Department of Animal and Fish Production, College of Agriculture and Food Sciences, King Faisal University, Hofuf, AL-HASA, Saudi Arabia
- Animal Production Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Yousof N. Alrashada
- Department of Animal and Fish Production, College of Agriculture and Food Sciences, King Faisal University, Hofuf, AL-HASA, Saudi Arabia
| | - Ahmed O. Abbas
- Department of Animal and Fish Production, College of Agriculture and Food Sciences, King Faisal University, Hofuf, AL-HASA, Saudi Arabia
- Animal Production Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Abdelwahab M. Abdelwahab
- Department of Animal and Fish Production, College of Agriculture and Food Sciences, King Faisal University, Hofuf, AL-HASA, Saudi Arabia
- Department of Animal Production, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| |
Collapse
|
11
|
Pérez-Alvarez I, Islas-Flores H, Sánchez-Aceves LM, Gómez-Olivan LM, Chamorro-Cevallos G. Spirulina (Arthrospira maxima) mitigates the toxicity induced by a mixture of metal and NSAID in Xenopus laevis. Reprod Toxicol 2023; 120:108422. [PMID: 37330176 DOI: 10.1016/j.reprotox.2023.108422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/25/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
Cadmium (Cd) is often detected in the environment due to its wide use in industry; also, NSAIDs are one of the most consumed pharmaceuticals, particularly diclofenac (DCF). Several studies have reported the presence of both contaminants in water bodies at concentrations ranging from ng L-1 to μg L-1; in addition, they have shown that they can induce oxidative stress in aquatic species and disturb signal transduction, cell proliferation, and intercellular communication, which could lead to teratogenesis. Spirulina has been consumed as a dietary supplement; its antioxidant, anti-inflammatory, neuroprotective, and nutritional properties are well documented. This work aimed to evaluate if Spirulina reduces the damage induced by Cd and DCF mixture in Xenopus laevis at early life stages. FETAX assay was carried out: 20 fertilized oocytes were exposed to seven different treatments on triplicate, control, Cd (24.5 μg L-1), DCF (149 μg L-1), Cd + DCF, Cd+DCF+Spirulina (2 mg L-1), Cd+DCF+Spirulina (4 mg L-1), Cd+DCF+Spirulina (10 mg L-1), malformations, mortality, and growth were evaluated after 96 h, also lipid peroxidation, superoxide dismutase and catalase activity were determined after 192 h. Cd increased DCF mortality, Cd and DCF mixture increased the incidence of malformations as well as oxidative damage; on the other hand, the results obtained show that Spirulina can be used to reduce the damage caused by the mixture of Cd and DCF since it promotes growth, reduce mortality, malformations, and oxidative stress in X. laevis.
Collapse
Affiliation(s)
- Itzayana Pérez-Alvarez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colon intersección Paseo Tollocan s/n, Col. Residencial Colon, 50120 Toluca, Estado de México, Mexico
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colon intersección Paseo Tollocan s/n, Col. Residencial Colon, 50120 Toluca, Estado de México, Mexico.
| | - Livier Mireya Sánchez-Aceves
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colon intersección Paseo Tollocan s/n, Col. Residencial Colon, 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Olivan
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colon intersección Paseo Tollocan s/n, Col. Residencial Colon, 50120 Toluca, Estado de México, Mexico
| | - Germán Chamorro-Cevallos
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, Delegación Gustavo a. Madero, México DF CP 07738, Mexico
| |
Collapse
|
12
|
Youssef IMI, Saleh ESE, Tawfeek SS, Abdel-Fadeel AAA, Abdel-Razik ARH, Abdel-Daim ASA. Effect of Spirulina platensis on growth, hematological, biochemical, and immunological parameters of Nile tilapia (Oreochromis niloticus). Trop Anim Health Prod 2023; 55:275. [PMID: 37498411 PMCID: PMC10374666 DOI: 10.1007/s11250-023-03690-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 07/06/2023] [Indexed: 07/28/2023]
Abstract
This study was conducted to evaluate the effects of Spirulina platensis in Nile tilapia diets on growth performance, blood hematological and biochemical parameters, immunological status, and intestinal histomorphometry. A total of 228 fish were randomly allocated into four groups with triplicates (19 fish per replicate). The first group was fed the control diet, which contained no Spirulina supplementation. The other three groups were fed diets containing graded levels of powdered Spirulina: 2.5%, 5.0%, and 10.0% in the second, third, and fourth group, respectively. S. platensis was added to the diets partially substituting the fish meal content. The experiment lasted for 8 weeks. The results showed that dietary Spirulina supplementation improved (P < 0.05) the body weight and length, weight gain, specific growth rate, condition factor, and feed conversion efficiency. Moreover, Spirulina increased significantly (P < 0.05) the hemoglobin, PCV, RBCs, and WBCs count. Also, it increased the lymphocytes, eosinophils, IgM level, lysozyme activity, and phagocytic activity in the blood. Additionally, the Spirulina raised (P < 0.05) the serum albumin level but reduced (P < 0.05) the creatinine and urea levels. The addition of Spirulina increased (P < 0.05) the height and width of intestinal villi and the lymphocytes and goblet cells count in the intestine. The obtained results were increased by increasing the inclusion level of Spirulina, especially for body weight and length, weight gain, FCR, phagocytic activity, and intestinal parameters. In conclusion, supplementing S. platensis can improve the growth performance of fish. Moreover, it can stimulate the immunity of fish through increasing the level of immunological blood indicators (IgM, lysozyme, phagocytic activity, lymphocytes, and eosinophils) as well as the local intestinal immunity (lymphocytes and goblet cells). So, it can be recommended to use S. platensis in fish diets not only to improve the growth performance but also to enhance the immune status.
Collapse
Affiliation(s)
- Ibrahim M I Youssef
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Elham S E Saleh
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Samar S Tawfeek
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Asmaa A A Abdel-Fadeel
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Abdel-Razik H Abdel-Razik
- Department of Histology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Asmaa S A Abdel-Daim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| |
Collapse
|
13
|
Khanzadeh M, Beikzadeh B, Hoseinifar SH. The Effects of Laurencia caspica Algae Extract on Hemato-Immunological Parameters, Antioxidant Defense, and Resistance against Streptococcus agalactiae in Nile tilapia ( Oreochromis niloticus). AQUACULTURE NUTRITION 2023; 2023:8882736. [PMID: 37441629 PMCID: PMC10335874 DOI: 10.1155/2023/8882736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/29/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023]
Abstract
Natural immune stimulants are among the most effective chemicals for boosting immunity and fish welfare. This study aims to investigate the effects of red macroalgae extract (Laurencia caspica) on hematological, immunological, antioxidant, biochemical, and disease resistance against S. agalactiae in Nile tilapia for 50 days. For this purpose, fishes were assigned to four dietary treatments group in which the base meal was supplemented with 0.5%, 1%, and 2% of L. caspica extract. On days 25 and 50 of the experiment, samples were taken to investigate the hematological, immunological, biochemical, and antioxidant parameters. The white blood cells (WBCs), hemoglobin, and neutrophils significantly increased after 50 days of feeding with the L. caspica extract, but until the 25th day, no significant difference was observed among the treatments except for hemoglobin. Immunological parameters (including Immunoglobulin M [IgM] and complement 3 [C3]) were significantly higher in treated groups compared to control both 25 days and 50 days posttreatment. However, on the 25th day, no significant difference was noticed between treatments and control in the case of lysozyme activity. Alkaline phosphatase (ALP) and alanine aminotransferase (ALT) considerably increased in comparison to the control group on the 50th day, but no significant difference was observed on the 25th day. In addition, feeding with L. caspica significantly increased the antioxidant enzyme activities on the 25th day (L. caspica 1% and 2% in peroxidase [POD] and superoxide dismutase [SOD] in all groups) and 50th day (catalase [CAT], SOD and L. caspica 1% and 2% in POD) in the spleen. The survival rate of fish challenged with Streptococcus agalactiae was considerably greater than the control group. Finally, it can be concluded that L. caspica extract is an immunological stimulant that induces fish resistance to S. agalactiae.
Collapse
Affiliation(s)
- Majid Khanzadeh
- Animal Biological Product Research Group, Academic Center for Education, Culture and Research (ACECR), Tehran, Tehran Organization, Iran
- Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Babak Beikzadeh
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| | - Seyed Hossein Hoseinifar
- Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
14
|
Rahimnejad S, Leclercq E, Malinovskyi O, Pěnka T, Kolářová J, Policar T. Effects of yeast hydrolysate supplementation in low-fish meal diets for pikeperch. Animal 2023; 17:100870. [PMID: 37379608 DOI: 10.1016/j.animal.2023.100870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/19/2023] [Accepted: 05/26/2023] [Indexed: 06/30/2023] Open
Abstract
Plant proteins have been increasingly used as sustainable substitutes for fish meal (FM) in aquafeeds; however, their high inclusion level compromises fish performance. The objective of this study was to examine whether yeast hydrolysate (YH) supplementation can improve the utilisation of high soybean meal (SM) diet and ameliorate its potential deteriorating impacts in pikeperch (Sander lucioperca). A basal diet was formulated using 44% FM, and four additional diets were produced by replacing 30 or 60% of FM with SM with or without the addition of 2% YH (FM, SM30, SM60, SM30 + YH, and SM60 + YH diets). Each diet was fed to three groups of fish (35.3 ± 0.10 g, 150 fish per group) to visual satiety four times daily for 70 days. Fish growth was not impacted by FM replacement level or YH application. However, SM60 group exhibited markedly higher feed conversion ratio and lower survival rate than those fed the FM- and YH-supplemented diets (P < 0.05). The highest and the lowest protein efficiency ratio values were obtained for the SM30 + YH and SM60 groups, respectively. Whole-body lipid content decreased in SM60 and SM60 + YH groups, and muscle lipid decreased in all the replacement groups. Serum triglyceride and glucose concentrations tended to decrease as FM replacement level increased. The highest alanine aminotransferase, aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) activities were detected in the SM60 group, and YH addition significantly decreased the AST and LDH activities. Serum lysozyme activity decreased in SM30, SM60 and SM60 + YH groups. Serum myeloperoxidase and antiprotease activities decreased in SM60 group, and YH supplementation improved their activities. No effects of diets were observed on serum antioxidant parameters such as catalase activity and malondialdehyde concentration, and gut morphological indices. Number of goblet cells in midgut decreased by increasing the SM inclusion level and a slight improvement was observed by YH application. These findings suggest that YH supplementation has the potential to support the replacement of up to 60% FM with defatted SM in pikeperch feed without deteriorating growth, feed utilisation, and survival rate. Further, YH incorporation mitigated the damaging impacts of high SM diet on liver function and non-specific immune response.
Collapse
Affiliation(s)
- S Rahimnejad
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Vodňany, Zátiší 728, Vodňany 389 25, Czech Republic; Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain.
| | - E Leclercq
- Lallemand SAS, 19 rue des Briquettiers, 31702 Blagnac Cedex, France
| | - O Malinovskyi
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Vodňany, Zátiší 728, Vodňany 389 25, Czech Republic
| | - T Pěnka
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Vodňany, Zátiší 728, Vodňany 389 25, Czech Republic
| | - J Kolářová
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Vodňany, Zátiší 728, Vodňany 389 25, Czech Republic
| | - T Policar
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Vodňany, Zátiší 728, Vodňany 389 25, Czech Republic
| |
Collapse
|
15
|
Trevi S, Uren Webster T, Consuegra S, Garcia de Leaniz C. Benefits of the microalgae Spirulina and Schizochytrium in fish nutrition: a meta-analysis. Sci Rep 2023; 13:2208. [PMID: 36750713 PMCID: PMC9905068 DOI: 10.1038/s41598-023-29183-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Use of microalgae in fish nutrition can relieve pressure on wild fish stocks, but there is no systematic quantitative evaluation of microalgae benefits. We conducted a metanalysis on the nutritional benefits of Spirulina and Schizochytrium as replacements of fishmeal and fish or plant oil, respectively. We reviewed 50 peer-reviewed studies involving 26 finfish species and 144 control vs microalgae replacement comparisons. Inclusion of Spirulina in the fish diet significantly improved growth compared to controls (SMD = 1.21; 95% CI 0.71-1.70), while inclusion of Schizochytrium maintained the content of omega-3 PUFA of the fish fillet compared to fish fed on fish or plant oils (SMD = 0.62; 95% CI - 0.51-1.76). Benefits were apparent at replacement levels as low as 0.025% in the case of Spirulina and 10% in the case of Schizochytrium oil. Dose-dependent effects were found for Spirulina replacement on growth, but not for Schizochytrium on omega-3 fillet content. Subgroup analysis and meta-regression revealed that ~ 24-27% of variation in effect sizes can be accounted by variation between fish families, the rest likely reflecting variation in experimental conditions. Overall, the evidence indicates that Spirulina and Schizochytrium replacement in aquafeeds can be used to improve fish growth and maintain fillet quality, respectively, but considerable uncertainty exists on the predicted responses. To reduce uncertainty and facilitate the transition towards more sustainable aquafeeds, we recommend that feeding trials using microalgae are conducted under commercially relevant conditions and that greater care is taken to report full results to account for sources of heterogeneity.
Collapse
Affiliation(s)
- S Trevi
- Swansea University, Centre for Sustainable Aquatic Research (CSAR), Singleton Park, Swansea, SA2 8PP, UK
| | - T Uren Webster
- Swansea University, Centre for Sustainable Aquatic Research (CSAR), Singleton Park, Swansea, SA2 8PP, UK
| | - S Consuegra
- Swansea University, Centre for Sustainable Aquatic Research (CSAR), Singleton Park, Swansea, SA2 8PP, UK
| | - C Garcia de Leaniz
- Swansea University, Centre for Sustainable Aquatic Research (CSAR), Singleton Park, Swansea, SA2 8PP, UK.
| |
Collapse
|
16
|
Ahamad Bustamam MS, Pantami HA, Shaari K, Min CC, Mediani A, Ismail IS. Immunomodulatory effects of Isochrysis galbana incorporated diet on Oreochromis sp. (red hybrid tilapia) via Sera- 1H NMR metabolomics study. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108455. [PMID: 36464078 DOI: 10.1016/j.fsi.2022.108455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Tilapia is one of the most common fish species that is intensively produced all over the world. However, significant measures at improving aquaculture health must be taken since disease outbreaks are often encountered in the rapidly developing aquaculture industry. Therefore, the objective of the study was designed to evaluate the metabolite changes in tilapia' sera through 1H NMR metabolomics in identifying the potential biomarkers responsible for immunomodulatory effect by the indigenous species of Malaysian microalgae Isochrysis galbana (IG). The results showed that IG-incorporated diet mainly at 5.0% has improved the immune response of innate immunity as observed in serum bactericidal activity (SBA) and serum lysozyme activity (SLA). The orthogonal partial least squares (OPLS) analysis indicated 5 important metabolites significantly upregulated namely as ethanol, lipoprotein, lipid, α-glucose and unsaturated fatty acid (UFA) in the 5.0% IG-incorporated diet compared to control. In conclusion, this study had successfully determined IG in improving aquaculture health through its potential use as an immune modulator. This work also demonstrated the effective use of metabolomics approach in the development of alternative nutritious diet from microalgae species to boost fish health in fulfilling the aquaculture's long-term goals.
Collapse
Affiliation(s)
- Muhammad Safwan Ahamad Bustamam
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Hamza Ahmed Pantami
- Department of Chemistry, Faculty of Science, P.M.B 127, Gombe State University, Nigeria
| | - Khozirah Shaari
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Chong Chou Min
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Ahmed Mediani
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| | - Intan Safinar Ismail
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
17
|
Salem MAEK, Adawy RS, Zaki VH, Zahran E. Nannochloropsis oculata supplementation improves growth, immune response, intestinal integrity, and disease resistance of Nile Tilapia. JOURNAL OF AQUATIC ANIMAL HEALTH 2022; 34:184-196. [PMID: 36478445 DOI: 10.1002/aah.10170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 06/17/2023]
Abstract
OBJECTIVE The current study evaluated the potential roles of incorporating Nannochloropsis oculata into the diet of Nile Tilapia Oreochromis niloticus in an 8-week trial. METHODS Dietary supplementation of N. oculata was tested at inclusion levels (0% [control], 5% [N5], and 10% [N1]) in triplicate. After the trial, comprehensive fish health indicators were evaluated. RESULT N. oculata-supplemented feed had a stimulatory effect on fish body weight, where a significant increase in final weight and specific growth rate was observed in the N10 group compared to the control. Better feed conversion was observed at N5 and N10 compared to control. Organosomatic indices were elevated significantly in the N5 group compared to the N10 and control groups. Serum lysozyme activity was significantly increased in the N10 group compared to N5 and control groups. Levels of IgM were significantly higher in N10 compared to the control and N5 groups, with no significance between the latter. Amylase activity showed a significant enhancement in N10 compared to N5. Both levels of N. oculata preserved hepatic health and antioxidant status. Light and transmission electron microscopy showed that Nile Tilapia fed N. oculata at both levels enhanced intestinal immunity, integrity, and absorptive efficiency. The protecting effect of N. oculata was confirmed against Aeromonas hydrophila challenge, where cumulative mortalities were significantly decreased in N5 and N10 groups compared with the control and more in N10. CONCLUSION This work confirmed the different beneficial roles of N. oculata dietary supplementation for a Nile Tilapia balanced diet.
Collapse
Affiliation(s)
- Mona Abd El-Khalek Salem
- Department of Internal Medicine, Infectious and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
- Department of Fish Diseases and Management, Animal Health Research Institute, Agriculture Research Center, Mansoura, Egypt
| | - Rawia Saad Adawy
- Department of Fish Diseases and Management, Animal Health Research Institute, Agriculture Research Center, Mansoura, Egypt
| | - Viola Hassan Zaki
- Department of Internal Medicine, Infectious and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Eman Zahran
- Department of Internal Medicine, Infectious and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
18
|
Abdel-Latif HMR, Soliman AA, Khaled AA, Kord M, Abdel-Tawwab M, Darwish S, Grana YS, Zaki M, Nour AE, Ali E, Khalil RH, Khalil HS. Growth performance, antioxidant activities, and immunological responses of hapa-reared thinlip mullet (Liza ramada) juveniles fed on diets supplemented with spirulina (Arthrospiraplatensis). FISH & SHELLFISH IMMUNOLOGY 2022; 130:359-367. [PMID: 36126837 DOI: 10.1016/j.fsi.2022.09.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/22/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Spirulina (Arthrospira platensis) (SP) has been utilized for a long time as a valued feed supplement because of its proteinous content and other beneficial phytochemical compounds. Herein, we investigated the influences of SP-supplemented diets on growth, body somatic indices, digestive enzymes, hepatic antioxidant activities, and immunological responses of hapa-reared thinlip mullet (Liza ramada) juveniles. Fish were assigned in six triplicate groups and were fed for consecutive 60 days on the prepared experimental diets containing varying SP levels as 0.0, 2.0, 4.0, 6.0, 8.0, and 10.0 g/kg diet and defined as control (CNT or SP0), SP2, SP4, SP6, SP8, and SP10 groups, respectively. The results indicated that dietary SP supplementation linearly and quadratically improved the fish growth performance, and the highest growth indices were found in the SP8 group. However, dietary SP supplementation did not significantly alter feed conversion ratio (FCR), survival rate (%), hepato-somatic index, and viscera-somatic index among all experimental groups. Meanwhile, digestive enzymes (lipase, α-amylase, and proteases) in the mid-intestine were also linearly and quadratically increased in all SP-fed groups, and their uppermost values were noted in the SP8 group. Hepatic antioxidants such as superoxide dismutase, catalase, and total antioxidant capacity in SP-supplemented groups were significantly elevated than the CNT group. Conversely, hepatic malondialdehyde contents were decreased significantly along with increasing dietary SP-supplementation levels. The immunological parameters such as lysozyme, respiratory burst, and alternative complement activities were significantly elevated in SP-fed groups than in the CNT group. These findings evoked that feeding SP-supplemented diets (especially at 8.0 g/kg diet) significantly promoted the growth, digestive enzymes, hepatic antioxidant status, and immunity of L. ramada juveniles.
Collapse
Affiliation(s)
- Hany M R Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22758, Egypt.
| | - Ali A Soliman
- National Institute of Oceanography and Fisheries (NIOF), Egypt
| | - Asmaa A Khaled
- Animal and Fish Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Mohamed Kord
- Central Laboratory for Agricultural Climate, Agriculture Research Center, Giza, Egypt
| | - Mohsen Abdel-Tawwab
- Department of Fish Biology and Ecology, Central Laboratory for Aquaculture Research, Agriculture Research Center, Abbassa, Abo-Hammad, Sharqia, Egypt
| | - Shawky Darwish
- Limnology Department, Central Laboratory for Aquaculture Research, Agriculture Research Center, Abbassa, Abo-Hammad, Sharqia, Egypt
| | - Youssif Shehata Grana
- Limnology Department, Central Laboratory for Aquaculture Research, Agriculture Research Center, Abbassa, Abo-Hammad, Sharqia, Egypt
| | - Mohamed Zaki
- Animal Production Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Abd-Elaziz Nour
- Animal Production Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Eglal Ali
- Animal and Fish Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Riad H Khalil
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22758, Egypt
| | | |
Collapse
|
19
|
Abdul Kari Z, Wee W, Mohamad Sukri SA, Che Harun H, Hanif Reduan MF, Irwan Khoo M, Van Doan H, Wen Goh K, Seong Wei L. Role of phytobiotics in relieving the impacts of Aeromonas hydrophila infection on aquatic animals: A mini-review. Front Vet Sci 2022; 9:1023784. [PMID: 36277060 PMCID: PMC9582345 DOI: 10.3389/fvets.2022.1023784] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/15/2022] [Indexed: 11/04/2022] Open
Abstract
Aeromonas hydrophila is a ubiquitous bacterium with various hosts that causes mass mortality in farm-raised fish species and significant economic losses. The current antibiotic treatment is ineffective in controlling this bacterium infection in aquaculture species. Therefore, an evaluation of potential phytobiotics is needed to find an alternative antimicrobial agent to reduce the over-reliance on antibiotics in aquaculture and safeguard public and environmental health. Furthermore, the rise in antibiotic resistance cases among pathogenic bacteria indicates an urgent need for new fish and shellfish health management solutions. In this context, phytobiotics applications in aquaculture can be defined as any medicinal plant-based antimicrobial agent used in fish and shellfish health management. This review will focus on the impacts of Motile Aeromonas Septicemia (MAS) due to A. hydrophila in aquaculture, the potential of phytobiotics in enhancing the tolerance of aquaculture species against MAS and the combination of phytobiotics with other antimicrobial and therapeutic agents against MAS.
Collapse
Affiliation(s)
- Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
| | - Wendy Wee
- Center of Fundamental and Continuing Education, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Suniza Anis Mohamad Sukri
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
| | - Hasnita Che Harun
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
| | - Mohd Farhan Hanif Reduan
- Department of Paraclinical Study, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Bharu, Kelantan, Malaysia
| | - Martina Irwan Khoo
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Science and Technology Research Institute, Chiang Mai University, Chiang Mai, Thailand
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | - Lee Seong Wei
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
| |
Collapse
|
20
|
Fadl SE, Elbialy ZI, Abdo W, Saad AH, Aboubakr M, Abdeen A, Elkamshishi MM, Salah AS, El-Mleeh A, Almeer R, Aleya L, Abdel-Daim MM, Najda A, Abdelhiee EY. Ameliorative effect of Spirulina and Saccharomyces cerevisiae against fipronil toxicity in Oreochromis niloticus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113899. [PMID: 35870348 DOI: 10.1016/j.ecoenv.2022.113899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
The ameliorative effects of Spirulina and Saccharomyces cerevisiae (S. cerevisiae) against fipronil toxicity in Nile tilapia fish were investigated. Fipronil is a kind of pesticide that is widely used in agriculture, thus this trial was conducted to evaluate the effect of fipronil on growth related parameters (final body weight, feed intake, weight gain, feed conversion ratio, specific growth rate, and protein efficiency ratio), hematology related parameters (RBCs, WBCs, hemoglobin, packed cell volume, and deferential leukocytic count), biochemistry related parameters (alanine aminotransferase, aspartate aminotransferase, total protein, albumin, urea, and creatinine), histopathology of liver, intestine, gills, and spleen, and gene expression of antioxidants, stress, inflammatory, apoptotic, and related to junction proteins genes as SOD and GPx, COX II, TNF-α, Casp-3, and Claudin-3, respectively, in Nile tilapia (Oreochromis niloticus). Four hundred and five Nile tilapia fish were distributed in a glass aquarium into nine groups according to the Spirulina and S. cerevisiae supplemented diets, with or without fipronil contaminated water. The classified groups are control, Sc: S. cerevisiae (4 g/Kg diet), Sp: Spirulina (1 g/100 g diet), Fb1: 0.0021 mg fipronil/L, ScFb1: S. cerevisiae (4 g/Kg diet) with 0.0021 mg fipronil/L, SpFb1: Spirulina (1 g/100 g diet) with 0.0021 mg fipronil/L, Fb2: 0.0042 mg fipronil/L, ScFb2: S. cerevisiae (4 g/Kg diet) with 0.0042 mg fipronil/L, and SpFb2: Spirulina (1 g/100 g diet) with 0.0042 mg fipronil/L. The results of the present investigation indicated the negative effect of fipronil on the growth performance parameters of Nile tilapia, which was confirmed by the results of hematology, biochemistry, and histopathology. In addition, the results of gene expression of antioxidants, stress, inflammatory, and apoptotic genes indicate the genotoxicity of fipronil. However, these negative effects were ameliorated by Spirulina and Saccharomyces dietary supplementation.
Collapse
Affiliation(s)
- Sabreen E Fadl
- Biochemistry Department, Faculty of Veterinary Medicine - Matrouh University, Matrouh 51744, Egypt.
| | - Zizy I Elbialy
- Fish Processing and Biotechnology Department, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| | - Walied Abdo
- Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Shaikh 33516, Egypt.
| | - Adel Hassan Saad
- Nutrition and Clinical Nutrition Department, Faculty of Veterinary Medicine, Matrouh University, Matrouh 51744, Egypt.
| | - Mohamed Aboubakr
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, 13736 Moshtohor, Toukh, Qaliobiya, Egypt.
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt.
| | - Mohamed Morsi Elkamshishi
- Department of Animal Hygiene and Zoonoses, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt.
| | - Abdallah S Salah
- Faculty of Aquatic and Fisheries Sciences, Department of Aquaculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| | - Amany El-Mleeh
- Department of Pharmacology, Faculty of Veterinary Medicine, Menoufia University, Shebin Elkoum 32514, Egypt.
| | - Rafa Almeer
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne, Franche-Comté University, CEDEX, F-25030 Besançon, France.
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| | - Agnieszka Najda
- Department of Vegetable Crops and Medicinal Plants University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland.
| | - Ehab Yahya Abdelhiee
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Matrouh University, Matrouh 51744, Egypt.
| |
Collapse
|
21
|
Selenium-Enriched Spirulina (SeE-SP) Enhance Antioxidant Response, Immunity, and Disease Resistance in Juvenile Asian Seabass, Lates calcarifer. Antioxidants (Basel) 2022; 11:antiox11081572. [PMID: 36009291 PMCID: PMC9404762 DOI: 10.3390/antiox11081572] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 12/24/2022] Open
Abstract
The present study examined the efficacy of dietary selenium-enriched spirulina (SeE-SP) on growth performance, antioxidant response, liver and intestinal health, immunity and disease resistance of Asian seabass, Lates calcarifer. A total of 480 seabass juveniles with an initial weight of 9.22 ± 0.09 g/fish were randomly assigned to four dietary groups. The fish were fed a fishmeal protein replacement diets with SeE-SP at 5%, 10%, and 20%, namely SeE-SP5, SeE-SP10, and SeE-SP20, and a fishmeal-based diet as control for 8 weeks. The results indicated that seabass juveniles fed SeE-SP5 and SeE-SP10 diets grew at the same rate as the fish fed a fishmeal-based control diet after 8 weeks of feeding, while SeE-SP20 grew at a significantly lower rate than the control (p < 0.05). Although most of the measured biochemical parameters were not influenced by the Se-SP diets, serum antioxidant-enzyme glutathione peroxidase (GPx) and immunological indices, such as lysozyme activity and immunoglobulin-M, were found significantly higher in the SeE-SP5 and SeE-SP10 diets compared to control. In addition, the fish fed the SeE-SP5 diet showed significantly lower mortalities after the 14-day of bacterial challenge with V. harveyi. These outcomes indicated that up to 10% inclusion of SeE-SP in the diet of juvenile Asian seabass does not compromise growth, while SeE-SP5 enhanced disease resistance in juvenile seabass.
Collapse
|
22
|
Yousefi M, Ahmadifar M, Mohammadzadeh S, Kalhor N, Esfahani DE, Bagheri A, Mashhadizadeh N, Moghadam MS, Ahmadifar E. Individual and combined effects of the dietary Spirulina platensis and Bacillus licheniformis supplementation on growth performance, antioxidant capacity, innate immunity, relative gene expression and resistance of goldfish, Carassius auratus to Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2022; 127:1070-1078. [PMID: 35830944 DOI: 10.1016/j.fsi.2022.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
This study evaluated the individual and combined effects of the dietary Spirulina platensis (SP) and probiotic bacterium Bacillus licheniformis (BL) on the growth performance, immune responses, and disease resistance in goldfish (Carassius auratus). A total of 216 fish (3.39 ± 0.24 g) were randomly distributed in 12 tanks with 18 fish per tank (4 treatments with 3 replications) and fed with diets containing 0% S. platensis and B. licheniformis (T0), 108 CFU/g B. licheniformis (T1), 2.5% S. platensis (T2), and 108 CFU/g B. licheniformis + 2.5% S. platensis (T3(. There were no significant differences in growth parameters. The alternative complement pathway (ACH50) and lysozyme activity were significantly increased in T2 and T3 treatments. No marked differences were observed in total immunoglobulin and protease activity among treatments (P > 0.05). The relative expression of IGF-1 was not affected by experimental diets (P > 0.05). Ghrelin gene showed significantly higher mRNA levels in fish fed with SP and BL (P < 0.05). The relative expression of catalase (CAT), and glutathione reductase (GSR) significantly increased in fish fed with the SP and BL (P < 0.05). No marked difference in glutathione peroxidase (GPX) gene expression was seen between the treatments (P > 0.05). The mRNA levels of lysozyme, IL6, IL-1β, TGF, and TNF2 transcription were higher in fish fed with SP and BL (P < 0.05). No notable difference was observed in TNF1 and IL10 gene expression between treatments (P > 0.05). Moreover, the result of the challenge test with A. hydrophila showed that goldfish fed with SP and BL had a lower mortality rate than the control. In conclusion, the supplementation of SP and BL can be used as feed additives to enhance disease resistance against A. hydrophila infection by stimulating the immune system in goldfish.
Collapse
Affiliation(s)
- Morteza Yousefi
- Department of Veterinary Medicine, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St, 117198, Moscow, Russian Federation.
| | - Mehdi Ahmadifar
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Sedigheh Mohammadzadeh
- Graduated from Fisheries Department, Faculty of Animal Sciences and Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Naser Kalhor
- Department of Mesanchymal Stem Cell, Academic Center for Education, Culture and Research, Qom Branch, Qom, Iran
| | - Delaram Eslimi Esfahani
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Azadeh Bagheri
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Nika Mashhadizadeh
- Department of Biology, Collage of Science, University of Science and Culture, ACECR, Tehran Branch, Iran
| | - Mohsen Shahriari Moghadam
- Department of Environmental Sciences, Faculty of Natural Resources, University of Zabol, Zabol, Iran
| | - Ehsan Ahmadifar
- Department of Fisheries, Faculty of Natural Resources, University of Zabol, Zabol, Iran.
| |
Collapse
|
23
|
Awad LZ, El-Mahallawy HS, Abdelnaeim NS, Mahmoud MMA, Dessouki AA, ElBanna NI. Role of dietary Spirulina platensis and betaine supplementation on growth, hematological, serum biochemical parameters, antioxidant status, immune responses, and disease resistance in Nile tilapia. FISH & SHELLFISH IMMUNOLOGY 2022; 126:122-130. [PMID: 35613669 DOI: 10.1016/j.fsi.2022.05.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/14/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Spirulina platensis is, a freshwater microalga, broadly used worldwide. It not only stimulates the immune systems of aquatic organisms but also provides a protein-rich diet and commonly used in the manufacture of aquafeeds. This study was planned to evaluate the growth performance, hepato-renal, and immune response biomarkers of Spirulina and Betaine on Nile tilapia (Oreochromis niloticus) and their protective effect against infection with Aeromonas hydrophila. O. niloticus juveniles (20.22 ± 0.86 g) were divided into four groups (n = 10 per replicate). For 8 weeks, the first and second groups (TS&TB) were fed with 0.5% and 0.3% concentrations of Spirulina and Betaine supplemented diets, respectively; the third group (TSB) was fed with a Spirulina and Betaine mixed diet; the fourth group was fed with a basal diet (without supplementation, T0), which served as control. Dietary inclusion of Spirulina and Betaine significantly improved (P ˂ 0.05) the weight gain, final weight, and food conversion ratio, especially in the TS group. The activities of hepatic malonaldehyde were unchanged in TS & TSB groups and the muscular significantly decreased (P ˂ 0.05) in the same groups, while both increased in the TB group; meanwhile, levels of glutathione reductase were significantly upregulated in all treated groups. Serum interleukins, TNF- alpha, and IL-10 levels were also significantly reduced in all treatment groups. A significant protective power against pathogenic Aeromonas infection was evidenced in all treated groups. Findings in this study highlight the reputation of Spirulina and Betaine as immunostimulants and protective agents against A. hydrophila infection in O. niloticus.
Collapse
Affiliation(s)
- Laila Z Awad
- Aquaculture Diseases Control Department, Fish Farming and Technology Institute, Suez Canal University, Ismailia, 41522, Egypt
| | - Heba S El-Mahallawy
- Department of Animal Hygiene, Zoonoses and Animal Behaviour and Management - Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Noha S Abdelnaeim
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Manal M A Mahmoud
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Amina A Dessouki
- Department of Pathology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Noha I ElBanna
- Aquaculture Diseases Control Department, Fish Farming and Technology Institute, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
24
|
Liu C, Liu H, Zhu X, Han D, Jin J, Yang Y, Xie S. The Effects of Dietary Arthrospira platensis on Oxidative Stress Response and Pigmentation in Yellow Catfish Pelteobagrus fulvidraco. Antioxidants (Basel) 2022; 11:antiox11061100. [PMID: 35739996 PMCID: PMC9219713 DOI: 10.3390/antiox11061100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 12/10/2022] Open
Abstract
In aquaculture, fish are often exposed to several stress conditions, which will cause oxidative disorder and bring about health and quality problems. Arthrospira platensis contains abundant bioactive ingredients, which are beneficial for animal health. This study was conducted to investigate the effects of A. platensis on pigmentation, antioxidant capacity, and stress response after air exposure of fish. A total of 120 yellow catfish Pelteobagrus fulvidraco (initial weight 70.19 ± 0.13 g) were divided into three tanks per treatment and fed diets supplemented with 0 g kg−1 A. platensis (CON) and 20 g kg −1 A. platensis (AP) for 65 days. The results indicated that dietary A. platensis had no effects on the growth of yellow catfish. The AP diet significantly reduced lactic acid (LD) and cortisol levels stimulated by air exposure stress (p < 0.05). Dietary A. platensis significantly increased plasma superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities and glutathione (GSH) contents, and the relative expression levels of sod and cat, to protect against oxidative stress caused by air exposure (p < 0.05). The AP diet significantly improved the relative expression level of nrf2 (nuclear factor erythroid-2 related factor 2), while the relative expression level of keap1 (kelch-like ECH associated protein 1) was downregulated, and the protein levels of liver Nrf2 were significantly increased after air exposure stimuli (p < 0.05). Dietary A. platensis significantly increased skin lutein contents, increased skin redness, yellowness and chroma (p < 0.05), and improved body color abnormalities after oxidative stress caused by air exposure stimuli. Skin yellowness was associated with lutein contents and the expression levels of some antioxidant genes to varying degrees. Overall, dietary A. platensis could be utilized as a feed additive to activate the antioxidant response, as well as alleviate oxidative stress and pigmentation disorder induced by air exposure.
Collapse
Affiliation(s)
- Cui Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (C.L.); (X.Z.); (D.H.); (J.J.); (Y.Y.); (S.X.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haokun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (C.L.); (X.Z.); (D.H.); (J.J.); (Y.Y.); (S.X.)
- Correspondence: ; Tel.: +86-276-878-0060
| | - Xiaoming Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (C.L.); (X.Z.); (D.H.); (J.J.); (Y.Y.); (S.X.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Dong Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (C.L.); (X.Z.); (D.H.); (J.J.); (Y.Y.); (S.X.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Junyan Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (C.L.); (X.Z.); (D.H.); (J.J.); (Y.Y.); (S.X.)
| | - Yunxia Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (C.L.); (X.Z.); (D.H.); (J.J.); (Y.Y.); (S.X.)
| | - Shouqi Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (C.L.); (X.Z.); (D.H.); (J.J.); (Y.Y.); (S.X.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Hubei Engineering Research Center for Aquatic Animal Nutrition and Feed, Wuhan 430072, China
| |
Collapse
|
25
|
Krohn I, Menanteau‐Ledouble S, Hageskal G, Astafyeva Y, Jouannais P, Nielsen JL, Pizzol M, Wentzel A, Streit WR. Health benefits of microalgae and their microbiomes. Microb Biotechnol 2022; 15:1966-1983. [PMID: 35644921 PMCID: PMC9249335 DOI: 10.1111/1751-7915.14082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/16/2022] Open
Abstract
Microalgae comprise a phylogenetically very diverse group of photosynthetic unicellular pro‐ and eukaryotic organisms growing in marine and other aquatic environments. While they are well explored for the generation of biofuels, their potential as a source of antimicrobial and prebiotic substances have recently received increasing interest. Within this framework, microalgae may offer solutions to the societal challenge we face, concerning the lack of antibiotics treating the growing level of antimicrobial resistant bacteria and fungi in clinical settings. While the vast majority of microalgae and their associated microbiota remain unstudied, they may be a fascinating and rewarding source for novel and more sustainable antimicrobials and alternative molecules and compounds. In this review, we present an overview of the current knowledge on health benefits of microalgae and their associated microbiota. Finally, we describe remaining issues and limitation, and suggest several promising research potentials that should be given attention.
Collapse
Affiliation(s)
- Ines Krohn
- Department of Microbiology and Biotechnology University of Hamburg Hamburg Germany
| | | | - Gunhild Hageskal
- Department of Biotechnology and Nanomedicine SINTEF Industry Trondheim Norway
| | - Yekaterina Astafyeva
- Department of Microbiology and Biotechnology University of Hamburg Hamburg Germany
| | | | - Jeppe Lund Nielsen
- Department for Chemistry and Bioscience Aalborg University Aalborg Denmark
| | - Massimo Pizzol
- Department of Planning Aalborg University Aalborg Denmark
| | - Alexander Wentzel
- Department of Biotechnology and Nanomedicine SINTEF Industry Trondheim Norway
| | - Wolfgang R. Streit
- Department of Microbiology and Biotechnology University of Hamburg Hamburg Germany
| |
Collapse
|
26
|
Li H, Xing J, Tang X, Sheng X, Chi H, Zhan W. Two bicistronic DNA vaccines against Vibrio anguillarum and the immune effects on flounder Paralichthys olivaceus. JOURNAL OF OCEANOLOGY AND LIMNOLOGY 2022; 40:786-804. [PMID: 35018224 PMCID: PMC8739378 DOI: 10.1007/s00343-021-1092-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/11/2021] [Indexed: 05/05/2023]
Abstract
Chemokines are cytokines that can promote the activation and migration of immune cells, and increase the recognition of antigen by antigen-presenting cells (APC). Previous studies showed that a DNA vaccine can induce humoral and cellular immune responses of flounder after immunization. To explore the improvement of chemokines on the efficiency of OmpK vaccine, two bicistronic DNA candidate vaccines were constructed and the immune responses they induced in the flounder were investigated by reverse transcription polymerase chain reaction (RT-PCR), indirect immunofluorescent assay (IFA), H&E staining, flow cytometry (FCM), and quantificational real-time polymerase chain reaction (qRT-PCR). pBudCE4.1 plasmid as an expression vector, bicistronic DNA vaccines encoding OmpK gene and CC-motif ligand 4 gene (p-OmpK-CCL4), or Ompk gene and CC-motif ligand 19 gene (p-OmpK-CCL19) were successfully constructed. The results showed that two bicistronic DNA vaccines expressed Ompk protein of Vibrio anguillarum and CCL4/CCL19 proteins of flounder both in vitro and in vivo. After immunization, a large number of leucocytes in muscle were recruited at the injection site in treatment groups. The constructed vaccines induced significant increases in CD4-1+ and CD4-2+ T lymphocytes, and sIgM+ B lymphocytes in peripheral blood, spleen, and head kidney. The percentage of T lymphocytes peaked on the 14th post-vaccination day whereas that of B lymphocytes peaked in the 6th post-vaccination week. Moreover, the expression profiles of 10 immune-related genes increased in muscles around the injection site, spleen, and head kidney. After the challenge, p-OmpK-CCL4 and p-OmpK-CCL19 conferred a relative percentage survival (RPS) of 74.1% and 63.3%, respectively, higher than p-OmpK alone (40.8%). In conclusion, both CCL4 and CCL19 can improve the protection of p-OmpK via evoking local immune response and then humoral and cellular immunity. CCL4 and CCL19 will be potential molecular adjuvants for use in DNA vaccines.
Collapse
Affiliation(s)
- Hanlin Li
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003 China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071 China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071 China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003 China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003 China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071 China
| |
Collapse
|
27
|
Yang Y, Zhu X, Zhang H, Chen Y, Song Y, Ai X. Dual RNA-Seq of Trunk Kidneys Extracted From Channel Catfish Infected With Yersinia ruckeri Reveals Novel Insights Into Host-Pathogen Interactions. Front Immunol 2021; 12:775708. [PMID: 34975864 PMCID: PMC8715527 DOI: 10.3389/fimmu.2021.775708] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
Host-pathogen intectarions are complex, involving large dynamic changes in gene expression through the process of infection. These interactions are essential for understanding anti-infective immunity as well as pathogenesis. In this study, the host-pathogen interaction was analyzed using a model of acute infection where channel catfish were infected with Yersinia ruckeri. The infected fish showed signs of body surface hyperemia as well as hyperemia and swelling in the trunk kidney. Double RNA sequencing was performed on trunk kidneys extracted from infected channel catfish and transcriptome data was compared with data from uninfected trunk kidneys. Results revealed that the host-pathogen interaction was dynamically regulated and that the host-pathogen transcriptome fluctuated during infection. More specifically, these data revealed that the expression levels of immune genes involved in Cytokine-cytokine receptor interactions, the NF-kappa B signaling pathway, the JAK-STAT signaling pathway, Toll-like receptor signaling and other immune-related pathways were significantly upregulated. Y. ruckeri mainly promote pathogenesis through the flagellum gene fliC in channel catfish. The weighted gene co-expression network analysis (WGCNA) R package was used to reveal that the infection of catfish is closely related to metabolic pathways. This study contributes to the understanding of the host-pathogen interaction between channel catfish and Y. ruckeri, more specifically how catfish respond to infection through a transcriptional perspective and how this infection leads to enteric red mouth disease (ERM) in these fish.
Collapse
Affiliation(s)
- Yibin Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
- The Key Laboratory for Quality and Safety Control of Aquatic Products, Ministry of Agriculture, Beijing, China
| | - Xia Zhu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Haixin Zhang
- Fish Disease Laboratory, Jiangxi Fisheries Research Institute, Nanchang, China
| | - Yuhua Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Song
- The Key Laboratory for Quality and Safety Control of Aquatic Products, Ministry of Agriculture, Beijing, China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
- The Key Laboratory for Quality and Safety Control of Aquatic Products, Ministry of Agriculture, Beijing, China
| |
Collapse
|
28
|
Ghafarifarsani H, Hoseinifar SH, Adorian TJ, Goulart Ferrigolo FR, Raissy M, Van Doan H. The effects of combined inclusion of Malvae sylvestris, Origanum vulgare, and Allium hirtifolium boiss for common carp (Cyprinus carpio) diet: Growth performance, antioxidant defense, and immunological parameters. FISH & SHELLFISH IMMUNOLOGY 2021; 119:670-677. [PMID: 34653666 DOI: 10.1016/j.fsi.2021.10.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
The present study aimed to investigate the effects of a mixture of three medicinal plants extracts (COP: common mallow (Malvae sylvestris), oregano (Origanum vulgare), and Persian shallot (Allium hirtifolium boiss)) on growth, hematological indices, immunological parameters, liver antioxidant, and digestive enzyme activity of common carp (Cyprinus carpio). Accordingly, 540 common carp fingerlings were randomly allotted to 18 fiberglass tanks, including six treatments each in triplicate. Fish were fed with experimental diets supplemented with 0, 0.5, 1, 2, 3, and 5% of the herbal mixture. After 60 days, the effects on growth performance, antioxidant, and immunological parameters were evaluated. According to the results, the highest final weight was observed in the fish fed 2 and 3% of the herbal mixture. Also, the feed conversion ratio (FCR) showed a significant decrease in fish treated with the herbal mix, so that the lowest FCR was observed in the treatment 1%. Hematological examinations such as red blood cells (RBC), white blood cell (WBC), and hemoglobin showed significant changes between different parameters compared to the control group. The highest protein content was observed in the fish supplemented with 2, 3, and 5% herbs. Besides, in contrast to glucose, the cortisol level showed a significant decrease compared to the control group. The digestive enzymes (Amylase, Lipase, and Protease) were significantly higher in 2 and 3% treatments than in the control group. Also, a significant difference was found in Superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) activity, and malondialdehyde (MDA) content between the experimental and control treatments. Examination of liver enzymes (and alanine aminotransaminase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP)) showed a significant difference in herbal mixture treatments with the control group, according to which the lowest amount of these enzymes was recorded in 2 and 3% herb supplemented fish. Herbal mix resulted in higher mucosal and intestinal immunity parameters, including total immunoglobulin (total Ig), lysozyme, alternative complement activities (ACH50), protease, and ALP. According to the results, supplementing the diet with a mixture of the COP can significantly improve growth parameters, stimulate the innate immune system, and improve antioxidant defenses and liver health of common carp.
Collapse
Affiliation(s)
- Hamed Ghafarifarsani
- Department of Fisheries, Faculty of Natural Resources, Urmia University, Urmia, Iran
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Taida Juliana Adorian
- Department of Animal Science, Federal University of Santa Maria, Santa Maria, Cidade Universitária, Rio Grande Do Sul. AV. Roraima nº 1000, Bairro Camobi, Santa Maria, CEP: 97105-900, RS, Brazil
| | | | - Mehdi Raissy
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, Islamic Azad University, Shahrekrd Branch, Shahrekord, Iran
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand; Science and Technology Research Institute, Chiang Mai University, 239 Huay Keaw Rd., Suthep, Muang, Chiang Mai, 50200, Thailand.
| |
Collapse
|
29
|
Abdel-Tawwab M, El-Saadawy HA, El-Belbasi HI, Abd El-Hameed SAA, Attia AA. Dietary spirulina (Arthrospira platenesis) mitigated the adverse effects of imidacloprid insecticide on the growth performance, haemato-biochemical, antioxidant, and immune responses of Nile tilapia. Comp Biochem Physiol C Toxicol Pharmacol 2021; 247:109067. [PMID: 33915278 DOI: 10.1016/j.cbpc.2021.109067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/17/2021] [Accepted: 04/21/2021] [Indexed: 12/20/2022]
Abstract
The present study was performed to evaluate the toxic effects of imidacloprid (IMI) insecticide on the growth performance, oxidative status, and immune response of Nile tilapia, Oreochromis niloticus (L.), and the protective role of dietary supplementation of spirulina, Arthrospira platensis, (SP). Fish (20.2 ± 0.5 g) were assigned to bifactorial design (2 IMI levels x 3 SP levels) to represent 6 treatments in triplicates. Spirulina was incorporated in diets at levels of 0.0 (control), 20, and 40 g/kg diet. Under each SP level, fish were exposed to 0.0 or 0.05 μg IMI/L. Fish in each treatment were fed on the corresponding diets up to apparent satiation thrice a day for 8 weeks. Two-way ANOVA revealed a significant decline in growth indices, hepatic superoxide dismutase, catalase, and glutathione peroxidase activities in the IMI-exposed fish. Contrariwise, serum alanine and aspartate aminotransferases, alkaline phosphatase, urea, creatinine, and malondialdehyde levels were markedly higher along with significant reductions of the reduced glutathione, nitric oxide as well as lysozyme values in the IMI-exposed fish group. The dietary supplementation of SP showed stimulating effects on the growth performance, haemato-biochemical, oxidants/antioxidants, and immune biomarkers of Nile tilapia with optimum level of 20 g SP/kg diet. Interestingly, the dietary supplementation of SP to Nile tilapia attenuated the above-mentioned variables with improving the growth performance, haemato-biochemical, oxidative stress, and immunity biomarkers. Therefore, the dietary supplementation of 20 g SP /kg diet could be a valuable candidate as a natural antioxidant for ameliorating the IMI toxicity in Nile tilapia.
Collapse
Affiliation(s)
- Mohsen Abdel-Tawwab
- Department of Fish Biology and Ecology, Central Laboratory for Aquaculture Research, Agriculture Research Center, Abbassa, Abo-Hammad, Sharqia, Egypt.
| | - Hamad A El-Saadawy
- Biochemistry Department, Faculty of Veterinary Medicine, Zagazig University, Sharkia, Egypt
| | - Hussein I El-Belbasi
- Biochemistry Department, Faculty of Veterinary Medicine, Zagazig University, Sharkia, Egypt
| | - Samah A A Abd El-Hameed
- Department of Fish Health and Management, Central Laboratory for Aquaculture Research, Agriculture Research Center, Abbassa, Abo-Hammad, Sharqia, Egypt
| | - Asmaa A Attia
- Department of Fish Health and Management, Central Laboratory for Aquaculture Research, Agriculture Research Center, Abbassa, Abo-Hammad, Sharqia, Egypt
| |
Collapse
|
30
|
Dietary Spirulina (Arthrospira platensis) Supplementation on Growth Performance, Haematology, Immune Response and Disease Resistance of Rugose Frog (Hoplobatrachus rugulosus). JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.3.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The present study aimed to investigate the effects of dietary Spirulina (Arthrospira platensis) supplementation on the growth, survival, haematology, immune parameters and disease resistance of Rugose frog (Hoplobatrachus rugulosus) against Aeromonas hydrophila infection. Frogs were fed a formulated diet containing Spirulina as 0% (control), 1.5%, 3.0%, 4.5%, and 6.0% for a period of eight weeks. The results indicated that growth parameters; final body weight, weight gain, average daily gain, specific growth rate, feed conversion ratio, and survival rate of frog fed with A. platensis at the level of 4.5% showed best values but not significantly different (P>0.05). However, haematological values; leukocytes, erythrocytes, haemoglobin, and haematocrit levels were highest and significantly different (P<0.05) when compared to the control group. Disease resistance was tested by challenging with A. hydrophila after eight weeks of feeding. The results showed that frog fed with 4.5% A. platensis showed significantly (P<0.05) higher survival rate and highest resistance to A. hydrophila in comparison with the other groups. Leukocyte, erythrocyte, complement C3, and immunoglobulin G levels of frogs fed with 4.5% A. platensis were found to be significantly (P < 0.05) differed compared with control. In conclusion, diet supplemented with Spirulina at the level of 4.5% could improve growth performance, haematological and immune parameters, and A. hydrophila resistance in Rugose frogs.
Collapse
|
31
|
Alagawany M, Taha AE, Noreldin A, El-Tarabily KA, Abd El-Hack ME. Nutritional applications of species of Spirulina and Chlorella in farmed fish: A review. AQUACULTURE 2021; 542:736841. [DOI: 10.1016/j.aquaculture.2021.736841] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
32
|
MOSHA SEBASTIANS, FELIX SUGANTHAM, MANIKANDAVELU DHANUSKODI, FELIX NATHAN, T L S SAMUELMOSES, MENAGA MEENAKSHISUNDARAM. Influence of supplementation of Spirulina platensis on nutritional, physiological and metabolic performance of GIFT Tilapia (Oreochromis niloticus). THE INDIAN JOURNAL OF ANIMAL SCIENCES 2021. [DOI: 10.56093/ijans.v90i12.113209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
An eight weeks feeding trial was conducted to assess the influence of supplementation of Spirulina platensis on nutritional, physiological and metabolic performance of GIFT Tilapia (Oreochromis niloticus). Fingerlings (120; Initial body weight 3.4±0.01 g) were randomly assigned to four dietary treatments, viz. control (0%), T1 (1%), T2 (3%) and T3 (5% S. platensis meal) in triplicates. The animals were fed with a ration at 5% body weight twice a day throughout the trial. The results indicated that, final body proximate composition, growth performance and nutrients digestibility coefficient were higher in T2 group compared to other treatments and the control. At this level of inclusion, fish digestive enzymes, such as amylase, protease and lipase were significantly higher between control and treatments however, metabolic enzyme activities were not influenced by dietary treatments. The liver and intestinal histology were not affected by dietary treatments, however the intestinal tissues showed a higher intestinal villi length and muscular layer thickness than the control group. It can be concluded that, S. plantesis meal can be supplemented up to 3% without compromising the overall performance of GIFT tilapia.
Collapse
|
33
|
Zhang L, Zhang XT, Jin P, Zhao H, Liu X, Sheng Q. Effects of oral administration of Spirulina platensis and probiotics on serum immunity indexes, colonic immune factors, fecal odor, and fecal flora in mice. Anim Sci J 2021; 92:e13593. [PMID: 34289202 DOI: 10.1111/asj.13593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 12/01/2022]
Abstract
To evaluate the effects of Spirulina platensis and probiotics on growth, immunity indexes, fecal flora, and fecal odor in mice, 40 mice were randomly allotted to four groups, and each was administrated with nothing, S. platensis, probiotics, or both for 28 days, respectively. Then, many indexes were measured. The results showed that S. platensis was more effective (P < 0.001) than probiotics in improving mice's feed conversion ration (FCR). In immunity, probiotics administration increased (P < 0.042) serum IgE, IgM, IFN-γ, colonic AHR, TLR4, and NF-κB protein expression and decreased (P < 0.039) serum IL-1α, IL-21, IL-22, and colonic ARNT gene expression. However, the S. platensis showed weaker effect, which increased (P < 0.025) the serum IgE, IgM, TNF-α, and the colonic AHR and NF-κB protein expression, and decreased (P < 0.01) serum IL-21. Probiotics consumption decreased the fecal odor by decreasing (P < 0.02) fecal Escherichia coli, indole-3-acetic acid (IAA), and skatole contents, and the S. platensis decreased (P = 0.04) the IAA. These results indicated that oral administration of probiotics, S. platensis, or both of them in mice probably benefited body's immunity and reduced fecal odor. However, their mechanisms were still unclear and need further study.
Collapse
Affiliation(s)
- Lingyan Zhang
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China.,Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Jinan, China
| | - Xing Tao Zhang
- The Second Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, China
| | - Pingting Jin
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Jinan, China
| | - Hongbo Zhao
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Jinan, China
| | - Xue Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingkai Sheng
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Jinan, China.,College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| |
Collapse
|
34
|
Kupprat F, Hölker F, Knopf K, Preuer T, Kloas W. Innate immunity, oxidative stress and body indices of Eurasian perch Perca fluviatilis after two weeks of exposure to artificial light at night. JOURNAL OF FISH BIOLOGY 2021; 99:118-130. [PMID: 33587288 DOI: 10.1111/jfb.14703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Artificial light at night (ALAN) can disrupt biological rhythms of fish and other vertebrates by changing the light information of the nocturnal environment. Disrupted biorhythms can impair the immune system of vertebrates as it has been shown for conditions with continuous illumination or long-day photoperiod in many vertebrates, including fish. Nonetheless, this has not been shown so far for typical ALAN scenarios with high light intensities during day and low light intensities at night. Therefore, in this study, proxies for the innate immune system and oxidative stress as well as body indices of Eurasian perch Perca fluviatilis were measured under a wide range of intensities of nocturnal illumination. The authors found no changes in parameters of the innate immune system and no significant changes in proxies for oxidative stress after 2-week exposures to nocturnal illuminance ranging from 0.01 lx to 1 lx in one experiment or from 1 lx to 100 lx in a second experiment. A decrease in the hepato-somatic index at the highest tested light intensity of 100 lx compared to the dark control was the only significant difference in all parameters among treatments. After 2 weeks of exposure, ALAN does not seem to seriously challenge the innate immune system and seems to cause less oxidative stress than expected. The results of this study contradict the findings from other studies applying continuous illumination or long-day photoperiod and highlight the importance of further research in this field. Because ALAN represents a sustained modulation of the environment that may have cumulative effects over time, long-term studies are required for a better understanding of how ALAN modulates the health of fish.
Collapse
Affiliation(s)
- Franziska Kupprat
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Franz Hölker
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Klaus Knopf
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Torsten Preuer
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Werner Kloas
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Faculty of Life Sciences, Humboldt University, Berlin, Germany
| |
Collapse
|
35
|
Bustamam MSA, Pantami HA, Azizan A, Shaari K, Min CC, Abas F, Nagao N, Maulidiani M, Banerjee S, Sulaiman F, Ismail IS. Complementary Analytical Platforms of NMR Spectroscopy and LCMS Analysis in the Metabolite Profiling of Isochrysis galbana. Mar Drugs 2021; 19:md19030139. [PMID: 33801258 PMCID: PMC7998644 DOI: 10.3390/md19030139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/24/2022] Open
Abstract
This study was designed to profile the metabolites of Isochrysis galbana, an indigenous and less explored microalgae species. 1H Nuclear Magnetic Resonance (NMR) spectroscopy and Liquid Chromatography-Mass Spectrometry (LCMS) were used to establish the metabolite profiles of five different extracts of this microalga, which are hexane (Hex), ethyl acetate (EtOAc), absolute ethanol (EtOH), EtOH:water 1:1 (AqE), and 100% water (Aq). Partial least square discriminant analysis (PLS–DA) of the generated profiles revealed that EtOAc and Aq extracts contain a diverse range of metabolites as compared to the other extracts with a total of twenty-one metabolites, comprising carotenoids, polyunsaturated fatty acids, and amino acids, that were putatively identified from the NMR spectra. Meanwhile, thirty-two metabolites were successfully annotated from the LCMS/MS data, ten of which (palmitic acid, oleic acid, α-linolenic acid, arachidic acid, cholesterol, DHA, DPA, fucoxanthin, astaxanthin, and pheophytin) were similar to those present in the NMR profile. Another eleven glycerophospholipids were discovered using MS/MS-based molecular network (MN) platform. The results of this study, besides providing a better understanding of I.galbana’s chemical make-up, will be of importance in exploring this species potential as a feed ingredient in the aquaculture industry.
Collapse
Affiliation(s)
- Muhammad Safwan Ahamad Bustamam
- Natural Medicine and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.S.A.B.); (A.A.); (K.S.); (F.A.); (S.B.); (F.S.)
| | - Hamza Ahmed Pantami
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Awanis Azizan
- Natural Medicine and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.S.A.B.); (A.A.); (K.S.); (F.A.); (S.B.); (F.S.)
| | - Khozirah Shaari
- Natural Medicine and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.S.A.B.); (A.A.); (K.S.); (F.A.); (S.B.); (F.S.)
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Chong Chou Min
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (C.C.M.); (N.N.)
| | - Faridah Abas
- Natural Medicine and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.S.A.B.); (A.A.); (K.S.); (F.A.); (S.B.); (F.S.)
| | - Norio Nagao
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (C.C.M.); (N.N.)
| | - Maulidiani Maulidiani
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia;
| | - Sanjoy Banerjee
- Natural Medicine and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.S.A.B.); (A.A.); (K.S.); (F.A.); (S.B.); (F.S.)
| | - Fadzil Sulaiman
- Natural Medicine and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.S.A.B.); (A.A.); (K.S.); (F.A.); (S.B.); (F.S.)
| | - Intan Safinar Ismail
- Natural Medicine and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.S.A.B.); (A.A.); (K.S.); (F.A.); (S.B.); (F.S.)
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Correspondence: ; Tel.: +60-3-9769-7492
| |
Collapse
|
36
|
Naiel MA, Alagawany M, Patra AK, El-Kholy AI, Amer MS, Abd El-Hack ME. Beneficial impacts and health benefits of macroalgae phenolic molecules on fish production. AQUACULTURE 2021; 534:736186. [DOI: 10.1016/j.aquaculture.2020.736186] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
37
|
Extract of grape seed enhances the growth performance, humoral and mucosal immunity, and resistance of common carp (Cyprinus carpio) against Aeromonas hydrophila. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2020-0049] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
This study evaluated the effects of grape seed extract (GSE) on the growth performance, immune response, and disease resistance of common carp (Cyprinus carpio). Fish were distributed in four groups and fed diets with varying levels of GSE at 0, 10, 20, and 30 g/kg for 56 days. The final length in fish fed with 20 and 30 g GSE/kg diet significantly increased in comparison with the control group (P<0.05). The final weight and weight gain of fish fed with GSE were statistically higher than for the control diet, while the feed conversion ratio was lower in GSE groups than the control. Hematological parameters did not statistically improve with GSE supplemented diets (P>0.05). However, fish fed with 30 g GSE/kg diet displayed a significantly higher WBC count than the other group (P<0.05). The serum total protein and globulin in fish fed with 20 g GSE/kg diet significantly increased compared to the control (P<0.05). A similar pattern was noticed in results for serum and mucus lysozyme activity with a significant increase in fish fed with 20 and 30 g GSE/kg diet compared to the control (P<0.05). Total antibody levels in serum and mucus samples were also increased in fish by dietary GSE with maximum levels by 20 and 30 g GSE/kg diet. Besides, mucus protease activity was higher in fish that received 20 and 30 g GSE/kg diet with maximum level shown in fish fed with 30 g GSE/kg diet compared to the control group (P<0.05). Meanwhile, all groups showed higher mucus antibacterial activity against Aeromonas hydrophila with the highest activity in 30 g GSE/kg diet in comparison with the control group. The cumulative mortality was 36.67% when fish were fed with 30 g GSE/kg diet and challenged with A. hydrophila. However, the mortality rate was 40% and 53.33% in fish fed 20 and 30 g GSE/kg diet, respectively. This study suggests that supplementation of GSE could significantly enhance the growth performance, immune responses, and disease resistance against A. hydrophila in common carp.
Collapse
|
38
|
Yousefi M, Ghafarifarsani H, Hoseinifar SH, Rashidian G, Van Doan H. Effects of dietary marjoram, Origanum majorana extract on growth performance, hematological, antioxidant, humoral and mucosal immune responses, and resistance of common carp, Cyprinus carpio against Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2021; 108:127-133. [PMID: 33253908 DOI: 10.1016/j.fsi.2020.11.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
The present study aimed to investigate the potential effects of dietary marjoram extract on growth performance, health, and disease resistance in common carp, Cyprinus carpio. To this purpose, the fish were assigned into four treatments and fed by diets supplemented with 0 (control), 100, 200, and 400 mg marjoram extract kg-1 over eight weeks and then challenged with Aeromonas hydrophila. According to the results, 200 mg kg-1 dietary marjoram extract inclusion showed the highest final weight, weight gain, and specific growth rate, and lowest feed conversion ratio (FCR). White blood cell number, Red blood cells, hematocrit, hemoglobin, mean corpuscular volume and mean corpuscular hemoglobin were markedly increased particularly at 200 mg kg-1 treatment. Marjoram extract significantly increased plasma superoxide dismutase activity and decreased malondialdehyde level compared to the control treatment. Plasma complement and lysozyme activities and total immunoglobulin levels, mucosal complement, lysozyme and alkaline phosphatase activities and immunoglobulin levels were significantly increased compared to the control group. The lowest post-challenge survival rate was observed in the control treatment, whereas the highest value was related to the 200 mg kg-1 marjoram treatment. In conclusion, the present study demonstrated that, marjoram extract is a suitable feed supplements for common carp, as it stimulates the fish growth, antioxidant, and immune systems, which suppress the fish mortality during Aeromonas septicemia. According to the results, 200 mg marjoram extract kg-1 is recommended for carp feed formulation.
Collapse
Affiliation(s)
- Morteza Yousefi
- Department of Veterinary Medicine, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation
| | - Hamed Ghafarifarsani
- Department of Fisheries, Faculty of Agriculture and Natural Resources, Urmia University, Urmia, Iran
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Ghasem Rashidian
- Aquaculture Department, Faculty of Marine Sciences, Tarbiat Modares University, Noor, Iran
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand; Science and Technology Research Institute, Chiang Mai University, 239 Huay Keaw Rd., Suthep, Muang, Chiang Mai, 50200, Thailand.
| |
Collapse
|
39
|
Elabd H, Wang HP, Shaheen A, Matter A. Nano spirulina dietary supplementation augments growth, antioxidative and immunological reactions, digestion, and protection of Nile tilapia, Oreochromis niloticus, against Aeromonas veronii and some physical stressors. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:2143-2155. [PMID: 32829476 DOI: 10.1007/s10695-020-00864-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
The current study evaluated the effects of nano delivery of Spirulina platensis on growth performance, digestive enzymes, and biochemical, immunological, and antioxidative status, as well as resistance to Aeromonas veronii and some physical stressor challenges in Nile tilapia, Oreochromis niloticus. Three experimental fish groups (n = 270) with mean weights of 26 ± 0.30 g and mean lengths of 10 ± 0.5 cm were used; the first additive-free basal diet served as the control group, whereas the following two groups were supplemented with spirulina nanoparticles (SPNP) at 0 (control), 0.25, and 0.5%/kg diet for 4 weeks. Following the feeding trial, fish were challenged with hypoxia, cold stresses, and pathogenic bacteria (A. veronii) infection (9 × 108 CFU/ml). SPNP supplementation, especially 0.5%, (p < 0.05) significantly increased growth performance (specific growth rate % day-1, feed conversion ratio, and length gain rate %), immunological (plasma lysozyme and liver nitrous oxide) antioxidants (superoxide dismutase, catalase, and glutathione peroxidase in liver), biochemical (aspartate aminotransferase, alanine transaminase, glucose, and cortisol concentrations in plasma) assays, and digestive enzymes (lipase and amylase in plasma). The expression of liver's heat shock protein 70 (HSP70) and interleukin 1, beta (IL-1β) genes showed a significant upregulation outline of 0.5% SPNP > 0.25% SPNP > 0% SPNP compared with the control. Protection in the incorporated fish groups exposed to A. veronii was 100% compared with the control group, which showed 50% cumulative mortalities. In conclusion, dietary SPNP supplementation improved growth performance, antioxidant activity, immune response, digestive enzymes, related gene expression, and resistance of Nile Tilapia to hypoxia, cold, and A. veronii infection. Thus, SPNP could be used as a natural therapy for controlling those stressors.
Collapse
Affiliation(s)
- Hiam Elabd
- Aquatic Animals Diseases and Management Department, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Egypt.
| | - Han-Ping Wang
- Ohio Center for Aquaculture Research and Development, The Ohio State University South Centers, 1864 Shyville Road, Piketon, OH, 45661, USA.
| | - Adel Shaheen
- Aquatic Animals Diseases and Management Department, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Egypt
| | - Aya Matter
- Aquatic Animals Diseases and Management Department, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Egypt
| |
Collapse
|
40
|
Influence of Feeding Quinoa ( Chenopodium quinoa) Seeds and Prickly Pear Fruit ( Opuntia ficus indica) Peel on the Immune Response and Resistance to Aeromonas sobria Infection in Nile Tilapia ( Oreochromis niloticus). Animals (Basel) 2020; 10:ani10122266. [PMID: 33271917 PMCID: PMC7760620 DOI: 10.3390/ani10122266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 01/09/2023] Open
Abstract
Simple Summary The inclusion of dietary supplements as feed additives in fish feed promotes the growth, immunity, and health of the fish, thereby accomplishing extraordinary outcomes in the net gain of the farm. Therefore, the present study was conducted to evaluate the influence of using quinoa seeds (QU) and prickly pear fruit peel (PP) as dietary supplements for fish, at the dose levels of 10% and 20% of the diet, on the immune response and disease resistance against pathogens, providing a novel perspective in aquaculture. Our findings indicated that the inclusion of PP and QU into the diets of Nile tilapia (Oreochromis niloticus) as feed supplements improved the survival rate, as well as the hematological, digestive, antioxidant, and immunological parameters. Moreover, an improvement in the strength of Nile tilapia immune response against Aeromonas sobria (A. sobria) infection was observed, evidenced by the improvement in the survival rate of infected fish. This was accomplished through the protection of the hepatic tissue and modulation of the expression of immune-encoding genes, including the downregulation of the gene encoding TGF-β and upregulation of the IFN-γ-encoding gene. Moreover, histological restoration of the morphological structures of intestine, liver, and spleen tissues was observed, particularly at the supplementation level of 20%. Abstract In recent times, nutraceuticals have been used extensively to identify promising feed additives for the improvement of the aquaculture industry through the enhancement of growth and survival rates, potentiation of the immune responses, and fortification of the resistance against infectious bacterial diseases. In this study, Nile tilapia (Oreochromis niloticus) were fed with diets supplemented with quinoa seeds (QU) or prickly pear fruit peel (PP) at the dose levels of 10% or 20% of the diet. After 45 days of the feeding trial, the fish were exposed to Aeromonas sobria (A. sobria) challenge. The pre-challenge indices indicated that both supplements mediated a significant improvement in most of the estimated parameters, including survival rate, antioxidant status, hematological and immunological indices, and hepatoprotective potential. These effects were recorded in the groups fed with high doses of the supplements (20%). The least changes were observed in the QU10-supplemented fish. In the spleen tissue, the TGF-β gene was upregulated in the PP10-, PP20- and QU20-supplemented groups, while the expression of the IFN-γ gene remained unaffected in all the supplemented groups, except for the PP20-supplemented group, which showed an upregulation. After the challenge with A. sobria, the relative survival percentage was improved by the supplementation of PP and QU, particularly in the PP20-supplemented group, possibly via the promotion of immunological responses, hepatoprotective potency, and modulation of the studied genes. Moreover, the morphological structure of the tissues showed marked recovery. The findings suggest that Nile tilapia fed with different levels of PP peel and QU seeds, particularly at the level of 20%, enhanced the immune response in fish and improved their resistance against A. sobria infection.
Collapse
|
41
|
Al-Deriny SH, Dawood MAO, Elbialy ZI, El-Tras WF, Mohamed RA. Selenium Nanoparticles and Spirulina Alleviate Growth Performance, Hemato-Biochemical, Immune-Related Genes, and Heat Shock Protein in Nile Tilapia (Oreochromis niloticus). Biol Trace Elem Res 2020; 198:661-668. [PMID: 32157633 DOI: 10.1007/s12011-020-02096-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/24/2020] [Indexed: 12/13/2022]
Abstract
The present investigation aimed to evaluate the influence of selenium nanoparticles (Se-NPs) or/and spirulina (SP) on the growth, immunity, and oxidation resistance of Nile tilapia. Four groups of fish fed diets with Se-NPs or/and SP at 0 g (control), 1 g SP/kg diet (SP), 1 mg Se-NPs/kg diet (Se-NPs), and 1 g SP + 1 mg Se-NPs/kg diet (SP/Se-NPs) for 60 days. Fish fed Se-NPs or/and SP displayed significantly improved weight gain (WG) and decreased feed conversion ratio (P < 0.05). The highest WG has observed in fish fed both Se-NPs and SP, while the specific growth rate was improved by feeding Se-NPs only or both Se-NPs and SP (P < 0.05). Blood albumin was increased significantly with Se-NPs with regard to the control (P < 0.05), while there were no significant differences between fish fed Se-NPs or/and SP. Blood total protein also was improved by feeding Se-NPs only or both Se-NPs and SP (P < 0.05). Further, blood immunoglobulin M was increased by feeding both Se-NPs and SP (P < 0.05), while the differences were insignificantly differing with fish fed only Se-NPs (P > 0.05). The transcription of liver superoxide dismutase (SOD) and tumor necrosis factor-alpha (TNF-α) genes was upregulated significantly by Se-NPs or/and SP (P < 0.05). Interestingly, TNF-α was significantly upregulated by SP when compared to those fed Se-NPs only or both Se-NPs and SP. However, heat shock protein 70 (HSP70) gene transcription was downregulated by Se-NPs or/and SP (P < 0.05). Based on the measured parameters, the mixture of both Se-NPs and SP is highly recommended for the welfare of Nile tilapia.
Collapse
Affiliation(s)
- Shady H Al-Deriny
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafr El Sheikh, Egypt
| | - Mahmoud A O Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafr El Sheikh, 33516, Egypt.
| | - Zizy I Elbialy
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafr El Sheikh, Egypt
| | - Wael F El-Tras
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafr El Sheikh, Egypt
| | - Radi A Mohamed
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafr El Sheikh, Egypt
| |
Collapse
|
42
|
Ma K, Bao Q, Wu Y, Chen S, Zhao S, Wu H, Fan J. Evaluation of Microalgae as Immunostimulants and Recombinant Vaccines for Diseases Prevention and Control in Aquaculture. Front Bioeng Biotechnol 2020; 8:590431. [PMID: 33304890 PMCID: PMC7701134 DOI: 10.3389/fbioe.2020.590431] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/27/2020] [Indexed: 12/21/2022] Open
Abstract
Microalgae are often used as nutritional supplements for aquatic animals and are widely used in the aquaculture industry, providing direct or indirect nutrients for many aquatic animals. Microalgae are abundant in nature, of high nutritional value, and some of them are non-toxic and rich in antioxidants so that they can be explored as a medicinal carrier for human or animals. Natural wild-type microalgae can be adopted as an immunostimulant to enhance non-specific immune response and improve growth performance, among which Haematococcus pluvialis, Arthrospira (Spirulina) platensis, and Chlorella spp. are commonly used. At present, there have been some successful cases of using microalgae to develop oral vaccines in the aquaculture industry. Researchers usually develop recombinant vaccines based on Chlamydomonas reinhardtii, Dunaliella salina, and cyanobacteria. Among them, in the genetic modification of eukaryotic microalgae, many examples are expressing antigen genes in chloroplasts. They are all used for the prevention and control of single infectious diseases and most of them are resistant to shrimp virus infection. However, there is still no effective strategy targeting polymicrobial infections and few commercial vaccines are available. Although several species of microalgae are widely developed in the aquaculture industry, many of them have not yet established an effective and mature genetic manipulation system. This article systematically analyzes and discusses the above problems to provide ideas for the future development of highly effective microalgae recombinant oral vaccines.
Collapse
Affiliation(s)
- Ke Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Qiuwen Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yue Wu
- Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Siwei Chen
- Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Shuxin Zhao
- Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Jianhua Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
43
|
Ceballos-Francisco D, Castillo Y, De La Rosa F, Vásquez W, Reyes-Santiago R, Cuello A, Cuesta A, Esteban MÁ. Bactericidal effect on skin mucosa of dietary guava (Psidium guajava L.) leaves in hybrid tilapia (Oreochromis niloticus × O. mossambicus). JOURNAL OF ETHNOPHARMACOLOGY 2020; 259:112838. [PMID: 32387463 DOI: 10.1016/j.jep.2020.112838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Due to the intensification practices in global aquaculture, fish are often confined in small volumes, which can results in outbreak diseases. In this context, the use of antibiotics is very usual. Thus, looking for natural substance able to reduce the use of the antibiotics is imperative. Among them, there is a great interest at present in the study of medicinal plants such as guava (Psidium guajava L.). These plants could help to develop a more sustainable aquaculture all over the world. The application of guava in traditional medicine dates for centuries and it is widely used in tropical countries for the treatment of diseases in human and animals. AIM OF THE STUDY The purpose of this work was to study the effects of the dietary administration of dried leaves of Psidium guajava on the skin mucosal immunity of hybrid tilapia (Oreochromis niloticus × O. mossambicus). Furthermore, the ability of this plant to inhibit the bacterial load in different tissues after an experimental infection with Vibrio harveyi was studied. MATERIALS AND METHODS P. guajava leaves collection and the experimentation was carried out in Dominican Republic. Fish were fed with a commercial diet supplemented with guava leaf at different concentrations (0%, 1.5% and 3%) for 21 days before being intraperitoneally injected with V. harveyi (1 × 104 cells mL-1). Thereafter, several immune activities were measured in fish skin mucus and after 48 h of injection, the skin, spleen and liver were collected to analyse the bactericidal activity of guava leaf and the gene expression of some immune related genes. RESULTS The administration of P. guajava leaves significantly modulated some immune-related enzymes (protease, antiprotease and peroxidase) in the skin mucus of hybrid tilapia. In addition, the bacterial load after V. harveyi infection in skin, spleen and liver significantly reduced in fish supplemented with guava leaves. Finally, the expression profile of hepcidin gene in skin and liver was modulated in fish feed with control diet after V. harveyi infection. CONCLUSION These results demonstrate that the dietary intake of guava leaves increases the skin mucosal barrier defences of hybrid tilapia and confers protection against V. harveyi colonization.
Collapse
Affiliation(s)
- Diana Ceballos-Francisco
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Yussaira Castillo
- Institute of Microbiology and Parasitology, Universidad Autónoma de Santo Domingo (IMPA-UASD), Alma Máter, Santo Domingo, 10103, Dominican Republic
| | - Francisco De La Rosa
- Veterinary Clinic, Acuario Nacional of Dominican Republic, Santo Domingo Este, 11603, Dominican Republic
| | - William Vásquez
- Veterinary Clinic, Acuario Nacional of Dominican Republic, Santo Domingo Este, 11603, Dominican Republic
| | - Raysa Reyes-Santiago
- Faculty of Agronomic and Veterinary Sciences, Universidad Autónoma de Santo Domingo, Calle Rogelio Rosell 1, Engombe, Santo Domingo Oeste, 10904, Dominican Republic
| | - Andreina Cuello
- Faculty of Agronomic and Veterinary Sciences, Universidad Autónoma de Santo Domingo, Calle Rogelio Rosell 1, Engombe, Santo Domingo Oeste, 10904, Dominican Republic
| | - Alberto Cuesta
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - María Ángeles Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
44
|
Mokhbatly AAA, Assar DH, Ghazy EW, Elbialy Z, Rizk SA, Omar AA, Gaafar AY, Dawood MAO. The protective role of spirulina and β-glucan in African catfish (Clarias gariepinus) against chronic toxicity of chlorpyrifos: hemato-biochemistry, histopathology, and oxidative stress traits. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:31636-31651. [PMID: 32500495 DOI: 10.1007/s11356-020-09333-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
Chlorpyrifos (CPF) is an insecticide that is commonly applied in the agriculture sector. However, little is known about the protective role of Spirulina platensis (SP) and/or β-glucan (BG) on African catfish exposed to chronic CPF toxicity. The fish (95 ± 5 g, initial weight) were assigned to 5 fiberglass tanks (500 L, 50 fish/tank) where the 1st and 2nd fed the basal diet, while the 3rd, 4th, and 5th fed diets with SP, BG, and SP+BG at 0.5%, respectively. Fish in 2nd, 3rd, 4th, and 5th groups were exposed to CPF at a dose of 1.5 mg/L and fed the respective diets for 60 days. In comparison with the control group, CPF-exposed fish exhibited significantly lower (P ≤ 0.05) body weights, feed intake, red blood cells count, hemoglobin concentration, packed cell volume (PCV) (%), lymphocytes, monocytes, phagocytic activity, and phagocytic index, while feed conversion ratio, white blood cell count, and neutrophils count were significantly increased. Fish exposed to CPF also revealed a significant elevation in aspartate aminotransferase (AST), alanine aminotransferase (ALT), cholesterol, triglycerides, low-density lipoproteins (LDL), very-low-density lipoproteins (vLDL), glucose concentration, urea, and creatinine as well as low total proteins, albumin, globulins, and high-density lipoprotein (HDL) concentration. Fish exposed to CPF also exhibited a high concentration of malondialdehyde while glutathione content, glutathione peroxidase, and catalase activities were significantly decreased in the liver, gills, brain, and intestine tissues. Moreover, exposure to CPF resulted in higher transcription of cytochrome P450 (CYP1A-P450) gene expression than the 1st group. Histopathological investigations revealed various degrees of pathological lesions in different organs like the liver, kidney, brain, spleen, and intestine tissues. Interestingly, dietary SP supplementation either alone or combined with BG significantly ameliorated the alterations mitigated by CPF-induced organ injuries and genotoxicity. Therefore, it could be concluded that SP or/and BG are able to induce the protective consequences on health status, immunity, and antioxidative response of African catfish exposed to CPF.
Collapse
Affiliation(s)
- Abd-Allah A Mokhbatly
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Doaa H Assar
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt.
| | - Emad W Ghazy
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Zizy Elbialy
- Fish Processing and Biotechnology Department, Faculty of Fisheries Sciences and Aquaculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Sally A Rizk
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Amira A Omar
- Fish Diseases Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Alkhateib Y Gaafar
- Veterinary Research Division, National Research Centre, Giza, 12622, Egypt
| | - Mahmoud A O Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt.
| |
Collapse
|
45
|
Abd El-Naby AS, El Asely AM, Amin AA, Samir F, El-Ashram A, Dawood MAO. Miswak (Salvadora persica) modulated the growth performance, antioxidative response, and histopathological damage induced by zinc toxicity in Nile tilapia (Oreochromis niloticus). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:31918-31932. [PMID: 32506408 DOI: 10.1007/s11356-020-09429-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
In this study, Nile tilapia fingerlings with average body weight (8.6 ± 0.06 g) were exposed to zinc (Zn) toxicity and tested its amelioration with miswak (Salvadora persica L.) (SP) supplemented diet. Five fish groups were fed on diets with SP at 0, 0.25, 0.5, 1.0, and 2.0% (T1, T2, T3, T4, and T5, respectively) diet without Zn exposure, while another five groups were exposed to Zn at 7 mg/L and co-supplemented with SP at 0, 0.25, 0.5, 1.0, and 2.0 % (T6, T7, T8, T9, and T10, respectively). After 12 weeks, fish-fed 1.0% SP diet (T4) achieved the highest growth and feed performances, while the lowest one was in Zn-exposed fish (T6) (P < 0.05). T6 and T7 groups showed the most inferior carcass protein and ash contents, while T4 and T5 showed the highest lipid content (P < 0.05). The level of Zn residue increased in fish exposed to Zn (P < 0.05). Fish exposed to Zn and fed SP showed high blood urea, catalase, ALT, AST, and total superoxide dismutase (T-SOD), while the malondialdehyde (MDA) was decreased (P < 0.05). Interestingly, miswak resulted in elevated catalase and T-SOD and reduced MDA in fish without Zn exposure (P < 0.05). Zn exposure causes abnormal histopathological characteristics in gills, hepatopancreas, posterior kidney, and musculature tissues of tilapia, while fish-fed SP showed regular, healthy, and protected histopathological characters. The results suggested that SP can induce the antioxidant responses that prepare Nile tilapia for a further suppressive oxidative condition (i.e., Zn exposure).
Collapse
Affiliation(s)
- Asmaa S Abd El-Naby
- Fish Nutrition and Feed Technology Department, Central Laboratory for Aquaculture Research, Abassa, Abu Hammad, Sharkia, Egypt
| | - Amel M El Asely
- Department of Aquatic Animals Diseases and Management, Faculty of Veterinary Medicine, Benha University, Toukh, 13736, Egypt
| | - Aziza A Amin
- Department of Pathology, Faculty of Veterinary Medicine, Benha University, Toukh, 13736, Egypt
| | - Fatma Samir
- Fish Nutrition and Feed Technology Department, Central Laboratory for Aquaculture Research, Abassa, Abu Hammad, Sharkia, Egypt
| | | | - Mahmoud A O Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelshiekh University, Kafr El-Shaikh, Egypt.
| |
Collapse
|
46
|
Gharaei A, Khajeh M, Khosravanizadeh A, Mirdar J, Fadai R. Fluctuation of biochemical, immunological, and antioxidant biomarkers in the blood of beluga (Huso huso) under effect of dietary ZnO and chitosan-ZnO NPs. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:547-561. [PMID: 32002716 DOI: 10.1007/s10695-019-00726-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
The objective of the present study was to investigate the effects of dietary supplementation with zinc oxide (ZnO) and chitosan-zinc nanoparticles (chitosan-ZnO NPs) on biochemical, immunological, and antioxidant biomarkers in blood of juvenile belugas (Huso huso). The beluga juveniles with initial weight of 287 ± 46 g were fed with eight experimental diets containing 0 g kg-1 ZnO (the control diet); 10, 20, and 40 mg kg-1 ZnO; and 10, 20, and 40 mg kg-1 chitosan-ZnO NPs and 36 mg kg-1 chitosan. After 28 days of culture, the fish were fed with ZnO and chitosan-ZnO NP-supplemented diets showed a more significant increase in total antioxidant capacity (TAC), superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPX), and glutathione S-transferase (GST) activity (p < 0.05) compared to the control group. There were no significant differences (p > 0.05) in malondialdehyde (MDA) and glucose level in all treatment groups. The results showed that with increasing levels of ZnO and chitosan-ZnO NPs, alternative complement activity (ACH50), and total immunoglobulin, total protein, albumin, and lysozyme had a significant increase in fish fed with ZnO and chitosan-ZnO NP-supplemented diets compared to the control group (p < 0.05). ALP, ALT, and AST enzyme activities showed significant difference between control and treatment groups (p > 0.05), while the levels of LDH enzyme activity, urea, and creatinine decreased by increasing both ZnO and chitosan-ZnO NP levels. These results demonstrated that dietary chitosan-ZnO NPs could improve the health status, immune function, and antioxidant capacity of the cultured beluga juvenile.
Collapse
Affiliation(s)
- Ahmad Gharaei
- Department of Fisheries, Hamoun International Wetland Research Institute and Faculty of Natural Resources, University of Zabol, 98615-538, Zabol, Sistan & Balouchestan, Iran.
| | - Mostafa Khajeh
- Department of Chemistry, Faculty of Science, University of Zabol, 98615-538, Zabol, Sistan & Balouchestan, Iran
| | - Ali Khosravanizadeh
- Department of Fisheries, Hamoun International Wetland Research Institute, University of Zabol, 98615-538, Zabol, Sistan & Balouchestan, Iran
| | - Javad Mirdar
- Department of Fisheries, Faculty of Natural Resources, University of Zabol, 98615-538, Zabol, Sistan & Balouchestan, Iran
| | - Reza Fadai
- Iran Fisheries Organization, Native Fish Restoration Center of Zahak, Zabol, Sistan & Balouchestan, Iran
| |
Collapse
|
47
|
Abdel-Daim MM, Dawood MA, Elbadawy M, Aleya L, Alkahtani S. Spirulina platensis Reduced Oxidative Damage Induced by Chlorpyrifos Toxicity in Nile Tilapia ( Oreochromis niloticus). Animals (Basel) 2020; 10:E473. [PMID: 32178251 PMCID: PMC7142642 DOI: 10.3390/ani10030473] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/08/2020] [Accepted: 03/09/2020] [Indexed: 11/27/2022] Open
Abstract
Due to the numerous pharmacological impacts of Spirulina platensis (SP), the effects of SP on the oxidative status of Nile tilapia farmed under chlorpyrifos (CPF) ambient toxicity were considered in this study. Fish (60 ± 6.1 g) was randomly stocked in five groups where the SP free diet was fed to the control group while the second one was fed 1% SP without CPF exposure. Additionally, CPF (15 μg/L) was added in water and fish were fed with SP at 0, 0.5, and 1% (third, fourth, and fifth groups, respectively). Samples of blood and gills, kidneys, and liver tissues were assayed for biochemical measurements. Fish exposed to CPF exhibited significant (p ≤ 0.05) increments of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), cholesterol, urea, creatinine, and malondialdehyde (MDA), while significantly decreased total protein, albumin, and antioxidative enzyme activities (superoxide dismutase (SOD) and catalase (CAT) were observed in tilapia exposed to CPF (p ≤ 0.05). In contrast, SP feeding resulted in decreased levels of ALT, AST, ALP, cholesterol, urea, and creatinine as well as increased total protein, albumin, SOD, and CAT activities. Based on the obtained results, it can be suggested that SP is efficient in protecting Nile tilapia from CPF toxicity by increasing the antioxidative response.
Collapse
Affiliation(s)
- Mohamed M. Abdel-Daim
- Department of and Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Mahmoud A.O. Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Mohamed Elbadawy
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030 Besançon CEDEX, France
| | - Saad Alkahtani
- Department of and Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
48
|
de Mattos BO, López-Olmeda JF, Guerra-Santos B, Ruiz CE, García-Beltrán JM, Ángeles-Esteban M, Sánchez-Vázquez FJ, Fortes-Silva R. Coping with exposure to hypoxia: modifications in stress parameters in gilthead seabream (Sparus aurata) fed spirulina (Arthrospira platensis) and brewer's yeast (Saccharomyces cerevisiae). FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1801-1812. [PMID: 31273480 DOI: 10.1007/s10695-019-00677-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/18/2019] [Indexed: 06/09/2023]
Abstract
This study aimed to investigate the stress response of Sparus aurata specimens fed with nutraceutical aquafeed brewer's yeast (Saccharomyces cerevisiae) and spirulina (Arthrospira platensis). For that purpose, 96 (169.0 ± 2.8 g) animals were distributed randomly in 12 tanks (8 fish per tank, 4 replicates) and divided in 3 groups (D1, casein/gelatin, control; D2, brewer's yeast; D3, spirulina) and fed for 30 days. At the end of this period, fish from two replicates of each experimental diet were submitted to air exposure for 60 s while the fish from the other two replicates were maintained undisturbed (control). Afterwards, samples of blood, skin mucus, and head kidney were collected. The results revealed that after air exposure, cortisol, and glucose levels increased in the groups fed D1 (18.5 ± 2.6 mg/mL; 7.3 ± 0.6 mmol/L, respectively) and D2 (20.0 ± 6.2 mg/mL; 7.7 ± 0.6 mmol/L), but glucose not increased in fish fed D3 (13.7 ± 2.6 mg/mL; 5.5 ± 0.3 mmol/L). Lactate levels increased in all stressed groups, but in D1, its levels were significantly higher. After stress procedure, immunoglobulin M (IgM) levels in mucus increased only in fish fed D3 (0.1901 ± 0.0126 U/mL). Furthermore, there was a reduction in the expression of some genes involved in stress response (coxIV, prdx3, csfl-r, ucp1, and sod in fish fed D2 and D3). csf1 decreased only in stressed fish fed D2. However, cat increased in fish fed with D3. In summary, these findings points to the beneficial effects of spirulina and brewer's yeast to improve stress resistance in aquaculture practices of gilthead seabream.
Collapse
Affiliation(s)
- Bruno Olivetti de Mattos
- Laboratory of Aquatic Organisms Nutrition, Postgraduate Program in Aquaculture, University Nilton Lins, Manaus, AM, 69058-030, Brazil.
| | - José Fernando López-Olmeda
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Bartira Guerra-Santos
- Department of Animal Science and Veterinary Medicine, Campus Salvador, Federal University of Bahia, Salvador, BA, 40170-110, Brazil
| | - Cristóbal Espinosa Ruiz
- Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - José María García-Beltrán
- Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Maria Ángeles-Esteban
- Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Francisco Javier Sánchez-Vázquez
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Rodrigo Fortes-Silva
- Laboratory of Fish Nutrition and Feeding Behavior, Faculty of Fishing Engineering, Center of Agricultural Science, Environmental and Biological, University of Bahia, Cruz das Almas, BA, 44380-000, Brazil.
| |
Collapse
|
49
|
Yarnold J, Karan H, Oey M, Hankamer B. Microalgal Aquafeeds As Part of a Circular Bioeconomy. TRENDS IN PLANT SCIENCE 2019; 24:959-970. [PMID: 31285128 DOI: 10.1016/j.tplants.2019.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/29/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
Photosynthetic microalgae are unicellular plants, many of which are rich in protein, lipids, and bioactives and form an important part of the base of the natural aquatic food chain. Population growth, demand for high-quality protein, and depletion of wild fishstocks are forecast to increase aquacultural fish demand by 37% between 2016 and 2030. This review highlights the role of microalgae and recent advances that can support a sustainable 'circular' aquaculture industry. Microalgae-based feed supplements and recombinant therapeutic production offer significant opportunities to improve animal health, disease resistance, and yields. Critically, microalgae in biofloc, 'green water', nutrient remediation, and integrated multitrophic aquaculture technologies offer innovative solutions for economic and environmentally sustainable development in line with key UN Sustainability Goals.
Collapse
Affiliation(s)
- Jennifer Yarnold
- Institute for Molecular Bioscience, 306 Carmody Road, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Hakan Karan
- Institute for Molecular Bioscience, 306 Carmody Road, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Melanie Oey
- Institute for Molecular Bioscience, 306 Carmody Road, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ben Hankamer
- Institute for Molecular Bioscience, 306 Carmody Road, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
50
|
Silveira Júnior AM, Faustino SMM, Cunha AC. Bioprospection of biocompounds and dietary supplements of microalgae with immunostimulating activity: a comprehensive review. PeerJ 2019; 7:e7685. [PMID: 31592343 PMCID: PMC6777487 DOI: 10.7717/peerj.7685] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/19/2019] [Indexed: 11/21/2022] Open
Abstract
The objective of this review is to analyze the role of microalgal bioprospecting and the application of microalgae as food supplements and immunostimulants in global and regional aquaculture, highlighting the Brazilian Amazon. This study evaluates the primary advantages of the application of the bioactive compounds of these microorganisms, simultaneously identifying the knowledge gaps that hinder their biotechnological and economic exploitation. The methodology used is comparative and descriptive-analytical, considering the hypothesis of the importance of bioprospecting microalgae, the mechanisms of crop development and its biotechnological and sustainable application. In this context, this review describes the primary applications of microalgae in aquaculture during the last decade (2005–2017). The positive effects of food replacement and/or complementation of microalgae on the diets of organisms, such as their influence on the reproduction rates, growth, and development of fish, mollusks and crustaceans are described and analyzed. In addition, the importance of physiological parameters and their association with the associated gene expression of immune responses in organisms supplemented with microalgae was demonstrated. Complementarily, the existence of technical-scientific gaps in a regional panorama was identified, despite the potential of microalgal cultivation in the Brazilian Amazon. In general, factors preventing the most immediate biotechnological applications in the use of microalgae in the region include the absence of applied research in the area. We conclude that the potential of these microorganisms has been relatively well exploited at the international level but not at the Amazon level. In the latter case, the biotechnological potential still depends on a series of crucial steps that involve the identification of species, the understanding of their functional characteristics and their applicability in the biotechnological area, especially in aquaculture.
Collapse
Affiliation(s)
- Arialdo M Silveira Júnior
- Department of Environment and Development, Federal University of Amapá, Macapá, Amapá, Brazil.,Postgraduate Program in Tropical Biodiversity, Federal University of Amapá, Macapá, Amapá, Brazil
| | - Silvia Maria M Faustino
- Department of Biological and Health Sciences, Federal University of Amapá, Macapá, Amapá, Brazil
| | - Alan C Cunha
- Postgraduate Program in Tropical Biodiversity, Federal University of Amapá, Macapá, Amapá, Brazil.,Department of Exact and Natural Sciences, Federal University of Amapá, Macapá, Amapá, Brazil
| |
Collapse
|