1
|
Kavaka V, Mutschler L, de la Rosa Del Val C, Eglseer K, Gómez Martínez AM, Flierl-Hecht A, Ertl-Wagner B, Keeser D, Mortazavi M, Seelos K, Zimmermann H, Haas J, Wildemann B, Kümpfel T, Dornmair K, Korn T, Hohlfeld R, Kerschensteiner M, Gerdes LA, Beltrán E. Twin study identifies early immunological and metabolic dysregulation of CD8 + T cells in multiple sclerosis. Sci Immunol 2024; 9:eadj8094. [PMID: 39331727 DOI: 10.1126/sciimmunol.adj8094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/05/2024] [Indexed: 09/29/2024]
Abstract
Multiple sclerosis (MS) is an inflammatory neurological disease of the central nervous system with a subclinical phase preceding frank neuroinflammation. CD8+ T cells are abundant within MS lesions, but their potential role in disease pathology remains unclear. Using high-throughput single-cell RNA sequencing and single-cell T cell receptor analysis, we compared CD8+ T cell clones from the blood and cerebrospinal fluid (CSF) of monozygotic twin pairs in which the cotwin had either no or subclinical neuroinflammation (SCNI). We identified peripheral MS-associated immunological and metabolic alterations indicative of an enhanced migratory, proinflammatory, and activated CD8+ T cell phenotype, which was also evident in cotwins with SCNI and in an independent validation cohort of people with MS. Together, our in-depth single-cell analysis indicates a disease-driving proinflammatory role of infiltrating CD8+ T cells and identifies potential immunological and metabolic therapeutic targets in both prodromal and definitive stages of the disease.
Collapse
Affiliation(s)
- Vladyslav Kavaka
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
| | - Luisa Mutschler
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
| | - Clara de la Rosa Del Val
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
- Graduate School of Systemic Neurosciences, Ludwig Maximilian University of Munich, Munich, Germany
| | - Klara Eglseer
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
| | - Ana M Gómez Martínez
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
| | - Andrea Flierl-Hecht
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Birgit Ertl-Wagner
- Department of Radiology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Department of Medical Imaging, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Martin Mortazavi
- Department of Radiology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Klaus Seelos
- Institute of Neuroradiology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Hanna Zimmermann
- Institute of Neuroradiology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Jürgen Haas
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Klaus Dornmair
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Thomas Korn
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine, Munich, Germany
- Department of Neurology, Technical University of Munich School of Medicine, Munich, Germany
| | - Reinhard Hohlfeld
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Martin Kerschensteiner
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Lisa Ann Gerdes
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Eduardo Beltrán
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
2
|
Díaz-Basilio F, Vergara-Mendoza M, Romero-Rodríguez J, Hernández-Rizo S, Escobedo-Calvario A, Fuentes-Romero LL, Pérez-Patrigeon S, Murakami-Ogasawara A, Gomez-Palacio M, Reyes-Terán G, Jiang W, Vázquez-Pérez JA, Marín-Hernández Á, Romero-Rodríguez DP, Gutiérrez-Ruiz MC, Viveros-Rogel M, Espinosa E. The ecto-enzyme CD38 modulates CD4T cell immunometabolic responses and participates in HIV pathogenesis. J Leukoc Biol 2024; 116:440-455. [PMID: 38466822 DOI: 10.1093/jleuko/qiae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/31/2024] [Accepted: 02/23/2024] [Indexed: 03/13/2024] Open
Abstract
Despite abundant evidence correlating T cell CD38 expression and HIV infection pathogenesis, its role as a CD4T cell immunometabolic regulator remains unclear. We find that CD38's extracellular glycohydrolase activity restricts metabolic reprogramming after T cell receptor (TCR)-engaging stimulation in Jurkat T CD4 cells, together with functional responses, while reducing intracellular nicotinamide adenine dinucleotide and nicotinamide mononucleotide concentrations. Selective elimination of CD38's ectoenzyme function licenses them to decrease the oxygen consumption rate/extracellular acidification rate ratio upon TCR signaling and to increase cycling, proliferation, survival, and CD40L induction. Pharmacological inhibition of ecto-CD38 catalytic activity in TM cells from chronic HIV-infected patients rescued TCR-triggered responses, including differentiation and effector functions, while reverting abnormally increased basal glycolysis, cycling, and spontaneous proinflammatory cytokine production. Additionally, ecto-CD38 blockage normalized basal and TCR-induced mitochondrial morphofunctionality, while increasing respiratory capacity in cells from HIV+ patients and healthy individuals. Ectoenzyme CD38's immunometabolic restriction of TCR-involving stimulation is relevant to CD4T cell biology and to the deleterious effects of CD38 overexpression in HIV disease.
Collapse
Affiliation(s)
- Fernando Díaz-Basilio
- Laboratory of Integrative Immunology, National Institute of Respiratory Diseases Ismael Cosío Villegas, Calzada de Tlalpan 4502, Tlalpan, 14080 Mexico City, Mexico
- PECEM Graduate Program, Faculty of Medicine, National Autonomous University of Mexico, Circuito Escolar, Ciudad Universitaria, Coyoacán, 04510 Mexico City, Mexico
| | - Moisés Vergara-Mendoza
- Department of Infectious Diseases, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080 Mexico City, Mexico
| | - Jessica Romero-Rodríguez
- Flow Cytometry Core Facility, National Institute of Respiratory Diseases Ismael Cosío Villegas, Calzada de Tlalpan 4502, Tlalpan, 14080 Mexico City, Mexico
| | - Sharik Hernández-Rizo
- Laboratory for Cellular Physiology and Translational Medicine, Department of Health Sciences, Autonomous Metropolitan University, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Tlalpan, 14080 Mexico City, Mexico
| | - Alejandro Escobedo-Calvario
- Laboratory for Cellular Physiology and Translational Medicine, Department of Health Sciences, Autonomous Metropolitan University, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Tlalpan, 14080 Mexico City, Mexico
| | - Luis-León Fuentes-Romero
- Department of Infectious Diseases, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080 Mexico City, Mexico
| | - Santiago Pérez-Patrigeon
- Department of Infectious Diseases, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080 Mexico City, Mexico
| | - Akio Murakami-Ogasawara
- Center for Research in Infectious Diseases (CIENI), National Institute of Respiratory Diseases Ismael Cosío Villegas, Calzada de Tlalpan 4502, Tlalpan, 14080 Mexico City, Mexico
| | - María Gomez-Palacio
- Center for Research in Infectious Diseases (CIENI), National Institute of Respiratory Diseases Ismael Cosío Villegas, Calzada de Tlalpan 4502, Tlalpan, 14080 Mexico City, Mexico
| | - Gustavo Reyes-Terán
- Center for Research in Infectious Diseases (CIENI), National Institute of Respiratory Diseases Ismael Cosío Villegas, Calzada de Tlalpan 4502, Tlalpan, 14080 Mexico City, Mexico
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical University of South Carolina, Ashley Ave. BSB- 214C, Charleston, SC 29425, United States
| | - Joel-Armando Vázquez-Pérez
- Laboratory for Emergent Diseases and COPD, National Institute of Respiratory Diseases Ismael Cosío Villegas, Calzada de Tlalpan 4502, Tlalpan, 14080 Mexico City, Mexico
| | - Álvaro Marín-Hernández
- Department of Biochemistry, National Institute of Cardiology Ignacio Chávez, Juan Badiano 1, Tlalpan, 14080 Mexico City, Mexico
| | - Dámaris-Priscila Romero-Rodríguez
- Flow Cytometry Core Facility, National Institute of Respiratory Diseases Ismael Cosío Villegas, Calzada de Tlalpan 4502, Tlalpan, 14080 Mexico City, Mexico
| | - María-Concepción Gutiérrez-Ruiz
- Laboratory for Cellular Physiology and Translational Medicine, Department of Health Sciences, Autonomous Metropolitan University, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Tlalpan, 14080 Mexico City, Mexico
| | - Mónica Viveros-Rogel
- Department of Infectious Diseases, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080 Mexico City, Mexico
| | - Enrique Espinosa
- Laboratory of Integrative Immunology, National Institute of Respiratory Diseases Ismael Cosío Villegas, Calzada de Tlalpan 4502, Tlalpan, 14080 Mexico City, Mexico
| |
Collapse
|
3
|
Ramgopal A, Braverman EL, Sun LK, Monlish D, Wittmann C, Kemp F, Qin M, Ramsey MJ, Cattley R, Hawse W, Byersdorfer CA. AMPK drives both glycolytic and oxidative metabolism in murine and human T cells during graft-versus-host disease. Blood Adv 2024; 8:4149-4162. [PMID: 38810258 PMCID: PMC11345362 DOI: 10.1182/bloodadvances.2023010740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/15/2024] [Accepted: 05/19/2024] [Indexed: 05/31/2024] Open
Abstract
ABSTRACT Allogeneic T cells reprogram their metabolism during acute graft-versus-host disease (GVHD) in a process involving the cellular energy sensor adenosine monophosphate (AMP)-activated protein kinase (AMPK). Deletion of AMPK in donor T cells limits GVHD but still preserves homeostatic reconstitution and graft-versus-leukemia effects. In the current studies, murine AMPK knock-out (KO) T cells decreased oxidative metabolism at early time points posttransplant and lacked a compensatory increase in glycolysis after inhibition of the electron transport chain. Immunoprecipitation using an antibody specific to phosphorylated targets of AMPK determined that AMPK modified interactions of several glycolytic enzymes including aldolase, enolase, pyruvate kinase M, and glyceraldehyde 3-phosphate dehydrogenase (GAPDH), with enzyme assays confirming impaired aldolase and GAPDH activity in AMPK KO T cells. Importantly, these changes in glycolysis correlated with both an impaired ability of AMPK KO T cells to produce significant amounts of interferon gamma upon antigenic restimulation and a decrease in the total number of donor CD4 T cells recovered at later times posttransplant. Human T cells lacking AMPK gave similar results, with glycolytic compensation impaired both in vitro and after expansion in vivo. Xenogeneic GVHD results also mirrored those of the murine model, with reduced CD4/CD8 ratios and a significant improvement in disease severity. Together these data highlight a significant role for AMPK in controlling oxidative and glycolytic metabolism in both murine and human T cells and endorse further study of AMPK inhibition as a potential clinical target for future GVHD therapies.
Collapse
Affiliation(s)
- Archana Ramgopal
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh PA
| | - Erica L. Braverman
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh PA
| | - Lee-Kai Sun
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh PA
| | - Darlene Monlish
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh PA
| | - Christopher Wittmann
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh PA
| | - Felicia Kemp
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh PA
| | - Mengtao Qin
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh PA
- School of Medicine, Tsinghua University, Beijing, China
| | - Manda J. Ramsey
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh PA
| | - Richard Cattley
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
| | - William Hawse
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Craig A. Byersdorfer
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh PA
| |
Collapse
|
4
|
Simon‐Molas H, Del Prete R, Kabanova A. Glucose metabolism in B cell malignancies: a focus on glycolysis branching pathways. Mol Oncol 2024; 18:1777-1794. [PMID: 38115544 PMCID: PMC11223612 DOI: 10.1002/1878-0261.13570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/13/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023] Open
Abstract
Glucose catabolism, one of the essential pathways sustaining cellular bioenergetics, has been widely studied in the context of tumors. Nevertheless, the function of various branches of glucose metabolism that stem from 'classical' glycolysis have only been partially explored. This review focuses on discussing general mechanisms and pathological implications of glycolysis and its branching pathways in the biology of B cell malignancies. We summarize here what is known regarding pentose phosphate, hexosamine, serine biosynthesis, and glycogen synthesis pathways in this group of tumors. Despite most findings have been based on malignant B cells themselves, we also discuss the role of glucose metabolism in the tumor microenvironment, with a focus on T cells. Understanding the contribution of glycolysis branching pathways and how they are hijacked in B cell malignancies will help to dissect the role they have in sustaining the dissemination and proliferation of tumor B cells and regulating immune responses within these tumors. Ultimately, this should lead to deciphering associated vulnerabilities and improve current therapeutic schedules.
Collapse
Affiliation(s)
- Helga Simon‐Molas
- Departments of Experimental Immunology and HematologyAmsterdam UMC location University of AmsterdamThe Netherlands
- Cancer ImmunologyCancer Center AmsterdamThe Netherlands
| | | | - Anna Kabanova
- Fondazione Toscana Life Sciences FoundationSienaItaly
| |
Collapse
|
5
|
Mondal S, Saha S, Sur D. Immuno-metabolic reprogramming of T cell: a new frontier for pharmacotherapy of Rheumatoid arthritis. Immunopharmacol Immunotoxicol 2024; 46:330-340. [PMID: 38478467 DOI: 10.1080/08923973.2024.2330636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/08/2024] [Indexed: 03/26/2024]
Abstract
Rheumatoid arthritis (RA) is a persistent autoimmune condition characterized by ongoing inflammation primarily affecting the synovial joint. This inflammation typically arises from an increase in immune cells such as neutrophils, macrophages, and T cells (TC). TC is recognized as a major player in RA pathogenesis. The involvement of HLA-DRB1 and PTPN-2 among RA patients confirms the TC involvement in RA. Metabolism of TC is maintained by various other factors like cytokines, mitochondrial proteins & other metabolites. Different TC subtypes utilize different metabolic pathways like glycolysis, oxidative phosphorylation and fatty acid oxidation for their activation from naive TC (T0). Although all subsets of TC are not deleterious for synovium, some subsets of TC are involved in joint repair using their anti-inflammatory properties. Hence artificially reprogramming of TC subset by interfering with their metabolic status poised a hope in future to design new molecules against RA.
Collapse
Affiliation(s)
- Sourav Mondal
- Division of Pharmacology, Guru Nanak Institute of Pharmaceutical Science & Technology, Panihati, Kolkata, India
| | - Sarthak Saha
- Division of Pharmacology, Guru Nanak Institute of Pharmaceutical Science & Technology, Panihati, Kolkata, India
| | - Debjeet Sur
- Division of Pharmacology, Guru Nanak Institute of Pharmaceutical Science & Technology, Panihati, Kolkata, India
| |
Collapse
|
6
|
Chapman NM, Chi H. Metabolic rewiring and communication in cancer immunity. Cell Chem Biol 2024; 31:862-883. [PMID: 38428418 PMCID: PMC11177544 DOI: 10.1016/j.chembiol.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 03/03/2024]
Abstract
The immune system shapes tumor development and progression. Although immunotherapy has transformed cancer treatment, its overall efficacy remains limited, underscoring the need to uncover mechanisms to improve therapeutic effects. Metabolism-associated processes, including intracellular metabolic reprogramming and intercellular metabolic crosstalk, are emerging as instructive signals for anti-tumor immunity. Here, we first summarize the roles of intracellular metabolic pathways in controlling immune cell function in the tumor microenvironment. How intercellular metabolic communication regulates anti-tumor immunity, and the impact of metabolites or nutrients on signaling events, are also discussed. We then describe how targeting metabolic pathways in tumor cells or intratumoral immune cells or via nutrient-based interventions may boost cancer immunotherapies. Finally, we conclude with discussions on profiling and functional perturbation methods of metabolic activity in intratumoral immune cells, and perspectives on future directions. Uncovering the mechanisms for metabolic rewiring and communication in the tumor microenvironment may enable development of novel cancer immunotherapies.
Collapse
Affiliation(s)
- Nicole M Chapman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
7
|
Bargiela D, Cunha PP, Veliça P, Krause LCM, Brice M, Barbieri L, Gojkovic M, Foskolou IP, Rundqvist H, Johnson RS. The factor inhibiting HIF regulates T cell differentiation and anti-tumour efficacy. Front Immunol 2024; 15:1293723. [PMID: 38690263 PMCID: PMC11058823 DOI: 10.3389/fimmu.2024.1293723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/12/2024] [Indexed: 05/02/2024] Open
Abstract
T cells must adapt to variations in tissue microenvironments; these adaptations include the degree of oxygen availability. The hypoxia-inducible factor (HIF) transcription factors control much of this adaptation, and thus regulate many aspects of T cell activation and function. The HIFs are in turn regulated by oxygen-dependent hydroxylases: both the prolyl hydroxylases (PHDs) which interact with the VHL tumour suppressor and control HIF turnover, and the asparaginyl hydroxylase known as the Factor inhibiting HIF (FIH), which modulates HIF transcriptional activity. To determine the role of this latter factor in T cell function, we generated T cell-specific FIH knockout mice. We found that FIH regulates T cell fate and function in a HIF-dependent manner and show that the effects of FIH activity occur predominantly at physiological oxygen concentrations. T cell-specific loss of FIH boosts T cell cytotoxicity, augments T cell expansion in vivo, and improves anti-tumour immunotherapy in mice. Specifically inhibiting FIH in T cells may therefore represent a promising strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- David Bargiela
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Pedro P. Cunha
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Pedro Veliça
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Lena C. M. Krause
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Madara Brice
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Laura Barbieri
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Milos Gojkovic
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Iosifina P. Foskolou
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Helene Rundqvist
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Randall S. Johnson
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Raynor JL, Chi H. Nutrients: Signal 4 in T cell immunity. J Exp Med 2024; 221:e20221839. [PMID: 38411744 PMCID: PMC10899091 DOI: 10.1084/jem.20221839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/28/2024] Open
Abstract
T cells are integral in mediating adaptive immunity to infection, autoimmunity, and cancer. Upon immune challenge, T cells exit from a quiescent state, followed by clonal expansion and effector differentiation. These processes are shaped by three established immune signals, namely antigen stimulation (Signal 1), costimulation (Signal 2), and cytokines (Signal 3). Emerging findings reveal that nutrients, including glucose, amino acids, and lipids, are crucial regulators of T cell responses and interplay with Signals 1-3, highlighting nutrients as Signal 4 to license T cell immunity. Here, we first summarize the functional importance of Signal 4 and the underlying mechanisms of nutrient transport, sensing, and signaling in orchestrating T cell activation and quiescence exit. We also discuss the roles of nutrients in programming T cell differentiation and functional fitness and how nutrients can be targeted to improve disease therapy. Understanding how T cells respond to Signal 4 nutrients in microenvironments will provide insights into context-dependent functions of adaptive immunity and therapeutic interventions.
Collapse
Affiliation(s)
- Jana L Raynor
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
9
|
Pieren DKJ, Benítez-Martínez A, Genescà M. Targeting HIV persistence in the tissue. Curr Opin HIV AIDS 2024; 19:69-78. [PMID: 38169333 DOI: 10.1097/coh.0000000000000836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
PURPOSE OF REVIEW The complex nature and distribution of the HIV reservoir in tissue of people with HIV remains one of the major obstacles to achieve the elimination of HIV persistence. Challenges include the tissue-specific states of latency and viral persistence, which translates into high levels of reservoir heterogeneity. Moreover, the best strategies to reach and eliminate these reservoirs may differ based on the intrinsic characteristics of the cellular and anatomical reservoir to reach. RECENT FINDINGS While major focus has been undertaken for lymphoid tissues and follicular T helper cells, evidence of viral persistence in HIV and non-HIV antigen-specific CD4 + T cells and macrophages resident in multiple tissues providing long-term protection presents new challenges in the quest for an HIV cure. Considering the microenvironments where these cellular reservoirs persist opens new venues for the delivery of drugs and immunotherapies to target these niches. New tools, such as single-cell RNA sequencing, CRISPR screenings, mRNA technology or tissue organoids are quickly developing and providing detailed information about the complex nature of the tissue reservoirs. SUMMARY Targeting persistence in tissue reservoirs represents a complex but essential step towards achieving HIV cure. Combinatorial strategies, particularly during the early phases of infection to impact initial reservoirs, capable of reaching and reactivating multiple long-lived reservoirs in the body may lead the path.
Collapse
Affiliation(s)
- Daan K J Pieren
- Infectious Diseases Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | | | | |
Collapse
|
10
|
Panahi Meymandi AR, Akbari B, Soltantoyeh T, Shahosseini Z, Hosseini M, Hadjati J, Mirzaei HR. PX-478, an HIF-1α inhibitor, impairs mesoCAR T cell antitumor function in cervical cancer. Front Oncol 2024; 14:1357801. [PMID: 38425341 PMCID: PMC10903365 DOI: 10.3389/fonc.2024.1357801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction Chimeric Antigen Receptor (CAR) T cell therapy has demonstrated remarkable success in treating hematological malignancies. However, its efficacy against solid tumors, including cervical cancer, remains a challenge. Hypoxia, a common feature of the tumor microenvironment, profoundly impacts CAR T cell function, emphasizing the need to explore strategies targeting hypoxia-inducible factor-1α (HIF-1α). Methods In this study, we evaluated the effects of the HIF-1α inhibitor PX-478 on mesoCAR T cell function through in-silico and in vitro experiments. We conducted comprehensive analyses of HIF-1α expression in cervical cancer patients and examined the impact of PX-478 on T cell proliferation, cytokine production, cytotoxicity, and exhaustion markers. Results Our in-silico analyses revealed high expression of HIF-1α in cervical cancer patients, correlating with poor prognosis. PX-478 effectively reduced HIF-1α levels in T and HeLa cells. While PX-478 exhibited dose-dependent inhibition of antigen-nonspecific T and mesoCAR T cell proliferation, it had minimal impact on antigen-specific mesoCAR T cell proliferation. Notably, PX-478 significantly impaired the cytotoxic function of mesoCAR T cells and induced terminally exhausted T cells. Discussion Our results underscore the significant potential and physiological relevance of the HIF-1α pathway in determining the fate and function of both T and CAR T cells. However, we recognize the imperative for further molecular investigations aimed at unraveling the intricate downstream targets associated with HIF-1α and its influence on antitumor immunity, particularly within the context of hypoxic tumors. These insights serve as a foundation for the careful development of combination therapies tailored to counter immunosuppressive pathways within hypoxic environments and fine-tune CAR T cell performance in the intricate tumor microenvironment.
Collapse
Affiliation(s)
- Ahmad Reza Panahi Meymandi
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnia Akbari
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahereh Soltantoyeh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Shahosseini
- Department of Medical Biotechnology, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
- Virology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Mina Hosseini
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Jamshid Hadjati
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Si X, Shao M, Teng X, Huang Y, Meng Y, Wu L, Wei J, Liu L, Gu T, Song J, Jing R, Zhai X, Guo X, Kong D, Wang X, Cai B, Shen Y, Zhang Z, Wang D, Hu Y, Qian P, Xiao G, Huang H. Mitochondrial isocitrate dehydrogenase impedes CAR T cell function by restraining antioxidant metabolism and histone acetylation. Cell Metab 2024; 36:176-192.e10. [PMID: 38171332 DOI: 10.1016/j.cmet.2023.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 10/06/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024]
Abstract
The efficacy of chimeric antigen receptor (CAR) T cell therapy is hampered by relapse in hematologic malignancies and by hyporesponsiveness in solid tumors. Long-lived memory CAR T cells are critical for improving tumor clearance and long-term protection. However, during rapid ex vivo expansion or in vivo tumor eradication, metabolic shifts and inhibitory signals lead to terminal differentiation and exhaustion of CAR T cells. Through a mitochondria-related compound screening, we find that the FDA-approved isocitrate dehydrogenase 2 (IDH2) inhibitor enasidenib enhances memory CAR T cell formation and sustains anti-leukemic cytotoxicity in vivo. Mechanistically, IDH2 impedes metabolic fitness of CAR T cells by restraining glucose utilization via the pentose phosphate pathway, which alleviates oxidative stress, particularly in nutrient-restricted conditions. In addition, IDH2 limits cytosolic acetyl-CoA levels to prevent histone acetylation that promotes memory cell formation. In combination with pharmacological IDH2 inhibition, CAR T cell therapy is demonstrated to have superior efficacy in a pre-clinical model.
Collapse
Affiliation(s)
- Xiaohui Si
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, China; Institute of Hematology, Zhejiang University, Hangzhou, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Mi Shao
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, China; Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Xinyi Teng
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Yue Huang
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, China; Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Ye Meng
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Longyuan Wu
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, China; Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Jieping Wei
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, China; Institute of Hematology, Zhejiang University, Hangzhou, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Lianxuan Liu
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianning Gu
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junzhe Song
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruirui Jing
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Xingyuan Zhai
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Xin Guo
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Delin Kong
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Xiujian Wang
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Bohan Cai
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Shen
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhaoru Zhang
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Dongrui Wang
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, China; Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Yongxian Hu
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, China; Institute of Hematology, Zhejiang University, Hangzhou, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Pengxu Qian
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, China; Institute of Hematology, Zhejiang University, Hangzhou, China; Center for Stem Cell and Regenerative Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Gang Xiao
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, China; Institute of Hematology, Zhejiang University, Hangzhou, China; Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.
| | - He Huang
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, China; Institute of Hematology, Zhejiang University, Hangzhou, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.
| |
Collapse
|
12
|
Boothby M, Cho SH. Hypoxia and the Hypoxia-Inducible Factors in Lymphocyte Differentiation and Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:115-141. [PMID: 39017842 DOI: 10.1007/978-3-031-62731-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Molecular oxygen doubles as a biomolecular building block and an element required for energy generation and metabolism in aerobic organisms. A variety of systems in mammalian cells sense the concentration of oxygen to which they are exposed and are tuned to the range present in our blood and tissues. The ability to respond to insufficient O2 in tissues is central to regulation of erythroid lineage cells, but challenges also are posed for immune cells by a need to adjust to very different oxygen concentrations. Hypoxia-inducible factors (HIFs) provide a major means of making such adjustments. For adaptive immunity, lymphoid lineages are initially defined in bone marrow niches; T lineage cells arise in the thymus, and B cells complete maturation in the spleen. Lymphocytes move from these first stops into microenvironments (bloodstream, lymphatics, and tissues) with distinct oxygenation in each. Herein, evidence pertaining to functions of the HIF transcription factors (TFs) in lymphocyte differentiation and function is reviewed. For the CD4+ and CD8+ subsets of T cells, the case is very strong that hypoxia and HIFs regulate important differentiation events and functions after the naïve lymphocytes emerge from the thymus. In the B lineage, the data indicate that HIF1 contributes to a balanced regulation of B-cell fates after antigen (Ag) activation during immunity. A model synthesized from the aggregate literature is that HIF in lymphocytes generally serves to modulate function in a manner dependent on the molecular context framed by other TFs and signals.
Collapse
Affiliation(s)
- Mark Boothby
- Departments of Pathology, Microbiology, Immunology (Molecular Pathogenesis Division), Vanderbilt University Medical Center, Nashville, TN, USA.
- Medicine (Rheumatology and Immunology Division), Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Institute for Infection, Inflammation, Immunity (VI4), Nashville, TN, USA.
| | - Sung Hoon Cho
- Departments of Pathology, Microbiology, Immunology (Molecular Pathogenesis Division), Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Inflammation, Immunity (VI4), Nashville, TN, USA
| |
Collapse
|
13
|
Miallot R, Millet V, Roger A, Fenouil R, Tardivel C, Martin JC, Tranchida F, Shintu L, Berchard P, Sousa Lanza J, Malissen B, Henri S, Ugolini S, Dutour A, Finetti P, Bertucci F, Blay JY, Galland F, Naquet P. The coenzyme A precursor pantethine enhances antitumor immunity in sarcoma. Life Sci Alliance 2023; 6:e202302200. [PMID: 37833072 PMCID: PMC10583838 DOI: 10.26508/lsa.202302200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
The tumor microenvironment is a dynamic network of stromal, cancer, and immune cells that interact and compete for resources. We have previously identified the Vanin1 pathway as a tumor suppressor of sarcoma development via vitamin B5 and coenzyme A regeneration. Using an aggressive sarcoma cell line that lacks Vnn1 expression, we showed that the administration of pantethine, a vitamin B5 precursor, attenuates tumor growth in immunocompetent but not nude mice. Pantethine boosts antitumor immunity, including the polarization of myeloid and dendritic cells towards enhanced IFNγ-driven antigen presentation pathways and improved the development of hypermetabolic effector CD8+ T cells endowed with potential antitumor activity. At later stages of treatment, the effect of pantethine was limited by the development of immune cell exhaustion. Nevertheless, its activity was comparable with that of anti-PD1 treatment in sensitive tumors. In humans, VNN1 expression correlates with improved survival and immune cell infiltration in soft-tissue sarcomas, but not in osteosarcomas. Pantethine could be a potential therapeutic immunoadjuvant for the development of antitumor immunity.
Collapse
Affiliation(s)
- Richard Miallot
- https://ror.org/03vyjkj45 INSERM, CNRS, Centre D'Immunologie de Marseille-Luminy, Aix-Marseille Université, Marseille, France
| | - Virginie Millet
- https://ror.org/03vyjkj45 INSERM, CNRS, Centre D'Immunologie de Marseille-Luminy, Aix-Marseille Université, Marseille, France
| | - Anais Roger
- https://ror.org/03vyjkj45 INSERM, CNRS, Centre D'Immunologie de Marseille-Luminy, Aix-Marseille Université, Marseille, France
| | - Romain Fenouil
- https://ror.org/03vyjkj45 INSERM, CNRS, Centre D'Immunologie de Marseille-Luminy, Aix-Marseille Université, Marseille, France
| | | | | | | | - Laetitia Shintu
- CNRS, Centrale Marseille, ISM2, Aix Marseille Université, Marseille, France
| | - Paul Berchard
- INSERM 1052, CNRS 5286, Cancer Research Center of Lyon (CRCL), Childhood Cancers and Cell Death Laboratory, Lyon, France
| | - Juliane Sousa Lanza
- https://ror.org/03vyjkj45 INSERM, CNRS, Centre D'Immunologie de Marseille-Luminy, Aix-Marseille Université, Marseille, France
| | - Bernard Malissen
- https://ror.org/03vyjkj45 INSERM, CNRS, Centre D'Immunologie de Marseille-Luminy, Aix-Marseille Université, Marseille, France
- INSERM, CNRS, Centre D'Immunophénomique (CIPHE), Aix Marseille Université, Marseille, France
| | - Sandrine Henri
- https://ror.org/03vyjkj45 INSERM, CNRS, Centre D'Immunologie de Marseille-Luminy, Aix-Marseille Université, Marseille, France
| | - Sophie Ugolini
- https://ror.org/03vyjkj45 INSERM, CNRS, Centre D'Immunologie de Marseille-Luminy, Aix-Marseille Université, Marseille, France
| | - Aurélie Dutour
- INSERM 1052, CNRS 5286, Cancer Research Center of Lyon (CRCL), Childhood Cancers and Cell Death Laboratory, Lyon, France
| | - Pascal Finetti
- INSERM, CNRS, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes (IPC), Laboratory of Predictive Oncology, Aix-Marseille Université, Marseille, France
| | - François Bertucci
- INSERM, CNRS, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes (IPC), Laboratory of Predictive Oncology, Aix-Marseille Université, Marseille, France
- Institut Paoli-Calmettes, Department of Medical Oncology, Marseille, France
| | - Jean-Yves Blay
- INSERM 1052, CNRS 5286, Cancer Research Center of Lyon (CRCL), Childhood Cancers and Cell Death Laboratory, Lyon, France
- UNICANCER Centre Léon Bérard, Department of Medicine, Université Lyon I, Lyon, France
| | - Franck Galland
- https://ror.org/03vyjkj45 INSERM, CNRS, Centre D'Immunologie de Marseille-Luminy, Aix-Marseille Université, Marseille, France
| | - Philippe Naquet
- https://ror.org/03vyjkj45 INSERM, CNRS, Centre D'Immunologie de Marseille-Luminy, Aix-Marseille Université, Marseille, France
| |
Collapse
|
14
|
Chen DG, Xie J, Su Y, Heath JR. T cell receptor sequences are the dominant factor contributing to the phenotype of CD8 + T cells with specificities against immunogenic viral antigens. Cell Rep 2023; 42:113279. [PMID: 37883974 PMCID: PMC10729740 DOI: 10.1016/j.celrep.2023.113279] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/23/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
Antigen-specific CD8+ T cells mediate pathogen clearance. T cell phenotype is influenced by T cell receptor (TCR) sequences and environmental signals. Quantitative comparisons of these factors in human disease, while challenging to obtain, can provide foundational insights into basic T cell biology. Here, we investigate the phenotype kinetics of 679 CD8+ T cell clonotypes, each with specificity against one of three immunogenic viral antigens. Data were collected from a longitudinal study of 68 COVID-19 patients with antigens from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), cytomegalovirus (CMV), and influenza. Each antigen is associated with a different type of immune activation during COVID-19. We find TCR sequence to be by far the most important factor in shaping T cell phenotype and persistence for populations specific to any of these antigens. Our work demonstrates the important relationship between TCR sequence and T cell phenotype and persistence and helps explain why T cell phenotype often appears to be determined early in an infection.
Collapse
Affiliation(s)
- Daniel G Chen
- Institute of Systems Biology, Seattle, WA 98109, USA; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jingyi Xie
- Institute of Systems Biology, Seattle, WA 98109, USA; Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA 98105, USA
| | - Yapeng Su
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - James R Heath
- Institute of Systems Biology, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98105, USA.
| |
Collapse
|
15
|
Li P, Li F, Zhang Y, Yu X, Li J. Metabolic diversity of tumor-infiltrating T cells as target for anti-immune therapeutics. Cancer Immunol Immunother 2023; 72:3453-3460. [PMID: 37733059 PMCID: PMC10992207 DOI: 10.1007/s00262-023-03540-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/31/2023] [Indexed: 09/22/2023]
Abstract
Tumor-infiltrating T cells are promising drug targets to modulate the tumor microenvironment. However, tumor-infiltrating T lymphocytes, as central targets of cancer immunotherapy, show considerable heterogeneity and dynamics across tumor microenvironments and cancer types that may fundamentally influence cancer growth, metastasis, relapse, and response to clinical drugs. The T cell heterogeneity not only refers to the composition of subpopulations but also divergent metabolic states of T cells. Comparing to the diversity of tumor-infiltrating T cell compositions that have been well recognized, the metabolic diversity of T cells deserves more attention for precision immunotherapy. Single-cell sequencing technology enables panoramic stitching of the tumor bulk, partly by showing the metabolic-related gene expression profiles of tumor-infiltrating T cells at a single-cell resolution. Therefore, we here discuss T cell metabolism reprogramming triggered by tumor microenvironment as well as the potential application of metabolic targeting drugs. The tumor-infiltrating T cells metabolic pathway addictions among different cancer types are also addressed in this brief review.
Collapse
Affiliation(s)
- Peipei Li
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, 262700, China
- BGI Tech Solutions, Co., Ltd. BGI Shenzhen, Shenzhen, 518000, China
- Jinming Yu Academician Workstation of Oncology, Affiliated Hospital of Weifang Medical University, Weifang, 262700, China
| | - Fangchao Li
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, 262700, China
- Jinming Yu Academician Workstation of Oncology, Affiliated Hospital of Weifang Medical University, Weifang, 262700, China
| | - Yanfei Zhang
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, 262700, China
- Jinming Yu Academician Workstation of Oncology, Affiliated Hospital of Weifang Medical University, Weifang, 262700, China
| | - Xiaoyang Yu
- Weibei Prison Hospital, Weifang, Shandong, 261109, China
| | - Jingjing Li
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, 262700, China.
- Jinming Yu Academician Workstation of Oncology, Affiliated Hospital of Weifang Medical University, Weifang, 262700, China.
| |
Collapse
|
16
|
Quinn KM, Vicencio DM, La Gruta NL. The paradox of aging: Aging-related shifts in T cell function and metabolism. Semin Immunol 2023; 70:101834. [PMID: 37659169 DOI: 10.1016/j.smim.2023.101834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/04/2023]
Abstract
T cell survival, differentiation after stimulation, and function are intrinsically linked to distinct cellular metabolic states. The ability of T cells to readily transition between metabolic states enables flexibility to meet the changing energy demands defined by distinct effector states or T cell lineages. Immune aging is characterized, in part, by the loss of naïve T cells, accumulation of senescent T cells, severe dysfunction in memory phenotype T cells in particular, and elevated levels of inflammatory cytokines, or 'inflammaging'. Here, we review our current understanding of the phenotypic and functional changes that occur with aging in T cells, and how they relate to metabolic changes in the steady state and after T cell activation. We discuss the apparent contradictions in the aging T cell phenotype - where enhanced differentiation states and metabolic profiles in the steady state can correspond to a diminished capacity to adapt metabolically and functionally after T cell activation. Finally, we discuss key recent studies that indicate the enormous potential for aged T cell metabolism to induce systemic inflammaging and organism-wide multimorbidity, resulting in premature death.
Collapse
Affiliation(s)
- Kylie M Quinn
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, Australia; Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Daniela M Vicencio
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Division of Biomedical Sciences, Warwick Medical School, The University of Warwick, Coventry, UK
| | - Nicole L La Gruta
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
17
|
Santosa EK, Sun JC. Cardinal features of immune memory in innate lymphocytes. Nat Immunol 2023; 24:1803-1812. [PMID: 37828377 PMCID: PMC10998651 DOI: 10.1038/s41590-023-01607-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/28/2023] [Indexed: 10/14/2023]
Abstract
The ability of vertebrates to 'remember' previous infections had once been attributed exclusively to adaptive immunity. We now appreciate that innate lymphocytes also possess memory properties akin to those of adaptive immune cells. In this Review, we draw parallels from T cell biology to explore the key features of immune memory in innate lymphocytes, including quantity, quality, and location. We discuss the signals that trigger clonal or clonal-like expansion in innate lymphocytes, and highlight recent studies that shed light on the complex cellular and molecular crosstalk between metabolism, epigenetics, and transcription responsible for differentiating innate lymphocyte responses towards a memory fate. Additionally, we explore emerging evidence that activated innate lymphocytes relocate and establish themselves in specific peripheral tissues during infection, which may facilitate an accelerated response program akin to those of tissue-resident memory T cells.
Collapse
Affiliation(s)
- Endi K Santosa
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA.
| |
Collapse
|
18
|
Fu H, Vuononvirta J, Fanti S, Bonacina F, D'Amati A, Wang G, Poobalasingam T, Fankhaenel M, Lucchesi D, Coleby R, Tarussio D, Thorens B, Hearnden RJ, Longhi MP, Grevitt P, Sheikh MH, Solito E, Godinho SA, Bombardieri M, Smith DM, Cooper D, Iqbal AJ, Rathmell JC, Schaefer S, Morales V, Bianchi K, Norata GD, Marelli-Berg FM. The glucose transporter 2 regulates CD8 + T cell function via environment sensing. Nat Metab 2023; 5:1969-1985. [PMID: 37884694 PMCID: PMC10663157 DOI: 10.1038/s42255-023-00913-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 09/25/2023] [Indexed: 10/28/2023]
Abstract
T cell activation is associated with a profound and rapid metabolic response to meet increased energy demands for cell division, differentiation and development of effector function. Glucose uptake and engagement of the glycolytic pathway are major checkpoints for this event. Here we show that the low-affinity, concentration-dependent glucose transporter 2 (Glut2) regulates the development of CD8+ T cell effector responses in mice by promoting glucose uptake, glycolysis and glucose storage. Expression of Glut2 is modulated by environmental factors including glucose and oxygen availability and extracellular acidification. Glut2 is highly expressed by circulating, recently primed T cells, allowing efficient glucose uptake and storage. In glucose-deprived inflammatory environments, Glut2 becomes downregulated, thus preventing passive loss of intracellular glucose. Mechanistically, Glut2 expression is regulated by a combination of molecular interactions involving hypoxia-inducible factor-1 alpha, galectin-9 and stomatin. Finally, we show that human T cells also rely on this glucose transporter, thus providing a potential target for therapeutic immunomodulation.
Collapse
Affiliation(s)
- Hongmei Fu
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Juho Vuononvirta
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Silvia Fanti
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Fabrizia Bonacina
- Department of Pharmacological and Biomolecular Sciences (DisFeB), Università Degli Studi di Milano, Milan, Italy
| | - Antonio D'Amati
- Section of Anatomical Pathology Department of Precision and Regenerative Medicine, University of Bari Medical School, Bari, Italy
| | - Guosu Wang
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Thanushiyan Poobalasingam
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Maria Fankhaenel
- Bart's Cancer Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Davide Lucchesi
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Rachel Coleby
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - David Tarussio
- Faculty of Biology and Medicine, Center for Integrative Genomics, Génopode Building - UNIL Sorge, University of Lausanne, Lausanne, Switzerland
| | - Bernard Thorens
- Faculty of Biology and Medicine, Center for Integrative Genomics, Génopode Building - UNIL Sorge, University of Lausanne, Lausanne, Switzerland
| | - Robert J Hearnden
- Bart's Cancer Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - M Paula Longhi
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Paul Grevitt
- Bart's Cancer Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Madeeha H Sheikh
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Egle Solito
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Susana A Godinho
- Bart's Cancer Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Michele Bombardieri
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - David M Smith
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Cambridge, UK
| | - Dianne Cooper
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Asif J Iqbal
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Jeffrey C Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Samuel Schaefer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Valle Morales
- Bart's Cancer Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Katiuscia Bianchi
- Bart's Cancer Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences (DisFeB), Università Degli Studi di Milano, Milan, Italy
| | - Federica M Marelli-Berg
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
19
|
Wu H, Zhao X, Hochrein SM, Eckstein M, Gubert GF, Knöpper K, Mansilla AM, Öner A, Doucet-Ladevèze R, Schmitz W, Ghesquière B, Theurich S, Dudek J, Gasteiger G, Zernecke A, Kobold S, Kastenmüller W, Vaeth M. Mitochondrial dysfunction promotes the transition of precursor to terminally exhausted T cells through HIF-1α-mediated glycolytic reprogramming. Nat Commun 2023; 14:6858. [PMID: 37891230 PMCID: PMC10611730 DOI: 10.1038/s41467-023-42634-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
T cell exhaustion is a hallmark of cancer and persistent infections, marked by inhibitory receptor upregulation, diminished cytokine secretion, and impaired cytolytic activity. Terminally exhausted T cells are steadily replenished by a precursor population (Tpex), but the metabolic principles governing Tpex maintenance and the regulatory circuits that control their exhaustion remain incompletely understood. Using a combination of gene-deficient mice, single-cell transcriptomics, and metabolomic analyses, we show that mitochondrial insufficiency is a cell-intrinsic trigger that initiates the functional exhaustion of T cells. At the molecular level, we find that mitochondrial dysfunction causes redox stress, which inhibits the proteasomal degradation of hypoxia-inducible factor 1α (HIF-1α) and promotes the transcriptional and metabolic reprogramming of Tpex cells into terminally exhausted T cells. Our findings also bear clinical significance, as metabolic engineering of chimeric antigen receptor (CAR) T cells is a promising strategy to enhance the stemness and functionality of Tpex cells for cancer immunotherapy.
Collapse
Affiliation(s)
- Hao Wu
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Xiufeng Zhao
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Sophia M Hochrein
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Miriam Eckstein
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Gabriela F Gubert
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Konrad Knöpper
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Ana Maria Mansilla
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Arman Öner
- Division of Clinical Pharmacology, Department of Medicine IV, Ludwig Maximilians University (LMU) Munich, University Hospital, Munich, Germany
| | - Remi Doucet-Ladevèze
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Werner Schmitz
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Bart Ghesquière
- Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium and Metabolomics Core Facility Leuven, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Sebastian Theurich
- Ludwig Maximilians University (LMU) Munich, University Hospital, Department of Medicine III, Munich, Germany and LMU Gene Center, Cancer and Immunometabolism Research Group, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, a partnership between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
| | - Jan Dudek
- Comprehensive Heart Failure Center (CHFC), University Hospital, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Georg Gasteiger
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, Ludwig Maximilians University (LMU) Munich, University Hospital, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, a partnership between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
| | - Wolfgang Kastenmüller
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Martin Vaeth
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians University of Würzburg, Würzburg, Germany.
| |
Collapse
|
20
|
Li Z, Zhao M, Li J, Luo W, Huang J, Huang G, Xie Z, Xiao Y, Huang J, Li X, Zhao B, Zhou Z. Elevated glucose metabolism driving pro-inflammatory response in B cells contributes to the progression of type 1 diabetes. Clin Immunol 2023; 255:109729. [PMID: 37562723 DOI: 10.1016/j.clim.2023.109729] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterized by the immune system's failure to maintain self-tolerance, resulting in the autoimmune destruction of pancreatic beta cells. Although T1D has conventionally been viewed as a T-cell-dominant disease, recent research has emphasized the contribution of B cells in the onset of the disease. However, the mechanism underlying aberrant B cell responses remains unknown. B cell metabolism is a crucial prerequisite for B cell function and the development of adaptive immune responses. Here, we investigated the metabolic features of B cells, first in a cross-sectional cohort and subsequently in non-obese diabetic (NOD) mice, and revealed that there is an increased frequency of high-glucose-avidity (2-NBDGhigh) B cell population that may contribute to T1D progression. Further characterization of the metabolic, transcriptional and functional phenotype of B cells in NOD mice found that elevated glucose avidity is associated with a greater capacity for co-stimulation, proliferation and inflammatory cytokine production. Mechanistically, elevated Myc signaling orchestrated the glucose metabolism and the pro-inflammatory response of B cells in T1D. In vitro experiments demonstrated that pharmacological inhibition of glucose metabolism using metformin and 2-DG reduced pro-inflammatory cytokine production and B cell proliferation. Moreover, the combination of these inhibitors successfully delayed insulitis development, onset of diabetes, and improved high blood glucose levels in streptozotocin (STZ)-induced diabetic mice model. Taken together, our work has uncovered these high-glucose-avidity B cells as novel adjuvant diagnostic and therapeutic targets for T1D.
Collapse
Affiliation(s)
- Zeying Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Mingjiu Zhao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jingyue Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wenjun Luo
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Juan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China; Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Gan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yang Xiao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jiaqi Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Bin Zhao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China; Furong Laboratory, Central South University, Changsha, China.
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
21
|
Okamoto M, Omori-Miyake M, Kuwahara M, Okabe M, Eguchi M, Yamashita M. The Inhibition of Glycolysis in T Cells by a Jak Inhibitor Ameliorates the Pathogenesis of Allergic Contact Dermatitis in Mice. J Invest Dermatol 2023; 143:1973-1982.e5. [PMID: 37028703 DOI: 10.1016/j.jid.2023.03.1667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/31/2023] [Accepted: 03/09/2023] [Indexed: 04/08/2023]
Abstract
Allergic contact dermatitis (ACD) and atopic dermatitis develop through delayed-type hypersensitivity reactions mediated by T cells. The development of immunomodulatory drugs, such as Jak inhibitors, would be useful for the long-term management of these diseases owing to their profile of favorable adverse effects. However, the efficacy of Jak inhibitors for ACD treatment has not been fully determined under a variety of settings. Therefore, we evaluated the effects of ruxolitinib, a Jak inhibitor for Jak1 and Jak2, using a mouse ACD model. As a result, the lower numbers of immune cells, including CD4+ T cells, CD8+ T cells, neutrophils, and possibly macrophages, as well as milder pathophysiological aspects have been observed in the inflamed skin of ACD with the administration of ruxolitinib. In addition, the treatment of differentiating T cells with ruxolitinib downregulated the level of IL-2-mediated glycolysis in vitro. Furthermore, symptoms of ACD did not develop in T-cell-specific Pgam1-deficient mice whose T cells had no glycolytic capacity. Taken together, our data suggest that the downregulation of glycolysis in T cells by ruxolitinib could be an important factor in the suppression of ACD development in mice.
Collapse
Affiliation(s)
- Michiko Okamoto
- Department of Pediatrics, Ehime University Graduate School of Medicine, Ehime, Japan; Department of Immunology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Miyuki Omori-Miyake
- Department of Infections and Host Defenses, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Makoto Kuwahara
- Department of Immunology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Masataka Okabe
- Department of Anatomy, The Jikei University School of Medicine, Tokyo, Japan
| | - Mariko Eguchi
- Department of Pediatrics, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Masakatsu Yamashita
- Department of Immunology, Ehime University Graduate School of Medicine, Ehime, Japan; Department of Infections and Host Defenses, Ehime University Graduate School of Medicine, Ehime, Japan.
| |
Collapse
|
22
|
Chen Y, Xu Z, Sun H, Ouyang X, Han Y, Yu H, Wu N, Xie Y, Su B. Regulation of CD8 + T memory and exhaustion by the mTOR signals. Cell Mol Immunol 2023; 20:1023-1039. [PMID: 37582972 PMCID: PMC10468538 DOI: 10.1038/s41423-023-01064-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/02/2023] [Indexed: 08/17/2023] Open
Abstract
CD8+ T cells are the key executioners of the adaptive immune arm, which mediates antitumor and antiviral immunity. Naïve CD8+ T cells develop in the thymus and are quickly activated in the periphery after encountering a cognate antigen, which induces these cells to proliferate and differentiate into effector cells that fight the initial infection. Simultaneously, a fraction of these cells become long-lived memory CD8+ T cells that combat future infections. Notably, the generation and maintenance of memory cells is profoundly affected by various in vivo conditions, such as the mode of primary activation (e.g., acute vs. chronic immunization) or fluctuations in host metabolic, inflammatory, or aging factors. Therefore, many T cells may be lost or become exhausted and no longer functional. Complicated intracellular signaling pathways, transcription factors, epigenetic modifications, and metabolic processes are involved in this process. Therefore, understanding the cellular and molecular basis for the generation and fate of memory and exhausted CD8+ cells is central for harnessing cellular immunity. In this review, we focus on mammalian target of rapamycin (mTOR), particularly signaling mediated by mTOR complex (mTORC) 2 in memory and exhausted CD8+ T cells at the molecular level.
Collapse
Affiliation(s)
- Yao Chen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ziyang Xu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hongxiang Sun
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinxing Ouyang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Tumor Biology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuheng Han
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Haihui Yu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ningbo Wu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yiting Xie
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Bing Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Department of Tumor Biology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Key Laboratory of Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
23
|
Cortellino S, Longo VD. Metabolites and Immune Response in Tumor Microenvironments. Cancers (Basel) 2023; 15:3898. [PMID: 37568713 PMCID: PMC10417674 DOI: 10.3390/cancers15153898] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
The remodeled cancer cell metabolism affects the tumor microenvironment and promotes an immunosuppressive state by changing the levels of macro- and micronutrients and by releasing hormones and cytokines that recruit immunosuppressive immune cells. Novel dietary interventions such as amino acid restriction and periodic fasting mimicking diets can prevent or dampen the formation of an immunosuppressive microenvironment by acting systemically on the release of hormones and growth factors, inhibiting the release of proinflammatory cytokines, and remodeling the tumor vasculature and extracellular matrix. Here, we discuss the latest research on the effects of these therapeutic interventions on immunometabolism and tumor immune response and future scenarios pertaining to how dietary interventions could contribute to cancer therapy.
Collapse
Affiliation(s)
- Salvatore Cortellino
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy;
| | - Valter D. Longo
- IFOM, The AIRC Institute of Molecular Oncology, 20139 Milan, Italy
- Longevity Institute, Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
24
|
Wu H, Huang H, Zhao Y. Interplay between metabolic reprogramming and post-translational modifications: from glycolysis to lactylation. Front Immunol 2023; 14:1211221. [PMID: 37457701 PMCID: PMC10338923 DOI: 10.3389/fimmu.2023.1211221] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Cellular metabolism plays a critical role in determining the fate and function of cells. Metabolic reprogramming and its byproducts have a complex impact on cellular activities. In quiescent T cells, oxidative phosphorylation (OXPHOS) is the primary pathway for survival. However, upon antigen activation, T cells undergo rapid metabolic reprogramming, characterized by an elevation in both glycolysis and OXPHOS. While both pathways are induced, the balance predominantly shifts towards glycolysis, enabling T cells to rapidly proliferate and enhance their functionality, representing the most distinctive signature during activation. Metabolic processes generate various small molecules resulting from enzyme-catalyzed reactions, which also modulate protein function and exert regulatory control. Notably, recent studies have revealed the direct modification of histones, known as lactylation, by lactate derived from glycolysis. This lactylation process influences gene transcription and adds a novel variable to the regulation of gene expression. Protein lactylation has been identified as an essential mechanism by which lactate exerts its diverse functions, contributing to crucial biological processes such as uterine remodeling, tumor proliferation, neural system regulation, and metabolic regulation. This review focuses on the metabolic reprogramming of T cells, explores the interplay between lactate and the immune system, highlights the impact of lactylation on cellular function, and elucidates the intersection of metabolic reprogramming and epigenetics.
Collapse
Affiliation(s)
- Hengwei Wu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, People's Government of Zhejiang Province, Hangzhou, Zhejiang, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, People's Government of Zhejiang Province, Hangzhou, Zhejiang, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Yanmin Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, People's Government of Zhejiang Province, Hangzhou, Zhejiang, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| |
Collapse
|
25
|
Wang Y, Wang H, Zhang Q, Li S, Mao Y, Lu J, Shen Y, Han Y. Correlation between hyperbilirubinemia risk and immune cell mitochondria parameters in neonates with jaundice. Front Pediatr 2023; 11:1200099. [PMID: 37397145 PMCID: PMC10313225 DOI: 10.3389/fped.2023.1200099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/02/2023] [Indexed: 07/04/2023] Open
Abstract
Purpose To explore the correlation between mitochondria parameters of immune cells and hyperbilirubinemia risk in hospitalized neonates with jaundice. Methods This retrospective study included jaundiced neonates born between September 2020 and March 2022 at Shaoxing Keqiao Women & Children's Hospital. The neonates were divided into low, intermediate-low, intermediate-high, and high-risk groups according to the hyperbilirubinemia risk. The purpose parameters including percentage, absolute count, mitochondrial mass (MM), and single-cell MM (SCMM) of peripheral blood T lymphocytes detected by flow cytometry were collected. Results Finally, 162 neonates with jaundice (47, 41, 39, and 35 with low, intermediate-low, intermediate-high, and high-risk) were included. CD3+ SCMM was significantly higher in the high-risk group compared with the low and intermediate-low-risk groups (both P < 0.0083), CD4+ SCMM was significantly higher in the high-risk group compared with the three other groups (all P < 0.0083), and CD8+ SCMM was significantly higher in the intermediate-low and high-risk groups compared with the low-risk group (both P < 0.0083). CD3+ (r = 0.34, P < 0.001) and CD4+ (r = 0.20, P = 0.010) SCMM positively correlated with bilirubin levels. Conclusions The mitochondrial SCMM parameters differed significantly among jaundiced neonates with different hyperbilirubinemia risks. CD3+ and CD4+ T cell SCMM values were positively correlated with the serum bilirubin levels, and might correlated with hyperbilirubinemia risk.
Collapse
|
26
|
Ramgopal A, Braverman EL, Sun LK, Monlish D, Wittmann C, Ramsey MJ, Caitley R, Hawse W, Byersdorfer CA. AMPK Drives Both Glycolytic and Oxidative Metabolism in T Cells During Graft-versus-host Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.12.544686. [PMID: 37398326 PMCID: PMC10312647 DOI: 10.1101/2023.06.12.544686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Allogeneic T cells reprogram their metabolism during acute graft-versus-host disease (GVHD) in a process reliant on the cellular energy sensor AMP-activated protein kinase (AMPK). Deletion of AMPK in donor T cells limits GVHD but still preserves homeostatic reconstitution and graft-versus-leukemia (GVL) effects. In the current studies, murine T cells lacking AMPK decreased oxidative metabolism at early timepoints post-transplant and were also unable to mediate a compensatory increase in glycolysis following inhibition of the electron transport chain. Human T cells lacking AMPK gave similar results, with glycolytic compensation impaired both in vitro and following expansion in vivo in a modified model of GVHD. Immunoprecipitation of proteins from day 7 allogeneic T cells, using an antibody specific to phosphorylated AMPK targets, recovered lower levels of multiple glycolysis-related proteins including the glycolytic enzymes aldolase, enolase, pyruvate kinase M (PKM), and glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Functionally, murine T cells lacking AMPK exhibited impaired aldolase activity following anti-CD3/CD28 stimulation and a decrease in GAPDH activity on day 7 post-transplant. Importantly, these changes in glycolysis correlated with an impaired ability of AMPK KO T cells to produce significant amounts of interferon gamma (IFNγ) upon antigenic re-stimulation. Together these data highlight a significant role for AMPK in controlling oxidative and glycolytic metabolism in both murine and human T cells during GVHD and endorse further study of AMPK inhibition as a potential target for future clinical therapies. KEY POINTS AMPK plays a key role in driving both and oxidative and glycolytic metabolism in T cells during graft-versus-host disease (GVHD)Absence of AMPK simultaneously impairs both glycolytic enzyme activity, most notably by aldolase, and interferon gamma (IFNγ) production.
Collapse
|
27
|
Li W, Pan X, Chen L, Cui H, Mo S, Pan Y, Shen Y, Shi M, Wu J, Luo F, Liu J, Li N. Cell metabolism-based optimization strategy of CAR-T cell function in cancer therapy. Front Immunol 2023; 14:1186383. [PMID: 37342333 PMCID: PMC10278966 DOI: 10.3389/fimmu.2023.1186383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/19/2023] [Indexed: 06/22/2023] Open
Abstract
Adoptive cell therapy (ACT) using chimeric antigen receptor (CAR)-modified T cells has revolutionized the field of immune-oncology, showing remarkable efficacy against hematological malignancies. However, its success in solid tumors is limited by factors such as easy recurrence and poor efficacy. The effector function and persistence of CAR-T cells are critical to the success of therapy and are modulated by metabolic and nutrient-sensing mechanisms. Moreover, the immunosuppressive tumor microenvironment (TME), characterized by acidity, hypoxia, nutrient depletion, and metabolite accumulation caused by the high metabolic demands of tumor cells, can lead to T cell "exhaustion" and compromise the efficacy of CAR-T cells. In this review, we outline the metabolic characteristics of T cells at different stages of differentiation and summarize how these metabolic programs may be disrupted in the TME. We also discuss potential metabolic approaches to improve the efficacy and persistence of CAR-T cells, providing a new strategy for the clinical application of CAR-T cell therapy.
Collapse
Affiliation(s)
- Wenshuai Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Xuanxuan Pan
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Lirong Chen
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Haoshu Cui
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Shaocong Mo
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yida Pan
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuru Shen
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Menglin Shi
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianlin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Feifei Luo
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Liu
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| |
Collapse
|
28
|
Riffelmacher T, Paynich Murray M, Wientjens C, Chandra S, Cedillo-Castelán V, Chou TF, McArdle S, Dillingham C, Devereaux J, Nilsen A, Brunel S, Lewinsohn DM, Hasty J, Seumois G, Benedict CA, Vijayanand P, Kronenberg M. Divergent metabolic programmes control two populations of MAIT cells that protect the lung. Nat Cell Biol 2023; 25:877-891. [PMID: 37231163 PMCID: PMC10264248 DOI: 10.1038/s41556-023-01152-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 04/18/2023] [Indexed: 05/27/2023]
Abstract
Although mucosal-associated invariant T (MAIT) cells provide rapid, innate-like responses, they are not pre-set, and memory-like responses have been described for MAIT cells following infections. The importance of metabolism for controlling these responses, however, is unknown. Here, following pulmonary immunization with a Salmonella vaccine strain, mouse MAIT cells expanded as separate CD127-Klrg1+ and CD127+Klrg1- antigen-adapted populations that differed in terms of their transcriptome, function and localization in lung tissue. These populations remained altered from steady state for months as stable, separate MAIT cell lineages with enhanced effector programmes and divergent metabolism. CD127+ MAIT cells engaged in an energetic, mitochondrial metabolic programme, which was critical for their maintenance and IL-17A synthesis. This programme was supported by high fatty acid uptake and mitochondrial oxidation and relied on highly polarized mitochondria and autophagy. After vaccination, CD127+ MAIT cells protected mice against Streptococcus pneumoniae infection. In contrast, Klrg1+ MAIT cells had dormant but ready-to-respond mitochondria and depended instead on Hif1a-driven glycolysis to survive and produce IFN-γ. They responded antigen independently and participated in protection from influenza virus. These metabolic dependencies may enable tuning of memory-like MAIT cell responses for vaccination and immunotherapies.
Collapse
Affiliation(s)
- Thomas Riffelmacher
- La Jolla Institute for Immunology, La Jolla, CA, USA.
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
| | | | | | | | | | | | - Sara McArdle
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | | | - Aaron Nilsen
- Oregon Health and Science University, Portland, OR, USA
| | - Simon Brunel
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Jeff Hasty
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA
| | | | | | | | - Mitchell Kronenberg
- La Jolla Institute for Immunology, La Jolla, CA, USA.
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
29
|
Rose JR, Akdogan-Ozdilek B, Rahmberg AR, Powell MD, Hicks SL, Scharer CD, Boss JM. Distinct transcriptomic and epigenomic modalities underpin human memory T cell subsets and their activation potential. Commun Biol 2023; 6:363. [PMID: 37012418 PMCID: PMC10070634 DOI: 10.1038/s42003-023-04747-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
Human memory T cells (MTC) are poised to rapidly respond to antigen re-exposure. Here, we derived the transcriptional and epigenetic programs of resting and ex vivo activated, circulating CD4+ and CD8+ MTC subsets. A progressive gradient of gene expression from naïve to TCM to TEM is observed, which is accompanied by corresponding changes in chromatin accessibility. Transcriptional changes suggest adaptations of metabolism that are reflected in altered metabolic capacity. Other differences involve regulatory modalities comprised of discrete accessible chromatin patterns, transcription factor binding motif enrichment, and evidence of epigenetic priming. Basic-helix-loop-helix factor motifs for AHR and HIF1A distinguish subsets and predict transcription networks to sense environmental changes. Following stimulation, primed accessible chromatin correlate with an augmentation of MTC gene expression as well as effector transcription factor gene expression. These results identify coordinated epigenetic remodeling, metabolic, and transcriptional changes that enable MTC subsets to ultimately respond to antigen re-encounters more efficiently.
Collapse
Affiliation(s)
- James R Rose
- Department of Microbiology and Immunology, and the Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Bagdeser Akdogan-Ozdilek
- Department of Microbiology and Immunology, and the Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Andrew R Rahmberg
- Barrier Immunity Section, Laboratory of Viral Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Michael D Powell
- Department of Microbiology and Immunology, and the Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Sakeenah L Hicks
- Department of Microbiology and Immunology, and the Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, and the Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jeremy M Boss
- Department of Microbiology and Immunology, and the Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
30
|
Gehlhaar A, Shouval D, Santiago EG, Ling G, McCourt B, Werner L, Yerushalmi B, Konnikova L. Immune dysregulation in Glycogen Storage Disease 1b - a CyTOF approach. RESEARCH SQUARE 2023:rs.3.rs-2598829. [PMID: 36865166 PMCID: PMC9980199 DOI: 10.21203/rs.3.rs-2598829/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Glycogen Storage Disease type 1b (GSD1b) is a rare disease manifesting as hypoglycemia, recurrent infections and neutropenia, resulting from deleterious mutations in the SLC37A4 gene encoding the glucose-6-phosphate transporter. The susceptibility to infections is thought to be attributed not only to the neutrophil defect, though extensive immunophenotyping characterization is currently missing. Here we apply a systems immunology approach utilizing Cytometry by Time Of Flight (CyTOF) to map the peripheral immune landscape of 6 GSD1b patients. When compared to control subjects, those with GSD1b had a significant reduction in anti-inflammatory macrophages, CD16+ macrophages, and Natural Killer cells. Additionally, there was a preference towards a central versus an effector memory phenotype in multiple T cell populations, which may suggest that these changes stem from an inability of activated immune cell populations to undergo the appropriate switch to glycolytic metabolism in the hypoglycemic conditions associated with GSD1b. Furthermore, we identified a global reduction of CD123, CD14, CCR4, CD24 and CD11b across several populations and a multi-cluster upregulation of CXCR3, hinting at a potential role of impaired immune cell trafficking in the context of GSD1b. Taken together, our data indicates that that the immune impairment observed in GSD1b patients extends far beyond neutropenia and encompasses innate and adaptive compartments, which may provide novel insights into the pathogenesis of this disorder.
Collapse
|
31
|
Lee GR. Molecular Mechanisms of T Helper Cell Differentiation and Functional Specialization. Immune Netw 2023; 23:e4. [PMID: 36911803 PMCID: PMC9995992 DOI: 10.4110/in.2023.23.e4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/17/2023] [Accepted: 01/29/2023] [Indexed: 03/07/2023] Open
Abstract
Th cells, which orchestrate immune responses to various pathogens, differentiate from naïve CD4 T cells into several subsets that stimulate and regulate immune responses against various types of pathogens, as well as a variety of immune-related diseases. Decades of research have revealed that the fate decision processes are controlled by cytokines, cytokine receptor signaling, and master transcription factors that drive the differentiation programs. Since the Th1 and Th2 paradigm was proposed, many subsets have been added to the list. In this review, I will summarize these events, including the fate decision processes, subset functions, transcriptional regulation, metabolic regulation, and plasticity and heterogeneity. I will also introduce current topics of interest.
Collapse
Affiliation(s)
- Gap Ryol Lee
- Department of Life Science, Sogang University, Seoul 04107, Korea
| |
Collapse
|
32
|
Cheng H, Qiu Y, Xu Y, Chen L, Ma K, Tao M, Frankiw L, Yin H, Xie E, Pan X, Du J, Wang Z, Zhu W, Chen L, Zhang L, Li G. Extracellular acidosis restricts one-carbon metabolism and preserves T cell stemness. Nat Metab 2023; 5:314-330. [PMID: 36717749 PMCID: PMC9970874 DOI: 10.1038/s42255-022-00730-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 12/19/2022] [Indexed: 02/01/2023]
Abstract
The accumulation of acidic metabolic waste products within the tumor microenvironment inhibits effector functions of tumor-infiltrating lymphocytes (TILs). However, it remains unclear how an acidic environment affects T cell metabolism and differentiation. Here we show that prolonged exposure to acid reprograms T cell intracellular metabolism and mitochondrial fitness and preserves T cell stemness. Mechanistically, elevated extracellular acidosis impairs methionine uptake and metabolism via downregulation of SLC7A5, therefore altering H3K27me3 deposition at the promoters of key T cell stemness genes. These changes promote the maintenance of a 'stem-like memory' state and improve long-term in vivo persistence and anti-tumor efficacy in mice. Our findings not only reveal an unexpected capacity of extracellular acidosis to maintain the stem-like properties of T cells, but also advance our understanding of how methionine metabolism affects T cell stemness.
Collapse
Affiliation(s)
- Hongcheng Cheng
- Key Laboratory of Synthetic Biology Regulatory Element, Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Yajing Qiu
- Key Laboratory of Synthetic Biology Regulatory Element, Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Yue Xu
- Key Laboratory of Synthetic Biology Regulatory Element, Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Li Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kaili Ma
- Key Laboratory of Synthetic Biology Regulatory Element, Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Mengyuan Tao
- Key Laboratory of Synthetic Biology Regulatory Element, Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Luke Frankiw
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Hongli Yin
- Key Laboratory of Synthetic Biology Regulatory Element, Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Ermei Xie
- Key Laboratory of Synthetic Biology Regulatory Element, Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, China
| | - Xiaoli Pan
- Key Laboratory of Synthetic Biology Regulatory Element, Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Jing Du
- Key Laboratory of Synthetic Biology Regulatory Element, Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Zhe Wang
- Key Laboratory of Synthetic Biology Regulatory Element, Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Wenjie Zhu
- Key Laboratory of Synthetic Biology Regulatory Element, Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Lu Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Lianjun Zhang
- Key Laboratory of Synthetic Biology Regulatory Element, Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Suzhou Institute of Systems Medicine, Suzhou, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China.
| | - Guideng Li
- Key Laboratory of Synthetic Biology Regulatory Element, Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Suzhou Institute of Systems Medicine, Suzhou, China.
| |
Collapse
|
33
|
Zhou X, Zhu X, Zeng H. Fatty acid metabolism in adaptive immunity. FEBS J 2023; 290:584-599. [PMID: 34822226 PMCID: PMC9130345 DOI: 10.1111/febs.16296] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/12/2021] [Accepted: 11/24/2021] [Indexed: 02/06/2023]
Abstract
Fatty acids (FAs) not only are a key component of cellular membrane structure, but also have diverse functions in biological processes. Recent years have seen great advances in understanding of how FA metabolism contributes to adaptive immune response. Here, we review three key processes, FA biosynthesis, FA oxidation and FA uptake, and how they direct T and B cell functions during immune challenges. Then, we will focus on the relationship between microbiota derived FAs, short-chain FAs, and adaptive immunity. Along the way, we will also discuss the outstanding controversies and challenges in the field.
Collapse
Affiliation(s)
- Xian Zhou
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, Rochester, MN 55905, USA
| | - Xingxing Zhu
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, Rochester, MN 55905, USA
| | - Hu Zeng
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, Rochester, MN 55905, USA,Department of Immunology, Mayo Clinic Rochester, Rochester, MN 55905, USA
| |
Collapse
|
34
|
Amitrano AM, Kim M. Metabolic Challenges in Anticancer CD8 T Cell Functions. Immune Netw 2023; 23:e9. [PMID: 36911801 PMCID: PMC9995993 DOI: 10.4110/in.2023.23.e9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 03/07/2023] Open
Abstract
Cancer immunotherapies continue to face numerous obstacles in the successful treatment of solid malignancies. While immunotherapy has emerged as an extremely effective treatment option for hematologic malignancies, it is largely ineffective against solid tumors due in part to metabolic challenges present in the tumor microenvironment (TME). Tumor-infiltrating CD8+ T cells face fierce competition with cancer cells for limited nutrients. The strong metabolic suppression in the TME often leads to impaired T-cell recruitment to the tumor site and hyporesponsive effector functions via T-cell exhaustion. Growing evidence suggests that mitochondria play a key role in CD8+ T-cell activation, migration, effector functions, and persistence in tumors. Therefore, targeting the mitochondrial metabolism of adoptively transferred T cells has the potential to greatly improve the effectiveness of cancer immunotherapies in treating solid malignancies.
Collapse
Affiliation(s)
- Andrea M. Amitrano
- Department of Pathology, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Minsoo Kim
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
35
|
Abstract
T cells are one of few cell types in adult mammals that can proliferate extensively and differentiate diversely upon stimulation, which serves as an excellent example to dissect the metabolic basis of cell fate decisions. During the last decade, there has been an explosion of research into the metabolic control of T-cell responses. The roles of common metabolic pathways, including glycolysis, lipid metabolism, and mitochondrial oxidative phosphorylation, in T-cell responses have been well characterized, and their mechanisms of action are starting to emerge. In this review, we present several considerations for T-cell metabolism-focused research, while providing an overview of the metabolic control of T-cell fate decisions during their life journey. We try to synthesize principles that explain the causal relationship between cellular metabolism and T-cell fate decision. We also discuss key unresolved questions and challenges in targeting T-cell metabolism to treat disease.
Collapse
Affiliation(s)
- Min Peng
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Institute for Immunology, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China
| | - Ming O. Li
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| |
Collapse
|
36
|
Malsagova KA, Astrelina TA, Balakin EI, Kobzeva IV, Adoeva EY, Yurku KA, Suchkova YB, Stepanov AA, Izotov AA, Butkova TV, Kaysheva AL, Pustovoyt VI. Influence of Sports Training in Foothills on the Professional Athlete's Immunity. Sports (Basel) 2023; 11:sports11020030. [PMID: 36828315 PMCID: PMC9959015 DOI: 10.3390/sports11020030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
Neuroplasticity and inflammation play important part in the body's adaptive reactions in response to prolonged physical activity. These processes are associated with the cross-interaction of the nervous and immune systems, which is realized through the transmission of signals from neurotransmitters and cytokines. Using the methods of flow cytometry and advanced biochemical analysis of blood humoral parameters, we showed that intense and prolonged physical activity at the anaerobic threshold, without nutritional and metabolic support, contributes to the development of exercise-induced immunosuppression in sportsmen. These athletes illustrate the following signs of a decreased immune status: fewer absolute indicators of the content of leukocytes, lowered values in the immunoregulatory index (CD4+/CD8+), and diminished indicators of humoral immunity (immunoglobulins A, M, and G, and IFN-γ). These factors characterize the functional state of cellular and humoral immunity and their reduction affects the prenosological risk criteria, indicative of the athletes' susceptibility to develop exercise-induced immunosuppression.
Collapse
Affiliation(s)
- Kristina A. Malsagova
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia
- Correspondence: ; Tel.: +7-(499)-764-98-78
| | - Tatiana A. Astrelina
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123098 Moscow, Russia
| | - Evgenii I. Balakin
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123098 Moscow, Russia
| | - Irina V. Kobzeva
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123098 Moscow, Russia
| | - Elena Ya. Adoeva
- S.M. Kirov Military Medical Academy, 194044 St. Petersburg, Russia
| | - Kseniya A. Yurku
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123098 Moscow, Russia
| | - Yuliya B. Suchkova
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123098 Moscow, Russia
| | - Alexander A. Stepanov
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia
| | - Alexander A. Izotov
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia
| | - Tatyana V. Butkova
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia
| | - Anna L. Kaysheva
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia
| | - Vasiliy I. Pustovoyt
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123098 Moscow, Russia
| |
Collapse
|
37
|
Immunological Aspects of Von Hippel-Lindau Disease: A Focus on Neuro-Oncology and Myasthenia Gravis. Diagnostics (Basel) 2023; 13:diagnostics13010144. [PMID: 36611440 PMCID: PMC9818211 DOI: 10.3390/diagnostics13010144] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Von Hippel-Lindau (VHL) disease is an autosomal dominant condition that predisposes affected individuals to a variety of malignant and benign neoplasms. The pathogenetic turning point of this illness is the accumulation of hypoxia-inducible factor (HIF)-1α, a transcription factor of several genes involved in oncogenesis, angiogenesis, tissue regeneration, metabolic regulation, hematopoiesis, and inflammatory responses. From an oncological perspective, increased awareness of the molecular pathways underlying this disease is bringing us closer to the development of specific and targeted therapies. Meanwhile, on the surgical side, improved understanding can help to better identify the patients to be treated and the surgical timing. Overall, pathogenesis research is crucial for developing patient-tailored therapies. One of the actual key topics of interest is the link between the VHL/HIF axis and inflammation. The present study aims to outline the fundamental mechanisms that link VHL disease and immune disorders, as well as to explore the details of the overlap between VHL disease and myasthenia gravis (MG) pathogenetic pathways. As a result, MG becomes a paradigm for autoimmune disorders that might be related with VHL disease.
Collapse
|
38
|
Heuser C, Renner K, Kreutz M, Gattinoni L. Targeting lactate metabolism for cancer immunotherapy - a matter of precision. Semin Cancer Biol 2023; 88:32-45. [PMID: 36496155 DOI: 10.1016/j.semcancer.2022.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Immune checkpoint inhibitors and adoptive T cell therapies have been valuable additions to the toolbox in the fight against cancer. These treatments have profoundly increased the number of patients with a realistic perspective toward a return to a cancer-free life. Yet, in a number of patients and tumor entities, cancer immunotherapies have been ineffective so far. In solid tumors, immune exclusion and the immunosuppressive tumor microenvironment represent substantial roadblocks to successful therapeutic outcomes. A major contributing factor to the depressed anti-tumor activity of immune cells in tumors is the harsh metabolic environment. Hypoxia, nutrient competition with tumor and stromal cells, and accumulating noxious waste products, including lactic acid, pose massive constraints to anti-tumor immune cells. Numerous strategies are being developed to exploit the metabolic vulnerabilities of tumor cells in the hope that these would also alleviate metabolism-inflicted immune suppression. While promising in principle, especially in combination with immunotherapies, these strategies need to be scrutinized for their effect on tumor-fighting immune cells, which share some of their key metabolic properties with tumor cells. Here, we provide an overview of strategies that seek to tackle lactate metabolism in tumor or immune cells to unleash anti-tumor immune responses, thereby opening therapeutic options for patients whose tumors are currently not treatable.
Collapse
Affiliation(s)
- Christoph Heuser
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy (LIT), 93053 Regensburg, Germany.
| | - Kathrin Renner
- Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany; Department of Otorhinolaryngology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Marina Kreutz
- Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany; Clinical Cooperation Group Immunometabolomics, Leibniz Institute for Immunotherapy (LIT), 93053 Regensburg, Germany; Center for Immunomedicine in Transplantation and Oncology (CITO), University Hospital Regensburg, 93053 Regensburg, Germany
| | - Luca Gattinoni
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy (LIT), 93053 Regensburg, Germany; Center for Immunomedicine in Transplantation and Oncology (CITO), University Hospital Regensburg, 93053 Regensburg, Germany; University of Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
39
|
Singh B, Kumar Rai A. Loss of immune regulation in aged T-cells: A metabolic review to show lack of ability to control responses within the self. Hum Immunol 2022; 83:808-817. [DOI: 10.1016/j.humimm.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/19/2022] [Accepted: 10/04/2022] [Indexed: 11/04/2022]
|
40
|
Li F, Liu H, Zhang D, Ma Y, Zhu B. Metabolic plasticity and regulation of T cell exhaustion. Immunology 2022; 167:482-494. [DOI: 10.1111/imm.13575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/06/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Fei Li
- Gansu Provincial Key Laboratory of Evidence‐Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences Lanzhou University Lanzhou China
| | - Huiling Liu
- Department of gynecology and obstetrics Gansu Provincial Hospital Lanzhou China
| | - Dan Zhang
- Gansu Provincial Key Laboratory of Evidence‐Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences Lanzhou University Lanzhou China
| | - Yanlin Ma
- Gansu Provincial Key Laboratory of Evidence‐Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences Lanzhou University Lanzhou China
| | - Bingdong Zhu
- Gansu Provincial Key Laboratory of Evidence‐Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences Lanzhou University Lanzhou China
- State Key Laboratory of Veterinary Etiological Biology, School of Veterinary Medicine and Biosafety Lanzhou University Lanzhou China
| |
Collapse
|
41
|
HIF-1 stabilization in T cells hampers the control of Mycobacterium tuberculosis infection. Nat Commun 2022; 13:5093. [PMID: 36064840 PMCID: PMC9445005 DOI: 10.1038/s41467-022-32639-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/10/2022] [Indexed: 11/27/2022] Open
Abstract
The hypoxia-inducible factors (HIFs) regulate the main transcriptional pathway of response to hypoxia in T cells and are negatively regulated by von Hippel-Lindau factor (VHL). But the role of HIFs in the regulation of CD4 T cell responses during infection with M. tuberculosis isn’t well understood. Here we show that mice lacking VHL in T cells (Vhl cKO) are highly susceptible to infection with M. tuberculosis, which is associated with a low accumulation of mycobacteria-specific T cells in the lungs that display reduced proliferation, altered differentiation and enhanced expression of inhibitory receptors. In contrast, HIF-1 deficiency in T cells is redundant for M. tuberculosis control. Vhl cKO mice also show reduced responses to vaccination. Further, VHL promotes proper MYC-activation, cell-growth responses, DNA synthesis, proliferation and survival of CD4 T cells after TCR activation. The VHL-deficient T cell responses are rescued by the loss of HIF-1α, indicating that the increased susceptibility to M. tuberculosis infection and the impaired responses of Vhl-deficient T cells are HIF-1-dependent. The role of hypoxia inducible factors in infection and immune response is unclear. Here, the authors study their impact on the regulation of T cells responses during Mycobacteria tuberculosis infection using transcriptomics, flow cytometry and in vivo infection.
Collapse
|
42
|
Cai X, Li H, Wang M, Chu E, Wei N, Lin J, Hu Y, Dai J, Chen A, Zheng H, Zhang Q, Zhong Y, Chang R, Wu S, Xiao Y, Liu C. mTOR Participates in the Formation, Maintenance, and Function of Memory CD8 +T Cells Regulated by Glycometabolism. Biochem Pharmacol 2022; 204:115197. [PMID: 35926651 DOI: 10.1016/j.bcp.2022.115197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/02/2022]
Abstract
Memory CD8+T cells participate in the fight against infection and tumorigenesis as well as in autoimmune disease progression because of their efficient and rapid immune response, long-term survival, and continuous differentiation. At each stage of their formation, maintenance, and function, the cell metabolism must be adjusted to match the functional requirements of the specific stage. Notably, enhanced glycolytic metabolism can generate sufficient levels of adenosine triphosphate (ATP) to form memory CD8+T cells, countering the view that glycolysis prevents the formation of memory CD8+T cells. This review focuses on how glycometabolism regulates memory CD8+T cells and highlights the key mechanisms through which the mammalian target of rapamycin (mTOR) signaling pathway affects memory CD8+T cell formation, maintenance, and function by regulating glycometabolism. In addition, different subpopulations of memory CD8+T cells exhibit different metabolic flexibility during their formation, survival, and functional stages, during which the energy metabolism may be critical. These findings which may explain why enhanced glycolytic metabolism can give rise to memory CD8+T cells. Modulating the metabolism of memory CD8+T cells to influence specific cell fates may be useful for disease treatment.
Collapse
Affiliation(s)
- Xuepei Cai
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Haokun Li
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Manyi Wang
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Edward Chu
- Department of Oncology and Cancer Therapeutics Program, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ning Wei
- Department of Oncology and Cancer Therapeutics Program, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jiayu Lin
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yun Hu
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Jingtao Dai
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Aijie Chen
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Hua Zheng
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qianbing Zhang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yuxia Zhong
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ruoshui Chang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Sha Wu
- Department of Immunology, School of Basic Medical Sciences, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Key Laboratory of Functional Proteomics of Guangdong Province, Guangzhou, China; National Demonstration Center for Experimental Education of Basic Medical Sciences of China, Guangzhou, China.
| | - Yaomu Xiao
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China.
| | - Chufeng Liu
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
43
|
P2 Receptors: Novel Disease Markers and Metabolic Checkpoints in Immune Cells. Biomolecules 2022; 12:biom12070983. [PMID: 35883539 PMCID: PMC9313346 DOI: 10.3390/biom12070983] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/24/2022] [Accepted: 07/11/2022] [Indexed: 02/05/2023] Open
Abstract
Extracellular ATP (eATP) and P2 receptors are novel emerging regulators of T-lymphocyte responses. Cellular ATP is released via multiple pathways and accumulates at sites of tissue damage and inflammation. P2 receptor expression and function are affected by numerous single nucleotide polymorphisms (SNPs) associated with diverse disease conditions. Stimulation by released nucleotides (purinergic signalling) modulates several T-lymphocyte functions, among which energy metabolism. Energy metabolism, whether oxidative or glycolytic, in turn deeply affects T-cell activation, differentiation and effector responses. Specific P2R subtypes, among which the P2X7 receptor (P2X7R), are either up- or down-regulated during T-cell activation and differentiation; thus, they can be considered indexes of activation/quiescence, reporters of T-cell metabolic status and, in principle, markers of immune-mediated disease conditions.
Collapse
|
44
|
Homeostatic cytokines tune naivety and stemness of cord blood-derived transgenic T cells. Cancer Gene Ther 2022; 29:961-972. [PMID: 34645974 DOI: 10.1038/s41417-021-00395-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/28/2021] [Accepted: 09/28/2021] [Indexed: 12/18/2022]
Abstract
Engineered T-cell therapies have proven to be successful in cancer and their clinical effectiveness is directly correlated with the infused T-cell differentiation profile. Indeed, stem cell memory and central memory T cells proliferate and persist longer in vivo compared with more-differentiated T cells, while conferring enhanced antitumor activity. Here, we propose an optimized process using cord blood (CB) to generate minimally differentiated T-cell products in terms of phenotype, function, gene expression, and metabolism, using peripheral blood (PB)-derived T cells cultured with IL-2 as a standard. Phenotypically, CB-derived T cells, particularly CD4 T cells, are less differentiated than their PB counterparts when cultured with IL-2 or with IL-7 and IL-15. Furthermore, culture with IL-7 and IL-15 enables better preservation of less-differentiated CB-derived T cells compared with IL-2. In addition, transcriptomic and metabolic assessments of CB-derived transgenic T cells cultured with IL-7 and IL-15 point out their naivety and stemness signature. These relatively quiescent transgenic T cells are nevertheless primed for secondary stimulation and cytokine production. In conclusion, our study indicates that CB may be used as a source of early differentiated T cells to develop more effective adoptive cancer immunotherapy.
Collapse
|
45
|
La Manna MP, Shekarkar Azgomi M, Tamburini B, Badami GD, Mohammadnezhad L, Dieli F, Caccamo N. Phenotypic and Immunometabolic Aspects on Stem Cell Memory and Resident Memory CD8+ T Cells. Front Immunol 2022; 13:884148. [PMID: 35784300 PMCID: PMC9247337 DOI: 10.3389/fimmu.2022.884148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
The immune system, smartly and surprisingly, saves the exposure of a particular pathogen in its memory and reacts to the pathogen very rapidly, preventing serious diseases.Immunologists have long been fascinated by understanding the ability to recall and respond faster and more vigorously to a pathogen, known as “memory”.T-cell populations can be better described by using more sophisticated techniques to define phenotype, transcriptional and epigenetic signatures and metabolic pathways (single-cell resolution), which uncovered the heterogeneity of the memory T-compartment. Phenotype, effector functions, maintenance, and metabolic pathways help identify these different subsets. Here, we examine recent developments in the characterization of the heterogeneity of the memory T cell compartment. In particular, we focus on the emerging role of CD8+ TRM and TSCM cells, providing evidence on how their immunometabolism or modulation can play a vital role in their generation and maintenance in chronic conditions such as infections or autoimmune diseases.
Collapse
Affiliation(s)
- Marco Pio La Manna
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Mojtaba Shekarkar Azgomi
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Bartolo Tamburini
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Giusto Davide Badami
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Leila Mohammadnezhad
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Nadia Caccamo
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
- *Correspondence: Nadia Caccamo,
| |
Collapse
|
46
|
Gašparini D, Kavazović I, Barković I, Maričić V, Ivaniš V, Samsa DT, Peršić V, Polić B, Turk Wensveen T, Wensveen FM. Extreme anaerobic exercise causes reduced cytotoxicity and increased cytokine production by peripheral blood lymphocytes. Immunol Lett 2022; 248:45-55. [PMID: 35709930 DOI: 10.1016/j.imlet.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/05/2022]
Abstract
Exercise has many beneficial effects for our body, but can become detrimental at high intensity, especially for our immune system. Little is known about the underlying mechanism of impaired immune functionality under conditions of intense physical strain. Freedivers, people who dive to high depths on a single breath, perform extreme exercise under anaerobic conditions. In this study, we investigated the impact of freediving on the cytotoxic arm of the immune system. At rest, elite freedivers did not display changes in their immunological profile compared to non-diving controls. In contrast, after a freedive, granzyme B and IL-2 production were reduced, whereas IFNγ and TNF secretion were increased by cytotoxic immune cells. Using in vitro models mimicking freedive conditions, we could show that hypoxia in combination with stress hyperglycemia had a negative impact on Granzyme B secretion, whereas IL-2 production was inhibited by stress hormones. Our findings suggest that in response to extreme exercise, cytotoxic immune cells transiently change their functional profile to limit tissue damage.
Collapse
Affiliation(s)
- Dora Gašparini
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, Rijeka 51000, Croatia; Center for Diabetes, Endocrinology and Cardiometabolism, Special Hospital for Medical Rehabilitation of Heart, Lung and Rheumatic Diseases Thalassotherapia Opatija, Opatija, Croatia
| | - Inga Kavazović
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, Rijeka 51000, Croatia
| | - Igor Barković
- Center for Research and Education in Underwater, Hyperbaric and Maritime Medicine, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Vitomir Maričić
- International Association for the Development of Apnea, Croatia
| | - Viktor Ivaniš
- Clinic for Heart and Blood Vessels, Special Hospital for Medical Rehabilitation of Heart, Lung and Rheumatic Diseases Thalassotherapia Opatija, Opatija, Croatia
| | - Dijana Travica Samsa
- Clinic for Heart and Blood Vessels, Special Hospital for Medical Rehabilitation of Heart, Lung and Rheumatic Diseases Thalassotherapia Opatija, Opatija, Croatia; Department of Rehabilitation and Sports Medicine, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Viktor Peršić
- Clinic for Heart and Blood Vessels, Special Hospital for Medical Rehabilitation of Heart, Lung and Rheumatic Diseases Thalassotherapia Opatija, Opatija, Croatia; Department of Rehabilitation and Sports Medicine, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Bojan Polić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, Rijeka 51000, Croatia
| | - Tamara Turk Wensveen
- Center for Diabetes, Endocrinology and Cardiometabolism, Special Hospital for Medical Rehabilitation of Heart, Lung and Rheumatic Diseases Thalassotherapia Opatija, Opatija, Croatia; Department of Internal Medicine, Faculty of Medicine, University of Rijeka, Rijeka, Croatia; Department of Endocrinology, Diabetology and Metabolic Diseases, Clinic for Internal Medicine, Clinical Hospital Centre Rijeka, Rijeka, Croatia
| | - Felix M Wensveen
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, Rijeka 51000, Croatia.
| |
Collapse
|
47
|
Calvet-Mirabent M, Sánchez-Cerrillo I, Martín-Cófreces N, Martínez-Fleta P, de la Fuente H, Tsukalov I, Delgado-Arévalo C, Calzada MJ, de Los Santos I, Sanz J, García-Fraile L, Sánchez-Madrid F, Alfranca A, Muñoz-Fernández MÁ, Buzón MJ, Martín-Gayo E. Antiretroviral therapy duration and immunometabolic state determine efficacy of ex vivo dendritic cell-based treatment restoring functional HIV-specific CD8+ T cells in people living with HIV. EBioMedicine 2022; 81:104090. [PMID: 35665682 PMCID: PMC9301875 DOI: 10.1016/j.ebiom.2022.104090] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/11/2022] [Accepted: 05/18/2022] [Indexed: 12/12/2022] Open
Abstract
Background Dysfunction of CD8+ T cells in people living with HIV-1 (PLWH) receiving anti-retroviral therapy (ART) has restricted the efficacy of dendritic cell (DC)-based immunotherapies against HIV-1. Heterogeneous immune exhaustion and metabolic states of CD8+ T cells might differentially associate with dysfunction. However, specific parameters associated to functional restoration of CD8+ T cells after DC treatment have not been investigated. Methods We studied association of restoration of functional HIV-1-specific CD8+ T cell responses after stimulation with Gag-adjuvant-primed DC with ART duration, exhaustion, metabolic and memory cell subsets profiles. Findings HIV-1-specific CD8+ T cell responses from a larger proportion of PLWH on long-term ART (more than 10 years; LT-ARTp) improved polyfunctionality and capacity to eliminate autologous p24+ infected CD4+ T cells in vitro. In contrast, functional improvement of CD8+ T cells from PLWH on short-term ART (less than a decade; ST-ARTp) after DC treatment was limited. This was associated with lower frequencies of central memory CD8+ T cells, increased co-expression of PD1 and TIGIT and reduced mitochondrial respiration and glycolysis induction upon TCR activation. In contrast, CD8+ T cells from LT-ARTp showed increased frequencies of TIM3+ PD1− cells and preserved induction of glycolysis. Treatment of dysfunctional CD8+ T cells from ST-ARTp with combined anti-PD1 and anti-TIGIT antibodies plus a glycolysis promoting drug restored their ability to eliminate infected CD4+ T cells. Interpretation Together, our study identifies specific immunometabolic parameters for different PLWH subgroups potentially useful for future personalized DC-based HIV-1 vaccines. Funding NIH (R21AI140930), MINECO/FEDER RETOS (RTI2018-097485-A-I00) and CIBERINF grants.
Collapse
Affiliation(s)
- Marta Calvet-Mirabent
- Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain; Universidad Autónoma de Madrid, Madrid, Spain
| | - Ildefonso Sánchez-Cerrillo
- Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain; Universidad Autónoma de Madrid, Madrid, Spain
| | - Noa Martín-Cófreces
- Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain; Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red Cardiovascular, CIBERCV, 28029 Madrid, Spain
| | - Pedro Martínez-Fleta
- Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - Hortensia de la Fuente
- Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain; Centro de Investigación Biomédica en Red Cardiovascular, CIBERCV, 28029 Madrid, Spain
| | | | - Cristina Delgado-Arévalo
- Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain; Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Ignacio de Los Santos
- Infectious Diseases Unit from Hospital Universitario de La Princesa, Madrid, Spain; Centro de Investigación Biomédica en Red Infecciosas, CIBERINF, 28029 Madrid, Spain
| | - Jesús Sanz
- Infectious Diseases Unit from Hospital Universitario de La Princesa, Madrid, Spain; Centro de Investigación Biomédica en Red Infecciosas, CIBERINF, 28029 Madrid, Spain
| | - Lucio García-Fraile
- Infectious Diseases Unit from Hospital Universitario de La Princesa, Madrid, Spain; Centro de Investigación Biomédica en Red Infecciosas, CIBERINF, 28029 Madrid, Spain
| | - Francisco Sánchez-Madrid
- Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain; Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red Cardiovascular, CIBERCV, 28029 Madrid, Spain
| | - Arantzazu Alfranca
- Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - María Ángeles Muñoz-Fernández
- Immunology Section, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Maria J Buzón
- Infectious Diseases Department, Institut de Recerca Hospital Univesritari Vall d'Hebrón (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Enrique Martín-Gayo
- Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain; Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red Infecciosas, CIBERINF, 28029 Madrid, Spain.
| |
Collapse
|
48
|
Song J, Yi X, Gao R, Sun L, Wu Z, Zhang S, Huang L, Han C, Ma J. Impact of Drp1-Mediated Mitochondrial Dynamics on T Cell Immune Modulation. Front Immunol 2022; 13:873834. [PMID: 35432303 PMCID: PMC9008543 DOI: 10.3389/fimmu.2022.873834] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, various breakthroughs have been made in tumor immunotherapy that have contributed to prolonging the survival of tumor patients. However, only a subset of patients respond to immunotherapy, which limits its use. One reason for this is that the tumor microenvironment (TME) hinders the migration and infiltration of T cells and affects their continuous functioning, resulting in an exhausted phenotype. Therefore, clarifying the mechanism by which T cells become exhausted is of significance for improving the efficacy of immunotherapy. Several recent studies have shown that mitochondrial dynamics play an important role in the immune surveillance function of T cells. Dynamin-related protein 1 (Drp1) is a key protein that mediates mitochondrial fission and maintains the mitochondrial dynamic network. Drp1 regulates various activities of T cells in vivo by mediating the activation of a series of pathways. In addition, abnormal mitochondrial dynamics were observed in exhausted T cells in the TME. As a potential target for immunotherapy, in this review, we describe in detail how Drp1 regulates various physiological functions of T cells and induces changes in mitochondrial dynamics in the TME, providing a theoretical basis for further research.
Collapse
Affiliation(s)
- Jun Song
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaofang Yi
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ruolin Gao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Li Sun
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhixuan Wu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuling Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Letian Huang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chengbo Han
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jietao Ma
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
49
|
Wang XY, Wei Y, Hu B, Liao Y, Wang X, Wan WH, Huang CX, Mahabati M, Liu ZY, Qu JR, Chen XD, Chen DP, Kuang DM, Wang XH, Chen Y. c-Myc-driven glycolysis polarizes functional regulatory B cells that trigger pathogenic inflammatory responses. Signal Transduct Target Ther 2022; 7:105. [PMID: 35430810 PMCID: PMC9013717 DOI: 10.1038/s41392-022-00948-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 11/29/2022] Open
Abstract
B cells secreting IL-10 functionally are recognized as functional regulatory B (Breg) cells; however, direct evidence concerning the phenotype, regulation, and functional and clinical relevance of IL-10-secreting Breg cells in humans is still lacking. Here, we demonstrate that, although IL-10 itself is anti-inflammatory, IL-10+ functional Breg cells in patients with systemic lupus erythematosus (SLE) display aggressive inflammatory features; these features shift their functions away from inducing CD8+ T cell tolerance and cause them to induce a pathogenic CD4+ T cell response. Functional Breg cells polarized by environmental factors (e.g., CPG-DNA) or directly isolated from patients with SLE mainly exhibit a CD24intCD27-CD38-CD69+/hi phenotype that is different from that of their precursors. Mechanistically, MAPK/ERK/P38-elicited sequential oncogenic c-Myc upregulation and enhanced glycolysis are necessary for the generation and functional maintenance of functional Breg cells. Consistently, strategies that abrogate the activity of ERK, P38, c-Myc, and/or cell glycolysis can efficiently eliminate the pathogenic effects triggered by functional Breg cells.
Collapse
Affiliation(s)
- Xu-Yan Wang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuan Wei
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bo Hu
- Department of Laboratory Medicine, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuan Liao
- Department of Laboratory Medicine, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaodong Wang
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Wen-Hua Wan
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chun-Xiang Huang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Mahepali Mahabati
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zheng-Yu Liu
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jing-Rui Qu
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Dan Chen
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dong-Ping Chen
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dong-Ming Kuang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Xue-Hao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China.
| | - Yun Chen
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
50
|
Harada Y, Sujino T, Miyamoto K, Nomura E, Yoshimatsu Y, Tanemoto S, Umeda S, Ono K, Mikami Y, Nakamoto N, Takabayashi K, Hosoe N, Ogata H, Ikenoue T, Hirao A, Kubota Y, Kanai T. Intracellular metabolic adaptation of intraepithelial CD4+CD8αα+ T lymphocytes. iScience 2022; 25:104021. [PMID: 35313689 PMCID: PMC8933710 DOI: 10.1016/j.isci.2022.104021] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 01/28/2022] [Accepted: 03/01/2022] [Indexed: 12/22/2022] Open
Affiliation(s)
- Yosuke Harada
- Department of Gastroenterology, Keio University School of Medicine, 35, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tomohisa Sujino
- Center for Diagnostic and Therapeutic Endoscopy, Keio University Hospital, 35, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Corresponding author
| | - Kentaro Miyamoto
- Department of Gastroenterology, Keio University School of Medicine, 35, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Miyarisan Pharmaceutical Co. Ltd. Tokyo 114-0016, Japan
| | - Ena Nomura
- Department of Gastroenterology, Keio University School of Medicine, 35, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yusuke Yoshimatsu
- Department of Gastroenterology, Keio University School of Medicine, 35, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shun Tanemoto
- Department of Gastroenterology, Keio University School of Medicine, 35, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Satoko Umeda
- Department of Gastroenterology, Keio University School of Medicine, 35, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Keiko Ono
- Department of Gastroenterology, Keio University School of Medicine, 35, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yohei Mikami
- Department of Gastroenterology, Keio University School of Medicine, 35, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Nobuhiro Nakamoto
- Department of Gastroenterology, Keio University School of Medicine, 35, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kaoru Takabayashi
- Center for Diagnostic and Therapeutic Endoscopy, Keio University Hospital, 35, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Naoki Hosoe
- Center for Diagnostic and Therapeutic Endoscopy, Keio University Hospital, 35, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Haruhiko Ogata
- Center for Diagnostic and Therapeutic Endoscopy, Keio University Hospital, 35, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tuneo Ikenoue
- Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Atsushi Hirao
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Takanori Kanai
- Department of Gastroenterology, Keio University School of Medicine, 35, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Corresponding author
| |
Collapse
|