1
|
Zhang J, Zhong C, Chen L, Luo Y, Tang L, Yang J, Jia J, Xie X, Liu P, Yu J, Cui Y. Bletilla striata polysaccharide-mediated trained immunity drives the hematopoietic progenitors' expansion and myelopoiesis. Int Immunopharmacol 2025; 146:113909. [PMID: 39721454 DOI: 10.1016/j.intimp.2024.113909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/06/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Trained immunity represents a functional state of the innate immune response, characterized by enduring epigenetic reprogramming of innate immune cells. This phenomenon facilitates a sustained and advantageous reaction of myeloid cells to subsequent challenges. Bletilla striata polysaccharide (BSP) is the primary active component of Bletilla striata, mainly consisting of mannose and glucose in its chemical structure. Previous studies have demonstrated BSP's immunomodulatory properties, highlighting its effectiveness in enhancing the immune response. In the present study, we demonstrated that BSP administration induced the trained innate immunity, as evidenced by the BSP-induced generation of mature myeloid cells, especially neutrophils in the peripheral circulation in amouse model of chemotherapy-induced myelosuppression. Furthermore, we showed that BSP-induced trained immunity acts at the level of hematopoietic stem and progenitor cells (HSPCs) and induces the expansion of HSPCs. Mechanistically, our study demonstrated that BSP induced the activation of Notch signaling in HSPCs, and Notch signaling is indispensable for the BSP-mediated generation of trained HSPCs. Collectively, our data demonstrated for the first time that BSP induced trained immunity by regulating theexpansion of the myeloid progenitors. Harnessing trained immunity could be a promising strategy for protection from chemotherapy-induced myelosuppression.
Collapse
Affiliation(s)
- Jiangtao Zhang
- Centre for Translational Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China; Jiangxi Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Vascular Remodeling Diseases, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Chao Zhong
- Centre for Translational Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China; Jiangxi Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Vascular Remodeling Diseases, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Lanying Chen
- National Pharmaceutical Engineering Center for Solid Preparation of Chinese Herb Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Yingying Luo
- National Pharmaceutical Engineering Center for Solid Preparation of Chinese Herb Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China; Department of Cardiovascular Sciences and Centre for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Le Tang
- Centre for Translational Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China; Jiangxi Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Vascular Remodeling Diseases, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Jing Yang
- Centre for Translational Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China; Jiangxi Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Vascular Remodeling Diseases, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Jing Jia
- National Pharmaceutical Engineering Center for Solid Preparation of Chinese Herb Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Xinxu Xie
- National Pharmaceutical Engineering Center for Solid Preparation of Chinese Herb Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Peng Liu
- National Pharmaceutical Engineering Center for Solid Preparation of Chinese Herb Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Jun Yu
- Department of Cardiovascular Sciences and Centre for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Yaru Cui
- Jiangxi Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Vascular Remodeling Diseases, Jiangxi University of Chinese Medicine, Nanchang 330006, China; National Pharmaceutical Engineering Center for Solid Preparation of Chinese Herb Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China; Department of Cardiovascular Sciences and Centre for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
2
|
Linghu D, Zhu Z, Zhang D, Luo Y, Ma J, Li T, Sun Z, Xie Z, Sun J, Cao C. Diethylhexyl phthalate induces immune dysregulation and is an environmental immune disruptor. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136244. [PMID: 39442302 DOI: 10.1016/j.jhazmat.2024.136244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/12/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
Diethylhexyl phthalate (DEHP) is the most abundant phthalate compound in the environment, and has been linked with multiple human diseases. The immune system is closely associated with the occurrence and progression of various diseases. However, minimal research has addressed the impact of DEHP on the immune system. In this study, single-cell RNA sequencing was performed using spleen tissue of mice to comprehensively determine alterations of the immune system in response to DEHP. The results showed that DEHP exposure reduced the absolute number of peripheral white blood cells (WBCs), including lymphocytes, monocytes, eosinophils, basophils, and neutrophils in mice. In addition, scRNA-seq analyses showed that inflammatory signaling and the expression of heat shock proteins (HSPs) were reduced in all peripheral immune cell populations. Furthermore, we established a mice cecal ligation and puncture (CLP) model, and showed that DEHP exacerbated sepsis-induced immunosuppression and organ damage. These results suggest that DEHP is an environmental immune disruptor that undermines the immune system, exacerbating acute infections and organ damage. Our findings offer a novel perspective on the hazards of DEHP to human health.
Collapse
Affiliation(s)
- Dongli Linghu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Zhenru Zhu
- Pingshan Hospital, Southern Medical University, Shenzhen, Guangdong, PR China; Pingshan District Peoples' Hospital of Shenzhen, Shenzhen, Guangdong, PR China
| | - Dongyan Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Yongyi Luo
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Jing Ma
- Information Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Tao Li
- Medical Department, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Zhichao Sun
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Zheng Xie
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Jingyuan Sun
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China.
| | - Chuanhui Cao
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases, Guangzhou, Guangdong, PR China.
| |
Collapse
|
3
|
Johnson RM, Galicia KE, Wang H, Gonzalez R, Choudhry M, Kubasiak JC. BURN INJURY RESULTS IN MYELOID PRIMING DURING EMERGENCY HEMATOPOIESIS. Shock 2024; 62:783-789. [PMID: 39186762 DOI: 10.1097/shk.0000000000002458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
ABSTRACT Introduction: Hematopoiesis proceeds in a tiered pattern of differentiation, beginning with hematopoietic stem cells (HSC) and culminating in erythroid, myeloid, and lymphoid lineages. Pathologically altered lineage commitment can result in inadequate leukocyte production or dysfunctional cell lines. Drivers of emergency hematopoiesis after burn injury are inadequately defined. Burn injury induces a myeloid predominance associated with infection that worsens outcomes. This study aims to further profile bone marrow HSCs following burn injury in a murine model. Methods: C57BL/6 mice received burn or sham injury with ~12% total body surface area scald burn on the dorsal surface with subsequent sacrifice at 1, 2, 3, 7, and 10 days postinjury. Bone marrow from hindlimbs was analyzed for HSC populations via flow cytometry and analyzed using FlowJo Software (version 10.6). Event counts and frequencies were analyzed with multiple unpaired t tests and linear mixed-effect regression. Real-time polymerase chain reaction performed on isolated lineage-negative bone marrow cell RNA targeted PU.1, GATA-1, and GATA-3 with subsequent analysis conducted with QuantStudio 3 software. Statistical analysis and representation were performed on GraphPad software (Prism). Results: Flow cytometry revealed significantly elevated proportions of long-term HSCs at 3 days post-injury ( P < 0.05) and short-term HSCs at days 2, 3, and 10 (all P < 0.05) in burn-injured mice. There was a sustained, but not significant, increase in proportions in the multipotent progenitor (MPP) 2 and 3 subpopulations in the burn cohort compared to sham controls. The common myeloid progenitor (CMP) proportion was significantly higher on days 3 and 10 (both P < 0.01), whereas the granulocyte-macrophage progenitor (GMP) proportion increased on days 1, 2, and 10 ( P < 0.05, P < 0.01, P < 0.01, respectively). Although the megakaryocyte-erythrocyte progenitor (MEP) proportion appeared consistently lower in the burn cohort, this did not reach significance. mRNA analysis resulted in a downregulation of PU.1 on day 1 ( P = 0.0002) with an upregulation by day 7 ( P < 0.01). GATA-1 downregulation occurred by day 7 ( P < 0.05), and GATA3 showed downregulation on days 3 and 7 ( P < 0.05). Discussion: Full-thickness burn results in an emergency hematopoiesis via proportional increase of long-term HSC and short-term HSC/MPP1 subpopulations beginning in the early postinjury period. Subsequent lineage commitment displays a myeloid predominance with a shift toward myeloid progenitors with mRNA analysis corroborating this finding with associated upregulation of PU.1 and downregulation of GATA-1 and GATA-3. Further studies are needed to understand how burn-induced emergency hematopoiesis may predispose to infection by pathologic lineage selection.
Collapse
Affiliation(s)
| | | | - Huashan Wang
- Burn and Shock Trauma Research Institute, Loyola University Chicago, Maywood, Illinois
| | | | - Mashkoor Choudhry
- Burn and Shock Trauma Research Institute, Loyola University Chicago, Maywood, Illinois
| | | |
Collapse
|
4
|
Amason ME, Beatty CJ, Harvest CK, Saban DR, Miao EA. Chemokine expression profile of an innate granuloma. eLife 2024; 13:RP96425. [PMID: 39541153 PMCID: PMC11563579 DOI: 10.7554/elife.96425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Granulomas are defined by the presence of organized layers of immune cells that include macrophages. Granulomas are often characterized as a way for the immune system to contain an infection and prevent its dissemination. We recently established a mouse infection model where Chromobacterium violaceum induces the innate immune system to form granulomas in the liver. This response successfully eradicates the bacteria and returns the liver to homeostasis. Here, we sought to characterize the chemokines involved in directing immune cells to form the distinct layers of a granuloma. We use spatial transcriptomics to investigate the spatial and temporal expression of all CC and CXC chemokines and their receptors within this granuloma response. The expression profiles change dynamically over space and time as the granuloma matures and then resolves. To investigate the importance of monocyte-derived macrophages in this immune response, we studied the role of CCR2 during C. violaceum infection. Ccr2-/- mice had negligible numbers of macrophages, but large numbers of neutrophils, in the C. violaceum-infected lesions. In addition, lesions had abnormal architecture resulting in loss of bacterial containment. Without CCR2, bacteria disseminated and the mice succumbed to the infection. This indicates that macrophages are critical to form a successful innate granuloma in response to C. violaceum.
Collapse
Affiliation(s)
- Megan E Amason
- Department of Integrative Immunobiology, Duke University School of MedicineDurhamUnited States
- Department of Ophthalmology, Duke University School of MedicineDurhamUnited States
- Department of Molecular Genetics and Microbiology, Duke University School of MedicineDurhamUnited States
- Department of Microbiology and Immunology, University of North Carolina at Chapel HillChapel HillUnited States
- Department of Pathology, Duke University School of MedicineDurhamUnited States
| | - Cole J Beatty
- Department of Integrative Immunobiology, Duke University School of MedicineDurhamUnited States
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
| | - Carissa K Harvest
- Department of Integrative Immunobiology, Duke University School of MedicineDurhamUnited States
- Department of Ophthalmology, Duke University School of MedicineDurhamUnited States
- Department of Molecular Genetics and Microbiology, Duke University School of MedicineDurhamUnited States
- Department of Microbiology and Immunology, University of North Carolina at Chapel HillChapel HillUnited States
- Department of Pathology, Duke University School of MedicineDurhamUnited States
| | - Daniel R Saban
- Department of Integrative Immunobiology, Duke University School of MedicineDurhamUnited States
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
| | - Edward A Miao
- Department of Integrative Immunobiology, Duke University School of MedicineDurhamUnited States
- Department of Ophthalmology, Duke University School of MedicineDurhamUnited States
- Department of Microbiology and Immunology, University of North Carolina at Chapel HillChapel HillUnited States
- Department of Pathology, Duke University School of MedicineDurhamUnited States
| |
Collapse
|
5
|
Yang S, Luo T, Liu H, Chen L, Wang J, Zhao Y, Li X, Li H, Li M, Lu L. Klrb1 Loss Promotes Chronic Hepatic Inflammation and Metabolic Dysregulation. Genes (Basel) 2024; 15:1444. [PMID: 39596644 PMCID: PMC11594155 DOI: 10.3390/genes15111444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: CD161, encoded by the KLRB1 gene, is an inhibitory receptor expresses on various immune cell and has gained attention in immune checkpoint research. In recent studies, KLRB1 has been found to be one of the potential markers of liver diseases such as cirrhosis. Therefore, it will be important to understand what process KLRB1 involved in the liver for the prevention of liver diseases. Methods: We compared KO mice with wild-type controls by routine blood analysis and RNA-seq, and additionally performed H&E staining and qPCR to validate the differentially expressed genes (DEGs). Results:KO mice had fewer lymphocytes compared to the wild-type mice. A transcriptomic analysis showed that Klrb1 loss causes the upregulation of immune-related genes and pathways like NOD-like receptor and p53 signaling, while causing the downregulation of lipid metabolism-related genes. A protein interaction analysis indicated a potential cancer risk under chronic inflammation. Histological examination with H&E staining reveals an inflammatory response around the central venous vessels in the liver tissue of the KO mice. Conclusions: We conclude that Klrb1 knockout disrupts the immune and metabolic functions in the liver, which may possibly lead to chronic inflammation and malignancy risks. These findings highlight the role of Klrb1 in hepatic health.
Collapse
Affiliation(s)
- Shuqi Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 610000, China; (S.Y.); (T.L.); (H.L.); (X.L.); (H.L.)
| | - Tingting Luo
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 610000, China; (S.Y.); (T.L.); (H.L.); (X.L.); (H.L.)
| | - Haoran Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 610000, China; (S.Y.); (T.L.); (H.L.); (X.L.); (H.L.)
| | - Li Chen
- Department of Pig Production, Chongqing Academy of Animal Science, Chongqing 400000, China; (L.C.); (J.W.)
| | - Jinyong Wang
- Department of Pig Production, Chongqing Academy of Animal Science, Chongqing 400000, China; (L.C.); (J.W.)
| | - Yongju Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400000, China;
| | - Xuemin Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 610000, China; (S.Y.); (T.L.); (H.L.); (X.L.); (H.L.)
| | - Haohuan Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 610000, China; (S.Y.); (T.L.); (H.L.); (X.L.); (H.L.)
| | - Mingzhou Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 610000, China; (S.Y.); (T.L.); (H.L.); (X.L.); (H.L.)
| | - Lu Lu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 610000, China; (S.Y.); (T.L.); (H.L.); (X.L.); (H.L.)
- Department of Pig Production, Chongqing Academy of Animal Science, Chongqing 400000, China; (L.C.); (J.W.)
- College of Animal Science and Technology, Southwest University, Chongqing 400000, China;
| |
Collapse
|
6
|
Nayak TK, Parasania D, Tilley DG. Adrenergic orchestration of immune cell dynamics in response to cardiac stress. J Mol Cell Cardiol 2024; 196:115-124. [PMID: 39303854 DOI: 10.1016/j.yjmcc.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Immune cells contribute approximately 5-10 % of the heart's total cell population, including several myeloid cell and lymphocyte cell subsets, which, despite their relatively small percentages, play important roles in cardiac homeostasis and remodeling responses to various forms of injury and long-term stress. Pathological cardiac stress activates the sympathetic nervous system (SNS), resulting in the release of the catecholamines epinephrine and norepinephrine either systemically or from sympathetic nerve terminals within various lymphoid organs. Acting at α- or β-adrenergic receptors (αAR, βAR), catecholamines regulate immune cell hematopoiesis, egress and migration in response to stress. Classically, αAR stimulation tends to promote inflammatory responses while βAR stimulation has typically been shown to be immunosuppressive, though the effects can be nuanced depending on the immune cells subtype, the site of regulation and pathophysiological context. Herein, we will discuss several facets of SNS-mediated regulation of immune cells and their response to cardiac stress, including: catecholamine response to cardiovascular stress and action at their receptors, adrenergic regulation of hematopoiesis, immune cell retention and release from the bone marrow, adrenergic regulation of splenic immune cells and their retention, as well as adrenergic regulation of immune cell recruitment to the injured heart, including neutrophils, monocytes and macrophages. A particular focus will be given to βAR-mediated effects on myeloid cells in response to acute or chronic cardiac stress.
Collapse
Affiliation(s)
- Tapas K Nayak
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Dev Parasania
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Douglas G Tilley
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
7
|
Lavillegrand JR, Al-Rifai R, Thietart S, Guyon T, Vandestienne M, Cohen R, Duval V, Zhong X, Yen D, Ozturk M, Negishi Y, Konkel J, Pinteaux E, Lenoir O, Vilar J, Laurans L, Esposito B, Bredon M, Sokol H, Diedisheim M, Saliba AE, Zernecke A, Cochain C, Haub J, Tedgui A, Speck NA, Taleb S, Mhlanga MM, Schlitzer A, Riksen NP, Ait-Oufella H. Alternating high-fat diet enhances atherosclerosis by neutrophil reprogramming. Nature 2024; 634:447-456. [PMID: 39232165 DOI: 10.1038/s41586-024-07693-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/07/2024] [Indexed: 09/06/2024]
Abstract
Systemic immune responses caused by chronic hypercholesterolaemia contribute to atherosclerosis initiation, progression and complications1. However, individuals often change their dietary habits over time2, and the effects of an alternating high-fat diet (HFD) on atherosclerosis remain unclear. Here, to address this relevant issue, we developed a protocol using atherosclerosis-prone mice to compare an alternating versus continuous HFD while maintaining similar overall exposure periods. We found that an alternating HFD accelerated atherosclerosis in Ldlr-/- and Apoe-/- mice compared with a continuous HFD. This pro-atherogenic effect of the alternating HFD was also observed in Apoe-/-Rag2-/- mice lacking T, B and natural killer T cells, ruling out the role of the adaptive immune system in the observed phenotype. Discontinuing the HFD in the alternating HFD group downregulated RUNX13, promoting inflammatory signalling in bone marrow myeloid progenitors. After re-exposure to an HFD, these cells produced IL-1β, leading to emergency myelopoiesis and increased neutrophil levels in blood. Neutrophils infiltrated plaques and released neutrophil extracellular traps, exacerbating atherosclerosis. Specific depletion of neutrophils or inhibition of IL-1β pathways abolished emergency myelopoiesis and reversed the pro-atherogenic effects of the alternating HFD. This study highlights the role of IL-1β-dependent neutrophil progenitor reprogramming in accelerated atherosclerosis induced by alternating HFD.
Collapse
Affiliation(s)
| | - Rida Al-Rifai
- Paris Cardiovascular Research Center, Université Paris Cité, INSERM U970, Paris, France
| | - Sara Thietart
- Paris Cardiovascular Research Center, Université Paris Cité, INSERM U970, Paris, France
- Geriatrics Department, Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié Salpêtrière, Paris, France
| | - Théo Guyon
- Paris Cardiovascular Research Center, Université Paris Cité, INSERM U970, Paris, France
| | - Marie Vandestienne
- Paris Cardiovascular Research Center, Université Paris Cité, INSERM U970, Paris, France
- Quantitative Systems Biology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Raphael Cohen
- Paris Cardiovascular Research Center, Université Paris Cité, INSERM U970, Paris, France
| | - Vincent Duval
- Paris Cardiovascular Research Center, Université Paris Cité, INSERM U970, Paris, France
| | - Xiaodan Zhong
- Paris Cardiovascular Research Center, Université Paris Cité, INSERM U970, Paris, France
| | - Daniel Yen
- Department of Cell and Developmental Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mumin Ozturk
- Department of Cell Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University FNWI, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yutaka Negishi
- Department of Cell Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University FNWI, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joanne Konkel
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Emmanuel Pinteaux
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Olivia Lenoir
- Paris Cardiovascular Research Center, Université Paris Cité, INSERM U970, Paris, France
| | - Jose Vilar
- Paris Cardiovascular Research Center, Université Paris Cité, INSERM U970, Paris, France
| | - Ludivine Laurans
- Paris Cardiovascular Research Center, Université Paris Cité, INSERM U970, Paris, France
| | - Bruno Esposito
- Paris Cardiovascular Research Center, Université Paris Cité, INSERM U970, Paris, France
| | - Marius Bredon
- Gastroenterology Department, Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Paris, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Harry Sokol
- Gastroenterology Department, Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Paris, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
- INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Marc Diedisheim
- Clinique Saint Gatien Alliance (NCT+), Saint-Cyr-sur-Loire, France
- IMMEDIAB Laboratory, INSERM U1151, Necker Enfants Malades (INEM), Paris, France
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
| | - Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Wuerzburg, Würzburg, Germany
| | - Clément Cochain
- Institute of Experimental Biomedicine, University Hospital Wuerzburg, Würzburg, Germany
| | - Jessica Haub
- Quantitative Systems Biology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Alain Tedgui
- Paris Cardiovascular Research Center, Université Paris Cité, INSERM U970, Paris, France
| | - Nancy A Speck
- Department of Cell and Developmental Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Soraya Taleb
- Paris Cardiovascular Research Center, Université Paris Cité, INSERM U970, Paris, France
| | - Musa M Mhlanga
- Department of Cell Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University FNWI, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Andreas Schlitzer
- Quantitative Systems Biology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Hafid Ait-Oufella
- Paris Cardiovascular Research Center, Université Paris Cité, INSERM U970, Paris, France.
- Medical Intensive Care Unit, Hôpital Saint-Antoine, AP-HP, Sorbonne Université, Paris, France.
| |
Collapse
|
8
|
Tsakiris DA, Gavriilaki E, Chanou I, Meyer SC. Hemostasis and complement in allogeneic hematopoietic stem cell transplantation: clinical significance of two interactive systems. Bone Marrow Transplant 2024; 59:1349-1359. [PMID: 39004655 PMCID: PMC11452340 DOI: 10.1038/s41409-024-02362-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024]
Abstract
Hematopoietic stem cell transplantation (HCT) represents a curative treatment option for certain malignant and nonmalignant hematological diseases. Conditioning regimens before HCT, the development of graft-versus-host disease (GVHD) in the allogeneic setting, and delayed immune reconstitution contribute to early and late complications by inducing tissue damage or humoral alterations. Hemostasis and/or the complement system are biological regulatory defense systems involving humoral and cellular reactions and are variably involved in these complications after allogeneic HCT. The hemostasis and complement systems have multiple interactions, which have been described both under physiological and pathological conditions. They share common tissue targets, such as the endothelium, which suggests interactions in the pathogenesis of several serious complications in the early or late phase after HCT. Complications in which both systems interfere with each other and thus contribute to disease pathogenesis include transplant-associated thrombotic microangiopathy (HSCT-TMA), sinusoidal obstruction syndrome/veno-occlusive disease (SOS/VOD), and GVHD. Here, we review the current knowledge on changes in hemostasis and complement after allogeneic HCT and how these changes may define clinical impact.
Collapse
Affiliation(s)
| | - Eleni Gavriilaki
- Second Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioanna Chanou
- Department of Biomedical Sciences, School of Health Sciences, International Hellenic University, Thessaloniki, Greece
| | - Sara C Meyer
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
9
|
Wu P, Zhang Q, Xu X, He S, Liu Z, Li Y, Guo R. Primary infection enhances neutrophil-mediated host defense by educating HSPCs. Int Immunopharmacol 2024; 137:112382. [PMID: 38875995 DOI: 10.1016/j.intimp.2024.112382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/19/2024] [Accepted: 05/29/2024] [Indexed: 06/16/2024]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) can give rise to all kinds of immune cells including neutrophils. Neutrophils are the first line of defense in the innate immune system with a short lifespan, due to which it is well-accepted that neutrophils have no immune memory. However, recent reports showed that the changes in HSPCs induced by primary stimulation could last a long time, which contributes to enhancing response to subsequent infection by generating more monocytes or macrophages equipped with stronger anti-bacterial function. Here, we used the reinfection mice model to reveal that primary infection could improve neutrophil-mediated host defense by training neutrophil progenitors in mammals, providing a new idea to enhance neutrophil number and improve neutrophil functions, which is pretty pivotal for patients with compromised or disordered immunity.
Collapse
Affiliation(s)
- Peng Wu
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Qingyu Zhang
- Department of Oncology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou 450053, Henan, China
| | - Xianqun Xu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Songjiang He
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zheming Liu
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Yirong Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Rongxia Guo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Wuhan University Shenzhen Research Institute, Shenzhen 518000, China.
| |
Collapse
|
10
|
Shahbaz S, Rosero EP, Syed H, Hnatiuk M, Bozorgmehr N, Rahmati A, Zia S, Plemel J, Osman M, Elahi S. Bipotential B-neutrophil progenitors are present in human and mouse bone marrow and emerge in the periphery upon stress hematopoiesis. mBio 2024; 15:e0159924. [PMID: 39012145 PMCID: PMC11323571 DOI: 10.1128/mbio.01599-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/30/2024] [Indexed: 07/17/2024] Open
Abstract
Hematopoiesis is a tightly regulated process that gets skewed toward myelopoiesis. This restrains lymphopoiesis, but the role of lymphocytes in this process is not well defined. To unravel the intricacies of neutrophil responses in COVID-19, we performed bulk RNAseq on neutrophils from healthy controls and COVID-19 patients. Principal component analysis revealed distinguishing neutrophil gene expression alterations in COVID-19 patients. ICU and ward patients displayed substantial transcriptional changes, with ICU patients exhibiting a more pronounced response. Intriguingly, neutrophils from COVID-19 patients, notably ICU patients, exhibited an enrichment of immunoglobulin (Ig) and B cell lineage-associated genes, suggesting potential lineage plasticity. We validated our RNAseq findings in a larger cohort. Moreover, by reanalyzing single-cell RNA sequencing (scRNAseq) data on human bone marrow (BM) granulocytes, we identified the cluster of granulocyte-monocyte progenitors (GMP) enriched with Ig and B cell lineage-associated genes. These cells with lineage plasticity may serve as a resource depending on the host's needs during severe systemic infection. This distinct B cell subset may play a pivotal role in promoting myelopoiesis in response to infection. The scRNAseq analysis of BM neutrophils in infected mice further supported our observations in humans. Finally, our studies using an animal model of acute infection implicate IL-7/GM-CSF in influencing neutrophil and B cell dynamics. Elevated GM-CSF and reduced IL-7 receptor expression in COVID-19 patients imply altered hematopoiesis favoring myeloid cells over B cells. Our findings provide novel insights into the relationship between the B-neutrophil lineages during severe infection, hinting at potential implications for disease pathogenesis. IMPORTANCE This study investigates the dynamics of hematopoiesis in COVID-19, focusing on neutrophil responses. Through RNA sequencing of neutrophils from healthy controls and COVID-19 patients, distinct gene expression alterations are identified, particularly in ICU patients. Notably, neutrophils from COVID-19 patients, especially in the ICU, exhibit enrichment of immunoglobulin and B cell lineage-associated genes, suggesting potential lineage plasticity. Validation in a larger patient cohort and single-cell analysis of bone marrow granulocytes support the presence of granulocyte-monocyte progenitors with B cell lineage-associated genes. The findings propose a link between B-neutrophil lineages during severe infection, implicating a potential role for these cells in altered hematopoiesis favoring myeloid cells over B cells. Elevated GM-CSF and reduced IL-7 receptor expression in stress hematopoiesis suggest cytokine involvement in these dynamics, providing novel insights into disease pathogenesis.
Collapse
Affiliation(s)
- Shima Shahbaz
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, Canada
| | - Eliana Perez Rosero
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, Canada
| | - Hussain Syed
- Department of Medicine, Division of Gastroenterology, University of Alberta, Edmonton, Canada
| | - Mark Hnatiuk
- Division of Hematology, University of Alberta, Edmonton, Canada
| | - Najmeh Bozorgmehr
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, Canada
| | - Amirhossein Rahmati
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, Canada
| | - Sameera Zia
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Jason Plemel
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | - Mohammed Osman
- Department of Medicine, Division of Rheumatology, University of Alberta, Edmonton, Canada
| | - Shokrollah Elahi
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Canada
- Glycomics Institute of Alberta, University of Alberta, Edmonton, Canada
- Women and Children Health Research Institute, University of Alberta, Edmonton, Canada
| |
Collapse
|
11
|
Ruiz Pérez M, Maueröder C, Steels W, Verstraeten B, Lameire S, Xie W, Wyckaert L, Huysentruyt J, Divert T, Roelandt R, Gonçalves A, De Rycke R, Ravichandran K, Lambrecht BN, Taghon T, Leclercq G, Vandenabeele P, Tougaard P. TL1A and IL-18 synergy promotes GM-CSF-dependent thymic granulopoiesis in mice. Cell Mol Immunol 2024; 21:807-825. [PMID: 38839915 PMCID: PMC11291760 DOI: 10.1038/s41423-024-01180-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/27/2024] [Indexed: 06/07/2024] Open
Abstract
Acute systemic inflammation critically alters the function of the immune system, often promoting myelopoiesis at the expense of lymphopoiesis. In the thymus, systemic inflammation results in acute thymic atrophy and, consequently, impaired T-lymphopoiesis. The mechanism by which systemic inflammation impacts the thymus beyond suppressing T-cell development is still unclear. Here, we describe how the synergism between TL1A and IL-18 suppresses T-lymphopoiesis to promote thymic myelopoiesis. The protein levels of these two cytokines were elevated in the thymus during viral-induced thymus atrophy infection with murine cytomegalovirus (MCMV) or pneumonia virus of mice (PVM). In vivo administration of TL1A and IL-18 induced acute thymic atrophy, while thymic neutrophils expanded. Fate mapping with Ms4a3-Cre mice demonstrated that thymic neutrophils emerge from thymic granulocyte-monocyte progenitors (GMPs), while Rag1-Cre fate mapping revealed a common developmental path with lymphocytes. These effects could be modeled ex vivo using neonatal thymic organ cultures (NTOCs), where TL1A and IL-18 synergistically enhanced neutrophil production and egress. NOTCH blockade by the LY411575 inhibitor increased the number of neutrophils in the culture, indicating that NOTCH restricted steady-state thymic granulopoiesis. To promote myelopoiesis, TL1A, and IL-18 synergistically increased GM-CSF levels in the NTOC, which was mainly produced by thymic ILC1s. In support, TL1A- and IL-18-induced granulopoiesis was completely prevented in NTOCs derived from Csf2rb-/- mice and by GM-CSFR antibody blockade, revealing that GM-CSF is the essential factor driving thymic granulopoiesis. Taken together, our findings reveal that TL1A and IL-18 synergism induce acute thymus atrophy while promoting extramedullary thymic granulopoiesis in a NOTCH and GM-CSF-controlled manner.
Collapse
Affiliation(s)
- Mario Ruiz Pérez
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Christian Maueröder
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cell Clearance in Health and Disease Lab, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
| | - Wolf Steels
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Bruno Verstraeten
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sahine Lameire
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Wei Xie
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Laura Wyckaert
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jelle Huysentruyt
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Tatyana Divert
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Ria Roelandt
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- VIB Single Cell Facility, Flanders Institute for Biotechnology, Ghent, Belgium
| | - Amanda Gonçalves
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB BioImaging Core, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, 9052, Belgium
| | - Riet De Rycke
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB BioImaging Core, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, 9052, Belgium
| | - Kodi Ravichandran
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cell Clearance in Health and Disease Lab, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Tom Taghon
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Georges Leclercq
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Peter Vandenabeele
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| | - Peter Tougaard
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
12
|
Geng T, Yang D, Lin T, Harrison AG, Wang B, Cao Z, Torrance B, Fan Z, Wang K, Wang Y, Yang L, Haynes L, Cheng G, Vella AT, Flavell RA, Pereira JP, Fikrig E, Wang P. UBXN3B is crucial for B lymphopoiesis. EBioMedicine 2024; 106:105248. [PMID: 39018756 PMCID: PMC11287013 DOI: 10.1016/j.ebiom.2024.105248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/29/2024] [Accepted: 07/02/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND The ubiquitin regulatory X (UBX) domain-containing proteins (UBXNs) are putative adaptors for ubiquitin ligases and valosin-containing protein; however, their in vivo physiological functions remain poorly characterised. We recently showed that UBXN3B is essential for activating innate immunity to DNA viruses and controlling DNA/RNA virus infection. Herein, we investigate its role in adaptive immunity. METHODS We evaluated the antibody responses to multiple viruses and pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza in tamoxifen-inducible global and constitutive B cell-specific Ubxn3b knockout mice; quantified various immune populations, B lineage progenitors/precursors, B cell receptor (BCR) signalling and apoptosis by flow cytometry, immunoblotting and immunofluorescence microscopy. We also performed bone marrow transfer, single-cell and bulk RNA sequencing. FINDINGS Both global and B cell-specific Ubxn3b knockout mice present a marked reduction in small precursor B-II (>60%), immature (>70%) and mature B (>95%) cell numbers. Transfer of wildtype bone marrow to irradiated global Ubxn3b knockouts restores normal B lymphopoiesis, while reverse transplantation does not. The mature B population shrinks rapidly with apoptosis and higher pro and activated caspase-3 protein levels were observed following induction of Ubxn3b knockout. Mechanistically, Ubxn3b deficiency leads to impaired pre-BCR signalling and cell cycle arrest. Ubxn3b knockout mice are highly vulnerable to respiratory viruses, with increased viral loads and prolonged immunopathology in the lung, and reduced production of virus-specific IgM/IgG. INTERPRETATION UBXN3B is essential for B lymphopoiesis by maintaining constitutive pre-BCR signalling and cell survival in a cell-intrinsic manner. FUNDING United States National Institutes of Health grants, R01AI132526 and R21AI155820.
Collapse
Affiliation(s)
- Tingting Geng
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Duomeng Yang
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Tao Lin
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Andrew G Harrison
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Binsheng Wang
- Center on Aging and Department of Genetics and Genome Sciences, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Ziming Cao
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Blake Torrance
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Kepeng Wang
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Yanlin Wang
- Department of Medicine, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Long Yang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Laura Haynes
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Gong Cheng
- Department of Basic Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Anthony T Vella
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Joao P Pereira
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Penghua Wang
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA.
| |
Collapse
|
13
|
Quintana‐Castanedo L, Sánchez‐Ramón S, Maseda R, Illera N, Pérez‐Conde I, Molero‐Luis M, Butta N, Arias‐Salgado EG, Monzón‐Manzano E, Zuluaga P, Martínez‐Santamaría L, Fernández‐Arquero M, Llames SG, Meana Á, de Lucas R, del Río M, Vicente Á, Escámez MJ, Sacedón R. Unveiling the value of C-reactive protein as a severity biomarker and the IL4/IL13 pathway as a therapeutic target in recessive dystrophic epidermolysis bullosa: A multiparametric cross-sectional study. Exp Dermatol 2024; 33:e15146. [PMID: 39075828 PMCID: PMC11605501 DOI: 10.1111/exd.15146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/24/2024] [Accepted: 07/14/2024] [Indexed: 07/31/2024]
Abstract
Patients with recessive dystrophic epidermolysis bullosa (RDEB) experience numerous complications, which are exacerbated by inflammatory dysregulation and infection. Understanding the immunological mechanisms is crucial for selecting medications that balance inflammation control and immunocompetence. In this cross-sectional study, aiming to identify potential immunotherapeutic targets and inflammatory biomarkers, we delved into the interrelationship between clinical severity and systemic inflammatory parameters in a representative RDEB cohort. Encompassing 84 patients aged 1-67 and spanning all three Epidermolysis Bullosa Disease Activity and Scarring Index (EBDASI) severity categories, we analysed the interrelationship of infection history, standard inflammatory markers, systemic cytokines and Ig levels to elucidate their roles in RDEB pathophysiology. Our findings identify C-reactive protein as an excellent biomarker for disease severity in RDEB. A type 2 inflammatory profile prevails among moderate and severe RDEB patients, correlating with dysregulated circulating IgA and IgG. These results underscore the IL4/IL13 pathways as potential evidence-based therapeutic targets. Moreover, the complete inflammatory scenario aligns with Staphylococcus aureus virulence mechanisms. Concurrently, abnormalities in IgG, IgE and IgM levels suggest an immunodeficiency state in a substantial number of the cohort's patients. Our results provide new insights into the interplay of infection and immunological factors in the pathogenesis of RDEB.
Collapse
Affiliation(s)
- Lucía Quintana‐Castanedo
- Department of Dermatology, IdiPAZ Health Research InstituteHospital La PazMadridSpain
- Department of DermatologyMarqués de Valdecilla University HospitalSantanderSpain
| | - Silvia Sánchez‐Ramón
- Department of Immunology, IML and IdISSC Health Research InstituteHospital Clínico San CarlosMadridSpain
| | - Rocío Maseda
- Department of Dermatology, IdiPAZ Health Research InstituteHospital La PazMadridSpain
| | - Nuria Illera
- Departamento de BioingenieríaUniversidad Carlos III de MadridMadridSpain
- Centro de Investigaciones Energéticas, Medioambientales y TecnológicasMadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)‐ISCIIIMadridSpain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS‐FJD, UAM)MadridSpain
| | - Isabel Pérez‐Conde
- Department of Dermatology, IdiPAZ Health Research InstituteHospital La PazMadridSpain
| | | | - Nora Butta
- Department of Hematology and Hemotherapy, IdiPAZ Health Research InstituteHospital La PazMadridSpain
| | - Elena G. Arias‐Salgado
- Department of Hematology and Hemotherapy, IdiPAZ Health Research InstituteHospital La PazMadridSpain
| | - Elena Monzón‐Manzano
- Department of Hematology and Hemotherapy, IdiPAZ Health Research InstituteHospital La PazMadridSpain
| | - Pilar Zuluaga
- Department of Statistics and Operations ResearchFaculty of MedicineMadridSpain
| | - Lucía Martínez‐Santamaría
- Departamento de BioingenieríaUniversidad Carlos III de MadridMadridSpain
- Centro de Investigaciones Energéticas, Medioambientales y TecnológicasMadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)‐ISCIIIMadridSpain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS‐FJD, UAM)MadridSpain
| | - Miguel Fernández‐Arquero
- Department of Immunology, IML and IdISSC Health Research InstituteHospital Clínico San CarlosMadridSpain
| | - Sara G. Llames
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)‐ISCIIIMadridSpain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS‐FJD, UAM)MadridSpain
- Unidad de Ingeniería TisularCentro Comunitario Sangre y Tejidos de Asturias (CCST)OviedoSpain
- Instituto Universitario Fernández‐Vega, Fundación de Investigación Oftalmológica (FIO)OviedoSpain
| | - Álvaro Meana
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)‐ISCIIIMadridSpain
- Unidad de Ingeniería TisularCentro Comunitario Sangre y Tejidos de Asturias (CCST)OviedoSpain
- Instituto Universitario Fernández‐Vega, Fundación de Investigación Oftalmológica (FIO)OviedoSpain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)OviedoSpain
| | - Raúl de Lucas
- Department of Dermatology, IdiPAZ Health Research InstituteHospital La PazMadridSpain
| | - Marcela del Río
- Departamento de BioingenieríaUniversidad Carlos III de MadridMadridSpain
- Centro de Investigaciones Energéticas, Medioambientales y TecnológicasMadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)‐ISCIIIMadridSpain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS‐FJD, UAM)MadridSpain
| | - Ángeles Vicente
- Department of Cell Biology, Faculty of MedicineUCM, Health Research Institute of the Hospital Clínico San Carlos (IdISSC)MadridSpain
| | - María José Escámez
- Departamento de BioingenieríaUniversidad Carlos III de MadridMadridSpain
- Centro de Investigaciones Energéticas, Medioambientales y TecnológicasMadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)‐ISCIIIMadridSpain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS‐FJD, UAM)MadridSpain
| | - Rosa Sacedón
- Department of Cell Biology, Faculty of MedicineUCM, Health Research Institute of the Hospital Clínico San Carlos (IdISSC)MadridSpain
| |
Collapse
|
14
|
Zhi Y, Qiu W, Tian G, Song S, Zhao W, Du X, Sun X, Chen Y, Huang H, Li J, Yu Y, Li M, Lv G. Donor and recipient hematopoietic stem and progenitor cells mobilization in liver transplantation patients. Stem Cell Res Ther 2024; 15:231. [PMID: 39075608 PMCID: PMC11288126 DOI: 10.1186/s13287-024-03855-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Hematopoietic stem and progenitor cells (HSPCs) mobilize from bone marrow to peripheral blood in response to stress. The impact of alloresponse-induced stress on HSPCs mobilization in human liver transplantation (LTx) recipients remains under-investigated. METHODS Peripheral blood mononuclear cell (PBMC) samples were longitudinally collected from pre- to post-LTx for one year from 36 recipients with acute rejection (AR), 74 recipients without rejection (NR), and 5 recipients with graft-versus-host disease (GVHD). 28 PBMC samples from age-matched healthy donors were collected as healthy control (HC). Multi-color flow cytometry (MCFC) was used to immunophenotype HSPCs and their subpopulations. Donor recipient-distinguishable major histocompatibility complex (MHC) antibodies determined cell origin. RESULTS Before LTx, patients who developed AR after transplant contained more HSPCs in PBMC samples than HC, while the NR group patients contained fewer HSPCs than HC. After LTx, the HSPC ratio in the AR group sharply decreased and became less than HC within six months, and dropped to a comparable NR level afterward. During the one-year follow-up period, myeloid progenitors (MPs) biased differentiation was observed in all LTx recipients who were under tacrolimus-based immunosuppressive treatment. During both AR and GVHD episodes, the recipient-derived and donor-derived HSPCs mobilized into the recipient's blood-circulation and migrated to the target tissue, respectively. The HSPCs percentage in blood reduced after the disease was cured. CONCLUSIONS A preoperative high HSPC ratio in blood characterizes recipients who developed AR after LTx. Recipients exhibited a decline in blood-circulating HSPCs after transplant, the cells mobilized into the blood and migrated to target tissue during alloresponse.
Collapse
Affiliation(s)
- Yao Zhi
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Wei Qiu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Guangyao Tian
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Shifei Song
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Wenchao Zhao
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xiaodong Du
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xiaodong Sun
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yuguo Chen
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Heyu Huang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Jing Li
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Ying Yu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Mingqian Li
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
15
|
Alhaj Hussen K, Louis V, Canque B. A new model of human lymphopoiesis across development and aging. Trends Immunol 2024; 45:495-510. [PMID: 38908962 DOI: 10.1016/j.it.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/25/2024] [Accepted: 05/26/2024] [Indexed: 06/24/2024]
Abstract
Over the past decade our research has implemented a multimodal approach to human lymphopoiesis, combining clonal-scale mapping of lymphoid developmental architecture with the monitoring of dynamic changes in the pattern of lymphocyte generation across ontogeny. We propose that lymphopoiesis stems from founder populations of CD127/interleukin (IL)7R- or CD127/IL7R+ early lymphoid progenitors (ELPs) polarized respectively toward the T-natural killer (NK)/innate lymphoid cell (ILC) or B lineages, arising from newly characterized CD117lo multi-lymphoid progenitors (MLPs). Recent data on the lifelong lymphocyte dynamics of healthy donors suggest that, after birth, lymphopoiesis may become increasingly oriented toward the production of B lymphocytes. Stemming from this, we posit that there are three major developmental transitions, the first occurring during the neonatal period, the next at puberty, and the last during aging.
Collapse
Affiliation(s)
- Kutaiba Alhaj Hussen
- Service de Biochimie, Université de Paris Saclay, Hôpital Paul Brousse, AP-HP, Paris, France
| | - Valentine Louis
- INSERM 1151, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut Necker Enfants Malades (INEM), Paris, France
| | - Bruno Canque
- INSERM 1151, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut Necker Enfants Malades (INEM), Paris, France.
| |
Collapse
|
16
|
Amason ME, Beatty CJ, Harvest CK, Saban DR, Miao EA. Chemokine expression profile of an innate granuloma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.577927. [PMID: 38352492 PMCID: PMC10862903 DOI: 10.1101/2024.01.30.577927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Granulomas are defined by the presence of organized layers of immune cells that include macrophages. Granulomas are often characterized as a way for the immune system to contain an infection and prevent its dissemination. We recently established a mouse infection model where Chromobacterium violaceum induces the innate immune system to form granulomas in the liver. This response successfully eradicates the bacteria and returns the liver to homeostasis. Here, we sought to characterize the chemokines involved in directing immune cells to form the distinct layers of a granuloma. We use spatial transcriptomics to investigate the spatial and temporal expression of all CC and CXC chemokines and their receptors within this granuloma response. The expression profiles change dynamically over space and time as the granuloma matures and then resolves. To investigate the importance of monocyte-derived macrophages in this immune response, we studied the role of CCR2 during C. violaceum infection. Ccr2 -/- mice had negligible numbers of macrophages, but large numbers of neutrophils, in the C. violaceum-infected lesions. In addition, lesions had abnormal architecture resulting in loss of bacterial containment. Without CCR2, bacteria disseminated and the mice succumbed to the infection. This indicates that macrophages are critical to form a successful innate granuloma in response to C. violaceum.
Collapse
Affiliation(s)
- Megan E. Amason
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA 27710
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA 27710
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA 27599
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA 27710
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA 27710
| | - Cole J. Beatty
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA 27710
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Carissa K. Harvest
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA 27710
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA 27710
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA 27599
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA 27710
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA 27710
| | - Daniel R. Saban
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA 27710
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Edward A. Miao
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA 27710
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA 27710
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA 27710
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA 27710
| |
Collapse
|
17
|
Liu H, Sun L, Zhao H, Zhao Z, Zhang S, Jiang S, Cheng T, Wang X, Wang T, Shao Y, Zhu H, Han H, Cao Y, Jiang E, Cao Y, Xu Y. Proteinase 3 depletion attenuates leukemia by promoting myeloid differentiation. Cell Death Differ 2024; 31:697-710. [PMID: 38589495 PMCID: PMC11165011 DOI: 10.1038/s41418-024-01288-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/10/2024] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) that have impaired differentiation can transform into leukemic blasts. However, the mechanism that controls differentiation remains elusive. Here, we show that the genetic elimination of Proteinase 3 (PRTN3) in mice led to spontaneous myeloid differentiation. Mechanistically, our findings indicate that PRTN3 interacts with the N-terminal of STAT3, serving as a negative regulator of STAT3-dependent myeloid differentiation. Specifically, PRTN3 promotes STAT3 ubiquitination and degradation, while simultaneously reducing STAT3 phosphorylation and nuclear translocation during G-CSF-stimulated myeloid differentiation. Strikingly, pharmacological inhibition of STAT3 (Stattic) partially counteracted the effects of PRTN3 deficiency on myeloid differentiation. Moreover, the deficiency of PRTN3 in primary AML blasts promotes the differentiation of those cells into functional neutrophils capable of chemotaxis and phagocytosis, ultimately resulting in improved overall survival rates for recipients. These findings indicate PRTN3 exerts an inhibitory effect on STAT3-dependent myeloid differentiation and could be a promising therapeutic target for the treatment of acute myeloid leukemia.
Collapse
Affiliation(s)
- Huan Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Lu Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Hongfei Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Zihan Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Shiyue Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Shan Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Tianran Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xiaohan Wang
- The Second School of Clinical Medicine, Guangdong Medical University, Dongguan, 523808, China
| | - Tong Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Ya Shao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Haiyan Zhu
- Department of Clinical Lab, Weihai Municipal Hospital, Weihai, 264200, China
| | - Huijuan Han
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University; Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, 750001, China
| | - Yigeng Cao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Solna, 17165, Sweden.
| | - Yuanfu Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
18
|
Guillamot M, Subudhi I, Paraskevopoulou V, Prystupa A, Sidhu I, Yeaton A, Laskou M, Hannemann C, Donahoe C, Wiseman D, Aifantis I, Naik S, Weinstock A. Interferon-sensitized hematopoietic progenitors dynamically alter organismal immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590828. [PMID: 38712060 PMCID: PMC11071608 DOI: 10.1101/2024.04.24.590828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Inflammation has enduring impacts on organismal immunity. However, the precise mechanisms by which tissue-restricted inflammation conditions systemic responses are poorly understood. Here, we leveraged a highly compartmentalized model of skin inflammation and identified a surprising type I interferon (IFN)- mediated activation of hematopoietic stem/progenitor cells (HSPCs) that results in profound changes to systemic host responses. Post-inflamed mice were protected from atherosclerosis and had worse outcomes following influenza virus infection. This IFN-mediated HSPC modulation was dependent on IFNAR signaling and could be recapitulated with the administration of recombinant IFNα. Importantly, the transfer of post-inflamed HSPCs was sufficient to transmit the immune suppression phenotype. IFN modulation of HSPCs was rooted both in long-term changes in chromatin accessibility and the emergence of an IFN- responsive functional state from multiple progenitor populations. Collectively, our data reveal the profound and enduring effect of transient inflammation and more specifically type I IFN signaling and set the stage for a more nuanced understanding of HSPC functional modulation by peripheral immune signals.
Collapse
|
19
|
Ratajczak MZ, Bujko K, Brzezniakiewicz-Janus K, Ratajczak J, Kucia M. Hematopoiesis Revolves Around the Primordial Evolutional Rhythm of Purinergic Signaling and Innate Immunity - A Journey to the Developmental Roots. Stem Cell Rev Rep 2024; 20:827-838. [PMID: 38363476 PMCID: PMC10984895 DOI: 10.1007/s12015-024-10692-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2024] [Indexed: 02/17/2024]
Abstract
A cell's most significant existential task is to survive by ensuring proper metabolism, avoiding harmful stimuli, and adapting to changing environments. It explains why early evolutionary primordial signals and pathways remained active and regulate cell and tissue integrity. This requires energy supply and a balanced redox state. To meet these requirements, the universal intracellular energy transporter purine nucleotide-adenosine triphosphate (ATP) became an important signaling molecule and precursor of purinergic signaling after being released into extracellular space. Similarly, ancient proteins involved in intracellular metabolism gave rise to the third protein component (C3) of the complement cascade (ComC), a soluble arm of innate immunity. These pathways induce cytosol reactive oxygen (ROS) and reactive nitrogen species (RNS) that regulate the redox state of the cells. While low levels of ROS and RNS promote cell growth and differentiation, supra-physiological concentrations can lead to cell damage by pyroptosis. This balance explains the impact of purinergic signaling and innate immunity on cell metabolism, organogenesis, and tissue development. Subsequently, along with evolution, new regulatory cues emerge in the form of growth factors, cytokines, chemokines, and bioactive lipids. However, their expression is still modulated by both primordial signaling pathways. This review will focus on the data that purinergic signaling and innate immunity carry on their ancient developmental task in hematopoiesis and specification of hematopoietic stem/progenitor cells (HSPCs). Moreover, recent evidence shows both these regulatory pathways operate in a paracrine manner and inside HSPCs at the autocrine level.
Collapse
Affiliation(s)
- Mariusz Z Ratajczak
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland.
- Department of Hematology, University of Zielona Gora, Multi-Specialist Hospital Gorzow Wlkp., Gorzow Wielkopolski, Poland.
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA.
| | - Kamila Bujko
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
- Center for Preclinical Studies and Technology, Department of Regenerative Medicine at Medical, University of Warsaw, Warsaw, Poland
| | | | - Janina Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA
| | - Magdalena Kucia
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
- Center for Preclinical Studies and Technology, Department of Regenerative Medicine at Medical, University of Warsaw, Warsaw, Poland
| |
Collapse
|
20
|
Saluja S, Bansal I, Bhardwaj R, Beg MS, Palanichamy JK. Inflammation as a driver of hematological malignancies. Front Oncol 2024; 14:1347402. [PMID: 38571491 PMCID: PMC10987768 DOI: 10.3389/fonc.2024.1347402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
Hematopoiesis is a tightly regulated process that produces all adult blood cells and immune cells from multipotent hematopoietic stem cells (HSCs). HSCs usually remain quiescent, and in the presence of external stimuli like infection or inflammation, they undergo division and differentiation as a compensatory mechanism. Normal hematopoiesis is impacted by systemic inflammation, which causes HSCs to transition from quiescence to emergency myelopoiesis. At the molecular level, inflammatory cytokine signaling molecules such as tumor necrosis factor (TNF), interferons, interleukins, and toll-like receptors can all cause HSCs to multiply directly. These cytokines actively encourage HSC activation, proliferation, and differentiation during inflammation, which results in the generation and activation of immune cells required to combat acute injury. The bone marrow niche provides numerous soluble and stromal cell signals, which are essential for maintaining normal homeostasis and output of the bone marrow cells. Inflammatory signals also impact this bone marrow microenvironment called the HSC niche to regulate the inflammatory-induced hematopoiesis. Continuous pro-inflammatory cytokine and chemokine activation can have detrimental effects on the hematopoietic system, which can lead to cancer development, HSC depletion, and bone marrow failure. Reactive oxygen species (ROS), which damage DNA and ultimately lead to the transformation of HSCs into cancerous cells, are produced due to chronic inflammation. The biological elements of the HSC niche produce pro-inflammatory cytokines that cause clonal growth and the development of leukemic stem cells (LSCs) in hematological malignancies. The processes underlying how inflammation affects hematological malignancies are still not fully understood. In this review, we emphasize the effects of inflammation on normal hematopoiesis, the part it plays in the development and progression of hematological malignancies, and potential therapeutic applications for targeting these pathways for therapy in hematological malignancies.
Collapse
|
21
|
Swann JW, Olson OC, Passegué E. Made to order: emergency myelopoiesis and demand-adapted innate immune cell production. Nat Rev Immunol 2024:10.1038/s41577-024-00998-7. [PMID: 38467802 DOI: 10.1038/s41577-024-00998-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2024] [Indexed: 03/13/2024]
Abstract
Definitive haematopoiesis is the process by which haematopoietic stem cells, located in the bone marrow, generate all haematopoietic cell lineages in healthy adults. Although highly regulated to maintain a stable output of blood cells in health, the haematopoietic system is capable of extensive remodelling in response to external challenges, prioritizing the production of certain cell types at the expense of others. In this Review, we consider how acute insults, such as infections and cytotoxic drug-induced myeloablation, cause molecular, cellular and metabolic changes in haematopoietic stem and progenitor cells at multiple levels of the haematopoietic hierarchy to drive accelerated production of the mature myeloid cells needed to resolve the initiating insult. Moreover, we discuss how dysregulation or subversion of these emergency myelopoiesis mechanisms contributes to the progression of chronic inflammatory diseases and cancer.
Collapse
Affiliation(s)
- James W Swann
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Oakley C Olson
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Emmanuelle Passegué
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University, New York, NY, USA.
| |
Collapse
|
22
|
Healey AM, Fenner KN, O'Dell CT, Lawrence BP. Aryl hydrocarbon receptor activation alters immune cell populations in the lung and bone marrow during coronavirus infection. Am J Physiol Lung Cell Mol Physiol 2024; 326:L313-L329. [PMID: 38290163 PMCID: PMC11281796 DOI: 10.1152/ajplung.00236.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 02/01/2024] Open
Abstract
Respiratory viral infections are one of the major causes of illness and death worldwide. Symptoms associated with respiratory infections can range from mild to severe, and there is limited understanding of why there is large variation in severity. Environmental exposures are a potential causative factor. The aryl hydrocarbon receptor (AHR) is an environment-sensing molecule expressed in all immune cells. Although there is considerable evidence that AHR signaling influences immune responses to other immune challenges, including respiratory pathogens, less is known about the impact of AHR signaling on immune responses during coronavirus (CoV) infection. In this study, we report that AHR activation significantly altered immune cells in the lungs and bone marrow of mice infected with a mouse CoV. AHR activation transiently reduced the frequency of multiple cells in the mononuclear phagocyte system, including monocytes, interstitial macrophages, and dendritic cells in the lung. In the bone marrow, AHR activation altered myelopoiesis, as evidenced by a reduction in granulocyte-monocyte progenitor cells and an increased frequency of myeloid-biased progenitor cells. Moreover, AHR activation significantly affected multiple stages of the megakaryocyte lineage. Overall, these findings indicate that AHR activation modulates multiple aspects of the immune response to a CoV infection. Given the significant burden of respiratory viruses on human health, understanding how environmental exposures shape immune responses to infection advances our knowledge of factors that contribute to variability in disease severity and provides insight into novel approaches to prevent or treat disease.NEW & NOTEWORTHY Our study reveals a multifaceted role for aryl hydrocarbon receptor (AHR) signaling in the immune response to coronavirus (CoV) infection. Sustained AHR activation during in vivo mouse CoV infection altered the frequency of mature immune cells in the lung and modulated emergency hematopoiesis, specifically myelopoiesis and megakaryopoiesis, in bone marrow. This provides new insight into immunoregulation by the AHR and extends our understanding of how environmental exposures can impact host responses to respiratory viral infections.
Collapse
Affiliation(s)
- Alicia M Healey
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
| | - Kristina N Fenner
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
| | - Colleen T O'Dell
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
| | - B Paige Lawrence
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
| |
Collapse
|
23
|
Wu Q, Zhang W, Lu Y, Li H, Yang Y, Geng F, Liu J, Lin L, Pan Y, Li C. Association between periodontitis and inflammatory comorbidities: The common role of innate immune cells, underlying mechanisms and therapeutic targets. Int Immunopharmacol 2024; 128:111558. [PMID: 38266446 DOI: 10.1016/j.intimp.2024.111558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/26/2024]
Abstract
Periodontitis, which is related to various systemic diseases, is a chronic inflammatory disease caused by periodontal dysbiosis of the microbiota. Multiple factors can influence the interaction of periodontitis and associated inflammatory disorders, among which host immunity is an important contributor to this interaction. Innate immunity can be activated aberrantly because of the systemic inflammation induced by periodontitis. This aberrant activation not only exacerbates periodontal tissue damage but also impairs systemic health, triggering or aggravating inflammatory comorbidities. Therefore, innate immunity is a potential therapeutic target for periodontitis and associated inflammatory comorbidities. This review delineates analogous aberrations of innate immune cells in periodontitis and comorbid conditions such as atherosclerosis, diabetes, obesity, and rheumatoid arthritis. The mechanisms behind these changes in innate immune cells are discussed, including trained immunity and clonal hematopoiesis of indeterminate potential (CHIP), which can mediate the abnormal activation and myeloid-biased differentiation of hematopoietic stem and progenitor cells. Besides, the expansion of myeloid-derived suppressor cells (MDSCs), which have immunosuppressive and osteolytic effects on peripheral tissues, also contributes to the interaction between periodontitis and its inflammatory comorbidities. The potential treatment targets for relieving the risk of both periodontitis and systemic conditions are also elucidated, such as the modulation of innate immunity cells and mediators, the regulation of trained immunity and CHIP, as well as the inhibition of MDSCs' expansion.
Collapse
Affiliation(s)
- Qibing Wu
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China; Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Weijia Zhang
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yaqiong Lu
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China; Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Hongxia Li
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China; Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yaru Yang
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Fengxue Geng
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China; Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Jinwen Liu
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China; Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Li Lin
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yaping Pan
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Chen Li
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China; Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China.
| |
Collapse
|
24
|
Harte JV, Coleman-Vaughan C, Crowley MP, Mykytiv V. It's in the blood: a review of the hematological system in SARS-CoV-2-associated COVID-19. Crit Rev Clin Lab Sci 2023; 60:595-624. [PMID: 37439130 DOI: 10.1080/10408363.2023.2232010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023]
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to an unprecedented global healthcare crisis. While SARS-CoV-2-associated COVID-19 affects primarily the respiratory system, patients with COVID-19 frequently develop extrapulmonary manifestations. Notably, changes in the hematological system, including lymphocytopenia, neutrophilia and significant abnormalities of hemostatic markers, were observed early in the pandemic. Hematological manifestations have since been recognized as important parameters in the pathophysiology of SARS-CoV-2 and in the management of patients with COVID-19. In this narrative review, we summarize the state-of-the-art regarding the hematological and hemostatic abnormalities observed in patients with SARS-CoV-2-associated COVID-19, as well as the current understanding of the hematological system in the pathophysiology of acute and chronic SARS-CoV-2-associated COVID-19.
Collapse
Affiliation(s)
- James V Harte
- Department of Haematology, Cork University Hospital, Wilton, Cork, Ireland
- School of Biochemistry & Cell Biology, University College Cork, Cork, Ireland
| | | | - Maeve P Crowley
- Department of Haematology, Cork University Hospital, Wilton, Cork, Ireland
- Irish Network for Venous Thromboembolism Research (INViTE), Ireland
| | - Vitaliy Mykytiv
- Department of Haematology, Cork University Hospital, Wilton, Cork, Ireland
| |
Collapse
|
25
|
Kandalla PK, Subburayalu J, Cocita C, de Laval B, Tomasello E, Iacono J, Nitsche J, Canali MM, Cathou W, Bessou G, Mossadegh‐Keller N, Huber C, Mouchiroud G, Bourette RP, Grasset M, Bornhäuser M, Sarrazin S, Dalod M, Sieweke MH. M-CSF directs myeloid and NK cell differentiation to protect from CMV after hematopoietic cell transplantation. EMBO Mol Med 2023; 15:e17694. [PMID: 37635627 PMCID: PMC10630876 DOI: 10.15252/emmm.202317694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Therapies reconstituting autologous antiviral immunocompetence may represent an important prophylaxis and treatment for immunosuppressed individuals. Following hematopoietic cell transplantation (HCT), patients are susceptible to Herpesviridae including cytomegalovirus (CMV). We show in a murine model of HCT that macrophage colony-stimulating factor (M-CSF) promoted rapid antiviral activity and protection from viremia caused by murine CMV. M-CSF given at transplantation stimulated sequential myeloid and natural killer (NK) cell differentiation culminating in increased NK cell numbers, production of granzyme B and interferon-γ. This depended upon M-CSF-induced myelopoiesis leading to IL15Rα-mediated presentation of IL-15 on monocytes, augmented by type I interferons from plasmacytoid dendritic cells. Demonstrating relevance to human HCT, M-CSF induced myelomonocytic IL15Rα expression and numbers of functional NK cells in G-CSF-mobilized hematopoietic stem and progenitor cells. Together, M-CSF-induced myelopoiesis triggered an integrated differentiation of myeloid and NK cells to protect HCT recipients from CMV. Thus, our results identify a rationale for the therapeutic use of M-CSF to rapidly reconstitute antiviral activity in immunocompromised individuals, which may provide a general paradigm to boost innate antiviral immunocompetence using host-directed therapies.
Collapse
Affiliation(s)
- Prashanth K Kandalla
- Center for Regenerative Therapies Dresden (CRTD)Technical University DresdenDresdenGermany
- Aix Marseille University, CNRS, INSERMCIMLMarseilleFrance
| | - Julien Subburayalu
- Center for Regenerative Therapies Dresden (CRTD)Technical University DresdenDresdenGermany
- Department of Internal Medicine IUniversity Hospital Carl Gustav Carus DresdenDresdenGermany
| | - Clément Cocita
- Aix Marseille University, CNRS, INSERMCIMLMarseilleFrance
- Aix‐Marseille University, CNRS, INSERMCIML, Turing Center for Living SystemsMarseilleFrance
| | | | - Elena Tomasello
- Aix Marseille University, CNRS, INSERMCIMLMarseilleFrance
- Aix‐Marseille University, CNRS, INSERMCIML, Turing Center for Living SystemsMarseilleFrance
| | - Johanna Iacono
- Aix Marseille University, CNRS, INSERMCIMLMarseilleFrance
| | - Jessica Nitsche
- Center for Regenerative Therapies Dresden (CRTD)Technical University DresdenDresdenGermany
| | - Maria M Canali
- Aix Marseille University, CNRS, INSERMCIMLMarseilleFrance
| | | | - Gilles Bessou
- Aix Marseille University, CNRS, INSERMCIMLMarseilleFrance
- Aix‐Marseille University, CNRS, INSERMCIML, Turing Center for Living SystemsMarseilleFrance
| | | | - Caroline Huber
- Aix Marseille University, CNRS, INSERMCIMLMarseilleFrance
| | | | - Roland P Bourette
- CNRS, INSERM, CHU Lille, University LilleUMR9020‐U1277 ‐ CANTHER – Cancer Heterogeneity Plasticity and Resistance to TherapiesLilleFrance
| | | | - Martin Bornhäuser
- Center for Regenerative Therapies Dresden (CRTD)Technical University DresdenDresdenGermany
- Department of Internal Medicine IUniversity Hospital Carl Gustav Carus DresdenDresdenGermany
- National Center for Tumor Diseases (NCT), DresdenDresdenGermany
| | - Sandrine Sarrazin
- Center for Regenerative Therapies Dresden (CRTD)Technical University DresdenDresdenGermany
- Aix Marseille University, CNRS, INSERMCIMLMarseilleFrance
| | - Marc Dalod
- Aix Marseille University, CNRS, INSERMCIMLMarseilleFrance
- Aix‐Marseille University, CNRS, INSERMCIML, Turing Center for Living SystemsMarseilleFrance
| | - Michael H Sieweke
- Center for Regenerative Therapies Dresden (CRTD)Technical University DresdenDresdenGermany
- Aix Marseille University, CNRS, INSERMCIMLMarseilleFrance
| |
Collapse
|
26
|
Orchanian SB, Lodoen MB. Monocytes as primary defenders against Toxoplasma gondii infection. Trends Parasitol 2023; 39:837-849. [PMID: 37633758 DOI: 10.1016/j.pt.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 08/28/2023]
Abstract
Monocytes are recruited from the bone marrow to sites of infection where they release cytokines and chemokines, function in antimicrobial immunity, and differentiate into macrophages and dendritic cells to control infection. Although many studies have focused on monocyte-derived macrophages and dendritic cells, recent work has examined the unique roles of monocytes during infection to promote immune defense. We focus on the effector functions of monocytes during infection with the parasite Toxoplasma gondii, and discuss the signals that mobilize monocytes to sites of infection, their production of inflammatory cytokines and antimicrobial mediators, their ability to shape the adaptive immune response, and their immunoregulatory functions. Insights from other infections, including Plasmodium and Listeria are also included for comparison and context.
Collapse
Affiliation(s)
- Stephanie B Orchanian
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA; Institute for Immunology, University of California Irvine, Irvine, California, USA
| | - Melissa B Lodoen
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA; Institute for Immunology, University of California Irvine, Irvine, California, USA.
| |
Collapse
|
27
|
Pizzato HA, Wang Y, Wolfgang MJ, Finck BN, Patti GJ, Bhattacharya D. Mitochondrial pyruvate metabolism and glutaminolysis toggle steady-state and emergency myelopoiesis. J Exp Med 2023; 220:e20221373. [PMID: 37249600 PMCID: PMC10227646 DOI: 10.1084/jem.20221373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 03/23/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023] Open
Abstract
To define the metabolic requirements of hematopoiesis, we examined blood lineages in mice conditionally deficient in genes required for long-chain fatty acid oxidation (Cpt2), glutaminolysis (Gls), or mitochondrial pyruvate import (Mpc2). Genetic ablation of Cpt2 or Gls minimally impacted most blood lineages. In contrast, deletion of Mpc2 led to a sharp decline in mature myeloid cells and a slower reduction in T cells, whereas other hematopoietic lineages were unaffected. Yet MPC2-deficient monocytes and neutrophils rapidly recovered due to a transient and specific increase in myeloid progenitor proliferation. Competitive bone marrow chimera and stable isotope tracing experiments demonstrated that this proliferative burst was progenitor intrinsic and accompanied by a metabolic switch to glutaminolysis. Myeloid recovery after loss of MPC2 or cyclophosphamide treatment was delayed in the absence of GLS. Reciprocally, MPC2 was not required for myeloid recovery after cyclophosphamide treatment. Thus, mitochondrial pyruvate metabolism maintains myelopoiesis under steady-state conditions, while glutaminolysis in progenitors promotes emergency myelopoiesis.
Collapse
Affiliation(s)
- Hannah A. Pizzato
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA
| | - Yahui Wang
- Department of Chemistry, Washington University, Saint Louis, MO, USA
| | - Michael J. Wolfgang
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brian N. Finck
- Division of Geriatrics and Nutritional Sciences, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Gary J. Patti
- Department of Chemistry, Washington University, Saint Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
- Siteman Cancer Center, Washington University, Saint Louis, MO, USA
| | - Deepta Bhattacharya
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
28
|
Olson WJ, Derudder E. The miR-142 miRNAs: Shaping the naïve immune system. Immunol Lett 2023; 261:37-46. [PMID: 37459958 DOI: 10.1016/j.imlet.2023.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/21/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023]
Abstract
Immunity in a naïve organism is tightly controlled. Adequate proportions of the many immune cell subsets must be produced to mount efficient responses to eventual challenges. In addition, a functioning immune system is highly dynamic at steady state. Mature immune cells must be positioned properly and/or circulate to facilitate the detection of dangers. They must also be poised to promptly react to unusual encounters, while ignoring innocuous germs and self. Numerous regulatory mechanisms act at the molecular level to generate such an exquisite structure, including miRNA-mediated repression of protein synthesis. Notably, the miRNAs from the miR-142 locus are preferentially expressed in hematopoietic cells. Their importance is underscored by the deeply disturbed immune system seen upon inactivation of the locus in mice. In this review, we explore reported roles for the miR-142 miRNAs in the shaping of immunity in vertebrates, discussing in particular their contributions to the generation, migration and survival of hematopoietic cells.
Collapse
Affiliation(s)
- William J Olson
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Emmanuel Derudder
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
29
|
Mishra P, Silva A, Sharma J, Nguyen J, Pizzo DP, Hinz D, Sahoo D, Cherqui S. Rescue of Alzheimer's disease phenotype in a mouse model by transplantation of wild-type hematopoietic stem and progenitor cells. Cell Rep 2023; 42:112956. [PMID: 37561625 PMCID: PMC10617121 DOI: 10.1016/j.celrep.2023.112956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/19/2023] [Accepted: 07/22/2023] [Indexed: 08/12/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent cause of dementia; microglia have been implicated in AD pathogenesis, but their role is still matter of debate. Our study showed that single systemic wild-type (WT) hematopoietic stem and progenitor cell (HSPC) transplantation rescued the AD phenotype in 5xFAD mice and that transplantation may prevent microglia activation. Indeed, complete prevention of memory loss and neurocognitive impairment and decrease of β-amyloid plaques in the hippocampus and cortex were observed in the WT HSPC-transplanted 5xFAD mice compared with untreated 5xFAD mice and with mice transplanted with 5xFAD HSPCs. Neuroinflammation was also significantly reduced. Transcriptomic analysis revealed a significant decrease in gene expression related to "disease-associated microglia" in the cortex and "neurodegeneration-associated endothelial cells" in the hippocampus of the WT HSPC-transplanted 5xFAD mice compared with diseased controls. This work shows that HSPC transplant has the potential to prevent AD-associated complications and represents a promising therapeutic avenue for this disease.
Collapse
Affiliation(s)
- Priyanka Mishra
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Alexander Silva
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Jay Sharma
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Jacqueline Nguyen
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Donald P Pizzo
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Denise Hinz
- Flow Cytometry Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Debashis Sahoo
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Department of Computer Science and Engineering, University of California, La Jolla, La Jolla, CA, USA; Moores Comprehensive Cancer Center, University of California, La Jolla, La Jolla, CA, USA
| | - Stephanie Cherqui
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
30
|
Schneckmann R, Döring M, Gerfer S, Gorressen S, Heitmeier S, Helten C, Polzin A, Jung C, Kelm M, Fender AC, Flögel U, Grandoch M. Rivaroxaban attenuates neutrophil maturation in the bone marrow niche. Basic Res Cardiol 2023; 118:31. [PMID: 37580509 PMCID: PMC10425524 DOI: 10.1007/s00395-023-01001-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/16/2023]
Abstract
Pharmacological inhibition of factor Xa by rivaroxaban has been shown to mediate cardioprotection and is frequently used in patients with, e.g., atrial fibrillation. Rivaroxaban's anti-inflammatory actions are well known, but the underlying mechanisms are still incompletely understood. To date, no study has focused on the effects of rivaroxaban on the bone marrow (BM), despite growing evidence that the BM and its activation are of major importance in the development/progression of cardiovascular disease. Thus, we examined the impact of rivaroxaban on BM composition under homeostatic conditions and in response to a major cardiovascular event. Rivaroxaban treatment of mice for 7 days markedly diminished mature leukocytes in the BM. While apoptosis of BM-derived mature myeloid leukocytes was unaffected, lineage-negative BM cells exhibited a differentiation arrest at the level of granulocyte-monocyte progenitors, specifically affecting neutrophil maturation via downregulation of the transcription factors Spi1 and Csfr1. To assess whether this persists also in situations of increased leukocyte demand, mice were subjected to cardiac ischemia/reperfusion injury (I/R): 7 d pretreatment with rivaroxaban led to reduced cardiac inflammation 72 h after I/R and lowered circulating leukocyte numbers. However, BM myelopoiesis showed a rescue of the leukocyte differentiation arrest, indicating that rivaroxaban's inhibitory effects are restricted to homeostatic conditions and are mainly abolished during emergency hematopoiesis. In translation, ST-elevation MI patients treated with rivaroxaban also exhibited reduced circulating leukocyte numbers. In conclusion, we demonstrate that rivaroxaban attenuates neutrophil maturation in the BM, which may offer a therapeutic option to limit overshooting of the immune response after I/R.
Collapse
Affiliation(s)
- R Schneckmann
- Institute for Translational Pharmacology Düsseldorf, Medical Faculty, University Hospital of the Heinrich Heine University, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - M Döring
- Institute for Translational Pharmacology Düsseldorf, Medical Faculty, University Hospital of the Heinrich Heine University, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - S Gerfer
- Department of Cardiothoracic Surgery, Heart Center of the University Hospital of Cologne, Cologne, Germany
| | - S Gorressen
- Institute for Pharmacology Düsseldorf, Medical Faculty, University Hospital and Heinrich Heine University, Düsseldorf, Germany
| | - S Heitmeier
- Research & Development Pharmaceuticals, Bayer AG, Acute Hospital Research, Wuppertal, Germany
| | - C Helten
- Department for Cardiology, Pneumology and Vascular Medicine, University Hospital and Heinrich Heine University, Düsseldorf, Germany
| | - A Polzin
- Department for Cardiology, Pneumology and Vascular Medicine, University Hospital and Heinrich Heine University, Düsseldorf, Germany
- CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - C Jung
- Department for Cardiology, Pneumology and Vascular Medicine, University Hospital and Heinrich Heine University, Düsseldorf, Germany
- CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - M Kelm
- Department for Cardiology, Pneumology and Vascular Medicine, University Hospital and Heinrich Heine University, Düsseldorf, Germany
- CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - A C Fender
- Institute of Pharmacology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - U Flögel
- CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, University Hospital and Heinrich Heine University, Düsseldorf, Germany
| | - M Grandoch
- Institute for Translational Pharmacology Düsseldorf, Medical Faculty, University Hospital of the Heinrich Heine University, Universitätsstr. 1, 40225, Düsseldorf, Germany.
- CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
31
|
Balandrán JC, Lasry A, Aifantis I. The Role of Inflammation in the Initiation and Progression of Myeloid Neoplasms. Blood Cancer Discov 2023; 4:254-266. [PMID: 37052531 PMCID: PMC10320626 DOI: 10.1158/2643-3230.bcd-22-0176] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 04/14/2023] Open
Abstract
Myeloid malignancies are devastating hematologic cancers with limited therapeutic options. Inflammation is emerging as a novel driver of myeloid malignancy, with important implications for tumor composition, immune response, therapeutic options, and patient survival. Here, we discuss the role of inflammation in normal and malignant hematopoiesis, from clonal hematopoiesis to full-blown myeloid leukemia. We discuss how inflammation shapes clonal output from hematopoietic stem cells, how inflammation alters the immune microenvironment in the bone marrow, and novel therapies aimed at targeting inflammation in myeloid disease. SIGNIFICANCE Inflammation is emerging as an important factor in myeloid malignancies. Understanding the role of inflammation in myeloid transformation, and the interplay between inflammation and other drivers of leukemogenesis, may yield novel avenues for therapy.
Collapse
Affiliation(s)
- Juan Carlos Balandrán
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York
| | - Audrey Lasry
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York
| | - Iannis Aifantis
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York
| |
Collapse
|
32
|
Mas G, Man N, Nakata Y, Martinez-Caja C, Karl D, Beckedorff F, Tamiro F, Chen C, Duffort S, Itonaga H, Mookhtiar AK, Kunkalla K, Valencia AM, Collings CK, Kadoch C, Vega F, Kogan SC, Shiekhattar R, Morey L, Bilbao D, Nimer SD. The SWI/SNF chromatin-remodeling subunit DPF2 facilitates NRF2-dependent antiinflammatory and antioxidant gene expression. J Clin Invest 2023; 133:e158419. [PMID: 37200093 PMCID: PMC10313367 DOI: 10.1172/jci158419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/16/2023] [Indexed: 05/20/2023] Open
Abstract
During emergency hematopoiesis, hematopoietic stem cells (HSCs) rapidly proliferate to produce myeloid and lymphoid effector cells, a response that is critical against infection or tissue injury. If unresolved, this process leads to sustained inflammation, which can cause life-threatening diseases and cancer. Here, we identify a role of double PHD fingers 2 (DPF2) in modulating inflammation. DPF2 is a defining subunit of the hematopoiesis-specific BAF (SWI/SNF) chromatin-remodeling complex, and it is mutated in multiple cancers and neurological disorders. We uncovered that hematopoiesis-specific Dpf2-KO mice developed leukopenia, severe anemia, and lethal systemic inflammation characterized by histiocytic and fibrotic tissue infiltration resembling a clinical hyperinflammatory state. Dpf2 loss impaired the polarization of macrophages responsible for tissue repair, induced the unrestrained activation of Th cells, and generated an emergency-like state of HSC hyperproliferation and myeloid cell-biased differentiation. Mechanistically, Dpf2 deficiency resulted in the loss of the BAF catalytic subunit BRG1 from nuclear factor erythroid 2-like 2-controlled (NRF2-controlled) enhancers, impairing the antioxidant and antiinflammatory transcriptional response needed to modulate inflammation. Finally, pharmacological reactivation of NRF2 suppressed the inflammation-mediated phenotypes and lethality of Dpf2Δ/Δ mice. Our work establishes an essential role of the DPF2-BAF complex in licensing NRF2-dependent gene expression in HSCs and immune effector cells to prevent chronic inflammation.
Collapse
Affiliation(s)
- Gloria Mas
- Sylvester Comprehensive Cancer Center and
| | - Na Man
- Sylvester Comprehensive Cancer Center and
| | - Yuichiro Nakata
- Sylvester Comprehensive Cancer Center and
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | | | - Felipe Beckedorff
- Sylvester Comprehensive Cancer Center and
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | - Chuan Chen
- Sylvester Comprehensive Cancer Center and
| | | | | | | | | | - Alfredo M. Valencia
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Chemical Biology Program, Harvard University, Cambridge, Massachusetts, USA
| | - Clayton K. Collings
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Cigall Kadoch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Francisco Vega
- Sylvester Comprehensive Cancer Center and
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Scott C. Kogan
- Helen Diller Family Comprehensive Cancer Center and
- Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| | - Ramin Shiekhattar
- Sylvester Comprehensive Cancer Center and
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Lluis Morey
- Sylvester Comprehensive Cancer Center and
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Daniel Bilbao
- Sylvester Comprehensive Cancer Center and
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Stephen D. Nimer
- Sylvester Comprehensive Cancer Center and
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
33
|
Hysenaj L, de Laval B, Arce-Gorvel V, Bosilkovski M, González-Espinoza G, Debroas G, Sieweke MH, Sarrazin S, Gorvel JP. CD150-dependent hematopoietic stem cell sensing of Brucella instructs myeloid commitment. J Exp Med 2023; 220:e20210567. [PMID: 37067792 PMCID: PMC10114919 DOI: 10.1084/jem.20210567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 01/05/2023] [Accepted: 03/13/2023] [Indexed: 04/18/2023] Open
Abstract
So far, hematopoietic stem cells (HSC) are considered the source of mature immune cells, the latter being the only ones capable of mounting an immune response. Recent evidence shows HSC can also directly sense cytokines released upon infection/inflammation and pathogen-associated molecular pattern interaction while keeping a long-term memory of previously encountered signals. Direct sensing of danger signals by HSC induces early myeloid commitment, increases myeloid effector cell numbers, and contributes to an efficient immune response. Here, by using specific genetic tools on both the host and pathogen sides, we show that HSC can directly sense B. abortus pathogenic bacteria within the bone marrow via the interaction of the cell surface protein CD150 with the bacterial outer membrane protein Omp25, inducing efficient functional commitment of HSC to the myeloid lineage. This is the first demonstration of direct recognition of a live pathogen by HSC via CD150, which attests to a very early contribution of HSC to immune response.
Collapse
Affiliation(s)
- Lisiena Hysenaj
- Aix Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d’Immunologie de Marseille-Luminy, Marseille, France
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Bérengère de Laval
- Aix Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Vilma Arce-Gorvel
- Aix Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Mile Bosilkovski
- University Clinic for Infectious Diseases and Febrile Conditions, Skopje, Republic of North Macedonia
| | - Gabriela González-Espinoza
- Aix Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Guilhaume Debroas
- Aix Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Michael H. Sieweke
- Aix Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d’Immunologie de Marseille-Luminy, Marseille, France
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Sandrine Sarrazin
- Aix Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Jean-Pierre Gorvel
- Aix Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| |
Collapse
|
34
|
Douté M, Sannier A, Even G, Tran TT, Gaston AT, Delbosc S, Loyau S, Bruneval P, Witko-Sarsat V, Mouthon L, Nicoletti A, Caligiuri G, Clement M. Thrombopoietin-Dependent Myelo-Megakaryopoiesis Fuels Thromboinflammation and Worsens Antibody-Mediated Chronic Renal Microvascular Injury. J Am Soc Nephrol 2023; 34:1207-1221. [PMID: 37022108 PMCID: PMC10356147 DOI: 10.1681/asn.0000000000000127] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 03/07/2023] [Indexed: 04/07/2023] Open
Abstract
SIGNIFICANCE STATEMENT Kidney-derived thrombopoietin (TPO) increases myeloid cell and platelet production during antibody-mediated chronic kidney disease (AMCKD) in a mouse model, exacerbating chronic thromobinflammation in microvessels. The effect is mirrored in patients with extracapillary glomerulonephritis associated with thromboinflammation, TGF β -dependent glomerulosclerosis, and increased bioavailability of TPO. Neutralization of TPO in mice normalized hematopoiesis, reduced chronic thromboinflammation, and ameliorated renal disease. The findings suggest that TPO is a relevant biomarker and a promising therapeutic target for patients with CKD and other chronic thromboinflammatory diseases.Neutralization of TPO in mice normalized hematopoiesis, reduced chronic thromboinflammation, and ameliorated renal disease. The findings suggest that TPO is a relevant biomarker and a promising therapeutic target for patients with CKD and other chronic thromboinflammatory diseases. BACKGROUND Chronic thromboinflammation provokes microvascular alterations and rarefaction, promoting organ dysfunction in individuals with various life-threatening diseases. Hematopoietic growth factors (HGFs) released by the affected organ may sustain emergency hematopoiesis and fuel the thromboinflammatory process. METHODS Using a murine model of antibody-mediated chronic kidney disease (AMCKD) and pharmacological interventions, we comprehensively monitored the response to injury in the circulating blood, urine, bone marrow, and kidney. RESULTS Experimental AMCKD was associated with chronic thromboinflammation and the production of HGFs, especially thrombopoietin (TPO), by the injured kidney, which stimulated and skewed hematopoiesis toward myelo-megakaryopoiesis. AMCKD was characterized by vascular and kidney dysfunction, TGF β -dependent glomerulosclerosis, and microvascular rarefaction. In humans, extracapillary glomerulonephritis is associated with thromboinflammation, TGF β -dependent glomerulosclerosis, and increased bioavailability of TPO. Analysis of albumin, HGF, and inflammatory cytokine levels in sera from patients with extracapillary glomerulonephritis allowed us to identify treatment responders. Strikingly, TPO neutralization in the experimental AMCKD model normalized hematopoiesis, reduced chronic thromboinflammation, and ameliorated renal disease. CONCLUSION TPO-skewed hematopoiesis exacerbates chronic thromboinflammation in microvessels and worsens AMCKD. TPO is both a relevant biomarker and a promising therapeutic target in humans with CKD and other chronic thromboinflammatory diseases.
Collapse
Affiliation(s)
- Mélodie Douté
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM U1148, Laboratory for vascular science (LVTS), Paris, France
- Laboratoire d'Excellence INFLAMEX, Paris, France
| | - Aurélie Sannier
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM U1148, Laboratory for vascular science (LVTS), Paris, France
- Université de Paris, Assistance Publique-Hôpitaux de Paris (AP-HP), Service d'Anatomie et Cytologie Pathologiques, Hôpital Bichat, Paris, France
| | - Guillaume Even
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM U1148, Laboratory for vascular science (LVTS), Paris, France
| | - Thi-Thu Tran
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM U1148, Laboratory for vascular science (LVTS), Paris, France
| | - Ahn-Tu Gaston
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM U1148, Laboratory for vascular science (LVTS), Paris, France
| | - Sandrine Delbosc
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM U1148, Laboratory for vascular science (LVTS), Paris, France
| | - Stéphane Loyau
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM U1148, Laboratory for vascular science (LVTS), Paris, France
| | - Patrick Bruneval
- Departments of Nephrology Pathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Véronique Witko-Sarsat
- Laboratoire d'Excellence INFLAMEX, Paris, France
- Université de Paris, INSERM U1016, CNRS UMR 8104, Institut Cochin, Paris, France
| | - Luc Mouthon
- Laboratoire d'Excellence INFLAMEX, Paris, France
- Université de Paris, INSERM U1016, CNRS UMR 8104, Institut Cochin, Paris, France
- Service de Médecine Interne, Centre de Référence Maladies Autoimmunes Systémiques Rares d'Ile de France, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Assistance Publique-Hôpitaux de Paris (AP-HP)-CUP-CUP, Hôpital Cochin, Université Paris Cité, Paris, France
| | - Antonino Nicoletti
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM U1148, Laboratory for vascular science (LVTS), Paris, France
- Laboratoire d'Excellence INFLAMEX, Paris, France
| | - Giuseppina Caligiuri
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM U1148, Laboratory for vascular science (LVTS), Paris, France
- Laboratoire d'Excellence INFLAMEX, Paris, France
- Department of Cardiology, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris Nord Val-de-Seine, Site Bichat, Paris, France
| | - Marc Clement
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM U1148, Laboratory for vascular science (LVTS), Paris, France
- Laboratoire d'Excellence INFLAMEX, Paris, France
| |
Collapse
|
35
|
Maceiras AR, Silvério D, Gonçalves R, Cardoso MS, Saraiva M. Infection with hypervirulent Mycobacterium tuberculosis triggers emergency myelopoiesis but not trained immunity. Front Immunol 2023; 14:1211404. [PMID: 37383236 PMCID: PMC10296772 DOI: 10.3389/fimmu.2023.1211404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/30/2023] [Indexed: 06/30/2023] Open
Abstract
Introduction During infection, bone marrow (BM) hematopoiesis is reprogrammed toward myeloid cell production, a mechanism named emergency myelopoiesis. In addition to replenishing myeloid cells, emergency myelopoiesis has been linked to trained immunity, a process that allows enhanced innate immune responses to secondary challenges. Although hematopoietic alterations during tuberculosis (TB) have been described and Mycobacterium tuberculosis may colonize the BM, studies using the mouse model of infection and the laboratory reference strain M. tuberculosis H37Rv have demonstrated limited emergency myelopoiesis and trained immunity. Methods To further address this issue, we aerosol- infected C57BL/6 mice with high doses of the hypervirulent M. tuberculosis isolate HN878 and monitored alterations to the BM. This experimental model better resembles the human blood immune signature of TB. Results and discussion We found increased frequencies of lineage-Sca-1+cKit+ (LSK) cells and the granulocyte/macrophage progenitor (GMP) population. At the mature cell level, we observed an increase of monocytes and neutrophils in the blood and lung, likely reflecting the increased BM myeloid output. Monocytes or monocyte-derived macrophages recovered from the BM of M. tuberculosis HN878-infected mice did not show signs of trained immunity, suggesting an uncoupling of emergency myelopoiesis and trained immunity in the BM. Surprisingly, M. tuberculosis HN878-induced emergency myelopoiesis was not fully dependent on IFNγ, as mice lacking this cytokine and infected under the same conditions as wild-type mice still presented BM alterations. These data expand our understanding of the immune response to M. tuberculosis and raise awareness of pathogen strain-imposed differences to host responses.
Collapse
Affiliation(s)
- Ana Raquel Maceiras
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Diogo Silvério
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Doctoral Program in Molecular and Cell Biology, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Rute Gonçalves
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Doctoral Program in Molecular and Cell Biology, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Marcos S. Cardoso
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Margarida Saraiva
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| |
Collapse
|
36
|
Xia J, Liu M, Zhu C, Liu S, Ai L, Ma D, Zhu P, Wang L, Liu F. Activation of lineage competence in hemogenic endothelium precedes the formation of hematopoietic stem cell heterogeneity. Cell Res 2023; 33:448-463. [PMID: 37016019 PMCID: PMC10235423 DOI: 10.1038/s41422-023-00797-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/01/2023] [Indexed: 04/06/2023] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) are considered as a heterogeneous population, but precisely when, where and how HSPC heterogeneity arises remain largely unclear. Here, using a combination of single-cell multi-omics, lineage tracing and functional assays, we show that embryonic HSPCs originate from heterogeneous hemogenic endothelial cells (HECs) during zebrafish embryogenesis. Integrated single-cell transcriptome and chromatin accessibility analysis demonstrates transcriptional heterogeneity and regulatory programs that prime lymphoid/myeloid fates at the HEC level. Importantly, spi2+ HECs give rise to lymphoid/myeloid-primed HSPCs (L/M-HSPCs) and display a stress-responsive function under acute inflammation. Moreover, we uncover that Spi2 is required for the formation of L/M-HSPCs through tightly controlling the endothelial-to-hematopoietic transition program. Finally, single-cell transcriptional comparison of zebrafish and human HECs and human induced pluripotent stem cell-based hematopoietic differentiation results support the evolutionary conservation of L/M-HECs and a conserved role of SPI1 (spi2 homolog in mammals) in humans. These results unveil the lineage origin, biological function and molecular determinant of HSPC heterogeneity and lay the foundation for new strategies for induction of transplantable lineage-primed HSPCs in vitro.
Collapse
Affiliation(s)
- Jun Xia
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mengyao Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Caiying Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Shicheng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lanlan Ai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Dongyuan Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ping Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lu Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Life Sciences, Shandong University, Qingdao, Shandong, China.
| |
Collapse
|
37
|
Nasiri K, Mohammadzadehsaliani S, Kheradjoo H, Shabestari AM, Eshaghizadeh P, Pakmehr A, Alsaffar MF, Al-Naqeeb BZT, Yasamineh S, Gholizadeh O. Spotlight on the impact of viral infections on Hematopoietic Stem Cells (HSCs) with a focus on COVID-19 effects. Cell Commun Signal 2023; 21:103. [PMID: 37158893 PMCID: PMC10165295 DOI: 10.1186/s12964-023-01122-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/05/2023] [Indexed: 05/10/2023] Open
Abstract
Hematopoietic stem cells (HSCs) are known for their significant capability to reconstitute and preserve a functional hematopoietic system in long-term periods after transplantation into conditioned hosts. HSCs are thus crucial cellular targets for the continual repair of inherited hematologic, metabolic, and immunologic disorders. In addition, HSCs can undergo various fates, such as apoptosis, quiescence, migration, differentiation, and self-renewal. Viruses continuously pose a remarkable health risk and request an appropriate, balanced reaction from our immune system, which as well as affects the bone marrow (BM). Therefore, disruption of the hematopoietic system due to viral infection is essential. In addition, patients for whom the risk-to-benefit ratio of HSC transplantation (HSCT) is acceptable have seen an increase in the use of HSCT in recent years. Hematopoietic suppression, BM failure, and HSC exhaustion are all linked to chronic viral infections. Virus infections continue to be a leading cause of morbidity and mortality in HSCT recipients, despite recent advancements in the field. Furthermore, whereas COVID-19 manifests initially as an infection of the respiratory tract, it is now understood to be a systemic illness that significantly impacts the hematological system. Patients with advanced COVID-19 often have thrombocytopenia and blood hypercoagulability. In the era of COVID-19, Hematological manifestations of COVID-19 (i.e., thrombocytopenia and lymphopenia), the immune response, and HSCT may all be affected by the SARS-CoV-2 virus in various ways. Therefore, it is important to determine whether exposure to viral infections may affect HSCs used for HSCT, as this, in turn, may affect engraftment efficiency. In this article, we reviewed the features of HSCs, and the effects of viral infections on HSCs and HSCT, such as SARS-CoV-2, HIV, cytomegalovirus, Epstein-Barr virus, HIV, etc. Video Abstract.
Collapse
Affiliation(s)
- Kamyar Nasiri
- Department of Dentistry, Islamic Azad University, Tehran, Iran
| | | | | | | | - Parisa Eshaghizadeh
- Department of Dental Surgery, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azin Pakmehr
- Medical Doctor, Tehran University of Medical Science, Tehran, Iran
| | - Marwa Fadhil Alsaffar
- Medical Laboratories Techniques Department / AL-Mustaqbal University College, 51001, Hillah, Babil, Iraq
| | | | - Saman Yasamineh
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| | - Omid Gholizadeh
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
38
|
Sun T, Li D, Huang L, Zhu X. Inflammatory abrasion of hematopoietic stem cells: a candidate clue for the post-CAR-T hematotoxicity? Front Immunol 2023; 14:1141779. [PMID: 37223096 PMCID: PMC10200893 DOI: 10.3389/fimmu.2023.1141779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/21/2023] [Indexed: 05/25/2023] Open
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy has shown remarkable effects in treating various hematological malignancies. However, hematotoxicity, specifically neutropenia, thrombocytopenia, and anemia, poses a serious threat to patient prognosis and remains a less focused adverse effect of CAR-T therapy. The mechanism underlying lasting or recurring late-phase hematotoxicity, long after the influence of lymphodepletion therapy and cytokine release syndrome (CRS), remains elusive. In this review, we summarize the current clinical studies on CAR-T late hematotoxicity to clarify its definition, incidence, characteristics, risk factors, and interventions. Owing to the effectiveness of transfusing hematopoietic stem cells (HSCs) in rescuing severe CAR-T late hematotoxicity and the unignorable role of inflammation in CAR-T therapy, this review also discusses possible mechanisms of the harmful influence of inflammation on HSCs, including inflammatory abrasion of the number and the function of HSCs. We also discuss chronic and acute inflammation. Cytokines, cellular immunity, and niche factors likely to be disturbed in CAR-T therapy are highlighted factors with possible contributions to post-CAR-T hematotoxicity.
Collapse
|
39
|
Nguyen TV, Yamanaka K, Tomita K, Zubcevic J, Gouraud SSS, Waki H. Impact of exercise on brain-bone marrow interactions in chronic stress: potential mechanisms preventing stress-induced hypertension. Physiol Genomics 2023; 55:222-234. [PMID: 36939204 PMCID: PMC10151049 DOI: 10.1152/physiolgenomics.00168.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/15/2023] [Accepted: 03/15/2023] [Indexed: 03/21/2023] Open
Abstract
We examined the effect of chronic restraint stress and the counteractive effects of daily exercise on the molecular basis of the brain-bone marrow (BM) interactions, by especially focusing on the paraventricular nucleus (PVN) of the hypothalamus. Male Wistar rats were assigned into control, restraint stress, and stress + daily spontaneous exercise (SE) groups. BM and hypothalamic gene expression profiles were examined through the undertaking of RT-PCR and microarrays, respectively. The inflammatory blood cell population was investigated through flow cytometry. Through the use of immunohistochemistry, we examined the presence of BM-derived C-C chemokine receptor type 2 (CCR2)-expressing microglial cells in the rat PVN. The gene expression levels of BM inflammatory factors such as those of interleukin 1 beta and CCR2, and the inflammatory blood cell population were found to be significantly higher in both restrained groups compared with control group. Interestingly, chronic restraint stress alone activated the recruitment of BM-derived CCR2-expressing microglial cells into the PVN, whereas daily spontaneous exercise prevented it. A notable finding was that restraint stress upregulated relative gene expression of hypothalamic matrix metalloproteinase 3 (MMP3), which increases the permeability of the blood-brain barrier (BBB), and that exercise managed to normalize it. Moreover, relative expression of some hypothalamic genes directly involved in the facilitation of cell migration was downregulated by daily exercise. Our findings suggest that daily spontaneous exercise can reduce the numbers of BM-derived CCR2-expressing microglial cells into the PVN through the prevention of stress-induced changes in the hypothalamic gene expression.NEW & NOTEWORTHY Chronic restraint stress can upregulate MMP3 gene expression in the rat hypothalamus, whereas daily spontaneous exercise can prevent this stress-induced effect. Stress-induced BM-derived inflammatory cell recruitment into the rat PVN can be prevented by daily spontaneous exercise. Stress-induced increase of hypothalamic MMP3 gene expression may be responsible for BBB injury, thereby allowing for BM-derived inflammatory cells to be recruited and to accumulate in the rat PVN, and to be subsequently involved in the onset of stress-induced hypertension.
Collapse
Affiliation(s)
- Thu Van Nguyen
- Department of Physiology, Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
- Department of Military Occupational Medicine, Vietnam Military Medical University, Hanoi, Vietnam
| | - Ko Yamanaka
- Department of Physiology, Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Keisuke Tomita
- Department of Physiology, Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Jasenka Zubcevic
- Department of Physiology and Pharmacology, University of Toledo, Toledo, Ohio, United States
| | - Sabine S S Gouraud
- College of Liberal Arts, International Christian University, Tokyo, Japan
| | - Hidefumi Waki
- Department of Physiology, Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| |
Collapse
|
40
|
Lin SJ, Lin KM, Chen SYJ, Ku CC, Huang CW, Huang CH, Gale M, Tsai CH. Type I Interferon Orchestrates Demand-Adapted Monopoiesis during Influenza A Virus Infection via STAT1-Mediated Upregulation of Macrophage Colony-Stimulating Factor Receptor Expression. J Virol 2023; 97:e0010223. [PMID: 37022164 PMCID: PMC10134875 DOI: 10.1128/jvi.00102-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/14/2023] [Indexed: 04/07/2023] Open
Abstract
Whether and how a local virus infection affects the hematopoietic system in the bone marrow is largely unknown, unlike with systemic infection. In this study, we showed that influenza A virus (IAV) infection leads to demand-adapted monopoiesis in the bone marrow. The beta interferon (IFN-β) promoter stimulator 1 (IPS-1)-type I IFN-IFN-α receptor 1 (IFNAR1) axis-mediated signaling was found to induce the emergency expansion of the granulocyte-monocyte progenitor (GMP) population and upregulate the expression of the macrophage colony-stimulating factor receptor (M-CSFR) on bipotent GMPs and monocyte progenitors via the signal transducer and activator of transcription 1 (STAT1), leading to a scaled-back proportion of granulocyte progenitors. To further address the influence of demand-adapted monopoiesis on IAV-induced secondary bacterial infection, IAV-infected wild-type (WT) and Stat1-/- mice were challenged with Streptococcus pneumoniae. Compared with WT mice, Stat1-/- mice did not demonstrate demand-adapted monopoiesis, had more infiltrating granulocytes, and were able to effectively eliminate the bacterial infection. IMPORTANCE Our findings show that influenza A virus infection induces type I interferon (IFN)-mediated emergency hematopoiesis to expand the GMP population in the bone marrow. The type I IFN-STAT1 axis was identified as being involved in mediating the viral-infection-driven demand-adapted monopoiesis by upregulating M-CSFR expression in the GMP population. As secondary bacterial infections often manifest during a viral infection and can lead to severe or even fatal clinical complications, we further assessed the impact of the observed monopoiesis on bacterial clearance. Our results suggest that the resulting decrease in the proportion of granulocytes may play a role in diminishing the IAV-infected host's ability to effectively clear secondary bacterial infection. Our findings not only provide a more complete picture of the modulatory functions of type I IFN but also highlight the need for a more comprehensive understanding of potential changes in hematopoiesis during local infections to better inform clinical interventions.
Collapse
Affiliation(s)
- Sue-Jane Lin
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kai-Min Lin
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shi-Yo Jill Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Chi Ku
- Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen-Wei Huang
- Department of Family Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chi-Hsiang Huang
- Department of Internal Medicine, Linkou Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Ching-Hwa Tsai
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
41
|
Carnevale S, Di Ceglie I, Grieco G, Rigatelli A, Bonavita E, Jaillon S. Neutrophil diversity in inflammation and cancer. Front Immunol 2023; 14:1180810. [PMID: 37180120 PMCID: PMC10169606 DOI: 10.3389/fimmu.2023.1180810] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
Neutrophils are the most abundant circulating leukocytes in humans and the first immune cells recruited at the site of inflammation. Classically perceived as short-lived effector cells with limited plasticity and diversity, neutrophils are now recognized as highly heterogenous immune cells, which can adapt to various environmental cues. In addition to playing a central role in the host defence, neutrophils are involved in pathological contexts such as inflammatory diseases and cancer. The prevalence of neutrophils in these conditions is usually associated with detrimental inflammatory responses and poor clinical outcomes. However, a beneficial role for neutrophils is emerging in several pathological contexts, including in cancer. Here we will review the current knowledge of neutrophil biology and heterogeneity in steady state and during inflammation, with a focus on the opposing roles of neutrophils in different pathological contexts.
Collapse
Affiliation(s)
| | | | - Giovanna Grieco
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | | | | | - Sebastien Jaillon
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
42
|
Abstract
Characterization of RNA modifications has identified their distribution features and molecular functions. Dynamic changes in RNA modification on various forms of RNA are essential for the development and function of the immune system. In this review, we discuss the value of innovative RNA modification profiling technologies to uncover the function of these diverse, dynamic RNA modifications in various immune cells within healthy and diseased contexts. Further, we explore our current understanding of the mechanisms whereby aberrant RNA modifications modulate the immune milieu of the tumor microenvironment and point out outstanding research questions.
Collapse
Affiliation(s)
- Dali Han
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- China National Center for Bioinformation, Beijing, China
| | - Meng Michelle Xu
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China;
| |
Collapse
|
43
|
Milsom MD, Essers MAG. Recent advances in understanding the impact of infection and inflammation on hematopoietic stem and progenitor cells. Cells Dev 2023; 174:203844. [PMID: 37100116 DOI: 10.1016/j.cdev.2023.203844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/27/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023]
Abstract
Just over one decade ago, it was discovered that hematopoietic stem cells (HSCs) could directly respond to inflammatory cytokines by mounting a proliferative response thought to mediate the emergency production of mature blood cells. In the intervening years, we have gained mechanistic insight into this so-called activation process and have started to learn such a response may come at a cost in terms of ultimately resulting in HSC exhaustion and hematologic dysfunction. In this review article, we report the progress we have made in understanding the interplay between infection, inflammation and HSCs during the funding period of the Collaborative Research Center 873 "Maintenance and Differentiation of Stem Cells in Development and Disease", and place this work within the context of recent output by others working within this field.
Collapse
Affiliation(s)
- Michael D Milsom
- Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute of Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
| | - Marieke A G Essers
- Heidelberg Institute of Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany; Divison of Inflammatory Stress in Stem Cells, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
44
|
Banjac I, Maimets M, Jensen KB. Maintenance of high-turnover tissues during and beyond homeostasis. Cell Stem Cell 2023; 30:348-361. [PMID: 37028402 DOI: 10.1016/j.stem.2023.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/23/2023] [Accepted: 03/15/2023] [Indexed: 04/09/2023]
Abstract
Tissues with a high turnover rate produce millions of cells daily and have abundant regenerative capacity. At the core of their maintenance are populations of stem cells that balance self-renewal and differentiation to produce the adequate numbers of specialized cells required for carrying out essential tissue functions. Here, we compare and contrast the intricate mechanisms and elements of homeostasis and injury-driven regeneration in the epidermis, hematopoietic system, and intestinal epithelium-the fastest renewing tissues in mammals. We highlight the functional relevance of the main mechanisms and identify open questions in the field of tissue maintenance.
Collapse
Affiliation(s)
- Isidora Banjac
- The Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Martti Maimets
- The Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| | - Kim B Jensen
- The Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| |
Collapse
|
45
|
Lim VY, Feng X, Miao R, Zehentmeier S, Ewing-Crystal N, Lee M, Tumanov AV, Oh JE, Iwasaki A, Wang A, Choi J, Pereira JP. Mature B cells and mesenchymal stem cells control emergency myelopoiesis. Life Sci Alliance 2023; 6:e202301924. [PMID: 36717247 PMCID: PMC9889502 DOI: 10.26508/lsa.202301924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Systemic inflammation halts lymphopoiesis and prioritizes myeloid cell production. How blood cell production switches from homeostasis to emergency myelopoiesis is incompletely understood. Here, we show that lymphotoxin-β receptor (LTβR) signaling in combination with TNF and IL-1 receptor signaling in bone marrow mesenchymal stem cells (MSCs) down-regulates Il7 expression to shut down lymphopoiesis during systemic inflammation. LTβR signaling in MSCs also promoted CCL2 production during systemic inflammation. Pharmacological or genetic blocking of LTβR signaling in MSCs partially enabled lymphopoiesis and reduced monocyte numbers in the spleen during systemic inflammation, which correlated with reduced survival during systemic bacterial and viral infections. Interestingly, lymphotoxin-α1β2 delivered by B-lineage cells, and specifically by mature B cells, contributed to promote Il7 down-regulation and reduce MSC lymphopoietic activity. Our studies revealed an unexpected role of LTβR signaling in MSCs and identified recirculating mature B cells as an important regulator of emergency myelopoiesis.
Collapse
Affiliation(s)
- Vivian Y Lim
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| | - Xing Feng
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| | - Runfeng Miao
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| | - Sandra Zehentmeier
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| | - Nathan Ewing-Crystal
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| | - Moonyoung Lee
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Alexei V Tumanov
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Ji Eun Oh
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| | - Akiko Iwasaki
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Andrew Wang
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
- Department of Medicine (Rheumatology), School of Medicine, Yale University, New Haven, CT, USA
| | - Jungmin Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
- Department of Genetics, School of Medicine, Yale University, New Haven, CT, USA
| | - João P Pereira
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
46
|
Adrover JM, McDowell SAC, He XY, Quail DF, Egeblad M. NETworking with cancer: The bidirectional interplay between cancer and neutrophil extracellular traps. Cancer Cell 2023; 41:505-526. [PMID: 36827980 DOI: 10.1016/j.ccell.2023.02.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/09/2023] [Accepted: 02/01/2023] [Indexed: 02/25/2023]
Abstract
Neutrophils are major effectors and regulators of the immune system. They play critical roles not only in the eradication of pathogens but also in cancer initiation and progression. Conversely, the presence of cancer affects neutrophil activity, maturation, and lifespan. By promoting or repressing key neutrophil functions, cancer cells co-opt neutrophil biology to their advantage. This co-opting includes hijacking one of neutrophils' most striking pathogen defense mechanisms: the formation of neutrophil extracellular traps (NETs). NETs are web-like filamentous extracellular structures of DNA, histones, and cytotoxic granule-derived proteins. Here, we discuss the bidirectional interplay by which cancer stimulates NET formation, and NETs in turn support disease progression. We review how vascular dysfunction and thrombosis caused by neutrophils and NETs underlie an elevated risk of death from cardiovascular events in cancer patients. Finally, we propose therapeutic strategies that may be effective in targeting NETs in the clinical setting.
Collapse
Affiliation(s)
- Jose M Adrover
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Sheri A C McDowell
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada; Department of Physiology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Xue-Yan He
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Daniela F Quail
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada; Department of Physiology, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| | - Mikala Egeblad
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
47
|
Li H, Guan J, Chen J, Sun W, Chen H, Wen Y, Chen Q, Xie S, Zhang X, Tao A, Yan J. Necroptosis signaling and NLRP3 inflammasome cross-talking in epithelium facilitate Pseudomonas aeruginosa mediated lung injury. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166613. [PMID: 36470578 DOI: 10.1016/j.bbadis.2022.166613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/09/2022] [Accepted: 11/25/2022] [Indexed: 12/07/2022]
Abstract
Pseudomonas aeruginosa induced acute lung injury is such a serious risk to public health, but the pathological regulation remains unclear. Here, we reported that PA mediated epithelial necroptosis plays an important role in pathological process. Pharmacological and genomic ablation of necroptosis signaling ameliorate PA mediated ALI and pulmonary inflammation. Our results further proved NLRP3 inflammasome to involve in the process. Mechanism investigation revealed the cross-talking between inflammasome activation and necroptosis that MLKL-dependent necroptosis signaling promotes the change of mitochondrial membrane potential for the release of reactive oxygen species (ROS), which is the important trigger for functional inflammasome activation. Furthermore, antioxidants such as Mito-TEMPO was confirmed to significantly restrain inflammasome activation in epithelium, resulting in a reduction in PA induced pulmonary inflammation. Taken together, our findings revealed that necroptosis-triggered NLRP3 inflammasome in epithelium plays a crucial role in PA mediated injury, which could be a potential therapeutic target for pulmonary inflammation.
Collapse
Affiliation(s)
- Haoyang Li
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou 510260, China
| | - Jieying Guan
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou 510260, China
| | - Jiaqian Chen
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou 510260, China
| | - Weimin Sun
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou 510260, China
| | - Honglv Chen
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou 510260, China
| | - Yuhuan Wen
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou 510260, China
| | - Qile Chen
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou 510260, China
| | - Shiyun Xie
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou 510260, China
| | - Xueyan Zhang
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou 510260, China; School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Ailin Tao
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou 510260, China
| | - Jie Yan
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou 510260, China.
| |
Collapse
|
48
|
Zhang T, Zhang J, Wang H, Li P. Correlations between glucose metabolism of bone marrow on 18 F-fluoro-D-glucose PET/computed tomography and hematopoietic cell populations in autoimmune diseases. Nucl Med Commun 2023; 44:212-218. [PMID: 36597726 PMCID: PMC9907693 DOI: 10.1097/mnm.0000000000001657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/25/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE This study aims to investigate which hematopoieticcell populations, clinical factors, and laboratory values are associated with FDG uptake in bone marrow (BM) on FDG PET/CT in patients with autoimmune diseases. METHODS Forty-six patients with autoimmune disease who underwent FDG PET/CT and BM aspiration (BMA) between 2017 and 2022 were enrolled. The max and mean standard uptake values (SUVmax and SUVmean, SUVs) of FDG in BM, liver, and spleen were measured, and the bone marrow-to-liver SUVs ratios (BLRmax and BLRmean, BLRs) and spleen-to-liver SUVs ratios (SLRmax and SLRmean, SLRs) were calculated. BMA and clinical and laboratory parameters were collected and evaluated for association with BLRs and SLRs. RESULTS The patients were divided into the Grade II group (20; 43.5%) and Grade III groups (26; 56.5%) according to hemopoietic activity. The BLRmax ( P = 0.021), proportion of granulocytes ( P = 0.011), metamyelocytes ( P = 0.009), myelocytes ( P = 0.024), and monocytes ( P = 0.037) in BM were significantly higher in the Grade II group. Multivariate (stepwise) linear regression analyses showed that the proportion of granulocytes in BM was the strongest and only independent factor ( P < 0.0001) associated with BLRmax with an adjusted R2 of 0.431 in model 1. In model 2, ferritin ( P = 0.018), CRP ( P = 0.025), and the proportion of metamyelocytes ( P = 0.043) in BM were correlated with BLRmax with an adjusted R2 of 0.414. CONCLUSION The FDG uptake in BM is associated with hemopoietic activity and is regulated by hyperplastic granulocytes, particularly immature metamyelocytes, in patients with autoimmune diseases. Glucose metabolism in the BM correlates with the severity of systemic inflammation.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Nuclear Medicine, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jifeng Zhang
- Department of Nuclear Medicine, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongjia Wang
- Department of Nuclear Medicine, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ping Li
- Department of Nuclear Medicine, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
49
|
Denstaedt SJ, Cano J, Wang XQ, Donnelly JP, Seelye S, Prescott HC. Blood count derangements after sepsis and association with post-hospital outcomes. Front Immunol 2023; 14:1133351. [PMID: 36936903 PMCID: PMC10018394 DOI: 10.3389/fimmu.2023.1133351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/03/2023] [Indexed: 03/06/2023] Open
Abstract
Rationale Predicting long-term outcomes in sepsis survivors remains a difficult task. Persistent inflammation post-sepsis is associated with increased risk for rehospitalization and death. As surrogate markers of inflammation, complete blood count parameters measured at hospital discharge may have prognostic value for sepsis survivors. Objective To determine the incremental value of complete blood count parameters over clinical characteristics for predicting 90-day outcomes in sepsis survivors. Methods Electronic health record data was used to identify sepsis hospitalizations at United States Veterans Affairs hospitals with live discharge and relevant laboratory data (2013 to 2018). We measured the association of eight complete blood count parameters with 90-day outcomes (mortality, rehospitalization, cause-specific rehospitalizations) using multivariable logistic regression models. Measurements and main results We identified 155,988 eligible hospitalizations for sepsis. Anemia (93.6%, N=142,162) and lymphopenia (28.1%, N=29,365) were the most common blood count abnormalities at discharge. In multivariable models, all parameters were associated with the primary outcome of 90-day mortality or rehospitalization and improved model discrimination above clinical characteristics alone (likelihood ratio test, p<0.02 for all). A model including all eight parameters significantly improved discrimination (AUROC, 0.6929 v. 0.6756) and reduced calibration error for the primary outcome. Hemoglobin had the greatest prognostic separation with a 1.5 fold increased incidence of the primary outcome in the lowest quintile (7.2-8.9 g/dL) versus highest quintile (12.70-15.80 g/dL). Hemoglobin and neutrophil lymphocyte ratio provided the most added value in predicting the primary outcome and 90-day mortality alone, respectively. Absolute lymphocyte count added little value in predicting 90-day outcomes. Conclusions The incorporation of discharge complete blood count parameters into prognostic scoring systems could improve prediction of 90-day outcomes. Hemoglobin had the greatest prognostic value for the primary composite outcome of 90-day rehospitalization or mortality. Absolute lymphocyte count provided little added value in multivariable model comparisons, including for infection- or sepsis-related rehospitalization.
Collapse
Affiliation(s)
- Scott J. Denstaedt
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Jennifer Cano
- VA Center for Clinical Management Research, Ann Arbor, MI, United States
| | - Xiao Qing Wang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - John P. Donnelly
- Department of Learning Health Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Sarah Seelye
- VA Center for Clinical Management Research, Ann Arbor, MI, United States
| | - Hallie C. Prescott
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
- VA Center for Clinical Management Research, Ann Arbor, MI, United States
| |
Collapse
|
50
|
Fanti AK, Busch K, Greco A, Wang X, Cirovic B, Shang F, Nizharadze T, Frank L, Barile M, Feyerabend TB, Höfer T, Rodewald HR. Flt3- and Tie2-Cre tracing identifies regeneration in sepsis from multipotent progenitors but not hematopoietic stem cells. Cell Stem Cell 2023; 30:207-218.e7. [PMID: 36652946 DOI: 10.1016/j.stem.2022.12.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 10/04/2022] [Accepted: 12/20/2022] [Indexed: 01/19/2023]
Abstract
In response to infections and stress, hematopoiesis rapidly enhances blood and immune cell production. The stage within the hematopoietic hierarchy that accounts for this regeneration is unclear under natural conditions in vivo. We analyzed by differentiation tracing, using inducible Tie2- or Flt3-driven Cre recombinase, the roles of mouse hematopoietic stem cells (HSCs) and multipotent progenitors (MPPs). During polymicrobial sepsis, HSCs responded transcriptionally and increased their proliferation and cell death, yet HSC differentiation rates remained at steady-state levels. HSC differentiation was also independent from the ablation of various cellular compartments-bleeding, the antibody-mediated ablation of granulocytes or B lymphocytes, and genetic lymphocyte deficiency. By marked contrast, the fate mapping of MPPs in polymicrobial sepsis identified these cells as a major source for accelerated myeloid cell production. The regulation of blood and immune cell homeostasis by progenitors rather than stem cells may ensure a rapid response while preserving the integrity of the HSC population.
Collapse
Affiliation(s)
- Ann-Kathrin Fanti
- Division of Cellular Immunology, German Cancer Research Center, 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Katrin Busch
- Division of Cellular Immunology, German Cancer Research Center, 69120 Heidelberg, Germany; Faculty of Medicine, Heidelberg University, 69120 Heidelberg, Germany
| | - Alessandro Greco
- Division of Theoretical Systems Biology, German Cancer Research Center, 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Xi Wang
- Division of Cellular Immunology, German Cancer Research Center, 69120 Heidelberg, Germany; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Branko Cirovic
- Division of Cellular Immunology, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Fuwei Shang
- Division of Cellular Immunology, German Cancer Research Center, 69120 Heidelberg, Germany; Faculty of Medicine, Heidelberg University, 69120 Heidelberg, Germany
| | - Tamar Nizharadze
- Division of Theoretical Systems Biology, German Cancer Research Center, 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Larissa Frank
- Division of Cellular Immunology, German Cancer Research Center, 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Melania Barile
- Division of Theoretical Systems Biology, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Thorsten B Feyerabend
- Division of Cellular Immunology, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center, 69120 Heidelberg, Germany.
| | - Hans-Reimer Rodewald
- Division of Cellular Immunology, German Cancer Research Center, 69120 Heidelberg, Germany.
| |
Collapse
|