1
|
Ji T, Ye W, Xiao W, Dawson G, Dong Q, Gwenin C. Iridium oxide-modified reference screen-printed electrodes for point-of-care portable electrochemical cortisol detection. Talanta 2024; 280:126776. [PMID: 39216420 DOI: 10.1016/j.talanta.2024.126776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/10/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Cortisol is a well-known stress biomarker; this study focuses on using electrochemical immuno-sensing to measure the concentration of cortisol selectively and sensitively in artificial samples. Anti-cortisol antibodies have been immobilised on polycrystalline Au electrodes via strong covalent thiol bonds, fabricating an electrochemical bio-immunosensor for cortisol detection. IrOx was then anodically electrodeposited as a reference electrode on a commercial screen-printed electrode and electrochemical impedance spectrometry (EIS) studies were used to correlate the electrochemical response to cortisol concentration and the induced changes in charge transfer resistance (Rct). A linear relationship between the Rct and the logarithm of cortisol concentration was found in concentrations ranging from 1 ng/mL to 1 mg/mL with limit of detection at 11.85 pg/mL (32.69 pM). The modification of the reference electrode with iridium oxide has greatly improved the reproducibility of the screen-printed electrode. The sensing system can provide a reliable and sensitive detection approach for cortisol measurements.
Collapse
Affiliation(s)
- Tong Ji
- Xi'an Jiaotong-Liverpool University, School of Science, Department of Chemistry, No. 111 Ren'ai Road, Suzhou Industrial Park, Suzhou, People's Republic of China
| | - Wen Ye
- Xi'an Jiaotong-Liverpool University, School of Science, Department of Chemistry, No. 111 Ren'ai Road, Suzhou Industrial Park, Suzhou, People's Republic of China
| | - Weiyu Xiao
- Xi'an Jiaotong-Liverpool University, School of Science, Department of Chemistry, No. 111 Ren'ai Road, Suzhou Industrial Park, Suzhou, People's Republic of China
| | - Graham Dawson
- Xi'an Jiaotong-Liverpool University, School of Science, Department of Chemistry, No. 111 Ren'ai Road, Suzhou Industrial Park, Suzhou, People's Republic of China
| | - Qiuchen Dong
- Xi'an Jiaotong-Liverpool University, School of Science, Department of Chemistry, No. 111 Ren'ai Road, Suzhou Industrial Park, Suzhou, People's Republic of China.
| | - Christopher Gwenin
- School of Applied Sciences Division of Health Sciences, Abertay University, Bell St, Dundee, DD1 1HG, United Kingdom.
| |
Collapse
|
2
|
Rocha M, Daniels K, Chandrasekaran S, Michopoulos V. Trauma and Posttraumatic Stress Disorder as Important Risk Factors for Gestational Metabolic Dysfunction. Am J Perinatol 2024; 41:1895-1907. [PMID: 38307105 PMCID: PMC11436347 DOI: 10.1055/a-2260-5051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Gestational metabolic diseases adversely impact the health of pregnant persons and their offspring. Pregnant persons of color are impacted disproportionately by gestational metabolic disease, highlighting the need to identify additional risk factors contributing to racial-ethnic pregnancy-related health disparities. Trauma exposure and posttraumatic stress disorder (PTSD) are associated with increased risk for cardiometabolic disorders in nonpregnant persons, making them important factors to consider when identifying contributors to gestational metabolic morbidity and mortality health disparities. Here, we review current literature investigating trauma exposure and posttraumatic stress disorder as psychosocial risk factors for gestational metabolic disorders, inclusive of gestational diabetes, low birth weight and fetal growth restriction, gestational hypertension, and preeclampsia. We also discuss the physiological mechanisms by which trauma and PTSD may contribute to gestational metabolic disorders. Ultimately, understanding the biological underpinnings of how trauma and PTSD, which disproportionately impact people of color, influence risk for gestational metabolic dysfunction is critical to developing therapeutic interventions that reduce complications arising from gestational metabolic disease. KEY POINTS: · Gestational metabolic diseases disproportionately impact the health of pregnant persons of color.. · Trauma and PTSD are associated with increased risk for cardiometabolic disorders in nonpregnant per.. · Trauma and PTSD impact physiological cardiometabolic mechanisms implicated in gestational metabolic..
Collapse
Affiliation(s)
- Mariana Rocha
- Graduate Program in Neuroscience, Emory University, Atlanta, Georgia
| | | | - Suchitra Chandrasekaran
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Vasiliki Michopoulos
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
3
|
Bennett N, Lawrence-Wood E, McFarlane A. Is inflammatory change associated with psychological risk and resilience in high-risk military personnel? BMJ Mil Health 2024; 170:396-401. [PMID: 39043474 DOI: 10.1136/military-2024-002725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/30/2024] [Indexed: 07/25/2024]
Abstract
INTRODUCTION In military populations, the potential for under-reporting of Post-traumatic Stress Disorder (PTSD) symptoms and challenges in recognising early changes can make it difficult to detect an emerging disorder. However, early identification of PTSD symptoms would improve opportunities for intervention, and potentially reduce the likelihood of chronic mental health problems. METHOD This study explored if changes in levels of inflammation, measured by C reactive protein (CRP) and interleukin 6 (IL-6), were associated with the onset of psychological symptoms associated with PTSD. It also examined if changes in inflammation over time contributed to psychological risk and resilience, which was defined by psychological reactivity to deployment-related combat exposures. Participants were special forces personnel who completed psychological self-report questionnaires and had measures of CRP and IL-6 taken pre and post deployment. Regression analysis was used to examine how psychological symptoms predicted change in inflammation, and Analysis of Variance (ANOVA) were used to examine differences between identified subgroups. RESULTS Results identify this population as having high levels of combat and trauma exposures, with low-level psychological symptoms. The results also identified a decrease in CRP and an increase in IL-6 over time. A significant difference in inflammation was identified between subgroups (p<0.05). An association between inflammatory markers and subthreshold symptoms related to anger (p<0.01) and sleep (p<0.05) was also identified. CONCLUSION These preliminary findings suggest inflammatory markers may help to identify adaptive responses post deployment. In addition, low-level increases in inflammatory markers may be associated with subthreshold PTSD symptoms. These findings offer potential insights for prevention, early identification and treatment in military and veteran populations.
Collapse
Affiliation(s)
- Neanne Bennett
- The University of Adelaide Faculty of Health and Medical Sciences, Adelaide, South Australia, Australia
- Department of Defence, Defence People Group, Canberra, Australian Capital Territory, Australia
| | - E Lawrence-Wood
- Phoenix Australia Centre for Post-traumatic Mental Health, Carlton, Victoria, Australia
| | - A McFarlane
- The University of Adelaide Faculty of Health and Medical Sciences, Adelaide, South Australia, Australia
| |
Collapse
|
4
|
Lorkiewicz P, Waszkiewicz N. Viral infections in etiology of mental disorders: a broad analysis of cytokine profile similarities - a narrative review. Front Cell Infect Microbiol 2024; 14:1423739. [PMID: 39206043 PMCID: PMC11349683 DOI: 10.3389/fcimb.2024.1423739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024] Open
Abstract
The recent pandemic caused by the SARS-CoV-2 virus and the associated mental health complications have renewed scholarly interest in the relationship between viral infections and the development of mental illnesses, a topic that was extensively discussed in the previous century in the context of other viruses, such as influenza. The most probable and analyzable mechanism through which viruses influence the onset of mental illnesses is the inflammation they provoke. Both infections and mental illnesses share a common characteristic: an imbalance in inflammatory factors. In this study, we sought to analyze and compare cytokine profiles in individuals infected with viruses and those suffering from mental illnesses. The objective was to determine whether specific viral diseases can increase the risk of specific mental disorders and whether this risk can be predicted based on the cytokine profile of the viral disease. To this end, we reviewed existing literature, constructed cytokine profiles for various mental and viral diseases, and conducted comparative analyses. The collected data indicate that the risk of developing a specific mental illness cannot be determined solely based on cytokine profiles. However, it was observed that the combination of IL-8 and IL-10 is frequently associated with psychotic symptoms. Therefore, to assess the risk of mental disorders in infected patients, it is imperative to consider the type of virus, the mental complications commonly associated with it, the predominant cytokines to evaluate the risk of psychotic symptoms, and additional patient-specific risk factors.
Collapse
Affiliation(s)
- Piotr Lorkiewicz
- Department of Psychiatry, Medical University of Bialystok, Białystok, Poland
| | | |
Collapse
|
5
|
Katrinli S, Wani AH, Maihofer AX, Ratanatharathorn A, Daskalakis NP, Montalvo-Ortiz J, Núñez-Ríos DL, Zannas AS, Zhao X, Aiello AE, Ashley-Koch AE, Avetyan D, Baker DG, Beckham JC, Boks MP, Brick LA, Bromet E, Champagne FA, Chen CY, Dalvie S, Dennis MF, Fatumo S, Fortier C, Galea S, Garrett ME, Geuze E, Grant G, Michael A Hauser, Hayes JP, Hemmings SM, Huber BR, Jajoo A, Jansen S, Kessler RC, Kimbrel NA, King AP, Kleinman JE, Koen N, Koenen KC, Kuan PF, Liberzon I, Linnstaedt SD, Lori A, Luft BJ, Luykx JJ, Marx CE, McLean SA, Mehta D, Milberg W, Miller MW, Mufford MS, Musanabaganwa C, Mutabaruka J, Mutesa L, Nemeroff CB, Nugent NR, Orcutt HK, Qin XJ, Rauch SAM, Ressler KJ, Risbrough VB, Rutembesa E, Rutten BPF, Seedat S, Stein DJ, Stein MB, Toikumo S, Ursano RJ, Uwineza A, Verfaellie MH, Vermetten E, Vinkers CH, Ware EB, Wildman DE, Wolf EJ, Young RM, Zhao Y, van den Heuvel LL, Uddin M, Nievergelt CM, Smith AK, Logue MW. Epigenome-wide association studies identify novel DNA methylation sites associated with PTSD: A meta-analysis of 23 military and civilian cohorts. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.15.24310422. [PMID: 39072012 PMCID: PMC11275670 DOI: 10.1101/2024.07.15.24310422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Background The occurrence of post-traumatic stress disorder (PTSD) following a traumatic event is associated with biological differences that can represent the susceptibility to PTSD, the impact of trauma, or the sequelae of PTSD itself. These effects include differences in DNA methylation (DNAm), an important form of epigenetic gene regulation, at multiple CpG loci across the genome. Moreover, these effects can be shared or specific to both central and peripheral tissues. Here, we aim to identify blood DNAm differences associated with PTSD and characterize the underlying biological mechanisms by examining the extent to which they mirror associations across multiple brain regions. Methods As the Psychiatric Genomics Consortium (PGC) PTSD Epigenetics Workgroup, we conducted the largest cross-sectional meta-analysis of epigenome-wide association studies (EWASs) of PTSD to date, involving 5077 participants (2156 PTSD cases and 2921 trauma-exposed controls) from 23 civilian and military studies. PTSD diagnosis assessments were harmonized following the standardized guidelines established by the PGC-PTSD Workgroup. DNAm was assayed from blood using either Illumina HumanMethylation450 or MethylationEPIC (850K) BeadChips. A common QC pipeline was applied. Within each cohort, DNA methylation was regressed on PTSD, sex (if applicable), age, blood cell proportions, and ancestry. An inverse variance-weighted meta-analysis was performed. We conducted replication analyses in tissue from multiple brain regions, neuronal nuclei, and a cellular model of prolonged stress. Results We identified 11 CpG sites associated with PTSD in the overall meta-analysis (1.44e-09 < p < 5.30e-08), as well as 14 associated in analyses of specific strata (military vs civilian cohort, sex, and ancestry), including CpGs in AHRR and CDC42BPB. Many of these loci exhibit blood-brain correlation in methylation levels and cross-tissue associations with PTSD in multiple brain regions. Methylation at most CpGs correlated with their annotated gene expression levels. Conclusions This study identifies 11 PTSD-associated CpGs, also leverages data from postmortem brain samples, GWAS, and genome-wide expression data to interpret the biology underlying these associations and prioritize genes whose regulation differs in those with PTSD.
Collapse
Affiliation(s)
- Seyma Katrinli
- Emory University, Department of Gynecology and Obstetrics, Atlanta, GA, US
| | - Agaz H Wani
- University of South Florida, Genomics Program, College of Public Health, Tampa, FL, US
| | - Adam X Maihofer
- University of California San Diego, Department of Psychiatry, La Jolla, CA, US
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, US
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, US
| | - Andrew Ratanatharathorn
- Columbia University Mailmain School of Public Health, Department of Epidemiology, New York, NY, US
- Harvard T.H. Chan School of Public Health, Department of Epidemiology, Boston, MA, US
| | - Nikolaos P Daskalakis
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, US
- Harvard Medical School, Department of Psychiatry, Boston, MA, US
- McLean Hospital, Center of Excellence in Depression and Anxiety Disorders, Belmont, MA, US
| | - Janitza Montalvo-Ortiz
- U.S. Department of Veterans Affairs National Center of Posttraumatic Stress Disorder, Clinical Neurosciences Division, West Haven, CT, US
- VA Connecticut Healthcare System, West Haven, CT, US
- Yale School of Medicine, Department of Psychiatry, New Haven, CT, US
| | - Diana L Núñez-Ríos
- U.S. Department of Veterans Affairs National Center of Posttraumatic Stress Disorder, Clinical Neurosciences Division, West Haven, CT, US
- VA Connecticut Healthcare System, West Haven, CT, US
- Yale School of Medicine, Department of Psychiatry, New Haven, CT, US
| | - Anthony S Zannas
- University of North Carolina at Chapel Hill, Carolina Stress Initiative, Chapel Hill, NC, US
- University of North Carolina at Chapel Hill, Department of Genetics, Chapel Hill, NC, US
- University of North Carolina at Chapel Hill, Department of Psychiatry, Chapel Hill, NC, US
- University of North Carolina at Chapel Hill, Institute for Trauma Recovery, Chapel Hill, NC, US
| | - Xiang Zhao
- Boston University School of Public Health, Department of Biostatistics, Boston, MA, US
| | - Allison E Aiello
- Columbia University, Robert N Butler Columbia Aging Center, Department of Epidemiology, New York, NY, US
| | | | - Diana Avetyan
- University of California San Diego, Department of Psychiatry, La Jolla, CA, US
| | - Dewleen G Baker
- University of California San Diego, Department of Psychiatry, La Jolla, CA, US
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, US
- Veterans Affairs San Diego Healthcare System, Psychiatry Service, San Diego, CA, US
| | - Jean C Beckham
- Duke University School of Medicine, Department of Psychiatry and Behavioral Sciences, Durham, NC, US
- Durham VA Health Care System, Research, Durham, NC, US
- VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC), Genetics Research Laboratory, Durham, NC, US
| | - Marco P Boks
- Brain Center University Medical Center Utrecht, Department of Psychiatry, Utrecht, UT, NL
| | - Leslie A Brick
- Alpert Medical School of Brown University, Department of Psychiatry and Human Behavior, Providence, RI, US
| | - Evelyn Bromet
- State University of New York at Stony Brook, Epidemiology Research Group, Stony Brook, NY, US
| | | | - Chia-Yen Chen
- Biogen Inc., Translational Sciences, Cambridge, MA, US
| | - Shareefa Dalvie
- University of Cape Town, Department of Pathology, Cape Town, Western Province, ZA
- University of Cape Town, Division of Human Genetics, Cape Town, Western Province, ZA
| | - Michelle F Dennis
- Duke University School of Medicine, Department of Psychiatry and Behavioral Sciences, Durham, NC, US
- Durham VA Health Care System, Research, Durham, NC, US
- VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC), Genetics Research Laboratory, Durham, NC, US
| | - Segun Fatumo
- MRC/UVRI and London School of Hygiene and Tropical Medicine, The African Computational Genomics (TACG) Research Group, Entebbe, Wakiso, Uganda
| | - Catherine Fortier
- Harvard Medical School, Department of Psychiatry, Boston, MA, US
- VA Boston Healthcare System, TRACTS/GRECC, Boston, MA, US
| | - Sandro Galea
- Boston University School of Public Health, Boston, MA, US
| | - Melanie E Garrett
- Duke University Medical Center, Duke Molecular Physiology Institute, Durham, NC, US
| | - Elbert Geuze
- Netherlands Ministry of Defence, Brain Research and Innovation Centre, Utrecht, UT, NL
- UMC Utrecht Brain Center Rudolf Magnus, Department of Psychiatry, Utrecht, UT, NL
| | - Gerald Grant
- Duke University School of Medicine, Department of Neurosurgery, Durham, NC, US
| | - Michael A Hauser
- Duke University School of Medicine, Department of Medicine, Durham, NC, US
| | - Jasmeet P Hayes
- The Ohio State University, Department of Psychology, Columbus, OH, US
| | - Sian Mj Hemmings
- Stellenbosch University, Faculty of Medicine and Health Sciences, Department of Psychiatry, Cape Town, Western Cape, ZA
- Stellenbosch University, SAMRC Genomics of Brain Disorders Research Unit, Cape Town, Western Cape, ZA
| | - Bertrand Russel Huber
- Boston University School of Medicine, Department of Neurology, Boston, MA, US
- VA Boston Healthcare System, Pathology and Laboratory Medicine, Boston, MA, US
| | - Aarti Jajoo
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, US
- Harvard Medical School, Department of Psychiatry, Boston, MA, US
- McLean Hospital, Belmont, MA, US
| | - Stefan Jansen
- University of Rwanda, College of Medicine and Health Sciences, Kigali, RW
| | - Ronald C Kessler
- Harvard Medical School, Department of Health Care Policy, Boston, MA, US
| | - Nathan A Kimbrel
- Duke University School of Medicine, Department of Psychiatry and Behavioral Sciences, Durham, NC, US
- VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC), Genetics Research Laboratory, Durham, NC, US
- Durham VA Health Care System, Mental Health Service Line, Durham, NC, US
| | - Anthony P King
- The Ohio State University, College of Medicine, Institute for Behavioral Medicine Research, Columbus, OH, US
- The Ohio State University, College of Medicine, Psychiatry & Behavioral Health, Columbus, OH, US
| | - Joel E Kleinman
- Johns Hopkins University School of Medicine, Department of Psychiatry and Behavioral Sciences, Baltimore, MD, US
- Lieber Institute for Brain Development, Baltimore, MD, US
| | - Nastassja Koen
- University of Cape Town, Department of Psychiatry & Mental Health, Cape Town, Western Province, ZA
- University of Cape Town, Neuroscience Institute, Cape Town, Western Province, ZA
- University of Cape Town, SA MRC Unit on Risk & Resilience in Mental Disorders, Cape Town, Western Province, ZA
| | - Karestan C Koenen
- Harvard T.H. Chan School of Public Health, Department of Epidemiology, Boston, MA, US
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, US
- Massachusetts General Hospital, Psychiatric and Neurodevelopmental Genetics Unit (PNGU), Boston, MA, US
| | - Pei-Fen Kuan
- Stony Brook University, Department of Applied Mathematics and Statistics, Stony Brook, NY, US
| | - Israel Liberzon
- Texas A&M University College of Medicine, Department of Psychiatry and Behavioral Sciences, Bryan, TX, US
| | - Sarah D Linnstaedt
- University of North Carolina at Chapel Hill, Department of Anesthesiology, Chapel Hill, NC, US
- University of North Carolina at Chapel Hill, UNC Institute for Trauma Recovery, Chapel Hill, NC, US
| | - Adriana Lori
- Emory University, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, US
| | - Benjamin J Luft
- Stony Brook University, Department of Medicine, Stony Brook, NY, US
| | - Jurjen J Luykx
- Amsterdam University Medical Center, Amsterdam Neuroscience Research Institute, Mood, Anxiety, Psychosis, Stress & Sleep Program, Amsterdam, NH, NL
- Amsterdam University Medical Center, Amsterdam Public Health Research Institute, Mental Health Program, Amsterdam, NH, NL
- Amsterdam University Medical Center, Department of Psychiatry, Amsterdam, NH, NL
| | - Christine E Marx
- Duke University School of Medicine, Department of Psychiatry and Behavioral Sciences, Durham, NC, US
- Durham VA Health Care System, Durham, NC, US
- VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC), Durham, NC, US
| | - Samuel A McLean
- UNC Institute for Trauma Recovery, Department of Psychiatry, Chapel Hill, NC, US
| | - Divya Mehta
- Queensland University of Technology, Centre for Genomics and Personalised Health, Kelvin Grove, QLD, AU
- Queensland University of Technology, School of Biomedical Sciences, Kelvin Grove, QLD, AU
| | | | - Mark W Miller
- Boston University School of Medicine, Psychiatry, Biomedical Genetics, Boston, MA, US
- VA Boston Healthcare System, National Center for PTSD, Boston, MA, US
| | - Mary S Mufford
- University of Cape Town, Department of Psychiatry and Mental Health, Cape Town, Western Province, ZA
| | - Clarisse Musanabaganwa
- Rwanda Biomedical Center, Research Innovation and Data Science Division, Kigali, RW
- University of Rwanda, Center of Human Genetics, Kigali, RW
| | - Jean Mutabaruka
- University of Rwanda, Department of Clinical Psychology, Huye, RW
| | - Leon Mutesa
- University of Rwanda, College of Medicine and Health Sciences, Kigali, RW
- University of Rwanda, Center for Human Genetics, Kigali, RW
| | - Charles B Nemeroff
- The University of Texas at Austin, Department of Psychology, Austin, TX, US
- The University of Texas at Austin, Department of Psychiatry and Behavioral Sciences, Austin, TX, US
| | - Nicole R Nugent
- Alpert Brown Medical School, Department of Emergency Medicine, Providence, RI, US
- Alpert Brown Medical School, Department of Pediatrics, Providence, RI, US
- Alpert Brown Medical School, Department of Psychiatry and Human Behavior, Providence, RI, US
| | - Holly K Orcutt
- Northern Illinois University, Department of Psychology, DeKalb, IL, US
| | - Xue-Jun Qin
- Duke University, Duke Molecular Physiology Institute, Durham, NC, US
| | - Sheila A M Rauch
- Emory University, Department of Psychiatry & Behavioral Sciences, Atlanta, GA, US
- Joseph Maxwell Cleland Atlanta Veterans Affairs Healthcare System, Atlanta, GA, US
| | - Kerry J Ressler
- Harvard Medical School, Department of Psychiatry, Boston, MA, US
- McLean Hospital, Belmont, MA, US
- Emory University, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, US
| | - Victoria B Risbrough
- University of California San Diego, Department of Psychiatry, La Jolla, CA, US
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, US
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, US
| | | | - Bart P F Rutten
- Maastricht Universitair Medisch Centrum, School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht, Limburg, NL
| | - Soraya Seedat
- Stellenbosch University, Faculty of Medicine and Health Sciences, Department of Psychiatry, Cape Town, Western Cape, ZA
- Stellenbosch University, SA MRC Extramural Genomics of Brain Disorders Research Unit, Cape Town, Western Cape, ZA
| | - Dan J Stein
- University of Cape Town, Department of Psychiatry & Mental Health, Cape Town, Western Province, ZA
- University of Cape Town, Neuroscience Institute, Cape Town, Western Province, ZA
- University of Cape Town, SA MRC Unit on Risk & Resilience in Mental Disorders, Cape Town, Western Province, ZA
| | - Murray B Stein
- University of California San Diego, Department of Psychiatry, La Jolla, CA, US
- Veterans Affairs San Diego Healthcare System, Psychiatry Service, San Diego, CA, US
- University of California San Diego, School of Public Health, La Jolla, CA, US
| | - Sylvanus Toikumo
- Stellenbosch University, Faculty of Medicine and Health Sciences, Department of Psychiatry, Cape Town, Western Cape, ZA
- Stellenbosch University, SA MRC Genomics of Brain Disorders Research Unit, Cape Town, Western Cape, ZA
| | - Robert J Ursano
- Uniformed Services University, Center for the Study of Traumatic Stress, Department of Psychiatry, Bethesda, Maryland, US
| | - Annette Uwineza
- University of Rwanda, College of Medicine and Health Sciences, Kigali, Rwanda
| | - Mieke H Verfaellie
- Boston University School of Medicine, Department of Psychiatry, Boston, MA, US
- VA Boston Healthcare System, Memory Disorders Research Center, Boston, MA, US
| | - Eric Vermetten
- Leiden University Medical Center, Department of Psychiatry, Leiden, ZH, NL
- New York University School of Medicine, Department of Psychiatry, New York, NY, US
| | - Christiaan H Vinkers
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam, Holland, NL
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam, Holland, NL
- Amsterdam University Medical Center, Amsterdam Neuroscience Research Institute, Mood, Anxiety, Psychosis, Stress & Sleep Program, Amsterdam, Holland, NL
| | - Erin B Ware
- University of Michigan, Survey Research Center, Ann Arbor, MI, US
| | - Derek E Wildman
- University of South Florida, College of Public Health, Tampa, FL, US
- University of South Florida, Genomics Program, Tampa, FL, US
| | - Erika J Wolf
- VA Boston Healthcare System, National Center for PTSD, Boston, MA, US
- Boston University Chobanian & Avedisian School of Medicine, Department of Psychiatry, Boston, MA, US
| | - Ross McD Young
- Queensland University of Technology, School of Clinical Sciences, Kelvin Grove, QLD, AU
- University of the Sunshine Coast, The Chancellory, Sippy Downs, QLD, AU
| | - Ying Zhao
- University of North Carolina at Chapel Hill, Institute for Trauma Recovery, Chapel Hill, NC, US
- University of North Carolina at Chapel Hill, Department of Anesthesiology, Chapel Hill, NC, US
| | - Leigh L van den Heuvel
- Stellenbosch University, Faculty of Medicine and Health Sciences, Department of Psychiatry, Cape Town, Western Cape, ZA
- Stellenbosch University, SA MRC Extramural Genomics of Brain Disorders Research Unit, Cape Town, Western Cape, ZA
| | - Monica Uddin
- University of South Florida College of Public Health, Genomics Program, Tampa, FL, US
| | - Caroline M Nievergelt
- University of California San Diego, Department of Psychiatry, La Jolla, CA, US
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, US
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, US
| | - Alicia K Smith
- Emory University, Department of Gynecology and Obstetrics, Atlanta, GA, US
- Emory University, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, US
- Emory University, Department of Human Genetics, Atlanta, GA, US
| | - Mark W Logue
- Boston University School of Public Health, Department of Biostatistics, Boston, MA, US
- Boston University School of Medicine, Psychiatry, Biomedical Genetics, Boston, MA, US
- VA Boston Healthcare System, National Center for PTSD, Boston, MA, US
| |
Collapse
|
6
|
Kalisch R, Russo SJ, Müller MB. Neurobiology and systems biology of stress resilience. Physiol Rev 2024; 104:1205-1263. [PMID: 38483288 PMCID: PMC11381009 DOI: 10.1152/physrev.00042.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 05/16/2024] Open
Abstract
Stress resilience is the phenomenon that some people maintain their mental health despite exposure to adversity or show only temporary impairments followed by quick recovery. Resilience research attempts to unravel the factors and mechanisms that make resilience possible and to harness its insights for the development of preventative interventions in individuals at risk for acquiring stress-related dysfunctions. Biological resilience research has been lagging behind the psychological and social sciences but has seen a massive surge in recent years. At the same time, progress in this field has been hampered by methodological challenges related to finding suitable operationalizations and study designs, replicating findings, and modeling resilience in animals. We embed a review of behavioral, neuroimaging, neurobiological, and systems biological findings in adults in a critical methods discussion. We find preliminary evidence that hippocampus-based pattern separation and prefrontal-based cognitive control functions protect against the development of pathological fears in the aftermath of singular, event-type stressors [as found in fear-related disorders, including simpler forms of posttraumatic stress disorder (PTSD)] by facilitating the perception of safety. Reward system-based pursuit and savoring of positive reinforcers appear to protect against the development of more generalized dysfunctions of the anxious-depressive spectrum resulting from more severe or longer-lasting stressors (as in depression, generalized or comorbid anxiety, or severe PTSD). Links between preserved functioning of these neural systems under stress and neuroplasticity, immunoregulation, gut microbiome composition, and integrity of the gut barrier and the blood-brain barrier are beginning to emerge. On this basis, avenues for biological interventions are pointed out.
Collapse
Affiliation(s)
- Raffael Kalisch
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Scott J Russo
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Marianne B Müller
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
7
|
Rhein C, Apelt I, Werner F, Schäflein E, Adler W, Reichel M, Schug C, Morawa E, Erim Y. Paradoxical effect of anti-inflammatory drugs on IL-6 mRNA expression in patients with PTSD during treatment. J Neural Transm (Vienna) 2024; 131:813-821. [PMID: 38613673 PMCID: PMC11199235 DOI: 10.1007/s00702-024-02770-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 03/23/2024] [Indexed: 04/15/2024]
Abstract
The pathophysiology of posttraumatic stress disorder (PTSD) is associated with the activation of the innate immune system, including cytokines like interleukin 6 (IL-6). However, the role of IL-6 in the etiology and treatment of PTSD still remains elusive. We conducted a prospective controlled trial to investigate the development of IL-6 during psychosomatic treatment in individuals with PTSD in comparison with individuals without PTSD. We assessed IL-6 mRNA expression before and after 2 months of psychosomatic treatment in individuals with and without PTSD. Severities of PTSD and depressive symptoms were assessed in parallel. Linear mixed regression was applied for statistical analysis, including the factors diagnosis PTSD and pre-post treatment after subgrouping for intake of anti-inflammatory drugs. The development of IL-6 mRNA expression during treatment was affected by the use of anti-inflammatory drugs. In the subgroup without intake of anti-inflammatory drugs, no significant statistical treatment effect in individuals with and without PTSD emerged. In the subgroup of individuals taking anti-inflammatory drugs, a significant interaction effect of the factors pre-post treatment and diagnosis PTSD was observed. Whereas IL-6 mRNA expression in individuals without PTSD decreased according to amelioration of symptoms, IL-6 mRNA expression in individuals with PTSD increased significantly during treatment, in opposite direction to symptom severity. Anti-inflammatory drugs might affect IL-6 mRNA expression in individuals with PTSD in a paradoxical way. This study offers a further piece of evidence that IL-6 could be involved in the pathophysiology of PTSD and PTSD-specific immunologic molecular mechanisms.
Collapse
Affiliation(s)
- Cosima Rhein
- Department of Psychosomatic Medicine and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Hartmannstr. 14, 91054, Erlangen, Germany.
| | - Isabella Apelt
- Department of Psychosomatic Medicine and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Hartmannstr. 14, 91054, Erlangen, Germany
| | - Franziska Werner
- Department of Psychosomatic Medicine and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Hartmannstr. 14, 91054, Erlangen, Germany
| | - Eva Schäflein
- Department of Psychosomatic Medicine and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Hartmannstr. 14, 91054, Erlangen, Germany
- Department of Psychotherapy and Psychosomatic Medicine, Faculty of Medicine, Technische Universität Dresden (TUD), Dresden, Germany
| | - Werner Adler
- Department of Psychosomatic Medicine and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Hartmannstr. 14, 91054, Erlangen, Germany
- Institute of Medical Informatics, Biometry and Epidemiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Martin Reichel
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Caterina Schug
- Department of Psychosomatic Medicine and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Hartmannstr. 14, 91054, Erlangen, Germany
| | - Eva Morawa
- Department of Psychosomatic Medicine and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Hartmannstr. 14, 91054, Erlangen, Germany
| | - Yesim Erim
- Department of Psychosomatic Medicine and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Hartmannstr. 14, 91054, Erlangen, Germany
| |
Collapse
|
8
|
Avgana H, Toledano RS, Akirav I. Examining the Role of Oxytocinergic Signaling and Neuroinflammatory Markers in the Therapeutic Effects of MDMA in a Rat Model for PTSD. Pharmaceuticals (Basel) 2024; 17:846. [PMID: 39065697 PMCID: PMC11279644 DOI: 10.3390/ph17070846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
MDMA-assisted psychotherapy has shown potential as an effective treatment for post-traumatic stress disorder (PTSD). Preclinical studies involving rodents have demonstrated that MDMA can facilitate the extinction of fear memories. It has been noted that MDMA impacts oxytocin neurons and pro-inflammatory cytokines. Thus, the aim of this study was to explore the role of oxytocinergic signaling and neuroinflammatory markers in the therapeutic effects of MDMA. To achieve this, male rats were subjected to a model of PTSD involving exposure to shock and situational reminders. MDMA was microinjected into the medial prefrontal cortex (mPFC) before extinction training, followed by behavioral tests assessing activity levels, anxiety, and social function. Our findings indicate that MDMA treatment facilitated fear extinction and mitigated the shock-induced increase in freezing, as well as deficits in social behavior. Shock exposure led to altered expression of the gene coding for OXT-R and neuroinflammation in the mPFC and basolateral amygdala (BLA), which were restored by MDMA treatment. Importantly, the OXT-R antagonist L-368,899 prevented MDMA's therapeutic effects on extinction and freezing behavior. In conclusion, MDMA's therapeutic effects in the PTSD model are associated with alterations in OXT-R expression and neuroinflammation, and MDMA's effects on extinction and anxiety may be mediated by oxytocinergic signaling.
Collapse
Affiliation(s)
- Haron Avgana
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa 3498838, Israel; (H.A.); (R.S.T.)
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| | - Roni Shira Toledano
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa 3498838, Israel; (H.A.); (R.S.T.)
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| | - Irit Akirav
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa 3498838, Israel; (H.A.); (R.S.T.)
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
9
|
Daskalakis NP, Iatrou A, Chatzinakos C, Jajoo A, Snijders C, Wylie D, DiPietro CP, Tsatsani I, Chen CY, Pernia CD, Soliva-Estruch M, Arasappan D, Bharadwaj RA, Collado-Torres L, Wuchty S, Alvarez VE, Dammer EB, Deep-Soboslay A, Duong DM, Eagles N, Huber BR, Huuki L, Holstein VL, Logue ΜW, Lugenbühl JF, Maihofer AX, Miller MW, Nievergelt CM, Pertea G, Ross D, Sendi MSE, Sun BB, Tao R, Tooke J, Wolf EJ, Zeier Z, Berretta S, Champagne FA, Hyde T, Seyfried NT, Shin JH, Weinberger DR, Nemeroff CB, Kleinman JE, Ressler KJ. Systems biology dissection of PTSD and MDD across brain regions, cell types, and blood. Science 2024; 384:eadh3707. [PMID: 38781393 PMCID: PMC11203158 DOI: 10.1126/science.adh3707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/05/2024] [Indexed: 05/25/2024]
Abstract
The molecular pathology of stress-related disorders remains elusive. Our brain multiregion, multiomic study of posttraumatic stress disorder (PTSD) and major depressive disorder (MDD) included the central nucleus of the amygdala, hippocampal dentate gyrus, and medial prefrontal cortex (mPFC). Genes and exons within the mPFC carried most disease signals replicated across two independent cohorts. Pathways pointed to immune function, neuronal and synaptic regulation, and stress hormones. Multiomic factor and gene network analyses provided the underlying genomic structure. Single nucleus RNA sequencing in dorsolateral PFC revealed dysregulated (stress-related) signals in neuronal and non-neuronal cell types. Analyses of brain-blood intersections in >50,000 UK Biobank participants were conducted along with fine-mapping of the results of PTSD and MDD genome-wide association studies to distinguish risk from disease processes. Our data suggest shared and distinct molecular pathology in both disorders and propose potential therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Nikolaos P. Daskalakis
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Artemis Iatrou
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Chris Chatzinakos
- McLean Hospital; Belmont, MA, 02478, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, 11203, USA
- VA New York Harbor Healthcare System, Brooklyn, NY, 11209, USA
| | - Aarti Jajoo
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Clara Snijders
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Dennis Wylie
- Center for Biomedical Research Support, The University of Texas at Austin; Austin, TX, 78712, USA
| | - Christopher P. DiPietro
- McLean Hospital; Belmont, MA, 02478, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Ioulia Tsatsani
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
- Department of Psychiatry and Neuropsychology, School for Mental Health, and Neuroscience (MHeNs), Maastricht University, Maastricht, 6229 ER, The Netherlands
| | | | - Cameron D. Pernia
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Marina Soliva-Estruch
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
- Department of Psychiatry and Neuropsychology, School for Mental Health, and Neuroscience (MHeNs), Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - Dhivya Arasappan
- Center for Biomedical Research Support, The University of Texas at Austin; Austin, TX, 78712, USA
| | - Rahul A. Bharadwaj
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Leonardo Collado-Torres
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Stefan Wuchty
- Departments of Computer Science, University of Miami, Miami, FL, 33146, USA
- Department of Biology, University of Miami, Miami, FL, 33146, USA
| | - Victor E. Alvarez
- Department of Neurology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
- VA Bedford Healthcare System, Bedford, MA, 01730, USA
- National Posttraumatic Stress Disorder Brain Bank, VA Boston Healthcare System, Boston, MA, 02130, USA
| | - Eric B Dammer
- Department of Biochemistry, Center for Neurodegenerative Disease, Emory School of Medicine; Atlanta GA, 30329, USA
| | - Amy Deep-Soboslay
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Duc M. Duong
- Department of Biochemistry, Center for Neurodegenerative Disease, Emory School of Medicine; Atlanta GA, 30329, USA
| | - Nick Eagles
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Bertrand R. Huber
- Department of Neurology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
- National Posttraumatic Stress Disorder Brain Bank, VA Boston Healthcare System, Boston, MA, 02130, USA
| | - Louise Huuki
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Vincent L Holstein
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Μark W. Logue
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, 02130, USA
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
- Department of Biomedical Genetics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Justina F. Lugenbühl
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
- Department of Psychiatry and Neuropsychology, School for Mental Health, and Neuroscience (MHeNs), Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - Adam X. Maihofer
- Department of Psychiatry, University of California San Diego; La Jolla, CA, 92093, USA
- Center for Excellence in Stress and Mental Health, Veterans Affairs San Diego Healthcare System; San Diego, CA, 92161, USA
- Research Service, Veterans Affairs San Diego Healthcare System; San Diego, CA, 92161, USA
| | - Mark W. Miller
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, 02130, USA
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Caroline M Nievergelt
- Department of Psychiatry, University of California San Diego; La Jolla, CA, 92093, USA
- Center for Excellence in Stress and Mental Health, Veterans Affairs San Diego Healthcare System; San Diego, CA, 92161, USA
- Research Service, Veterans Affairs San Diego Healthcare System; San Diego, CA, 92161, USA
| | - Geo Pertea
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Deanna Ross
- Department of Psychology, University of Texas at Austin; Austin, TX, 78712, USA
| | - Mohammad S. E Sendi
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | | | - Ran Tao
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - James Tooke
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Erika J. Wolf
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, 02130, USA
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Zane Zeier
- Department of Psychiatry & Behavioral Sciences, Center for Therapeutic Innovation, University of Miami Miller School of Medicine; Miami, FL, 33136, USA
| | | | - Sabina Berretta
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | | | - Thomas Hyde
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
| | - Nicholas T. Seyfried
- Department of Biochemistry, Center for Neurodegenerative Disease, Emory School of Medicine; Atlanta GA, 30329, USA
| | - Joo Heon Shin
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
| | - Daniel R. Weinberger
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
| | - Charles B. Nemeroff
- Department of Psychology, University of Texas at Austin; Austin, TX, 78712, USA
- Department of Psychiatry and Behavioral Sciences, University of Texas at Austin; Austin, TX, 78712, USA
| | - Joel E. Kleinman
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
| | - Kerry J. Ressler
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
| |
Collapse
|
10
|
Maihofer AX, Ratanatharathorn A, Hemmings SMJ, Costenbader KH, Michopoulos V, Polimanti R, Rothbaum AO, Seedat S, Mikita EA, Smith AK, Salem RM, Shaffer RA, Wu T, Sebat J, Ressler KJ, Stein MB, Koenen KC, Wolf EJ, Sumner JA, Nievergelt CM. Effects of genetically predicted posttraumatic stress disorder on autoimmune phenotypes. Transl Psychiatry 2024; 14:172. [PMID: 38561342 PMCID: PMC10984931 DOI: 10.1038/s41398-024-02869-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 02/21/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Observational studies suggest that posttraumatic stress disorder (PTSD) increases risk for various autoimmune diseases. Insights into shared biology and causal relationships between these diseases may inform intervention approaches to PTSD and co-morbid autoimmune conditions. We investigated the shared genetic contributions and causal relationships between PTSD, 18 autoimmune diseases, and 3 immune/inflammatory biomarkers. Univariate MiXeR was used to contrast the genetic architectures of phenotypes. Genetic correlations were estimated using linkage disequilibrium score regression. Bi-directional, two-sample Mendelian randomization (MR) was performed using independent, genome-wide significant single nucleotide polymorphisms; inverse variance weighted and weighted median MR estimates were evaluated. Sensitivity analyses for uncorrelated (MR PRESSO) and correlated horizontal pleiotropy (CAUSE) were also performed. PTSD was considerably more polygenic (10,863 influential variants) than autoimmune diseases (median 255 influential variants). However, PTSD evidenced significant genetic correlation with nine autoimmune diseases and three inflammatory biomarkers. PTSD had putative causal effects on autoimmune thyroid disease (p = 0.00009) and C-reactive protein (CRP) (p = 4.3 × 10-7). Inferences were not substantially altered by sensitivity analyses. Additionally, the PTSD-autoimmune thyroid disease association remained significant in multivariable MR analysis adjusted for genetically predicted inflammatory biomarkers as potential mechanistic pathway variables. No autoimmune disease had a significant causal effect on PTSD (all p values > 0.05). Although causal effect models were supported for associations of PTSD with CRP, shared pleiotropy was adequate to explain a putative causal effect of CRP on PTSD (p = 0.18). In summary, our results suggest a significant genetic overlap between PTSD, autoimmune diseases, and biomarkers of inflammation. PTSD has a putative causal effect on autoimmune thyroid disease, consistent with existing epidemiologic evidence. A previously reported causal effect of CRP on PTSD is potentially confounded by shared genetics. Together, results highlight the nuanced links between PTSD, autoimmune disorders, and associated inflammatory signatures, and suggest the importance of targeting related pathways to protect against disease and disability.
Collapse
Affiliation(s)
- Adam X Maihofer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA.
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, USA.
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.
| | - Andrew Ratanatharathorn
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Sian M J Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, Western Cape, South Africa
- South African Medical Research Council/Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Karen H Costenbader
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Vasiliki Michopoulos
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Renato Polimanti
- VA Connecticut Healthcare Center, West Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Alex O Rothbaum
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
- Department of Research and Outcomes, Skyland Trail, Atlanta, GA, USA
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, Western Cape, South Africa
- South African Medical Research Council/Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Elizabeth A Mikita
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Alicia K Smith
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
- Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, USA
| | - Rany M Salem
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, USA
| | - Richard A Shaffer
- Department of Epidemiology and Health Sciences, Naval Health Research Center, San Diego, CA, USA
| | - Tianying Wu
- Division of Epidemiology and Biostatistics, School of Public Health, San Diego State University, San Diego, CA, USA
- Moores Cancer Center, University of California, San Diego, San Diego, CA, USA
| | - Jonathan Sebat
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Kerry J Ressler
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Murray B Stein
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, USA
| | - Karestan C Koenen
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Erika J Wolf
- VA Boston Healthcare System, National Center for PTSD, Boston, MA, USA
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jennifer A Sumner
- Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA
| | - Caroline M Nievergelt
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
11
|
Knox D, Parikh V. Basal forebrain cholinergic systems as circuits through which traumatic stress disrupts emotional memory regulation. Neurosci Biobehav Rev 2024; 159:105569. [PMID: 38309497 PMCID: PMC10948307 DOI: 10.1016/j.neubiorev.2024.105569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Contextual and spatial systems facilitate changes in emotional memory regulation brought on by traumatic stress. Cholinergic basal forebrain (chBF) neurons provide input to contextual/spatial systems and although chBF neurons are important for emotional memory, it is unknown how they contribute to the traumatic stress effects on emotional memory. Clusters of chBF neurons that project to the prefrontal cortex (PFC) modulate fear conditioned suppression and passive avoidance, while clusters of chBF neurons that project to the hippocampus (Hipp) and PFC (i.e. cholinergic medial septum and diagonal bands of Broca (chMS/DBB neurons) are critical for fear extinction. Interestingly, neither Hipp nor PFC projecting chMS/DBB neurons are critical for fear extinction. The retrosplenial cortex (RSC) is a contextual/spatial memory system that receives input from chMS/DBB neurons, but whether this chMS/DBB-RSC circuit facilitates traumatic stress effects on emotional memory remain unexplored. Traumatic stress leads to neuroinflammation and the buildup of reactive oxygen species. These two molecular processes may converge to disrupt chBF circuits enhancing the impact of traumatic stress on emotional memory.
Collapse
Affiliation(s)
- Dayan Knox
- Department of Psychological and Brain Sciences, Behavioral Neuroscience Program, University of Delaware, Newark, DE, USA.
| | - Vinay Parikh
- Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA, USA
| |
Collapse
|
12
|
Petakh P, Oksenych V, Kamyshna I, Boisak I, Lyubomirskaya K, Kamyshnyi O. Exploring the interplay between posttraumatic stress disorder, gut microbiota, and inflammatory biomarkers: a comprehensive meta-analysis. Front Immunol 2024; 15:1349883. [PMID: 38410510 PMCID: PMC10895958 DOI: 10.3389/fimmu.2024.1349883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/29/2024] [Indexed: 02/28/2024] Open
Abstract
Introduction Posttraumatic stress disorder (PTSD) is the most common mental health disorder to develop following exposure to trauma. Studies have reported conflicting results regarding changes in immune biomarkers and alterations in the abundance of bacterial taxa and microbial diversity in patients with PTSD. Aim The purpose of this meta-analysis is to summarize existing studies examining gut microbiota characteristics and changes in immune biomarkers in patients with PTSD. Methods Relevant studies were systematically searched in PubMed, Scopus, and Embase, published in English between January 1, 1960, and December 1, 2023. The outcomes included changes in abundance and diversity in gut microbiota (gut microbiota part) and changes in immune biomarkers (immune part). Results The meta-analysis included a total of 15 studies, with 9 focusing on changes in inflammatory biomarkers and 6 focusing on changes in gut microbiota composition in patients with PTSD. No differences were observed between groups for all inflammatory biomarkers (P≥0.05). Two of the six studies found that people with PTSD had less alpha diversity. However, the overall Standardized Mean Difference (SMD) for the Shannon Diversity Index was not significant (SMD 0.27, 95% CI -0.62-0.609, p = 0.110). Regarding changes in abundance, in two of the studies, a significant decrease in Lachnospiraceae bacteria was observed. Conclusion This meta-analysis provides a comprehensive overview of gut microbiota characteristics in PTSD, suggesting potential associations with immune dysregulation. Future research should address study limitations, explore causal relationships, and consider additional factors influencing immune function in individuals with PTSD. Systematic review registration https://www.crd.york.ac.uk, identifier CRD42023476590.
Collapse
Affiliation(s)
- Pavlo Petakh
- Department of Biochemistry and Pharmacology, Uzhhorod National University, Uzhhorod, Ukraine
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Iryna Kamyshna
- Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Iryna Boisak
- Department of Childhood Diseases, Uzhhorod National University, Uzhhorod, Ukraine
| | - Katerina Lyubomirskaya
- Department of Obstetrics and Gynecology, Zaporizhzhia State Medical and Pharmaceuticals University, Zaporizhzhia, Ukraine
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| |
Collapse
|
13
|
Boyle SH, Upchurch J, Gifford EJ, Redding TS, Hauser ER, Malhotra D, Press A, Sims KJ, Williams CD. Military exposures and Gulf War illness in veterans with and without posttraumatic stress disorder. J Trauma Stress 2024; 37:80-91. [PMID: 37997023 DOI: 10.1002/jts.22994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 11/25/2023]
Abstract
Gulf War illness (GWI) is a chronic multisymptom disorder of unknown etiology that is believed to be caused by neurotoxicant exposure experienced during deployment to the Gulf War. Posttraumatic stress disorder (PTSD) covaries with GWI and is believed to play a role in GWI symptoms. The present study examined the association between self-reported military exposures and GWI, stratified by PTSD status, in veterans from the Gulf War Era Cohort and Biorepository who were deployed to the Persian Gulf during the war. Participants self-reported current GWI and PTSD symptoms as well as military exposures (e.g., pyridostigmine [PB] pills, pesticides/insecticides, combat, chemical attacks, and oil well fires) experienced during the Gulf War. Deployed veterans' (N = 921) GWI status was ascertained using the Centers for Disease Control and Prevention definition. Individuals who met the GWI criteria were stratified by PTSD status, yielding three groups: GWI-, GWI+/PTSD-, and GWI+/PTSD+. Multivariable logistic regression, adjusted for covariates, was used to examine associations between GWI/PTSD groups and military exposures. Apart from insect bait use, the GWI+/PTSD+ group had higher odds of reporting military exposures than the GWI+/PTSD- group, adjusted odds ratio (aOR) = 2.15, 95% CI [1.30, 3.56]-aOR = 6.91, 95% CI [3.39, 14.08]. Except for PB pills, the GWI+/PTSD- group had a higher likelihood of reporting military exposures than the GWI- group, aOR = 2.03, 95% CI [1.26, 3.26]-aOR = 4.01, 95% CI [1.57, 10.25]. These findings are consistent with roles for both PTSD and military exposures in the etiology of GWI.
Collapse
Affiliation(s)
- Stephen H Boyle
- Cooperative Studies Program Epidemiology Center, Durham VA Medical Center, Durham VA Health Care System, Durham, North Carolina, USA
| | - Julie Upchurch
- Cooperative Studies Program Epidemiology Center, Durham VA Medical Center, Durham VA Health Care System, Durham, North Carolina, USA
| | - Elizabeth J Gifford
- Cooperative Studies Program Epidemiology Center, Durham VA Medical Center, Durham VA Health Care System, Durham, North Carolina, USA
- Center for Child and Family Policy, Duke Margolis Center for Health Policy, Duke University Sanford School of Public Policy, Durham, North Carolina, USA
| | - Thomas S Redding
- Cooperative Studies Program Epidemiology Center, Durham VA Medical Center, Durham VA Health Care System, Durham, North Carolina, USA
| | - Elizabeth R Hauser
- Cooperative Studies Program Epidemiology Center, Durham VA Medical Center, Durham VA Health Care System, Durham, North Carolina, USA
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Duke Molecular Physiology Institute, Durham, North Carolina, USA
| | | | - Ashlyn Press
- Cooperative Studies Program Epidemiology Center, Durham VA Medical Center, Durham VA Health Care System, Durham, North Carolina, USA
| | - Kellie J Sims
- Cooperative Studies Program Epidemiology Center, Durham VA Medical Center, Durham VA Health Care System, Durham, North Carolina, USA
| | - Christina D Williams
- Cooperative Studies Program Epidemiology Center, Durham VA Medical Center, Durham VA Health Care System, Durham, North Carolina, USA
| |
Collapse
|
14
|
Chen XD, Wei JX, Wang HY, Peng YY, Tang C, Ding Y, Li S, Long ZY, Lu XM, Wang YT. Effects and mechanisms of salidroside on the behavior of SPS-induced PTSD rats. Neuropharmacology 2023; 240:109728. [PMID: 37742716 DOI: 10.1016/j.neuropharm.2023.109728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a complex mental disorder, closely associated with stress and traumatic events. Salidroside (Sal) has been reported to possess neuroprotective effects. However, the behavioral effects and mechanisms of Sal on PTSD remain unknown. In this study, we utilized a rat model of PTSD induced by single prolonged stress (SPS) and administered Sal intraperitoneally (25, 50, 75 mg/kg/d) for 14 days. We then examined the behavioral effects and underlying mechanisms of Sal on SPS-induced PTSD rats. Our findings demonstrated that Sal alleviated anxiety-like behavior and spatial learning and memory impairment in SPS-induced PTSD rats. Furthermore, Sal treatment preserved the histomorphology of the hippocampal region. It was observed that Sal protected against hippocampal neuronal apoptosis in PTSD rats by reducing the number of TUNEL-positive cells and modulating apoptosis-related proteins (Bcl-2 and Bax). Additionally, Sal inhibited the activation of the NF-κB/iNOS/COX-2 signaling pathway in the hippocampus of PTSD rats, thereby suppressing the release of inflammatory factors (TNF-α and IL-1β) and the activation of microglia. Notably, Sal increased the expression of synapse-associated proteins PSD95 and Synapsin I in the hippocampus, while also enhancing dendritic density in the region. In conclusion, our results demonstrated that Sal could attenuate SPS-induced PTSD-like behaviors by inhibiting hippocampal neuronal apoptosis, enhancing hippocampal synaptic plasticity, and reducing neuroinflammatory responses. These findings may provide a foundation for the potential clinical application of Sal in the treatment of PTSD.
Collapse
Affiliation(s)
- Xing-Dong Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China; College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Jing-Xiang Wei
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Hai-Yan Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yu-Yuan Peng
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Can Tang
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yang Ding
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Sen Li
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Zai-Yun Long
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiu-Min Lu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
| | - Yong-Tang Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
15
|
Kuring JK, Mathias JL, Ward L, Tachas G. Inflammatory markers in persons with clinically-significant depression, anxiety or PTSD: A systematic review and meta-analysis. J Psychiatr Res 2023; 168:279-292. [PMID: 37931509 DOI: 10.1016/j.jpsychires.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/30/2023] [Accepted: 10/06/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Depression, anxiety and PTSD appear to be risk factors for dementia, but it is unclear whether they are causal or prodromal. The inflammatory-mediated neurodegeneration hypothesis suggests a causal link, proposing that mental illness is associated with an inflammatory response which, in turn, triggers neurodegenerative changes that lead to dementia. Existing meta-analyses have yet to examine inflammatory markers in depression, anxiety or PTSD with the view to exploring the inflammatory-mediated neurodegeneration hypothesis. The current meta-analysis therefore examined whether: a) depression, anxiety and PTSD are individually associated with inflammation, independently of comorbid mental illnesses and physical health problems with known inflammatory responses, and b) there are any similarities in the inflammatory profiles of these disorders in order to provide a basis for exploring inflammation in people with dementia who have a history of clinically-significant anxiety, depression or PTSD. METHODS PubMed, EMBASE, PsycINFO and CINAHL searches identified 64 eligible studies. RESULTS Depression is associated with an inflammatory response, with tentative evidence to suggest anxiety and PTSD are also associated with inflammation. However, the specific response may differ across these disorders. LIMITATIONS The data for anxiety, PTSD and multiple inflammatory markers were limited. CONCLUSIONS Depression, anxiety, and PTSD each appear to be associated with an inflammatory response in persons who do not have comorbid mental or physical health problems that are known to be associated with inflammation. Whether this inflammatory response underlies the increased risk of dementia in persons with a history of depression and anxiety, and possibly PTSD, remains to be determined.
Collapse
Affiliation(s)
- J K Kuring
- Faculty of Health & Medical Sciences, University of Adelaide, Adelaide, Australia
| | - J L Mathias
- Faculty of Health & Medical Sciences, University of Adelaide, Adelaide, Australia.
| | - L Ward
- Faculty of Health & Medical Sciences, University of Adelaide, Adelaide, Australia
| | - G Tachas
- Antisense Therapeutics Ltd, Melbourne, Australia
| |
Collapse
|
16
|
Ke S, Hartmann J, Ressler KJ, Liu YY, Koenen KC. The emerging role of the gut microbiome in posttraumatic stress disorder. Brain Behav Immun 2023; 114:360-370. [PMID: 37689277 PMCID: PMC10591863 DOI: 10.1016/j.bbi.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/28/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023] Open
Abstract
Posttraumatic stress disorder (PTSD) occurs in some people following exposure to a terrifying or catastrophic event involving actual/threatened death, serious injury, or sexual violence. PTSD is a common and debilitating mental disorder that imposes a significant burden on individuals, their families, health services, and society. Moreover, PTSD is a risk factor for chronic diseases such as coronary heart disease, stroke, diabetes, as well as premature mortality. Furthermore, PTSD is associated with dysregulated immune function. Despite the high prevalence of PTSD, the mechanisms underlying its etiology and manifestations remain poorly understood. Compelling evidence indicates that the human gut microbiome, a complex community of microorganisms living in the gastrointestinal tract, plays a crucial role in the development and function of the host nervous system, complex behaviors, and brain circuits. The gut microbiome may contribute to PTSD by influencing inflammation, stress responses, and neurotransmitter signaling, while bidirectional communication between the gut and brain involves mechanisms such as microbial metabolites, immune system activation, and the vagus nerve. In this literature review, we summarize recent findings on the role of the gut microbiome in PTSD in both human and animal studies. We discuss the methodological limitations of existing studies and suggest future research directions to further understand the role of the gut microbiome in PTSD.
Collapse
Affiliation(s)
- Shanlin Ke
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jakob Hartmann
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, USA
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, USA
| | - Yang-Yu Liu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Center for Artificial Intelligence and Modeling, The Carl R. WoeseInstitute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA.
| | - Karestan C Koenen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Yang J, Jiang W. A meta-analysis of the association between post-traumatic stress disorder and cancer risk. Front Psychiatry 2023; 14:1281606. [PMID: 37965365 PMCID: PMC10642749 DOI: 10.3389/fpsyt.2023.1281606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Background Several studies have investigated the link between post-traumatic stress disorder (PTSD) and cancer risk but reported mixed results. The objective of our study was to investigate the association between PTSD and cancer risk. Methods Studies published in English about the relationship between PTSD and cancer incidence were systematically searched. We performed a meta-analysis to estimate the relative risks (RR) and 95% confidence intervals (CI) for cancer incidence. Result A total of 3,129 articles were screened. Finally, 8 articles and 11 studies were included in the meta-analysis. We found that PTSD was not associated with cancer risk compared with controls. For site-specific cancer, our results showed that women with PTSD were associated with higher risk of ovarian cancer than controls. However, PTSD was not associated with the risk of gastrointestinal cancer, breast cancer and lung cancer. Conclusion These analyzes based on studies published in English suggest that PTSD is associated with ovarian cancer risk, although the evidence base is very limited. Future studies are needed to investigate the mechanisms that PTSD diagnosis influenced cancer incidence depending on types of cancer.
Collapse
Affiliation(s)
- Juanjuan Yang
- Department of Health Management, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Wei Jiang
- Department of Oncology, The Second Affiliated Hospital of Xi’ an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
18
|
Heyburn L, Batuure A, Wilder D, Long J, Sajja VS. Neuroinflammation Profiling of Brain Cytokines Following Repeated Blast Exposure. Int J Mol Sci 2023; 24:12564. [PMID: 37628746 PMCID: PMC10454588 DOI: 10.3390/ijms241612564] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Due to use of explosive devices and heavy weapons systems in modern conflicts, the effect of BW on the brain and body is of increasing concern. These exposures have been commonly linked with neurodegenerative diseases and psychiatric disorders in veteran populations. A likely neurobiological link between exposure to blasts and the development of neurobehavioral disorders, such as depression and PTSD, could be neuroinflammation triggered by the blast wave. In this study, we exposed rats to single or repeated BW (up to four exposures-one per day) at varied intensities (13, 16, and 19 psi) to mimic the types of blast exposures that service members may experience in training and combat. We then measured a panel of neuroinflammatory markers in the brain tissue with a multiplex cytokine/chemokine assay to understand the pathophysiological process(es) associated with single and repeated blast exposures. We found that single and repeated blast exposures promoted neuroinflammatory changes in the brain that are similar to those characterized in several neurological disorders; these effects were most robust after 13 and 16 psi single and repeated blast exposures, and they exceeded those recorded after 19 psi repeated blast exposures. Tumor necrosis factor-alpha and IL-10 were changed by 13 and 16 psi single and repeated blast exposures. In conclusion, based upon the growing prominence of negative psychological health outcomes in veterans and soldiers with a history of blast exposures, identifying the molecular etiology of these disorders, such as blast-induced neuroinflammation, is necessary for rationally establishing countermeasures and treatment regimens.
Collapse
|
19
|
Kawanishi H, Hori H, Yoshida F, Itoh M, Lin M, Niwa M, Narita M, Otsuka T, Ino K, Imai R, Fukudo S, Kamo T, Kunugi H, Kim Y. Suicidality in civilian women with PTSD: Possible link to childhood maltreatment, proinflammatory molecules, and their genetic variations. Brain Behav Immun Health 2023; 30:100650. [PMID: 37363341 PMCID: PMC10285106 DOI: 10.1016/j.bbih.2023.100650] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/24/2023] [Accepted: 06/03/2023] [Indexed: 06/28/2023] Open
Abstract
Background Posttraumatic stress disorder (PTSD) is a robust risk factor for suicide. Studies have suggested an association between suicide and elevated inflammatory markers, although such evidence in PTSD is scarce. Suicide risk, PTSD, and inflammatory molecules are all shown to be associated with childhood maltreatment and genetic factors. Methods We examined the association between suicidal ideation/risk and inflammatory markers in 83 civilian women with PTSD, and explored the possible influence of childhood maltreatment and inflammatory genes. Suicidal ideation and risk were assessed using the Beck Depression Inventory-II and the Mini-International Neuropsychiatric Interview. Childhood maltreatment history was assessed with the Childhood Trauma Questionnaire (CTQ). Blood levels of high-sensitivity C-reactive protein (hsCRP), interleukin-6 (IL-6) and high-sensitivity tumor necrosis factor-α were measured. Genetic polymorphisms of CRP rs2794520 and IL6 rs1800796 were genotyped. Results Suicidal ideation was significantly positively correlated with hsCRP (p = 0.002) and IL-6 (p = 0.015) levels. Suicide risk weighted score was significantly positively correlated with hsCRP (p = 0.016) levels. The risk alleles of CRP rs2794520 and IL6 rs1800796 leading to increased respective protein levels were dose-dependently associated with higher risk of suicide (p = 0.007 and p = 0.029, respectively). The CTQ total score was significantly correlated with suicidal ideation and risk, but not with inflammatory marker levels. Furthermore, a multivariate regression analysis controlling for PTSD severity and potential confounders revealed that rs2794520 and rs1800796, but not hsCRP or IL-6 levels, significantly predicted suicidal ideation (p < 0.001) and risk (p = 0.007), respectively. Conclusion Genetic variations within inflammatory genes might be useful in detecting PTSD patients at high risk of suicide.
Collapse
Affiliation(s)
- Hitomi Kawanishi
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Hori
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Fuyuko Yoshida
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Mariko Itoh
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
- Center for Environmental and Health Sciences, Hokkaido University, Hokkaido, Japan
| | - Mingming Lin
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
- Laboratory for Imagination and Executive Functions, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Madoka Niwa
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Megumi Narita
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takeshi Otsuka
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Keiko Ino
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Psychiatry and Cognitive-Behavioral Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Risa Imai
- Department of Psychiatry and Cognitive-Behavioral Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Risa Irinaka Mental Clinic, Nagoya, Japan
| | - Shin Fukudo
- Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toshiko Kamo
- Wakamatsu-cho Mental and Skin Clinic, Tokyo, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Psychiatry, Teikyo University School of Medicine, Tokyo, Japan
| | - Yoshiharu Kim
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
20
|
Yang J, Wang Q, Jiang W. Association between immune cells in peripheral blood and psychiatric symptoms. Front Psychiatry 2023; 14:1198734. [PMID: 37398592 PMCID: PMC10311026 DOI: 10.3389/fpsyt.2023.1198734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/17/2023] [Indexed: 07/04/2023] Open
Abstract
Background There are bidirectional associations between immunological dysfunction and psychiatric symptoms. However, the associations between the levels of immune cells in the peripheral blood and psychiatric symptoms remain unclear. The present study aimed to evaluate levels of immune cells in peripheral blood in people with positive psychiatric symptoms. Methods This retrospective study analyzed data from routine blood tests and psychopathology and sleep quality assessments. Data were compared between a group of 45 patients with de novo psychological symptoms and 225 matched controls. Results Patients with psychiatric symptoms had higher white blood cell and neutrophil counts compared with controls. However, in a subgroup analysis, neutrophil counts were significantly higher than in controls only in patients with multiple psychiatric symptoms. Furthermore, monocyte counts were significantly higher in patients with multiple psychiatric symptoms than in controls. Further, sleep quality was lower in patients with psychiatric symptoms than in controls. Conclusion White blood cell and neutrophil counts in the peripheral blood of patients with psychiatric symptoms were significantly higher and sleep quality was significantly lower than in controls. Participants with multiple psychiatric symptoms showed more significant differences in peripheral blood immune cell counts than other subgroups. These results provided evidence for the relationship between psychiatric symptoms, immunity, and sleep.
Collapse
Affiliation(s)
- Juanjuan Yang
- Department of Health Management, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Qian Wang
- Department of Health Management, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wei Jiang
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
21
|
Yang J, Zhang S, Jiang W. Impact of Beta Blockers on Breast Cancer Incidence and Prognosis. Clin Breast Cancer 2023:S1526-8209(23)00136-2. [PMID: 37353431 DOI: 10.1016/j.clbc.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/15/2023] [Accepted: 05/22/2023] [Indexed: 06/25/2023]
Abstract
Several studies have investigated the link between beta blockers (BB) and breast cancer outcomes but have reported mixed results. Our aim was to investigate the relationship between BB and breast cancer outcomes. Literatures investigating the relationship between BB and breast cancer outcomes were searched through PubMed and Embase. A total 43 articles were included by meta-analysis. We found BB increased breast cancer risk (n = 22, RR: 1.169, 95% CI: 1.063-1.285). We also found BB were associated with a lower overall survival (OS, n = 19, RR: 1.125, 95% CI: 1.078-1.173) and a higher recurrence risk (n = 8, RR: 1.130, 95% CI: 1.040-1.227) for breast cancer. Interestingly, subgroup analyses found only selective BB increased breast cancer risk (n = 5, RR: 1.766, 95% CI: 1.148-2.718) and recurrence risk (n = 2, RR: 1.168 -, 95% CI: 1.026-1.328) while only nonselective BB were associated with a lower OS (n = 4, RR: 1.135, 95% CI: 1.073-1.202) for breast cancer. Moreover, we found BB were associated with a significantly lower OS (n = 3, RR: 2.751, 95% CI: 1.213-6.238) and higher recurrence (n = 2, RR: 1.284, 95% CI: 1.102-1.497) only in luminal breast cancer while with a higher PFS (n = 2, RR: 0.585, 95% CI: 0.343-0.997) in Her2+ breast cancer. No significant differences in terms of CSM (n = 19, RR: 1.009, 95% CI: 0.947-1.077), PFS (n = 4, RR: 0.932, 95% CI: 0.616-1.305), and DFS (n = 2, RR: 0.776, 95% CI: 0.512-1.176) were observed. Our results provide evidence of the relationship between BB and breast cancer incidence and prognosis.
Collapse
Affiliation(s)
- Juanjuan Yang
- Department of Health Management, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Provice, China
| | - Shuqun Zhang
- Department of Oncology, the Second Affiliated Hospital of Xi' an Jiaotong University, Xi'an, Shaanxi Provice, China
| | - Wei Jiang
- Department of Oncology, the Second Affiliated Hospital of Xi' an Jiaotong University, Xi'an, Shaanxi Provice, China.
| |
Collapse
|
22
|
Levesque P, Desmeules C, Béchard L, Huot-Lavoie M, Demers MF, Roy MA, Deslauriers J. Sex-specific immune mechanisms in PTSD symptomatology and risk: A translational overview and perspectives. Brain Res Bull 2023; 195:120-129. [PMID: 36822271 DOI: 10.1016/j.brainresbull.2023.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/23/2023]
Abstract
Altered immune function in patients with posttraumatic stress disorder (PTSD) may play a role in the disorder pathophysiology and onset. Women are more likely to develop PTSD, suggesting potential sex-specific inflammatory mechanisms underlying the dichotomous prevalence and risk of PTSD in men and women. In this review we examine the available literature to better assess the state of knowledge in the field. In humans, increased systemic inflammation is found in both men and women with PTSD, but seems to be at a greater extend in women. Despite the existence of few clinical studies taking account of sex as a factor in the observed immune changes in PTSD, challenges in the study of sex-specific immune function in humans include: controlling for confounding variates such as the type of trauma and the ethnicity; and limited methodologies available to study central nervous system (CNS)-relevant changes. Thus, preclinical studies are a valuable tool to provide us with key insights on sex-specific peripheral and CNS immune mechanisms underlying PTSD. Available preclinical studies reported increased systemic and CNS inflammation, as well as elevated trafficking of monocytes from the periphery to the brain in both male and female rodents. To date, psychological trauma-induced inflammation is more robust in female vs male rodents. Limitations of preclinical studies include animal models hardly applicable to female rodents, and hormonal changes across estrus phases that may affect immune function. The present review: (1) highlights the key findings from both human and animal studies, (2) provides guidance to address limitations; and (3) discusses the gap of knowledge on the complex intertwined interaction between the brain, neurovascular, and systemic units.
Collapse
Affiliation(s)
- Pascal Levesque
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, QC G1V 4G2, Canada; Faculty of Pharmacy, Université Laval, Québec, QC G1V 0A6, Canada
| | - Charles Desmeules
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, QC G1V 4G2, Canada; Centre de recherche CERVO, Québec, QC G1E 1T2, Canada; Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Laurent Béchard
- Faculty of Pharmacy, Université Laval, Québec, QC G1V 0A6, Canada; Centre de recherche CERVO, Québec, QC G1E 1T2, Canada; Institut universitaire en santé mentale de Québec, CIUSSS-CN, Québec, QC G1J 2G3, Canada
| | - Maxime Huot-Lavoie
- Centre de recherche CERVO, Québec, QC G1E 1T2, Canada; Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada; Institut universitaire en santé mentale de Québec, CIUSSS-CN, Québec, QC G1J 2G3, Canada
| | - Marie-France Demers
- Faculty of Pharmacy, Université Laval, Québec, QC G1V 0A6, Canada; Centre de recherche CERVO, Québec, QC G1E 1T2, Canada; Institut universitaire en santé mentale de Québec, CIUSSS-CN, Québec, QC G1J 2G3, Canada
| | - Marc-André Roy
- Centre de recherche CERVO, Québec, QC G1E 1T2, Canada; Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada; Institut universitaire en santé mentale de Québec, CIUSSS-CN, Québec, QC G1J 2G3, Canada
| | - Jessica Deslauriers
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, QC G1V 4G2, Canada; Faculty of Pharmacy, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
23
|
Zhang Y, Wang J, Ye Y, Zou Y, Chen W, Wang Z, Zou Z. Peripheral cytokine levels across psychiatric disorders: A systematic review and network meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110740. [PMID: 36893912 DOI: 10.1016/j.pnpbp.2023.110740] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/27/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023]
Abstract
Immune dysregulated cytokine production is involved in mental diseases. However, the results are inconsistent and the pattern of cytokine alterations has not been compared across disorders. We performed a network impact analysis of cytokine levels for different psychiatric disorders including schizophrenia, major depressive disorder, bipolar disorder, panic disorder, post-traumatic stress disorder and obsessive compressive disorder to evaluate their clinical impact across conditions. Studies were identified by searching the electronic databases up to 31/05/2022. A total of eight cytokines, together with (high-sensitivity) C-reactive proteins (hsCRP/CRP) were included in the network meta-analysis. The levels of proinflammatory cytokines, hsCRP/CRP and interleukin 6 (IL-6) were significantly increased in patients with psychiatric disorders when compared to controls. IL-6 showed no significant difference among comparisons between disorders according to the network meta-analysis. Interleukin 10 (IL-10) is significantly increased in patients with bipolar disorder compared to major depressive disorder. Further, the level of interleukin-1 beta (IL-1β) was significantly increased in major depressive disorder as compared to bipolar disorder. The level of interleukin 8 (IL-8) varied among these psychiatric disorders based on the network meta-analysis result. Overall, abnormal cytokine levels were found in psychiatric disorders, and some of the cytokines displayed differential characteristics in these disorders, especially IL-8, pointing to a role as potential biomarkers for general and differential diagnosis.
Collapse
Affiliation(s)
- Yuan Zhang
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | | | - Yu Ye
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Yazhu Zou
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Wei Chen
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Zuxing Wang
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Zhili Zou
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China; Key Laboratory of psychosomatic medicine, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China.
| |
Collapse
|
24
|
Jiang H, Chen L, Li Y, Gao X, Yang X, Zhao B, Li Y, Wang Y, Yu X, Zhang X, Feng S, Chai Y, Meng H, Ren X, Bao T. Effects of acupuncture on regulating the hippocampal inflammatory response in rats exposed to post-traumatic stress disorder. Neurosci Lett 2023; 796:137056. [PMID: 36621587 DOI: 10.1016/j.neulet.2023.137056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/18/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Data from clinical and experimental studies have verified the efficacy and safety of acupuncture in the treatment of post-traumatic stress disorder (PTSD). However, the concrete mechanism has not been well elucidated. The stress-induced activation of inflammatory response is involved in the development and pathogenesis of PTSD. Here, we aimed to investigate the effects of acupuncture on regulating the hippocampal inflammatory response in rats exposed to PTSD. Forty male rats were randomly divided into control, model, acupuncture and sertraline group. Within 1 day after adaptive feeding, all rats were exposed to single prolonged stress (SPS), except for the rats in the control group. Rats in acupuncture group were exposed to acupuncture intervention at the acupoints of Baihui (GV20) and Yintang (GV29), 20 min once per day for 15 days. Rats in sertraline group were exposed to a suspension of sertraline and distilled water (0.2 mg/ml), once per day for 15 days continuously. Body weight and elevated plus maze experiment were detected at different time-points to evaluate the behavioral changes of rats. HE staining method was used to observe the basic pathological morphological changes in hippocampus. Immunofluorescence staining method was used to observe the activation of hippocampal microglia. The content of IL-6 and IL-1β in serum were detected by ELISA method. Compared with the control group, the body weight of rats in model group significantly decreased on 8 days, and the percentage of time in open arms and open arm entries decreased significantly on 15 days after SPS procedures, which indicated that SPS induced PTSD-like behavior in rats. Acupuncture exerted therapeutic effect. Simultaneously, the result of HE staining confirmed that SPS induced hippocampal morphological changes in SPS rats. Notably, acupuncture reversed the reduction and pathological injury to some extent. The results have also shown that acupuncture intervention effectively reversed the activated microglia of the hippocampus in rats. Moreover, the expression of IL-1β in serum was significantly decreased by acupuncture intervention. In summary, the present study demonstrated that the role of acupuncture in eliminating PTSD-like behavior might be connected with reversing the pathological process of the inflammatory response mediated by the activation of microglia induced by SPS.
Collapse
Affiliation(s)
- Huili Jiang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China.
| | - Lu Chen
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Yufei Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xingzhou Gao
- Beijing ChangPing District Hospital, Beijing, China
| | - Xinjing Yang
- Department of Traditional Chinese Medicine, South China Hospital of Shenzhen University, Shenzhen, China
| | - Bingcong Zhao
- Beijing Key Laboratory of Acupuncture Neuromodulation, Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yahuan Li
- Beijing Increase Biomedical Company Limited, Beijing, China
| | - Yu Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xue Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | | | - Shixing Feng
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yemao Chai
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Hong Meng
- School of Science, Beijing Technology and Business University, Beijing, China
| | - Xiujun Ren
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Tuya Bao
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
25
|
Goldschen L, Ellrodt J, Amonoo HL, Feldman CH, Case SM, Koenen KC, Kubzansky LD, Costenbader KH. The link between post-traumatic stress disorder and systemic lupus erythematosus. Brain Behav Immun 2023; 108:292-301. [PMID: 36535611 PMCID: PMC10018810 DOI: 10.1016/j.bbi.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 12/03/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous, multisystem autoimmune disorder characterized by unpredictable disease flares. Although the pathogenesis of SLE is complex, an epidemiologic link between posttraumatic stress disorder (PTSD) and the development of SLE has been identified, suggesting that stress-related disorders alter the susceptibility to SLE. Despite the strong epidemiologic evidence connecting PTSD and SLE, gaps remain in our understanding of how the two may be connected. Perturbations in the autonomic nervous system, neuroendocrine system, and at the genomic level may cause and sustain immune dysregulation that could lower the threshold for the development and propagation of SLE. We first describe shared risk factors for SLE and PTSD. We then describe potential biological pathways which may facilitate excessive inflammation in the context of PTSD. Among those genetically predisposed to SLE, systemic inflammation that accompanies chronic stress may fan the flames of smoldering SLE by priming immune pathways. Further studies on the connection between trauma and inflammation will provide important data on pathogenesis, risk factors, and novel treatments for SLE.
Collapse
Affiliation(s)
- Lauren Goldschen
- Department of Psychiatry, Brigham and Women's Hospital, 60 Fenwood Road, MA 02115, USA.
| | - Jack Ellrodt
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA
| | - Hermioni L Amonoo
- Department of Psychiatry, Brigham and Women's Hospital, 60 Fenwood Road, MA 02115, USA; Department of Psychosocial Oncology and Palliative Care, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Candace H Feldman
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA
| | - Siobhan M Case
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA
| | - Karestan C Koenen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
| | - Laura D Kubzansky
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
| | - Karen H Costenbader
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA
| |
Collapse
|
26
|
Scangos KW, State MW, Miller AH, Baker JT, Williams LM. New and emerging approaches to treat psychiatric disorders. Nat Med 2023; 29:317-333. [PMID: 36797480 PMCID: PMC11219030 DOI: 10.1038/s41591-022-02197-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/21/2022] [Indexed: 02/18/2023]
Abstract
Psychiatric disorders are highly prevalent, often devastating diseases that negatively impact the lives of millions of people worldwide. Although their etiological and diagnostic heterogeneity has long challenged drug discovery, an emerging circuit-based understanding of psychiatric illness is offering an important alternative to the current reliance on trial and error, both in the development and in the clinical application of treatments. Here we review new and emerging treatment approaches, with a particular emphasis on the revolutionary potential of brain-circuit-based interventions for precision psychiatry. Limitations of circuit models, challenges of bringing precision therapeutics to market and the crucial advances needed to overcome these obstacles are presented.
Collapse
Affiliation(s)
- Katherine W Scangos
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
| | - Matthew W State
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Andrew H Miller
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Justin T Baker
- McLean Hospital Institute for Technology in Psychiatry, Belmont, MA, USA
| | - Leanne M Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Mental Illness Research Education and Clinical Center (MIRECC), VA Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
27
|
Sumner JA, Cleveland S, Chen T, Gradus JL. Psychological and biological mechanisms linking trauma with cardiovascular disease risk. Transl Psychiatry 2023; 13:25. [PMID: 36707505 PMCID: PMC9883529 DOI: 10.1038/s41398-023-02330-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death and disability worldwide, and experiences of psychological trauma have been associated with subsequent CVD onset. Identifying key pathways connecting trauma with CVD has the potential to inform more targeted screening and intervention efforts to offset elevated cardiovascular risk. In this narrative review, we summarize the evidence for key psychological and biological mechanisms linking experiences of trauma with CVD risk. Additionally, we describe various methodologies for measuring these mechanisms in an effort to inform future research related to potential pathways. With regard to mechanisms involving posttraumatic psychopathology, the vast majority of research on psychological distress after trauma and CVD has focused on posttraumatic stress disorder (PTSD), even though posttraumatic psychopathology can manifest in other ways as well. Substantial evidence suggests that PTSD predicts the onset of a range of cardiovascular outcomes in trauma-exposed men and women, yet more research is needed to better understand posttraumatic psychopathology more comprehensively and how it may relate to CVD. Further, dysregulation of numerous biological systems may occur after trauma and in the presence of posttraumatic psychopathology; these processes of immune system dysregulation and elevated inflammation, oxidative stress, mitochondrial dysfunction, renin-angiotensin system dysregulation, and accelerated biological aging may all contribute to subsequent cardiovascular risk, although more research on these pathways in the context of traumatic stress is needed. Given that many of these mechanisms are closely intertwined, future research using a systems biology approach may prove fruitful for elucidating how processes unfold to contribute to CVD after trauma.
Collapse
Affiliation(s)
- Jennifer A Sumner
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Shiloh Cleveland
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tiffany Chen
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jaimie L Gradus
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
28
|
Orsolini L, Pompili S, Volpe U. C-Reactive Protein (CRP): A Potent Inflammation Biomarker in Psychiatric Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:135-160. [PMID: 36949309 DOI: 10.1007/978-981-19-7376-5_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
An increasing number of studies have investigated the role of inflammation in psychiatric disorders, by demonstrating how an altered/dysfunctional immunological and inflammatory system may underpin a psychiatric condition. Particularly, several studies specifically investigated the role of a neuroinflammatory biomarker, named C-reactive protein (CRP), in psychiatric disorders. Overall, even though scientific literature so far published still does not appear definitive, CRP is more likely reported to be elevated in several psychiatric disorders, including schizophrenia, mood disorders, anxiety disorders and post-traumatic stress disorder. Moreover, a low-grade inflammation (CRP >3 mg/L) has been more likely observed in a subgroup of patients affected with a more severe psychopathological symptomatology, more treatment resistance and worst clinical mental illness course, strengthening the hypothesis of the need for a different clinical and prognostic characterization based on this concomitant neuroinflammatory predisposition. However, even though further research studies are needed to confirm this preliminary evidence, CRP may represent a potential clinical routine biomarker which could be integrated in the clinical routine practice to better characterize clinical picture and course as well as address clinicians towards a personalized treatment.
Collapse
Affiliation(s)
- Laura Orsolini
- Unit of Clinical Psychiatry, Department of Clinical Neurosciences/DIMSC, Polytechnic University of Marche, Ancona, Italy.
| | - Simone Pompili
- Unit of Clinical Psychiatry, Department of Clinical Neurosciences/DIMSC, Polytechnic University of Marche, Ancona, Italy
| | - Umberto Volpe
- Unit of Clinical Psychiatry, Department of Clinical Neurosciences/DIMSC, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
29
|
Sbisa AM, Madden K, Toben C, McFarlane AC, Dell L, Lawrence-Wood E. Potential peripheral biomarkers associated with the emergence and presence of posttraumatic stress disorder symptomatology: A systematic review. Psychoneuroendocrinology 2023; 147:105954. [PMID: 36308820 DOI: 10.1016/j.psyneuen.2022.105954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Evidence suggests posttraumatic stress disorder (PTSD) involves an interplay between psychological manifestations and biological systems. Biological markers of PTSD could assist in identifying individuals with underlying dysregulation and increased risk; however, accurate and reliable biomarkers are yet to be identified. METHODS A systematic review following the PRISMA guidelines was conducted. Databases included EMBASE, MEDLINE, and Cochrane Central. Studies from a comprehensive 2015 review (Schmidt et al., 2015) and English language papers published subsequently (between 2014 and May 2022) were included. Forty-eight studies were eligible. RESULTS Alterations in neuroendocrine and immune markers were most commonly associated with PTSD symptoms. Evidence indicates PTSD symptoms are associated with hypothalamic-pituitary-adrenal axis dysfunction as represented by low basal cortisol, a dysregulated immune system, characterized by an elevated pro-inflammatory state, and metabolic dysfunction. However, a considerable number of studies neglected to measure sex or prior trauma, which have the potential to affect the biological outcomes of posttraumatic stress symptoms. Mixed findings are indicative of the complexity and heterogeneity of PTSD and suggest the relationship between allostatic load, biological markers, and PTSD remain largely undefined. CONCLUSIONS In addition to prospective research design and long-term follow up, it is imperative future research includes covariates sex, prior trauma, and adverse childhood experiences. Future research should include exploration of biological correlates specific to PTSD symptom domains to determine whether underlying processes differ with symptom expression, in addition to subclinical presentation of posttraumatic stress symptoms, which would allow for greater understanding of biomarkers associated with disorder risk and assist in untangling directionality.
Collapse
Affiliation(s)
- Alyssa M Sbisa
- Phoenix Australia - Centre for Posttraumatic Mental Health, Department of Psychiatry, The University of Melbourne, Melbourne, Victoria, Australia.
| | - Kelsey Madden
- Phoenix Australia - Centre for Posttraumatic Mental Health, Department of Psychiatry, The University of Melbourne, Melbourne, Victoria, Australia
| | - Catherine Toben
- Discipline of Psychiatry, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | | | - Lisa Dell
- Phoenix Australia - Centre for Posttraumatic Mental Health, Department of Psychiatry, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ellie Lawrence-Wood
- Phoenix Australia - Centre for Posttraumatic Mental Health, Department of Psychiatry, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
30
|
Burning down the house: reinventing drug discovery in psychiatry for the development of targeted therapies. Mol Psychiatry 2023; 28:68-75. [PMID: 36460725 DOI: 10.1038/s41380-022-01887-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/26/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022]
Abstract
Despite advances in neuroscience, limited progress has been made in developing new and better medications for psychiatric disorders. Available treatments in psychiatry rely on a few classes of drugs that have a broad spectrum of activity across disorders with limited understanding of mechanism of action. While the added value of more targeted therapies is apparent, a dearth of pathophysiologic mechanisms exists to support targeted treatments, and where mechanisms have been identified and drugs developed, results have been disappointing. Based on serendipity and early successes that led to the current drug armamentarium, a haunting legacy endures that new drugs should align with outdated and overinclusive diagnostic categories, consistent with the idea that "one size fits all". This legacy has fostered clinical trial designs focused on heterogenous populations of patients with a single diagnosis and non-specific outcome variables. Disturbingly, this approach likely contributed to missed opportunities for drugs targeting the hypothalamic-pituitary-adrenal axis and now inflammation. Indeed, cause-and-effect data support the role of inflammatory processes in neurotransmitter alterations that disrupt specific neurocircuits and related behaviors. This pathway to pathology occurs across disorders and warrants clinical trial designs that enrich for patients with increased inflammation and use primary outcome variables associated with specific effects of inflammation on brain and behavior. Nevertheless, such trial designs have not been routinely employed, and results of anti-inflammatory treatments have been underwhelming. Thus, to accelerate development of targeted therapeutics including in the area of inflammation, regulatory agencies and the pharmaceutical industry must embrace treatments and trials focused on pathophysiologic pathways that impact specific symptom domains in subsets of patients, agnostic to diagnosis. Moreover, closer collaboration among basic and clinical investigators is needed to apply neuroscience knowledge to reveal disease mechanisms that drive psychiatric symptoms. Together, these efforts will support targeted treatments, ultimately leading to new and better therapeutics in psychiatry.
Collapse
|
31
|
Hartmann A, Vila-Verde C, Guimarães FS, Joca SR, Lisboa SF. The NLRP3 Inflammasome in Stress Response: Another Target for the Promiscuous Cannabidiol. Curr Neuropharmacol 2023; 21:284-308. [PMID: 35410608 PMCID: PMC10190150 DOI: 10.2174/1570159x20666220411101217] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/14/2022] [Accepted: 03/27/2022] [Indexed: 11/22/2022] Open
Abstract
Many psychiatric patients do not respond to conventional therapy. There is a vast effort to investigate possible mechanisms involved in treatment resistance, trying to provide better treatment options, and several data points toward a possible involvement of inflammatory mechanisms. Microglia, glial, and resident immune cells are involved in complex responses in the brain, orchestrating homeostatic functions, such as synaptic pruning and maintaining neuronal activity. In contrast, microglia play a major role in neuroinflammation, neurodegeneration, and cell death. Increasing evidence implicate microglia dysfunction in neuropsychiatric disorders. The mechanisms are still unclear, but one pathway in microglia has received increased attention in the last 8 years, i.e., the NLRP3 inflammasome pathway. Stress response and inflammation, including microglia activation, can be attenuated by Cannabidiol (CBD). CBD has antidepressant, anti-stress, antipsychotic, anti-inflammatory, and other properties. CBD effects are mediated by direct or indirect modulation of many receptors, enzymes, and other targets. This review will highlight some findings for neuroinflammation and microglia involvement in stress-related psychiatric disorders, particularly addressing the NLRP3 inflammasome pathway. Moreover, we will discuss evidence and mechanisms for CBD effects in psychiatric disorders and animal models and address its potential effects on stress response via neuroinflammation and NLRP3 inflammasome modulation.
Collapse
Affiliation(s)
- Alice Hartmann
- Department of Pharmacology, School of Medicine of Ribeirão Preto (FMRP), University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Carla Vila-Verde
- Department of Pharmacology, School of Medicine of Ribeirão Preto (FMRP), University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Francisco S. Guimarães
- Department of Pharmacology, School of Medicine of Ribeirão Preto (FMRP), University of São Paulo (USP), Ribeirão Preto, Brazil
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo, Brazil
| | - Sâmia R. Joca
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo, Brazil
- BioMolecular Sciences Department, School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP);
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Sabrina F. Lisboa
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo, Brazil
- BioMolecular Sciences Department, School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP);
| |
Collapse
|
32
|
Pivac N, Vuic B, Sagud M, Nedic Erjavec G, Nikolac Perkovic M, Konjevod M, Tudor L, Svob Strac D, Uzun S, Kozumplik O, Uzun S, Mimica N. PTSD, Immune System, and Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:225-262. [PMID: 36949313 DOI: 10.1007/978-981-19-7376-5_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Posttraumatic stress disorder (PTSD) is a severe trauma and stress-related disorder associated with different somatic comorbidities, especially cardiovascular and metabolic disorders, and with chronic low-grade inflammation. Altered balance of the hypothalamic-pituitary-adrenal (HPA) axis, cytokines and chemokines, C-reactive protein, oxidative stress markers, kynurenine pathways, and gut microbiota might be involved in the alterations of certain brain regions regulating fear conditioning and memory processes, that are all altered in PTSD. In addition to the HPA axis, the gut microbiota maintains the balance and interaction of the immune, CNS, and endocrine pathways forming the gut-brain axis. Disbalance in the HPA axis, gut-brain axis, oxidative stress pathways and kynurenine pathways, altered immune signaling and disrupted homeostasis, as well as the association of the PTSD with the inflammation and disrupted cognition support the search for novel strategies for treatment of PTSD. Besides potential anti-inflammatory treatment, dietary interventions or the use of beneficial bacteria, such as probiotics, can potentially improve the composition and the function of the bacterial community in the gut. Therefore, bacterial supplements and controlled dietary changes, with exercise, might have beneficial effects on the psychological and cognitive functions in patients with PTSD. These new treatments should be aimed to attenuate inflammatory processes and consequently to reduce PTSD symptoms but also to improve cognition and reduce cardio-metabolic disorders associated so frequently with PTSD.
Collapse
Affiliation(s)
- Nela Pivac
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia.
| | - Barbara Vuic
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Marina Sagud
- Department of Psychiatry, University Hospital Center Zagreb, Zagreb, Croatia
- University of Zagreb School of Medicine, Zagreb, Croatia
| | - Gordana Nedic Erjavec
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Matea Nikolac Perkovic
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Marcela Konjevod
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Lucija Tudor
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Dubravka Svob Strac
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Suzana Uzun
- University of Zagreb School of Medicine, Zagreb, Croatia
- University Psychiatric Hospital Vrapce, Zagreb, Croatia
| | | | - Sandra Uzun
- Department for Anesthesiology, Reanimatology, and Intensive Care, University Hospital Center Zagreb, Zagreb, Croatia
| | - Ninoslav Mimica
- University of Zagreb School of Medicine, Zagreb, Croatia
- University Psychiatric Hospital Vrapce, Zagreb, Croatia
| |
Collapse
|
33
|
Immunogenetics of posttraumatic stress disorder (PTSD) in women veterans. Brain Behav Immun Health 2022; 26:100567. [DOI: 10.1016/j.bbih.2022.100567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
|
34
|
Behnke A, Mack M, Fieres J, Christmann M, Bürkle A, Moreno-Villanueva M, Kolassa IT. Expression of DNA repair genes and its relevance for DNA repair in peripheral immune cells of patients with posttraumatic stress disorder. Sci Rep 2022; 12:18641. [PMID: 36333408 PMCID: PMC9636148 DOI: 10.1038/s41598-022-22001-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) involves elevated levels of cellular oxidative stress which jeopardizes the integrity of essential cell compartments. Previously, we demonstrated higher levels of DNA lesions in peripheral blood mononuclear cells (PBMCs) in PTSD. Retaining vital levels of DNA integrity requires cells to mobilize compensatory efforts in elevating their DNA-repair capacity. Accordingly, we hypothesized to find increased expression rates of the DNA-repair genes X-ray repair cross complementing 1 (XRCC1), poly (ADP-ribose) polymerase 1 (PARP1), and polymerase β (Polβ) in PBMCs of PTSD patients as compared to controls, leading to functionally relevant changes in DNA-repair kinetics. In a cohort of 14 refugees with PTSD and 15 without PTSD, we found significantly higher XRCC1 expression in PTSD patients than controls (U = 161.0, p = 0.009, Cohen's r = 0.49), and positive correlations between the severity of PTSD symptoms and the expression of XRCC1 (rS = 0.57, p = 0.002) and PARP1 (rS = 0.43, p = 0.022). Higher XRCC1 (F = 2.39, p = 0.010, η2p = 0.10) and PARP1 (F = 2.15, p = 0.022, η2p = 0.09) expression accounted for slower repair of experimentally X-ray irradiation-induced DNA damage, highlighting the possible physiological relevance of altered DNA-repair gene expression in PTSD. Our study provides first evidence for a compensatory regulation of DNA-repair mechanisms in PTSD. We discuss the implications of increased DNA damage and altered DNA-repair mechanisms in immune senescence, premature aging, and increased physical morbidity in PTSD.
Collapse
Affiliation(s)
- Alexander Behnke
- grid.6582.90000 0004 1936 9748Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany
| | - Matthias Mack
- grid.6582.90000 0004 1936 9748Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany ,grid.9811.10000 0001 0658 7699Molecular Toxicology, Department of Biology, University of Konstanz, 78457 Constance, Germany
| | - Judy Fieres
- grid.9811.10000 0001 0658 7699Molecular Toxicology, Department of Biology, University of Konstanz, 78457 Constance, Germany ,grid.9811.10000 0001 0658 7699Department of Sport Science, Human Performance Research Centre, University of Konstanz, 78457 Constance, Germany
| | - Markus Christmann
- grid.5802.f0000 0001 1941 7111Applied Toxicology, Institute of Toxicology, University of Mainz, 55131 Mainz, Germany
| | - Alexander Bürkle
- grid.9811.10000 0001 0658 7699Molecular Toxicology, Department of Biology, University of Konstanz, 78457 Constance, Germany
| | - María Moreno-Villanueva
- grid.9811.10000 0001 0658 7699Molecular Toxicology, Department of Biology, University of Konstanz, 78457 Constance, Germany ,grid.9811.10000 0001 0658 7699Department of Sport Science, Human Performance Research Centre, University of Konstanz, 78457 Constance, Germany
| | - Iris-Tatjana Kolassa
- grid.6582.90000 0004 1936 9748Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany ,grid.9811.10000 0001 0658 7699Centre of Excellence for Psychotraumatology, Clinical Psychology and Neuropsychology, University of Konstanz, 78464 Constance, Germany
| |
Collapse
|
35
|
Lawn RB, Murchland AR, Kim Y, Chibnik LB, Tworoger SS, Rimm EB, Sumner JA, Roberts AL, Nishimi KM, Ratanatharathorn AD, Jha SC, Koenen KC, Kubzansky LD. Trauma, psychological distress and markers of systemic inflammation among US women: A longitudinal study. Psychoneuroendocrinology 2022; 145:105915. [PMID: 36115323 PMCID: PMC10448736 DOI: 10.1016/j.psyneuen.2022.105915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Prior evidence links posttraumatic stress disorder (PTSD) and depression, separately, with chronic inflammation. However, whether effects are similar across each independently or potentiated when both are present is understudied. We evaluated combined measures of PTSD and depression in relation to inflammatory biomarker concentrations. METHODS Data are from women (n's ranging 628-2797) in the Nurses' Health Study II. Trauma exposure, PTSD, and depression symptoms were ascertained using validated questionnaires. We examined (a) a continuous combined psychological distress score summing symptoms for PTSD and depression, and (b) a categorical cross-classified measure of trauma/PTSD symptoms/depressed mood status (reference group: no trauma or depressed mood). Three inflammatory biomarkers (C-reactive protein [CRP], interleukin-6 [IL-6], tumor necrosis factor alpha receptor 2 [TNFR2]) were assayed from at least one of two blood samples collected 10-16 years apart. We examined associations of our exposures with levels of each biomarker concentration (log-transformed and batch-corrected) as available across the two time points (cross-sectional analyses; CRP, IL-6 and TNFR2) and with rate of change in biomarkers across time (longitudinal analyses; CRP and IL-6) using separate linear mixed effects models. RESULTS In sociodemographic-adjusted models accounting for trauma exposure, a one standard deviation increase in the continuous combined psychological distress score was associated with 10.2% (95% confidence interval (CI): 5.2-15.4%) higher CRP and 1.5% (95% CI: 0.5-2.5%) higher TNFR2 concentrations cross-sectionally. For the categorical exposure, women with trauma/PTSD symptoms/ depressed mood versus those with no trauma or depressed mood had 29.5% (95% CI: 13.3-47.9%) higher CRP and 13.1% (95% CI: 5.1-21.7%) higher IL-6 cross-sectionally. In longitudinal analysis, trauma/PTSD symptoms/depressed mood was associated with increasing CRP levels over time. CONCLUSIONS High psychological distress levels with trauma exposure is associated with elevated inflammation and is a potential biologic pathway by which distress can impact development of inflammatory-related chronic diseases, such as cardiovascular disease. Considering multiple forms of distress in relation to these pathways may provide greater insight into who is at risk for biologic dysregulation and later susceptibility to chronic diseases.
Collapse
Affiliation(s)
- Rebecca B Lawn
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Audrey R Murchland
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Yongjoo Kim
- College of Korean Medicine, Sangji University, Wonju, Republic of Korea
| | - Lori B Chibnik
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Shelley S Tworoger
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Eric B Rimm
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jennifer A Sumner
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Andrea L Roberts
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kristen M Nishimi
- Mental Health Service, San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA; Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA
| | - Andrew D Ratanatharathorn
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Shaili C Jha
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Karestan C Koenen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Laura D Kubzansky
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
36
|
Sherer ML, Voegtline KM, Park HS, Miller KN, Shuffrey LC, Klein SL, Osborne LM. The immune phenotype of perinatal anxiety. Brain Behav Immun 2022; 106:280-288. [PMID: 36115543 DOI: 10.1016/j.bbi.2022.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/12/2022] [Accepted: 09/11/2022] [Indexed: 10/31/2022] Open
Abstract
BACKGROUND Immune dysregulation has been linked to both psychiatric illness and pregnancy morbidity, including perinatal depression, but little is known about the immune phenotype of perinatal anxiety. Here, we sought to identify the unique immune profile of antenatal anxiety. MATERIALS AND METHODS Pregnant women (n = 107) were followed prospectively at 2nd and 3rd trimesters (T2, T3) and 6 weeks postpartum (PP6). Each visit included a blood draw and psychological evaluation, with clinical anxiety assessed using the Spielberg State-Trait Anxiety Scale. We enrolled both healthy controls and participants with anxiety alone; those with comorbid depression were excluded. Multiplex cytokine assays and flow cytometry were used to examine the association of anxiety symptoms with secreted immune markers and PBMC-derived immune cells. RESULTS K cluster means revealed three clusters of anxiety symptomatology; due to low numbers in the highest severity anxiety group, these were collapsed into two groups: Non-Anxiety and Anxiety. Principal components analysis revealed two distinct clusters of cytokine secretion including one cluster that consisted of many innate immune cytokines and differed between groups. Compared to women in the Non-Anxiety group, women in the Anxiety group had lower levels of cytokine expression during pregnancy and an increase in levels into the postpartum, whereas Non-Anxiety women experienced a time-dependent decline. Immune cell populations also differed between our two groups, with the Anxiety group showing a decrease in the ratio of B cells to T cells from pregnancy to postpartum, whereas the Non-Anxiety women showed an increase in this ratio over time. Women in the Anxiety group also demonstrated an increased ratio of cytotoxic to helper T cells throughout pregnancy, a modest increase in the Th1:Th2 ratio across pregnancy, and a lower ratio of Th17:TREG cells in the postpartum as compared with Non-Anxiety women. CONCLUSION These data suggest that the immune response throughout the antenatal period differs for women with anxiety symptoms compared to those without, suggestive of a unique immune phenotype of perinatal anxiety.
Collapse
Affiliation(s)
- Morgan L Sherer
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Kristin M Voegtline
- Division of General Pediatrics, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Han-Sol Park
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kristen N Miller
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lauren C Shuffrey
- Department of Psychiatry, Columbia University Irving Medical Center, New York, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Lauren M Osborne
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Obstetrics & Gynecology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
37
|
Matits L, Gumpp AM, Kolassa IT, Behnke A, Mack M. Störungsspezifische und transdiagnostische Veränderung der Inflammationsaktivität bei psychischen Störungen. ZEITSCHRIFT FUR KLINISCHE PSYCHOLOGIE UND PSYCHOTHERAPIE 2022. [DOI: 10.1026/1616-3443/a000666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Zusammenfassung. Theoretischer Hintergrund: Empirische Befunde deuten vermehrt auf eine erhöhte Entzündungsaktivität im Zusammenhang mit psychischen Störungen hin. Inwieweit sich inflammatorische Veränderungen über Störungen hinweg unterscheiden bzw. ob Inflammation ein transdiagnostisches Korrelat psychischer Störungen darstellt, ist bisher jedoch noch nicht eindeutig beantwortet. Fragestellung: Liegen spezifische inflammatorische Marker (z. B. Zytokine) über psychische Störungen hinweg verändert vor und/oder gibt es störungsspezifische Zytokinveränderungen bei Major Depression (MDD), Bipolarer Störung, Schizophrenie und Angststörungen inkl. Posttraumatischer Belastungsstörung (PTBS). Methode: Basierend auf einer Literaturrecherche werden aktuelle metaanalytische Befunde, die Studien bei Patient_innen mit MDD, Bipolarer Störung, Schizophrenie oder Angststörungen inkl. PTBS im Vergleich zu gesunden Kontrollen betrachten, zusammengetragen und vergleichend dargestellt. Ergebnisse: Aktuelle Evidenz verweist relativ konsistent auf Veränderungen des Immunsystems, wobei v. a. das Zytokin Interleukin (IL–) 6 und das C-reaktive Protein (CRP) störungsübergreifend leicht erhöht sind. Schlussfolgerungen: Perspektivisch könnten Patient_innen mit chronisch inflammatorischen Erkrankungen und psychischen Störungen von psychotherapiebegleitenden antiinflammatorischen Maßnahmen wie bspw. körperlicher Aktivität, antiinflammatorischer Ernährung und Entspannungsverfahren profitieren.
Collapse
Affiliation(s)
- Lynn Matits
- Sektion Sport- und Rehabilitationsmedizin, Innere Medizin, Universitätsklinikum Ulm, Deutschland
- Klinische & Biologische Psychologie, Institut für Psychologie und Pädagogik, Universität Ulm, Deutschland
| | - Anja Maria Gumpp
- Klinische & Biologische Psychologie, Institut für Psychologie und Pädagogik, Universität Ulm, Deutschland
| | - Iris-Tatjana Kolassa
- Klinische & Biologische Psychologie, Institut für Psychologie und Pädagogik, Universität Ulm, Deutschland
| | - Alexander Behnke
- Klinische & Biologische Psychologie, Institut für Psychologie und Pädagogik, Universität Ulm, Deutschland
| | - Matthias Mack
- Klinische & Biologische Psychologie, Institut für Psychologie und Pädagogik, Universität Ulm, Deutschland
| |
Collapse
|
38
|
Noushad S, Ansari B, Ahmed S. Effect of nature-based physical activity on post-traumatic growth among healthcare providers with post-traumatic stress. Stress Health 2022; 38:813-826. [PMID: 35191173 DOI: 10.1002/smi.3135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 11/11/2022]
Abstract
The purpose of this randomized control trial was to observe the effect of nature-based physical activity in achieving post traumatic growth and to estimate the combined effect of nature and physical activity on the psychophysiological outcomes. A 3-month therapy was provided to participants meeting eligibility criteria to receive the walk-in nature (experimental group) or sit-in nature (control group) in the 1:1 ratio. At baseline and 3-month follow-up, participants were assessed with Trauma Symptom Checklist 40, Traumatic Stress Scale, Post-Traumatic Growth Inventory (PTGI), Cortisol, C-Reactive Protein (CRP), Interleukin-6 (IL-6), Brain-Derived Neurotropic Factor (BDNF) and heart rate variability. There was a significant effect of nature-based physical activity on traumatic stress and post-traumatic growth in comparison with the sit-in control. A significant post-interventional difference was observed in the mean PTGI score [F = 5.412, p = 0.022] between the experimental and control groups after 3 months of intervention. All the biochemical estimates, including CRP, BDNF, IL-6, and cortisol levels, were significantly altered in both post-intervention study groups (p < 0.01). Taken together, these results show that nature-based physical activity significantly improves psychophysiological outcomes induced as a result of post-traumatic growth and also reduces traumatic stress.
Collapse
Affiliation(s)
- Shamoon Noushad
- Department of Health, Physical Education and Sports Sciences, University of Karachi, Karachi, Pakistan.,Department of Physiology, Psychophysiology Research Lab, University of Karachi, Karachi, Pakistan
| | - Basit Ansari
- Department of Health, Physical Education and Sports Sciences, University of Karachi, Karachi, Pakistan
| | - Sadaf Ahmed
- Department of Physiology, Psychophysiology Research Lab, University of Karachi, Karachi, Pakistan
| |
Collapse
|
39
|
Katrinli S, Oliveira NCS, Felger JC, Michopoulos V, Smith AK. The role of the immune system in posttraumatic stress disorder. Transl Psychiatry 2022; 12:313. [PMID: 35927237 PMCID: PMC9352784 DOI: 10.1038/s41398-022-02094-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/14/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) develops in a subset of individuals upon exposure to traumatic stress. In addition to well-defined psychological and behavioral symptoms, some individuals with PTSD also exhibit elevated concentrations of inflammatory markers, including C-reactive protein, interleukin-6, and tumor necrosis factor-α. Moreover, PTSD is often co-morbid with immune-related conditions, such as cardiometabolic and autoimmune disorders. Numerous factors, including lifetime trauma burden, biological sex, genetic background, metabolic conditions, and gut microbiota, may contribute to inflammation in PTSD. Importantly, inflammation can influence neural circuits and neurotransmitter signaling in regions of the brain relevant to fear, anxiety, and emotion regulation. Given the link between PTSD and the immune system, current studies are underway to evaluate the efficacy of anti-inflammatory treatments in those with PTSD. Understanding the complex interactions between PTSD and the immune system is essential for future discovery of diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Seyma Katrinli
- Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, USA.
| | - Nayara C. S. Oliveira
- grid.189967.80000 0001 0941 6502Department of Gynecology and Obstetrics, Emory University, Atlanta, GA USA ,National Institute of Woman, Child, and Adolescence Health Fernandes Figueira, Rio de Janeiro, RJ Brazil ,grid.418068.30000 0001 0723 0931Department of Violence and Health Studies Jorge Careli, National School of Public Health, Fiocruz, Rio de Janeiro, RJ Brazil
| | - Jennifer C. Felger
- grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA USA ,grid.189967.80000 0001 0941 6502The Winship Cancer Institute, Emory University, Atlanta, GA USA
| | - Vasiliki Michopoulos
- grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA USA
| | - Alicia K. Smith
- grid.189967.80000 0001 0941 6502Department of Gynecology and Obstetrics, Emory University, Atlanta, GA USA ,grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA USA
| |
Collapse
|
40
|
Peruzzolo TL, Pinto JV, Roza TH, Shintani AO, Anzolin AP, Gnielka V, Kohmann AM, Marin AS, Lorenzon VR, Brunoni AR, Kapczinski F, Passos IC. Inflammatory and oxidative stress markers in post-traumatic stress disorder: a systematic review and meta-analysis. Mol Psychiatry 2022; 27:3150-3163. [PMID: 35477973 DOI: 10.1038/s41380-022-01564-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 11/09/2022]
Abstract
Post-traumatic stress disorder (PTSD) has been associated with persistent, low-degree inflammation, which could explain the increased prevalence of autoimmune conditions and accelerated aging among patients. The aim of the present study is to assess which inflammatory and oxidative stress markers are associated with PTSD. We carried out a meta-analytic and meta-regression analysis based on a systematic review of studies comparing inflammatory and oxidative stress markers between patients with PTSD and controls. We undertook meta-analyses whenever values of inflammatory and oxidative stress markers were available in two or more studies. Overall, 28,008 abstracts were identified, and 54 studies were included, with a total of 8394 participants. The Newcastle-Ottawa Quality Assessment Scale was used to evaluate the quality of the studies. Concentrations of C-reactive protein (SMD = 0.64; 95% CI: 0.21 to 1.06; p = 0.0031; k = 12), interleukin 6 (SMD = 0.94; 95% CI: 0.36 to 1.52; p = 0.0014; k = 32), and tumor necrosis factor-α (SMD = 0.89; 95% CI: 0.23 to 1.55; p = 0.0080; k = 24) were significantly increased in patients with PTSD in comparison with healthy controls. Interleukin 1β levels almost reached the threshold for significance (SMD = 1.20; 95% CI: -0.04 to 2.44; p = 0.0569; k = 15). No oxidative stress marker was associated with PTSD. These findings may explain why PTSD is associated with accelerated aging and illnesses in which immune activation has a key role, such as cardiovascular diseases and diabetes. In addition, they pointed to the potential role of inflammatory markers as therapeutic targets.
Collapse
Affiliation(s)
- Tatiana Lauxen Peruzzolo
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) and Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,Department of Psychiatry, School of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jairo Vinícius Pinto
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) and Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,University Hospital, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Thiago Henrique Roza
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) and Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,Department of Psychiatry, School of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Augusto Ossamu Shintani
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) and Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,Department of Psychiatry, School of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ana Paula Anzolin
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) and Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,Department of Psychiatry, School of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Vanessa Gnielka
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) and Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,Department of Psychiatry, School of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - André Moura Kohmann
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) and Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,Department of Psychiatry, School of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Amanda Salvador Marin
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) and Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,Department of Psychiatry, School of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Vitória Ruschel Lorenzon
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) and Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,Department of Psychiatry, School of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - André Russowsky Brunoni
- Centro de Pesquisas Clínicas e Epidemiológicas, Hospital Universitário, Universidade de São Paulo, São Paulo, Brasil.,Departamentos de Clínica Médica e Psiquiatria, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brasil.,Instituto Nacional de Biomarcadores em Psiquiatria (IMBION), Laboratory of Neurosciences (LIM-27), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brasil
| | - Flávio Kapczinski
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) and Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,Department of Psychiatry, School of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Ives Cavalcante Passos
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) and Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil. .,Department of Psychiatry, School of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil. .,Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil.
| |
Collapse
|
41
|
Zhao F, Li B, Yang W, Ge T, Cui R. Brain-immune interaction mechanisms: Implications for cognitive dysfunction in psychiatric disorders. Cell Prolif 2022; 55:e13295. [PMID: 35860850 PMCID: PMC9528770 DOI: 10.1111/cpr.13295] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 04/28/2022] [Accepted: 06/07/2022] [Indexed: 12/15/2022] Open
Abstract
Objectives Cognitive dysfunction has been identified as a major symptom of a series of psychiatric disorders. Multidisciplinary studies have shown that cognitive dysfunction is monitored by a two‐way interaction between the neural and immune systems. However, the specific mechanisms of cognitive dysfunction in immune response and brain immune remain unclear. Materials and methods In this review, we summarized the relevant research to uncover our comprehension of the brain–immune interaction mechanisms underlying cognitive decline. Results The pathophysiological mechanisms of brain‐immune interactions in psychiatric‐based cognitive dysfunction involve several specific immune molecules and their associated signaling pathways, impairments in neural and synaptic plasticity, and the potential neuro‐immunological mechanism of stress. Conclusions Therefore, this review may provide a better theoretical basis for integrative therapeutic considerations for psychiatric disorders associated with cognitive dysfunction.
Collapse
Affiliation(s)
- Fangyi Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Tongtong Ge
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
42
|
Basso L, Boecking B, Neff P, Brueggemann P, El-Ahmad L, Brasanac J, Rose M, Gold SM, Mazurek B. Negative Associations of Stress and Anxiety Levels With Cytotoxic and Regulatory Natural Killer Cell Frequency in Chronic Tinnitus. Front Psychol 2022; 13:871822. [PMID: 35814090 PMCID: PMC9262102 DOI: 10.3389/fpsyg.2022.871822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/25/2022] [Indexed: 12/04/2022] Open
Abstract
Background Depression and anxiety are known to be associated with stress-induced changes in the immune system. Bothersome tinnitus can be related to stress and often co-occurs with depression and anxiety. This study investigates associations of psychological and audiological tinnitus-related factors with inflammatory parameters and immune cell subsets in chronic tinnitus patients as well as treatment-related effects. Methods This longitudinal study of inpatients treated with compact multimodal tinnitus-specific cognitive behavioral therapy included four repeated measurement sessions: baseline (N = 41), treatment end, 7.8-week (N = 35), and 13.8-week follow-up (N = 34). Data collection included audiometric testing, blood sampling, and psychometric questionnaires: Tinnitus Handicap Inventory (THI), Perceived Stress Questionnaire (PSQ-20), and Hospital Anxiety Depression Scale (HADS). Flow cytometry was used to analyze immune cell subsets. Statistical analyses comprised correlation and network analysis (cross-sectional), and linear mixed effect models (longitudinal). Results Bootstrapped network analysis showed negative averaged cross-sectional associations of cytotoxic natural killer (NKc) cell frequency (CD56 + CD16+) and PSQ-20 (−0.21 [−0.48, 0]) and of regulatory natural killer (NKreg) cell frequency (CD56 + CD16dim/−) and HADS anxiety (−0.14 [−0.38, 0]). No significant treatment effects were found. A negative predictive effect of baseline PSQ-20 scores (β = −6.22 [−12.18, −0.26], p = 0.041) and a positive predictive effect of baseline ferritin levels (β = 8.90 [2.76, 15.03], p = 0.004) on NKc cell frequency across the repeated measurement sessions were observed. Conclusion We observed negative relationships between perceived stress levels and NKc cell frequency and between anxiety levels and NKreg cell frequency in chronic tinnitus patients. These exploratory results suggest stress−/anxiety-related immune alterations in bothersome tinnitus but need to be tested in further confirmatory studies with larger sample sizes. The potential of NK cells as biomarkers of emotional distress in chronic tinnitus should be further investigated.
Collapse
Affiliation(s)
- Laura Basso
- Tinnitus Center, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Benjamin Boecking
- Tinnitus Center, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Patrick Neff
- Center for Cognitive Neuroscience and Department of Psychology, University of Salzburg, Salzburg, Austria
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
- Center for Neuroprosthetics, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Petra Brueggemann
- Tinnitus Center, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Linda El-Ahmad
- Medical Department, Section of Psychosomatic Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Jelena Brasanac
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Matthias Rose
- Medical Department, Section of Psychosomatic Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan M. Gold
- Medical Department, Section of Psychosomatic Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Birgit Mazurek
- Tinnitus Center, Charité – Universitätsmedizin Berlin, Berlin, Germany
- *Correspondence: Birgit Mazurek,
| |
Collapse
|
43
|
Friend SF, Nachnani R, Powell SB, Risbrough VB. C-Reactive Protein: Marker of risk for post-traumatic stress disorder and its potential for a mechanistic role in trauma response and recovery. Eur J Neurosci 2022; 55:2297-2310. [PMID: 33131159 PMCID: PMC8087722 DOI: 10.1111/ejn.15031] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/17/2020] [Accepted: 10/06/2020] [Indexed: 01/08/2023]
Abstract
Increasing evidence indicates that inflammation plays a role in PTSD and stress disorder pathophysiology. PTSD is consistently associated with higher circulating inflammatory protein levels. Rodent models demonstrate that inflammation promotes enduring avoidance and arousal behaviors after severe stressors (e.g., predator exposure and social defeat), suggesting that inflammation may play a mechanistic role in trauma disorders. C-reactive protein (CRP) is an innate acute phase reactant produced by the liver after acute infection and chronic disease. A growing number of investigations report associations with PTSD diagnosis and elevated peripheral CRP, CRP gene mutations, and CRP gene expression changes in immune signaling pathways. CRP is reasonably established as a potential marker of PTSD and trauma exposure, but if and how it may play a mechanistic role is unclear. In this review, we discuss the current understanding of immune mechanisms in PTSD with a particular focus on the innate immune signaling factor, CRP. We found that although there is consistent evidence of an association of CRP with PTSD symptoms and risk, there is a paucity of data on how CRP might contribute to CNS inflammation in PTSD, and consequently, PTSD symptoms. We discuss potential mechanisms through which CRP could modulate enduring peripheral and CNS stress responses, along with future areas of investigation probing the role of CRP and other innate immune signaling factors in modulating trauma responses. Overall, we found that CRP likely contributes to central inflammation, but how it does so is an area for further study.
Collapse
Affiliation(s)
- Samantha F. Friend
- Veterans Affairs Center of Excellence for Stress and Mental HealthSan DiegoCAUSA
- Department of PsychiatryUniversity of California San DiegoSan DiegoCAUSA
| | - Rahul Nachnani
- Department of PharmacologyPenn State College of MedicineHersheyPAUSA
| | - Susan B. Powell
- Department of PsychiatryUniversity of California San DiegoSan DiegoCAUSA
- Research ServiceVA San Diego Healthcare SystemSan DiegoCAUSA
| | - Victoria B. Risbrough
- Veterans Affairs Center of Excellence for Stress and Mental HealthSan DiegoCAUSA
- Department of PsychiatryUniversity of California San DiegoSan DiegoCAUSA
| |
Collapse
|
44
|
Hawn SE, Neale Z, Wolf EJ, Zhao X, Pierce M, Fein-Schaffer D, Milberg W, McGlinchey R, Logue M, Miller MW. Methylation of the AIM2 gene: An epigenetic mediator of PTSD-related inflammation and neuropathology plasma biomarkers. Depress Anxiety 2022; 39:323-333. [PMID: 35312143 PMCID: PMC8996332 DOI: 10.1002/da.23247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Posttraumatic stress disorder (PTSD) is associated with inflammation and various forms of chronic disease. The Absent in Melanoma 2 (AIM2) gene has been implicated in mechanisms of inflammation and anxiety, and methylation at a particular locus in this gene (cg10636246) has previously been shown to influence the association between PTSD and elevated C-reactive protein levels in blood. METHOD We tested if this association might extend to other indicators of inflammation and to plasma-based measures of neuropathology in a cohort of post-9/11 US military veterans. Using a Bayesian approach, mediation models were tested cross-sectionally (n = 478) and longitudinally (n = 298). Peripheral markers of inflammation and neuropathology were measured with ultra-sensitive Single Molecule Array (Simoa®) technology. RESULTS Analyses revealed indirect effects of PTSD symptom severity on peripheral indices of both inflammation (interleukin [IL]6, IL-10, tumor necrosis factor-α; indirect standardized [std.] ß range = 0.018-0.023, all p-values adjusted for multiple testing [padj ] < 0.05) and neuropathology (neurofilament light [NFL]; indirect std. ß = -0.018, padj = 0.02) via AIM2 methylation. This indirect effect was also evident when predicting IL-10 at a follow-up assessment (indirect std. ß = -0.018, padj = 0.04) controlling for baseline IL-10. CONCLUSIONS Given that AIM2 methylation mediated the association between PTSD symptoms and multiple inflammatory and neuropathology markers, our results suggest that AIM2 methylation may offer clinical utility for indexing risk for adverse health outcomes associated with these peripheral indices of inflammation and neuropathology. Results also suggest a possible shared etiology underlying the frequent co-occurrence of inflammation and neuropathology.
Collapse
Affiliation(s)
- Sage E Hawn
- National Center for PTSD at VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Zoe Neale
- National Center for PTSD at VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Erika J Wolf
- National Center for PTSD at VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Xiang Zhao
- National Center for PTSD at VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Meghan Pierce
- Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts, USA
- Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Dana Fein-Schaffer
- National Center for PTSD at VA Boston Healthcare System, Boston, Massachusetts, USA
| | - William Milberg
- Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Regina McGlinchey
- Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark Logue
- National Center for PTSD at VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Medicine, Biomedical Genetics, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Mark W Miller
- National Center for PTSD at VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
45
|
Hakamata Y, Suzuki Y, Kobashikawa H, Hori H. Neurobiology of early life adversity: A systematic review of meta-analyses towards an integrative account of its neurobiological trajectories to mental disorders. Front Neuroendocrinol 2022; 65:100994. [PMID: 35331780 DOI: 10.1016/j.yfrne.2022.100994] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/23/2022]
Abstract
Adverse childhood experiences (ACEs) may leave long-lasting neurobiological scars, increasing the risk of developing mental disorders in later life. However, no review has comprehensively integrated existing evidence across the fields: hypothalamic-pituitary-adrenal axis, immune/inflammatory system, neuroimaging, and genetics/epigenetics. We thus systematically reviewed previous meta-analyses towards an integrative account of ACE-related neurobiological alterations. Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline, a total of 27 meta-analyses until October 2021 were identified. This review found that individuals with ACEs possess blunted cortisol response to psychosocial stressors, low-grade inflammation evinced by increased C-reactive protein levels, exaggerated amygdalar response to emotionally negative information, and diminished hippocampal gray matter volume. Importantly, these alterations were consistently observed in those with and without psychiatric diagnosis. These findings were integrated and discussed in a schematic model of ACE-related neurobiological alterations. Future longitudinal research based on multidisciplinary approach is imperative for ACE-related mental disorders' prevention and treatment.
Collapse
Affiliation(s)
- Yuko Hakamata
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Clinical and Cognitive Neuroscience, School of Medicine, Toyama University, Toyama, Japan.
| | - Yuhki Suzuki
- Department of Clinical and Cognitive Neuroscience, School of Medicine, Toyama University, Toyama, Japan
| | - Hajime Kobashikawa
- Department of Clinical and Cognitive Neuroscience, School of Medicine, Toyama University, Toyama, Japan
| | - Hiroaki Hori
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan.
| |
Collapse
|
46
|
Changes in the Serum Levels of Cytokines: IL-1β, IL-4, IL-8 and IL-10 in Depression with and without Posttraumatic Stress Disorder. Brain Sci 2022; 12:brainsci12030387. [PMID: 35326343 PMCID: PMC8946076 DOI: 10.3390/brainsci12030387] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/14/2022] [Accepted: 03/07/2022] [Indexed: 01/20/2023] Open
Abstract
Background: Both depressive disorders (DD) and post-traumatic stress disorders (PTSD) are caused by immune system dysfunction. Affected individuals show increased proinflammatory cytokine concentration levels. Also, it has been hypothesized that DD and PTSD might be associated with a generalized proinflammatory cytokine signature. The study assessed the concentration of IL-1β, IL-4, IL-8 and IL-10 in depression alone and with PTSD. Methods: The study involved 460 participants. Out of them, 420 subjects comprised a study group and 40 subjects comprised a control group. Each study group consisted of 60 patients with mild depression (MD), moderate depression (MOD), severe depression (SeD), MD and PTSD (MD + PTSD), MOD and PTSD (MOD + PTSD), SeD and PTSD (SeD + PTSD), and with PTSD alone. All patients had serum concentration of IL-1β, IL-4, IL-8 and IL-10 measured with ELISA. Results: DD and PTSD are reflected in IL-1β, IL-4, IL-8 and IL-10 concentration levels. It was reported that mean levels of IL-1β, IL-4, IL-8 increase as depression became more severe. A regular decrease in IL-10 concentration levels was noted with the onset and exacerbation of depressive symptoms. Conclusion: The findings might be useful when considering chronic inflammation as a potential target or biomarker in depression and PTSD treatment.
Collapse
|
47
|
The relations between C-reactive protein and trauma exposure, PTSD and depression symptoms, and PTSD psychotherapy treatment response in treatment seeking veterans and service members. Brain Behav Immun 2022; 101:84-92. [PMID: 34990746 DOI: 10.1016/j.bbi.2021.12.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/10/2021] [Accepted: 12/29/2021] [Indexed: 12/28/2022] Open
Abstract
While inflammatory markers have been implicated in the link between PTSD and poor health outcomes, there is a paucity of research investigating C-reactive protein (CRP) and psychotherapy treatment response for posttraumatic stress disorder (PTSD). The present study utilized a large, well-characterized sample of veterans and service members (N = 493) engaged in intensive psychotherapy to investigate the associations between CRP, trauma exposure, related variables, and PTSD and depression, as well as investigating if CRP was associated with PTSD psychotherapy treatment response. Bivariate correlation results indicate that CRP was significantly associated with BMI (r = 0.48) and severity of experiences of childhood physical and sexual abuse (r = 0.14 and 0.15, respectively) and was not significantly associated with baseline PTSD total symptom severity, PTSD symptom clusters, or depression symptom severity (rs ranging from -0.03 to 0.04). In multivariate regression models investigating if CRP and related variables were associated with PTSD baseline symptom severity, CRP was not a significant predictor (β = -0.03). Hierarchical linear modeling did not identify CRP as a significant predictor of PTSD psychotherapy outcome. Given that findings indicate that CRP was broadly elevated in this treatment seeking sample but not associated with PTSD and depression symptom severity, results suggest CRP may not be a specific biomarker for PTSD or depression but may be elevated in psychiatric disease more generally.
Collapse
|
48
|
Plank AC, Maschke J, Rohleder N, Fasching PA, Beckmann MW, Kornhuber J, Eichler A, Moll GH, Kratz O. Comparison of C-Reactive Protein in Dried Blood Spots and Saliva of Healthy Adolescents. Front Immunol 2022; 12:795580. [PMID: 34975902 PMCID: PMC8716383 DOI: 10.3389/fimmu.2021.795580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/15/2021] [Indexed: 01/08/2023] Open
Abstract
Background/Aim Determining C-reactive protein (CRP) by non-invasive methods is of great interest for research addressing inflammation in young people. However, direct comparisons of such methods applied in children and adolescents are lacking so far. This study aimed to evaluate the association between CRP measured in dried blood spots (DBS CRP) and in saliva (sCRP), two less invasive alternatives to venipuncture, in 12- to 14-year-old adolescents. To evaluate the validity of both measurements in the context of biobehavioral studies, the potential of DBS CRP and sCRP to discriminate between defined BMI subgroups was assessed. Materials and Methods CRP levels in DBS and saliva collected from 87 healthy adolescents (M = 13.25 years, SD = 0.30, 51.7% females) were determined using high sensitive CRP ELISA for serum and salivary CRP ELISA, respectively. Characteristics and correlation of both measurements were assessed for the total sample and for three subgroups classified by BMI percentile ranges (A: ≤ 25; B: 26–74; C: ≥ 75). Results In the total sample, DBS CRP and sCRP were significantly associated (r = 0.59, p < 0.001). Splitting the sample into BMI-dependent subgroups revealed similarly strong associations of DBS CRP with sCRP for all three groups (A: r = 0.51; B: r = 0.61; C: r = 0.53). However, comparing the mean CRP values per BMI subgroup, one-way ANOVA reported significant differences for DBS CRP, but not for sCRP mean values. Conclusions The significant correlation of DBS CRP with sCRP was independent of the investigated BMI range groups, yet BMI-dependent distinction was only provided by DBS CRP mean values. Overall, our results suggest that DBS CRP is likely to reflect systemic inflammation more precisely. Salivary CRP can be alternatively determined in studies with adolescents when conditions require it, given the oral health status is assessed. Considering that DBS CRP and sCRP share only 35% of common variance, further studies should examine their specific validity.
Collapse
Affiliation(s)
- Anne-Christine Plank
- Department of Child and Adolescent Mental Health, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Janina Maschke
- Department of Child and Adolescent Mental Health, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Nicolas Rohleder
- Department of Psychology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Peter A Fasching
- Department of Obstetrics and Gynecology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias W Beckmann
- Department of Obstetrics and Gynecology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Anna Eichler
- Department of Child and Adolescent Mental Health, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Gunther H Moll
- Department of Child and Adolescent Mental Health, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Oliver Kratz
- Department of Child and Adolescent Mental Health, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
49
|
Kennedy E, Niedzwiedz CL. The association of anxiety and stress-related disorders with C-reactive protein (CRP) within UK Biobank. Brain Behav Immun Health 2022; 19:100410. [PMID: 35028602 PMCID: PMC8741412 DOI: 10.1016/j.bbih.2021.100410] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 12/18/2021] [Indexed: 11/29/2022] Open
Abstract
Anxiety and stress-related disorders are both common and disabling psychiatric conditions. There are a number of hypotheses suggesting the underlying pathophysiology of these disorders, however, the exact mechanism is unknown. Inflammation has previously been linked with depression and has more recently been suggested as a possible link to anxiety aetiology. The objectives of this study are to assess the relationship between different anxiety/stress-related disorders and inflammation (measured by C-reactive protein) using the UK Biobank, and also determine whether any relationship between anxiety/stress disorders and inflammation is explained by depressive symptoms and other social and health-related factors. We utilised the UK Biobank for the sample of this study. Our sample included 353,136 participants of which 12,759 (3.61%) had a history of an anxiety (phobic, obsessive-compulsive, or other anxiety disorder including generalised anxiety and panic disorders) or stress-related disorder (including acute stress reaction, post-traumatic stress disorder and adjustment disorders). Four logistic regression models were calculated in which we tested the association between anxiety/stress disorders and C-reactive protein (CRP) >3 mg/L, adjusting for covariates (including age, sex, ethnicity, education level, socioeconomic deprivation, depressive symptoms, body mass index (BMI) and multimorbidity). An association was observed between other anxiety disorders (including panic and generalised anxiety disorders) and CRP (OR: 1.164 [95% CI: 1.096–1.236]). This was attenuated in models after the addition of BMI, multimorbidity and depressive symptoms. Stress/adjustment disorders followed a similar pattern of results (OR: 1.107 [95% CI: 1.040, 1.178]), with the association attenuated with the addition of BMI and multimorbidity). Phobic anxiety disorders (OR: 1.059 [95% CI: 0.896, 1.251]) and obsessive-compulsive disorders (OR: 1.299 [95% CI: 0.973, 1.733]) both showed no statistically significant results in any of the models. Our results support the hypothesis that some anxiety and stress-related disorders may be associated with high levels of inflammatory markers, as measured by CRP. Further studies are required to untangle the potential causal relationships involved. We explored the association of anxiety and stress-related disorders with C-reactive protein (CRP) using UK Biobank. Several disorders (e.g. generalised anxiety, panic and stress/adjustment) were associated with higher levels of CRP. Associations were attenuated with adjustment for health-related factors, such as multimorbidity and depressive symptoms.
Collapse
|
50
|
Hornick MG, Olson ME, Jadhav AL. SARS-CoV-2 Psychiatric Sequelae: A Review of Neuroendocrine Mechanisms and Therapeutic Strategies. Int J Neuropsychopharmacol 2022; 25:1-12. [PMID: 34648616 PMCID: PMC8524640 DOI: 10.1093/ijnp/pyab069] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/07/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
From the earliest days of the coronavirus disease 2019 (COVID-19) pandemic, there have been reports of significant neurological and psychological symptoms following Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. This narrative review is designed to examine the potential psychoneuroendocrine pathogenic mechanisms by which SARS-CoV-2 elicits psychiatric sequelae as well as to posit potential pharmacologic strategies to address and reverse these pathologies. Following a brief overview of neurological and psychological sequelae from previous viral pandemics, we address mechanisms by which SARS-CoV-2 could enter or otherwise elicit changes in the CNS. We then examine the hypothesis that COVID-19-induced psychiatric disorders result from challenges to the neuroendocrine system, in particular the hypothalamic-pituitary-adrenal stress axis and monoamine synthesis, physiological mechanisms that are only further enhanced by the pandemic-induced social environment of fear, isolation, and socioeconomic pressure. Finally, we evaluate several FDA-approved therapeutics in the context of COVID-19-induced psychoneuroendocrine disorders.
Collapse
Affiliation(s)
- Mary G Hornick
- Roosevelt University, College of Science, Health and Pharmacy, Schaumburg, Illinois, USA
| | - Margaret E Olson
- Roosevelt University, College of Science, Health and Pharmacy, Schaumburg, Illinois, USA
| | - Arun L Jadhav
- Roosevelt University, College of Science, Health and Pharmacy, Schaumburg, Illinois, USA
| |
Collapse
|