1
|
Cebeci E, Katirci E, Karhan M, Korgun ET. The immunomodulator effect of Stevia rebaudiana Bertoni mediated by TNF-α and IL-1β in peripheral blood in diabetic rats. Food Sci Nutr 2024; 12:7581-7590. [PMID: 39479688 PMCID: PMC11521730 DOI: 10.1002/fsn3.4371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 11/02/2024] Open
Abstract
Stevia rebaudiana Bertoni, which is a medicinal plant used in the treatment of diabetes, was the focus of this study aiming to investigate its immunomodulatory properties in diabetes. To form the diabetes group, rats were injected intraperitoneally with STZ and rats with blood glucose levels above 200 mg/dL 2 days after STZ injection were included in the diabetes group. To form the stevia and diabetes + stevia groups, stevia was administered daily by gavage to both healthy and diabetic rats for 28 days. At the end of 28 days, the levels of interleukin-1 beta and tumor necrosis factor-alpha in the blood were measured by ELISA. CD3, CD4, and CD8 protein levels in the blood were determined by flow cytometry. Rat body weight increased in the diabetes +25 mg/kg bW stevia group compared with the diabetes group. Blood glucose levels were significantly decreased in the diabetes +25 mg/kg bW stevia group compared to the diabetes group (**p < .01). IL-1β cytokine levels decreased significantly in the diabetes +25 mg/kg bW stevia group compared to the diabetes group (**p < .01). TNF-α cytokine levels decreased significantly in the diabetes +25 mg/kg bW stevia group compared to the diabetes group (**p < .01). The amount of CD8 + T cells decreased significantly in the diabetes +25 mg/kg bW stevia group compared to the diabetes group (*p < .05). The stevia diet leads to a reduction in peripheral circulating cytotoxic T cells and proinflammatory cytokines interleukin-1 beta and tumor necrosis factor-alpha under hyperglycemic conditions.
Collapse
Affiliation(s)
- Erhan Cebeci
- Faculty of Medicine, Department of Histology and EmbryologyAkdeniz UniversityAntalyaTurkey
| | - Ertan Katirci
- Faculty of Medicine, Department of Histology and EmbryologyAhi Evran UniversityKirsehirTurkey
| | - Mustafa Karhan
- Faculty of Engineering, Department of Food EngineeringAkdeniz UniversityAntalyaTurkey
| | - Emin Turkay Korgun
- Faculty of Medicine, Department of Histology and EmbryologyAkdeniz UniversityAntalyaTurkey
| |
Collapse
|
2
|
Yue L, Li J, Yao M, Song S, Zhang X, Wang Y. Cutting edge of immune response and immunosuppressants in allogeneic and xenogeneic islet transplantation. Front Immunol 2024; 15:1455691. [PMID: 39346923 PMCID: PMC11427288 DOI: 10.3389/fimmu.2024.1455691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
As an effective treatment for diabetes, islet transplantation has garnered significant attention and research in recent years. However, immune rejection and the toxicity of immunosuppressive drugs remain critical factors influencing the success of islet transplantation. While immunosuppressants are essential in reducing immune rejection reactions and can significantly improve the survival rate of islet transplants, improper use of these drugs can markedly increase mortality rates following transplantation. Additionally, the current availability of islet organ donations fails to meet the demand for organ transplants, making xenotransplantation a crucial method for addressing organ shortages. This review will cover the following three aspects: 1) the immune responses occurring during allogeneic islet transplantation, including three stages: inflammation and IBMIR, allogeneic immune response, and autoimmune recurrence; 2) commonly used immunosuppressants in allogeneic islet transplantation, including calcineurin inhibitors (Cyclosporine A, Tacrolimus), mycophenolate mofetil, glucocorticoids, and Bortezomib; and 3) early and late immune responses in xenogeneic islet transplantation and the immune effects of triple therapy (ECDI-fixed donor spleen cells (ECDI-SP) + anti-CD20 + Sirolimus) on xenotransplantation.
Collapse
Affiliation(s)
- Liting Yue
- Center of Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jisong Li
- Department of Gastrointestinal Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingjun Yao
- Center of Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Siyuan Song
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Xiaoqin Zhang
- Center of Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yi Wang
- Center of Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, Chengdu, China
| |
Collapse
|
3
|
Kokori E, Olatunji G, Ogieuhi IJ, Aboje JE, Olatunji D, Aremu SA, Igwe SC, Moradeyo A, Ajayi YI, Aderinto N. Teplizumab's immunomodulatory effects on pancreatic β-cell function in type 1 diabetes mellitus. Clin Diabetes Endocrinol 2024; 10:23. [PMID: 39123252 PMCID: PMC11316332 DOI: 10.1186/s40842-024-00181-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/09/2024] [Indexed: 08/12/2024] Open
Abstract
This review explores the immunomodulatory potential of Teplizumab and its impact on pancreatic β-cell function in T1D. Characterized by the autoimmune destruction of insulin-producing beta cells, T1D's management involves maintaining glycemic control through exogenous insulin. Teplizumab, a humanized monoclonal antibody targeting the CD3 antigen, has shown promise in delaying T1D onset and preserving residual β-cell function. The review employs a narrative approach, synthesizing evidence from diverse clinical trials and studies gathered through a meticulous literature search. It scrutinizes Teplizumab's mechanisms of action, including its influence on autoreactive CD8 + T cells and regulatory T cells, offering insights into its immunological pathways. The synthesis of findings from various trials demonstrates Teplizumab's efficacy in preserving C-peptide levels and reducing exogenous insulin requirements, particularly in recent-onset T1D. Considering Teplizumab's real-world implications, the paper addresses potential obstacles, including side effects, patient selection criteria, and logistical challenges. It also emphasizes exploring combination therapies and personalized treatment strategies to maximize Teplizumab's benefits. The review contributes a nuanced perspective on Teplizumab's clinical implications and future directions in T1D management, bridging theoretical understanding with practical considerations.
Collapse
Affiliation(s)
- Emmanuel Kokori
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| | - Gbolahan Olatunji
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| | | | - John Ehi Aboje
- Department of Medicine, College of Health Sciences, Benue State University, Benue, Nigeria
| | - Doyin Olatunji
- Department of Health Sciences, Western Illinois University, Macomb, USA
| | | | | | - Abdulrahmon Moradeyo
- Department of Medicine and Surgery, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Yusuf Ismaila Ajayi
- Department of Medicine and Surgery, Obafemi Awolowo University, Ife, Nigeria
| | - Nicholas Aderinto
- Department of Medicine and Surgery, Ladoke Akintola University of Technology, Ogbomoso, Nigeria.
| |
Collapse
|
4
|
Ren X, Amarajeewa AWP, Jayasinghe MDT, Garstka MA. Differences in F pocket impact on HLA I genetic associations with autoimmune diabetes. Front Immunol 2024; 15:1342335. [PMID: 38596688 PMCID: PMC11003304 DOI: 10.3389/fimmu.2024.1342335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/26/2024] [Indexed: 04/11/2024] Open
Abstract
Introduction Human leukocyte antigen (HLA) I molecules present antigenic peptides to activate CD8+ T cells. Type 1 Diabetes (T1D) is an auto-immune disease caused by aberrant activation of the CD8+ T cells that destroy insulin-producing pancreatic β cells. Some HLA I alleles were shown to increase the risk of T1D (T1D-predisposing alleles), while some reduce this risk (T1D-protective alleles). Methods Here, we compared the T1D-predisposing and T1D-protective allotypes concerning peptide binding, maturation, localization and surface expression and correlated it with their sequences and energetic profiles using experimental and computational methods. Results T1D-predisposing allotypes had more peptide-bound forms and higher plasma membrane levels than T1D-protective allotypes. This was related to the fact that position 116 within the F pocket was more conserved and made more optimal contacts with the neighboring residues in T1D-predisposing allotypes than in protective allotypes. Conclusion Our work uncovers that specific polymorphisms in HLA I molecules potentially influence their susceptibility to T1D.
Collapse
Affiliation(s)
- Xu Ren
- Department of Urology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Core Research Laboratory, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of Endocrinology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - A. W. Peshala Amarajeewa
- Core Research Laboratory, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | | | - Malgorzata A. Garstka
- Department of Urology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Core Research Laboratory, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of Endocrinology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of Tumor and Immunology, Precision Medical Institute, Western China Science and Technology Innovation Port, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
5
|
Limanaqi F, Vicentini C, Saulle I, Clerici M, Biasin M. The role of endoplasmic reticulum aminopeptidases in type 1 diabetes mellitus. Life Sci 2023; 323:121701. [PMID: 37059356 DOI: 10.1016/j.lfs.2023.121701] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Type-I diabetes mellitus (T1DM) is generally considered as a chronic, T-cell mediated autoimmune disease. This notwithstanding, both the endogenous characteristics of β-cells, and their response to environmental factors and exogenous inflammatory stimuli are key events in disease progression and exacerbation. As such, T1DM is now recognized as a multifactorial condition, with its onset being influenced by both genetic predisposition and environmental factors, among which, viral infections represent major triggers. In this frame, endoplasmic reticulum aminopeptidase 1 (ERAP1) and 2 (ERAP2) hold center stage. ERAPs represent the main hydrolytic enzymes specialized in trimming of N-terminal antigen peptides to be bound by MHC class I molecules and presented to CD8+ T cells. Thus, abnormalities in ERAPs expression alter the peptide-MHC-I repertoire both quantitatively and qualitatively, fostering both autoimmune and infectious diseases. Although only a few studies succeeded in determining direct associations between ERAPs variants and T1DM susceptibility/outbreak, alterations of ERAPs do impinge on a plethora of biological events which might indeed contribute to the disease development/exacerbation. Beyond abnormal self-antigen peptide trimming, these include preproinsulin processing, nitric oxide (NO) production, ER stress, cytokine responsiveness, and immune cell recruitment/activity. The present review brings together direct and indirect evidence focused on the immunobiological role of ERAPs in T1DM onset and progression, covering both genetic and environmental aspects.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, 20122 Milan, Italy
| | - Chiara Vicentini
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy
| | - Irma Saulle
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, 20122 Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, 20122 Milan, Italy; Don C. Gnocchi Foundation, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Foundation, Via A. Capecelatro 66, 20148 Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy.
| |
Collapse
|
6
|
Anindya R, Rutter GA, Meur G. New-onset type 1 diabetes and severe acute respiratory syndrome coronavirus 2 infection. Immunol Cell Biol 2023; 101:191-203. [PMID: 36529987 PMCID: PMC9877852 DOI: 10.1111/imcb.12615] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Type 1 diabetes (T1D) is a condition characterized by an absolute deficiency of insulin. Loss of insulin-producing pancreatic islet β cells is one of the many causes of T1D. Viral infections have long been associated with new-onset T1D and the balance between virulence and host immunity determines whether the viral infection would lead to T1D. Herein, we detail the dynamic interaction of pancreatic β cells with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the host immune system with respect to new-onset T1D. Importantly, β cells express the crucial entry receptors and multiple studies confirmed that β cells are infected by SARS-CoV-2. Innate immune system effectors, such as natural killer cells, can eliminate such infected β cells. Although CD4+ CD25+ FoxP3+ regulatory T (TREG ) cells provide immune tolerance to prevent the destruction of the islet β-cell population by autoantigen-specific CD8+ T cells, it can be speculated that SARS-CoV-2 infection may compromise self-tolerance by depleting TREG -cell numbers or diminishing TREG -cell functions by repressing Forkhead box P3 (FoxP3) expression. However, the expansion of β cells by self-duplication, and regeneration from progenitor cells, could effectively replace lost β cells. Appearance of islet autoantibodies following SARS-CoV-2 infection was reported in a few cases, which could imply a breakdown of immune tolerance in the pancreatic islets. However, many of the cases with newly diagnosed autoimmune response following SARS-CoV-2 infection also presented with significantly high HbA1c (glycated hemoglobin) levels that indicated progression of an already set diabetes, rather than new-onset T1D. Here we review the potential underlying mechanisms behind loss of functional β-cell mass as a result of SARS-CoV-2 infection that can trigger new-onset T1D.
Collapse
Affiliation(s)
- Roy Anindya
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore City, Singapore.,Centre of Research of Centre Hospitalier de l'Université de Montréal (CRCHUM), Faculty of Medicine, University of Montréal, Montréal, QC, Canada
| | - Gargi Meur
- ICMR-National Institute of Nutrition, Hyderabad, Telangana, India
| |
Collapse
|
7
|
Rose Lukesh N, Middleton DD, Bachelder EM, Ainslie KM. Particle-Based therapies for antigen specific treatment of type 1 diabetes. Int J Pharm 2023; 631:122500. [PMID: 36529362 PMCID: PMC9841461 DOI: 10.1016/j.ijpharm.2022.122500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/16/2022]
Abstract
Type 1 diabetes mellitus (T1D) is the leading metabolic disorder in children worldwide. Over time, incidence rates have continued to rise with 20 million individuals affected globally by the autoimmune disease. The current standard of care is costly and time-consuming requiring daily injections of exogenous insulin. T1D is mediated by autoimmune effector responses targeting autoantigens expressed on pancreatic islet β-cells. One approach to treat T1D is to skew the immune system away from an effector response by taking an antigen-specific approach to heighten a regulatory response through a therapeutic vaccine. An antigen-specific approach has been shown with soluble agents, but the effects have been limited. Micro or nanoparticles have been used to deliver a variety of therapeutic agents including peptides and immunomodulatory therapies to immune cells. Particle-based systems can be used to deliver cargo into the cell and microparticles can passively target phagocytic cells. Further, surface modification and controlled release of encapsulated cargo can enhance delivery over soluble agents. The induction of antigen-specific immune tolerance is imperative for the treatment of autoimmune diseases such as T1D. This review highlights studies that utilize particle-based platforms for the treatment of T1D.
Collapse
Affiliation(s)
- Nicole Rose Lukesh
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Denzel D Middleton
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Eric M Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Kristy M Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, USA.
| |
Collapse
|
8
|
Lachaud CC, Cobo-Vuilleumier N, Fuente-Martin E, Diaz I, Andreu E, Cahuana GM, Tejedo JR, Hmadcha A, Gauthier BR, Soria B. Umbilical cord mesenchymal stromal cells transplantation delays the onset of hyperglycemia in the RIP-B7.1 mouse model of experimental autoimmune diabetes through multiple immunosuppressive and anti-inflammatory responses. Front Cell Dev Biol 2023; 11:1089817. [PMID: 36875761 PMCID: PMC9976335 DOI: 10.3389/fcell.2023.1089817] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disorder specifically targeting pancreatic islet beta cells. Despite many efforts focused on identifying new therapies able to counteract this autoimmune attack and/or stimulate beta cells regeneration, TD1M remains without effective clinical treatments providing no clear advantages over the conventional treatment with insulin. We previously postulated that both the inflammatory and immune responses and beta cell survival/regeneration must be simultaneously targeted to blunt the progression of disease. Umbilical cord-derived mesenchymal stromal cells (UC-MSC) exhibit anti-inflammatory, trophic, immunomodulatory and regenerative properties and have shown some beneficial yet controversial effects in clinical trials for T1DM. In order to clarify conflicting results, we herein dissected the cellular and molecular events derived from UC-MSC intraperitoneal administration (i.p.) in the RIP-B7.1 mouse model of experimental autoimmune diabetes. Intraperitoneal (i.p.) transplantation of heterologous mouse UC-MSC delayed the onset of diabetes in RIP-B7.1 mice. Importantly, UC-MSC i. p. transplantation led to a strong peritoneal recruitment of myeloid-derived suppressor cells (MDSC) followed by multiple T-, B- and myeloid cells immunosuppressive responses in peritoneal fluid cells, spleen, pancreatic lymph nodes and the pancreas, which displayed significantly reduced insulitis and pancreatic infiltration of T and B Cells and pro-inflammatory macrophages. Altogether, these results suggest that UC-MSC i. p. transplantation can block or delay the development of hyperglycemia through suppression of inflammation and the immune attack.
Collapse
Affiliation(s)
- C C Lachaud
- Department of Cell Therapy and Regeneration, Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - N Cobo-Vuilleumier
- Department of Cell Therapy and Regeneration, Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - E Fuente-Martin
- Department of Cell Therapy and Regeneration, Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - I Diaz
- Department of Cell Therapy and Regeneration, Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - E Andreu
- Institute of Bioengineering and Health Research Institute (ISABIAL), Dr. Balmis University Hospital (HGUA), Miguel Hernández University School of Medicine, Alicante, Spain.,Department of Applied Physics, University Miguel Hernández, Alicante, Spain
| | - G M Cahuana
- Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Institute of Health Carlos III, Madrid, Spain.,Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| | - J R Tejedo
- Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Institute of Health Carlos III, Madrid, Spain.,Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| | - A Hmadcha
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain.,Instituto de Investigación Biosanitaria, Universidad Internacional de Valencia (VIU), Valencia, Spain
| | - B R Gauthier
- Department of Cell Therapy and Regeneration, Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain.,Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Institute of Health Carlos III, Madrid, Spain
| | - B Soria
- Institute of Bioengineering and Health Research Institute (ISABIAL), Dr. Balmis University Hospital (HGUA), Miguel Hernández University School of Medicine, Alicante, Spain.,Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Institute of Health Carlos III, Madrid, Spain.,Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
9
|
Colomeu TC, de Figueiredo D, de Matos da Silva P, Fernandes LGR, Zollner RDL. Antiproliferative and Pro-Oxidant Effect of Polyphenols in Aqueous Leaf Extract of Passiflora alata Curtis on Activated T Lymphocytes from Non-Obese Diabetic (NOD SHILT/J) Mice. Antioxidants (Basel) 2022; 11:antiox11081503. [PMID: 36009222 PMCID: PMC9405454 DOI: 10.3390/antiox11081503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 12/10/2022] Open
Abstract
The antioxidant, anti-inflammatory and antiproliferative properties of Passiflora alata Curtis are due to the presence of polyphenols in its composition. Our previous work showed that non-obese diabetic (NOD) mice undergoing treatment with aqueous leaf extract of P. alata present reduced insulitis in the pancreas, possibly due to its anti-inflammatory properties. However, depending on the concentration and their ability to interact with other molecules, these phenolic compounds may promote oxidation reactions in some cellular components, such as proteins and lipids, thus presenting a pro-oxidant effect. The present work aimed to evaluate the in vitro effects of aqueous leaf extract of P. alata and its polyphenols (vitexin, isoorientin, rutin and catechin) on lymphocyte proliferation and viability, the cell cycle and oxidative stress. Our results showed that T lymphocytes stimulated with concanavalin A mitogen (ConA) and in the presence of IC50 concentrations of P. alata extract and polyphenols undergo cell injury via inhibition of proliferation, with these effects being more pronounced concerning CD4+ T cells (P. alata, 3.54 ± 0.34%; isoorientin, 57.07 ± 6.4%; vitexin, 16.95 ± 1.11%; catechin, 37.9 ± 4.2% and rutin, 40.14 ± 4.5%), compared to the non-treated group (77.17 ± 6.29) (p < 0.0001 for all comparisons). This process includes late apoptosis/necrosis induction (P. alata, 77.5 ± 0.7%; vitexin, 83 ± 3.3%; isoorientin, 83.8 ± 1.4%; catechin, 83 ± 1.9% and rutin, 74.9 ± 3.2, while the control presented 53.6% ± 3.1 (p < 0.0001 for all comparisons)) and mitochondrial depolarization leading to cell-death induction. Furthermore, an in vitro model of a mixed culture of NOD mice T cells with a mouse pancreatic beta-cell line (MIN6) showed increased intracellular nitric oxide and lipid peroxidation in NOD T cells submitted to P. alata extract (46.41 ± 3.08) compared to the untreated control group (33.57 ± 1.99, p = 0.01315). These results suggest that aqueous leaf extract of P. alata and the polyphenols in these leaves represent a target for translational research showing the plant’s benefits for developing new drugs with immunomodulatory properties against inflammatory diseases such as diabetes mellitus.
Collapse
|
10
|
Class I MHC Polymorphisms Associated with Type 2 Diabetes in the Mexican Population. Genes (Basel) 2022; 13:genes13050772. [PMID: 35627158 PMCID: PMC9140925 DOI: 10.3390/genes13050772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/16/2022] [Accepted: 04/23/2022] [Indexed: 01/27/2023] Open
Abstract
Type 2 diabetes (T2D) has been linked to the expression of Human Leukocyte Antigens, principally to the Major Histocompatibility Complex Class II, with only scarce reports of Major Histocompatibility Complex Class I in specific populations. The objective of the present work was to explore the presence of polymorphisms in the MHC Class I related to T2D in the Mexican population using the Genome-Wide Association Studies Slim Initiative in Genomic Medicine of the Americas (GWAS SIGMA) database. This database contains information on 3848 Mexican individuals with T2D and 4366 control individuals from the same population without a clinical or hereditary history of the disease. The searching criteria considered a p-value of <0.005 and an odds ratio (OR) of >1.0. Ten novel, statistically significant nucleotide variants were identified: four polymorphisms associated with HLA-A (A*03:01:01:01) and six with HLA-C (C*01:02:01:01). These alleles have a high prevalence in Latin American populations and could potentially be associated with autoimmunity mechanisms related to the development of T2D complications.
Collapse
|
11
|
Brooks-Worrell B, Hampe CS, Hattery EG, Palomino B, Zangeneh SZ, Utzschneider K, Kahn SE, Larkin ME, Johnson ML, Mather KJ, Younes N, Rasouli N, Desouza C, Cohen RM, Park JY, Florez HJ, Valencia WM, Shojaie A, Palmer JP, Balasubramanyam A. Islet Autoimmunity is Highly Prevalent and Associated With Diminished β-Cell Function in Patients With Type 2 Diabetes in the Grade Study. Diabetes 2022; 71:db210590. [PMID: 35061024 PMCID: PMC9375448 DOI: 10.2337/db21-0590] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/08/2021] [Indexed: 11/13/2022]
Abstract
Islet autoimmunity may contribute to β-cell dysfunction in type 2 diabetes (T2D). Its prevalence and clinical significance have not been rigorously determined. In this ancillary study to the Glycemia Reduction Approaches in Diabetes-A Comparative Effectiveness (GRADE) Study, we investigated the prevalence of cellular and humoral islet autoimmunity in patients with T2D duration 4·0±3·0 y, HbA1c 7·5±0·5% on metformin alone. We measured T cell autoreactivity against islet proteins, islet autoantibodies against GAD65, IA2, ZnT8, and β-cell function. Cellular islet autoimmunity was present in 41·3%, humoral islet autoimmunity in 13·5%, and both in 5·3%. β-cell function calculated as iAUC-CG and ΔC-peptide(0- 30)/Δglucose(0-30) from an oral glucose tolerance test was lower among T cell-positives (T+) than T cell-negatives (T-) using two different adjustments for insulin sensitivity (iAUC-CG: 13·2% [95% CI 0·3, 24·4%] or 11·4% [95% CI 0·4, 21·2%] lower; ΔC-peptide(0-30)/Δglucose(0-30)) 19% [95% CI 3·1, 32·3%] or 17·7% [95% CI 2·6, 30·5%] lower). T+ patients had 17% higher HbA1c (95% CI 0·07, 0·28) and 7·7 mg/dL higher fasting plasma glucose levels (95% CI 0·2,15·3) than T- patients. We conclude that islet autoimmunity is much more prevalent in T2D patients than previously reported. T cell-mediated autoimmunity is associated with diminished β-cell function and worse glycemic control.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Steven E. Kahn
- VA Puget Sound Health Care System, Seattle, WA
- University of Washington, Seattle, WA
| | | | | | | | - Naji Younes
- The Biostatistics Center, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Rockville, MD
| | - Neda Rasouli
- University of Colorado School of Medicine, Aurora, CO
| | - Cyrus Desouza
- University of Nebraska and Omaha VA Medical Center, Omaha, NE
| | - Robert M. Cohen
- University of Cincinnati and Cincinnati VA Medical Center, Cincinnati, OH
| | | | - Hermes J. Florez
- University of Miami, Miami, FL
- Medical University of South Carolina, Charleston, SC
| | | | | | | | - Jerry P. Palmer
- VA Puget Sound Health Care System, Seattle, WA
- University of Washington, Seattle, WA
| | | |
Collapse
|
12
|
Petrelli A, Giovenzana A, Insalaco V, Phillips BE, Pietropaolo M, Giannoukakis N. Autoimmune Inflammation and Insulin Resistance: Hallmarks So Far and Yet So Close to Explain Diabetes Endotypes. Curr Diab Rep 2021; 21:54. [PMID: 34902055 PMCID: PMC8668851 DOI: 10.1007/s11892-021-01430-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/03/2021] [Indexed: 01/06/2023]
Abstract
PURPOSE OF REVIEW Diabetes mellitus can be categorized into two major variants, type 1 and type 2. A number of traits such as clinical phenotype, age at disease onset, genetic background, and underlying pathogenesis distinguish the two forms. RECENT FINDINGS Recent evidence indicates that type 1 diabetes can be accompanied by insulin resistance and type 2 diabetes exhibits self-reactivity. These two previously unknown conditions can influence the progression and outcome of the disease. Unlike most conventional considerations, diabetes appears to consist of a spectrum of intermediate phenotypes that includes monogenic and polygenic loci linked to inflammatory processes including autoimmunity, beta cell impairment, and insulin resistance. Here we discuss why a shift of the classical bi-modal view of diabetes (autoimmune vs. non-autoimmune) is necessary in favor of a model of an immunological continuum of endotypes lying between the two extreme "insulin-resistant" and "autoimmune beta cell targeting," shaped by environmental and genetic factors which contribute to determine specific immune-conditioned outcomes.
Collapse
Affiliation(s)
- Alessandra Petrelli
- grid.18887.3e0000000417581884San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Anna Giovenzana
- grid.18887.3e0000000417581884San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- grid.15496.3f0000 0001 0439 0892Vita-Salute San Raffaele University, Milan, Italy
| | - Vittoria Insalaco
- grid.18887.3e0000000417581884San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Brett E. Phillips
- grid.417046.00000 0004 0454 5075Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA USA
| | - Massimo Pietropaolo
- grid.39382.330000 0001 2160 926XDivision of Diabetes Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX USA
| | - Nick Giannoukakis
- grid.417046.00000 0004 0454 5075Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA USA
| |
Collapse
|
13
|
Chellappa S, Kushekhar K, Hagness M, Horneland R, Taskén K, Aandahl EM. The Presence of Activated T Cell Subsets prior to Transplantation Is Associated with Increased Rejection Risk in Pancreas Transplant Recipients. THE JOURNAL OF IMMUNOLOGY 2021; 207:2501-2511. [PMID: 34607938 DOI: 10.4049/jimmunol.2001103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 09/04/2021] [Indexed: 12/14/2022]
Abstract
Pancreas and islet transplantation (PTx) are currently the only curative treatment options for type 1 diabetes. CD4+ and CD8+ T cells play a pivotal role in graft function, rejection, and survival. However, characterization of immune cell status from patients with and without rejection of the pancreas graft is lacking. We performed multiparameter immune phenotyping of T cells from PTx patients prior to and 1 y post-PTx in nonrejectors and histologically confirmed rejectors. Our results suggest that rejection is associated with presence of elevated levels of activated CD4+ and CD8+ T cells with a gut-homing phenotype both prior to and 1 y post-PTx. The CD4+ and CD8+ T cells were highly differentiated, with elevated levels of type 1 inflammatory markers (T-bet and INF-γ) and cytotoxic components (granzyme B and perforin). Furthermore, we observed increased levels of activated FOXP3+ regulatory T cells in rejectors, which was associated with a hyporesponsive phenotype of activated effector T cells. Finally, activated T and B cell status was correlated in PTx patients, indicating a potential interplay between these cell types. In vitro treatment of healthy CD4+ and CD8+ T cells with tacrolimus abrogated the proliferation and cytokine (INF-γ, IL-2, and TNF-α) secretion associated with the type 1 inflammatory phenotype observed in pre- and post-PTx rejectors. Together, our results suggest the presence of activated CD4+ and CD8+ T cells prior to PTx confer increased risk for rejection. These findings may be used to identify patients that may benefit from more intense immunosuppressive treatment that should be monitored more closely after transplantation.
Collapse
Affiliation(s)
- Stalin Chellappa
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,K.G. Jebsen Centre for Cancer Immunotherapy, Institute for Clinical Medicine, University of Oslo, Oslo University Hospital, Oslo, Norway; and
| | - Kushi Kushekhar
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,K.G. Jebsen Centre for Cancer Immunotherapy, Institute for Clinical Medicine, University of Oslo, Oslo University Hospital, Oslo, Norway; and
| | - Morten Hagness
- Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Rune Horneland
- Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Kjetil Taskén
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,K.G. Jebsen Centre for Cancer Immunotherapy, Institute for Clinical Medicine, University of Oslo, Oslo University Hospital, Oslo, Norway; and
| | - Einar Martin Aandahl
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; .,K.G. Jebsen Centre for Cancer Immunotherapy, Institute for Clinical Medicine, University of Oslo, Oslo University Hospital, Oslo, Norway; and.,Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| |
Collapse
|
14
|
Kurianowicz K, Klatka M, Polak A, Hymos A, Bębnowska D, Podgajna M, Hrynkiewicz R, Sierawska O, Niedźwiedzka-Rystwej P. Impaired Innate Immunity in Pediatric Patients Type 1 Diabetes-Focus on Toll-like Receptors Expression. Int J Mol Sci 2021; 22:12135. [PMID: 34830017 PMCID: PMC8625857 DOI: 10.3390/ijms222212135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/23/2021] [Accepted: 10/27/2021] [Indexed: 01/07/2023] Open
Abstract
Type 1 diabetes (DM1) is classified as an autoimmune disease. An uncontrolled response of B and T lymphocytes to the body's own tissues develops in the absence of immune tolerance. The main aim of the study was to evaluate the effect of the duration of type 1 diabetes in children on the expression of TLR receptors and the relationship with the parameters of glycemic control in patients. As a result, we showed significant differences in the level of TLR2, TLR4 and TLR9 expression in patients with DM1 in the early stage of the disease and treated chronically compared to the healthy group. Additionally, in this study, we found that the numbers of CD19+ B cells, CD3+ CD4+, CD3+ CD8+ T cells and NK cells are different for newly diagnosed DM1 individuals, patients receiving chronic treatment and for healthy controls, indicating an important role of these cells in killing pancreatic beta cells. Moreover, higher levels of IL-10 in patients with newly diagnosed DM1 have also been found, confirming the reports found in the literature.
Collapse
MESH Headings
- Adolescent
- Antigens, CD19/genetics
- Antigens, CD19/immunology
- B-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/pathology
- Child
- Child, Preschool
- Diabetes Mellitus, Type 1/blood
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/pathology
- Female
- Gene Expression Regulation/genetics
- Humans
- Immunity, Innate/genetics
- Immunity, Innate/immunology
- Interleukin-10/genetics
- Interleukin-10/immunology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Male
- Pediatrics
- Toll-Like Receptor 2/genetics
- Toll-Like Receptor 4/genetics
- Toll-Like Receptor 9/genetics
- Toll-Like Receptors/genetics
- Toll-Like Receptors/immunology
Collapse
Affiliation(s)
- Katarzyna Kurianowicz
- Department of Pediatric Endocrinology and Diabetology, Medical University of Lublin, Gębali 1 St., 20-093 Lublin, Poland; (K.K.); (M.K.)
| | - Maria Klatka
- Department of Pediatric Endocrinology and Diabetology, Medical University of Lublin, Gębali 1 St., 20-093 Lublin, Poland; (K.K.); (M.K.)
| | - Agnieszka Polak
- Department of Endocrinology, Medical University of Lublin, Jaczewskiego 8 St., 20-954 Lublin, Poland;
| | - Anna Hymos
- Department of Experimental Immunology, Medical University of Lublin, Chodźki 4a St., 20-093 Lublin, Poland;
| | - Dominika Bębnowska
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland; (D.B.); (R.H.); (O.S.)
| | - Martyna Podgajna
- Department of Clinica Immunology and Immunotherapy, Medical University of Lublin, Chodźki 4a St., 20-093 Lublin, Poland;
| | - Rafał Hrynkiewicz
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland; (D.B.); (R.H.); (O.S.)
| | - Olga Sierawska
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland; (D.B.); (R.H.); (O.S.)
| | | |
Collapse
|
15
|
Shan Y, Kong Y, Zhou Y, Guo J, Shi Q, Li S, Guo H, Huang Y, Ding S, Liu C, Cao L, Huang Y, Fang C, Hu J. Decreased expression of programmed death-1 on CD8 + effector memory T lymphocytes correlates with the pathogenesis of type 1 diabetes. Acta Diabetol 2021; 58:1239-1249. [PMID: 33890177 DOI: 10.1007/s00592-021-01711-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/24/2021] [Indexed: 11/25/2022]
Abstract
AIMS Chronic inflammation of autoimmune diseases, including type 1 diabetes (T1D), is mainly mediated by memory T(Tm) cells, predominantly effector memory T (Tem) cells. The roles of the programmed death-1 (PD-1) receptor on lymphocytes have been well studied in tumor and other infection models. However, little is known about the relationship between the expression of PD-1 on CD8+ Tem cells and the pathogenesis of T1D. METHODS A total of 52 patients diagnosed with T1D and 39 gender-, age-, and ethnically matched health control individuals were enrolled in this study. Peripheral blood mononuclear cells from these individuals were isolated and analyzed by flow cytometry. We evaluated the frequencies of PD-1+ CD8+ memory T cell subsets from patients' peripheral blood with T1D and the spleen cells of nonobese diabetic (NOD) mice in the present study. We also investigated the effects of blocking PD-1/PD-L1 pathway on islet's inflammation in NOD mice. RESULTS Frequencies of PD-1+ CD8+ Tem cells were decreased significantly in PBMC of patients with T1D (40.73 ± 12.72 vs 47.43 ± 15.56, *p < 0.05). The frequencies of PD-1+ CD8+ Tem cells were decreased in patients with T1D who were positive for two or more autoantibodies compared with the patients with one autoantibody (13.46% vs 46.95 ± 12.72%, *p < 0.05). Meanwhile, the frequencies of PD-1+ CD8+ central memory T (Tcm) cells were also significantly decreased in patients with two or more autoantibodies compared with other groups (≥ 2AAb vs HC 33.1 ± 8.92% vs 43.71 ± 11.78%, *p < 0.05; ≥ 2AAb vs AAb-33.1 ± 8.92% vs 41.65 ± 11.2%, *p < 0.05; ≥ 2AAb vs 1AAb 33.1 ± 8.92% vs 48.09 ± 10.58%, ***p < 0.001). The frequencies of PD-1+CD8+ Tem cells were positively correlated with fasting serum C-peptide levels (r = 0.4308, *p < 0.05) and C-peptide levels 2 h after meal in T1D patients (r = 0.5723, **p < 0.01). The frequencies of PD-1+CD8+ Tcm cells were only negatively correlated with the levels of HbA1c (r = - 0.2992, *p < 0.05). Similarly, the frequencies of PD-1+CD8+ Tem were significantly decreased in intervention group (anti-mouse PD-1 mAb) compared with the control group (14.22 ± 6.455% vs 27.69 ± 9.837%, *p < 0.05). Pathologically, CD8, PD-1 and PD-L1 were strongly expressed in the islets of diabetic mice after PD-1 blockade. CONCLUSIONS It is the first report of the expression of PD-1 on CD8+ Tem cells in T1D in the present study. Our observations suggest that the PD-1/PD-L1 signal pathway on CD8+ Tem cells of T1D subjects might identify a new pathway for delaying the occurrence and development by inhibiting autoimmunity.
Collapse
Affiliation(s)
- Yimei Shan
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Clinical Medicine Research Center, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Yinghong Kong
- Department of Endocrinology, Changshu No. 2 People's Hospital, Changshu, China
| | - Yan Zhou
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jingjing Guo
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qiyun Shi
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Sicheng Li
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Heming Guo
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yiting Huang
- Department of Clinical Nutrition, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Sisi Ding
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
| | - Cuiping Liu
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
| | - Lei Cao
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
| | - Yun Huang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chen Fang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China.
- Department of Clinical Nutrition, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Ji Hu
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
16
|
Beeraka NM, Tomilova IK, Batrak GA, Zhaburina MV, Nikolenko VN, Sinelnikov MY, Mikhaleva LM. Recent Insights into the Nutritional Antioxidant Therapy in Prevention and Treatment of Diabetic Vascular Complications - A comprehensive Review. Curr Med Chem 2021; 29:1920-1935. [PMID: 34375177 DOI: 10.2174/0929867328666210810142527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/25/2021] [Accepted: 06/04/2021] [Indexed: 11/22/2022]
Abstract
Diabetes mellitus (DM) and DM-induced vascular complications are a significant global healthcare problem causing a decrease in patient quality of life. The main reason for the disability and mortality of patients is rapidly progressing micro- and macroangiopathies. Currently, free radical oxidation is recognized as one of the main mechanisms in the development of DM and associated complications. Under normal physiological conditions, the level of free radicals and antioxidant defense capabilities is balanced. However, imbalance occurs between the antioxidant defense system and pro-oxidants during chronic hyperglycemia and may invoke formation of excess free radicals, leading to activation of lipid peroxidation and accumulation of highly toxic products of free radical oxidation. This is accompanied by varying degrees of insulin deficiency and insulin resistance in DM patients. Simultaneously with the activation of free radical generation, a decrease in the activity of antioxidant defense factors (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, vitamins C and E) and an acceleration of diabetic complications is seen. Therefore, we hypothesize that antioxidants may play a positive role in the treatment of DM patients to prevent DM-induced vascular complications. However this has not been sufficiently studied. In this review, we discuss recent insights into the potential underlying mechanisms of oxidative stress induced diabetic complications, and implications of antioxidants in mitigation of DM-induced vascular complications.
Collapse
Affiliation(s)
- Narasimha M Beeraka
- Center of Excellence in Regenerative Medicine and Molecular Biology (CEMR), Department of Biochemistry, JSS Academy of Higher Education & Research (JSS AHER),Mysuru, Karnataka, India
| | - Irina K Tomilova
- Federal State Budgetary Educational Institution of Higher Education Ivanovo State Medical Academy, Ministry of Health of the Russian Federation, Ivanovo. Russian Federation
| | - Galina A Batrak
- Center of Excellence in Regenerative Medicine and Molecular Biology (CEMR), Department of Biochemistry, JSS Academy of Higher Education & Research (JSS AHER),Mysuru, Karnataka, India
| | - Maria V Zhaburina
- Center of Excellence in Regenerative Medicine and Molecular Biology (CEMR), Department of Biochemistry, JSS Academy of Higher Education & Research (JSS AHER),Mysuru, Karnataka, India
| | - Vladimir N Nikolenko
- Sechenov First Moscow State Medical University (Sechenov University), Moscow 119146. Russian Federation
| | - Mikhail Y Sinelnikov
- Sechenov First Moscow State Medical University (Sechenov University), Moscow 119146. Russian Federation
| | - Liudmila M Mikhaleva
- Research Institute of Human Morphology, Russian Academy of Medical Science, Moscow 117418. Russian Federation
| |
Collapse
|
17
|
Tang W, Liang H, Cheng Y, Yuan J, Huang G, Zhou Z, Yang L. Diagnostic value of combined islet antigen-reactive T cells and autoantibodies assays for type 1 diabetes mellitus. J Diabetes Investig 2021; 12:963-969. [PMID: 33064907 PMCID: PMC8169367 DOI: 10.1111/jdi.13440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/16/2020] [Accepted: 10/12/2020] [Indexed: 01/11/2023] Open
Abstract
AIMS/INTRODUCTION Type 1 diabetes mellitus is a T cell-mediated autoimmune disease. However, the determination of the autoimmune status of type 1 diabetes mellitus relies on islet autoantibodies (Abs), as T-cell assay is not routinely carried out. This study aimed to investigate the diagnostic value of combined assay of islet antigen-specific T cells and Abs in type 1 diabetes mellitus patients. MATERIALS AND METHODS A total of 54 patients with type 1 diabetes mellitus and 56 healthy controls were enrolled. Abs against glutamic acid decarboxylase (GAD), islet antigen-2 and zinc transporter 8 were detected by radioligand assay. Interferon-γ-secreting T cells responding to glutamic acid decarboxylase 65 and C-peptide (CP) were measured by enzyme-linked immunospot. RESULTS The positive rate for T-cell responses was significantly higher in patients with type 1 diabetes mellitus than that in controls (P < 0.001). The combined positive rate of Abs and T-cell assay was significantly higher than that of Abs assay alone (85.2% vs 64.8%, P = 0.015). A significant difference in fasting CP level was found between the T+ and T- groups (0.07 ± 0.05 vs 0.11 ± 0.09 nmol/L, P = 0.033). Furthermore, levels of fasting CP and postprandial CP were both lower in the Ab- T+ group than the Ab- T- group (fasting CP 0.06 ± 0.05 vs 0.16 ± 0.12 nmol/L, P = 0.041; postprandial CP 0.12 ± 0.13 vs 0.27 ± 0.12 nmol/L, P = 0.024). CONCLUSIONS Enzyme-linked immunospot assays in combination with Abs detection could improve the diagnostic sensitivity of autoimmune diabetes.
Collapse
Affiliation(s)
- Wei Tang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Department of Metabolism and EndocrinologyThe First People’s Hospital of HuaihuaHuaihuaHunanChina
| | - Huiying Liang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Affiliated Dongguan People's Hospital, Southern Medical University (Dongguan People's Hospital)DongguanGuangdongChina
| | - Ying Cheng
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Jiao Yuan
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Gan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Lin Yang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| |
Collapse
|
18
|
Brooks-Worrell BM, Tjaden AH, Edelstein SL, Palomino B, Utzschneider KM, Arslanian S, Mather KJ, Buchanan TA, Nadeau KJ, Atkinson K, Barengolts E, Kahn SE, Palmer JP. Islet Autoimmunity in Adults With Impaired Glucose Tolerance and Recently Diagnosed, Treatment Naïve Type 2 Diabetes in the Restoring Insulin SEcretion (RISE) Study. Front Immunol 2021; 12:640251. [PMID: 33981301 PMCID: PMC8108986 DOI: 10.3389/fimmu.2021.640251] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/24/2021] [Indexed: 12/26/2022] Open
Abstract
The presence of islet autoantibodies and islet reactive T cells (T+) in adults with established type 2 diabetes (T2D) have been shown to identify those patients with more severe β-cell dysfunction. However, at what stage in the progression toward clinical T2D does islet autoimmunity emerge as an important component influencing β-cell dysfunction? In this ancillary study to the Restoring Insulin SEcretion (RISE) Study, we investigated the prevalence of and association with β-cell dysfunction of T+ and autoantibodies to the 65 kDa glutamic acid decarboxylase antigen (GADA) in obese pre-diabetes adults with impaired glucose tolerance (IGT) and recently diagnosed treatment naïve (Ndx) T2D. We further investigated the effect of 12 months of RISE interventions (metformin or liraglutide plus metformin, or with 3 months of insulin glargine followed by 9 months of metformin or placebo) on islet autoimmune reactivity. We observed GADA(+) in 1.6% of NdxT2D and 4.6% of IGT at baseline, and in 1.6% of NdxT2D and 5.3% of IGT at 12 months, but no significant associations between GADA(+) and β-cell function. T(+) was observed in 50% of NdxT2D and 60.4% of IGT at baseline, and in 68.4% of NdxT2D and 83.9% of IGT at 12 months. T(+) NdxT2D were observed to have significantly higher fasting glucose (p = 0.004), and 2 h glucose (p = 0.0032), but significantly lower steady state C-peptide (sscpep, p = 0.007) compared to T(-) NdxT2D. T(+) IGT participants demonstrated lower but not significant (p = 0.025) acute (first phase) C-peptide response to glucose (ACPRg) compared to T(-) IGT. With metformin treatment, T(+) participants were observed to have a significantly lower Hemoglobin A1c (HbA1c, p = 0.002) and fasting C-peptide (p = 0.002) compared to T(-), whereas T(+) treated with liraglutide + metformin had significantly lower sscpep (p = 0.010) compared to T(-) participants. In the placebo group, T(+) participants demonstrated significantly lower ACPRg (p = 0.001) compared to T(-) participants. In summary, T(+) were found in a large percentage of obese pre-diabetes adults with IGT and in recently diagnosed T2D. Moreover, T(+) were significantly correlated with treatment effects and β-cell dysfunction. Our results demonstrate that T(+) are an important component in T2D.
Collapse
Affiliation(s)
- Barbara M Brooks-Worrell
- Department of Medicine, University of Washington, Seattle, WA, United States.,Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
| | - Ashley H Tjaden
- Biostatistics Center, Milken School of Public Health, George Washington University Biostatistics Center, Rockville, MD, United States
| | - Sharon L Edelstein
- Biostatistics Center, Milken School of Public Health, George Washington University Biostatistics Center, Rockville, MD, United States
| | - Brenda Palomino
- Seattle Institute for Biochemical and Clinical Research, Seattle, WA, United States
| | - Kristina M Utzschneider
- Department of Medicine, University of Washington, Seattle, WA, United States.,Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
| | - Silva Arslanian
- Department of Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Kieren J Mather
- Indiana University School of Medicine, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN, United States
| | - Thomas A Buchanan
- University of Southern California Keck School of Medicine/Kaiser Permanente Southern California, Los Angeles, CA, United States
| | - Kristen J Nadeau
- University of Colorado Anschutz Medical Campus/Children's Hospital Colorado, Aurora, CO, United States
| | - Karen Atkinson
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
| | - Elena Barengolts
- University of Chicago Clinical Research Center and Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| | - Steven E Kahn
- Department of Medicine, University of Washington, Seattle, WA, United States.,Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
| | - Jerry P Palmer
- Department of Medicine, University of Washington, Seattle, WA, United States.,Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
| | | |
Collapse
|
19
|
Wiedeman AE, Speake C, Long SA. The many faces of islet antigen-specific CD8 T cells: clues to clinical outcome in type 1 diabetes. Immunol Cell Biol 2021; 99:475-485. [PMID: 33483981 PMCID: PMC8248166 DOI: 10.1111/imcb.12437] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/07/2021] [Accepted: 01/20/2021] [Indexed: 11/26/2022]
Abstract
Immune monitoring enables a better understanding of disease processes and response to therapy, but has been challenging in the setting of chronic autoimmunity because of unknown etiology, variable and protracted kinetics of the disease process, heterogeneity across patients and the complexity of immune interactions. To begin to parse this complexity, we focus here on type 1 diabetes (T1D) and CD8 T cells as a cell type that has features that are associated with different stages of disease, rates of progression and response to therapy. Specifically, we discuss the current understanding of the role of autoreactive CD8 T cells in disease outcome, which implicates particular CD8 functional subsets, rather than unique antigens or total number of autoreactive T cells. Next, we discuss how autoreactive CD8 T‐cell features can be reflected in measures of global CD8 T cells, and then pull these concepts together by highlighting immune therapies recently shown to modulate both CD8 T cells and disease progression. We end by discussing outstanding questions about the role of specific subsets of autoreactive CD8 T cells in disease progression and how they may be optimally modulated to treat and prevent T1D.
Collapse
Affiliation(s)
- Alice E Wiedeman
- Translational Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, 98101, USA
| | - Cate Speake
- Interventional Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, 98101, USA
| | - Sarah Alice Long
- Translational Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, 98101, USA
| |
Collapse
|
20
|
Camilo DS, Pradella F, Paulino MF, Baracat ECE, Marini SH, Guerra G, Pavin EJ, Parisi C, Longhini ALF, Marques SB, Guariento EG, Lieber SR, Macedo CF, Gama E Silva L, Farias AS, Santos LMB, Volpini WMG. Partial remission in Brazilian children and adolescents with type 1 diabetes. Association with a haplotype of class II human leukocyte antigen and synthesis of autoantibodies. Pediatr Diabetes 2020; 21:606-614. [PMID: 32078220 DOI: 10.1111/pedi.12999] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 01/26/2020] [Accepted: 02/04/2020] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Characterization of partial remission using the insulin dose-adjusted HbA1c (IDAA1c) ≤ 9 definition in a multiethnic Brazilian population of children and adolescents with type 1 diabetes (T1D), in addition with the determination of both Class II HLA genotype and autoantibodies. METHODS We analyzed the prevalence of partial remission in 51 new-onset T1D patients with a median time follow-up of 13 months from diagnosis. For this study, anti-GAD65, anti-IA2 and HLA class II genotyping were considered. RESULTS Partial remission occurred in 41.2% of T1D patients until 3 months after diagnosis, mainly in those aged 5-15 years. We have demonstrated a significant increase in the haplotypes of class II HLA DRB1*0301-DQB1*0201 in children and adolescents with a partial remission phase of the disease (42.9% vs 21.7% in non-remitters, P = .0291). This haplotype was also associated with the reduction of anti-IA2 antibodies production. Homozygote DRB1*03-DQB1*0201/DRB1*03-DQB1*0201 children had the lowest prevalence of IA-2A antibodies (P = .0402). However, this association does not correlate with the time of the remission phase. CONCLUSION Although the number of patients studied was reduced, our data suggested that the association between genetics and decrease in antibody production to certain islet auto-antigen may contribute, at least in part, to the remission phase of T1D.
Collapse
Affiliation(s)
- Daniela S Camilo
- Neuroimmunology Unit, Biology Institut, Campinas University UNICAMP, Campinas, Brazil
| | - Fernando Pradella
- Neuroimmunology Unit, Biology Institut, Campinas University UNICAMP, Campinas, Brazil
| | | | - Emilio C E Baracat
- Departament of Pediatrics, Campinas University UNICAMP, Campinas, Brazil
| | - Sofia H Marini
- Departament of Pediatrics, Campinas University UNICAMP, Campinas, Brazil
| | - Gil Guerra
- Departament of Pediatrics, Campinas University UNICAMP, Campinas, Brazil
| | - Elizabeth J Pavin
- Endocrinology Diabetes Service of the Clinical Hospital, Campinas University UNICAMP, Campinas, Brazil
| | - Candida Parisi
- Endocrinology Diabetes Service of the Clinical Hospital, Campinas University UNICAMP, Campinas, Brazil
| | - Ana Leda F Longhini
- Neuroimmunology Unit, Biology Institut, Campinas University UNICAMP, Campinas, Brazil
| | - Silvia B Marques
- HLA Laboratory, Blood Center, Campinas University UNICAMP, Campinas, Brazil
| | | | - Sofia R Lieber
- HLA Laboratory, Blood Center, Campinas University UNICAMP, Campinas, Brazil
| | | | - Letícia Gama E Silva
- Neuroimmunology Unit, Biology Institut, Campinas University UNICAMP, Campinas, Brazil
| | - Alessandro S Farias
- Neuroimmunology Unit, Biology Institut, Campinas University UNICAMP, Campinas, Brazil.,National Institute for Science and Technology-Neuroimmunomodulation (INCT-NIM), CNPq, Brasília, Brazil
| | - Leonilda M B Santos
- Neuroimmunology Unit, Biology Institut, Campinas University UNICAMP, Campinas, Brazil.,National Institute for Science and Technology-Neuroimmunomodulation (INCT-NIM), CNPq, Brasília, Brazil
| | - Walkyria M G Volpini
- Neuroimmunology Unit, Biology Institut, Campinas University UNICAMP, Campinas, Brazil
| |
Collapse
|
21
|
Prasad M, Chen EW, Toh SA, Gascoigne NRJ. Autoimmune responses and inflammation in type 2 diabetes. J Leukoc Biol 2020; 107:739-748. [PMID: 32202348 DOI: 10.1002/jlb.3mr0220-243r] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/14/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity-induced insulin resistance is one of the largest noncommunicable disease epidemics that we are facing at the moment. Changes in lifestyle and greater availability of low nutritional value, high caloric food has led to the highest rates of obesity in history. Obesity impacts the immune system and obesity-associated inflammation contributes to metabolic diseases, such as type 2 diabetes. Both the adaptive and the innate immune system play a role in the regulation of glycemic control, and there is a need to understand how metabolic imbalances drive disease pathogenesis. This review discusses the cell types, mediators, and pathways that contribute to immunologic-metabolic crosstalk and explores how the immune system might be targeted as a strategy to treat metabolic disease.
Collapse
Affiliation(s)
- Mukul Prasad
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Elijah W Chen
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Sue-Anne Toh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Medicine, National University Health System, Singapore.,Duke-National University of Singapore Medical School, Singapore.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nicholas R J Gascoigne
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| |
Collapse
|
22
|
Wan M, Ding L, Wang D, Han J, Gao P. Serotonin: A Potent Immune Cell Modulator in Autoimmune Diseases. Front Immunol 2020; 11:186. [PMID: 32117308 PMCID: PMC7026253 DOI: 10.3389/fimmu.2020.00186] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 01/23/2020] [Indexed: 11/13/2022] Open
Abstract
Serotonin, also known as 5-hydroxytryptamine (5-HT) is a signaling mediator that regulates emotion, behavior, and cognition. Previous studies have focused more on the roles of 5-HT in the central nervous system (CNS). However, 5-HT also shares a strong relationship with the pathological cases of tumor, inflammation, and pathogen infection. 5-HT participates in tumor cell migration, metastatic dissemination, and angiogenesis. In addition, 5-HT affects immune regulation via different 5-HT receptors (5-HTRs) expressed immune cells, including both innate and adaptive immune system. Recently, drugs targeting at 5-HT signaling were tested to be beneficial in mouse models and clinical trials of multiple sclerosis (MS) and inflammatory bowel disease (IBD). Thus, it is reasonable to assume that 5-HT participates in the pathogenesis of autoimmune diseases. However, the underlying mechanism by 5-HT modulates the development of autoimmune diseases has not been fully understood. Based on our previous studies and pertinent literature, we provide circumstantial evidence for an essential role of 5-HT, especially the regulation of 5-HT on immune cells in the pathogenesis of autoimmune diseases, which may provide a new point cut for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Minjie Wan
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, China.,Central Laboratory, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Lili Ding
- Central Laboratory, The First Hospital of Jilin University, Jilin University, Changchun, China.,Intensive Care Unit, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Dong Wang
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, China.,Central Laboratory, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Jiawen Han
- Central Laboratory, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Pujun Gao
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
23
|
Wiedeman AE, Muir VS, Rosasco MG, DeBerg HA, Presnell S, Haas B, Dufort MJ, Speake C, Greenbaum CJ, Serti E, Nepom GT, Blahnik G, Kus AM, James EA, Linsley PS, Long SA. Autoreactive CD8+ T cell exhaustion distinguishes subjects with slow type 1 diabetes progression. J Clin Invest 2020; 130:480-490. [PMID: 31815738 PMCID: PMC6934185 DOI: 10.1172/jci126595] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 10/08/2019] [Indexed: 12/22/2022] Open
Abstract
Although most patients with type 1 diabetes (T1D) retain some functional insulin-producing islet β cells at the time of diagnosis, the rate of further β cell loss varies across individuals. It is not clear what drives this differential progression rate. CD8+ T cells have been implicated in the autoimmune destruction of β cells. Here, we addressed whether the phenotype and function of autoreactive CD8+ T cells influence disease progression. We identified islet-specific CD8+ T cells using high-content, single-cell mass cytometry in combination with peptide-loaded MHC tetramer staining. We applied a new analytical method, DISCOV-R, to characterize these rare subsets. Autoreactive T cells were phenotypically heterogeneous, and their phenotype differed by rate of disease progression. Activated islet-specific CD8+ memory T cells were prevalent in subjects with T1D who experienced rapid loss of C-peptide; in contrast, slow disease progression was associated with an exhaustion-like profile, with expression of multiple inhibitory receptors, limited cytokine production, and reduced proliferative capacity. This relationship between properties of autoreactive CD8+ T cells and the rate of T1D disease progression after onset make these phenotypes attractive putative biomarkers of disease trajectory and treatment response and reveal potential targets for therapeutic intervention.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Cate Speake
- Diabetes Program, Benaroya Research Institute (BRI) at Virginia Mason, Seattle, Washington, USA
| | - Carla J. Greenbaum
- Diabetes Program, Benaroya Research Institute (BRI) at Virginia Mason, Seattle, Washington, USA
| | | | - Gerald T. Nepom
- Translational Research Program
- Immune Tolerance Network (ITN), Bethesda, Maryland, USA
| | | | | | | | | | | |
Collapse
|
24
|
Brooks-Worrell BM, Palmer JP. Setting the Stage for Islet Autoimmunity in Type 2 Diabetes: Obesity-Associated Chronic Systemic Inflammation and Endoplasmic Reticulum (ER) Stress. Diabetes Care 2019; 42:2338-2346. [PMID: 31748213 PMCID: PMC7364670 DOI: 10.2337/dc19-0475] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 09/01/2019] [Indexed: 02/06/2023]
Abstract
Islet autoimmunity has been identified as a component of both type 1 (T1D) and type 2 (T2D) diabetes, but the pathway through which islet autoimmunity develops in T1D and T2D may be different. Acknowledging the presence of islet autoimmunity in the pathophysiology of T2D, a historically nonautoimmune metabolic disease, would pave the way for important changes in classifications of and therapeutic options for T2D. In order to fully appreciate the importance of islet autoimmunity in T2D, the underlying mechanisms for immune system activation need to be explored. In this review, we focus on the potential origin of immune system activation (innate and adaptive) leading to the development of islet autoimmunity in T2D.
Collapse
Affiliation(s)
- Barbara M Brooks-Worrell
- Department of Medicine, University of Washington, Seattle, WA .,Department of Medicine, DVA Puget Sound Health Care System, Seattle, WA
| | - Jerry P Palmer
- Department of Medicine, University of Washington, Seattle, WA.,Department of Medicine, DVA Puget Sound Health Care System, Seattle, WA
| |
Collapse
|
25
|
Liang H, Cheng Y, Tang W, Cui Q, Yuan J, Huang G, Yang L, Zhou Z. Clinical manifestation and islet β-cell function of a subtype of latent autoimmune diabetes in adults (LADA): positive for T cell responses in phenotypic type 2 diabetes. Acta Diabetol 2019; 56:1225-1230. [PMID: 31367990 DOI: 10.1007/s00592-019-01391-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/23/2019] [Indexed: 02/07/2023]
Abstract
AIMS To investigate the possibility of identifying a subtype of latent autoimmune diabetes in adults (LADA), T-LADA (T cell responses-positive and autoantibody-negative) from patients with phenotypic type 2 diabetes (T2D) by enzyme-linked immunospot (ELISPOT). METHODS Eighty-two patients with phenotypic T2D were studied. Autoantibodies against glutamic acid decarboxylase (GAD), insulinoma-associated protein-2 and zinc transporter 8 were measured by radioligand assay. Thirty-nine Ab+ and 43 Ab- patients with phenotypic T2D were enrolled for T cell assay of responses to GAD65 and C-peptide antigen by ELISPOT. RESULTS (1) Eleven of 43 Ab- participants with phenotypic T2D were demonstrated interferon (IFN)-γ secreting T cells by ELISPOT, while 13 of 39 Ab+ patients with phenotypic T2D were positive for T cells responses to islet antigens. (2) The onset ages of T cell+ people with phenotypic T2D were younger than that of T cell- individuals (42.7 ± 9.3 vs. 48.2 ± 10.2 years, P = 0.025). Moreover, T cell+ patients with T2D displayed a significantly lower fasting C-peptide (FCP) compared with T cell- participants [0.28 (0.02-0.84) vs. 0.42 (0.05-1.26) nmol/L, P = 0.013]. (3) Ab-T+ group had a significantly lower FCP compared with Ab-T- group [0.31 (0.13-0.84) vs. 0.51 (0.07-1.26) nmol/L, P = 0.023]. CONCLUSIONS By measuring T cell responses to islet antigens in patients with phenotypic T2D, we identified a specific subtype of LADA who may be associated with worse basal β-cell function than classic T2D (Ab-T-).
Collapse
Affiliation(s)
- Huiying Liang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Central South University, Changsha, 410011, Hunan, China
| | - Ying Cheng
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Central South University, Changsha, 410011, Hunan, China
| | - Wei Tang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Central South University, Changsha, 410011, Hunan, China
| | - Qiuyan Cui
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Central South University, Changsha, 410011, Hunan, China
| | - Jiao Yuan
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Central South University, Changsha, 410011, Hunan, China
| | - Gan Huang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Central South University, Changsha, 410011, Hunan, China
| | - Lin Yang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
- Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Central South University, Changsha, 410011, Hunan, China.
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
- Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
26
|
CD4/CD8 Antibodies Reduce Histopathological Damage in Salivary Glands of Spontaneously Diabetic Mice. ROMANIAN JOURNAL OF DIABETES NUTRITION AND METABOLIC DISEASES 2019. [DOI: 10.2478/rjdnmd-2019-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Background and aims: Diabetes affects the metabolism promoting damage in different tissues, including salivary glands. Current treatments, such as insulin, are ineffective to recovery of these tissues. In this aspect, the immunotherapy has been tested, but it can be inefficient as an agent for the control of damage caused by diabetes. The aim of this study to evaluate the association in anti-CD4 and anti-CD8 monoclonal antibody in the recovery of salivary glands of diabetic NOD mice.
Material and methods: Fifteen spontaneously diabetic mice (NOD) were divided into three groups with 5 animals each: group I (Balb/C control mice), group II (untreated NOD mice), group III (NOD mice treated with CD4 and CD8 antibodies). The CD4 and CD8 antibodies (IMUNY, Rheabiotech Ltda, Brazil) were administered by intravenously injections (25 ug/days: 0, 7, 14, and 21). After treatment salivary glands samples were analyzed by immunofluorescence, microscopy, light microscopy and stereology. (ethical approval process: 304/11), Analysis of variance (ANOVA) and Kruskal-Wallis nonparametric test were used.
Results: Elevated levels of glucose (mg/dl) were observed in untreated animals (group II) (605.25 ± 31.23, p≤0.05), whereas in treated animals (group III), were noted a decrease in these levels (464.77 ± 39.66, p≤0.05). Tissue restructure, characterized by cell volume recovery, also was observed in group III (nuclear volume of parotid glands: (109.91 ± 02.03, p≤0.05) and submandibular glands: (107.52 ± 02, p≤0.05) (cytoplasmic volume of parotid glands: (356.14 ± 26.34, p≤0.05) and submandibular glands: (331.22 ± 32.11, p≤0.05). Intense signaling (+++) of insulin receptors was observed in animals of group I. On the other hand, in group II was noted a reduction of these receptors (+). In treated animals (group III) were observed a recovery of the insulin receptors (+++).
Conclusions: This treatment was effective in the recovery of salivary acinar cells, contributed also to homeostasis of body metabolism. Thus, this immunomodulation promoted a beneficial effect on the recovery of these tissues.
Collapse
|
27
|
Sun P, Jin Q, Nie S, Jia S, Li Y, Li X, Guo F. Unlike PD-L1, PD-1 Is Downregulated on Partial Immune Cells in Type 2 Diabetes. J Diabetes Res 2019; 2019:5035261. [PMID: 31008114 PMCID: PMC6441514 DOI: 10.1155/2019/5035261] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 09/21/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Type 2 diabetes is a worldwide disease which is associated with chronic, low-grade inflammation. The PD-1/PD-L1 pathway has been reported to be a negative regulatory element in immune homeostasis and to be involved in many diseases. MATERIALS AND METHODS Peripheral blood mononuclear cells (PBMCs) were obtained from type 2 diabetes patients (n = 23) and healthy donors (n = 20). The PD-L1 and PD-1 expressions on corresponding immune cells were evaluated by flow cytometry. RESULTS The PD-L1 expression on corresponding immune cells has no significant difference between these two groups. We showed the downregulated PD-1 expression in type 2 diabetes patients. The correlation analysis indicated that the PD-1 on NK cells has a positive correlation with insulin and diabetes duration. And an inverse correlation has been shown between the PD-1 expression on monocytes and BMI (body mass index). CONCLUSIONS The results in this article suggest that PD-1, unlike PD-L1, might participate in the progression of type 2 diabetes. This investigation will provide evidence for the potential immune therapy for T2D.
Collapse
Affiliation(s)
- Peng Sun
- Department of Intervention Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Qingyan Jin
- Department of Intervention Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shengnan Nie
- Department of Intervention Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shijie Jia
- Department of Intervention Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yuanyuan Li
- Operation Room of Intervention Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaoxue Li
- Department of Intervention Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Fang Guo
- Department of Intervention Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
28
|
McDonnell WJ, Koethe JR, Mallal SA, Pilkinton MA, Kirabo A, Ameka MK, Cottam MA, Hasty AH, Kennedy AJ. High CD8 T-Cell Receptor Clonality and Altered CDR3 Properties Are Associated With Elevated Isolevuglandins in Adipose Tissue During Diet-Induced Obesity. Diabetes 2018; 67:2361-2376. [PMID: 30181158 PMCID: PMC6198339 DOI: 10.2337/db18-0040] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 08/20/2018] [Indexed: 12/29/2022]
Abstract
Adipose tissue (AT) CD4+ and CD8+ T cells contribute to obesity-associated insulin resistance. Prior studies identified conserved T-cell receptor (TCR) chain families in obese AT, but the presence and clonal expansion of specific TCR sequences in obesity has not been assessed. We characterized AT and liver CD8+ and CD4+ TCR repertoires of mice fed a low-fat diet (LFD) and high-fat diet (HFD) using deep sequencing of the TCRβ chain to quantify clonal expansion, gene usage, and CDR3 sequence. In AT CD8+ T cells, HFD reduced TCR diversity, increased the prevalence of public TCR clonotypes, and selected for TCR CDR3 regions enriched in positively charged and less polarized amino acids. Although TCR repertoire alone could distinguish between LFD- and HFD-fed mice, these properties of the CDR3 region of AT CD8+ T cells from HFD-fed mice led us to examine the role of negatively charged and nonpolar isolevuglandin (isoLG) adduct-containing antigen-presenting cells within AT. IsoLG-adducted protein species were significantly higher in AT macrophages of HFD-fed mice; isoLGs were elevated in M2-polarized macrophages, promoting CD8+ T-cell activation. Our findings demonstrate that clonal TCR expansion that favors positively charged CDR3s accompanies HFD-induced obesity, which may be an antigen-driven response to isoLG accumulation in macrophages.
Collapse
Affiliation(s)
- Wyatt J McDonnell
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN
- Center for Translational Immunology and Infectious Disease, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN
| | - John R Koethe
- Center for Translational Immunology and Infectious Disease, Vanderbilt University Medical Center, Nashville, TN
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN
- Veterans Administration Tennessee Valley Healthcare System, Nashville, TN
| | - Simon A Mallal
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN
- Center for Translational Immunology and Infectious Disease, Vanderbilt University Medical Center, Nashville, TN
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Mark A Pilkinton
- Center for Translational Immunology and Infectious Disease, Vanderbilt University Medical Center, Nashville, TN
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN
- Veterans Administration Tennessee Valley Healthcare System, Nashville, TN
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Magdalene K Ameka
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Matthew A Cottam
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Alyssa H Hasty
- Veterans Administration Tennessee Valley Healthcare System, Nashville, TN
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Arion J Kennedy
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
29
|
Soares M, Mirgorodskaya E, Koca H, Viklund E, Richardson M, Gustafsson P, Olin AC, Siddiqui S. Particles in exhaled air (PExA): non-invasive phenotyping of small airways disease in adult asthma. J Breath Res 2018; 12:046012. [PMID: 30102246 DOI: 10.1088/1752-7163/aad9d1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
RATIONALE Asthma is often characterised by inflammation, damage and dysfunction of the small airways, but no standardised biomarkers are available. OBJECTIVES Using a novel approach-particles in exhaled air (PExA)-we sought to (a) sample and analyse abundant protein biomarkers: surfactant protein A (SPA) and albumin in adult asthmatic and healthy patients and (b) relate protein concentrations with physiological markers using phenotyping. METHODS 83 adult asthmatics and 21 healthy volunteers were recruited from a discovery cohort in Leicester, UK, and 32 adult asthmatics as replication cohort from Sweden. Markers of airways closure/small airways dysfunction were evaluated using forced vital capacity, impulse oscillometry and multiple breath washout. SPA/albumin from PEx (PExA sample) were analysed using ELISA and corrected for acquired particle mass. Topological data analysis (TDA) was applied to small airway physiology and PExA protein data to identify phenotypes. RESULTS PExA manoeuvres were feasible, including severe asthmatic subjects. TDA identified a clinically important phenotype of asthmatic patients with multiple physiological markers of peripheral airway dysfunction, and significantly lower levels of both SPA and albumin. CONCLUSION We report that the PExA method is feasible across the spectrum of asthma severity and could be used to identify small airway disease phenotypes.
Collapse
Affiliation(s)
- Marcia Soares
- NIHR Biomedical Research Centre, Respiratory Theme and Department of Infection, Immunity and Inflammation, University of Leicester, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Apostolopoulou M, Menart-Houtermans B, Ruetter R, Nowotny B, Gehrmann U, Markgraf D, Szendroedi J, Schloot NC, Roden M. Characterization of circulating leukocytes and correlation of leukocyte subsets with metabolic parameters 1 and 5 years after diabetes diagnosis. Acta Diabetol 2018; 55:723-731. [PMID: 29663084 DOI: 10.1007/s00592-018-1143-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 04/09/2018] [Indexed: 02/08/2023]
Abstract
AIMS Infiltration of pancreatic islets with different leukocyte subtypes likely contributes to deterioration of glycemia in diabetes mellitus. Different subsets of leukocytes have been previously associated with type 1 or type 2 diabetes. This study aimed at examining these subsets at different stages of diabetes progression and possible relationships with metabolic parameters. METHODS A total of 206 patients, 76 with type 1 and 130 with type 2 diabetes, were studied within the first year of diabetes diagnosis. In addition, 31 patients with type 1 and 73 with type 2 diabetes were examined at 5 years after diagnosis. Whole body insulin sensitivity was assessed by hyperinsulinemic-euglycemic clamps; insulin secretion by glucagon stimulation tests and white blood cells were analyzed by flow cytometry. RESULTS The percentage of peripheral CD8+ cells was 15% lower in patients with type 1 diabetes at 5 years than in patients at diabetes onset and correlated positively with fasting glycemia, total cholesterol and high-sensitive C-reactive protein (hsCRP) (all r > 0.37, p < 0.05), but not with insulin secretion. Patients with type 2 diabetes had 7% higher percentages of CD4+ cells after 5 years than those at diagnosis. CD4+ cells correlated with hsCRP (r = 0.36, p < 0.05), whereas CD8+ cytotoxic T-cells did not correlate with any metabolic parameter. CONCLUSION CD8+ T-cells associate with worse glycemia, lipidemia and inflammation after 5 years of type 1 diabetes, whereas CD4+ T-cells associate with increased inflammation after 5 years upon onset of type 2 diabetes.
Collapse
Affiliation(s)
- Maria Apostolopoulou
- Division of Endocrinology and Diabetology, Medical Faculty, c/o German Diabetes Center, Heinrich-Heine University, Düsseldorf, Auf dem Hennekamp 65, 40225, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Düsseldorf, Germany
| | - Barbara Menart-Houtermans
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Düsseldorf, Germany
| | - Ruth Ruetter
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Düsseldorf, Germany
| | - Bettina Nowotny
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Düsseldorf, Germany
| | - Ulrich Gehrmann
- German Center for Diabetes Research, Düsseldorf, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
| | - Daniel Markgraf
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Düsseldorf, Germany
| | - Julia Szendroedi
- Division of Endocrinology and Diabetology, Medical Faculty, c/o German Diabetes Center, Heinrich-Heine University, Düsseldorf, Auf dem Hennekamp 65, 40225, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Düsseldorf, Germany
| | - Nanette C Schloot
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- Division of Endocrinology and Diabetology, Medical Faculty, c/o German Diabetes Center, Heinrich-Heine University, Düsseldorf, Auf dem Hennekamp 65, 40225, Düsseldorf, Germany.
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.
- German Center for Diabetes Research, Düsseldorf, Germany.
| |
Collapse
|
31
|
Morgan RA, Karl JA, Bussan HE, Heimbruch KE, O'Connor DH, Dudley DM. Restricted MHC class I A locus diversity in olive and hybrid olive/yellow baboons from the Southwest National Primate Research Center. Immunogenetics 2018; 70:449-458. [PMID: 29594415 DOI: 10.1007/s00251-018-1057-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/19/2018] [Indexed: 12/17/2022]
Abstract
Baboons are valuable models for complex human diseases due to their genetic and physiologic similarities to humans. Deep sequencing methods to characterize full-length major histocompatibility complex (MHC) class I (MHC-I) alleles in different nonhuman primate populations were used to identify novel MHC-I alleles in baboons. We combined data from Illumina MiSeq sequencing and Roche/454 sequencing to characterize novel full-length MHC-I transcripts in a cohort of olive and hybrid olive/yellow baboons from the Southwest National Primate Research Center (SNPRC). We characterized 57 novel full-length alleles from 24 baboons and found limited genetic diversity at the MHC-I A locus, with significant sharing of two MHC-I A lineages between 22 out of the 24 animals characterized. These shared alleles provide the basis for development of tools such as MHC:peptide tetramers for studying cellular immune responses in this important animal model.
Collapse
Affiliation(s)
- Rebecca A Morgan
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Julie A Karl
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Hailey E Bussan
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Katelyn E Heimbruch
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - David H O'Connor
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53715, USA.,Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Dawn M Dudley
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
32
|
Duponchel L. Exploring hyperspectral imaging data sets with topological data analysis. Anal Chim Acta 2018; 1000:123-131. [PMID: 29289301 DOI: 10.1016/j.aca.2017.11.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/16/2017] [Accepted: 11/17/2017] [Indexed: 11/15/2022]
Affiliation(s)
- Ludovic Duponchel
- LASIR CNRS UMR 8516, Université Lille 1, Sciences et Technologies, 59655 Villeneuve d'Ascq Cedex, France.
| |
Collapse
|
33
|
Li R, Huang J, Yu Y, Yang Y. Islet Autoantibody Patterns in Patients With Type 2 Diabetes Aged 60 and Higher: A Cross-Sectional Study in a Chinese Hospital. Front Endocrinol (Lausanne) 2018; 9:260. [PMID: 29887833 PMCID: PMC5980972 DOI: 10.3389/fendo.2018.00260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 05/07/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Some elderly citizens with a clinical diagnosis of type 2 diabetes had evidence of positive islet autoantibodies. We aimed to discover their islet autoantibody patterns and independent correlative factors that might lead to a better understanding of significance of islet autoimmunity in the progression of elderly diabetes. METHODS A total of 541 inpatients of clinically diagnosed type 2 diabetes aged 60 and over were recruited. Three islet autoantibodies including insulin autoantibody (IAA), islet cell antibody (ICA), and glutamic acid decarboxylase antibody (GADA) as well as clinical and biochemical characteristics were tested and collected in Huashan Hospital. Associations between these antibodies and clinical features were analyzed by Spearman correlation and binary logistic analyses. RESULTS In our current study, total positive rate of islet autoantibodies (IAA, ICA, and GADA) was 35.67% with 26.62% for individual IAA, 5.55% for ICA, and 5.91% for GADA, in elderly with type 2 diabetes. None of combinations of such autoantibodies were observed, with the exception of IAA + ICA (0.74%, n = 4), IAA + GADA (1.48%, n = 8), and ICA + GADA (0.18%, n = 1). Compared with GADA negative group, patients in positive group tended to have lower level of fasting and postprandial C peptide, fasting blood glucose (FBG), and body mass index (BMI). After adjusted for the BMI, FBG, and postprandial C peptide, fasting C peptide seemed to be an independent factor related to GADA positivity (OR = 0.52, p = 0.02). As for patients with positive IAA, they were more likely to have insulin treatment with longer duration of diabetes, higher level of BMI, and lower level of postprandial C peptide. After adjusted for the duration of diabetes, BMI, and postprandial C peptide, insulin treatment was a significant predictor for IAA positivity (OR = 5.20, p < 0.0001). Furthermore, hs-CRP was positively related to ICA positivity, and hs-CRP appeared to be an independent indicator for ICA (OR = 3.43, p = 0.008). CONCLUSION In elderly with type 2 diabetes, high prevalence rate of IAA was frequently accompanied with insulin treatment, while ICA and GADA were more closely associated with the systemic inflammation and beta-cell failure, respectively.
Collapse
|
34
|
Perone MJ, Gimeno ML, Fuertes F. Immunomodulatory Properties and Potential Therapeutic Benefits of Muse Cells Administration in Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1103:115-129. [PMID: 30484226 DOI: 10.1007/978-4-431-56847-6_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
It is well established the link between inflammation and the development of insulin resistance and pathogenesis of type 2 diabetes. Type 1 diabetes is an autoimmune disease characterized by the destruction of insulin-producing pancreatic β cells mediated by autoreactive T lymphocytes and pro-inflammatory agents. Therefore, developing new strategies to efficiently control dysregulated inflammation could have substantial benefits in the treatment of diabetes. Recently, a novel population of non-tumorigenic pluripotent stem cells, named multilineage-differentiating stress-enduring (Muse) cells, was discovered. Muse cells secrete significant amounts of TGF-β1, a key cytokine governing down-modulation of T lymphocytes and macrophages. In this chapter, we discuss the immunomodulatory properties of Muse cells as well as the molecular mechanism of TGF-β1 as mediator of Muse cell action. We also describe the role of certain cytokines/growth factors highly expressed in Muse cells as potential mediators of their effects. Finally, we provide evidence of the beneficial effects of adipose tissue-derived Muse cells in an experimental mice model of type 1 diabetes.
Collapse
Affiliation(s)
- Marcelo Javier Perone
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina.
| | - María Laura Gimeno
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Florencia Fuertes
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| |
Collapse
|
35
|
Sun H, Han X, Yan X, Xu J, Huang Q, Meng F, Zhang H, Li S. A novel mimovirus encoding ChgA 10-19 peptide with PD-L1 induces T cell tolerance and ameliorates the severity of diabetes. Cell Immunol 2017; 320:56-61. [PMID: 28916112 DOI: 10.1016/j.cellimm.2017.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/23/2017] [Accepted: 09/03/2017] [Indexed: 10/18/2022]
Abstract
Related studies demonstrate that type 1 diabetes (T1D) is caused by β-cell antigen specific autoreactive CD8+ T cells. ChgA has recently been identified as the autoantigen in NOD mice and T1D patients. Therefore, attenuating the activation of ChgA specific CD8+ T cells might be a promising target for T1D therapy. The negative co-stimulatory PD-L1 inhibits T cell mediated alloimmunity and induces tolerance. In this experiment, a novel mimovirus encoding ChgA10-19 peptide with PD-L1 was constructed. The NOD.β2m null HHD mice were administrated with mimovirus transduced DCs. After immunization, the activation and proliferation of CD8+ T cells were detected, diabetes incidence and pancreatic tissue destruction were also analyzed. The results demonstrated that transduced DCs attenuated CD8+ T cell activation and proliferation. In addition, transduced DCs inhibited CD8+ T response to ChgA stimulation, and ameliorated the severity of diabetes. These data suggested that mimovirus transduced DCs might provide novel clues for T1D therapy.
Collapse
Affiliation(s)
- Hong Sun
- Department of Outpatient, The Third People's Hospital of Linyi, Linyi, Shangdong 276000, China
| | - Xiaoguang Han
- Department of Endocrinology and Metabolism, The Third People's Hospital of Linyi, Linyi, Shangdong 276000, China
| | - Xiuhui Yan
- Department of Obstetrics and Gynecology, The Third People's Hospital of Linyi, Linyi, Shangdong 276000, China
| | - Jingli Xu
- Department of Endocrinology and Metabolism, The Third People's Hospital of Linyi, Linyi, Shangdong 276000, China
| | - Qiujing Huang
- Department of Endocrinology and Metabolism, The Third People's Hospital of Linyi, Linyi, Shangdong 276000, China
| | - Fanqing Meng
- Department of Endocrinology and Metabolism, The Third People's Hospital of Linyi, Linyi, Shangdong 276000, China
| | - Hongjin Zhang
- Department of Endocrinology and Metabolism, The Third People's Hospital of Linyi, Linyi, Shangdong 276000, China
| | - Shufa Li
- Department of Endocrinology and Metabolism, The Third People's Hospital of Linyi, Linyi, Shangdong 276000, China.
| |
Collapse
|
36
|
Kuo CHS, Pavlidis S, Loza M, Baribaud F, Rowe A, Pandis I, Hoda U, Rossios C, Sousa A, Wilson SJ, Howarth P, Dahlen B, Dahlen SE, Chanez P, Shaw D, Krug N, Sandstrӧm T, De Meulder B, Lefaudeux D, Fowler S, Fleming L, Corfield J, Auffray C, Sterk PJ, Djukanovic R, Guo Y, Adcock IM, Chung KF. A Transcriptome-driven Analysis of Epithelial Brushings and Bronchial Biopsies to Define Asthma Phenotypes in U-BIOPRED. Am J Respir Crit Care Med 2017; 195:443-455. [PMID: 27580351 DOI: 10.1164/rccm.201512-2452oc] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
RATIONALE Asthma is a heterogeneous disease driven by diverse immunologic and inflammatory mechanisms. OBJECTIVES Using transcriptomic profiling of airway tissues, we sought to define the molecular phenotypes of severe asthma. METHODS The transcriptome derived from bronchial biopsies and epithelial brushings of 107 subjects with moderate to severe asthma were annotated by gene set variation analysis using 42 gene signatures relevant to asthma, inflammation, and immune function. Topological data analysis of clinical and histologic data was performed to derive clusters, and the nearest shrunken centroid algorithm was used for signature refinement. MEASUREMENTS AND MAIN RESULTS Nine gene set variation analysis signatures expressed in bronchial biopsies and airway epithelial brushings distinguished two distinct asthma subtypes associated with high expression of T-helper cell type 2 cytokines and lack of corticosteroid response (group 1 and group 3). Group 1 had the highest submucosal eosinophils, as well as high fractional exhaled nitric oxide levels, exacerbation rates, and oral corticosteroid use, whereas group 3 patients showed the highest levels of sputum eosinophils and had a high body mass index. In contrast, group 2 and group 4 patients had an 86% and 64% probability, respectively, of having noneosinophilic inflammation. Using machine learning tools, we describe an inference scheme using the currently available inflammatory biomarkers sputum eosinophilia and fractional exhaled nitric oxide levels, along with oral corticosteroid use, that could predict the subtypes of gene expression within bronchial biopsies and epithelial cells with good sensitivity and specificity. CONCLUSIONS This analysis demonstrates the usefulness of a transcriptomics-driven approach to phenotyping that segments patients who may benefit the most from specific agents that target T-helper cell type 2-mediated inflammation and/or corticosteroid insensitivity.
Collapse
Affiliation(s)
- Chih-Hsi Scott Kuo
- 1 Department of Computing.,2 Data Science Institute, and.,3 Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Stelios Pavlidis
- 1 Department of Computing.,2 Data Science Institute, and.,4 Janssen Research and Development, High Wycombe, United Kingdom
| | - Matthew Loza
- 4 Janssen Research and Development, High Wycombe, United Kingdom
| | - Fred Baribaud
- 4 Janssen Research and Development, High Wycombe, United Kingdom
| | - Anthony Rowe
- 4 Janssen Research and Development, High Wycombe, United Kingdom
| | - Ioannis Pandis
- 1 Department of Computing.,2 Data Science Institute, and
| | - Uruj Hoda
- 3 Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,5 Biomedical Research Unit, Royal Brompton & Harefield National Health Service Trust, London, United Kingdom
| | - Christos Rossios
- 3 Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Ana Sousa
- 6 Respiratory Therapeutic Unit, GlaxoSmithKline, Stockley Park, United Kingdom
| | - Susan J Wilson
- 7 Faculty of Medicine, Southampton University, Southampton, United Kingdom
| | - Peter Howarth
- 7 Faculty of Medicine, Southampton University, Southampton, United Kingdom
| | - Barbro Dahlen
- 8 Centre for Allergy Research, Karolinska Institute, Stockholm, Sweden
| | - Sven-Erik Dahlen
- 8 Centre for Allergy Research, Karolinska Institute, Stockholm, Sweden
| | | | - Dominick Shaw
- 10 Centre for Respiratory Research, University of Nottingham, Nottingham, United Kingdom
| | - Norbert Krug
- 11 Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | - Thomas Sandstrӧm
- 12 Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Bertrand De Meulder
- 13 European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, University of Lyon, Lyon, France
| | - Diane Lefaudeux
- 13 European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, University of Lyon, Lyon, France
| | - Stephen Fowler
- 14 Centre for Respiratory Medicine and Allergy, University of Manchester, Manchester, United Kingdom
| | - Louise Fleming
- 3 Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,5 Biomedical Research Unit, Royal Brompton & Harefield National Health Service Trust, London, United Kingdom
| | - Julie Corfield
- 15 AstraZeneca R&D, Molndal, Sweden.,16 Areteva R&D, Nottingham, United Kingdom; and
| | - Charles Auffray
- 13 European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, University of Lyon, Lyon, France
| | - Peter J Sterk
- 17 Faculty of Medicine, University of Amsterdam, Amsterdam, the Netherlands
| | - Ratko Djukanovic
- 7 Faculty of Medicine, Southampton University, Southampton, United Kingdom
| | - Yike Guo
- 1 Department of Computing.,2 Data Science Institute, and
| | - Ian M Adcock
- 3 Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,5 Biomedical Research Unit, Royal Brompton & Harefield National Health Service Trust, London, United Kingdom
| | - Kian Fan Chung
- 3 Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,5 Biomedical Research Unit, Royal Brompton & Harefield National Health Service Trust, London, United Kingdom
| | | |
Collapse
|
37
|
Absence of autoreactive CD4 + T-cells targeting HLA-DQA1*01:02/DQB1*06:02 restricted hypocretin/orexin epitopes in narcolepsy type 1 when detected by EliSpot. J Neuroimmunol 2017; 309:7-11. [DOI: 10.1016/j.jneuroim.2017.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/27/2017] [Accepted: 05/01/2017] [Indexed: 11/20/2022]
|
38
|
Savic A, Toth G, Duponchel L. Topological data analysis (TDA) applied to reveal pedogenetic principles of European topsoil system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 586:1091-1100. [PMID: 28215809 DOI: 10.1016/j.scitotenv.2017.02.095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 02/10/2017] [Accepted: 02/10/2017] [Indexed: 06/06/2023]
Abstract
Recent developments in applied mathematics are bringing new tools that are capable to synthesize knowledge in various disciplines, and help in finding hidden relationships between variables. One such technique is topological data analysis (TDA), a fusion of classical exploration techniques such as principal component analysis (PCA), and a topological point of view applied to clustering of results. Various phenomena have already received new interpretations thanks to TDA, from the proper choice of sport teams to cancer treatments. For the first time, this technique has been applied in soil science, to show the interaction between physical and chemical soil attributes and main soil-forming factors, such as climate and land use. The topsoil data set of the Land Use/Land Cover Area Frame survey (LUCAS) was used as a comprehensive database that consists of approximately 20,000 samples, each described by 12 physical and chemical parameters. After the application of TDA, results obtained were cross-checked against known grouping parameters including five types of land cover, nine types of climate and the organic carbon content of soil. Some of the grouping characteristics observed using standard approaches were confirmed by TDA (e.g., organic carbon content) but novel subtle relationships (e.g., magnitude of anthropogenic effect in soil formation), were discovered as well. The importance of this finding is that TDA is a unique mathematical technique capable of extracting complex relations hidden in soil science data sets, giving the opportunity to see the influence of physicochemical, biotic and abiotic factors on topsoil formation through fresh eyes.
Collapse
Affiliation(s)
- Aleksandar Savic
- Laboratoire de Spectrochimie Infrarouge et Raman (LASIR), UMR 8516, Université Lille 1, Sciences et Technologies, Bâtiment C5, 59655 Villeneuve d'Ascq Cedex, France.
| | - Gergely Toth
- European Commission, Joint Research Centre (JRC), Directorate D - Sustainable Resources, Via Enrico Fermi 2749, 21027 Ispra, VA, Italy.
| | - Ludovic Duponchel
- Laboratoire de Spectrochimie Infrarouge et Raman (LASIR), UMR 8516, Université de Lille, Sciences et Technologies, Bâtiment C5, 59655 Villeneuve d'Ascq Cedex, France.
| |
Collapse
|
39
|
Nielson JL, Cooper SR, Yue JK, Sorani MD, Inoue T, Yuh EL, Mukherjee P, Petrossian TC, Paquette J, Lum PY, Carlsson GE, Vassar MJ, Lingsma HF, Gordon WA, Valadka AB, Okonkwo DO, Manley GT, Ferguson AR. Uncovering precision phenotype-biomarker associations in traumatic brain injury using topological data analysis. PLoS One 2017; 12:e0169490. [PMID: 28257413 PMCID: PMC5336356 DOI: 10.1371/journal.pone.0169490] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/16/2016] [Indexed: 12/13/2022] Open
Abstract
Background Traumatic brain injury (TBI) is a complex disorder that is traditionally stratified based on clinical signs and symptoms. Recent imaging and molecular biomarker innovations provide unprecedented opportunities for improved TBI precision medicine, incorporating patho-anatomical and molecular mechanisms. Complete integration of these diverse data for TBI diagnosis and patient stratification remains an unmet challenge. Methods and findings The Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) Pilot multicenter study enrolled 586 acute TBI patients and collected diverse common data elements (TBI-CDEs) across the study population, including imaging, genetics, and clinical outcomes. We then applied topology-based data-driven discovery to identify natural subgroups of patients, based on the TBI-CDEs collected. Our hypothesis was two-fold: 1) A machine learning tool known as topological data analysis (TDA) would reveal data-driven patterns in patient outcomes to identify candidate biomarkers of recovery, and 2) TDA-identified biomarkers would significantly predict patient outcome recovery after TBI using more traditional methods of univariate statistical tests. TDA algorithms organized and mapped the data of TBI patients in multidimensional space, identifying a subset of mild TBI patients with a specific multivariate phenotype associated with unfavorable outcome at 3 and 6 months after injury. Further analyses revealed that this patient subset had high rates of post-traumatic stress disorder (PTSD), and enrichment in several distinct genetic polymorphisms associated with cellular responses to stress and DNA damage (PARP1), and in striatal dopamine processing (ANKK1, COMT, DRD2). Conclusions TDA identified a unique diagnostic subgroup of patients with unfavorable outcome after mild TBI that were significantly predicted by the presence of specific genetic polymorphisms. Machine learning methods such as TDA may provide a robust method for patient stratification and treatment planning targeting identified biomarkers in future clinical trials in TBI patients. Trial Registration ClinicalTrials.gov Identifier NCT01565551
Collapse
MESH Headings
- Adult
- Biomarkers
- Brain Injuries, Traumatic/diagnosis
- Brain Injuries, Traumatic/diagnostic imaging
- Brain Injuries, Traumatic/genetics
- Brain Injuries, Traumatic/physiopathology
- Catechol O-Methyltransferase/genetics
- Female
- Humans
- Machine Learning
- Male
- Middle Aged
- Poly (ADP-Ribose) Polymerase-1/genetics
- Polymorphism, Single Nucleotide
- Protein Serine-Threonine Kinases/genetics
- Receptors, Dopamine D2/genetics
- Stress Disorders, Post-Traumatic/diagnosis
- Stress Disorders, Post-Traumatic/diagnostic imaging
- Stress Disorders, Post-Traumatic/genetics
- Stress Disorders, Post-Traumatic/physiopathology
Collapse
Affiliation(s)
- Jessica L. Nielson
- Brain and Spinal Injury Center (BASIC), Zuckerberg San Francisco General Hospital, San Francisco, CA, United States of America
- Department of Neurological Surgery, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Shelly R. Cooper
- Brain and Spinal Injury Center (BASIC), Zuckerberg San Francisco General Hospital, San Francisco, CA, United States of America
- Department of Neurological Surgery, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States of America
| | - John K. Yue
- Brain and Spinal Injury Center (BASIC), Zuckerberg San Francisco General Hospital, San Francisco, CA, United States of America
- Department of Neurological Surgery, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Marco D. Sorani
- Department of Neurological Surgery, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Tomoo Inoue
- Brain and Spinal Injury Center (BASIC), Zuckerberg San Francisco General Hospital, San Francisco, CA, United States of America
- Department of Neurological Surgery, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Esther L. Yuh
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States of America
| | - Pratik Mukherjee
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States of America
| | | | | | - Pek Y. Lum
- Ayasdi, Inc, Palo Alto, CA, United States of America
| | | | - Mary J. Vassar
- Brain and Spinal Injury Center (BASIC), Zuckerberg San Francisco General Hospital, San Francisco, CA, United States of America
- Department of Neurological Surgery, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | | | - Wayne A. Gordon
- Department of Rehabilitation Medicine, Icahn School of Medicine, Mount Sinai, New York, NY, United States of America
| | - Alex B. Valadka
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, VA, United States of America
| | - David O. Okonkwo
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Geoffrey T. Manley
- Brain and Spinal Injury Center (BASIC), Zuckerberg San Francisco General Hospital, San Francisco, CA, United States of America
- Department of Neurological Surgery, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
- * E-mail: (ARF); (GTM)
| | - Adam R. Ferguson
- Brain and Spinal Injury Center (BASIC), Zuckerberg San Francisco General Hospital, San Francisco, CA, United States of America
- Department of Neurological Surgery, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
- Department of Veterans Affairs, San Francisco VA Medical Center, San Francisco, CA, United States of America
- * E-mail: (ARF); (GTM)
| | | |
Collapse
|
40
|
Liu S, Maljovec D, Wang B, Bremer PT, Pascucci V. Visualizing High-Dimensional Data: Advances in the Past Decade. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2017; 23:1249-1268. [PMID: 28113321 DOI: 10.1109/tvcg.2016.2640960] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Massive simulations and arrays of sensing devices, in combination with increasing computing resources, have generated large, complex, high-dimensional datasets used to study phenomena across numerous fields of study. Visualization plays an important role in exploring such datasets. We provide a comprehensive survey of advances in high-dimensional data visualization that focuses on the past decade. We aim at providing guidance for data practitioners to navigate through a modular view of the recent advances, inspiring the creation of new visualizations along the enriched visualization pipeline, and identifying future opportunities for visualization research.
Collapse
|
41
|
Physiological Uptake in the Pancreatic Head on Somatostatin Receptor Scintigraphy Using [111In-DTPA]Octreotide. Clin Nucl Med 2017; 42:15-19. [DOI: 10.1097/rlu.0000000000001431] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Burrack AL, Martinov T, Fife BT. T Cell-Mediated Beta Cell Destruction: Autoimmunity and Alloimmunity in the Context of Type 1 Diabetes. Front Endocrinol (Lausanne) 2017; 8:343. [PMID: 29259578 PMCID: PMC5723426 DOI: 10.3389/fendo.2017.00343] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/21/2017] [Indexed: 12/20/2022] Open
Abstract
Type 1 diabetes (T1D) results from destruction of pancreatic beta cells by T cells of the immune system. Despite improvements in insulin analogs and continuous blood glucose level monitoring, there is no cure for T1D, and some individuals develop life-threatening complications. Pancreas and islet transplantation have been attractive therapeutic approaches; however, transplants containing insulin-producing cells are vulnerable to both recurrent autoimmunity and conventional allograft rejection. Current immune suppression treatments subdue the immune system, but not without complications. Ideally a successful approach would target only the destructive immune cells and leave the remaining immune system intact to fight foreign pathogens. This review discusses the autoimmune diabetes disease process, diabetic complications that warrant a transplant, and alloimmunity. First, we describe the current understanding of autoimmune destruction of beta cells including the roles of CD4 and CD8 T cells and several possibilities for antigen-specific tolerance induction. Second, we outline diabetic complications necessitating beta cell replacement. Third, we discuss transplant recognition, potential sources for beta cell replacement, and tolerance-promoting therapies under development. We hypothesize that a better understanding of autoreactive T cell targets during disease pathogenesis and alloimmunity following transplant destruction could enhance attempts to re-establish tolerance to beta cells.
Collapse
Affiliation(s)
- Adam L. Burrack
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Tijana Martinov
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Brian T. Fife
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
- *Correspondence: Brian T. Fife,
| |
Collapse
|
43
|
Clinical Recommendations for the Use of Islet Cell Autoantibodies to Distinguish Autoimmune and Non-Autoimmune Gestational Diabetes. Clin Rev Allergy Immunol 2016; 50:23-33. [PMID: 25392235 DOI: 10.1007/s12016-014-8461-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gestational diabetes mellitus (GDM) is defined as carbohydrate intolerance that begins or is first recognized during pregnancy. The prevalence of GDM is highly variable, depending on the population studied, and reflects the underlying pattern of diabetes in the population. GDM manifests by the second half of pregnancy and disappears following delivery in most cases, but is associated with the risk of subsequent diabetes development. Normal pregnancy induces carbohydrate intolerance to favor the availability of nutrients for the fetus, which is compensated by increased insulin secretion from the maternal pancreas. Pregnancy shares similarities with adiposity in metabolism to save energy, and both conditions favor the development of insulin resistance (IR) and low-grade inflammation. A highly complicated network of modified regulatory mechanisms may primarily affect carbohydrate metabolism by promoting autoimmune reactions to pancreatic β cells and affecting insulin function. As a result, diabetes development during pregnancy is facilitated. Depending on a pregnant woman's genetic susceptibility to diabetes, autoimmune mechanisms or IR are fundamental to the development autoimmune or non-autoimmune GDM, respectively. Pregnancy may facilitate the identification of women at risk of developing diabetes later in life; autoimmune and non-autoimmune GDM may be early markers of the risk of future type 1 and type 2 diabetes, respectively. The most convenient and efficient way to discriminate GDM types is to assess pancreatic β-cell autoantibodies along with diagnosing diabetes in pregnancy.
Collapse
|
44
|
Jiang D, Tam AB, Alagappan M, Hay MP, Gupta A, Kozak MM, Solow-Cordero DE, Lum PY, Denko NC, Giaccia AJ, Le QT, Niwa M, Koong AC. Acridine Derivatives as Inhibitors of the IRE1α-XBP1 Pathway Are Cytotoxic to Human Multiple Myeloma. Mol Cancer Ther 2016; 15:2055-65. [PMID: 27307600 DOI: 10.1158/1535-7163.mct-15-1023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 06/07/2016] [Indexed: 12/21/2022]
Abstract
Using a luciferase reporter-based high-throughput chemical library screen and topological data analysis, we identified N-acridine-9-yl-N',N'-dimethylpropane-1,3-diamine (DAPA) as an inhibitor of the inositol requiring kinase 1α (IRE1α)-X-box binding protein-1 (XBP1) pathway of the unfolded protein response. We designed a collection of analogues based on the structure of DAPA to explore structure-activity relationships and identified N(9)-(3-(dimethylamino)propyl)-N(3),N(3),N(6),N(6)-tetramethylacridine-3,6,9-triamine (3,6-DMAD), with 3,6-dimethylamino substitution on the chromophore, as a potent inhibitor. 3,6-DMAD inhibited both IRE1α oligomerization and in vitro endoribonuclease (RNase) activity, whereas the other analogues only blocked IRE1α oligomerization. Consistent with the inhibition of IRE1α-mediated XBP1 splicing, which is critical for multiple myeloma cell survival, these analogues were cytotoxic to multiple myeloma cell lines. Furthermore, 3,6-DMAD inhibited XBP1 splicing in vivo and the growth of multiple myeloma tumor xenografts. Our study not only confirmed the utilization of topological data analysis in drug discovery but also identified a class of compounds with a unique mechanism of action as potent IRE1α-XBP1 inhibitors in the treatment of multiple myeloma. Mol Cancer Ther; 15(9); 2055-65. ©2016 AACR.
Collapse
Affiliation(s)
- Dadi Jiang
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Arvin B Tam
- Department of Biological Sciences, University of California, San Diego, San Diego, California
| | | | - Michael P Hay
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Aparna Gupta
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Margaret M Kozak
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - David E Solow-Cordero
- High-Throughput Bioscience Center, Department of Chemical and Systems Biology, Stanford University, Stanford, California
| | | | - Nicholas C Denko
- Department of Radiation Oncology, Ohio State University, Columbus, Ohio
| | - Amato J Giaccia
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Quynh-Thu Le
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Maho Niwa
- Department of Biological Sciences, University of California, San Diego, San Diego, California
| | - Albert C Koong
- Department of Radiation Oncology, Stanford University, Stanford, California.
| |
Collapse
|
45
|
Ochayon DE, Baranovski BM, Malkin P, Schuster R, Kalay N, Ben-Hamo R, Sloma I, Levinson J, Brazg J, Efroni S, Lewis EC, Nevo U. Experimental Support for the Ecoimmunity Theory: Distinct Phenotypes of Nonlymphocytic Cells in SCID and Wild-Type Mice. Cell Transplant 2016; 25:1575-88. [PMID: 26850009 DOI: 10.3727/096368916x690809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Immune tolerance toward "self" is critical in multiple immune disorders. While there are several mechanisms to describe the involvement of immune cells in the process, the role of peripheral tissue cells in that context is not yet clear. The theory of ecoimmunity postulates that interactions between immune and tissue cells represent a predator-prey relationship. A lifelong interaction, shaped mainly during early ontogeny, leads to selection of nonimmune cell phenotypes. Normally, therefore, nonimmune cells that evolve alongside an intact immune system would be phenotypically capable of evading immune responses, and cells whose phenotype falls short of satisfying this steady state would expire under hostile immune responses. This view was supported until recently by experimental evidence showing an inferior endurance of severe combined immunodeficiency (SCID)-derived pancreatic islets when engrafted into syngeneic immune-intact wild-type (WT) mice, relative to islets from WT. Here we extend the experimental exploration of ecoimmunity by searching for the presence of the phenotypic changes suggested by the theory. Immune-related phenotypes of islets, spleen, and bone marrow immune cells were determined, as well as SCID and WT nonlymphocytic cells. Islet submass grafting was performed to depict syngeneic graft functionality. Islet cultures were examined under both resting and inflamed conditions for expression of CD40 and major histocompatibility complex (MHC) class I/II and release of interleukin-1α (IL-1α), IL-1β, IL-6, tumor necrosis factor-α (TNF-α), IL-10, and insulin. Results depict multiple pathways that appear to be related to the sculpting of nonimmune cells by immune cells; 59 SCID islet genes displayed relative expression changes compared with WT islets. SCID cells expressed lower tolerability to inflammation and higher levels of immune-related molecules, including MHC class I. Accordingly, islets exhibited a marked increase in insulin release upon immunocyte depletion, in effect resuming endocrine function that was otherwise suppressed by resident immunocytes. This work provides further support of the ecoimmunity theory and encourages subsequent studies to identify its role in the emergence and treatment of autoimmune pathologies, transplant rejection, and cancer.
Collapse
Affiliation(s)
- David E Ochayon
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Offroy M, Duponchel L. Topological data analysis: A promising big data exploration tool in biology, analytical chemistry and physical chemistry. Anal Chim Acta 2016; 910:1-11. [PMID: 26873463 DOI: 10.1016/j.aca.2015.12.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/12/2015] [Accepted: 12/15/2015] [Indexed: 11/19/2022]
Abstract
An important feature of experimental science is that data of various kinds is being produced at an unprecedented rate. This is mainly due to the development of new instrumental concepts and experimental methodologies. It is also clear that the nature of acquired data is significantly different. Indeed in every areas of science, data take the form of always bigger tables, where all but a few of the columns (i.e. variables) turn out to be irrelevant to the questions of interest, and further that we do not necessary know which coordinates are the interesting ones. Big data in our lab of biology, analytical chemistry or physical chemistry is a future that might be closer than any of us suppose. It is in this sense that new tools have to be developed in order to explore and valorize such data sets. Topological data analysis (TDA) is one of these. It was developed recently by topologists who discovered that topological concept could be useful for data analysis. The main objective of this paper is to answer the question why topology is well suited for the analysis of big data set in many areas and even more efficient than conventional data analysis methods. Raman analysis of single bacteria should be providing a good opportunity to demonstrate the potential of TDA for the exploration of various spectroscopic data sets considering different experimental conditions (with high noise level, with/without spectral preprocessing, with wavelength shift, with different spectral resolution, with missing data).
Collapse
Affiliation(s)
- Marc Offroy
- Laboratoire de Spectrochimie Infrarouge et Raman, LASIR, CNRS UMR 8516, Bât. C5, Université Lille 1, Sciences et Technologies, 59655, Villeneuve d'Ascq, Cedex, France
| | - Ludovic Duponchel
- Laboratoire de Spectrochimie Infrarouge et Raman, LASIR, CNRS UMR 8516, Bât. C5, Université Lille 1, Sciences et Technologies, 59655, Villeneuve d'Ascq, Cedex, France.
| |
Collapse
|
47
|
Norata GD, Caligiuri G, Chavakis T, Matarese G, Netea MG, Nicoletti A, O'Neill LAJ, Marelli-Berg FM. The Cellular and Molecular Basis of Translational Immunometabolism. Immunity 2016; 43:421-34. [PMID: 26377896 DOI: 10.1016/j.immuni.2015.08.023] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Indexed: 12/11/2022]
Abstract
The immune response requires major changes to metabolic processes, and indeed, energy metabolism and functional activation are fully integrated in immune cells to determine their ability to divide, differentiate, and carry out effector functions. Immune cell metabolism has therefore become an attractive target area for therapeutic purposes. A neglected aspect in the translation of immunometabolism is the critical connection between systemic and cellular metabolism. Here, we discuss the importance of understanding and manipulating the integration of systemic and immune cell metabolism through in-depth analysis of immune cell phenotype and function in human metabolic diseases and, in parallel, of the effects of conventional metabolic drugs on immune cell differentiation and function. We examine how the recent identification of selective metabolic programs operating in distinct immune cell subsets and functions has the potential to deliver tools for cell- and function-specific immunometabolic targeting.
Collapse
Affiliation(s)
- Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; Center for the Study of Atherosclerosis, Bassini Hospital, Cinisello Balsamo, 20092 Milan, Italy.
| | - Giuseppina Caligiuri
- Unité 1148, INSERM, Hôpital X Bichat, 75018 Paris, France; Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France; Département Hospitalo-Universitaire "FIRE," 75018 Paris, France
| | - Triantafyllos Chavakis
- Department of Clinical Pathobiochemistry and Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Giuseppe Matarese
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Salerno, Baronissi, 84081 Salerno, Italy; IRCCS MultiMedica, 20138 Milan, Italy
| | - Mihai Gheorge Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Antonino Nicoletti
- Department of Clinical Pathobiochemistry and Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Federica M Marelli-Berg
- William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| |
Collapse
|
48
|
A Multimodal Data Analysis Approach for Targeted Drug Discovery Involving Topological Data Analysis (TDA). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 899:253-68. [PMID: 27325272 DOI: 10.1007/978-3-319-26666-4_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In silico drug discovery refers to a combination of computational techniques that augment our ability to discover drug compounds from compound libraries. Many such techniques exist, including virtual high-throughput screening (vHTS), high-throughput screening (HTS), and mechanisms for data storage and querying. However, presently these tools are often used independent of one another. In this chapter, we describe a new multimodal in silico technique for the hit identification and lead generation phases of traditional drug discovery. Our technique leverages the benefits of three independent methods-virtual high-throughput screening, high-throughput screening, and structural fingerprint analysis-by using a fourth technique called topological data analysis (TDA). We describe how a compound library can be independently tested with vHTS, HTS, and fingerprint analysis, and how the results can be transformed into a topological data analysis network to identify compounds from a diverse group of structural families. This process of using TDA or similar clustering methods to identify drug leads is advantageous because it provides a mechanism for choosing structurally diverse compounds while maintaining the unique advantages of already established techniques such as vHTS and HTS.
Collapse
|
49
|
Nielson JL, Paquette J, Liu AW, Guandique CF, Tovar CA, Inoue T, Irvine KA, Gensel JC, Kloke J, Petrossian TC, Lum PY, Carlsson GE, Manley GT, Young W, Beattie MS, Bresnahan JC, Ferguson AR. Topological data analysis for discovery in preclinical spinal cord injury and traumatic brain injury. Nat Commun 2015; 6:8581. [PMID: 26466022 PMCID: PMC4634208 DOI: 10.1038/ncomms9581] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/06/2015] [Indexed: 02/06/2023] Open
Abstract
Data-driven discovery in complex neurological disorders has potential to extract meaningful syndromic knowledge from large, heterogeneous data sets to enhance potential for precision medicine. Here we describe the application of topological data analysis (TDA) for data-driven discovery in preclinical traumatic brain injury (TBI) and spinal cord injury (SCI) data sets mined from the Visualized Syndromic Information and Outcomes for Neurotrauma-SCI (VISION-SCI) repository. Through direct visualization of inter-related histopathological, functional and health outcomes, TDA detected novel patterns across the syndromic network, uncovering interactions between SCI and co-occurring TBI, as well as detrimental drug effects in unpublished multicentre preclinical drug trial data in SCI. TDA also revealed that perioperative hypertension predicted long-term recovery better than any tested drug after thoracic SCI in rats. TDA-based data-driven discovery has great potential application for decision-support for basic research and clinical problems such as outcome assessment, neurocritical care, treatment planning and rapid, precision-diagnosis.
Collapse
Affiliation(s)
- Jessica L Nielson
- Department of Neurosurgery, Brain and Spinal Injury Center, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, California 94143, USA
| | - Jesse Paquette
- Tagb.io, 1 Quartz Way, San Francisco, California 94131, USA
| | - Aiwen W Liu
- Department of Neurosurgery, Brain and Spinal Injury Center, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, California 94143, USA
| | - Cristian F Guandique
- Department of Neurosurgery, Brain and Spinal Injury Center, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, California 94143, USA
| | - C Amy Tovar
- Department of Neuroscience, Ohio State University, 460 West 12th Avenue, 670 Biomedical Research Tower, Columbus, Ohio 43210, USA
| | - Tomoo Inoue
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai city, Miyagi prefecture 980-0856, Japan
| | - Karen-Amanda Irvine
- Department of Neurology, San Francisco VA Medical Center, University of California San Francisco, San Francisco, California 94110, USA
| | - John C Gensel
- Department of Physiology, Spinal Cord and Brain Injury Research Center, Chandler Medical Center, University of Kentucky Lexington, B463 Biomedical &Biological Sciences Research Building, 741 South Limestone Street, Kentucky 40536, USA
| | - Jennifer Kloke
- Ayasdi Inc., 4400 Bohannon Drive Suite #200, Menlo Park, California 94025, USA
| | - Tanya C Petrossian
- GenePeeks, Inc., 777 Avenue of the Americas, New York, New York 10001, USA
| | - Pek Y Lum
- Capella Biosciences, 550 Hamilton Avenue, Palo Alto, California 94301, USA
| | - Gunnar E Carlsson
- Ayasdi Inc., 4400 Bohannon Drive Suite #200, Menlo Park, California 94025, USA.,Department of Mathematics, Stanford University, Building 380, Stanford, California, 94305, USA
| | - Geoffrey T Manley
- Department of Neurosurgery, Brain and Spinal Injury Center, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, California 94143, USA
| | - Wise Young
- Department of Cell Biology and Neuroscience, W.M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Michael S Beattie
- Department of Neurosurgery, Brain and Spinal Injury Center, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, California 94143, USA
| | - Jacqueline C Bresnahan
- Department of Neurosurgery, Brain and Spinal Injury Center, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, California 94143, USA
| | - Adam R Ferguson
- Department of Neurosurgery, Brain and Spinal Injury Center, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, California 94143, USA.,Department of Neurosurgery, San Francisco VA Medical Center, University of California San Francisco, San Francisco, California 94110, USA
| |
Collapse
|
50
|
Abstract
Asia has a growing diabetic population. Linagliptin, a member of dipeptidyl peptidase-4 inhibitor class, is unique in its nonlinear pharmacokinetics with the characteristics of rapid attainment of steady state, little accumulation, predominantly nonrenal route of elimination, prolonged terminal half-life, and sustained inhibition of dipeptidyl peptidase-4 enzyme. No clinically relevant difference in pharmacokinetics was observed between Asians and non-Asians. The management of type 2 diabetes is increasingly challenging with the progression of disease, especially with the requirements of minimal hypoglycemia, weight gain, fluid retention, and other adverse effects. Linagliptin was efficacious and well-tolerated in Asian type 2 diabetes patients with or without renal or hepatic dysfunctions, comparable to that in Caucasians. This review will focus on the usage of linagliptin in clinical studies in Asians.
Collapse
Affiliation(s)
- Chu-Qing Cao
- Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Institute of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yu-Fei Xiang
- Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Institute of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Zhi-Guang Zhou
- Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Institute of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|