1
|
Richter K, Reichel A, Vezočnik V. The role of asymmetric flow field-flow fractionation in drug development - From size separation to advanced characterization. J Chromatogr A 2025; 1739:465542. [PMID: 39613510 DOI: 10.1016/j.chroma.2024.465542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 12/01/2024]
Abstract
Drug development is a complex multi-stage process that aims to deliver therapeutic products to the market. This process employs different analytical methods to separate and characterise compounds, monitor manufacturing, and validate the final drug products to ensure their safety, quality, and efficacy. However, advancements in modern drug development and discovery have led to new types of the therapeutical products of increasing complexity. As such, the capabilities of some traditional analytical techniques have become limited, and the demand for using advanced analytical techniques like field-flow fractionation (FFF) has been increasing. A special feature offered by the FFF family is a unique way of separation based on the analytes' specific physicochemical properties. As such, FFF is a powerful tool for analysing diverse analytes and complex mixtures. Herein, asymmetric flow field-flow fractionation (AF4) is the most frequently used technique within the FFF family in drug development. Therefore, this review aims to provide a general overview of the usage of AF4 technology in the drug development field.
Collapse
Affiliation(s)
- Klaus Richter
- Coriolis Pharma Research GmbH, Fraunhoferstraße 18B, 82152 Martinsried, Germany
| | - Angelika Reichel
- Coriolis Pharma Research GmbH, Fraunhoferstraße 18B, 82152 Martinsried, Germany
| | - Valerija Vezočnik
- Coriolis Pharma Research GmbH, Fraunhoferstraße 18B, 82152 Martinsried, Germany.
| |
Collapse
|
2
|
Siriwardane DA, Shakiba S, Jiang W, Mudalige T. Evaluation of size-based distribution of components in VYXEOS® liposomal formulation using asymmetric flow field-flow fractionation. J Chromatogr A 2024; 1738:465488. [PMID: 39515205 DOI: 10.1016/j.chroma.2024.465488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
VYXEOS® is the first FDA-approved dual-API liposomal formulation containing two different chemotherapeutics, daunorubicin and cytarabine at a 1:5 molar ratio. Analysis of bulk formulation does not provide insight to size-based distribution of APIs and excipients, therefore asymmetrical flow field-flow fractionation (AF4) was utilized for the size-based separation of VYXEOS® liposomes and collected size fractions were further analyzed for the concentrations of APIs, lipid excipients, and copper. Analysis results revealed a significant variation in API distribution across the size fractions, with the larger liposomes encapsulating a higher ratio of cytarabine to daunorubicin compared to the smaller liposomes, while lipid excipient composition was held constant across the size range. We attribute the size-based variation of API ratios to structural change during API loading and sequence of API loading. Cytarabine is first passively loaded into liposomes containing copper gluconate, and then daunorubicin is actively loaded using copper gradient where the daunorubicin is retained in the liposomes as a copper complex. This method can be extended to characterize various single and dual-API liposomal nanocarriers during drug product development and/or post market quality control.
Collapse
Affiliation(s)
- Dumindika A Siriwardane
- Arkansas Laboratory, Office of Regulatory Science, Office of Regulatory Affairs, U.S. Food and Drug Administration, Jefferson, AR 72079, United States
| | - Sheyda Shakiba
- Arkansas Laboratory, Office of Regulatory Science, Office of Regulatory Affairs, U.S. Food and Drug Administration, Jefferson, AR 72079, United States
| | - Wenlei Jiang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food, and Drug Administration, Silver Spring, MD 20993, United States.
| | - Thilak Mudalige
- Arkansas Laboratory, Office of Regulatory Science, Office of Regulatory Affairs, U.S. Food and Drug Administration, Jefferson, AR 72079, United States.
| |
Collapse
|
3
|
Ali SH, Ali H, Aziz MA. Computational identification of PDL1 inhibitors and their cytotoxic effects with silver and gold nanoparticles. Sci Rep 2024; 14:26610. [PMID: 39496756 PMCID: PMC11535480 DOI: 10.1038/s41598-024-77868-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/25/2024] [Indexed: 11/06/2024] Open
Abstract
Immunotherapy is a promising treatment for cancer that aims to boost the immune system's response to cancer cells. This can be achieved by blocking Programmed cell death protein 1/Programmed death-ligand 1 (PD1/PDL1), which activates T cells. In this work, the aim was to find high-affinity drugs against PDL1 using computational tools and conjugate nanoparticles with them. The cytotoxic activity of the nanoparticle conjugated drugs was then tested. The screening of 100,000 drugs from the ZINC database and FDA-approved drugs was done computationally. The physicochemical properties and toxicity of the drugs were analyzed using SwissADME and ProTox-II, respectively. Silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) were synthesized using extracts of Catharanthus roseus flowers and Juglans regia shells, respectively. The characterization of AgNPs and AuNPs was performed using UV-Vis spectroscopy, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). Their conjugation with the drugs Irinotecan, Imatinib, and Methotrexate was also confirmed using UV-Vis, FTIR, and Dynamic light scattering (DLS). The top screened drugs were ZINC1098661 and 3 FDA-approved drugs (Irinotecan, Imatinib, and Methotrexate). Docking studies revealed that Irinotecan had the highest binding affinity towards PDL1 when conjugated with silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs). The Irinotecan-PDL1 complex was confirmed as the most stable through molecular dynamics simulations. The result of the methylthiazol tetrazolium (MTT) assay showed that conjugated AgNPs and AuNPs with Irinotecan had a higher toxic effect on the A549 cancer cell line than AgNPs and AuNPs conjugated with Imatinib. This study provides a promising avenue for further investigation and development of nanoparticle-drug conjugates as a potential cancer immunotherapy strategy.
Collapse
Affiliation(s)
- Syed Hammad Ali
- Interdisciplinary Nanotechnology Centre, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Hiba Ali
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Mohd Azhar Aziz
- Interdisciplinary Nanotechnology Centre, Aligarh Muslim University, Aligarh, UP, 202002, India.
- Cancer Nanomedicine Consortium, Aligarh Muslim University, Aligarh, India.
| |
Collapse
|
4
|
Hamdy NM, Basalious EB, El-Sisi MG, Nasr M, Kabel AM, Nossier ES, Abadi AH. Advancements in current one-size-fits-all therapies compared to future treatment innovations for better improved chemotherapeutic outcomes: a step-toward personalized medicine. Curr Med Res Opin 2024; 40:1943-1961. [PMID: 39412377 DOI: 10.1080/03007995.2024.2416985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/22/2024]
Abstract
The development of therapies followed a generalized approach for a long time, assuming that a single treatment could effectively address various patient populations. However, recent breakthroughs have revealed the limitations of this one-size-fits-all paradigm. More recently, the field of therapeutics has witnessed a shift toward other modules, including cell therapies, high molecular weight remedies, personalized medicines, and gene therapies. Such advancements in therapeutic modules have the potential to revolutionize healthcare and pave the way for medicines that are more efficient and with minimal side effects. Cell therapies have gained considerable attention in regenerative medicine. Stem cell-based therapies, for instance, hold promise for tissue repair and regeneration, with ongoing research focusing on enhancing their efficacy and safety. High molecular weight drugs like peptides and proteins emerged as promising therapeutics because of their high specificity and diverse biological functions. Engineered peptides and proteins are developed for targeted drug delivery, immunotherapy, and disease-modulation. In personalized medicine, tailored treatments to individuals based on specific genetic profiling, lifestyle, biomarkers, and disease characteristics are all implemented. Clinicians have tailored treatments to optimize outcomes and minimize adverse effects, using targeted therapies based on specific mutations, yielding remarkable results. Gene therapies have revolutionized the treatment of genetic disorders by directly targeting the underlying genetic abnormalities. Innovative techniques, such as CRISPR-Cas9 have allowed precise gene editing, opening up possibilities for curing previously incurable conditions. In conclusion, advancements in therapeutic modules have the potential to revolutionize healthcare and pave the way for medicines that are more efficient and with minimal side effects.
Collapse
Affiliation(s)
- Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo, Egypt
- The National Committee of Drugs & Medicines by Academy of Scientific Research and Technology (ASRT), Ministry of Higher Education, Cairo, Egypt
| | - Emad B Basalious
- The National Committee of Drugs & Medicines by Academy of Scientific Research and Technology (ASRT), Ministry of Higher Education, Cairo, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mona G El-Sisi
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo, Egypt
| | - Maha Nasr
- The National Committee of Drugs & Medicines by Academy of Scientific Research and Technology (ASRT), Ministry of Higher Education, Cairo, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ahmed M Kabel
- The National Committee of Drugs & Medicines by Academy of Scientific Research and Technology (ASRT), Ministry of Higher Education, Cairo, Egypt
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Eman S Nossier
- The National Committee of Drugs & Medicines by Academy of Scientific Research and Technology (ASRT), Ministry of Higher Education, Cairo, Egypt
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Ashraf H Abadi
- The National Committee of Drugs & Medicines by Academy of Scientific Research and Technology (ASRT), Ministry of Higher Education, Cairo, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), New Cairo, Egypt
| |
Collapse
|
5
|
Ramos TI, Villacis-Aguirre CA, Sandoval FS, Martin-Solano S, Manrique-Suárez V, Rodríguez H, Santiago-Padilla L, Debut A, Gómez-Gaete C, Arias MT, Montesino R, Lamazares E, Cabezas I, Hugues F, Parra NC, Altamirano C, Ramos OS, Santiago-Vispo N, Toledo JR. Multilayer Nanocarrier for the Codelivery of Interferons: A Promising Strategy for Biocompatible and Long-Acting Antiviral Treatment. Pharmaceutics 2024; 16:1349. [PMID: 39598474 PMCID: PMC11597830 DOI: 10.3390/pharmaceutics16111349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/19/2024] [Accepted: 10/20/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Interferons (IFNs) are cytokines involved in the immune response with a synergistic regulatory effect on the immune response. They are therapeutics for various viral and proliferative conditions, with proven safety and efficacy. Their clinical application is challenging due to the molecules' size, degradation, and pharmacokinetics. We are working on new drug delivery systems that provide adequate therapeutic concentrations for these cytokines and prolong their half-life in the circulation, such as nanoformulations. Methods: Through nanoencapsulation using electrospray technology and biocompatible and biodegradable polymers, we are developing a controlled release system based on nanoparticles for viral infections of the respiratory tract. Results: We developed a controlled release system for viral respiratory tract infections. A prototype nanoparticle with a core was created, which hydrolyzed the polyvinylpyrrolidone (PVP) shell , releasing the active ingredients interferon-alpha (IFN-α) and interferon-gamma (IFN-γ). The chitosan (QS) core degraded slowly, with a controlled release of IFN-α. The primary and rapid effect of the interferon combination ensured an antiviral and immunoregulatory response from day one, induced by IFN-α and enhanced by IFN-γ. The multilayer design demonstrated an optimal toxicity profile. Conclusions: This formulation is an inhaled dry powder intended for the non-invasive intranasal route. The product does not require a cold chain and has the potential for self-administration in the face of emerging viral infections. This novel drug has applications in multiple infectious, oncological, and autoimmune conditions, and further development is proposed for its therapeutic potential. This prototype would ensure greater bioavailability, controlled release, fewer adverse effects, and robust biological action through the simultaneous action of both molecules.
Collapse
Affiliation(s)
- Thelvia I. Ramos
- Biotechnology and Biopharmaceutical Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción 4030000, Chile; (C.A.V.-A.); (F.S.S.); (V.M.-S.); (R.M.); (E.L.); (N.C.P.)
- Grupo de Investigación en Sanidad Animal y Humana (GISAH), Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas ESPE, Sangolquí 171103, Ecuador; (S.M.-S.); (M.T.A.)
| | - Carlos A. Villacis-Aguirre
- Biotechnology and Biopharmaceutical Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción 4030000, Chile; (C.A.V.-A.); (F.S.S.); (V.M.-S.); (R.M.); (E.L.); (N.C.P.)
| | - Felipe Sandoval Sandoval
- Biotechnology and Biopharmaceutical Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción 4030000, Chile; (C.A.V.-A.); (F.S.S.); (V.M.-S.); (R.M.); (E.L.); (N.C.P.)
| | - Sarah Martin-Solano
- Grupo de Investigación en Sanidad Animal y Humana (GISAH), Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas ESPE, Sangolquí 171103, Ecuador; (S.M.-S.); (M.T.A.)
| | - Viana Manrique-Suárez
- Biotechnology and Biopharmaceutical Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción 4030000, Chile; (C.A.V.-A.); (F.S.S.); (V.M.-S.); (R.M.); (E.L.); (N.C.P.)
| | - Hortensia Rodríguez
- Yachay Tech Medicinal Chemistry Research Group (MedChem-YT), School of Chemical Science and Engineering, Yachay University for Experimental Technology and Research (Yachay Tech), Yachay City of Knowledge, Urcuqui 100119, Ecuador;
| | | | - Alexis Debut
- Laboratory of Characterization of Nanomaterials, Center of Nanoscience and Nanotecnology, Universidad de las Fuerzas Armadas ESPE, Sangolquí 171103, Ecuador;
| | - Carolina Gómez-Gaete
- Department of Pharmacy, Faculty of Pharmacy, Universidad de Concepción, Concepción 4030000, Chile;
| | - Marbel Torres Arias
- Grupo de Investigación en Sanidad Animal y Humana (GISAH), Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas ESPE, Sangolquí 171103, Ecuador; (S.M.-S.); (M.T.A.)
| | - Raquel Montesino
- Biotechnology and Biopharmaceutical Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción 4030000, Chile; (C.A.V.-A.); (F.S.S.); (V.M.-S.); (R.M.); (E.L.); (N.C.P.)
| | - Emilio Lamazares
- Biotechnology and Biopharmaceutical Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción 4030000, Chile; (C.A.V.-A.); (F.S.S.); (V.M.-S.); (R.M.); (E.L.); (N.C.P.)
| | - Ignacio Cabezas
- Clinical Sciences Department, Faculty of Veterinary Sciences, Universidad de Concepción, Vicente Méndez 595, Chillán 3780000, Chile; (I.C.); (F.H.)
| | - Florence Hugues
- Clinical Sciences Department, Faculty of Veterinary Sciences, Universidad de Concepción, Vicente Méndez 595, Chillán 3780000, Chile; (I.C.); (F.H.)
| | - Natalie C. Parra
- Biotechnology and Biopharmaceutical Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción 4030000, Chile; (C.A.V.-A.); (F.S.S.); (V.M.-S.); (R.M.); (E.L.); (N.C.P.)
| | - Claudia Altamirano
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile;
| | - Oliberto Sánchez Ramos
- Laboratory of Recombinant Biopharmaceuticals, Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción 4030000, Chile;
| | | | - Jorge R. Toledo
- Biotechnology and Biopharmaceutical Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción 4030000, Chile; (C.A.V.-A.); (F.S.S.); (V.M.-S.); (R.M.); (E.L.); (N.C.P.)
| |
Collapse
|
6
|
Gao Z, Lin J, Su WC, Zhang K, Gruenhagen J, Zhong W, Fan Y, Bian J. Development of an advanced separation and characterization platform for mRNA and lipid nanoparticles using multi-detector asymmetrical flow field-flow fractionation. Anal Bioanal Chem 2024; 416:5281-5293. [PMID: 39102094 DOI: 10.1007/s00216-024-05455-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 08/06/2024]
Abstract
In recent years, the use of lipid nanoparticles (LNPs) for delivery of messenger RNA (mRNA)-based therapies has gained substantial attention in the field of drug development. In such an application, multiple LNP attributes have to be carefully characterized to ensure product safety and quality, whereas accurate and efficient characterization of these complex mRNA-LNP formulations remains a challenging endeavor. Here, we present the development and application of an online separation and characterization platform designed for the isolation and in-depth analysis of mRNAs and mRNA-loaded LNPs. Our asymmetrical flow field-flow fractionation with a multi-detector (MD-AF4) method has demonstrated exceptional resolution between mRNA-LNPs and mRNAs, delivering excellent recoveries (over 70%) for both analytes and exceptional repeatability. Notably, this platform allows for comprehensive and multi-attribute LNP characterization, including online particle sizing, morphology characterization, and determination of encapsulation efficiency, all within a single injection. Furthermore, real-time online sizing by synchronizing multi-angle light scattering (MALS) and dynamic light scattering (DLS) presented higher resolution over traditional batch-mode DLS, particularly in differentiating heterogeneous samples with a low abundance of large-sized particles. Additionally, our method proves to be a valuable tool for monitoring LNP stability under varying stress conditions. Our work introduces a robust and versatile analytical platform using MD-AF4 that not only efficiently provides multi-attribute characterizations of mRNA-LNPs but also holds promise in advancing studies related to formulation screening, quality control, and stability assessment in the evolving field of nanoparticle delivery systems for mRNAs.
Collapse
Affiliation(s)
- Ziting Gao
- Department of Chemistry, University of California, Riverside, 900 University Ave., Riverside, CA, 92521, USA
| | - Jessica Lin
- Genentech Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Wan-Chih Su
- Genentech Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Kelly Zhang
- Genentech Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Jason Gruenhagen
- Genentech Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Wenwan Zhong
- Department of Chemistry, University of California, Riverside, 900 University Ave., Riverside, CA, 92521, USA
| | - Yuchen Fan
- Genentech Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
| | - Juan Bian
- Genentech Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
7
|
Autier B, Verger A, Plaisse C, Manuel C, Chollet-Krugler M, Preza M, Lundstroem-Stadelmann B, Amela-Cortes M, Aninat C, Samson M, Brandhonneur N, Dion S. PLGA-PEG-COOH nanoparticles are efficient systems for delivery of mefloquine to Echinococcus multilocularis metacestodes. Exp Parasitol 2024; 265:108811. [PMID: 39111383 DOI: 10.1016/j.exppara.2024.108811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/10/2024] [Accepted: 08/05/2024] [Indexed: 08/11/2024]
Abstract
Alveolar echinococcosis (AE) is a severe disease caused by the infection with the larval stage of Echinococcus multilocularis, the metacestode. As there is no actual curative drug therapy, recommendations to manage AE patients are based on radical surgery and prophylactic administration of albendazole or mebendazole during 2 years to prevent relapses. There is an urgent need for new therapeutic strategies for the management of AE, as the drugs in use are only parasitostatic, and can induce toxicity. This study aimed at developing a drug delivery system for mefloquine, an antiparasitic compound which is highly active against E. multilocularis in vitro and in experimentally infected mice. We formulated mefloquine-loaded PLGA-PEG-COOH (poly-(lactic-co-glycolic acid)) nanoparticles that exhibit stable physical properties and mefloquine content. These nanoparticles crossed the outer acellular laminated layer of metacestodes in vitro and delivered their content to the inner germinal layer within less than 5 min. The in vitro anti-echinococcal activity of mefloquine was not altered during the formulation process. However, toxicity against hepatocytes was not reduced when compared to free mefloquine. Altogether, this study shows that mefloquine-loaded PLGA-PEG-COOH nanoparticles are promising candidates for drug delivery during AE treatment. However, strategies for direct parasite-specific targeting of these particles should be developed.
Collapse
Affiliation(s)
- Brice Autier
- IRSET (UMR_S 1085), INSERM (Institut de Recherche en Santé, Environnement et Travail), EHESP, CHU Rennes, University of Rennes, Rennes, France
| | - Alexis Verger
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, Univ Rennes, F-35000, Rennes, France
| | - Charleen Plaisse
- IRSET (UMR_S 1085), INSERM (Institut de Recherche en Santé, Environnement et Travail), EHESP, University of Rennes, Rennes, France
| | - Christelle Manuel
- IRSET (UMR_S 1085), INSERM (Institut de Recherche en Santé, Environnement et Travail), EHESP, University of Rennes, Rennes, France
| | - Marylène Chollet-Krugler
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, Univ Rennes, F-35000, Rennes, France
| | - Matias Preza
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Britta Lundstroem-Stadelmann
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Multidisciplinary Center of Infectious Diseases, University of Bern, Berne, Switzerland
| | - Marian Amela-Cortes
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, Univ Rennes, F-35000, Rennes, France
| | - Caroline Aninat
- INSERM, Université Rennes, INRAE, Institut NuMeCan, Nutrition, Metabolisms and Cancer, F-35000, Rennes, France
| | - Michel Samson
- IRSET (UMR_S 1085), INSERM (Institut de Recherche en Santé, Environnement et Travail), EHESP, University of Rennes, Rennes, France
| | - Nolwenn Brandhonneur
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, Univ Rennes, F-35000, Rennes, France
| | - Sarah Dion
- IRSET (UMR_S 1085), INSERM (Institut de Recherche en Santé, Environnement et Travail), EHESP, University of Rennes, Rennes, France.
| |
Collapse
|
8
|
Alkherb WAH, Farag SM, Alotaibi AM, Aloui Z, Alshammari NAH, El-Sayed AA, Almutairi FM, El-Shourbagy NM. Synthesis and larvicidal efficacy of pyrazolopyrimidine derivatives conjugated with selenium nanoparticles against Culex pipiens L. and Musca domestica L. larvae. Colloids Surf B Biointerfaces 2024; 241:114040. [PMID: 38917668 DOI: 10.1016/j.colsurfb.2024.114040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/30/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
The synthesized pyrazolopyrimidine derivatives conjugated with selenium nanoparticles were prepared via a reaction of pyrazolone 1 with aryl-aldehyde and malononitrile or 3-oxo-3-phenylpropanenitrile in the presence ammonium acetate or pipridine using an ultrasonic bath as a modified method in the organic synthesis for such materials. The structure of the synthesized compounds was elucidated through various techniques. All the synthesized pyrazolopyrimidines were used in the synthesis of selenium nanoparticles (SeNPs). These nanoparticles were confirmed using UV-spectra, Dynamic Light scattering and (TEM) techniques. The larvicidal efficiency;of the synthesized;compounds; was investigated against some strains such as Culex pipiens;and Musca domestica larvae. Bioassay test showed pyrazolopyrimide derivatives to exhibit an acceptable larvicidal;bio-efficacy. The derivative (3) exhibited;the highest;efficiency for more than; lab strains of both species. Moreover, C. pipiens larvae were more sensitive towards the examined compounds than M. domestica. The field;strain displayed lower affinity for the 2 folds compounds. Some biochemical changes were tracked through analysis of insect main metabolites (protein, lipid and carbohydrate), in addition to measuring the changes in seven enzymes after treatment. Generally, there was a reduction in the protein, lipids and carbohydrates after treatment with all tested compounds. Moreover, a decrement was noticed for acetylcholine esterase and glutathione;S-transferase; enzymes. There was an increment in the acid;phosphatase; and alkaline phosphatase. In addition, there was elevation in Phenoloxidase level but it noticed the declination in both Cytochrome P450 and Ascorbate peroxidase activity after treatment both flies with derivatives of selenium-nanoparticles in both lab and field strain. Generally, the experiments carried out indicate that antioxidant and detoxification enzymes may play a significant role in mechanism of action of our novel nanocompounds. The cytotoxicity of the synthesized compounds and conjugated with SeNPs showed enhanced compatibility with human normal fibroblast cell line (BJ1) with no toxic effect.
Collapse
Affiliation(s)
- Wafa A H Alkherb
- Department of Biology, College of Science, Qassim University, P.O Box: 6666, Buraidah 51452, Saudi Arabia.
| | - Shaimaa M Farag
- Entomology Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt.
| | - Alya M Alotaibi
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Zouhaier Aloui
- Chemistry Department, College of Science, King Khalid University (KKU), Abha 61413, P.O. Box 9004, Saudi Arabia.
| | - Nawaa Ali H Alshammari
- Department of Chemistry, Faculty of Science, Northern Border University, Arar 73222, Saudi Arabia.
| | - Ahmed A El-Sayed
- Photochemistry Department, Chemical Industrial Institute, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt.
| | - Fahad M Almutairi
- Physical Biochemistry Research Laboratory, Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia.
| | | |
Collapse
|
9
|
Zhao H, Sousa AA, Schuck P. Flotation Coefficient Distributions of Lipid Nanoparticles by Sedimentation Velocity Analytical Ultracentrifugation. ACS NANO 2024; 18:18663-18672. [PMID: 38967176 PMCID: PMC11256894 DOI: 10.1021/acsnano.4c05322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
The robust characterization of lipid nanoparticles (LNPs) encapsulating therapeutics or vaccines is an important and multifaceted translational problem. Sedimentation velocity analytical ultracentrifugation (SV-AUC) has proven to be a powerful approach in the characterization of size-distribution, interactions, and composition of various types of nanoparticles across a large size range, including metal nanoparticles (NPs), polymeric NPs, and also nucleic acid loaded viral capsids. Similar potential of SV-AUC can be expected for the characterization of LNPs, but is hindered by the flotation of LNPs being incompatible with common sedimentation analysis models. To address this gap, we developed a high-resolution, diffusion-deconvoluted sedimentation/flotation distribution analysis approach analogous to the most widely used sedimentation analysis model c(s). The approach takes advantage of independent measurements of the average particle size or diffusion coefficient, which can be conveniently determined, for example, by dynamic light scattering (DLS). We demonstrate the application to an experimental model of extruded liposomes as well as a commercial LNP product and discuss experimental potential and limitations of SV-AUC. The method is implemented analogously to the sedimentation models in the free, widely used SEDFIT software.
Collapse
Affiliation(s)
- Huaying Zhao
- Laboratory
of Dynamics of Macromolecular Assembly, National Institute of Biomedical
Imaging and Bioengineering, National Institutes
of Health, Bethesda, Maryland 20892, United States
| | - Alioscka A. Sousa
- Department
of Biochemistry, Federal University of São
Paulo, São Paulo, SP 04044, Brazil
| | - Peter Schuck
- Laboratory
of Dynamics of Macromolecular Assembly, National Institute of Biomedical
Imaging and Bioengineering, National Institutes
of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
10
|
Schürmann R, Gaál A, Sikora A, Ojeda D, Bartczak D, Goenaga-Infante H, Korpelainen V, Sauvet B, Deumer J, Varga Z, Gollwitzer C. Comparing novel small-angle x-ray scattering approaches for absolute size and number concentration measurements of spherical SiO 2particles to established methods. NANOTECHNOLOGY 2024; 35:385701. [PMID: 38861978 DOI: 10.1088/1361-6528/ad568b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
Biomedical analytical applications, as well as the industrial production of high-quality nano- and sub-micrometre particles, require accurate methods to quantify the absolute number concentration of particles. In this context, small-angle x-ray scattering (SAXS) is a powerful tool to determine the particle size and concentration traceable to the Système international d'unités (SI). Therefore, absolute measurements of the scattering cross-section must be performed, which require precise knowledge of all experimental parameters, such as the electron density of solvent and particles, whereas the latter is often unknown. Within the present study, novel SAXS-based approaches to determine the size distribution, density and number concentrations of sub-micron spherical silica particles with narrow size distributions and mean diameters between 160 nm and 430 nm are presented. For the first-time traceable density and number concentration measurements of silica particles are presented and current challenges in SAXS measurements such as beam-smearing, poorly known electron densities and moderately polydisperse samples are addressed. In addition, and for comparison purpose, atomic force microscopy has been used for traceable measurements of the size distribution and single particle inductively coupled plasma mass spectrometry with the dynamic mass flow approach for the accurate quantification of the number concentrations of silica particles. The possibilities and limitations of the current approaches are critically discussed in this study.
Collapse
Affiliation(s)
- Robin Schürmann
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin, Germany
| | - Anikó Gaál
- Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, H-1117 Budapest, Hungary
| | - Aneta Sikora
- National Measurement Laboratory, LGC Limited, Teddington TW11 0LY, United Kingdom
| | - David Ojeda
- National Measurement Laboratory, LGC Limited, Teddington TW11 0LY, United Kingdom
| | - Dorota Bartczak
- National Measurement Laboratory, LGC Limited, Teddington TW11 0LY, United Kingdom
| | | | - Virpi Korpelainen
- National Metrology Institute VTT MIKES, Tekniikantie 1, FI-02150 Espoo, Finland
| | - Bruno Sauvet
- National Metrology Institute VTT MIKES, Tekniikantie 1, FI-02150 Espoo, Finland
| | - Jérôme Deumer
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin, Germany
| | - Zoltán Varga
- Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, H-1117 Budapest, Hungary
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Christian Gollwitzer
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin, Germany
| |
Collapse
|
11
|
da Silva MJF, Rodrigues AM, Costa MCP, Camara AL, Cabral LM, Ricci Junior E, Vanzan DF, Matos APDS, da Silva Honorio T, Borges ACR. Solid Lipid Nanoparticles Based on Babassu Oil and Copaiba Oleoresin: A Promising Approach for Prostate Cancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1014. [PMID: 38921890 PMCID: PMC11206491 DOI: 10.3390/nano14121014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/27/2024]
Abstract
Solid lipid nanoparticles (SLNs) represent promising nanostructures for drug delivery systems. This study successfully synthesized SLNs containing different proportions of babassu oil (BBS) and copaiba oleoresin (COPA) via the emulsification-ultrasonication method. Before SLN synthesis, the identification and quantification of methyl esters, such as lauric acid and β-caryophyllene, were performed via GC-MS analysis. These methyl esters were used as chemical markers and assisted in encapsulation efficiency experiments. A 22 factorial design with a center point was employed to assess the impact of stearic acid and Tween 80 on particle hydrodynamic diameter (HD) and polydispersity index (PDI). Additionally, the effects of temperature (8 ± 0.5 °C and 25 ± 1.0 °C) and time (0, 7, 15, 30, 40, and 60 days) on HD and PDI values were investigated. Zeta potential (ZP) measurements were utilized to evaluate nanoparticle stability, while transmission electron microscopy provided insights into the morphology and nanometric dimensions of the SLNs. The in vitro cytotoxic activity of the SLNs (10 µg/mL, 30 µg/mL, 40 µg/mL, and 80 µg/mL) was evaluated using the MTT assay with PC-3 and DU-145 prostate cancer cell lines. Results demonstrated that SLNs containing BBS and COPA in a 1:1 ratio exhibited a promising cytotoxic effect against prostate cancer cells, with a percentage of viable cells of 68.5% for PC-3 at a concentration of 30 µg/mL and 48% for DU-145 at a concentration of 80 µg/mL. These findings underscore the potential therapeutic applications of SLNs loaded with BBS and COPA for prostate cancer treatment.
Collapse
Affiliation(s)
- Michael Jackson Ferreira da Silva
- Programa de Pós-Graduação em Biotecnologia da Rede Renorbio, Universidade Federal do Maranhão (UFMA), Av. dos Portugueses, 1966, Bacanga, São Luís 65080-805, MA, Brazil; (M.J.F.d.S.)
| | - Alisson Mendes Rodrigues
- Programa de Pós-Graduação em Ciência de Materiais, Faculdade UnB Planaltina, Universidade de Brasília (UnB), Brasília 70904-910, DF, Brazil
| | - Maria Célia Pires Costa
- Departamento de Química, Universidade Estadual do Maranhão (UEMA), Campus Universitário Paulo VI, São Luís 65055-970, MA, Brazil;
| | - Adriana Leandro Camara
- Departamento de Ciências Fisiológicas, Universidade Federal do Maranhão (UFMA), Av. dos Portugueses, 1966, Bacanga, São Luís 65080-805, MA, Brazil;
| | - Lucio Mendes Cabral
- Departamento de Fármacos e Medicamentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária, Ilha do Fundão, Rio de Janeiro 21941-902, RJ, Brazil; (L.M.C.); (E.R.J.); (A.P.d.S.M.)
| | - Eduardo Ricci Junior
- Departamento de Fármacos e Medicamentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária, Ilha do Fundão, Rio de Janeiro 21941-902, RJ, Brazil; (L.M.C.); (E.R.J.); (A.P.d.S.M.)
| | - Daniel Figueiredo Vanzan
- Departamento de Fármacos e Medicamentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária, Ilha do Fundão, Rio de Janeiro 21941-902, RJ, Brazil; (L.M.C.); (E.R.J.); (A.P.d.S.M.)
| | - Ana Paula dos Santos Matos
- Departamento de Fármacos e Medicamentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária, Ilha do Fundão, Rio de Janeiro 21941-902, RJ, Brazil; (L.M.C.); (E.R.J.); (A.P.d.S.M.)
| | - Thiago da Silva Honorio
- Departamento de Fármacos e Medicamentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária, Ilha do Fundão, Rio de Janeiro 21941-902, RJ, Brazil; (L.M.C.); (E.R.J.); (A.P.d.S.M.)
| | - Antonio Carlos Romão Borges
- Programa de Pós-Graduação em Biotecnologia da Rede Renorbio, Universidade Federal do Maranhão (UFMA), Av. dos Portugueses, 1966, Bacanga, São Luís 65080-805, MA, Brazil; (M.J.F.d.S.)
| |
Collapse
|
12
|
Castillo Henríquez L, Bahloul B, Alhareth K, Oyoun F, Frejková M, Kostka L, Etrych T, Kalshoven L, Guillaume A, Mignet N, Corvis Y. Step-By-Step Standardization of the Bottom-Up Semi-Automated Nanocrystallization of Pharmaceuticals: A Quality By Design and Design of Experiments Joint Approach. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306054. [PMID: 38299478 DOI: 10.1002/smll.202306054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/10/2023] [Indexed: 02/02/2024]
Abstract
Nanosized drug crystals have been reported with enhanced apparent solubility, bioavailability, and therapeutic efficacy compared to microcrystal materials, which are not suitable for parenteral administration. However, nanocrystal design and development by bottom-up approaches are challenging, especially considering the non-standardized process parameters in the injection step. This work aims to present a systematic step-by-step approach through Quality-by-Design (QbD) and Design of Experiments (DoE) for synthesizing drug nanocrystals by a semi-automated nanoprecipitation method. Curcumin is used as a drug model due to its well-known poor water solubility (0.6 µg mL-1, 25 °C). Formal and informal risk assessment tools allow identifying the critical factors. A fractional factorial 24-1 screening design evaluates their impact on the average size and polydispersity of nanocrystals. The optimization of significant factors is done by a Central Composite Design. This response surface methodology supports the rational design of the nanocrystals, identifying and exploring the design space. The proposed joint approach leads to a reproducible, robust, and stable nanocrystalline preparation of 316 nm with a PdI of 0.217 in compliance with the quality profile. An orthogonal approach for particle size and polydispersity characterization allows discarding the formation of aggregates. Overall, the synergy between advanced data analysis and semi-automated standardized nanocrystallization of drugs is highlighted.
Collapse
Affiliation(s)
- Luis Castillo Henríquez
- CNRS, INSERM, Chemical and Biological Technologies for Health Group (UTCBS), Université Paris Cité, Paris, F-75006, France
| | - Badr Bahloul
- Drug Development Laboratory LR12ES09, Faculty of Pharmacy, University of Monastir, Monastir, 5060, Tunisia
| | - Khair Alhareth
- CNRS, INSERM, Chemical and Biological Technologies for Health Group (UTCBS), Université Paris Cité, Paris, F-75006, France
| | - Feras Oyoun
- CNRS, INSERM, Chemical and Biological Technologies for Health Group (UTCBS), Université Paris Cité, Paris, F-75006, France
| | - Markéta Frejková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského náměstí 2, Prague, CZ-162 06, Czech Republic
| | - Libor Kostka
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského náměstí 2, Prague, CZ-162 06, Czech Republic
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského náměstí 2, Prague, CZ-162 06, Czech Republic
| | - Luc Kalshoven
- EuroAPI France, Particle Engineering and Sizing Department, Vertolaye, F-63480, France
| | - Alain Guillaume
- EuroAPI France, Particle Engineering and Sizing Department, Vertolaye, F-63480, France
| | - Nathalie Mignet
- CNRS, INSERM, Chemical and Biological Technologies for Health Group (UTCBS), Université Paris Cité, Paris, F-75006, France
| | - Yohann Corvis
- CNRS, INSERM, Chemical and Biological Technologies for Health Group (UTCBS), Université Paris Cité, Paris, F-75006, France
| |
Collapse
|
13
|
Liu Y, Hamm T, Eichinger TR, Kamm W, Wieland HA, Loretz B, Hirsch AKH, Lee S, Lehr CM. Biodynamer Nano-Complexes and -Emulsions for Peptide and Protein Drug Delivery. Int J Nanomedicine 2024; 19:4429-4449. [PMID: 38784761 PMCID: PMC11114140 DOI: 10.2147/ijn.s448578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/26/2024] [Indexed: 05/25/2024] Open
Abstract
Background Therapeutic proteins and peptides offer great advantages compared to traditional synthetic molecular drugs. However, stable protein loading and precise control of protein release pose significant challenges due to the extensive range of physicochemical properties inherent to proteins. The development of a comprehensive protein delivery strategy becomes imperative accounting for the diverse nature of therapeutic proteins. Methods Biodynamers are amphiphilic proteoid dynamic polymers consisting of amino acid derivatives connected through pH-responsive dynamic covalent chemistry. Taking advantage of the amphiphilic nature of the biodynamers, PNCs and DEs were possible to be prepared and investigated to compare the delivery efficiency in drug loading, stability, and cell uptake. Results As a result, the optimized PNCs showed 3-fold encapsulation (<90%) and 5-fold loading capacity (30%) compared to DE-NPs. PNCs enhanced the delivery efficiency into the cells but aggregated easily on the cell membrane due to the limited stability. Although DE-NPs were limited in loading capacity compared to PNCs, they exhibit superior adaptability in stability and capacity for delivering a wider range of proteins compared to PNCs. Conclusion Our study highlights the potential of formulating both PNCs and DE-NPs using the same biodynamers, providing a comparative view on protein delivery efficacy using formulation methods.
Collapse
Affiliation(s)
- Yun Liu
- Department of Drug Delivery Across Biological Barriers, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Timo Hamm
- Department of Research and Development, Sanofi-Aventis Deutschland GmbH, Frankfurt Am Main, Germany
| | - Thomas Ralf Eichinger
- Department of Research and Development, Sanofi-Aventis Deutschland GmbH, Frankfurt Am Main, Germany
| | - Walter Kamm
- Department of Research and Development, Sanofi-Aventis Deutschland GmbH, Frankfurt Am Main, Germany
| | - Heike Andrea Wieland
- Department of Research and Development, Sanofi-Aventis Deutschland GmbH, Frankfurt Am Main, Germany
| | - Brigitta Loretz
- Department of Drug Delivery Across Biological Barriers, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
| | - Anna K H Hirsch
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
- Department of Drug Design and Optimisation, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
| | - Sangeun Lee
- Department of Drug Delivery Across Biological Barriers, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Claus-Michael Lehr
- Department of Drug Delivery Across Biological Barriers, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
| |
Collapse
|
14
|
Tian Y, Tian D, Peng X, Qiu H. Critical parameters to standardize the size and concentration determination of nanomaterials by nanoparticle tracking analysis. Int J Pharm 2024; 656:124097. [PMID: 38609058 DOI: 10.1016/j.ijpharm.2024.124097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/20/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024]
Abstract
The size and concentration are critical for the diagnostic and therapeutic applications of nanomaterials but the accurate measurement remains challenging. Nanoparticle tracking analysis (NTA) is widely used for size and concentration determination. However, highly repeatable standard operating procedures (SOPs) are absent. We adopted the "search-evaluate-test" strategy to standardize the measurement by searching the critical parameters. The particles per frame are linearly proportional to the sample concentration and the measured results are more accurate and repeatable when the concentration is 108-109 particles/ml. The optimal detection threshold is around 5. The optimal camera level is such that it allows clear observation of particles without diffractive rings and overexposure. The optimal speed is ≤ 50 in AU and ∼ 10 μl/min in flow rate. We then evaluated the protocol using polydisperse polystyrene particles and we found that NTA could discriminate particles in bimodal mixtures with high size resolution but the performance on multimodal mixtures is not as good as that of resistive pulse sensing (RPS). We further analyzed the polystyrene particles, SiO2 particles, and biological samples by NTA following the SOPs. The size and concentration measured by NTA differentially varies to those determined by RPS and transmission electron microscopy.
Collapse
Affiliation(s)
- Youxi Tian
- School of Pharmacy, Guangdong Medical University, No.1 City Avenue Songshan Lake Sci. &Tech. Industry Park, Dongguan 523808, China; School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China; Carbohydrate-based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 200031, China
| | - Dong Tian
- Carbohydrate-based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 200031, China
| | - Xinsheng Peng
- School of Pharmacy, Guangdong Medical University, No.1 City Avenue Songshan Lake Sci. &Tech. Industry Park, Dongguan 523808, China.
| | - Hong Qiu
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China; Carbohydrate-based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 200031, China.
| |
Collapse
|
15
|
He X, Xie X, Xiang J, Yang M. Convenient Size Analysis of Nanoplastics on a Microelectrode. Anal Chem 2024; 96:6180-6185. [PMID: 38593062 DOI: 10.1021/acs.analchem.3c05065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Chemical recycling is a promising approach to reduce plastic pollution. Timely and accurate size analysis of produced nanoplastics is necessary to monitor the process and assess the quality of chemical recycling. In this work, a sandwich-type microelectrode sensor was developed for the size assessment of nanoplastics. β-Mercaptoethylamine was modified on the microelectrode to enhance its surface positive charge density. Polystyrene (PS) nanoplastics were captured on the sensor through electrostatic interactions. Ferrocene was used as an electrochemical beacon and attached to PS via hydrophobic interactions. The results show a nonlinear dependence of the sensor's current response on the PS particle size. The size resolving ability of the microelectrode is mainly attributed to the small size of the electrode and the resulting attenuation of the electric field strength. For mixed samples with different particle sizes, this method can provide accurate average particle sizes. Through an effective pretreatment process, the method can be applied to PS nanoplastics with different surface properties, ensuring its application in evaluating different chemical recycling methods.
Collapse
Affiliation(s)
- Xuan He
- College of Chemistry and Chemical Engineering, Central South University, Changsha410083, P. R. China
| | - Xin Xie
- College of Chemistry and Chemical Engineering, Central South University, Changsha410083, P. R. China
| | - Juan Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha410083, P. R. China
| | - Minghui Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha410083, P. R. China
| |
Collapse
|
16
|
Luo X, Zhang J, Tan H, Jiang J, Li J, Wen W. Real-Time 3D Tracking of Multi-Particle in the Wide-Field Illumination Based on Deep Learning. SENSORS (BASEL, SWITZERLAND) 2024; 24:2583. [PMID: 38676200 PMCID: PMC11054292 DOI: 10.3390/s24082583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
In diverse realms of research, such as holographic optical tweezer mechanical measurements, colloidal particle motion state examinations, cell tracking, and drug delivery, the localization and analysis of particle motion command paramount significance. Algorithms ranging from conventional numerical methods to advanced deep-learning networks mark substantial strides in the sphere of particle orientation analysis. However, the need for datasets has hindered the application of deep learning in particle tracking. In this work, we elucidated an efficacious methodology pivoted toward generating synthetic datasets conducive to this domain that resonates with robustness and precision when applied to real-world data of tracking 3D particles. We developed a 3D real-time particle positioning network based on the CenterNet network. After conducting experiments, our network has achieved a horizontal positioning error of 0.0478 μm and a z-axis positioning error of 0.1990 μm. It shows the capability to handle real-time tracking of particles, diverse in dimensions, near the focal plane with high precision. In addition, we have rendered all datasets cultivated during this investigation accessible.
Collapse
Affiliation(s)
- Xiao Luo
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong 999077, China;
| | - Jie Zhang
- Advanced Materials Thrust, The Hong Kong University of Science and Technology, Guangzhou 511400, China; (J.Z.); (J.J.); (J.L.)
| | - Handong Tan
- Department of Individualized Interdisciplinary Program (Advanced Materials), The Hong Kong University of Science and Technology, Hong Kong 999077, China;
| | - Jiahao Jiang
- Advanced Materials Thrust, The Hong Kong University of Science and Technology, Guangzhou 511400, China; (J.Z.); (J.J.); (J.L.)
| | - Junda Li
- Advanced Materials Thrust, The Hong Kong University of Science and Technology, Guangzhou 511400, China; (J.Z.); (J.J.); (J.L.)
| | - Weijia Wen
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong 999077, China;
- Advanced Materials Thrust, The Hong Kong University of Science and Technology, Guangzhou 511400, China; (J.Z.); (J.J.); (J.L.)
| |
Collapse
|
17
|
Eren B, Gunduz MK, Kaymak G, Berikten D, Bahsi ZB. Therapeutic Potential of Sol-Gel ZnO Nanocrystals: Anticancer, Antioxidant, and Antimicrobial Tri-Action. ACS OMEGA 2024; 9:14818-14829. [PMID: 38585122 PMCID: PMC10993253 DOI: 10.1021/acsomega.3c07191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/09/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024]
Abstract
Zinc oxide nanocrystals (ZnO NCs) hold great promise in nanomedicine with fascinating multifunctional properties. We investigated the therapeutic potential of sol-gel synthesized ZnO NCs with crystal sizes of 52.65 and 25.11 nm, focusing on their anticancer effects on HepG2 and HT29 cells, antioxidant properties, and antimicrobial activity. Both samples displayed a hexagonal wurtzite ZnO structure, wherein the crystal sizes diminished with lower calcination temperatures according to X-ray diffraction. The scanning electron microscopy analysis revealed that lowering the calcination temperature resulted in a decrease in the grain size of the ZnO NCs, as expected. This reduction in grain size combined with a decrease in crystal size resulted in a significant 40% reduction in the reflectance of the ZnO NCs in UV-vis-NIR spectroscopy. It was also observed that the ZnO NCs calcined at higher temperatures exhibited larger particle sizes with a reduced surface area mean of 69.30 μm and a stable negative zeta potential of -11.2 mV. In contrast, the ZnO NCs calcined at lower temperatures exhibited a larger surface area mean of 34.56 μm and a positive zeta potential of +10 mV. In both cell lines, the cytotoxic potential was found to be higher in HepG2 cells. Specifically, when ZnO nanocrystals (NCs) with a crystal size of 52.65 nm were used, the lowest cell viability was observed at a concentration of 5.74 μg/mL. Based on oxidative stress index values, a lower crystal size of ZnO NCs displayed greater effectiveness in HT29 cells, while a higher crystal size of ZnO NCs had pronounced effects in HepG2 cells. Moreover, both ZnO NCs exhibited significant antimicrobial activity against Gram-positive bacteria (Enterococcus faecalis and Staphylococcus aureus) and Candida parapsilopsis fungus. These findings emphasize sol-gel ZnO NCs' potential as versatile agents in nanomedicine, spurring research on targeted cancer therapies and antimicrobial innovations.
Collapse
Affiliation(s)
- Busra Eren
- Institute
of Biotechnology, Gebze Technical University, Gebze, Kocaeli 41400, Turkey
| | - Meliha Koldemir Gunduz
- Faculty
of Engineering and Natural Sciences, Department of Basic Sciences
of Engineering, Kutahya Health Sciences
University, Kütahya 43100, Turkey
| | - Gullu Kaymak
- Training
and Research Center, Kutahya Health Sciences
University, Kütahya 43500, Turkey
| | - Derya Berikten
- Faculty
of Engineering and Natural Sciences, Department of Molecular Biology
and Genetics, Kütahya Health Sciences
University, Kütahya 43100, Turkey
| | - Zehra Banu Bahsi
- Institute
of Biotechnology, Gebze Technical University, Gebze, Kocaeli 41400, Turkey
| |
Collapse
|
18
|
Parot J, Mehn D, Jankevics H, Markova N, Carboni M, Olaisen C, Hoel AD, Sigfúsdóttir MS, Meier F, Drexel R, Vella G, McDonagh B, Hansen T, Bui H, Klinkenberg G, Visnes T, Gioria S, Urban-Lopez P, Prina-Mello A, Borgos SE, Caputo F, Calzolai L. Quality assessment of LNP-RNA therapeutics with orthogonal analytical techniques. J Control Release 2024; 367:385-401. [PMID: 38253203 DOI: 10.1016/j.jconrel.2024.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
The availability of analytical methods for the characterization of lipid nanoparticles (LNPs) for in-vivo intracellular delivery of nucleic acids is critical for the fast development of innovative RNA therapies. In this study, analytical protocols to measure (i) chemical composition, (ii) drug loading, (iii) particle size, concentration, and stability as well as (iv) structure and morphology were evaluated and compared based on a comprehensive characterization strategy linking key physical and chemical properties to in-vitro efficacy and toxicity. Furthermore, the measurement protocols were assessed either by testing the reproducibility and robustness of the same technique in different laboratories, or by a correlative approach, comparing measurement results of the same attribute with orthogonal techniques. The characterization strategy and the analytical measurements described here will have an important role during formulation development and in determining robust quality attributes ultimately supporting the quality assessment of these innovative RNA therapeutics.
Collapse
Affiliation(s)
- Jeremie Parot
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Dora Mehn
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | | | | | - Camilla Olaisen
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Andrea D Hoel
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | | | | | | | - Gabriele Vella
- Laboratory for Biological Characterisation of Advanced Materials (LBCAM), Trinity College Dublin, Ireland
| | - Birgitte McDonagh
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Terkel Hansen
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Huong Bui
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Geir Klinkenberg
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Torkild Visnes
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Sabrina Gioria
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Adriele Prina-Mello
- Laboratory for Biological Characterisation of Advanced Materials (LBCAM), Trinity College Dublin, Ireland
| | - Sven Even Borgos
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway.
| | - Fanny Caputo
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway; LNE - Centre for Scientific and Industrial Metrology, Trappes, France.
| | - Luigi Calzolai
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
| |
Collapse
|
19
|
Khazaei S, Varela-Calviño R, Rad-Malekshahi M, Quattrini F, Jokar S, Rezaei N, Balalaie S, Haririan I, Csaba N, Garcia-Fuentes M. Self-assembled peptide/polymer hybrid nanoplatform for cancer immunostimulating therapies. Drug Deliv Transl Res 2024; 14:455-473. [PMID: 37721693 PMCID: PMC10761384 DOI: 10.1007/s13346-023-01410-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2023] [Indexed: 09/19/2023]
Abstract
Integrating peptide epitopes in self-assembling materials is a successful strategy to obtain nanovaccines with high antigen density and improved efficacy. In this study, self-assembling peptides containing MAGE-A3/PADRE epitopes were designed to generate functional therapeutic nanovaccines. To achieve higher stability, peptide/polymer hybrid nanoparticles were formulated by controlled self-assembly of the engineered peptides. The nanoparticles showed good biocompatibility to both human red blood- and dendritic cells. Incubation of the nanoparticles with immature dendritic cells triggered immune effects that ultimately activated CD8 + cells. The antigen-specific and IgG antibody responses of healthy C57BL/6 mice vaccinated with the nanoparticles were analyzed. The in vivo results indicate a specific response to the nanovaccines, mainly mediated through a cellular pathway. This research indicates that the immunogenicity of peptide epitope vaccines can be effectively enhanced by developing self-assembled peptide-polymer hybrid nanostructures.
Collapse
Affiliation(s)
- Saeedeh Khazaei
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, CiMUS Research Center and Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ruben Varela-Calviño
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Mazda Rad-Malekshahi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Federico Quattrini
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, CiMUS Research Center and Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Safura Jokar
- Department of Nuclear Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Center, K. N. Toosi University of Technology, Tehran, Iran
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Noemi Csaba
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, CiMUS Research Center and Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Marcos Garcia-Fuentes
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, CiMUS Research Center and Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
20
|
Majeed H, Iftikhar T, Ashir Nadeem M, Altaf Nazir M. Green synthesis of Eucalyptus globulus zinc nanoparticles and its use in antimicrobial insect repellent paint formulation in bulk industrial production. Heliyon 2024; 10:e24467. [PMID: 38288019 PMCID: PMC10823064 DOI: 10.1016/j.heliyon.2024.e24467] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/31/2024] Open
Abstract
Mitigating climate change can be achieved by opting for sustainable, plant-based materials instead of relying on hazardous chemicals that come with various side effects. Various natural plant extracts find widespread application in synthesizing insect-repellent coatings, particularly in industries such as paint manufacturing. The increasing demand for these coatings has led us to find out the effects of different plant extracts for the efficient preparation of paints with more advanced impacts and low cost. For this purpose, zinc nanoparticles of Eucalyptus globulus L. and its extracts were used in this study due to their remarkable biocidal and antimicrobial activities. The extract was prepared by the process of oven-drying and heating followed by their filtration. Then, they were subjected to different phytochemical tests that were performed in which plant material did not contain flavonoids and glycol. The comparison of the size of nanoparticles was visible during the weighing which was found to be 4.451 mg. Advanced characterization techniques like FTIR, UV visible spectroscopy, and particle size analysis were adopted for the analysis of nanoparticles of plant extract. The FTIR analysis of the plant material was reported to lie in the range of 1000-1800 cm-1. On the other hand, the results of UV visible spectroscopy of nanoparticles of plant extract showed absorption peaks around 300 nm. The produced material was integrated into paint formulations to impart insect-repellent and antibacterial characteristics. Painted panels exhibited notable antibacterial efficacy, presenting an inhibition zone of 0.7 cm for Escherichia coli and 0.3 cm for Staphylococcus aureus when utilizing biocide. Plant nanoparticles yielded inhibition zones of 1 and 1.2, while aqueous extract resulted in zones of 0.2 and 0.5, respectively. A thorough evaluation of the paint's color attributes, including ΔL, Δa, Δb, and ΔE, indicated noteworthy differences. The CMC ΔE values from the trials exceeded 1, indicating a substantial change in shade. The batches of paints containing E. globulus extracts and nanoparticles were found to be lighter in color specifically green and yellow colors. Their antimicrobial and insect repellant activity was tested using the mosquitos of Aedes aegypti with an age of 4-5 weeks, revealing that formulations with plant extracts exhibited a 61 % effective period, greater than the 7 % observed in non-biocidal formulations. The paint responded best towards these mosquitoes in terms of repellency and the ultimate target of this study was achieved.
Collapse
Affiliation(s)
- Hammad Majeed
- Department of Chemistry, University of Management and Technology (UMT) Lahore, Sialkot Campus, 51310, Pakistan
| | - Tehreema Iftikhar
- Applied Botany Lab, Department of Botany, Government College University, 54000, Lahore, Pakistan
| | - Muhammad Ashir Nadeem
- Applied Botany Lab, Department of Botany, Government College University, 54000, Lahore, Pakistan
| | - Muhammad Altaf Nazir
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| |
Collapse
|
21
|
Glaubitz C, Bazzoni A, Ackermann-Hirschi L, Baraldi L, Haeffner M, Fortunatus R, Rothen-Rutishauser B, Balog S, Petri-Fink A. Leveraging Machine Learning for Size and Shape Analysis of Nanoparticles: A Shortcut to Electron Microscopy. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:421-427. [PMID: 38229591 PMCID: PMC10788956 DOI: 10.1021/acs.jpcc.3c05938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 01/18/2024]
Abstract
Characterizing nanoparticles (NPs) is crucial in nanoscience due to the direct influence of their physiochemical properties on their behavior. Various experimental techniques exist to analyze the size and shape of NPs, each with advantages, limitations, proneness to uncertainty, and resource requirements. One of them is electron microscopy (EM), often considered the gold standard, which offers visualization of the primary particles. However, despite its advantages, EM can be expensive, less accessible, and difficult to apply during dynamic processes. Therefore, using EM for specific experimental conditions, such as observing dynamic processes or visualizing low-contrast particles, is challenging. This study showcases the potential of machine learning in deriving EM parameters by utilizing cost-effective and dynamic techniques such as dynamic light scattering (DLS) and UV-vis spectroscopy. Our developed model successfully predicts the size and shape parameters of gold NPs based on DLS and UV-vis results. Furthermore, we demonstrate the practicality of our model in situations in which conducting EM measurements presents a challenge: Tracking in situ the synthesis of 100 nm gold NPs.
Collapse
Affiliation(s)
- Christina Glaubitz
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Amélie Bazzoni
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | | | - Laura Baraldi
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Moritz Haeffner
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Roman Fortunatus
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | | | - Sandor Balog
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Alke Petri-Fink
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
- Chemistry
Department, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| |
Collapse
|
22
|
Hannon G, Bogdanska A, Keogh A, Finn SP, Gobbo OL, Prina-Mello A. Biodistribution and histological analysis of iron oxide-dextran nanoparticles in wistar rats. Nanotoxicology 2023; 17:562-580. [PMID: 37982374 DOI: 10.1080/17435390.2023.2276413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/11/2023] [Indexed: 11/21/2023]
Abstract
Iron oxide nanoparticles (IONP) are showing promise in many biomedical applications. One of these- magnetic hyperthermia- utilizes externally applied alternating magnetic fields and tumor-residing magnetic nanoparticles to generate localized therapeutic temperature elevations. Magnetic hyperthermia is approved in Europe to treat glioblastoma and is undergoing clinical assessment in the United States to treat prostate cancer. In this study, we performed biodistribution and histological analysis of a new IONP (RCL-01) in Wistar rats. These nanoparticles are currently undergoing clinical assessment in locally advanced pancreatic ductal adenocarcinoma to determine the feasibility of magnetic hyperthermia treatment in this disease. The study presented here aimed to determine the fate of these nanoparticles in vivo and whether this results in organ damage. Wistar rats were injected intravenously with relatively high doses of IONP (30 mgFe/kg, 45 mgFe/kg and 60 mgFe/kg) and compared to a vehicle control to determine the accumulation of iron in organs and whether this resulted in histological changes in these tissues. Dose-dependent increases of iron were observed in the liver, spleen and lungs of IONP-treated animals at 7 days postinjection; however, this did not result in significant histological changes in these tissues. Immunofluorescent imaging determined these nanoparticles are internalized by macrophages in tissue, suggesting they are readily phagocytosed by the reticuloendothelial system for eventual recycling. Notably, no changes in iron or dextran staining were found in the kidneys across all treatment groups, providing evidence for potential renal clearance.
Collapse
Affiliation(s)
- Gary Hannon
- Nanomedicine and Molecular Imaging Group, Trinity Translational Medicine Institute, Ireland
- Laboratory of Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - Anna Bogdanska
- Nanomedicine and Molecular Imaging Group, Trinity Translational Medicine Institute, Ireland
- Laboratory of Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - Anna Keogh
- Department of Histopathology, Trinity College Dublin, Ireland
| | - Stephen P Finn
- Department of Histopathology, Trinity College Dublin, Ireland
| | - Oliviero L Gobbo
- School of Pharmacy and Pharmaceutical Sciences, Ireland
- Trinity St James's Cancer Institute, Ireland
| | - Adriele Prina-Mello
- Nanomedicine and Molecular Imaging Group, Trinity Translational Medicine Institute, Ireland
- Laboratory of Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, CRANN Institute, Trinity College Dublin, Ireland
| |
Collapse
|
23
|
Musazzi UM, Franzè S, Condorelli F, Minghetti P, Caliceti P. Feeding Next-Generation Nanomedicines to Europe: Regulatory and Quality Challenges. Adv Healthc Mater 2023; 12:e2301956. [PMID: 37718353 PMCID: PMC11468706 DOI: 10.1002/adhm.202301956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/16/2023] [Indexed: 09/19/2023]
Abstract
New and innovative nanomedicines have been developed and marketed over the past half-century, revolutionizing the prognosis of many human diseases. Although a univocal regulatory definition is not yet available worldwide, the term "nanomedicines" generally identifies medicinal products that use nanotechnology in their design or production. Due to the intrinsic high structural complexity of these products, the scientific and regulatory communities are reflecting on how to revise the regulatory framework to provide a more appropriate benefit/risk balance to authorize them on the market, considering the impact of their peculiar physicochemical features in the evaluation of efficacy and safety patterns. Herein, a critical perspective is provided on the current open issues regarding regulatory qualification and physicochemical characterization of nanosystems considering the current European regulatory framework on nanomedicine products. Practicable paths for improving their quality assurance and predicting their fate in vivo are also argued. Strengthening the multilevel alliance among academic institutions, industrial stakeholders, and regulatory authorities seems strategic to support innovation by standard approaches (e.g., qualification, characterization, risk assessment), and to expand current knowledge, also benefiting from the new opportunities offered by artificial intelligence and digitization in predictive modelling of the impact of nanomedicine characteristics on their fate in vivo.
Collapse
Affiliation(s)
- Umberto M. Musazzi
- Department of Pharmaceutical SciencesUniversità degli Studi di Milanovia G. ColomboMilan71‐20133Italy
| | - Silvia Franzè
- Department of Pharmaceutical SciencesUniversità degli Studi di Milanovia G. ColomboMilan71‐20133Italy
| | - Fabrizio Condorelli
- Department of Pharmaceutical SciencesUniversità degli Studi del Piemonte OrientaleLargo DoneganiNovara2‐28100Italy
| | - Paola Minghetti
- Department of Pharmaceutical SciencesUniversità degli Studi di Milanovia G. ColomboMilan71‐20133Italy
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological SciencesUniversity of Padovavia F. MarzoloPadova5‐35131Italy
| |
Collapse
|
24
|
Roger E, Franconi F, Do TAT, Simonsson C, Siegler B, Perrot R, Saulnier P, Gimel JC. Evidence of residual micellar structures in a lipid nanocapsule dispersion. A multi-technique approach. J Control Release 2023; 364:700-717. [PMID: 37951474 DOI: 10.1016/j.jconrel.2023.10.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023]
Abstract
Nanoemulsions are metastable emulsions in the nanometric range which can be obtained using low-energy processes. A decade ago, it was demonstrated that a non-negligible amount of residual surfactant micelles may coexist with the oil nanodroplets in a model oil/surfactant system. Those micelles were called "wasted" micelles as they did not participate in the formation of the nanodroplets. Little attention has been focused on the potential presence or effect of such secondary structures in nanoemulsions used as drug delivery systems. Here, we present an extensive characterization of lipid nanocapsules, a nanoemulsion obtained from a medium-chain triglyceride mixed with a pegylated surfactant by a process comprising a temperature-dependent phase inversion followed by a cold-water quench. Lipid nanocapsules demonstrate a very good shelf stability. First, for clarity and academic purposes, we briefly present the pros and the cons of the various diffusion-based characterization techniques used i.e., multi-angle and single-angle dynamic light scattering, nanoparticle tracking analysis, fluorescence recovery after photobleaching, and diffusometry nuclear magnetic resonance. Then, combining all these techniques, we show that up to 40 wt% of the surfactant is not involved in the lipid nanocapsule construction but forms residual micellar structures. Those micelles also contain a small quantity of medium-chain triglyceride (2 wt% of the initial amount) and encapsulate around 40 wt% of a fluorescent dye originally dispersed in the oily phase.
Collapse
Affiliation(s)
- Emilie Roger
- Univ Angers, INSERM, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Florence Franconi
- Univ Angers, INSERM, CNRS, MINT, SFR ICAT, F-49000 Angers, France; Univ Angers, PRISM, SFR ICAT, Biogenouest, F-49000 Angers, France
| | - Tran Anh Thu Do
- Univ Angers, INSERM, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Carl Simonsson
- Univ Angers, INSERM, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | | | | | - Patrick Saulnier
- Univ Angers, INSERM, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | | |
Collapse
|
25
|
Melchior S, Codrich M, Gorassini A, Mehn D, Ponti J, Verardo G, Tell G, Calzolai L, Calligaris S. Design and advanced characterization of quercetin-loaded nano-liposomes prepared by high-pressure homogenization. Food Chem 2023; 428:136680. [PMID: 37418880 PMCID: PMC10410694 DOI: 10.1016/j.foodchem.2023.136680] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/13/2023] [Accepted: 06/18/2023] [Indexed: 07/09/2023]
Abstract
Quercetin-loaded nano-liposomes were prepared by high-pressure homogenization (HPH) at different pressures (up to 150 MPa) and number of passes (up to 3) to define the best processing conditions allowing the lowest particle size and the highest encapsulation efficiency (EE). The process at 150 MPa for 1 pass was the best, producing quercetin-loaded liposomes with the lowest particle size and 42% EE. Advanced techniques (multi-detector asymmetrical-flow field flow fractionation and analytical ultracentrifugation combined with transmission electron microscopy) were further used for the characterization of the liposomes which were oblong in shape (ca. 30 nm). Results highlight the need for several techniques to study nano-sized, polydisperse samples. The potential of quercetin-loaded liposomes against colon cancer cells was demonstrated. Results prove that HPH is an efficient and sustainable method for liposome preparation and highlight the remarkable role of process optimisation as well as the powerfulness of advanced methodologies for the characterisation of nano-structures.
Collapse
Affiliation(s)
- Sofia Melchior
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy.
| | - Marta Codrich
- Department of Medicine, University of Udine, Udine, Italy
| | - Andrea Gorassini
- Department of Humanities and Cultural Heritage, University of Udine, Udine, Italy
| | - Dora Mehn
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Jessica Ponti
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Giancarlo Verardo
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Gianluca Tell
- Department of Medicine, University of Udine, Udine, Italy
| | - Luigi Calzolai
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
| | - Sonia Calligaris
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| |
Collapse
|
26
|
Kaul L, Abdo AI, Coenye T, Swift S, Zannettino A, Süss R, Richter K. In vitro and in vivo evaluation of diethyldithiocarbamate with copper ions and its liposomal formulation for the treatment of Staphylococcus aureus and Staphylococcus epidermidis biofilms. Biofilm 2023; 5:100130. [PMID: 37274173 PMCID: PMC10238467 DOI: 10.1016/j.bioflm.2023.100130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/27/2023] [Accepted: 05/16/2023] [Indexed: 06/06/2023] Open
Abstract
Surgical site infections (SSIs) are mainly caused by Staphylococcus aureus (S. aureus) and Staphylococcus epidermidis (S. epidermidis) biofilms. Biofilms are aggregates of bacteria embedded in a self-produced matrix that offers protection against antibiotics and promotes the spread of antibiotic-resistance in bacteria. Consequently, antibiotic treatment frequently fails, resulting in the need for alternative therapies. The present study describes the in vitro efficacy of the Cu(DDC)2 complex (2:1 M ratio of diethyldithiocarbamate (DDC-) and Cu2+) with additional Cu2+ against S. aureus and S. epidermidis biofilms in models mimicking SSIs and in vitro antibacterial activity of a liposomal Cu(DDC)2 + Cu2+ formulation. The in vitro activity on S. aureus and S. epidermidis biofilms grown on two hernia mesh materials and in a wound model was determined by colony forming unit (CFU) counting. Cu2+-liposomes and Cu(DDC)2-liposomes were prepared, and their antibacterial activity was assessed in vitro using the alamarBlue assay and CFU counting and in vivo using a Galleria mellonella infection model. The combination of 35 μM DDC- and 128 μM Cu2+ inhibited S. aureus and S. epidermidis biofilms on meshes and in a wound infection model. Cu(DDC)2-liposomes + free Cu2+ displayed similar antibiofilm activity to free Cu(DDC)2 + Cu2+, and significantly increased the survival of S. epidermidis-infected larvae. Whilst Cu(DDC)2 + Cu2+ showed substantial antibiofilm activity in vitro against clinically relevant biofilms, its application in mammalian in vivo models is limited by solubility. The liposomal Cu(DDC)2 + Cu2+ formulation showed antibiofilm activity in vitro and antibacterial activity and low toxicity in G. mellonella, making it a suitable water-soluble formulation for future application on infected wounds in animal trials.
Collapse
Affiliation(s)
- Laurine Kaul
- Richter Lab, Department of Surgery, Basil Hetzel Institute for Translational Health Research, University of Adelaide, 37 Woodville Road, Adelaide, SA, 5011, Australia
- Institute of Pharmaceutical Sciences, Department of Pharmaceutics, University of Freiburg, Sonnenstr. 5, 79104, Freiburg, Germany
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, 4 North Terrace, Adelaide, SA, 5000, Australia
| | - Adrian I. Abdo
- Richter Lab, Department of Surgery, Basil Hetzel Institute for Translational Health Research, University of Adelaide, 37 Woodville Road, Adelaide, SA, 5011, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, 4 North Terrace, Adelaide, SA, 5000, Australia
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Simon Swift
- Department of Molecular Medicine and Pathology, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Andrew Zannettino
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, 4 North Terrace, Adelaide, SA, 5000, Australia
- Precision Cancer Medicine Theme, South Australian Health & Medical Research Institute, North Terrace, Adelaide, SA, Australia
- Central Adelaide Local Health Network, Adelaide, Australia
| | - Regine Süss
- Institute of Pharmaceutical Sciences, Department of Pharmaceutics, University of Freiburg, Sonnenstr. 5, 79104, Freiburg, Germany
| | - Katharina Richter
- Richter Lab, Department of Surgery, Basil Hetzel Institute for Translational Health Research, University of Adelaide, 37 Woodville Road, Adelaide, SA, 5011, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, 4 North Terrace, Adelaide, SA, 5000, Australia
- Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, Australia
| |
Collapse
|
27
|
Kevadiya BD, Islam F, Deol P, Zaman LA, Mosselhy DA, Ashaduzzaman M, Bajwa N, Routhu NK, Singh PA, Dawre S, Vora LK, Nahid S, Mathur D, Nayan MU, Baldi A, Kothari R, Patel TA, Madan J, Gounani Z, Bariwal J, Hettie KS, Gendelman HE. Delivery of gene editing therapeutics. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 54:102711. [PMID: 37813236 PMCID: PMC10843524 DOI: 10.1016/j.nano.2023.102711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/31/2023] [Accepted: 09/15/2023] [Indexed: 10/11/2023]
Abstract
For the past decades, gene editing demonstrated the potential to attenuate each of the root causes of genetic, infectious, immune, cancerous, and degenerative disorders. More recently, Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR-associated protein 9 (CRISPR-Cas9) editing proved effective for editing genomic, cancerous, or microbial DNA to limit disease onset or spread. However, the strategies to deliver CRISPR-Cas9 cargos and elicit protective immune responses requires safe delivery to disease targeted cells and tissues. While viral vector-based systems and viral particles demonstrate high efficiency and stable transgene expression, each are limited in their packaging capacities and secondary untoward immune responses. In contrast, the nonviral vector lipid nanoparticles were successfully used for as vaccine and therapeutic deliverables. Herein, we highlight each available gene delivery systems for treating and preventing a broad range of infectious, inflammatory, genetic, and degenerative diseases. STATEMENT OF SIGNIFICANCE: CRISPR-Cas9 gene editing for disease treatment and prevention is an emerging field that can change the outcome of many chronic debilitating disorders.
Collapse
Affiliation(s)
- Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | - Farhana Islam
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | - Pallavi Deol
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; Institute of Modeling Collaboration and Innovation and Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA.
| | - Lubaba A Zaman
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | - Dina A Mosselhy
- Department of Virology, Faculty of Medicine, University of Helsinki, P.O. Box 21, 00014 Helsinki, Finland; Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland; Microbiological Unit, Fish Diseases Department, Animal Health Research Institute, ARC, Dokki, Giza 12618, Egypt.
| | - Md Ashaduzzaman
- Department of Computer Science, University of Nebraska Omaha, Omaha, NE 68182, USA.
| | - Neha Bajwa
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| | - Nanda Kishore Routhu
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| | - Preet Amol Singh
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India; Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab.
| | - Shilpa Dawre
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKMs, NMIMS, Babulde Banks of Tapi River, MPTP Park, Mumbai-Agra Road, Shirpur, Maharashtra, 425405, India.
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom.
| | - Sumaiya Nahid
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | | | - Mohammad Ullah Nayan
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | - Ashish Baldi
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India; Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab.
| | - Ramesh Kothari
- Department of Biosciences, Saurashtra University, Rajkot 360005, Gujarat, India.
| | - Tapan A Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-NIPER, Hyderabad 500037, Telangana, India.
| | - Zahra Gounani
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5, 00790 Helsinki, Finland.
| | - Jitender Bariwal
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, School of Medicine, 3601 4th Street, Lubbock, TX 79430-6551, USA.
| | - Kenneth S Hettie
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
28
|
Patil PB, Patel JK. Preparation, characterization, and in vitro cytotoxicity activity of allyl-isothiocyanate-embedded polymeric nanoparticles for potential breast cancer targeting. Breast Cancer 2023; 30:1065-1078. [PMID: 37695494 DOI: 10.1007/s12282-023-01501-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/27/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Allyl isothiocyanate (AITC) is an excellent active phytoconstituent recently revealed for cancer treatment. The strategic prominence of this study was to synthesize and characterize AITC-embedded tripolyphosphate-modified chitosan nanoparticles (AITC@CS-TPP-NPs) by ionic gelation. METHOD Chitosan is recycled as a polymer to fabricate AITC@CS-TPP-NPs; the fabricated nanoparticles (NPs) are then characterized using FT-IR spectroscopy, DSC, XRD, zeta potential, size analysis, SEM, EDX, entrapment efficiency, in vitro drug release study, and in vitro cytotoxicity activity against MCF-7 to explore the effectiveness and strength. RESULTS As a result, developed AITC@CS-TPP-NPs demonstrates good stability with a zeta potential of 35.83 mV and 90.14% of drug release. The anticancer potential of AITC@CS-TPP-NPs shows the improved cytotoxicity activity of AITC due to the surface modification of CS using TPP. Hence, the cytotoxicity of AITC@CS-TPP-NPs was tested in vitro against a human breast cancer cell line (MCF-7) and found to be considerable. CONCLUSION The AITC@CS-TPP-NPs were effectively synthesized and have significant benefits, including being easy to prepare, stable, and affordable with wide use in human breast cancer against cell line (MCF-7).
Collapse
Affiliation(s)
- Prashant Bhagwan Patil
- Faculty of Pharmacy, Nootan Pharmacy College, Sankalchand Patel University, Visnagar, Gujarat, 384315, India.
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India.
| | - Jayvadan Kantilal Patel
- Faculty of Pharmacy, Nootan Pharmacy College, Sankalchand Patel University, Visnagar, Gujarat, 384315, India
- Aavis Pharmaceuticals, Hoschton, GA, 30548, USA
| |
Collapse
|
29
|
Mohammad, Khan UA, Saifi Z, Bora J, Warsi MH, Abourehab MAS, Jain GK, Kesharwani P, Ali A. Intranasal inorganic cerium oxide nanoparticles ameliorate oxidative stress induced motor manifestations in haloperidol-induced parkinsonism. Inflammopharmacology 2023; 31:2571-2585. [PMID: 37432554 DOI: 10.1007/s10787-023-01274-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/12/2023] [Indexed: 07/12/2023]
Abstract
Cerium oxide nanoparticles (CONPs), owing to their radical scavenging property, have recently emerged as a therapeutic candidate for oxidative stress-mediated neurological diseases. However, oral and intravenous administration of CONPs is limited due to their poor physicochemical characteristics, low bioavailability, rapid systemic clearance, poor blood-brain penetration and dose-dependent toxicity. To overcome these challenges, we developed intranasal CONPs and evaluated their potential in the experimental PD model. CONPs were prepared by homogenous precipitation using tween 80 as a stabilizer and methanol/water as solvent. The optimization was done using Central Composite Design (CCD). The CONPs synthesis was confirmed by UV and FTIR. The optimized CONPs were small-sized (105.1 ± 5.78 nm), spherical (TEM), uniform (PDI, 0.119 ± 0.006) and stable (ZP, -22.7 ± 1.02 mV). Energy-dispersive X-ray analysis showed characteristic signals of Ce in developed CONPs. The X-ray diffraction pattern described the cubic fluorite structure and nano-crystalline nature of CONPs. The CONP anti-oxidant activity was found to be 93.60 ± 0.32% at 25 µg/mL concentration. Finally, motor manifestation studies like the forced swim test, locomotor test, akinesia, catalepsy, and muscle coordination test were conducted to assess the motor dysfunctions and behavioral activity in all four animal groups. Results of the in vivo motor manifestation studies in the haloperidol-induced PD rat model showed that co-administration of intranasal CONPs along with a half dose of levodopa resulted in significant protection, and results were significantly different from the untreated group but not significantly different from the healthy group. In conclusion, intranasal CONPs can be useful in ameliorating oxidative stress through their antioxidant effect and could be prospective therapeutics for the treatment of motor manifestations in Parkinson's disease.
Collapse
Affiliation(s)
- Mohammad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Urooj Ahmed Khan
- Department of Pharmaceutics, DR Ram Manohar Lohia College of Pharmacy, Modinagar, Ghaziabad, 201204, UP, India.
| | - Zoya Saifi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Jinku Bora
- Department of Food Technology, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi, 110062, India
| | - Musarrat Husain Warsi
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif, 21944, Saudi Arabia
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Gaurav Kumar Jain
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India.
- Center for Advanced Formulation Technology, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Asgar Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
30
|
Chafiq M, Chaouiki A, Ko YG. Recent Advances in Multifunctional Reticular Framework Nanoparticles: A Paradigm Shift in Materials Science Road to a Structured Future. NANO-MICRO LETTERS 2023; 15:213. [PMID: 37736827 PMCID: PMC10516851 DOI: 10.1007/s40820-023-01180-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/25/2023] [Indexed: 09/23/2023]
Abstract
Porous organic frameworks (POFs) have become a highly sought-after research domain that offers a promising avenue for developing cutting-edge nanostructured materials, both in their pristine state and when subjected to various chemical and structural modifications. Metal-organic frameworks, covalent organic frameworks, and hydrogen-bonded organic frameworks are examples of these emerging materials that have gained significant attention due to their unique properties, such as high crystallinity, intrinsic porosity, unique structural regularity, diverse functionality, design flexibility, and outstanding stability. This review provides an overview of the state-of-the-art research on base-stable POFs, emphasizing the distinct pros and cons of reticular framework nanoparticles compared to other types of nanocluster materials. Thereafter, the review highlights the unique opportunity to produce multifunctional tailoring nanoparticles to meet specific application requirements. It is recommended that this potential for creating customized nanoparticles should be the driving force behind future synthesis efforts to tap the full potential of this multifaceted material category.
Collapse
Affiliation(s)
- Maryam Chafiq
- Materials Electrochemistry Group, School of Materials Science and Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Abdelkarim Chaouiki
- Materials Electrochemistry Group, School of Materials Science and Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Young Gun Ko
- Materials Electrochemistry Group, School of Materials Science and Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
31
|
Lipsa D, Magrì D, Della Camera G, La Spina R, Cella C, Garmendia-Aguirre I, Mehn D, Ruiz-Moreno A, Fumagalli F, Calzolai L, Gioria S. Differences in Physico-Chemical Properties and Immunological Response in Nanosimilar Complex Drugs: The Case of Liposomal Doxorubicin. Int J Mol Sci 2023; 24:13612. [PMID: 37686418 PMCID: PMC10487543 DOI: 10.3390/ijms241713612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
This study aims to highlight the impact of physicochemical properties on the behaviour of nanopharmaceuticals and how much carrier structure and physiochemical characteristics weigh on the effects of a formulation. For this purpose, two commercially available nanosimilar formulations of Doxil and their respective carriers were compared as a case study. Although the two formulations were "similar", we detected different toxicological effects (profiles) in terms of in vitro toxicity and immunological responses at the level of cytokines release and complement activation (iC3b fragment), that could be correlated with the differences in the physicochemical properties of the formulations. Shedding light on nanosimilar key quality attributes of liposome-based materials and the need for an accurate characterization, including investigation of the immunological effects, is of fundamental importance considering their great potential as delivery system for drugs, genes, or vaccines and the growing market demand.
Collapse
Affiliation(s)
- Dorelia Lipsa
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.L.); (D.M.); (G.D.C.); (R.L.S.); (C.C.); (I.G.-A.); (D.M.); (A.R.-M.); (F.F.); (L.C.)
| | - Davide Magrì
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.L.); (D.M.); (G.D.C.); (R.L.S.); (C.C.); (I.G.-A.); (D.M.); (A.R.-M.); (F.F.); (L.C.)
| | - Giacomo Della Camera
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.L.); (D.M.); (G.D.C.); (R.L.S.); (C.C.); (I.G.-A.); (D.M.); (A.R.-M.); (F.F.); (L.C.)
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), 80131 Naples, Italy
| | - Rita La Spina
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.L.); (D.M.); (G.D.C.); (R.L.S.); (C.C.); (I.G.-A.); (D.M.); (A.R.-M.); (F.F.); (L.C.)
| | - Claudia Cella
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.L.); (D.M.); (G.D.C.); (R.L.S.); (C.C.); (I.G.-A.); (D.M.); (A.R.-M.); (F.F.); (L.C.)
| | - Irantzu Garmendia-Aguirre
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.L.); (D.M.); (G.D.C.); (R.L.S.); (C.C.); (I.G.-A.); (D.M.); (A.R.-M.); (F.F.); (L.C.)
| | - Dora Mehn
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.L.); (D.M.); (G.D.C.); (R.L.S.); (C.C.); (I.G.-A.); (D.M.); (A.R.-M.); (F.F.); (L.C.)
| | - Ana Ruiz-Moreno
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.L.); (D.M.); (G.D.C.); (R.L.S.); (C.C.); (I.G.-A.); (D.M.); (A.R.-M.); (F.F.); (L.C.)
| | - Francesco Fumagalli
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.L.); (D.M.); (G.D.C.); (R.L.S.); (C.C.); (I.G.-A.); (D.M.); (A.R.-M.); (F.F.); (L.C.)
| | - Luigi Calzolai
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.L.); (D.M.); (G.D.C.); (R.L.S.); (C.C.); (I.G.-A.); (D.M.); (A.R.-M.); (F.F.); (L.C.)
| | - Sabrina Gioria
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.L.); (D.M.); (G.D.C.); (R.L.S.); (C.C.); (I.G.-A.); (D.M.); (A.R.-M.); (F.F.); (L.C.)
| |
Collapse
|
32
|
Schuck P, To SC, Zhao H. An automated interface for sedimentation velocity analysis in SEDFIT. PLoS Comput Biol 2023; 19:e1011454. [PMID: 37669309 PMCID: PMC10503714 DOI: 10.1371/journal.pcbi.1011454] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/15/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023] Open
Abstract
Sedimentation velocity analytical ultracentrifugation (SV-AUC) is an indispensable tool for the study of particle size distributions in biopharmaceutical industry, for example, to characterize protein therapeutics and vaccine products. In particular, the diffusion-deconvoluted sedimentation coefficient distribution analysis, in the software SEDFIT, has found widespread applications due to its relatively high resolution and sensitivity. However, a lack of suitable software compatible with Good Manufacturing Practices (GMP) has hampered the use of SV-AUC in this regulatory environment. To address this, we have created an interface for SEDFIT so that it can serve as an automatically spawned module with controlled data input through command line parameters and output of key results in files. The interface can be integrated in custom GMP compatible software, and in scripts that provide documentation and meta-analyses for replicate or related samples, for example, to streamline analysis of large families of experimental data, such as binding isotherm analyses in the study of protein interactions. To test and demonstrate this approach we provide a MATLAB script mlSEDFIT.
Collapse
Affiliation(s)
- Peter Schuck
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Samuel C. To
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Huaying Zhao
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
33
|
Chan HW, Chow S, Zhang X, Kwok PCL, Chow SF. Role of Particle Size in Translational Research of Nanomedicines for Successful Drug Delivery: Discrepancies and Inadequacies. J Pharm Sci 2023; 112:2371-2384. [PMID: 37453526 DOI: 10.1016/j.xphs.2023.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
Despite significant research progress in substantiating the therapeutic merits of nanomedicines and the emergence of sophisticated nanotechnologies, the translation of this knowledge into new therapeutic modalities has been sluggish, indicating the need for a more comprehensive understanding of how the unique physicochemical properties of nanoparticles affect their clinical applications. Particle size is a critical quality attribute that impacts the bio-fate of nanoparticles, yet precise knowledge of its effect remains elusive with discrepancies among literature reports. This review aims to address this scientific knowledge gap from a drug development perspective by highlighting potential inadequacies during the evaluation of particle size effects. We begin with a discussion on the major issues in particle size characterization along with the corresponding remedies. The influence of confounding factors on biological effects of particle size, including colloidal stability, polydispersity, and in vitro drug release, are addressed for establishing stronger in vitro-in vivo correlation. Particle size design and tailoring approaches for successful nanoparticulate drug delivery beyond parenteral administration are also illustrated. We believe a holistic understanding of the effect of particle size on bio-fate, combined with consistent nanoparticle manufacturing platforms and tailored characterization techniques, would expedite the translation of nanomedicines into clinical practice.
Collapse
Affiliation(s)
- Ho Wan Chan
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R., China
| | - Stephanie Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R., China
| | - Xinyue Zhang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R., China; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, Hong Kong S.A.R, China
| | - Philip Chi Lip Kwok
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Shing Fung Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R., China; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, Hong Kong S.A.R, China.
| |
Collapse
|
34
|
Krupnik L, Joshi P, Kappler A, Flühmann B, Alston AB, Digigow R, Wick P, Neels A. Critical nanomaterial attributes of iron-carbohydrate nanoparticles: Leveraging orthogonal methods to resolve the 3-dimensional structure. Eur J Pharm Sci 2023; 188:106521. [PMID: 37423578 DOI: 10.1016/j.ejps.2023.106521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/08/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Intravenous iron-carbohydrate nanomedicines are widely used to treat iron deficiency and iron deficiency anemia across a wide breadth of patient populations. These colloidal solutions of nanoparticles are complex drugs which inherently makes physicochemical characterization more challenging than small molecule drugs. There have been advancements in physicochemical characterization techniques such as dynamic light scattering and zeta potential measurement, that have provided a better understanding of the physical structure of these drug products in vitro. However, establishment and validation of complementary and orthogonal approaches are necessary to better understand the 3-dimensional physical structure of the iron-carbohydrate complexes, particularly with regard to their physical state in the context of the nanoparticle interaction with biological components such as whole blood (i.e. the nano-bio interface).
Collapse
Affiliation(s)
- Leonard Krupnik
- Laboratory for Particles-Biology Interactions, Materials meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland; Center for X-ray Analytics, Materials meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland; Department of Chemistry, University of Fribourg, Fribourg 1700, Switzerland
| | - Prachi Joshi
- Geomicrobiology, Department of Geosciences, University of Tuebingen, Tuebingen 72076, Germany
| | - Andreas Kappler
- Geomicrobiology, Department of Geosciences, University of Tuebingen, Tuebingen 72076, Germany; Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, Tuebingen 72076, Germany
| | - Beat Flühmann
- CSL Vifor, Flughofstrasse 61, Glattbrug 8152, Switzerland
| | | | | | - Peter Wick
- Laboratory for Particles-Biology Interactions, Materials meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland
| | - Antonia Neels
- Center for X-ray Analytics, Materials meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland; Department of Chemistry, University of Fribourg, Fribourg 1700, Switzerland
| |
Collapse
|
35
|
Tehrani SF, Bharadwaj P, Leblond Chain J, Roullin VG. Purification processes of polymeric nanoparticles: How to improve their clinical translation? J Control Release 2023; 360:591-612. [PMID: 37422123 DOI: 10.1016/j.jconrel.2023.06.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/05/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Abstract
Polymeric nanoparticles, as revolutionary nanomedicines, have offered a new class of diagnostic and therapeutic solutions for a multitude of diseases. With its immense potential, the world witnesses the new age of nanotechnology after the COVID-19 vaccines were developed based on nanotechnology. Even though there are countless benchtop research studies in the nanotechnology world, their integration into commercially available technologies is still restricted. The post-pandemic world demands a surge of research in the domain, which leaves us with the fundamental question: why is the clinical translation of therapeutic nanoparticles so restricted? Complications in nanomedicine purification, among other things, are to blame for the lack of transference. Polymeric nanoparticles, owing to their ease of manufacture, biocompatibility, and enhanced efficiency, are one of the more explored domains in organic-based nanomedicines. Purification of nanoparticles can be challenging and necessitates tailoring the available methods in accordance with the polymeric nanoparticle and impurities involved. Though a number of techniques have been described, there are no available guidelines that help in selecting the method to better suit our requirements. We encountered this difficulty while compiling articles for this review and looking for methods to purify polymeric nanoparticles. The currently accessible bibliography for purification techniques only provides approaches for a specific type of nanomaterial or sometimes even procedures for bulk materials, that are not fully relevant to nanoparticles. In our research, we tried to summarize the available purification techniques using the approach of A.F. Armington. We divided the purification systems into two major classes, namely: phase separation-based techniques (based on the physical differences between the phases) and matter exchange-based techniques (centered on physicochemical induced transfer of materials and compounds). The phase separation methods are based on either using nanoparticle size differences to retain them on a physical barrier (filtration techniques) or using their densities to segregate them (centrifugation techniques). The matter exchange separation methods rely on either transferring the molecules or impurities across a barrier using simple physicochemical phenomena, like the concentration gradients (dialysis method) or partition coefficients (extraction technique). After describing the methods in detail, we highlight their advantages and limitations, mainly focusing on preformed polymer-based nanoparticles. Tailoring a purification strategy takes into account the nanoparticle structure and its integrity, the method selected should be suited for preserving the integrity of the particles, in addition to conforming to the economical, material and productivity considerations. In the meantime, we advocate the use of a harmonized international regulatory framework to define the adequate physicochemical and biological characterization of nanomedicines. An appropriate purification strategy serves as the backbone to achieving desired characteristics, in addition to reducing variability. As a result, the present review aspires to serve as a comprehensive guide for researchers, who are new to the domain, as well as a synopsis of purification strategies and analytical characterization methods used in preclinical studies.
Collapse
Affiliation(s)
- Soudeh F Tehrani
- Laboratoire de Nanotechnologies Pharmaceutiques, Faculté de pharmacie, Université de Montréal, C.P. 6128, succursale centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Priyanshu Bharadwaj
- Laboratoire de Nanotechnologies Pharmaceutiques, Faculté de pharmacie, Université de Montréal, C.P. 6128, succursale centre-ville, Montréal, Québec H3C 3J7, Canada
| | | | - V Gaëlle Roullin
- Laboratoire de Nanotechnologies Pharmaceutiques, Faculté de pharmacie, Université de Montréal, C.P. 6128, succursale centre-ville, Montréal, Québec H3C 3J7, Canada.
| |
Collapse
|
36
|
Fernández-Mariño I, Anfray C, Crecente-Campo J, Maeda A, Ummarino A, Teijeiro-Valiño C, Blanco-Martinez D, Mpambani F, Poul L, Devalliere J, Germain M, Correa J, Fernandez-Villamarin M, Allavena P, Fernandez-Megia E, Alonso MJ, Andón FT. Mannose-modified hyaluronic acid nanocapsules for the targeting of tumor-associated macrophages. Drug Deliv Transl Res 2023; 13:1896-1911. [PMID: 36472784 PMCID: PMC10238357 DOI: 10.1007/s13346-022-01265-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 12/12/2022]
Abstract
Tumor-associated macrophages (TAMs), a class of immune cells that play a key role in tumor immunosuppression, are recognized as important targets to improve cancer prognosis and treatment. Consequently, the engineering of drug delivery nanocarriers that can reach TAMs has acquired special relevance. This work describes the development and biological evaluation of a panel of hyaluronic acid (HA) nanocapsules (NCs), with different compositions and prepared by different techniques, designed to target macrophages. The results showed that plain HA NCs did not significantly influence the polarization of M0 and M2-like macrophages towards an M1-like pro-inflammatory phenotype; however, the chemical functionalization of HA with mannose (HA-Man) led to a significant increase of NCs uptake by M2 macrophages in vitro and to an improved biodistribution in a MN/MNCA1 fibrosarcoma mouse model with high infiltration of TAMs. These functionalized HA-Man NCs showed a higher accumulation in the tumor compared to non-modified HA NCs. Finally, the pre-administration of the liposomal liver occupying agent Nanoprimer™ further increased the accumulation of the HA-Man NCs in the tumor. This work highlights the promise shown by the HA-Man NCs to target TAMs and thus provides new options for the development of nanomedicine and immunotherapy-based cancer treatments.
Collapse
Affiliation(s)
- Iago Fernández-Mariño
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, 15706, Spain
| | - Clément Anfray
- Laboratory of Cellular Immunology, IRCCS Humanitas Research Hospital, Rozzano-Milan, 20072, Italy
| | - Jose Crecente-Campo
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, 15706, Spain
| | - Akihiro Maeda
- Laboratory of Cellular Immunology, IRCCS Humanitas Research Hospital, Rozzano-Milan, 20072, Italy
| | - Aldo Ummarino
- Laboratory of Cellular Immunology, IRCCS Humanitas Research Hospital, Rozzano-Milan, 20072, Italy
| | - Carmen Teijeiro-Valiño
- Nanomag Laboratory, Applied Physics Department, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Dario Blanco-Martinez
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, 15706, Spain
| | | | - Laurence Poul
- , Curadigm 60 rue de Wattignies, Paris, 75012, France
| | | | | | - Juan Correa
- Departamento de Química Orgánica, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, Santiago de Compostela, 15782, Spain
| | - Marcos Fernandez-Villamarin
- Departamento de Química Orgánica, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, Santiago de Compostela, 15782, Spain
| | - Paola Allavena
- Laboratory of Cellular Immunology, IRCCS Humanitas Research Hospital, Rozzano-Milan, 20072, Italy
| | - Eduardo Fernandez-Megia
- Departamento de Química Orgánica, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, Santiago de Compostela, 15782, Spain
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, 15706, Spain
| | - Fernando Torres Andón
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain.
- Laboratory of Cellular Immunology, IRCCS Humanitas Research Hospital, Rozzano-Milan, 20072, Italy.
| |
Collapse
|
37
|
S M D, S WF. An automated algorithm for the determination of oil absorption strategy of magnetic nanoparticles from SEM images. Micron 2023; 172:103505. [PMID: 37442026 DOI: 10.1016/j.micron.2023.103505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
In recent years, the magnetic iron oxide nanoparticles (MNPs) are employed as efficient absorbents for oil removal from water. In this research, the particle size (diameter) obtained from Scanning Electron Microscopy (SEM) images of MNPs, before and after oil-absorption, are utilized to determine the oil-absorption capacity. However, the manual evaluation of the particle size and particle size distribution (PSD) are highly time-consuming and needs expertised people for accurate analysis. Hence, an image processing algorithm is employed for the determination of particle size and PSD from the Scanning Electron Microscopy (SEM) images. The key objective revolves with the preparation of the Maleic Anhydride Grafted Polypropylene anchored Magnetic Nanoparticles (MAPP-a-MNPs) to absorb crude oil from the marine water. The shape, size, and size distribution of MAPP-a-MNPs were assessed by both manual and automated analysis. For this purpose, expertise people help with the manual analysis and Threshold Adaptive-Canny Edge Detection (TA-CED) and Accumulator Updated-Circular Hough Transform (AU-CHT) method is employed for automated analysis. All the automated process were conducted in MATLAB and the measurements were taken for both before and after the oil absorption images. These measurements aid us to determine the quantity of oil absorbed by MAPP-a-MNPs. The results demonstrates excellent oil removal capacity of MAPP-a-MNPs.
Collapse
Affiliation(s)
- Dhiepthie S M
- Department of Electronics and Communication Engineering, CSI Institute of Technology (Affiliated to Anna University,Tamil Nadu, India), Thovalai, Nagercoil, 629302, Tamil Nadu, India.
| | - Wilfred Franklin S
- Department of Electronics and Communication Engineering, CSI Institute of Technology (Affiliated to Anna University,Tamil Nadu, India), Thovalai, Nagercoil, 629302, Tamil Nadu, India
| |
Collapse
|
38
|
Marques SS, Cant DJH, Minelli C, Segundo MA. Combining orthogonal measurements to unveil diclofenac encapsulation into polymeric and lipid nanocarriers. Anal Chim Acta 2023; 1262:341234. [PMID: 37179055 DOI: 10.1016/j.aca.2023.341234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/06/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023]
Abstract
The quantification of the drug associated to nanoparticle carriers, often expressed in terms of encapsulation efficiency, is a regulatory requirement. The establishment of independent methods to evaluate this parameter provides a means for measurement validation, which is critical in providing confidence in the methods and enabling the robust characterization of nanomedicines. Chromatography is traditionally used to measure drug encapsulation into nanoparticles. Here, we describe an additional independent strategy based on analytical centrifugation. The encapsulation of diclofenac into nanocarriers was quantified based on the mass difference between placebo (i.e. unloaded) and loaded nanoparticles. This difference was estimated using particle densities measured by differential centrifugal sedimentation (DCS) and size and concentration values measured by particle tracking analysis (PTA). The proposed strategy was applied to two types of formulations, namely poly(lactic-co-glycolic acid) (PLGA) nanoparticles and nanostructured lipid carriers, which were analysed by DCS operated in sedimentation and flotation modes, respectively. The results were compared to those from high performance liquid chromatography (HPLC) measurements. Additionally, X-ray photoelectron spectroscopy analysis was used to elucidate the surface chemical composition of the placebo and loaded nanoparticles. The proposed approach enables the monitoring of batch-to-batch consistency and the quantification of diclofenac association to PLGA nanoparticles from 0.7 ng to 5 ng of drug per 1 μg of PLGA, with good linear correlation between DCS and HPLC results (R2 = 0.975). Using the same approach, similar quantification in lipid nanocarriers was possible for a loading of diclofenac ≥1.1 ng per 1 μg of lipids, with results in agreement with the HPLC method (R2 = 0.971). Hence, the strategy proposed here expands the analytical tools available for evaluating nanoparticles encapsulation efficiency, being thus significant for increasing the robustness of drug-delivery nanocarriers characterization.
Collapse
Affiliation(s)
- Sara S Marques
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal; National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, United Kingdom
| | - David J H Cant
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, United Kingdom
| | - Caterina Minelli
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, United Kingdom.
| | - Marcela A Segundo
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
39
|
Shanmuganathan R, Brindhadevi K, Al-Ansari MM, Al-Humaid L, Barathi S, Lee J. In vitro investigation of silver nanoparticles synthesized using Gracilaria veruccosa - A seaweed against multidrug resistant Staphylococcusaureus. ENVIRONMENTAL RESEARCH 2023; 227:115782. [PMID: 36990196 DOI: 10.1016/j.envres.2023.115782] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/18/2023] [Accepted: 03/25/2023] [Indexed: 05/08/2023]
Abstract
In recent years, the biosynthesis of silver (Ag) nanoparticles has attracted a great deal of interest for applications in biomedicine and bioremediation. In the present study, Gracilaria veruccosa extract was used to synthesize Ag nanoparticles for investigating their antibacterial and antibiofilm potentials. The color shift from olive green to brown indicated the synthesis of AgNPs by plasma resonance at 411 nm. Physical and chemical characterization revealed that AgNPs of 20-25 nm sizes were synthesized. Detecting functional groups, such as carboxylic acids and alkenes, suggested that the bioactive molecules in the G. veruccosa extract assisted the synthesis of AgNPs. X-ray diffraction verified the s purity and crystallinity of the AgNPs with an average diameter of 25 nm, while DLS analysis showed a negative surface charge of -22.5 mV. Moreover, AgNPs were tested in vitro for antibacterial and antibiofilm efficacies against S. aureus. The minimum inhibitory concentration (MIC) of AgNPs against S. aureus was 3.8 μg/mL. Light and fluorescence microscopy proved the potential of AgNPs to disrupt the mature biofilm of S. aureus. Therefore, the present report has deciphered the potential of G. veruccosafor the synthesis of AgNPs and targeted the pathogenic bacteria S. aureus.
Collapse
Affiliation(s)
| | - Kathirvel Brindhadevi
- Center for Transdisciplinary Research (CFTR), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Mysoon M Al-Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh,11451, Saudi Arabia
| | - Latifah Al-Humaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh,11451, Saudi Arabia
| | - Selvaraj Barathi
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
40
|
Yan X, Yue T, Winkler DA, Yin Y, Zhu H, Jiang G, Yan B. Converting Nanotoxicity Data to Information Using Artificial Intelligence and Simulation. Chem Rev 2023. [PMID: 37262026 DOI: 10.1021/acs.chemrev.3c00070] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Decades of nanotoxicology research have generated extensive and diverse data sets. However, data is not equal to information. The question is how to extract critical information buried in vast data streams. Here we show that artificial intelligence (AI) and molecular simulation play key roles in transforming nanotoxicity data into critical information, i.e., constructing the quantitative nanostructure (physicochemical properties)-toxicity relationships, and elucidating the toxicity-related molecular mechanisms. For AI and molecular simulation to realize their full impacts in this mission, several obstacles must be overcome. These include the paucity of high-quality nanomaterials (NMs) and standardized nanotoxicity data, the lack of model-friendly databases, the scarcity of specific and universal nanodescriptors, and the inability to simulate NMs at realistic spatial and temporal scales. This review provides a comprehensive and representative, but not exhaustive, summary of the current capability gaps and tools required to fill these formidable gaps. Specifically, we discuss the applications of AI and molecular simulation, which can address the large-scale data challenge for nanotoxicology research. The need for model-friendly nanotoxicity databases, powerful nanodescriptors, new modeling approaches, molecular mechanism analysis, and design of the next-generation NMs are also critically discussed. Finally, we provide a perspective on future trends and challenges.
Collapse
Affiliation(s)
- Xiliang Yan
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Tongtao Yue
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Institute of Coastal Environmental Pollution Control, Ocean University of China, Qingdao 266100, China
| | - David A Winkler
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- School of Pharmacy, University of Nottingham, Nottingham NG7 2QL, U.K
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hao Zhu
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bing Yan
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
41
|
Bian J, Gobalasingham N, Purchel A, Lin J. The Power of Field-Flow Fractionation in Characterization of Nanoparticles in Drug Delivery. Molecules 2023; 28:molecules28104169. [PMID: 37241911 DOI: 10.3390/molecules28104169] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Asymmetric-flow field-flow fractionation (AF4) is a gentle, flexible, and powerful separation technique that is widely utilized for fractionating nanometer-sized analytes, which extend to many emerging nanocarriers for drug delivery, including lipid-, virus-, and polymer-based nanoparticles. To ascertain quality attributes and suitability of these nanostructures as drug delivery systems, including particle size distributions, shape, morphology, composition, and stability, it is imperative that comprehensive analytical tools be used to characterize the native properties of these nanoparticles. The capacity for AF4 to be readily coupled to multiple online detectors (MD-AF4) or non-destructively fractionated and analyzed offline make this technique broadly compatible with a multitude of characterization strategies, which can provide insight on size, mass, shape, dispersity, and many other critical quality attributes. This review will critically investigate MD-AF4 reports for characterizing nanoparticles in drug delivery, especially those reported in the last 10-15 years that characterize multiple attributes simultaneously downstream from fractionation.
Collapse
Affiliation(s)
- Juan Bian
- Genentech Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Nemal Gobalasingham
- Wyatt Technology Corporation, 6330 Hollister Ave, Santa Barbara, CA 93117, USA
| | - Anatolii Purchel
- Wyatt Technology Corporation, 6330 Hollister Ave, Santa Barbara, CA 93117, USA
| | - Jessica Lin
- Genentech Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
42
|
Schuck P, To SC, Zhao H. An automated interface for sedimentation velocity analysis in SEDFIT. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.14.540690. [PMID: 37425873 PMCID: PMC10327192 DOI: 10.1101/2023.05.14.540690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Sedimentation velocity analytical ultracentrifugation (SV-AUC) is an indispensable tool for the study of particle size distributions in biopharmaceutical industry, for example, to characterize protein therapeutics and vaccine products. In particular, the diffusion-deconvoluted sedimentation coefficient distribution analysis, in the software SEDFIT, has found widespread applications due to its relatively high resolution and sensitivity. However, a lack of available software compatible with Good Manufacturing Practices (GMP) has hampered the use of SV-AUC in this regulatory environment. To address this, we have created an interface for SEDFIT so that it can serve as an automatically spawned module with controlled data input through command line parameters and output of key results in files. The interface can be integrated in custom GMP compatible software, and in scripts that provide documentation and meta-analyses for replicate or related samples, for example, to streamline analysis of large families of experimental data, such as binding isotherm analyses in the study of protein interactions. To test and demonstrate this approach we provide a MATLAB script mlSEDFIT.
Collapse
Affiliation(s)
- Peter Schuck
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Samuel C. To
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Huaying Zhao
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
43
|
Sonzini S, Caputo F, Mehn D, Calzolai L, Even Borgos S, Hyldbakk A, Treacher K, Li W, Jackman M, Mahmoudi N, Jayne Lawrence M, Patterson C, Owen D, Ashford M, Akhtar N. In depth characterization of physicochemical critical quality attributes of a clinical drug-dendrimer conjugate. Int J Pharm 2023; 637:122905. [PMID: 37003312 PMCID: PMC10157317 DOI: 10.1016/j.ijpharm.2023.122905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/19/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
A deep and detailed understanding of drug-dendrimer conjugates key properties is needed to define the critical quality attributes that affect drug product performance. The characterization must be executed both in the formulation media and in biological matrices. This, nevertheless, is challenging on account of a very limited number of suitable, established methods for characterizing the physicochemical properties, stability, and interaction with biological environment of complex drug-dendrimer conjugates. In order to fully characterize AZD0466, a drug-dendrimer conjugate currently under clinical development by AstraZeneca, a collaboration was initiated with the European Nanomedicine Characterisation Laboratory to deploy a state-of-the-art multi-step approach to measure physicochemical properties. An incremental complexity characterization approach was applied to two batches of AZD0466 and the corresponding dendrimer not carrying any drug, SPL-8984. Thus, the aim of this work is to guide in depth characterization efforts in the analysis of drug-dendrimer conjugates. Additionally, it serves to highlight the importance of using the adequate complementary techniques to measure physical and chemical stability in both simple and biological media, to drive a complex drug-dendrimer conjugate product from discovery to clinical development.
Collapse
Affiliation(s)
- Silvia Sonzini
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK.
| | - Fanny Caputo
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway; Univ. Grenoble Alpes, CEA, LETI, F-38000 Grenoble, France
| | - Dora Mehn
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Luigi Calzolai
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Sven Even Borgos
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Astrid Hyldbakk
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Kevin Treacher
- New Modalities & Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Weimin Li
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Mark Jackman
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Najet Mahmoudi
- Rutherford Appleton Laboratory, ISIS Facility, Science and Technology Facilities Council, Didcot OX11 0QX, UK
| | - M Jayne Lawrence
- Division of Pharmacy & Optometry and the North West Centre for Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Claire Patterson
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK
| | - David Owen
- Starpharma Pty Ltd., 4-6 Southampton Cresent, Abbotsford, Victoria 3067, Australia
| | - Marianne Ashford
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK
| | - Nadim Akhtar
- New Modalities & Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| |
Collapse
|
44
|
Gumbiowski N, Loza K, Heggen M, Epple M. Automated analysis of transmission electron micrographs of metallic nanoparticles by machine learning. NANOSCALE ADVANCES 2023; 5:2318-2326. [PMID: 37056630 PMCID: PMC10089082 DOI: 10.1039/d2na00781a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Metallic nanoparticles were analysed with respect to size and shape by a machine learning approach. This involved a separation of particles from the background (segmentation), a separation of overlapping particles, and the identification of individual particles. An algorithm to separate overlapping particles, based on ultimate erosion of convex shapes (UECS), was implemented. Finally, particle properties like size, circularity, equivalent diameter, and Feret diameter were computed for each particle of the whole particle population. Thus, particle size distributions can be easily created based on the various parameters. However, strongly overlapping particles are difficult and sometimes impossible to separate because of an a priori unknown shape of a particle that is partially lying in the shadow of another particle. The program is able to extract information from a sequence of images of the same sample, thereby increasing the number of analysed nanoparticles to several thousands. The machine learning approach is well-suited to identify particles at only limited particle-to-background contrast as is demonstrated for ultrasmall gold nanoparticles (2 nm).
Collapse
Affiliation(s)
- Nina Gumbiowski
- Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen 45117 Essen Germany
| | - Kateryna Loza
- Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen 45117 Essen Germany
| | - Marc Heggen
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH 52428 Jülich Germany
| | - Matthias Epple
- Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen 45117 Essen Germany
| |
Collapse
|
45
|
Bahloul B, Castillo-Henríquez L, Jenhani L, Aroua N, Ftouh M, Kalboussi N, Vega-Baudrit J, Mignet N. Nanomedicine-based potential phyto-drug delivery systems for diabetes. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
46
|
Shariati A, Ebrahimi T, Babadinia P, Shariati FS, Ahangari Cohan R. Synthesis and characterization of Gd 3+-loaded hyaluronic acid-polydopamine nanoparticles as a dual contrast agent for CT and MRI scans. Sci Rep 2023; 13:4520. [PMID: 36934115 PMCID: PMC10024681 DOI: 10.1038/s41598-023-31252-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/08/2023] [Indexed: 03/19/2023] Open
Abstract
Magnetic resonance imaging and computed tomography (CT) suffer from low contrast sensitivity and potential toxicity of contrast agents. To overcome these limitations, we developed and tested a new class of dual contrast agents based on polydopamine nanoparticles (PDA-NPs) that are functionalized and targeted with hyaluronic acid (HA). These nanoparticles (NPs) are chelated with Gd3+ to provide suitable contrast. The targeted NPs were characterized through ultraviolet-visible spectroscopy (UV-vis), scanning electron microscopy (SEM), infrared Fourier transform (FTIR), and dynamic light scattering (DLS). The cytotoxicity was investigated on HEK293 cells using an MTT assay. The contrast property of synthesized Gd3+/PDA/HA was compared with Barium sulfate and Dotarem, as commercial contrast agents (CAs) for CT and MRI, respectively. The results illustrated that synthesized PDA-NPs have a spherical morphology and an average diameter of 72 nm. A distinct absorption peak around 280 nm in the UV-vis spectrum reported the self-polymerization of PDA-NPs. The HA coating on PDA-NPs was revealed through a shift in the FTIR peak of C=O from 1618 cm-1 to 1635 cm-1. The Gd3+ adsorption on PDA/HA-NPs was confirmed using an adsorption isotherm assay. The developed CA showed low in vitro toxicity (up to 158.98 µM), and created a similar contrast in MRI and CT when compared to the commercial agents. The r1 value for PDA/HA/Gd3+ (6.5 (mg/ml)-1 s-1) was more than Dotarem (5.6 (mg/ml)-1 s-1) and the results of the hemolysis test showed that at concentrations of 2, 4, 6, and 10 mg/ml, the hemolysis rate of red blood cells is very low. Additionally, the results demonstrated that PDA/HA/Gd3+ could better target the CD44+-expressing cancer cells than PDA/Gd3+. Thus, it can be concluded that lower doses of developed CA are needed to achieve similar contrast of Dotarem, and the developed CA has no safety concerns in terms of hemolysis. The stability of PDA/HA/Gd3+ has also been evaluated by ICP-OES, zeta potential, and DLS during 3 days, and the results suggested that Gd-HA NPs were stable.
Collapse
Affiliation(s)
- Alireza Shariati
- Department of Materials Engineering, Tarbiat Modares University, Tehran, Iran
| | - Tahereh Ebrahimi
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Parva Babadinia
- Farzanegan High School, National Organization for Development of Exceptional Talents, Tehran, Iran
| | | | - Reza Ahangari Cohan
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
47
|
Jacquat RB, Krainer G, Peter QAE, Babar AN, Vanderpoorten O, Xu CK, Welsh TJ, Kaminski CF, Keyser UF, Baumberg JJ, Knowles TPJ. Single-Molecule Sizing through Nanocavity Confinement. NANO LETTERS 2023; 23:1629-1636. [PMID: 36826991 PMCID: PMC9999452 DOI: 10.1021/acs.nanolett.1c04830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/16/2023] [Indexed: 06/18/2023]
Abstract
An approach relying on nanocavity confinement is developed in this paper for the sizing of nanoscale particles and single biomolecules in solution. The approach, termed nanocavity diffusional sizing (NDS), measures particle residence times within nanofluidic cavities to determine their hydrodynamic radii. Using theoretical modeling and simulations, we show that the residence time of particles within nanocavities above a critical time scale depends on the diffusion coefficient of the particle, which allows the estimation of the particle's size. We demonstrate this approach experimentally through the measurement of particle residence times within nanofluidic cavities using single-molecule confocal microscopy. Our data show that the residence times scale linearly with the sizes of nanoscale colloids, protein aggregates, and single DNA oligonucleotides. NDS thus constitutes a new single molecule optofluidic approach that allows rapid and quantitative sizing of nanoscale particles for potential applications in nanobiotechnology, biophysics, and clinical diagnostics.
Collapse
Affiliation(s)
- Raphaël
P. B. Jacquat
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, J. J. Thomson
Avenue, Cambridge CB3 0HE, United Kingdom
| | - Georg Krainer
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Quentin A. E. Peter
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Ali Nawaz Babar
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Oliver Vanderpoorten
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
- Department
of Physics and Technology, UiT The Arctic
University of Norway, Technology Building, Klokkargårdsbakken 35, 9019 Tromsø, Norway
| | - Catherine K. Xu
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Timothy J. Welsh
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Clemens F. Kaminski
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
| | - Ulrich F. Keyser
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, J. J. Thomson
Avenue, Cambridge CB3 0HE, United Kingdom
| | - Jeremy J. Baumberg
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, J. J. Thomson
Avenue, Cambridge CB3 0HE, United Kingdom
| | - Tuomas P. J. Knowles
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, J. J. Thomson
Avenue, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
48
|
Akhtar N, Ashford MB, Beer L, Bowes A, Bristow T, Broo A, Buttar D, Coombes S, Cross R, Eriksson E, Guilbaud JB, Holman SW, Hughes LP, Jackman M, Lawrence MJ, Lee J, Li W, Linke R, Mahmoudi N, McCormick M, MacMillan B, Newling B, Ngeny M, Patterson C, Poulton A, Ray A, Sanderson N, Sonzini S, Tang Y, Treacher KE, Whittaker D, Wren S. The Global Characterisation of a Drug-Dendrimer Conjugate - PEGylated poly-lysine Dendrimer. J Pharm Sci 2023; 112:844-858. [PMID: 36372229 DOI: 10.1016/j.xphs.2022.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
The recent emergence of drug-dendrimer conjugates within pharmaceutical industry research and development introduces a range of challenges for analytical and measurement science. These molecules are very high molecular weight (100-200kDa) with a significant degree of structural complexity. The characteristics and quality attributes that require understanding and definition, and impact efficacy and safety, are diverse. They relate to the intact conjugate, the various building blocks of these complex systems and the level of the free and bound active pharmaceutical ingredient (API). From an analytical and measurement science perspective, this necessitates the measurement of the molecular weight, impurity characterisation, the quantitation of the number of conjugated versus free API molecules, the determination of the impurity profiles of the building blocks, primary structure and both particle size and morphology. Here we report the first example of a global characterisation of a drug-dendrimer conjugate - PEGylated poly-lysine dendrimer currently under development (AZD0466). The impact of the wide variety of analytical and measurement techniques on the overall understanding of this complex molecular entity is discussed, with the relative capabilities of the various approaches compared. The results of this study are an essential platform for the research and development of the future generations of related dendrimer-based medicines.
Collapse
Affiliation(s)
- Nadim Akhtar
- New Modalities and Parenteral Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Macclesfield, UK
| | | | - Louisa Beer
- Chemical Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Macclesfield, UK
| | - Alex Bowes
- Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield SK10 2NA, UK
| | - Tony Bristow
- Chemical Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Macclesfield, UK.
| | - Anders Broo
- Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - David Buttar
- Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield SK10 2NA, UK
| | - Steve Coombes
- Chemical Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Macclesfield, UK
| | - Rebecca Cross
- Chemical Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Macclesfield, UK
| | - Emma Eriksson
- Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Stephen W Holman
- Chemical Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Macclesfield, UK
| | - Leslie P Hughes
- Oral Product Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Macclesfield, UK
| | - Mark Jackman
- Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - M Jayne Lawrence
- Division of Pharmacy & Optometry, Stopford Building, University of Manchester, 99 Oxford Road, Manchester, M13 9PG, UK
| | - Jessica Lee
- Chemical Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Macclesfield, UK
| | - Weimin Li
- Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Rebecca Linke
- Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield SK10 2NA, UK
| | - Najet Mahmoudi
- ISIS Pulsed Neutron and Muon Source, Rutherford Appleton Laboratory, Chilton, Didcot, OX11 0QX, UK
| | - Marc McCormick
- Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield SK10 2NA, UK
| | - Bryce MacMillan
- UNB MRI Centre, Department of Physics, PO Box 4400, Fredericton, NB E3B 5A3, Canada
| | - Ben Newling
- UNB MRI Centre, Department of Physics, PO Box 4400, Fredericton, NB E3B 5A3, Canada
| | - Maryann Ngeny
- Oncology Regulatory Science & Strategy, AstraZeneca, Macclesfield, UK
| | - Claire Patterson
- Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield SK10 2NA, UK
| | - Andy Poulton
- Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield SK10 2NA, UK
| | - Andrew Ray
- New Modalities and Parenteral Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Macclesfield, UK
| | - Natalie Sanderson
- Chemical Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Macclesfield, UK
| | - Silvia Sonzini
- Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Yayan Tang
- Regulatory Affairs, R&D, AstraZeneca, Shanghai, China
| | - Kevin E Treacher
- New Modalities and Parenteral Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Macclesfield, UK
| | - Dave Whittaker
- Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield SK10 2NA, UK
| | - Stephen Wren
- New Modalities and Parenteral Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Macclesfield, UK
| |
Collapse
|
49
|
Hettiarachchi S, Cha H, Ouyang L, Mudugamuwa A, An H, Kijanka G, Kashaninejad N, Nguyen NT, Zhang J. Recent microfluidic advances in submicron to nanoparticle manipulation and separation. LAB ON A CHIP 2023; 23:982-1010. [PMID: 36367456 DOI: 10.1039/d2lc00793b] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Manipulation and separation of submicron and nanoparticles are indispensable in many chemical, biological, medical, and environmental applications. Conventional technologies such as ultracentrifugation, ultrafiltration, size exclusion chromatography, precipitation and immunoaffinity capture are limited by high cost, low resolution, low purity or the risk of damage to biological particles. Microfluidics can accurately control fluid flow in channels with dimensions of tens of micrometres. Rapid microfluidics advancement has enabled precise sorting and isolating of nanoparticles with better resolution and efficiency than conventional technologies. This paper comprehensively studies the latest progress in microfluidic technology for submicron and nanoparticle manipulation. We first summarise the principles of the traditional techniques for manipulating nanoparticles. Following the classification of microfluidic techniques as active, passive, and hybrid approaches, we elaborate on the physics, device design, working mechanism and applications of each technique. We also compare the merits and demerits of different microfluidic techniques and benchmark them with conventional technologies. Concurrently, we summarise seven standard post-separation detection techniques for nanoparticles. Finally, we discuss current challenges and future perspectives on microfluidic technology for nanoparticle manipulation and separation.
Collapse
Affiliation(s)
- Samith Hettiarachchi
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Haotian Cha
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Lingxi Ouyang
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | | | - Hongjie An
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Gregor Kijanka
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Navid Kashaninejad
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Jun Zhang
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| |
Collapse
|
50
|
Camacho C, Maciel D, Tomás H, Rodrigues J. Biological Effects in Cancer Cells of Mono- and Bidentate Conjugation of Cisplatin on PAMAM Dendrimers: A Comparative Study. Pharmaceutics 2023; 15:pharmaceutics15020689. [PMID: 36840012 PMCID: PMC9960565 DOI: 10.3390/pharmaceutics15020689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Cisplatin (cis-diamminedichloroplatinum(II)) is a potent chemotherapeutic agent commonly used to treat cancer. However, its use also leads to serious side effects, such as nephrotoxicity, ototoxicity, and cardiotoxicity, which limit the dose that can be safely administered to patients. To minimize these problems, dendrimers may be used as carriers for cisplatin through the coordination of their terminal functional groups to platinum. Here, cisplatin was conjugated to half-generation anionic PAMAM dendrimers in mono- and bidentate forms, and their biological effects were assessed in vitro. After preparation and characterization of the metallodendrimers, their cytotoxicity was evaluated against several cancer cell lines (A2780, A2780cisR, MCF-7, and CACO-2 cells) and a non-cancer cell line (BJ cells). The results showed that all the metallodendrimers were cytotoxic and that the cytotoxicity level depended on the cell line and the type of coordination mode (mono- or bidentate). Although, in this study, a correlation between dendrimer generation (number of carried metallic fragments) and cytotoxicity could not be completely established, the monodentate coordination form of cisplatin resulted in lower IC50 values, thus revealing a more accessible cisplatin release from the dendritic scaffold. Moreover, most of the metallodendrimers were more potent than the cisplatin, especially for the A2780 and A2780cisR cell lines, which showed higher selectivity than for non-cancer cells (BJ cells). The monodentate G0.5COO(Pt(NH3)2Cl)8 and G2.5COO(Pt(NH3)2Cl)32 metallodendrimers, as well as the bidentate G2.5COO(Pt(NH3)2)16 metallodendrimer, were even more active towards the cisplatin-resistant cell line (A2780cisR cells) than the correspondent cisplatin-sensitive one (A2780 cells). Finally, the effect of the metallodendrimers on the hemolysis of human erythrocytes was neglectable, and metallodendrimers' interaction with calf thymus DNA seemed to be stronger than that of free cisplatin.
Collapse
|