1
|
Li W, Wu H, Wu C, Jiao P, Xu L, Song H. Immobilization of 4-MBA & Cu 2+ on Au nanoparticles modified screen-printed electrode for glyphosate detection. Talanta 2025; 286:127530. [PMID: 39798418 DOI: 10.1016/j.talanta.2025.127530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/23/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025]
Abstract
This study introduces an innovative electrochemical biosensor, engineered through the functionalization screen-printed electrode (SPE) with a coordination complex comprised of 4-mercaptobenzoic acid (4-MBA) and copper ions (Cu2+), achieving precise quantitative determination of glyphosate. Electrodepositing gold nanoparticles (AuNPs) onto the electrode surface, forming a self-assembled monolayer (SAM) of 4-MBA via thiol-gold interactions, and immobilizing Cu2+ via coordination bonding with the monolayer, finalizing the electrochemical biosensor construction as Cu2+/4-MBA/AuNPs/SPE. The successful modification of the biosensor interface is confirmed through scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and electrochemical characterization. Through parameter optimization, critical metrics for the biosensor preparation process have been determined. Using square wave voltammetry (SWV), a linear relationship between the glyphosate concentration and the peak current inhibition ratio at the electrode surface is established. Additionally, the repeatability and anti-interference capabilities of the fabricated biosensors are evaluated. The experimental outcomes affirm the biosensor's capability for quantitative glyphosate detection across a 5-100 nM range, boasting a 1.65 nM limit of detection (LOD). Testing on tap water samples verifies a robust recovery rate for glyphosate residues, spanning 89.84 %-107.48 %. The proposed biosensor holds significant promise for glyphosate detection, offering substantial applicability and this study provides a valuable reference for the advancement of biosensors geared toward the quantitative assessment of organophosphate pesticides (OPs).
Collapse
Affiliation(s)
- Wei Li
- College of Agricultural Engineering, Shanxi Agricultural University, Taigu, 030801, China; Dryland Farm Machinery Key Technology and Equipment Key Laboratory of Shanxi Province, Taigu, 030801, China.
| | - Hongqi Wu
- College of Agricultural Engineering, Shanxi Agricultural University, Taigu, 030801, China
| | - Cong Wu
- Department of Urology and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Peidong Jiao
- College of Agricultural Engineering, Shanxi Agricultural University, Taigu, 030801, China
| | - Ling Xu
- Shanxi Hongrunqing Environmental Protection Technology Co., Ltd, Taiyuan, 030000, China
| | - Haiyan Song
- College of Agricultural Engineering, Shanxi Agricultural University, Taigu, 030801, China; Dryland Farm Machinery Key Technology and Equipment Key Laboratory of Shanxi Province, Taigu, 030801, China
| |
Collapse
|
2
|
Bearson BL, Douglass CH, Duke SO, Moorman TB, Tranel PJ. Effects of glyphosate on antibiotic resistance in soil bacteria and its potential significance: A review. JOURNAL OF ENVIRONMENTAL QUALITY 2025; 54:160-180. [PMID: 39587768 PMCID: PMC11718153 DOI: 10.1002/jeq2.20655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 10/28/2024] [Indexed: 11/27/2024]
Abstract
The evolution and spread of antibiotic resistance are problems with important consequences for bacterial disease treatment. Antibiotic use in animal production and the subsequent export of antibiotic resistance elements in animal manure to soil is a concern. Recent reports suggest that exposure of pathogenic bacteria to glyphosate increases antibiotic resistance. We review these reports and identify soil processes likely to affect the persistence of glyphosate, antibiotic resistance elements, and their interactions. The herbicide molecular target of glyphosate is not shared by antibiotics, indicating that target-site cross-resistance cannot account for increased antibiotic resistance. The mechanisms of bacterial resistance to glyphosate and antibiotics differ, and bacterial tolerance or resistance to glyphosate does not coincide with increased resistance to antibiotics. Glyphosate in the presence of antibiotics can increase the activity of efflux pumps, which confer tolerance to glyphosate, allowing for an increased frequency of mutation for antibiotic resistance. Such effects are not unique to glyphosate, as other herbicides and chemical pollutants can have the same effect, although glyphosate is used in much larger quantities on agricultural soils than most other chemicals. Most evidence indicates that glyphosate is not mutagenic in bacteria. Some studies suggest that glyphosate enhances genetic exchange of antibiotic-resistance elements through effects on membrane permeability. Glyphosate and antibiotics are often present together in manure-treated soil for at least part of the crop-growing season, and initial studies indicate that glyphosate may increase abundance of antibiotic resistance genes in soil, but longer term investigations under realistic field conditions are needed. Although there are demonstratable interactions among glyphosate, bacteria, and antibiotic resistance, there is limited evidence that normal use of glyphosate poses a substantial risk for increased occurrence of antibiotic-resistant, bacterial pathogens. Longer term field studies using environmentally relevant concentrations of glyphosate and antibiotics are needed.
Collapse
Affiliation(s)
- Bradley L. Bearson
- USDA‐ARS, National Laboratory for Agriculture and the EnvironmentAmesIowaUSA
| | - Cameron H. Douglass
- USDA, Office of the Chief Economist, Office of Pest Management PolicyWashingtonDistrict of ColumbiaUSA
| | - Stephen O. Duke
- National Center of Natural Products Research, School of PharmacyUniversity of MississippiUniversityMississippiUSA
| | - Thomas B. Moorman
- USDA‐ARS, National Laboratory for Agriculture and the EnvironmentAmesIowaUSA
| | | |
Collapse
|
3
|
Liu N, Huang J, Liu X, Wu J, Huang M. Pesticide-induced metabolic disruptions in crops: A global perspective at the molecular level. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177665. [PMID: 39581450 DOI: 10.1016/j.scitotenv.2024.177665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/31/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
Pesticide pollution has emerged as a critical global environmental issue of pervasive concern. Although the application of pesticides has provided substantial benefits in controlling weeds, pests, and crop diseases, their indiscriminate use poses considerable challenges to soil health and food safety. Pesticides can be absorbed by crops through either foliar or root uptake, resulting in deleterious effects such as extensive tissue damage, growth inhibition, and reduced crop quality. Beside these visible effects, pesticides can alter gene expression and disrupt cellular signaling transduction, thereby interfering with essential metabolic processes even inducing toxic stress. Moreover, pesticides can interact intricately with biomolecules (e.g. proteins, nucleic acid) in crops, causing significant alterations in protein structure and physiological function. This review focuses on pesticide residues and their associated toxicity, emphasizing their pervasive influence on vital physiological and metabolic pathways, including carbohydrate metabolism, amino acid metabolism, and fatty acid metabolism. Particular attention is given to elucidating the molecular mechanisms underlying these disturbances, specifically regarding transcriptional regulation, cell signaling pathways, and biomolecular interactions. This review provides a comprehensive understanding of multifaceted effects of pesticides and to underscore the necessity for sustainable agricultural practices to safeguard crop yield and quality.
Collapse
Affiliation(s)
- Na Liu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Jiawen Huang
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Xinyue Liu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Jianjian Wu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Ming Huang
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
4
|
Mäder P, Stache F, Engelbart L, Huhn C, Hochmanová Z, Hofman J, Poll C, Kandeler E. Effects of MCPA and difenoconazole on glyphosate degradation and soil microorganisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124926. [PMID: 39260542 DOI: 10.1016/j.envpol.2024.124926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/09/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Modern agriculture relies heavily on pesticide use to meet the demands of food quality and quantity. Therefore, pesticides are often applied in mixtures, leading to a diverse cocktail of chemicals and their metabolites in soils, which can affect non-target organisms such as soil microorganisms. Pesticides are tested for their single effects, but studies on their interactive effects are scarce. This study aimed to determine the effects of up to three simultaneously applied pesticides on the soil microbial community and on their special function in pesticide degradation. Agricultural soil without previous pesticide application was exposed to different mixtures of the herbicide glyphosate (GLP), the phenoxy herbicide MCPA (2-methyl-4-chlorophenoxyacetic acid) and the fungicide difenoconazole (DFC) for up to 56 days. Isotopic and molecular methods were used to investigate effects of the mixtures on the microbial community and to follow the mineralization and utilization of GLP. An initial increase in the metabolic quotient by up to 35 % in the presence of MCPA indicated a stress reaction of the microbial community. The presence of multiple pesticides reduced both gram positive bacterial fatty acid methyl esters (FAMEs) by 13 % and the abundance of microorganisms with the genetic potential for GLP degradation via the AMPA (aminomethylphosphonic acid) pathway. Both the number of pesticides and the identities of individual pesticides played major roles. Surprisingly, an increase in 13C-labelled GLP mineralization of up to 40 % was observed while carbon use efficiency (CUE) decreased. Interactions between multiple pesticides might alter the behavior of individual pesticides and be reflected in the microbial community. Our results highlight the importance of investigating not only single pesticides, but also pesticide mixtures and their interactions.
Collapse
Affiliation(s)
- Philipp Mäder
- Institute of Soil Science and Land Evaluation, Department of Soil Biology, University of Hohenheim, Emil-Wolff-Straße 27, 70599, Stuttgart, Germany.
| | - Fabian Stache
- Institute of Soil Science and Land Evaluation, Department of Soil Biology, University of Hohenheim, Emil-Wolff-Straße 27, 70599, Stuttgart, Germany
| | - Lisa Engelbart
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Carolin Huhn
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Zuzana Hochmanová
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Jakub Hofman
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Christian Poll
- Institute of Soil Science and Land Evaluation, Department of Soil Biology, University of Hohenheim, Emil-Wolff-Straße 27, 70599, Stuttgart, Germany
| | - Ellen Kandeler
- Institute of Soil Science and Land Evaluation, Department of Soil Biology, University of Hohenheim, Emil-Wolff-Straße 27, 70599, Stuttgart, Germany
| |
Collapse
|
5
|
Dahiya P, Kumari S, Behl M, Kashyap A, Kumari D, Thakur K, Devi M, Kumari N, Kaushik N, Walia A, Bhatt AK, Bhatia RK. Guardians of the Gut: Harnessing the Power of Probiotic Microbiota and Their Exopolysaccharides to Mitigate Heavy Metal Toxicity in Human for Better Health. Probiotics Antimicrob Proteins 2024; 16:1937-1953. [PMID: 38733461 DOI: 10.1007/s12602-024-10281-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2024] [Indexed: 05/13/2024]
Abstract
Heavy metal pollution is a significant global health concern, posing risks to both the environment and human health. Exposure to heavy metals happens through various channels like contaminated water, food, air, and workplaces, resulting in severe health implications. Heavy metals also disrupt the gut's microbial balance, leading to dysbiosis characterized by a decrease in beneficial microorganisms and proliferation in harmful ones, ultimately exacerbating health problems. Probiotic microorganisms have demonstrated their ability to adsorb and sequester heavy metals, while their exopolysaccharides (EPS) exhibit chelating properties, aiding in mitigating heavy metal toxicity. These beneficial microorganisms aid in restoring gut integrity through processes like biosorption, bioaccumulation, and biotransformation of heavy metals. Incorporating probiotic strains with high affinity for heavy metals into functional foods and supplements presents a practical approach to mitigating heavy metal toxicity while enhancing gut health. Utilizing probiotic microbiota and their exopolysaccharides to address heavy metal toxicity offers a novel method for improving human health through modulation of the gut microbiome. By combining probiotics and exopolysaccharides, a distinctive strategy emerges for mitigating heavy metal toxicity, highlighting promising avenues for therapeutic interventions and health improvements. Further exploration in this domain could lead to groundbreaking therapies and preventive measures, underscoring probiotic microbiota and exopolysaccharides as natural and environmentally friendly solutions to heavy metal toxicity. This, in turn, could enhance public health by safeguarding the gut from environmental contaminants.
Collapse
Affiliation(s)
- Pushpak Dahiya
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Sangeeta Kumari
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Manya Behl
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Aakash Kashyap
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Deeksha Kumari
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Kalpana Thakur
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Mamta Devi
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Neelam Kumari
- Department of Biosciences, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Neelam Kaushik
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Abhishek Walia
- Department of Microbiology, College of Basic Sciences, CSK HPKV, Palampur, HP, 176062, India
| | - Arvind Kumar Bhatt
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Ravi Kant Bhatia
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India.
| |
Collapse
|
6
|
Chávez Montes RA, Mary MA, Rashel RH, Fokar M, Herrera-Estrella L, Lopez-Arredondo D, Patiño R. Hormetic and transcriptomic responses of the toxic alga Prymnesium parvum to glyphosate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176451. [PMID: 39317257 DOI: 10.1016/j.scitotenv.2024.176451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
Growth of the toxic alga Prymnesium parvum is hormetically stimulated with environmentally relevant concentrations of glyphosate. The mechanisms of glyphosate hormesis in this species, however, are unknown. We evaluated the transcriptomic response of P. parvum to glyphosate at concentrations that stimulate maximum growth and where growth is not different from control values, the zero-equivalent point (ZEP). Maximum growth occurred at 0.1 mg l-1 and the ZEP was 2 mg l-1. At 0.1 mg l-1, upregulated transcripts outnumbered downregulated transcripts by one order of magnitude. Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses indicated that the upregulated transcriptome is primarily associated with metabolism and biosynthesis. Transcripts encoding heat shock proteins and co-chaperones were among the most strongly upregulated, and several others were associated with translation, Redox homeostasis, cell replication, and photosynthesis. Although most of the same transcripts were also upregulated at concentrations ≥ZEP, the proportion of downregulated transcripts greatly increased as glyphosate concentrations increased. At the ZEP, downregulated transcripts were associated with photosynthesis, cell replication, and anion transport, indicating that specific interference with these processes is responsible for the nullification of hormetic growth. Transcripts encoding the herbicidal target of glyphosate, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), were upregulated at concentrations ≥ZEP but not at 0.1 mg l-1, indicating that disruption of EPSPS activity occurred at high concentrations and that nullification of hormetic growth involves the direct interaction of glyphosate with this enzyme. Results of this study may contribute to a better understanding of glyphosate hormesis and of anthropogenic factors that influence P. parvum biogeography and bloom formation.
Collapse
Affiliation(s)
- Ricardo A Chávez Montes
- Institute of Genomics for Crop Abiotic Stress Tolerance, Plant and Soil Science Department, Texas Tech University, Lubbock, TX, USA
| | - Mousumi A Mary
- Department of Biological Sciences and Texas Cooperative Fish and Wildlife Research Unit, Texas Tech University, Lubbock, TX, USA
| | - Rakib H Rashel
- Department of Biological Sciences and Texas Cooperative Fish and Wildlife Research Unit, Texas Tech University, Lubbock, TX, USA
| | - Mohamed Fokar
- Center for Biotechnology and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Luis Herrera-Estrella
- Institute of Genomics for Crop Abiotic Stress Tolerance, Plant and Soil Science Department, Texas Tech University, Lubbock, TX, USA
| | - Damar Lopez-Arredondo
- Institute of Genomics for Crop Abiotic Stress Tolerance, Plant and Soil Science Department, Texas Tech University, Lubbock, TX, USA
| | - Reynaldo Patiño
- U.S. Geological Survey and Texas Cooperative Fish and Wildlife Research Unit, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
7
|
Ramos LM, Medina-Silva R, Astarita LV, Santarém ER. Method for evaluation of Streptomyces growth and metabolism in the presence of glyphosate-based herbicide. Braz J Microbiol 2024; 55:4091-4100. [PMID: 39251490 PMCID: PMC11711694 DOI: 10.1007/s42770-024-01488-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/13/2024] [Indexed: 09/11/2024] Open
Abstract
The use of pesticides, such as glyphosate, has increased due to population growth and the rising demand for food. Plant growth-promoting rhizobacteria (PGPR), such as Streptomyces, offer a more ecologically friendly alternative to the excessive use of pesticides. However, these bacteria undergo a complex life cycle involving the formation of hyphae, mycelia, and spores, which makes standardizing laboratory cultures challenging. In this context, we tested three methods for cultivating a Streptomyces isolate (CLV322) in the presence of the stressor agent glyphosate, denoted as M1, M2, and M3. These methods involved the simultaneous addition of the herbicide 24-48 h after the start of cultivation. We evaluated the growth and cell viability of CLV322 using the 2,3,5-triphenyl tetrazolium chloride (TTC) assay under glyphosate-based herbicide stress (Roundup® Original DI) at concentrations ranging from 0.002 to 7.2 mg mL- 1. We also assessed the ability of CLV322 to maintain PGPR characteristics in the presence of the herbicide by quantifying indolic compounds, siderophores, and phenazines. The cultivation method significantly influenced the production of metabolites by CLV322, with M3 yielding more consistent results across the evaluated parameters. Our findings suggest that germinating Streptomyces spores for 48 h before introducing glyphosate (M3) enables the analysis of bacterial tolerance to herbicide stress. This methodology may also apply to evaluate other abiotic stresses on Streptomyces strains.
Collapse
Affiliation(s)
- Luísa Machado Ramos
- PUCRS, School of Health and Life Sciences, Plant Biotechnology Laboratory, Av. Ipiranga, 6681, Partenon, Porto Alegre, RS, 90619-900, Brazil
| | - Renata Medina-Silva
- PUCRS, School of Health and Life Sciences, Microbiology and Immunology Laboratory, Porto Alegre, RS, Brazil
| | - Leandro Vieira Astarita
- PUCRS, School of Health and Life Sciences, Plant Biotechnology Laboratory, Av. Ipiranga, 6681, Partenon, Porto Alegre, RS, 90619-900, Brazil
| | - Eliane Romanato Santarém
- PUCRS, School of Health and Life Sciences, Plant Biotechnology Laboratory, Av. Ipiranga, 6681, Partenon, Porto Alegre, RS, 90619-900, Brazil.
| |
Collapse
|
8
|
Galli FS, Mollari M, Tassinari V, Alimonti C, Ubaldi A, Cuva C, Marcoccia D. Overview of human health effects related to glyphosate exposure. FRONTIERS IN TOXICOLOGY 2024; 6:1474792. [PMID: 39359637 PMCID: PMC11445186 DOI: 10.3389/ftox.2024.1474792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024] Open
Abstract
Glyphosate is a chemical compound derived from glycine, marketed as a broad-spectrum herbicide, and represents one of the most widely used pesticides in the world. For a long time, it was assumed that glyphosate was harmless, either due to its selective enzymatic acting method on plants, and because commercial formulations were believed to contain only inert chemicals. Glyphosate is widely spread in the environment, the general population is daily exposed to it via different routes, including the consumption of both plant, and non-plant based foods. Glyphosate has been detected in high amounts in workers' urine, but has been detected likewise in bodily fluids, such as blood and maternal milk, and also in 60%-80% of general population, including children. Considering its massive presence, daily exposure to glyphosate could be considered a health risk for humans. Indeed, in 2015, the IARC (International Agency for Research on Cancer) classified glyphosate and its derivatives in Group 2A, as probable human carcinogens. In 2022, nevertheless, EFSA (European Food Safety Authority) stated that the available data did not provide sufficient evidence to prove the mutagenic/carcinogenic effects of glyphosate. Therefore, the European Commission (EC) decided to renew the approval of glyphosate for another 10 years. The purpose of this review is to examine the scientific literature, focusing on potential risks to human health arising from exposure to glyphosate, its metabolites and its commercial products (e.g., Roundup®), with particular regard to its mutagenic and carcinogenic potential and its effects as endocrine disrupter (ED) especially in the human reproductive system.
Collapse
Affiliation(s)
- Flavia Silvia Galli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Rome, Italy
| | - Marta Mollari
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Rome, Italy
| | - Valentina Tassinari
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Cristian Alimonti
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Rome, Italy
| | - Alessandro Ubaldi
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Rome, Italy
| | - Camilla Cuva
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Rome, Italy
| | - Daniele Marcoccia
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Rome, Italy
| |
Collapse
|
9
|
Ashley-Martin J, Marro L, Owen J, Borghese MM, Arbuckle T, Bouchard MF, Lanphear B, Walker M, Foster W, Fisher M. Gestational urinary concentrations of glyphosate and aminomethylphosphonic acid in relation to preterm birth: the MIREC study. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024:10.1038/s41370-024-00702-w. [PMID: 39294416 DOI: 10.1038/s41370-024-00702-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND Few high-quality studies have evaluated associations between urinary glyphosate or its environmental degradate (aminomethylphosphonic acid (AMPA)] and preterm birth (PTB). OBJECTIVES To quantify associations between urinary glyphosate and AMPA and preterm birth in the pan-Canadian Maternal-Infant Research on Environmental Chemicals (MIREC) study and determine if associations differ by fetal sex. METHODS We measured first trimester urinary glyphosate and AMPA concentrations in MIREC participants who were recruited between 2008-2011 from 10 Canadian cities. Of the 1880 participants whose first trimester urine samples were analyzed for glyphosate or AMPA, 1765 delivered a singleton, live birth. Our primary outcome was preterm birth (PTB) defined as births occurring between 20 and <37 weeks. Secondary outcomes were spontaneous preterm births (sPTB) and gestational age. We modelled the hazard of PTB and sPTB using discrete time survival analysis with multivariable logistic regression to calculate odds ratios (OR). We used multivariable linear regression models to quantify associations between analytes and gestational age. To assess effect modification by fetal sex, we stratified all models and calculated interaction terms. In the logistic regressions models we additionally calculated the relative excess risk due to interaction. RESULTS Six percent (n = 106) of the study population delivered preterm, and 4.7% (n = 83) had a spontaneous preterm birth. Median specific-gravity standardized concentrations of glyphosate and AMPA were 0.25 and 0.21 µg/L. Associations between both glyphosate or AMPA and PTB, sPTB, and gestational age centered around the null value. The adjusted ORs of PTB for each doubling of glyphosate and AMPA concentrations were 0.98 (95% CI: 0.94, 1.03) and 0.99 (95% CI: 0.92, 1.06) respectively. We observed no evidence of differences by fetal sex. CONCLUSIONS In this Canadian pregnancy cohort, neither glyphosate nor AMPA urinary concentrations was associated with PTB or reduced gestational length.
Collapse
Affiliation(s)
- Jillian Ashley-Martin
- Environmental Health Research and Science Bureau, Health Canada, Ottawa, ON, Canada.
| | - Leonora Marro
- Environmental Health Research and Science Bureau, Health Canada, Ottawa, ON, Canada
| | - James Owen
- Environmental Health Research and Science Bureau, Health Canada, Ottawa, ON, Canada
| | - Michael M Borghese
- Environmental Health Research and Science Bureau, Health Canada, Ottawa, ON, Canada
| | - Tye Arbuckle
- Environmental Health Research and Science Bureau, Health Canada, Ottawa, ON, Canada
| | - Maryse F Bouchard
- Armand-Frappier Santé Biotechnologie Research Centre, Institut National de la Recherche Scientifique, Laval, QC, Canada
| | - Bruce Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Mark Walker
- Department of Obstetrics and Gynecology, University of Ottawa, Ottawa, ON, Canada
| | - Warren Foster
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada
| | - Mandy Fisher
- Environmental Health Research and Science Bureau, Health Canada, Ottawa, ON, Canada
| |
Collapse
|
10
|
Bharti J, Verma R, Gupta I, Chakraborty P, Eashwaran M, Sony SK, Nehra M, Thangraj A, Kaul R, Fathy K, Kaul T. Functional characterization of novel mutations in the conserved region of EPSPS for herbicide resistance in pigeonpea: structure-based coherent design. J Biomol Struct Dyn 2024; 42:6065-6080. [PMID: 37652402 DOI: 10.1080/07391102.2023.2243522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/21/2023] [Indexed: 09/02/2023]
Abstract
Prospectively, agroecosystems for the growth of crops provide the potential fertile, productive, and tropical environment which attracts infestation by weedy plant species that compete with the primary crop plants. Infestation by weed is a major biotic stress factor faced by pigeonpea that hampers the productivity of the crop. In the modern era with the development of chemicals the problem of weed infestation is dealt with armours called herbicides. The most widely utilized, post-emergent, broad-spectrum herbicide has an essential active ingredient called glyphosate. Glyphosate mechanistically inhibits a chloroplastic enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) by competitively interacting with the PEP binding site which hinders the shikimate pathway and the production of essential aromatic amino acids (Phe, Tyr, Trp) and other secondary metabolites in plants. Moreover, herbicide spray for weed management is lethal to both the primary crop and the weeds. Therefore, it is critical to develop herbicide-resistant crops for field purposes to reduce the associated yield and economic losses. In this study, the in-silico analysis drove the selection and validation of the point mutations in the conserved region of the EPSPS gene, which confers efficient herbicide resistance to mutated-CcEPSPS enzyme along with the retention of the normal enzyme function. An optimized in-silico validation of the target mutation before the development of the genome-edited resistant plant lines is a prerequisite for testing their efficacy as a proof of concept. We validated the combination of GATIPS mutation for its no-cost effect at the enzyme level via molecular dynamic (MD) simulation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jyotsna Bharti
- Nutritional Improvement of Crops Group, Plant Biology & Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Rachana Verma
- Nutritional Improvement of Crops Group, Plant Biology & Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Isha Gupta
- Nutritional Improvement of Crops Group, Plant Biology & Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Puja Chakraborty
- Nutritional Improvement of Crops Group, Plant Biology & Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Murugesh Eashwaran
- Nutritional Improvement of Crops Group, Plant Biology & Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Sonia Khan Sony
- Nutritional Improvement of Crops Group, Plant Biology & Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Mamta Nehra
- Nutritional Improvement of Crops Group, Plant Biology & Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Arulprakash Thangraj
- Nutritional Improvement of Crops Group, Plant Biology & Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Rashmi Kaul
- Nutritional Improvement of Crops Group, Plant Biology & Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Khaled Fathy
- Nutritional Improvement of Crops Group, Plant Biology & Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Tanushri Kaul
- Nutritional Improvement of Crops Group, Plant Biology & Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| |
Collapse
|
11
|
Gao Y, Shu S, Zhang D, Wang P, Yu X, Wang Y, Yu Y. Association of Urinary Glyphosate with All-Cause Mortality and Cardiovascular Mortality among Adults in NHANES 2013-2018: Role of Alkaline Phosphatase. TOXICS 2024; 12:559. [PMID: 39195661 PMCID: PMC11360183 DOI: 10.3390/toxics12080559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024]
Abstract
Glyphosate is the most widely used herbicide in the world. This study aimed to evaluate the relationships among urinary glyphosate, all-cause mortality and cardiovascular diseases (CVD)-related mortality in the general US population of adults, and to determine the role of alkaline phosphatase (ALP), an inflammation marker that is associated with glyphosate exposure, in these relationships. Subjects from the National Health and Nutrition Examination Survey (NHANES) 2013-2018 cycles were included. Survey-weighted Cox regression analysis was applied to estimate the relationship of glyphosate with overall and CVD mortalities. Restricted cubic spline (RCS) analysis was utilized to detect the linearity of associations. The intermediary role of ALP was explored by mediation analysis. Our results found consistent and positive associations of glyphosate with all-cause mortality (HR: 1.29, 95%CI: 1.05-1.59) and CVD mortality (HR: 1.32, 95%CI: 1.02-1.70). RCS curves further validated linear and positive dose-dependent relationships between glyphosate and mortality-related outcomes. Moreover, serum ALP was identified as a mediator in these associations and explained 12.1% and 14.0% of the total associations between glyphosate and all-cause death and CVD death risk, respectively. Our study indicated that glyphosate was associated with increased all-cause and CVD mortality in humans. Increased ALP may play an essential role in these associations.
Collapse
Affiliation(s)
- Yongyue Gao
- Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550000, China; (Y.G.); (P.W.)
| | - Shuge Shu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210000, China; (S.S.); (X.Y.); (Y.W.)
| | - Di Zhang
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210000, China;
| | - Pu Wang
- Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550000, China; (Y.G.); (P.W.)
| | - Xiangyu Yu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210000, China; (S.S.); (X.Y.); (Y.W.)
| | - Yucheng Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210000, China; (S.S.); (X.Y.); (Y.W.)
| | - Yongquan Yu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210000, China; (S.S.); (X.Y.); (Y.W.)
| |
Collapse
|
12
|
Cusaro CM, Capelli E, Picco AM, Brusoni M. Incidence of resistance to ALS and ACCase inhibitors in Echinochloa species and soil microbial composition in Northern Italy. Sci Rep 2024; 14:10544. [PMID: 38719860 PMCID: PMC11078947 DOI: 10.1038/s41598-024-59856-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/16/2024] [Indexed: 05/12/2024] Open
Abstract
The increasing amount of weeds surviving herbicide represents a very serious problem for crop management. The interaction between microbial community of soil and herbicide resistance, along with the potential evolutive consequences, are still poorly known and need to be investigated to better understand the impact on agricultural management. In our study, we analyzed the microbial composition of soils in 32 farms, located in the Northern Italy rice-growing area (Lombardy) with the aim to evaluate the relationship between the microbial composition and the incidence of resistance to acetolactate synthase (ALS) and acetyl-CoA carboxylase (ACCase) inhibiting herbicides in Echinochloa species. We observed that the coverage of weeds survived herbicide treatment was higher than 60% in paddy fields with a low microbial biodiversity and less than 5% in those with a high microbial biodiversity. Fungal communities showed a greater reduction in richness than Bacteria. In soils with a reduced microbial diversity, a significant increase of some bacterial and fungal orders (i.e. Lactobacillales, Malasseziales and Diaporthales) was observed. Interestingly, we identified two different microbial profiles linked to the two conditions: high incidence of herbicide resistance (H-HeR) and low incidence of herbicide resistance (L-HeR). Overall, the results we obtained allow us to make hypotheses on the greater or lesser probability of herbicide resistance occurrence based on the composition of the soil microbiome and especially on the degree of biodiversity of the microbial communities.
Collapse
Affiliation(s)
- Carlo Maria Cusaro
- Department of Earth and Environmental Sciences, University of Pavia, 27100, Pavia, Italy
| | - Enrica Capelli
- Department of Earth and Environmental Sciences, University of Pavia, 27100, Pavia, Italy
| | - Anna Maria Picco
- Department of Earth and Environmental Sciences, University of Pavia, 27100, Pavia, Italy
| | - Maura Brusoni
- Department of Earth and Environmental Sciences, University of Pavia, 27100, Pavia, Italy.
| |
Collapse
|
13
|
Evalen PS, Barnhardt EN, Ryu J, Stahlschmidt ZR. Toxicity of glyphosate to animals: A meta-analytical approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123669. [PMID: 38460584 DOI: 10.1016/j.envpol.2024.123669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/10/2024] [Accepted: 02/26/2024] [Indexed: 03/11/2024]
Abstract
Glyphosate (GLY)-based herbicides (GBHs) are the most commonly applied pesticide worldwide, and non-target organisms (e.g., animals) are now regularly exposed to GLY and GBHs due to the accumulation of these chemicals in many environments. Although GLY/GBH was previously considered to be non-toxic, growing evidence indicates that GLY/GBH negatively affects some animal taxa. However, there has been no systematic analysis quantifying its toxicity to animals. Therefore, we used a meta-analytical approach to determine whether there is a demonstrable effect of GLY/GBH toxicity across animals. We further addressed whether the effects of GLY/GBH vary due to (1) taxon (invertebrate vs. vertebrate), (2) habitat (aquatic vs. terrestrial), (3) type of biological response (behavior vs. physiology vs. survival), and (4) dosage or concentration of GLY/GBH. Using this approach, we also determined whether adjuvants (e.g., surfactants) in commercial formulations of GBHs increased toxicity for animals relative to exposure to GLY alone. We analyzed 1282 observations from 121 articles. We conclude that GLY is generally sub-lethally toxic for animals, particularly for animals in aquatic or marine habitats, and that toxicity did not exhibit dose-dependency. Yet, our analyses detected evidence for widespread publication bias so we encourage continued experimental investigations to better understand factors influencing GLY/GBH toxicity to animals.
Collapse
Affiliation(s)
- P S Evalen
- University of the Pacific, Stockton, CA, USA; University of Pennsylvania, Philadelphia, PA, USA
| | | | - J Ryu
- University of the Pacific, Stockton, CA, USA
| | | |
Collapse
|
14
|
Bhardwaj G, Riadi Y, Afzal M, Bansal P, Kaur H, Deorari M, Tonk RK, Almalki WH, Kazmi I, Alzarea SI, Kukreti N, Thangavelu L, Saleem S. The hidden threat: Environmental toxins and their effects on gut microbiota. Pathol Res Pract 2024; 255:155173. [PMID: 38364649 DOI: 10.1016/j.prp.2024.155173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/18/2024]
Abstract
The human gut microbiota (GM), which consists of a complex and diverse ecosystem of bacteria, plays a vital role in overall wellness. However, the delicate balance of this intricate system is being compromised by the widespread presence of environmental toxins. The intricate connection between contaminants in the environment and human well-being has garnered significant attention in recent times. Although many environmental pollutants and their toxicity have been identified and studied in laboratory settings and animal models, there is insufficient data concerning their relevance to human physiology. Consequently, research on the toxicity of environmental toxins in GM has gained prominence in recent years. Various factors, such as air pollution, chemicals, heavy metals, and pesticides, have a detrimental impact on the composition and functioning of the GM. This comprehensive review aims to comprehend the toxic effects of numerous environmental pollutants, including antibiotics, endocrine-disrupting chemicals, heavy metals, and pesticides, on GM by examining recent research findings. The current analysis concludes that different types of environmental toxins can lead to GM dysbiosis and have various potential adverse effects on the well-being of animals. We investigate the alterations to the GM composition induced by contaminants and their impact on overall well-being, providing a fresh perspective on research related to pollutant exposure.
Collapse
Affiliation(s)
- Gautam Bhardwaj
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar sector-3, M-B Road, New Delhi 110017, India
| | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh 247341, India; Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand 831001, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Rajiv Kumar Tonk
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar sector-3, M-B Road, New Delhi 110017, India.
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341 Sakaka, Aljouf, Saudi Arabia
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Lakshmi Thangavelu
- Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Shakir Saleem
- Department of Public Health. College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia.
| |
Collapse
|
15
|
Guo Q, Zhang X, Kang Y, Ni Y. Exfoliation of a Coordination Polymer Based on a Linear π-Conjugated Ligand into an Ultrathin Nanosheet for Glyphosate Sensing. Inorg Chem 2024; 63:2977-2986. [PMID: 38279918 DOI: 10.1021/acs.inorgchem.3c03652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
Owing to the large-scale consumption of pesticides and their potential threats to the environment and human health, the development of sensing materials for pesticides has attracted considerable attention in recent years. In this work, a novel Cd(II)-based coordination polymer (CP) with the formula [Cd(H2O)2(L)]·DMF (Cd-1, DMF = N,N-dimethylformamide, H2L = 4,4'-[(2,5-dimethoxy-1,4-phenylene)di-2,1-ethenediyl]bis-benzoic acid) was synthesized under solvothermal conditions. Structural analysis revealed that coordination between central Cd2+ cations and the ligand L2- formed two-dimensional (2D) networks, which were further assembled by noncovalent hydrogen bonds into a three-dimensional (3D) supramolecular framework. Through ultrasonic treatment in isopropyl alcohol, Cd-1 was exfoliated to afford an ultrathin CP-based 2D nanosheet (Cd-1-NS) with a thickness of less than 1.8 nm. Compared to the bulk materials, the prepared Cd-1-NS exhibited enhanced fluorescence emission properties and superior sensing performance toward glyphosate (Glyph) in water with high selectivity, sensitivity, anti-interference, fast response, and good recyclability via the turn-off effect. The limit of detection (LOD) of Cd-1-NS for Glyph was as low as 41 nM (7 ppb) in the low-concentration range of 0-2.4 μM. In addition, the Cd-1-NS also showed excellent practicability and reliability for the detection of Glyph in real samples, including lake water, tap water, cabbage, and watermelon skin, and could realize the rapid visualized sensing of Glyph residues on the surfaces of vegetables and fruits.
Collapse
Affiliation(s)
- Qianyu Guo
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu 241002, China
| | - Xiudu Zhang
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu 241002, China
| | - Yanshang Kang
- Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Maanshan 243099, China
| | - Yonghong Ni
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
16
|
Schwedt I, Schöne K, Eckert M, Pizzinato M, Winkler L, Knotkova B, Richts B, Hau JL, Steuber J, Mireles R, Noda-Garcia L, Fritz G, Mittelstädt C, Hertel R, Commichau FM. The low mutational flexibility of the EPSP synthase in Bacillus subtilis is due to a higher demand for shikimate pathway intermediates. Environ Microbiol 2023; 25:3604-3622. [PMID: 37822042 DOI: 10.1111/1462-2920.16518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023]
Abstract
Glyphosate (GS) inhibits the 5-enolpyruvyl-shikimate-3-phosphate (EPSP) synthase that is required for aromatic amino acid, folate and quinone biosynthesis in Bacillus subtilis and Escherichia coli. The inhibition of the EPSP synthase by GS depletes the cell of these metabolites, resulting in cell death. Here, we show that like the laboratory B. subtilis strains also environmental and undomesticated isolates adapt to GS by reducing herbicide uptake. Although B. subtilis possesses a GS-insensitive EPSP synthase, the enzyme is strongly inhibited by GS in the native environment. Moreover, the B. subtilis EPSP synthase mutant was only viable in rich medium containing menaquinone, indicating that the bacteria require a catalytically efficient EPSP synthase under nutrient-poor conditions. The dependency of B. subtilis on the EPSP synthase probably limits its evolvability. In contrast, E. coli rapidly acquires GS resistance by target modification. However, the evolution of a GS-resistant EPSP synthase under non-selective growth conditions indicates that GS resistance causes fitness costs. Therefore, in both model organisms, the proper function of the EPSP synthase is critical for the cellular viability. This study also revealed that the uptake systems for folate precursors, phenylalanine and tyrosine need to be identified and characterized in B. subtilis.
Collapse
Affiliation(s)
- Inge Schwedt
- FG Molecular Microbiology, Institute for Biology, University of Hohenheim, Stuttgart, Germany
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, Germany
| | - Kerstin Schöne
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, Germany
| | - Maike Eckert
- FG Molecular Microbiology, Institute for Biology, University of Hohenheim, Stuttgart, Germany
| | - Manon Pizzinato
- FG Molecular Microbiology, Institute for Biology, University of Hohenheim, Stuttgart, Germany
| | - Laura Winkler
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, Germany
| | - Barbora Knotkova
- Department of General Microbiology, Institute of Microbiology and Genetics, GZMB, Georg-August University of Göttingen, Göttingen, Germany
| | - Björn Richts
- Department of General Microbiology, Institute of Microbiology and Genetics, GZMB, Georg-August University of Göttingen, Göttingen, Germany
| | - Jann-Louis Hau
- FG Cellular Microbiology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Julia Steuber
- FG Cellular Microbiology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Raul Mireles
- Department of Plant Pathology and Microbiology, Hebrew University, Rehovot, Israel
| | - Lianet Noda-Garcia
- Department of Plant Pathology and Microbiology, Hebrew University, Rehovot, Israel
| | - Günter Fritz
- FG Cellular Microbiology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Carolin Mittelstädt
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, Germany
| | - Robert Hertel
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, Germany
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Fabian M Commichau
- FG Molecular Microbiology, Institute for Biology, University of Hohenheim, Stuttgart, Germany
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, Germany
| |
Collapse
|
17
|
Walsh L, Hill C, Ross RP. Impact of glyphosate (Roundup TM) on the composition and functionality of the gut microbiome. Gut Microbes 2023; 15:2263935. [PMID: 38099711 PMCID: PMC10561581 DOI: 10.1080/19490976.2023.2263935] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/24/2023] [Indexed: 12/18/2023] Open
Abstract
Glyphosate, the active ingredient in the broad-spectrum herbicide RoundupTM, has been a topic of discussion for decades due to contradictory reports of the effect of glyphosate on human health. Glyphosate inhibits the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) of the shikimic pathway producing aromatic amino acids in plants, a mechanism that suggests that the herbicide would not affect humans as this pathway is not found in mammals. However, numerous studies have implicated glyphosate exposure in the manifestation of a variety of disorders in the human body. This review specifically outlines the potential effect of glyphosate exposure on the composition and functionality of the gut microbiome. Evidence has been building behind the hypothesis that the composition of each individual gut microbiota significantly impacts health. For this reason, the potential of glyphosate to inhibit the growth of beneficial microbes in the gut or alter their functionality is an important topic that warrants further consideration.
Collapse
Affiliation(s)
- Lauren Walsh
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - R. Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
18
|
Nouvian M, Foster JJ, Weidenmüller A. Glyphosate impairs aversive learning in bumblebees. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165527. [PMID: 37451452 DOI: 10.1016/j.scitotenv.2023.165527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Agrochemicals represent prominent anthropogenic stressors contributing to the ongoing global insect decline. While their impact is generally assessed in terms of mortality rates, non-lethal effects on fitness are equally important to insect conservation. Glyphosate, a commonly used herbicide, is toxic to many animal species, and thought to impact a range of physiological functions. In this study, we investigate the impact of long-term exposure to glyphosate on locomotion, phototaxis and learning abilities in bumblebees, using a fully automated high-throughput assay. We find that glyphosate exposure had a very slight and transient impact on locomotion, while leaving the phototactic drive unaffected. Glyphosate exposure also reduced attraction towards UV light when blue was given as an alternative and, most strikingly, impaired learning of aversive stimuli. Thus, glyphosate had specific actions on sensory and cognitive processes. These non-lethal perceptual and cognitive impairments likely represent a significant obstacle to foraging and predator avoidance for wild bumblebees exposed to glyphosate. Similar effects in other species could contribute to a widespread reduction in foraging efficiency across ecosystems, driven by the large-scale application of this herbicide. The high-throughput paradigm presented in this study can be adapted to investigate sublethal effects of other agrochemicals on bumblebees or other important pollinator species, opening up a critical new avenue for the study of anthropogenic stressors.
Collapse
Affiliation(s)
- Morgane Nouvian
- Department of Biology, University of Konstanz, Konstanz, Germany; Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany; Zukunftskolleg, University of Konstanz, Konstanz, Germany.
| | - James J Foster
- Department of Biology, University of Konstanz, Konstanz, Germany; Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| | - Anja Weidenmüller
- Department of Biology, University of Konstanz, Konstanz, Germany; Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| |
Collapse
|
19
|
Cornish CM, Bergholz P, Schmidt K, Sweetman J. How Benthic Sediment Microbial Communities Respond to Glyphosate and Its Metabolite: a Microcosm Experiment. MICROBIAL ECOLOGY 2023; 86:2949-2958. [PMID: 37674014 DOI: 10.1007/s00248-023-02296-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023]
Abstract
Glyphosate is the most commonly used agricultural herbicide in the world. In aquatic ecosystems, glyphosate often adsorbs to benthic substrates or is metabolized and degraded by microorganisms. The effects of glyphosate on microbial communities vary widely as microorganisms respond differently to exposure. To help understand the impacts of glyphosate on the sediment microbiome, we conducted a microcosm experiment examining the responses of benthic sediment microbial communities to herbicide treatments. Sediments from a prairie pothole wetland were collected, and 16S rRNA gene sequencing was used to analyze community composition 2-h and 14-days after a single treatment of low (0.07 ppm), medium (0.7 ppm), or high (7 ppm) glyphosate, aminomethylphosphonic acid (glyphosate metabolite), or a glyphosate-based commercial formula. We found no significant differences in microbial community composition across treatments, concentration levels, or day of sampling. These findings suggest that microbial species in the Prairie Pothole Region of North America may be tolerant to glyphosate exposure.
Collapse
Affiliation(s)
- Christine M Cornish
- Department of Biological Sciences, North Dakota State University, Fargo, ND, 58105, USA.
| | - Peter Bergholz
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, 58105, USA
- Institute for Quantitative Health Sciences & Engineering, Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, 48823, USA
| | - Kaycie Schmidt
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, 58105, USA
| | - Jon Sweetman
- Department of Biological Sciences, North Dakota State University, Fargo, ND, 58105, USA
- Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
20
|
Schäffer E, Piel J. [The exposome in the context of preventive measures for Alzheimer's and Parkinson's diseases]. DER NERVENARZT 2023; 94:892-903. [PMID: 37639074 DOI: 10.1007/s00115-023-01538-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND Preventive measures addressing the exposome can counteract neurodegenerative diseases. OBJECTIVE This article gives an overview on the influence of general and individual exogenous factors (environmental influences and lifestyle changes) as well as endogenous factors (e.g. metabolic alterations) on the development and progression of Alzheimer's disease (AD) and Parkinson's disease (PD). METHODS Summary and evaluation of current scientific studies and evidence regarding the exposome and prevention of AD and PD. RESULTS Numerous studies could demonstrate a potential influence of environmental influences associated with industrialization (general exogenous factors), such as pesticides, solvents or air pollution on the development of AD and PD. Additionally, individually addressable changes of lifestyle (individual exogenous factors, e.g. physical activity, cognitive stimulation, nutrition and sleep) contribute to disease protection and modification and are becoming increasingly more important in light of still limited therapeutic interventions. Moreover, other exogenous factors (medication, noise pollution, head trauma and heavy metals) are discussed as risk factors for AD and/or PD. Endogenous factors (e.g., changes of the enteral microbiome, systemic inflammation and neuroinflammation, metabolic changes) can contribute to disease development by a higher potential for interacting with exogenous factors. CONCLUSION Despite the comprehensive scientific evidence confirming the significance of the exposome for the pathogenesis of AD and PD, the great potential of preventive measures has not yet been exploited. A clarification of the high potential of lifestyle changes should be a therapeutic standard not only for individuals with manifest PD/AD but also for individuals with a risk profile or with suspected prodromal disease. Further investigations on the influence of environmental factors and the implementation of preventive strategies to avoid exposure should be the focus of international efforts.
Collapse
Affiliation(s)
- Eva Schäffer
- Klinik für Neurologie, Universität Kiel, Universitätsklinikum Schleswig-Holstein, Arnold-Heller-Str. 3, 24105, Kiel, Deutschland.
| | - Johannes Piel
- Klinik für Neurologie, Universität Kiel, Universitätsklinikum Schleswig-Holstein, Arnold-Heller-Str. 3, 24105, Kiel, Deutschland
| |
Collapse
|
21
|
Leri M, Vasarri M, Barletta E, Schiavone N, Bergonzi MC, Bucciantini M, Degl’Innocenti D. The Protective Role of Oleuropein Aglycone against Pesticide-Induced Toxicity in a Human Keratinocytes Cell Model. Int J Mol Sci 2023; 24:14553. [PMID: 37834001 PMCID: PMC10572371 DOI: 10.3390/ijms241914553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
The extensive use of agricultural pesticides to improve crop quality and yield significantly increased the risk to the public of exposure to small but repeated doses of pesticides over time through various routes, including skin, by increasing the risk of disease outbreaks. Although much work was conducted to reduce the use of pesticides in agriculture, little attention was paid to prevention, which could reduce the toxicity of pesticide exposure by reducing its impact on human health. Extra virgin olive oil (EVOO), a major component of the Mediterranean diet, exerts numerous health-promoting properties, many of which are attributed to oleuropein aglycone (OleA), the deglycosylated form of oleuropein, which is the main polyphenolic component of EVOO. In this work, three pesticides with different physicochemical and biological properties, namely oxadiazon (OXA), imidacloprid (IMID), and glyphosate (GLYPHO), were compared in terms of metabolic activity, mitochondrial function and epigenetic modulation in an in vitro cellular model of human HaCaT keratinocytes to mimic the pathway of dermal exposure. The potential protective effect of OleA against pesticide-induced cellular toxicity was then evaluated in a cell pre-treatment condition. This study showed that sub-lethal doses of OXA and IMID reduced the metabolic activity and mitochondrial functionality of HaCaT cells by inducing oxidative stress and altering intracellular calcium flux and caused epigenetic modification by reducing histone acetylation H3 and H4. GLYPHO, on the other hand, showed no evidence of cellular toxicity at the doses tested. Pretreatment of cells with OleA was able to protect cells from the damaging effects of the pesticides OXA and IMID by maintaining metabolic activity and mitochondrial function at a controlled level and preventing acetylation reduction, particularly of histone H3. In conclusion, the bioactive properties of OleA reported here could be of great pharmaceutical and health interest, as they could be further studied to design new formulations for the prevention of toxicity from exposure to pesticide use.
Collapse
Affiliation(s)
- Manuela Leri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.V.); (E.B.); (N.S.); (M.B.)
| | - Marzia Vasarri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.V.); (E.B.); (N.S.); (M.B.)
- Department of Chemistry, University of Florence, Via U. Schiff 6, 50519 Sesto Fiorentino, Italy;
| | - Emanuela Barletta
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.V.); (E.B.); (N.S.); (M.B.)
| | - Nicola Schiavone
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.V.); (E.B.); (N.S.); (M.B.)
| | - Maria Camilla Bergonzi
- Department of Chemistry, University of Florence, Via U. Schiff 6, 50519 Sesto Fiorentino, Italy;
| | - Monica Bucciantini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.V.); (E.B.); (N.S.); (M.B.)
| | - Donatella Degl’Innocenti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.V.); (E.B.); (N.S.); (M.B.)
| |
Collapse
|
22
|
Kononova S, Kashparov M, Xue W, Bobkova N, Leonov S, Zagorodny N. Gut Microbiome Dysbiosis as a Potential Risk Factor for Idiopathic Toe-Walking in Children: A Review. Int J Mol Sci 2023; 24:13204. [PMID: 37686011 PMCID: PMC10488280 DOI: 10.3390/ijms241713204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Idiopathic toe walking (ITW) occurs in about 5% of children. Orthopedic treatment of ITW is complicated by the lack of a known etiology. Only half of the conservative and surgical methods of treatment give a stable positive result of normalizing gait. Available data indicate that the disease is heterogeneous and multifactorial. Recently, some children with ITW have been found to have genetic variants of mutations that can lead to the development of toe walking. At the same time, some children show sensorimotor impairment, but these studies are very limited. Sensorimotor dysfunction could potentially arise from an imbalanced production of neurotransmitters that play a crucial role in motor control. Using the data obtained in the studies of several pathologies manifested by the association of sensory-motor dysfunction and intestinal dysbiosis, we attempt to substantiate the notion that malfunction of neurotransmitter production is caused by the imbalance of gut microbiota metabolites as a result of dysbiosis. This review delves into the exciting possibility of a connection between variations in the microbiome and ITW. The purpose of this review is to establish a strong theoretical foundation and highlight the benefits of further exploring the possible connection between alterations in the microbiome and TW for further studies of ITW etiology.
Collapse
Affiliation(s)
- Svetlana Kononova
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Mikhail Kashparov
- Department of Traumatology and Orthopedics, Peoples’ Friendship University of Russia, 117198 Moscow, Russia; (M.K.); (N.Z.)
- Scientific and Practical Center for Child Psychoneurology, 119602 Moscow, Russia
| | - Wenyu Xue
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (W.X.); (S.L.)
| | - Natalia Bobkova
- Institute of Cell Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia;
| | - Sergey Leonov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (W.X.); (S.L.)
- Institute of Cell Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia;
| | - Nikolaj Zagorodny
- Department of Traumatology and Orthopedics, Peoples’ Friendship University of Russia, 117198 Moscow, Russia; (M.K.); (N.Z.)
- N.N. Priorov Central Research Institute of Traumatology and Orthopedics, 127299 Moscow, Russia
| |
Collapse
|
23
|
Rani S, Sørensen MT, Estellé J, Noel SJ, Nørskov N, Krogh U, Foldager L, Højberg O. Gastrointestinal Microbial Ecology of Weaned Piglets Fed Diets with Different Levels of Glyphosate. Microbiol Spectr 2023; 11:e0061523. [PMID: 37318372 PMCID: PMC10433988 DOI: 10.1128/spectrum.00615-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/26/2023] [Indexed: 06/16/2023] Open
Abstract
Glyphosate possesses antimicrobial properties, and the present study investigated potential effects of feed glyphosate on piglet gastrointestinal microbial ecology. Weaned piglets were allocated to four diets (glyphosate contents [mg/kg feed]: 0 mg/kg control [CON; i.e., basal diet with no glyphosate added], 20 mg/kg as Glyphomax commercial herbicide [GM20], and 20 mg/kg [IPA20] and 200 mg/kg [IPA200] as glyphosate isopropylamine [IPA] salt). Piglets were sacrificed after 9 and 35 days of treatment, and stomach, small intestine, cecum, and colon digesta were analyzed for glyphosate, aminomethylphosphonic acid (AMPA), organic acids, pH, dry matter content, and microbiota composition. Digesta glyphosate contents reflected dietary levels (on day 35, 0.17, 16.2, 20.5, and 207.5 mg/kg colon digesta, respectively). Overall, we observed no significant glyphosate-associated effects on digesta pH, dry matter content, and-with few exceptions-organic acid levels. On day 9, only minor gut microbiota changes were observed. On day 35, we observed a significant glyphosate-associated decrease in species richness (CON, 462; IPA200, 417) and in the relative abundance of certain Bacteroidetes genera: CF231 (CON, 3.71%; IPA20, 2.33%; IPA200, 2.07%) and g_0.24 (CON, 3.69%; IPA20, 2.07%; IPA200, 1.75%) in cecum. No significant changes were observed at the phylum level. In the colon, we observed a significant glyphosate-associated increase in the relative abundance of Firmicutes (CON, 57.7%; IPA20, 69.4%; IPA200, 66.1%) and a decrease in Bacteroidetes (CON, 32.6%; IPA20, 23.5%). Significant changes were only observed for few genera, e.g., g_0.24 (CON, 7.12%; IPA20, 4.59%; IPA200, 4.00%). In conclusion, exposing weaned piglets to glyphosate-amended feed did not affect gastrointestinal microbial ecology to a degree that was considered actual dysbiosis, e.g., no potential pathogen bloom was observed. IMPORTANCE Glyphosate residues can be found in feed made from genetically modified glyphosate-resistant crops treated with glyphosate or from conventional crops, desiccated with glyphosate before harvest. If these residues affect the gut microbiota to an extent that is unfavorable to livestock health and productivity, the widespread use of glyphosate on feed crops may need to be reconsidered. Few in vivo studies have been conducted to investigate potential impact of glyphosate on the gut microbial ecology and derived health issues of animals, in particular livestock, when exposed to dietary glyphosate residues. The aim of the present study was therefore to investigate potential effects on the gastrointestinal microbial ecology of newly weaned piglets fed glyphosate-amended diets. Piglets did not develop actual gut dysbiosis when fed diets, containing a commercial herbicide formulation or a glyphosate salt at the maximum residue level, defined by the European Union for common feed crops, or at a 10-fold-higher level.
Collapse
Affiliation(s)
- Sundas Rani
- Department of Animal and Veterinary Sciences, Aarhus University, Tjele, Denmark
| | | | - Jordi Estellé
- GABI, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Samantha Joan Noel
- Department of Animal and Veterinary Sciences, Aarhus University, Tjele, Denmark
| | - Natalja Nørskov
- Department of Animal and Veterinary Sciences, Aarhus University, Tjele, Denmark
| | - Uffe Krogh
- Department of Animal and Veterinary Sciences, Aarhus University, Tjele, Denmark
| | - Leslie Foldager
- Department of Animal and Veterinary Sciences, Aarhus University, Tjele, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Ole Højberg
- Department of Animal and Veterinary Sciences, Aarhus University, Tjele, Denmark
| |
Collapse
|
24
|
Fuchs B, Saikkonen K, Damerau A, Yang B, Helander M. Herbicide residues in soil decrease microbe-mediated plant protection. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:571-578. [PMID: 36920172 DOI: 10.1111/plb.13517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 03/10/2023] [Indexed: 05/17/2023]
Abstract
The residues of glyphosate are found to remain in soils longer than previously reported, affecting rhizosphere microbes. This may adversely affect crop and other non-target plants because the plant's resilience and resistance largely rely on plant-associated microbes. Ubiquitous glyphosate residues in soil and how they impact mutualistic microbes inhabiting the aboveground plant parts are largely unexplored. We studied the effects of herbicide residues in soil on Epichloë sp., which are common endophytic symbionts inhabiting aerial parts of cool-season grasses. In this symbiosis, the obligate symbiont subsists entirely on its host plant, and in exchange, it provides alkaloids conferring resistance to herbivores for the host grass that invests little in its own chemical defence. We first show decreased growth of Epichloë endophytes in vitro when directly exposed to two concentrations of glyphosate or glyphosate-based herbicides. Second, we provide evidence for a reduction of Epichloë-derived, insect-toxic loline alkaloids in endophyte-symbiotic meadow fescue (F. pratensis) plants growing in soil with a glyphosate history. Plants were grown for 2 years in an open field site, and natural herbivore infestation was correlated with the glyphosate-mediated reduction of loline alkaloid concentrations. Our findings indicate that herbicides residing in soil not only affect rhizosphere microbiota but also aerial plant endophyte functionality, which emphasizes the destructive effects of glyphosate on plant symbiotic microbes, here with cascading effects on plant-pest insect interactions.
Collapse
Affiliation(s)
- B Fuchs
- Biodiversity Unit, University of Turku, Turku, Finland
| | - K Saikkonen
- Biodiversity Unit, University of Turku, Turku, Finland
| | - A Damerau
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, Turku, Finland
| | - B Yang
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, Turku, Finland
| | - M Helander
- Department of Biology, University of Turku, Turku, Finland
| |
Collapse
|
25
|
Lehman PC, Cady N, Ghimire S, Shahi SK, Shrode RL, Lehmler HJ, Mangalam AK. Low-dose glyphosate exposure alters gut microbiota composition and modulates gut homeostasis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104149. [PMID: 37196884 PMCID: PMC10330715 DOI: 10.1016/j.etap.2023.104149] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023]
Abstract
The widespread use of glyphosate, a broad-spectrum herbicide, has resulted in significant human exposure, and recent studies have challenged the notion that glyphosate is safe for humans. Although the link between disease states and glyphosate exposure is increasingly appreciated, the mechanistic links between glyphosate and its toxic effects on human health are poorly understood. Recent studies have suggested that glyphosate may cause toxicity through modulation of the gut microbiome, but evidence for glyphosate-induced gut dysbiosis and its effect on host physiology at doses approximating the U.S. Acceptable Daily Intake (ADI = 1.75 mg/kg body weight) is limited. Here, utilizing shotgun metagenomic sequencing of fecal samples from C57BL/6 J mice, we show that glyphosate exposure at doses approximating the U.S. ADI significantly impacts gut microbiota composition. These gut microbial alterations were associated with effects on gut homeostasis characterized by increased proinflammatory CD4+IL17A+ T cells and Lipocalin-2, a known marker of intestinal inflammation.
Collapse
Affiliation(s)
- Peter C Lehman
- Department of Pathology, University of Iowa, Iowa City, USA
| | - Nicole Cady
- Program in Biomedical Sciences, Rackham Graduate School, University of Michigan, Ann Arbor, MI, USA
| | - Sudeep Ghimire
- Department of Pathology, University of Iowa, Iowa City, USA
| | | | - Rachel L Shrode
- Informatics Graduate Program, University of Iowa, Iowa City, IA, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, USA
| | - Ashutosh K Mangalam
- Department of Pathology, University of Iowa, Iowa City, USA; Department of Occupational and Environmental Health, University of Iowa, Iowa City, USA; Immunology Graduate Program. University of Iowa, Iowa City, USA.
| |
Collapse
|
26
|
Motta EVS, Moran NA. The effects of glyphosate, pure or in herbicide formulation, on bumble bees and their gut microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162102. [PMID: 36764553 PMCID: PMC11050743 DOI: 10.1016/j.scitotenv.2023.162102] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/29/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
The widespread use of glyphosate-based formulations to eliminate unwanted vegetation has increased concerns regarding their effects on non-target organisms, such as honey bees and their gut microbial communities. These effects have been associated with both glyphosate and co-formulants, but it is still unknown whether they translate to other bee species. In this study, we tested whether glyphosate, pure or in herbicide formulation, can affect the gut microbiota and survival rates of the eastern bumble bee, Bombus impatiens. We performed mark-recapture experiments with bumble bee workers from four different commercial colonies, which were exposed to field relevant concentrations of glyphosate or a glyphosate-based formulation (0.01 mM to 1 mM). After a 5-day period of exposure, we returned the bees to their original colonies, and they were sampled at days 0, 3 and 7 post-exposure to investigate changes in microbial community and microbiota resilience by 16S rRNA amplicon sequencing and quantitative PCR. We found that exposure to glyphosate, pure or in herbicide formulation, reduced the relative abundance of a beneficial bee gut bacterium, Snodgrassella, in bees from two of four colonies when compared to control bees at day 0 post-exposure, but this reduction became non-significant at days 3 and 7 post-exposure, suggesting microbiota resilience. We did not find significant changes in total bacteria between control and exposed bees. Moreover, we observed an overall trend in decreased survival rates in bumble bees exposed to 1 mM herbicide formulation during the 7-day post-exposure period, suggesting a potential negative effect of this formulation on bumble bees.
Collapse
Affiliation(s)
- Erick V S Motta
- Department of Integrative Biology, University of Texas at Austin, TX, USA.
| | - Nancy A Moran
- Department of Integrative Biology, University of Texas at Austin, TX, USA.
| |
Collapse
|
27
|
Rainio MJ, Margus A, Tikka S, Helander M, Lindström L. The effects of short-term glyphosate-based herbicide exposure on insect gene expression profiles. JOURNAL OF INSECT PHYSIOLOGY 2023; 146:104503. [PMID: 36935035 DOI: 10.1016/j.jinsphys.2023.104503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 01/25/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Glyphosate-based herbicides (GBHs) are the most frequently used herbicides worldwide. The use of GBHs is intended to tackle weeds, but GBHs have been shown to affect the life-history traits and antioxidant defense system of invertebrates found in agroecosystems. Thus far, the effects of GBHs on detoxification pathways among invertebrates have not been sufficiently investigated. We performed two different experiments-1) the direct pure glyphosate and GBH treatment, and 2) the indirect GBH experiment via food-to examine the possible effects of environmentally relevant GBH levels on the survival of the Colorado potato beetle (Leptinotarsa decemlineata) and the expression profiles of their detoxification genes. As candidate genes, we selected four cytochrome P450 (CYP), three glutathione-S-transferase (GST), and two acetylcholinesterase (AChE) genes that are known to be related to metabolic or target-site resistances in insects. We showed that environmentally relevant levels of pure glyphosate and GBH increased the probability for higher mortality in the Colorado potato beetle larvae in the direct experiment, but not in the indirect experiment. The GBHs or glyphosate did not affect the expression profiles of the studied CYP, GST, or AChE genes; however, we found a large family-level variation in expression profiles in both the direct and indirect treatment experiments. These results suggest that the genes selected for this study may not be the ones expressed in response to glyphosate or GBHs. It is also possible that the relatively short exposure time did not affect gene expression profiles, or the response may have already occurred at a shorter exposure time. Our results show that glyphosate products may affect the survival of the herbivorous insect already at lower levels, depending on their sensitivity to pesticides.
Collapse
Affiliation(s)
- Miia J Rainio
- Department of Biology, University of Turku, FI-20014 Turku, Finland; Department of Biological and Environmental Science, University of Jyväskylä, FI-40014 Jyväskylä, Finland.
| | - Aigi Margus
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014 Jyväskylä, Finland.
| | - Santtu Tikka
- Department of Mathematics and Statistics, University of Jyväskylä, FI-40014 Jyväskylä, Finland.
| | - Marjo Helander
- Department of Biology, University of Turku, FI-20014 Turku, Finland.
| | - Leena Lindström
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014 Jyväskylä, Finland.
| |
Collapse
|
28
|
Masotti F, Garavaglia BS, Gottig N, Ottado J. Bioremediation of the herbicide glyphosate in polluted soils by plant-associated microbes. Curr Opin Microbiol 2023; 73:102290. [PMID: 36893683 DOI: 10.1016/j.mib.2023.102290] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 03/09/2023]
Abstract
Most productive lands worldwide base their crop production on the use of glyphosate (GLY)-resistant plants, and consequently, widespread use of this herbicide has led to environmental issues that need to be solved. Soil bioremediation technologies based on degradation of GLY by microorganisms are strategies that have been considered useful to solve this environmental problem. Recently, a further step has been taken considering the use of bacteria that interact with plants, either alone or both bacteria and plant together, for the removal of GLY herbicide. Plant-interacting microorganisms with plant growth-promoting traits can also enhance plant growth and contribute to successful bioremediation strategies.
Collapse
Affiliation(s)
- Fiorella Masotti
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR-CONICET) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, Rosario 2000, Argentina
| | - Betiana S Garavaglia
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR-CONICET) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, Rosario 2000, Argentina
| | - Natalia Gottig
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR-CONICET) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, Rosario 2000, Argentina
| | - Jorgelina Ottado
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR-CONICET) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, Rosario 2000, Argentina.
| |
Collapse
|
29
|
Gyanjyoti A, Guleria P, Awasthi A, Singh K, Kumar V. Recent advancement in fluorescent materials for optical sensing of pesticides. MATERIALS TODAY COMMUNICATIONS 2023; 34:105193. [DOI: 10.1016/j.mtcomm.2022.105193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
30
|
Mathew SA, Fuchs B, Nissinen R, Helander M, Puigbò P, Saikkonen K, Muola A. Glyphosate-based herbicide use affects individual microbial taxa in strawberry endosphere but not the microbial community composition. J Appl Microbiol 2023; 134:6987274. [PMID: 36639128 DOI: 10.1093/jambio/lxad006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/30/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
AIMS In a field study, the effects of treatments of glyphosate-based herbicides (GBHs) in soil, alone and in combination with phosphate fertilizer, were examined on the performance and endophytic microbiota of garden strawberry. METHODS AND RESULTS The root and leaf endophytic microbiota of garden strawberries grown in GBH-treated and untreated soil, with and without phosphate fertilizer, were analyzed. Next, bioinformatics analysis on the type of 5-enolpyruvylshikimate-3-phosphate synthase enzyme was conducted to assess the potential sensitivity of strawberry-associated bacteria and fungi to glyphosate, and to compare the results with field observations. GBH treatments altered the abundance and/or frequency of several operational taxonomic units (OTUs), especially those of root-associated fungi and bacteria. These changes were partly related to their sensitivity to glyphosate. Still, GBH treatments did not shape the overall community structure of strawberry microbiota or affect plant performance. Phosphate fertilizer increased the abundance of both glyphosate-resistant and glyphosate-sensitive bacterial OTUs, regardless of the GBH treatments. CONCLUSIONS These findings demonstrate that although the overall community structure of strawberry endophytic microbes is not affected by GBH use, some individual taxa are.
Collapse
Affiliation(s)
- Suni Anie Mathew
- Department of Biology, University of Turku, 20014 Turku, Finland
| | - Benjamin Fuchs
- Biodiversity Unit, University of Turku, 20014 Turku, Finland
| | - Riitta Nissinen
- Department of Biological and Environmental Science, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Marjo Helander
- Department of Biology, University of Turku, 20014 Turku, Finland
| | - Pere Puigbò
- Department of Biology, University of Turku, 20014 Turku, Finland.,Nutrition and Health Unit, Eurecat Technology Centre of Catalonia, 43204 Reus, Catalonia.,Department of Biochemistry and Biotechnology, Rovira i Virgili University, 43007 Tarragona, Catalonia
| | - Kari Saikkonen
- Biodiversity Unit, University of Turku, 20014 Turku, Finland
| | - Anne Muola
- Biodiversity Unit, University of Turku, 20014 Turku, Finland.,Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, 9016 Tromsø, Norway
| |
Collapse
|
31
|
Luo X, Huang G, Bai C, Wang C, Yu Y, Tan Y, Tang C, Kong J, Huang J, Li Z. A versatile platform for colorimetric, fluorescence and photothermal multi-mode glyphosate sensing by carbon dots anchoring ferrocene metal-organic framework nanosheet. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130277. [PMID: 36334570 DOI: 10.1016/j.jhazmat.2022.130277] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 10/10/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Concerns regarding pesticide residues have driven attempts to exploit accurate, prompt and straightforward approaches for food safety pre-warning. Herein, a nanozyme-mediated versatile platform with multiplex signal response (colorimetric, fluorescence and temperature) was proposed for visual, sensitive and portable detection of glyphosate (GLP). The platform was constructed based on a N-CDs/FMOF-Zr nanosensor that prepared by in situ anchoring nitrogen-doped carbon dots onto zirconium-based ferrocene metal-organic framework nanosheets. The N-CDs/FMOF-Zr possessed excellent peroxidase (POD)-like activity and thus could oxide colorless 3, 3', 5, 5'-tetramethylbenzidine (TMB) into a blue oxidized TMB (oxTMB) in presence of H2O2. Intriguingly, owing to the blocking effect triggered by multiple interaction between GLP and N-CDs/FMOF-Zr, its POD-like activity of the latter was remarkably suppressed, which can modulate the transformation of TMB into oxTMB, generating tri-signal responses of fluorescence enhancement, absorbance and temperature decrease. More significantly, the temperature mode can be facilely realized by a portable home-made mini-photothermal device and handheld thermometers. The proposed multimodal sensing was capable of providing sensitive results by fluorescence mode and simultaneously realized visual/portable testing by colorimetric and photothermal channels. Consequently, it exhibited more adaptability for practical applications, which can satisfy different testing requirements according to sensitivity and available instruments/meters, presenting a new horizon for exploiting multifunctional sensors.
Collapse
Affiliation(s)
- Xueli Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Gengli Huang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Chenxu Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Chunyan Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Ying Yu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Youwen Tan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Chenyu Tang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jia Kong
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jihong Huang
- Food and Pharmacy College, Xuchang University, Henan 461000, PR China
| | - Zhonghong Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
32
|
Ma Z, Ma L, Zhou J. Applications of CRISPR/Cas genome editing in economically important fruit crops: recent advances and future directions. MOLECULAR HORTICULTURE 2023; 3:1. [PMID: 37789479 PMCID: PMC10515014 DOI: 10.1186/s43897-023-00049-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/10/2023] [Indexed: 10/05/2023]
Abstract
Fruit crops, consist of climacteric and non-climacteric fruits, are the major sources of nutrients and fiber for human diet. Since 2013, CRISPR/Cas (Clustered Regularly Interspersed Short Palindromic Repeats and CRISPR-Associated Protein) genome editing system has been widely employed in different plants, leading to unprecedented progress in the genetic improvement of many agronomically important fruit crops. Here, we summarize latest advancements in CRISPR/Cas genome editing of fruit crops, including efforts to decipher the mechanisms behind plant development and plant immunity, We also highlight the potential challenges and improvements in the application of genome editing tools to fruit crops, including optimizing the expression of CRISPR/Cas cassette, improving the delivery efficiency of CRISPR/Cas reagents, increasing the specificity of genome editing, and optimizing the transformation and regeneration system. In addition, we propose the perspectives on the application of genome editing in crop breeding especially in fruit crops and highlight the potential challenges. It is worth noting that efforts to manipulate fruit crops with genome editing systems are urgently needed for fruit crops breeding and demonstration.
Collapse
Affiliation(s)
- Zhimin Ma
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, Shandong, China
| | - Lijing Ma
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, Shandong, China
| | - Junhui Zhou
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, Shandong, China.
| |
Collapse
|
33
|
Helander M, Lehtonen TK, Saikkonen K, Despains L, Nyckees D, Antinoja A, Solvi C, Loukola OJ. Field-realistic acute exposure to glyphosate-based herbicide impairs fine-color discrimination in bumblebees. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159298. [PMID: 36216073 DOI: 10.1016/j.scitotenv.2022.159298] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Pollinator decline is a grave challenge worldwide. One of the main culprits for this decline is the widespread use of, and pollinators' chronic exposure to, agrochemicals. Here, we examined the effect of a field-realistic dose of the world's most commonly used pesticide, glyphosate-based herbicide (GBH), on bumblebee cognition. We experimentally tested bumblebee (Bombus terrestris) color and scent discrimination using acute GBH exposure, approximating a field-realistic dose from a day's foraging in a patch recently sprayed with GBH. In a 10-color discrimination experiment with five learning bouts, GBH treated bumblebees' learning rate fell to zero by third learning bout, whereas the control bees increased their performance in the last two bouts. In the memory test, the GBH treated bumblebees performed to near chance level, indicating that they had lost everything they had learned during the learning bouts, while the control bees were performing close to the level in their last learning bout. However, GBH did not affect bees' learning in a 2-color or 10-odor discrimination experiment, which suggests that the impact is limited to fine color learning and does not necessarily generalize to less specific tasks or other modalities. These results indicate that the widely used pesticide damages bumblebees' fine-color discrimination, which is essential to the pollinator's individual success and to colony fitness in complex foraging environments. Hence, our study suggests that acute sublethal exposure to GBH poses a greater threat to pollination-based ecosystem services than previously thought, and that tests for learning and memory should be integrated into pesticide risk assessment.
Collapse
Affiliation(s)
- Marjo Helander
- Department of Biology, University of Turku, FI-20014 Turku, Finland.
| | - Topi K Lehtonen
- Ecology and Genetics Research Unit, University of Oulu, FI-90570 Oulu, Finland; Natural Resources Institute Finland, FI-90570 Oulu, Finland
| | - Kari Saikkonen
- Biodiversity Unit, University of Turku, FI-20014 Turku, Finland
| | - Léo Despains
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, F-31062 Toulouse cedex 9, France
| | - Danae Nyckees
- Laboratory of Entomology, Wageningen University, 6700 AA Wageningen, the Netherlands
| | - Anna Antinoja
- Ecology and Genetics Research Unit, University of Oulu, FI-90570 Oulu, Finland
| | - Cwyn Solvi
- Ecology and Genetics Research Unit, University of Oulu, FI-90570 Oulu, Finland
| | - Olli J Loukola
- Ecology and Genetics Research Unit, University of Oulu, FI-90570 Oulu, Finland
| |
Collapse
|
34
|
Kulcsarova K, Bang C, Berg D, Schaeffer E. Pesticides and the Microbiome-Gut-Brain Axis: Convergent Pathways in the Pathogenesis of Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2023; 13:1079-1106. [PMID: 37927277 PMCID: PMC10657696 DOI: 10.3233/jpd-230206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 11/07/2023]
Abstract
The increasing global burden of Parkinson's disease (PD), termed the PD pandemic, is exceeding expectations related purely to population aging and is likely driven in part by lifestyle changes and environmental factors. Pesticides are well recognized risk factors for PD, supported by both epidemiological and experimental evidence, with multiple detrimental effects beyond dopaminergic neuron damage alone. The microbiome-gut-brain axis has gained much attention in recent years and is considered to be a significant contributor and driver of PD pathogenesis. In this narrative review, we first focus on how both pesticides and the microbiome may influence PD initiation and progression independently, describing pesticide-related central and peripheral neurotoxicity and microbiome-related local and systemic effects due to dysbiosis and microbial metabolites. We then depict the bidirectional interplay between pesticides and the microbiome in the context of PD, synthesizing current knowledge about pesticide-induced dysbiosis, microbiome-mediated alterations in pesticide availability, metabolism and toxicity, and complex systemic pesticide-microbiome-host interactions related to inflammatory and metabolic pathways, insulin resistance and other mechanisms. An overview of the unknowns follows, and the role of pesticide-microbiome interactions in the proposed body-/brain-first phenotypes of PD, the complexity of environmental exposures and gene-environment interactions is discussed. The final part deals with possible further steps for translation, consisting of recommendations on future pesticide use and research as well as an outline of promising preventive/therapeutic approaches targeted on strengthening or restoring a healthy gut microbiome, closing with a summary of current gaps and future perspectives in the field.
Collapse
Affiliation(s)
- Kristina Kulcsarova
- Department of Neurology, P. J. Safarik University, Kosice, Slovak Republic
- Department of Neurology, L. Pasteur University Hospital, Kosice, Slovak Republic
- Department of Clinical Neurosciences, University Scientific Park MEDIPARK, P. J. Safarik University, Kosice, Slovak Republic
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Daniela Berg
- Department of Neurology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Eva Schaeffer
- Department of Neurology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
35
|
Ruuskanen S, Fuchs B, Nissinen R, Puigbò P, Rainio M, Saikkonen K, Helander M. Ecosystem consequences of herbicides: the role of microbiome. Trends Ecol Evol 2023; 38:35-43. [PMID: 36243622 DOI: 10.1016/j.tree.2022.09.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 12/14/2022]
Abstract
Non-target organisms are globally exposed to herbicides. While many herbicides - for example, glyphosate - were initially considered safe, increasing evidence demonstrates that they have profound effects on ecosystem functions via altered microbial communities. We provide a comprehensive framework on how herbicide residues may modulate ecosystem-level outcomes via alteration of microbiomes. The changes in soil microbiome are likely to influence key nutrient cycling and plant-soil processes. Herbicide-altered microbiome affects plant and animal performance and can influence trophic interactions such as herbivory and pollination. These changes are expected to lead to ecosystem and even evolutionary consequences for both microbes and hosts. Tackling the threats caused by agrochemicals to ecosystem functions and services requires tools and solutions based on a comprehensive understanding of microbe-mediated risks.
Collapse
Affiliation(s)
- Suvi Ruuskanen
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014 Jyväskylä, Finland; Department of Biology, University of Turku, FI-20014 Turku, Finland.
| | - Benjamin Fuchs
- Biodiversity Unit, University of Turku, FI-20014 Turku, Finland
| | - Riitta Nissinen
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Pere Puigbò
- Department of Biology, University of Turku, FI-20014 Turku, Finland; Nutrition and Health Unit, Eurecat Technology Centre of Catalonia, Reus, Catalonia, Spain; Department of Biochemistry and Biotechnology, Rovira I Virgili University, Tarragona, Catalonia, Spain
| | - Miia Rainio
- Department of Biology, University of Turku, FI-20014 Turku, Finland
| | - Kari Saikkonen
- Biodiversity Unit, University of Turku, FI-20014 Turku, Finland
| | - Marjo Helander
- Department of Biology, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
36
|
Fuchs B, Saikkonen K, Helander M, Tian Y, Yang B, Engström MT, Salminen JP, Muola A. Legacy of agrochemicals in the circular food economy: Glyphosate-based herbicides introduced via manure fertilizer affect the yield and biochemistry of perennial crop plants during the following year. CHEMOSPHERE 2022; 308:136366. [PMID: 36113650 DOI: 10.1016/j.chemosphere.2022.136366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/23/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Conventional agricultural practices favoring the use of glyphosate-based herbicides (GBHs) increase the risk of GBH residues ending up in animal feed, feces, and, eventually, manure. The use of poultry manure as organic fertilizer in the circular food economy increases the unintentional introduction of GBH residues into horticultural and agricultural systems, with reportedly negative effects on the growth and reproduction of crop plants. To understand the potential lasting effects of exposure to GBH residues via organic manure fertilizers, we studied strawberry (Fragaria x vescana) plant performance, yield quantity, biochemistry, folivory, phytochemistry, and soil elemental composition the year after exposure to GBH. Although plants exposed to GBH residues via manure fertilizer were, on average, 23% smaller in the year of exposure, they were able to compensate for their growth during the following growing season. Interestingly, GBH residue exposure in the previous growing season led to a trend in altered plant size preferences of folivores during the following growing season. Furthermore, the plants that had been exposed to GBH residues in the previous growing season produced 20% heavier fruits with an altered composition of phenolic compounds compared to non-exposed plants. Our results indicate that GBHs introduced via manure fertilizer following circular economy practices in one year can have effects on perennial crop plants in the following year, although GBH residues in soil have largely vanished.
Collapse
Affiliation(s)
- Benjamin Fuchs
- Biodiversity Unit, University of Turku, FI-20014, Turku, Finland.
| | - Kari Saikkonen
- Biodiversity Unit, University of Turku, FI-20014, Turku, Finland
| | - Marjo Helander
- Department of Biology, University of Turku, FI-20014, Turku, Finland
| | - Ye Tian
- Food Sciences, Department of Life Technologies, University of Turku, FI-20014, Turku, Finland
| | - Baoru Yang
- Food Sciences, Department of Life Technologies, University of Turku, FI-20014, Turku, Finland
| | - Marica T Engström
- Natural Chemistry Research Group, Department of Chemistry, FI-20014, University of Turku, Finland
| | - Juha-Pekka Salminen
- Natural Chemistry Research Group, Department of Chemistry, FI-20014, University of Turku, Finland
| | - Anne Muola
- Biodiversity Unit, University of Turku, FI-20014, Turku, Finland; Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| |
Collapse
|
37
|
Mesnage R, Panzacchi S, Bourne E, Mein CA, Perry MJ, Hu J, Chen J, Mandrioli D, Belpoggi F, Antoniou MN. Glyphosate and its formulations Roundup Bioflow and RangerPro alter bacterial and fungal community composition in the rat caecum microbiome. Front Microbiol 2022; 13:888853. [PMID: 36274693 PMCID: PMC9580462 DOI: 10.3389/fmicb.2022.888853] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/11/2022] [Indexed: 11/20/2022] Open
Abstract
The potential health consequences of glyphosate-induced gut microbiome alterations have become a matter of intense debate. As part of a multifaceted study investigating toxicity, carcinogenicity and multigenerational effects of glyphosate and its commercial herbicide formulations, we assessed changes in bacterial and fungal populations in the caecum microbiota of rats exposed prenatally until adulthood (13 weeks after weaning) to three doses of glyphosate (0.5, 5, 50 mg/kg body weight/day), or to the formulated herbicide products Roundup Bioflow and RangerPro at the same glyphosate-equivalent doses. Caecum bacterial microbiota were evaluated by 16S rRNA sequencing whilst the fungal population was determined by ITS2 amplicon sequencing. Results showed that both fungal and bacterial diversity were affected by the Roundup formulations in a dose-dependent manner, whilst glyphosate alone significantly altered only bacterial diversity. At taxa level, a reduction in Bacteroidota abundance, marked by alterations in the levels of Alloprevotella, Prevotella and Prevotellaceae UCG-003, was concomitant to increased levels of Firmicutes (e.g., Romboutsia, Dubosiella, Eubacterium brachy group or Christensenellaceae) and Actinobacteria (e.g., Enterorhabdus, Adlercreutzia, or Asaccharobacter). Treponema and Mycoplasma also had their levels reduced by the pesticide treatments. Analysis of fungal composition indicated that the abundance of the rat gut commensal Ascomycota Kazachstania was reduced while the abundance of Gibberella, Penicillium, Claviceps, Cornuvesica, Candida, Trichoderma and Sarocladium were increased by exposure to the Roundup formulations, but not to glyphosate. Altogether, our data suggest that glyphosate and its Roundup RangerPro and Bioflow caused profound changes in caecum microbiome composition by affecting the fitness of major commensals, which in turn reduced competition and allowed opportunistic fungi to grow in the gut, in particular in animals exposed to the herbicide formulations. This further indicates that changes in gut microbiome composition might influence the long-term toxicity, carcinogenicity and multigenerational effects of glyphosate-based herbicides.
Collapse
Affiliation(s)
- Robin Mesnage
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, Gene Expression and Therapy Group, King's College London, Guy's Hospital, London, United Kingdom
| | | | - Emma Bourne
- Genome Centre, Barts and the London School of Medicine and Dentistry, Blizard Institute, London, United Kingdom
| | - Charles A. Mein
- Genome Centre, Barts and the London School of Medicine and Dentistry, Blizard Institute, London, United Kingdom
| | - Melissa J. Perry
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, DC, United States
| | - Jianzhong Hu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jia Chen
- Department of Environmental Medicine and Public Heath, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | | | - Michael N. Antoniou
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, Gene Expression and Therapy Group, King's College London, Guy's Hospital, London, United Kingdom
- *Correspondence: Michael N. Antoniou,
| |
Collapse
|
38
|
Buekers J, Remy S, Bessems J, Govarts E, Rambaud L, Riou M, Halldorsson TI, Ólafsdóttir K, Probst-Hensch N, Ammann P, Weber T, Kolossa-Gehring M, Esteban-López M, Castaño A, Andersen HR, Schoeters G. Glyphosate and AMPA in Human Urine of HBM4EU-Aligned Studies: Part B Adults. TOXICS 2022; 10:552. [PMID: 36287833 PMCID: PMC9612135 DOI: 10.3390/toxics10100552] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 05/26/2023]
Abstract
Within HBM4EU, human biomonitoring (HBM) studies measuring glyphosate (Gly) and aminomethylphosphonic acid (AMPA) in urine samples from the general adult population were aligned and quality-controlled/assured. Data from four studies (ESB Germany (2015-2020); Swiss HBM4EU study (2020); DIET-HBM Iceland (2019-2020); ESTEBAN France (2014-2016)) were included representing Northern and Western Europe. Overall, median values were below the reported quantification limits (LOQs) (0.05-0.1 µg/L). The 95th percentiles (P95) ranged between 0.24 and 0.37 µg/L urine for Gly and between 0.21 and 0.38 µg/L for AMPA. Lower values were observed in adults compared to children. Indications exist for autonomous sources of AMPA in the environment. As for children, reversed dosimetry calculations based on HBM data in adults did not lead to exceedances of the ADI (proposed acceptable daily intake of EFSA for Gly 0.1 mg/kg bw/day based on histopathological findings in the salivary gland of rats) indicating no human health risks in the studied populations at the moment. However, the controversy on carcinogenicity, potential endocrine effects and the absence of a group ADI for Gly and AMPA induce uncertainty to the risk assessment. Exposure determinant analysis showed few significant associations. More data on specific subgroups, such as those occupationally exposed or living close to agricultural fields or with certain consumption patterns (vegetarian, vegan, organic food, high cereal consumer), are needed to evaluate major exposure sources.
Collapse
Affiliation(s)
- Jurgen Buekers
- Unit Health, VITO, Flemish Institute for Technological Research, 2400 Mol, Belgium
| | - Sylvie Remy
- Unit Health, VITO, Flemish Institute for Technological Research, 2400 Mol, Belgium
| | - Jos Bessems
- Unit Health, VITO, Flemish Institute for Technological Research, 2400 Mol, Belgium
| | - Eva Govarts
- Unit Health, VITO, Flemish Institute for Technological Research, 2400 Mol, Belgium
| | - Loïc Rambaud
- Department of Environmental and Occupational Health, Santé Publique France, 94415 Saint-Maurice, France
| | - Margaux Riou
- Department of Environmental and Occupational Health, Santé Publique France, 94415 Saint-Maurice, France
| | | | | | - Nicole Probst-Hensch
- Swiss Tropical and Public Health institute, 4123 Allschwil, Switzerland
- Department of Public Health, University of Basel, 4056 Basel, Switzerland
| | - Priska Ammann
- Swiss Tropical and Public Health institute, 4123 Allschwil, Switzerland
- Department of Public Health, University of Basel, 4056 Basel, Switzerland
| | - Till Weber
- German Environment Agency (UBA), 06844 Dessau-Roßlau, Germany
| | | | - Marta Esteban-López
- Instituto de Salud Carlos III, National Centre for Environmental Health, 28220 Madrid, Spain
| | - Argelia Castaño
- Instituto de Salud Carlos III, National Centre for Environmental Health, 28220 Madrid, Spain
| | - Helle Raun Andersen
- Department of Public Health, University of Southern Denmark, 5000 Odense, Denmark
| | - Greet Schoeters
- Unit Health, VITO, Flemish Institute for Technological Research, 2400 Mol, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
39
|
Mohammadi K, Sani MA, Safaei P, Rahmani J, Molaee-Aghaee E, Jafari SM. A systematic review and meta-analysis of the impacts of glyphosate on the reproductive hormones. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62030-62041. [PMID: 34453247 DOI: 10.1007/s11356-021-16145-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Worldwide use of glyphosate is constantly increasing and its residues are detected in drinking water, agriculture, and food products. There are controversial data regarding the potential reproductive adverse effects of glyphosate herbicide. Therefore, we conducted a systematic review and meta-analysis on the studies in which the alteration of at least one sexual hormone including testosterone, luteinizing hormone (LH), follicle-stimulating hormone (FSH), and estradiol was reported as a measured outcome in rats. In November 2020, 284 articles were screened, of which eight were eligible for the meta-analysis. An overall considerable effect of glyphosate exposure was found on decreasing of testosterone (7 studies, WMD = - 1.48 ng/mL; 95% CI, - 2.34 to - 0.61; P = 0.001), LH (3 studies, WMD = - 2.03 mIu/mL; 95% CI, - 3.34 to - 0.71; P = 0.003), and FSH (3 studies, WMD = - 2.28 mIu/mL; 95% CI, - 5.12 to 0.55; P = 0.115). According to our results, glyphosate intake could have major effects on the health of reproductive system. Consequently, strict monitoring of the residual glyphosate content in the drinking water, agricultural crops, and food products is necessary.
Collapse
Affiliation(s)
- Keyhan Mohammadi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Alizadeh Sani
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Heath, Tehran University of Medical Sciences, Tehran, Iran
| | - Payam Safaei
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Heath, Tehran University of Medical Sciences, Tehran, Iran
| | - Jamal Rahmani
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ebrahim Molaee-Aghaee
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Heath, Tehran University of Medical Sciences, Tehran, Iran
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
40
|
Bellec L, Le Du-Carré J, Almeras F, Durand L, Cambon-Bonavita MA, Danion M, Morin T. Glyphosate-based herbicide exposure: effects on gill microbiota of rainbow trout (Oncorhynchus mykiss) and the aquatic bacterial ecosystem. FEMS Microbiol Ecol 2022; 98:fiac076. [PMID: 35749560 DOI: 10.1093/femsec/fiac076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/28/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
The herbicide glyphosate has been widely used in the past 40 years, under the assumption that side effects were minimal. In recent years, its impact on microbial compositions and potential indirect effects on plant, animal and human health have been strongly suspected. Glyphosate and co-formulates have been detected in various water sources, but our understanding of their potential effects on aquatic animals is still in its infancy compared with mammals. In this study, we investigated the effect of chronic exposure to an environmentally relevant concentration of glyphosate on bacterial communities of rainbow trout (Oncorhynchus mykiss). Gills, gut contents and gut epithelia were then analyzed by metabarcoding targeting the 16S rRNA gene. Our results revealed that rainbow trout has its own bacterial communities that differ from their surrounding habitats and possess microbiomes specific to these three compartments. The glyphosate-based herbicide treatment significantly affected the gill microbiome, with a decrease in diversity. Glyphosate treatments disrupted microbial taxonomic composition and some bacteria seem to be sensitive to this environmental pollutant. Lastly, co-occurrence networks showed that microbial interactions in gills tended to decrease with chemical exposure. These results demonstrate that glyphosate could affect microbiota associated with aquaculture fish.
Collapse
Affiliation(s)
- Laure Bellec
- University of Bordeaux - UMR EPOC 5805 CNRS - Aquatic Ecotoxicology team - Place du Dr Peyneau, F-33120 Arcachon, France
| | - Jessy Le Du-Carré
- ANSES, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail - Laboratoire de Ploufragan-Plouzané-Niort, Unité Virologie, immunologie et écotoxicologie des poissons, F-29280 Plouzané, France
| | - Fabrice Almeras
- ANSES, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail - Laboratoire de Ploufragan-Plouzané-Niort, Unité Virologie, immunologie et écotoxicologie des poissons, F-29280 Plouzané, France
| | - Lucile Durand
- University of Brest, Ifremer, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, F-29280 Plouzané, France
| | - Marie-Anne Cambon-Bonavita
- University of Brest, Ifremer, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, F-29280 Plouzané, France
| | - Morgane Danion
- ANSES, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail - Laboratoire de Ploufragan-Plouzané-Niort, Unité Virologie, immunologie et écotoxicologie des poissons, F-29280 Plouzané, France
| | - Thierry Morin
- ANSES, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail - Laboratoire de Ploufragan-Plouzané-Niort, Unité Virologie, immunologie et écotoxicologie des poissons, F-29280 Plouzané, France
| |
Collapse
|
41
|
Rethinking the Intrinsic Sensitivity of Fungi to Glyphosate. BIOTECH 2022; 11:biotech11030028. [PMID: 35892933 PMCID: PMC9394408 DOI: 10.3390/biotech11030028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/13/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
The 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS) is the central enzyme of the shikimate pathway to synthesize the three aromatic amino acids in fungi, plants, and prokaryotes. This enzyme is the target of the herbicide glyphosate. In most plants and prokaryotes, the EPSPS protein is constituted by a single domain family, the EPSP synthase (PF00275) domain, whereas in fungi, the protein is formed by a multi-domain structure from combinations of 22 EPSPS-associated domains. The most common multi-domain EPSPS structure in fungi involves five EPSPS-associated domains of the shikimate pathway. In this article, we analyze 390 EPSPS proteins of fungi to determine the extent of the EPSPS-associated domains. Based on the current classification of the EPSPS protein, most fungal species are intrinsically sensitive to glyphosate. However, complex domain architectures may have multiple responses to the herbicide. Further empirical studies are needed to determine the effect of glyphosate on fungi, taking into account the diversity of multi-domain architectures of the EPSPS. This research opens the door to novel biotechnological applications for microbial degradation of glyphosate.
Collapse
|
42
|
Gama J, Neves B, Pereira A. Chronic Effects of Dietary Pesticides on the Gut Microbiome and Neurodevelopment. Front Microbiol 2022; 13:931440. [PMID: 35847088 PMCID: PMC9279132 DOI: 10.3389/fmicb.2022.931440] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Many agricultural pesticides include substances that are known to be harmful to human health and while some have been banned from developed countries, they are still being used in developing countries such as Brazil. Recent studies have shown that low-level chronic dietary exposure to pesticides can affect the human gut microbiota. This possible hazardous effect of pesticides on human health has not been specifically recognized by government regulatory agencies. In Brazil, for instance, of the 10 best-selling active ingredients in pesticides in 2019, two are considered extremely toxic, Paraquat and Chlorpyrifos. Even though Paraquat has been banned in Brazil since 2020, the values of maximum residue limits (MRLs) of toxic pesticides allowed in the country are still higher than in other countries. Unfortunately, many developing countries still lack the resources and expertise needed to monitor adequately and systematically the presence of pesticide residues on food. In this work, we raise awareness to the danger the chronic exposure to high dietary levels of pesticides can pose to the public, especially considering their prolonged effects on the gut microbiome.
Collapse
Affiliation(s)
- Jessica Gama
- Graduate Program in Neuroscience and Cell Biology, Federal University of Pará, Belém, Brazil
| | - Bianca Neves
- Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antonio Pereira
- Graduate Program in Neuroscience and Cell Biology, Federal University of Pará, Belém, Brazil
- Institute of Technology, Federal University of Pará, Belém, Brazil
| |
Collapse
|
43
|
|
44
|
Frlan R. An Evolutionary Conservation and Druggability Analysis of Enzymes Belonging to the Bacterial Shikimate Pathway. Antibiotics (Basel) 2022; 11:antibiotics11050675. [PMID: 35625318 PMCID: PMC9137983 DOI: 10.3390/antibiotics11050675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/25/2022] Open
Abstract
Enzymes belonging to the shikimate pathway have long been considered promising targets for antibacterial drugs because they have no counterpart in mammals and are essential for bacterial growth and virulence. However, despite decades of research, there are currently no clinically relevant antibacterial drugs targeting any of these enzymes, and there are legitimate concerns about whether they are sufficiently druggable, i.e., whether they can be adequately modulated by small and potent drug-like molecules. In the present work, in silico analyses combining evolutionary conservation and druggability are performed to determine whether these enzymes are candidates for broad-spectrum antibacterial therapy. The results presented here indicate that the substrate-binding sites of most enzymes in this pathway are suitable drug targets because of their reasonable conservation and druggability scores. An exception was the substrate-binding site of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase, which was found to be undruggable because of its high content of charged residues and extremely high overall polarity. Although the presented study was designed from the perspective of broad-spectrum antibacterial drug development, this workflow can be readily applied to any antimicrobial target analysis, whether narrow- or broad-spectrum. Moreover, this research also contributes to a deeper understanding of these enzymes and provides valuable insights into their properties.
Collapse
Affiliation(s)
- Rok Frlan
- The Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
45
|
Puigbò P, Leino LI, Rainio MJ, Saikkonen K, Saloniemi I, Helander M. Does Glyphosate Affect the Human Microbiota? Life (Basel) 2022; 12:life12050707. [PMID: 35629374 PMCID: PMC9145961 DOI: 10.3390/life12050707] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 12/17/2022] Open
Abstract
Glyphosate is the world’s most widely used agrochemical. Its use in agriculture and gardening has been proclaimed safe because humans and other animals do not have the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). However, increasing numbers of studies have demonstrated risks to humans and animals because the shikimate metabolic pathway is present in many microbes. Here, we assess the potential effect of glyphosate on healthy human microbiota. Our results demonstrate that more than one-half of human microbiome are intrinsically sensitive to glyphosate. However, further empirical studies are needed to determine the effect of glyphosate on healthy human microbiota.
Collapse
Affiliation(s)
- Pere Puigbò
- Department of Biology, University of Turku, 20500 Turku, Finland; (L.I.L.); (M.J.R.); (I.S.); (M.H.)
- Nutrition and Health Unit, Eurecat Technology Centre of Catalonia, 43204 Reus, Catalonia, Spain
- Department of Biochemistry and Biotechnology, Rovira i Virgili University, 43007 Tarragona, Catalonia, Spain
- Correspondence:
| | - Lyydia I. Leino
- Department of Biology, University of Turku, 20500 Turku, Finland; (L.I.L.); (M.J.R.); (I.S.); (M.H.)
| | - Miia J. Rainio
- Department of Biology, University of Turku, 20500 Turku, Finland; (L.I.L.); (M.J.R.); (I.S.); (M.H.)
| | - Kari Saikkonen
- Biodiversity Unit, University of Turku, 20500 Turku, Finland;
| | - Irma Saloniemi
- Department of Biology, University of Turku, 20500 Turku, Finland; (L.I.L.); (M.J.R.); (I.S.); (M.H.)
| | - Marjo Helander
- Department of Biology, University of Turku, 20500 Turku, Finland; (L.I.L.); (M.J.R.); (I.S.); (M.H.)
| |
Collapse
|
46
|
Brede M, Haange SB, Riede S, Engelmann B, Jehmlich N, Rolle-Kampzczyk U, Rohn K, von Soosten D, von Bergen M, Breves G. Effects of Different Formulations of Glyphosate on Rumen Microbial Metabolism and Bacterial Community Composition in the Rumen Simulation Technique System. Front Microbiol 2022; 13:873101. [PMID: 35572709 PMCID: PMC9100596 DOI: 10.3389/fmicb.2022.873101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
The use of the herbicide glyphosate and its formulations on protein-rich feedstuff for cattle leads to a considerable intake of glyphosate into the rumen of the animals, where glyphosate may potentially impair the 5-enolpyruvylshikimate-3-phosphate pathway of the commensal microbiota, which could cause dysbiosis or proliferation of pathogenic microorganisms. Here, we evaluated the effects of pure glyphosate and the formulations Durano TF and Roundup® LB plus in different concentrations on the fermentation pattern, community composition and metabolic activity of the rumen microbiota using the Rumen Simulation Technique (RUSITEC). Application of the compounds in three concentrations (0.1 mg/l, 1.0 mg/l or 10 mg/l, n = 4 each) for 9 days did not affect fermentation parameters such as pH, redox potential, NH3-N concentration and production of short-chain fatty acids compared to a control group. Microbial protein synthesis and the degradation of different feed fractions did not vary among the treatments. None of the used compounds or concentrations did affect the microbial diversity or abundance of microbial taxa. Metaproteomics revealed that the present metabolic pathways including the shikimate pathway were not affected by addition of glyphosate, Durano TF or Roundup® LB plus. In conclusion, neither pure glyphosate, nor its formulations Durano TF and Roundup® LB plus did affect the bacterial communities of the rumen.
Collapse
Affiliation(s)
- Melanie Brede
- Institute for Physiology and Cell Biology, University of Veterinary Medicine, Hannover, Germany
- *Correspondence: Melanie Brede,
| | - Sven-Bastiaan Haange
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
- Sven-Bastiaan Haange,
| | - Susanne Riede
- Institute for Physiology and Cell Biology, University of Veterinary Medicine, Hannover, Germany
| | - Beatrice Engelmann
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Ulrike Rolle-Kampzczyk
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Karl Rohn
- Institute for Biometry, Epidemiology and Information Processing, University of Veterinary Medicine, Hannover, Germany
| | - Dirk von Soosten
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Brunswick, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Faculty of Life Sciences, Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Gerhard Breves
- Institute for Physiology and Cell Biology, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
47
|
Barbosa da Costa N, Hébert MP, Fugère V, Terrat Y, Fussmann GF, Gonzalez A, Shapiro BJ. A Glyphosate-Based Herbicide Cross-Selects for Antibiotic Resistance Genes in Bacterioplankton Communities. mSystems 2022; 7:e0148221. [PMID: 35266795 PMCID: PMC9040730 DOI: 10.1128/msystems.01482-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/17/2022] [Indexed: 01/22/2023] Open
Abstract
Agrochemicals often contaminate freshwater bodies, affecting microbial communities that underlie aquatic food webs. For example, the herbicide glyphosate has the potential to indirectly select for antibiotic-resistant bacteria. Such cross-selection could occur if the same genes (encoding efflux pumps, for example) confer resistance to both glyphosate and antibiotics. To test for cross-resistance in natural aquatic bacterial communities, we added a glyphosate-based herbicide (GBH) to 1,000-liter mesocosms filled with water from a pristine lake. Over 57 days, we tracked changes in bacterial communities with shotgun metagenomic sequencing and annotated metagenome-assembled genomes (MAGs) for the presence of known antibiotic resistance genes (ARGs), plasmids, and resistance mutations in the enzyme targeted by glyphosate (enolpyruvyl-shikimate-3-phosphate synthase; EPSPS). We found that high doses of GBH significantly increased ARG frequency and selected for multidrug efflux pumps in particular. The relative abundance of MAGs after a high dose of GBH was predictable based on the number of ARGs in their genomes (17% of variation explained) and, to a lesser extent, by resistance mutations in EPSPS. Together, these results indicate that GBHs can cross-select for antibiotic resistance in natural freshwater bacteria. IMPORTANCE Glyphosate-based herbicides (GBHs) such as Roundup formulations may have the unintended consequence of selecting for antibiotic resistance genes (ARGs), as demonstrated in previous experiments. However, the effects of GBHs on ARGs remain unknown in natural aquatic communities, which are often contaminated with pesticides from agricultural runoff. Moreover, the resistance provided by ARGs compared to canonical mutations in the glyphosate target enzyme, EPSPS, remains unclear. Here, we performed a freshwater mesocosm experiment showing that a GBH strongly selects for ARGs, particularly multidrug efflux pumps. These selective effects were evident after just a few days, and the ability of bacteria to survive and thrive after GBH stress was predictable by the number of ARGs in their genomes and, to a lesser extent, by mutations in EPSPS. Intensive GBH application may therefore have the unintended consequence of selecting for ARGs in natural freshwater communities.
Collapse
Affiliation(s)
- Naíla Barbosa da Costa
- Département des Sciences Biologiques, Université de Montréal, Montreal, Canada
- Groupe de Recherche Interuniversitaire en Limnologie et Environnement Aquatique (GRIL), Montreal, Canada
| | - Marie-Pier Hébert
- Groupe de Recherche Interuniversitaire en Limnologie et Environnement Aquatique (GRIL), Montreal, Canada
- Department of Biology, McGill University, Montreal, Canada
| | - Vincent Fugère
- Groupe de Recherche Interuniversitaire en Limnologie et Environnement Aquatique (GRIL), Montreal, Canada
- Québec Centre for Biodiversity Science (QCBS), Montreal, Canada
- Département des Sciences de l’Environnement, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Yves Terrat
- Département des Sciences Biologiques, Université de Montréal, Montreal, Canada
| | - Gregor F. Fussmann
- Groupe de Recherche Interuniversitaire en Limnologie et Environnement Aquatique (GRIL), Montreal, Canada
- Department of Biology, McGill University, Montreal, Canada
- Québec Centre for Biodiversity Science (QCBS), Montreal, Canada
| | - Andrew Gonzalez
- Department of Biology, McGill University, Montreal, Canada
- Québec Centre for Biodiversity Science (QCBS), Montreal, Canada
| | - B. Jesse Shapiro
- Département des Sciences Biologiques, Université de Montréal, Montreal, Canada
- Groupe de Recherche Interuniversitaire en Limnologie et Environnement Aquatique (GRIL), Montreal, Canada
- Québec Centre for Biodiversity Science (QCBS), Montreal, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
- McGill Genome Centre, McGill University, Montreal, Canada
| |
Collapse
|
48
|
Barnett JA, Bandy ML, Gibson DL. Is the Use of Glyphosate in Modern Agriculture Resulting in Increased Neuropsychiatric Conditions Through Modulation of the Gut-brain-microbiome Axis? Front Nutr 2022; 9:827384. [PMID: 35356729 PMCID: PMC8959108 DOI: 10.3389/fnut.2022.827384] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Environmental exposure to glyphosate and glyphosate-based herbicides has the potential to negatively influence neurodevelopment and behavior across generations indirectly through the gut-brain-microbiome axis. Potential mechanisms by which glyphosate may elicit these effects are through the disruption of the normally symbiotic relationship of the host and the gut microbiome. Given glyphosate can kill commensal members of the microbiome like Lactobacillus spp., Ruminococaeae and Butyricoccus spp., resulting in reductions in key microbial metabolites that act through the gut-brain-microbiome axis including indoles, L-glutamate and SCFAs. Glyphosate- resistant microbes in the gut have the potential to increase the production of pro-inflammatory cytokines and reactive oxygen species which may result in increased HPA activation, resulting in increased production of glucocorticoids which have implications on neurodevelopment. In addition, maternal transfer of the gut microbiome can affect immune and neurodevelopment, across generations. This perspective article weighs the evidence for chronic glyphosate exposure on the gut microbiome and the potential consequences on the gut-brain axis correlated with increased incidence of neuropsychiatric conditions.
Collapse
Affiliation(s)
| | - Maya L. Bandy
- Department of Biology, The University of British Columbia, Kelowna, BC, Canada
| | - Deanna L. Gibson
- Department of Biology, The University of British Columbia, Kelowna, BC, Canada
- Department of Medicine, Faculty of Medicine, The University of British Columbia, Kelowna, BC, Canada
- *Correspondence: Deanna L. Gibson
| |
Collapse
|
49
|
Giambò F, Costa C, Teodoro M, Fenga C. Role-Playing Between Environmental Pollutants and Human Gut Microbiota: A Complex Bidirectional Interaction. Front Med (Lausanne) 2022; 9:810397. [PMID: 35252248 PMCID: PMC8888443 DOI: 10.3389/fmed.2022.810397] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
There is a growing interest in the characterization of the involvement of toxicant and pollutant exposures in the development and the progression of several diseases such as obesity, diabetes, cancer, as well as in the disruption of the immune and reproductive homeostasis. The gut microbiota is considered a pivotal player against the toxic properties of chemicals with the establishment of a dynamic bidirectional relationship, underlining the toxicological significance of this mutual interplay. In fact, several environmental chemicals have been demonstrated to affect the composition, the biodiversity of the intestinal microbiota together with the underlining modulated metabolic pathways, which may play an important role in tailoring the microbiotype of an individual. In this review, we aimed to discuss the latest updates concerning the environmental chemicals–microbiota dual interaction, toward the identification of a distinctiveness of the gut microbial community, which, in turn, may allow to adopt personalized preventive strategies to improve risk assessment for more susceptible workers.
Collapse
Affiliation(s)
- Federica Giambò
- Occupational Medicine Section, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Chiara Costa
- Clinical and Experimental Medicine Department, University of Messina, Messina, Italy
| | - Michele Teodoro
- Occupational Medicine Section, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Concettina Fenga
- Occupational Medicine Section, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| |
Collapse
|
50
|
Ruszkowski M, Forlani G. Deciphering the Structure of Arabidopsis thaliana 5-enol-Pyruvyl-Shikimate-3-Phosphate Synthase: an Essential Step toward the Discovery of Novel Inhibitors to Supersede Glyphosate. Comput Struct Biotechnol J 2022; 20:1494-1505. [PMID: 35422967 PMCID: PMC8983318 DOI: 10.1016/j.csbj.2022.03.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 11/19/2022] Open
Abstract
Glyphosate interferes with plant aromatic metabolism through the inhibition of 5-enol-pyruvyl-shikimate-3-phosphate (EPSP) synthase [EPSPS, EC 2.5.1.19]. For this reason, EPSPS has been extensively studied in a vast array of organisms. This notwithstanding, up to date, the crystal structure of the protein has been solved exclusively in a few prokaryotes, while that of the plant enzyme has been only deduced in silico by similarity. This study aimed at determining the structure of EPSPS from the plant model species Arabidopsis thaliana, which has been cloned, heterologously expressed and affinity-purified. The kinetic properties of the enzyme have been determined, as well as its susceptibility to the inhibition brought about by glyphosate. The crystal structure of the protein has been resolved at high resolution (1.4 Å), showing open conformation of the enzyme, which is the state ready for substrate/inhibitor binding. This provides a framework for the structure-based design of novel EPSPS inhibitors. Surface regions near the active-site cleft entrance or at the interdomain hinge appear promising for inhibitor selectivity, while bound chloride near the active site is a potential placeholder for anionic moieties of future herbicides.
Collapse
Affiliation(s)
- Milosz Ruszkowski
- Department of Structural Biology of Eukaryotes, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Synchrotron Radiation Research Section of MCL, National Cancer Institute, Argonne, IL, USA
- Corresponding author at: Department of Structural Biology of Eukaryotes, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.
| | - Giuseppe Forlani
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|