1
|
Liu B, Chen J, You Y, Sun M. Cyclic removal and destruction of per- and polyfluoroalkyl substances from water using ion exchange, resin regeneration, and UV/sulfite reduction. WATER RESEARCH 2025; 272:122915. [PMID: 39657560 DOI: 10.1016/j.watres.2024.122915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 12/12/2024]
Abstract
Ion exchange (IX) can effectively remove per- and poly-fluoroalkyl substances (PFAS) from drinking water sources at ng/L to µg/L levels. However, adsorbed PFAS on spent resins should be further destructed for detoxification. Traditional resin incineration or landfilling may cause secondary pollution to the surrounding environment and cannot achieve resin reuse. This study explored three variations of a PFAS treatment train, aiming to completely defluorinate PFAS with different chain lengths and functional groups at environmentally relevant levels (ng/L) and to reuse the resins and solvents. The optimized treatment train includes IX, resin regeneration with 5 wt% NaCl and 60 % v/v methanol, distillation of waste regenerant, and advanced reduction by hydrated electrons (eaq-) generated during the ultraviolet/sulfite (UV/sulfite) treatment of still bottoms. Such a treatment train achieved nearly 100 % PFAS removal from surface water and groundwater using either PFAS-specific or generic resins, and almost 100 % defluorination of PFAS except a few short-chain fluorinated sulfonates and ethers. Regenerated resins had comparable PFAS removal to the pristine resins over three cycles. The generic resins (e.g., Dupont AmberLite™ IRA910) are easier to regenerate and thus are recommended for the treatment train over PFAS-selective resins (e.g., Purofine® PFA694E). Direct heterogenous defluorination on resins loaded with perfluorooctane sulfonate (PFOS) was ineffective, potentially due to the consumption of UV light/eaq- by the resins and insufficient contact between the UV light/eaq- with PFOS on the resin surface. Distillation of the waste regenerant successfully concentrated PFAS in the still bottoms, reduced the waste volume, and removed excess methanol, all essential for effective UV/sulfite treatment. Meanwhile, the produced condensate with high methanol contents and low PFAS levels can be reused for the next regeneration cycle. Findings from this study provide a timely and sustainable solution to the stringent and evolving regulations on PFAS and the resultant production of PFAS-laden resins as hazardous wastes.
Collapse
Affiliation(s)
- Bingchuan Liu
- Department of Civil and Environmental Engineering, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
| | - Jinchen Chen
- Department of Civil and Environmental Engineering, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Yingying You
- Department of Civil and Environmental Engineering, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Mei Sun
- Department of Civil and Environmental Engineering, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| |
Collapse
|
2
|
Cunha M, Nardi A, Soares AMVM, Gil AM, Freitas R. Revealing hidden risks: in vitro analysis of PFAS hazards in Mytilus galloprovincialis gills and digestive gland. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136823. [PMID: 39694002 DOI: 10.1016/j.jhazmat.2024.136823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/04/2024] [Accepted: 12/07/2024] [Indexed: 12/20/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals known for their persistence and bioaccumulation, leading to widespread environmental contamination. Despite their recognised environmental risks, particularly to aquatic wildlife, including marine invertebrates, detailed impact studies are limited. PFAS can be categorised according to the length of the compound chain, with short-chain PFAS announced as a safer alternative to the more commonly used long-chain PFAS. However, recent evidence suggests that also short-chain PFAS pose significant environmental risks. The present study evaluated the adverse effects of six PFAS compounds-two short-chain (PFHxA, 6:2 FTA) and four long-chain (PFUnDA, PFDoA, PFTriDA, PFTeDA)- on the digestive gland and gills of mussels, Mytilus galloprovincialis, using in vitro assays. The results showed organ-specific responses: the digestive gland was more sensitive to PFHxA, with increased catalase activity and decreased total antioxidant capacity, and cellular damage was observed only at higher concentrations of PFTriDA. Gills were more affected by PFDoA and PFTeDA, with inhibited antioxidant enzyme activity and increased oxidative stress. PFHxA and PFTriDA also showed inhibition of acetylcholinesterase activity. 6:2 FTA had the lowest effects for both organs, while PFHxA was the most harmful. These findings underscore the need for thorough risk assessments of PFAS, considering both chain length and organ-specific effects.
Collapse
Affiliation(s)
- Marta Cunha
- Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal; Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro 3810-193, Portugal
| | - Alessandro Nardi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy; NBFC, National Biodiversity Future Center, Palermo 90131, Italy
| | - Amadeu M V M Soares
- Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal; Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro 3810-193, Portugal
| | - Ana M Gil
- CICECO─Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - Rosa Freitas
- Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal; Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro 3810-193, Portugal.
| |
Collapse
|
3
|
Kali SE, Österlund H, Viklander M, Blecken GT. Stormwater discharges affect PFAS occurrence, concentrations, and spatial distribution in water and bottom sediment of urban streams. WATER RESEARCH 2025; 271:122973. [PMID: 39700609 DOI: 10.1016/j.watres.2024.122973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are extensively used in urban environments and are, thus, found in urban stormwater. However, the relevance of stormwater as a pathway for PFAS to urban streams is largely unknown. This study evaluated the impact of urban stormwater runoff on PFAS concentrations and spatial distribution in three urban streams affected by stormwater discharges from separate sewer systems. River water was sampled during dry (DW) and wet weather (WW) upstream, immediately downstream, and further downstream of three urbanized areas with separate sewer systems and with and without point sources (i.e. waste water treatment plant, airports). Water samples were analyzed for 34 targeted PFAS compounds and sediment samples for 35 targeted PFAS and 30 PFAS compounds using a total oxidizable precursor assay. The sum of the quantified PFAS concentrations ranged from the reporting limit (RL) to 84.7 ng/L during DW and increased as the streams were affected by WW discharges (0.87 to 102.3 ng/L). The highest PFAS concentrations were found downstream of urban areas and/or point sources (i.e. airports) during WW, indicating a clear contribution from stormwater discharges. A consistent PFAS contribution from the WWTP was observed under both DW and WW conditions. During WW events, concentrations of perfluorooctanesulfonic acid (PFOS) and total PFAS (PFOA equivalents) exceeded the annual average environmental quality standards, which are an established limit of 0.65 ng/L for PFOS and a proposed limit of 4.4 ng/L for total PFAS. Notably, except for the legacy PFAS, PFOS and perfluorooctanoic acid (PFOA), the most frequently quantified PFAS during DW were short-chain. For WW, long-chain perfluorocarboxylic acids (PFCAs) and a precursor, 6:2 Fluorotelomer sulfonic acid (6:2 FTS), were more frequently quantified, suggesting stormwater is a source of these longer-chain and particle-associated PFAS. The detection of unregulated fluorotelomer sulfonates (FTSs) such as 6:2 and 8:2 FTS during WW suggests a need for regulatory action, as these compounds can degrade into more stable PFAS. In sediment, higher concentrations, and a greater variety of PFAS were found at sites with known point sources i.e. airports. Long-chain PFCAs (C7-C13), perfluoroalkyl sulfonates (PFSAs) (C6), and precursors (i.e. N-Ethyl perfluorooctane sulfonamidoacetic acid), were more prevalent in sediments than in the water. Notably, PFOS concentrations in sediment exceeded the lowest Predicted No-Effect Concentration (PNEC) across sites, posing a potential long-term environmental risk, though current PNECs for other PFAS may underestimate such risks. The findings of the study highlight urban stormwater as a source of PFAS to urban streams indicating the need to minimize PFAS sources in the urban environment and to effectively treat stormwater to protect receiving water bodies.
Collapse
Affiliation(s)
- Suna Ekin Kali
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå 971 87, Sweden.
| | - Heléne Österlund
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå 971 87, Sweden.
| | - Maria Viklander
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå 971 87, Sweden.
| | - Godecke-Tobias Blecken
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå 971 87, Sweden.
| |
Collapse
|
4
|
Sokolova E, Prajapati P, Ekman F, Maharjan N, Lindqvist S, Kjellin J, Karlsson A, Bondelind M, Ahrens L, Köhler S. Modelling PFAS transport in Lake Ekoln: Implications for drinking water safety in the stockholm region. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125581. [PMID: 39725198 DOI: 10.1016/j.envpol.2024.125581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/18/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are found frequently in both groundwater and surface water sources across Sweden posing challenges to drinking water supply. Lake Ekoln is located south of Uppsala and is the basin of Lake Mälaren; Lake Mälaren is the third largest lake in Sweden and is the drinking water source for more than two million people. The aim of this study was to simulate the fate and transport of PFAS in Lake Ekoln during the period 2017-2020 using three-dimensional hydrodynamic modelling. The simulated water temperatures were in agreement with the observed water temperatures. The simulated PFAS concentrations were generally in agreement with the available measurements, but the lack of measurements made the comparison uncertain. The modelling results described the seasonal variations of PFAS in Lake Ekoln informing the operation of the drinking water treatment plants located downstream. The modelling results confirmed that the main inflow to the lake - the river Fyrisån - is the main source of PFAS to Lake Ekoln, highlighting the importance of mitigating this source in the context of ensuring safe drinking water supply in the Stockholm region. Regular monitoring of PFAS in the river Fyrisån is needed, and additional measurements in Lake Ekoln would facilitate further model development.
Collapse
Affiliation(s)
| | | | - Frida Ekman
- Stockholm Water and Waste company, VA - Miljö och Uppströms, Stockholm, Sweden
| | - Namika Maharjan
- Uppsala University, Department of Earth Sciences, Uppsala, Sweden
| | - Sandra Lindqvist
- Uppsala University, Department of Earth Sciences, Uppsala, Sweden
| | | | | | - Mia Bondelind
- Chalmers University of Technology, Department of Architecture and Civil Engineering, Gothenburg, Sweden
| | - Lutz Ahrens
- Swedish University of Agricultural Sciences (SLU), Department of Aquatic Sciences and Assessment, Uppsala, Sweden
| | | |
Collapse
|
5
|
Sun B, Zhao Y, Yang S, Li X, Li N, Wang Y, Han Q, Liu X, Tu Q, Zheng J, Zhang X. Celecoxib as a potential treatment for hepatocellular carcinoma in populations exposed to high PFAS levels. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137613. [PMID: 39955994 DOI: 10.1016/j.jhazmat.2025.137613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/12/2025] [Accepted: 02/12/2025] [Indexed: 02/18/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS), including perfluorooctane sulfonate and perfluorooctanoic acid, are associated with adverse human effects. However, few studies have assessed the effects of PFAS mixtures on hepatocellular carcinoma (HCC). In this study, we systematically investigated the effects and underlying mechanisms of PFAS mixtures on the proliferation, migration, and invasion of HCC cells (JHH-7 and Li-7) in vitro using a combination of biological techniques and high-coverage untargeted metabolomics. A six day exposure to a 5 μM PFAS mixture significantly enhanced the malignant progression of HCC in vitro. Metabolomic analysis identified the upregulation of prostaglandin E2 (PGE2) as a key factor associated with these effects. This hypothesis was further validated using celecoxib, a PGE2 inhibitor, which reduced PGE2 levels in HCC cells, consequently slowing their migration and invasion. Additionally, mice treated with celecoxib exhibited reduced tumor volumes compared with those treated with PFAS alone. These results suggest that PFAS exposure enhances HCC malignancy through the PI3K/AKT signaling pathway via increased PGE2 production. In conclusion, a 5 μM PFAS mixture accelerates HCC proliferation and invasion; moreover, celecoxib demonstrates potential as a therapeutic agent that inhibits these effects.
Collapse
Affiliation(s)
- Boshi Sun
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, No. 148 BaoJian-ro, Harbin, Heilongjiang Province 150086, China
| | - Yuqiao Zhao
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, No. 148 BaoJian-ro, Harbin, Heilongjiang Province 150086, China
| | - Shifeng Yang
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, No. 148 BaoJian-ro, Harbin, Heilongjiang Province 150086, China
| | - Xiaodong Li
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, No. 148 BaoJian-ro, Harbin, Heilongjiang Province 150086, China
| | - Nana Li
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, No. 148 BaoJian-ro, Harbin, Heilongjiang Province 150086, China
| | - Yujie Wang
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, No. 148 BaoJian-ro, Harbin, Heilongjiang Province 150086, China
| | - Qixiang Han
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, No. 148 BaoJian-ro, Harbin, Heilongjiang Province 150086, China
| | - Xuyun Liu
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, No. 148 BaoJian-ro, Harbin, Heilongjiang Province 150086, China
| | - Qiushi Tu
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, No. 148 BaoJian-ro, Harbin, Heilongjiang Province 150086, China
| | - Jie Zheng
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06510, United States.
| | - Xinyu Zhang
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, No. 148 BaoJian-ro, Harbin, Heilongjiang Province 150086, China.
| |
Collapse
|
6
|
Pichler V, Martinho RP, Temming L, Segers T, Wurm FR, Koshkina O. The Environmental Impact of Medical Imaging Agents and the Roadmap to Sustainable Medical Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2404411. [PMID: 39905748 DOI: 10.1002/advs.202404411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/22/2024] [Indexed: 02/06/2025]
Abstract
Medical imaging agents, i.e., contrast agents for magnetic resonance imaging (MRI) and radiopharmaceuticals, play a vital role in the diagnosis of diseases. Yet, they mostly contain harmful and non-biodegradable substances, such as per- and polyfluoroalkyl substances (PFAS), heavy metals or radionuclides. As a result of their increasing clinical use, these agents are entering various water bodies and soil, posing risks to environment and human health. Here, the environmental effects of the application of imaging agents are outlined for the major imaging modalities, and the respective chemistry of the contrast agents with environmental implications is linked. Recommendations are introduced for the design and application of contrast agents: the 3Cs of imaging agents: control, change, and combine; and recent approaches for more sustainable imaging strategies are highlighted. This combination of measures should engage an open discussion, inspire solutions to reduce pollution by imaging agents, and increase awareness for the impact of toxic waste related to imaging agents.
Collapse
Affiliation(s)
- Verena Pichler
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna, 1090, Austria
| | - Ricardo P Martinho
- Biomolecular Nanotechnology Group, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede, 7522, The Netherlands
| | - Lisanne Temming
- Sustainable Polymer Chemistry, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede, 7522, The Netherlands
| | - Tim Segers
- BIOS / Lab on a Chip Group, Max Planck Center Twente for Complex Fluid Dynamics, MESA+ Institute for Nanotechnology, University of Twente, Enschede, 7514DM, The Netherlands
| | - Frederik R Wurm
- Sustainable Polymer Chemistry, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede, 7522, The Netherlands
| | - Olga Koshkina
- Sustainable Polymer Chemistry, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede, 7522, The Netherlands
- Phos4nova B.V., Enschede, The Netherlands
| |
Collapse
|
7
|
Huang P, Cao L, Du J, Guo Y, Li Q, Sun Y, Zhu H, Xu G, Gao J. Polystyrene nanoplastics amplify the toxic effects of PFOA on the Chinese mitten crab (Eriocheir sinensis). JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137488. [PMID: 39919640 DOI: 10.1016/j.jhazmat.2025.137488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/23/2025] [Accepted: 02/02/2025] [Indexed: 02/09/2025]
Abstract
Nanoplastics (NPs), the final form of degraded microplastics in the environment, can adsorb PFOA (an emerging organic pollutant in recent years) in several ways. Current research on these has focused on bony fishes and mollusks, however, the combined toxicity of PFOA and NPs remains unknown in Eriocheir sinensis. Therefore, the effects of single or combined exposure to PFOA and NPs were investigated. The results showed that NPs aggravated PFOA exposure-induced oxidative stress, serum lipid disorders, immune responses, and morphological damage. DEGs altered by NPs-PFOA exposure were predominantly enriched in GO terms for cell lumen, and organelle structure, and KEGG terms for spliceosome and endocrine disorders-related diseases. Notably, the apoptotic pathway plays a central role enriched under different exposure modes. PFOA or NPs-PFOA exposure disrupted the levels of lipids molecules-related metabolites by mediating the glycerophospholipid pathway, and the NPs mediated the ferroptosis pathway to exacerbate PFOA-induced metabolic toxicity. In addition, NPs exacerbated the inflammatory response and metabolic imbalance by mediating Fusobacterium ulcerans in the intestinal. In conclusion, this study provides a valuable reference for the characterization of NPs-PFOA combined pollution and a scientific basis for the development of environmental protection policies and pollution management strategies.
Collapse
Affiliation(s)
- Peng Huang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Liping Cao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jinliang Du
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yiqing Guo
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Quanjie Li
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yi Sun
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Haojun Zhu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Gangchun Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Jiancao Gao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
8
|
Zajac L, Landrigan PJ. Environmental Issues in Global Pediatric Health: Technical Report. Pediatrics 2025; 155:e2024070076. [PMID: 39832723 DOI: 10.1542/peds.2024-070076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 01/22/2025] Open
Abstract
Pediatricians and pediatric trainees in North America are increasingly involved in caring for children and adolescents in or from low- and middle-income countries (LMICs). In many LMICs, toxic environmental exposures-notably outdoor and household air pollution, water pollution, lead, hazardous waste disposal, pesticides, and other manufactured chemicals-are highly prevalent and account for twice as great a proportion of disease and deaths among young children as in North America. Climate change will likely worsen these exposures. It is important that pediatricians and other pediatric health professionals from high-income countries who plan to work in LMICs be aware of the disproportionately severe impacts of environmental hazards, become knowledgeable about the major toxic threats to children's health in the countries and communities where they will be working, and consider environmental factors in their differential diagnoses. Likewise, pediatricians in high-income countries who care for children and adolescents who have emigrated from LMICs need to be aware that these children may be at elevated risk of diseases caused by past exposures to toxic environmental hazards in their countries of origin as well as ongoing exposures in products such as traditional foods, medications, and cosmetics imported from their original home countries. Because diseases of toxic environmental origin seldom have unique physical signatures, the environmental screening history, supplemented by laboratory testing, is the principal diagnostic tool. The goal of this technical report is to enhance pediatricians' ability to recognize, diagnose, and manage disease caused by hazardous environmental exposures, especially toxic chemical exposures, in all countries and especially in LMICs.
Collapse
Affiliation(s)
- Lauren Zajac
- Department of Environmental Medicine and Public Health and Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Philip J Landrigan
- Program for Global Public Health and the Common Good, Boston College, Chestnut Hill, Massachusetts; Centre Scientifique de Monaco, Monaco, MC
| |
Collapse
|
9
|
Huang X, Wang H, Song X, Han Z, Shu Y, Wu J, Luo X, Zheng X, Fan Z. Ecological risks of PFAS in China's surface water: A machine learning approach. ENVIRONMENT INTERNATIONAL 2025; 196:109290. [PMID: 39984226 DOI: 10.1016/j.envint.2025.109290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/21/2024] [Accepted: 01/15/2025] [Indexed: 02/23/2025]
Abstract
The persistence of per- and polyfluoroalkyl substances (PFAS) in surface water can pose risks to ecosystems, while due to data limitations, the occurrence, risks, and future trends of PFAS at large scales remain unknown. This study investigated the ecological risks of PFAS in surface water in China under different Shared Socioeconomic Pathways (SSPs) using machine learning modeling, based on concentration data collected from 167 published papers. The results indicated that long-chain PFAS currently dominated in most basins and posed significant risks, especially PFOA. Population density and temperature were key factors influencing risks of long-chain PFAS, while secondary industry and precipitation affected the risks of PFBS and PFHxS significantly, respectively. In the future, the ecological risks of long-chain PFAS would overall decrease, with risk probabilities of PFOA and PFOS decreasing significantly in SSP5 (8.15 % and 14.95 % reduction compared to 2020, respectively). The risks of short-chain PFAS were expected to increase, but stabilize in the late stage of SSP1. Nevertheless, the risks of long-chain PFAS would remain higher than those of short-chain PFAS, with high-risk areas concentrated in Southeast China. This study suggests changes in ecological risks of PFAS driven by future climate and human activities, providing new insights for risk management.
Collapse
Affiliation(s)
- Xinmiao Huang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Huijuan Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xiaoyong Song
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Zilin Han
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yilan Shu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Jiaheng Wu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xiaohui Luo
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xiaowei Zheng
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Fudan Zhangjiang Institute, Shanghai 201203, China.
| | - Zhengqiu Fan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| |
Collapse
|
10
|
Tang WQ, Wang TT, Miao JW, Tan HD, Zhang HJ, Guo TQ, Chen ZB, Wu CY, Mo L, Mai BX, Wang S. Presence and sources of per- and polyfluoroalkyl substances (PFASs) in the three major rivers on Hainan Island. ENVIRONMENTAL RESEARCH 2025; 266:120590. [PMID: 39675456 DOI: 10.1016/j.envres.2024.120590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/19/2024] [Accepted: 12/08/2024] [Indexed: 12/17/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have attracted considerable attention because of their toxicity, persistence and bioaccumulation potential. With the construction of the Hainan Free Trade Port and the rapid development of economy, environmental pollution on Hainan Island is becoming increasingly prominent. PFASs have been detected in the seawater and sediments of mangrove ecosystems on Hainan Island. As the receiving water of wastewater treatment plants (WWTPs) and industrial wastewater, rivers are inevitably contaminated by PFASs. However, few studies have focused on PFAS pollution in three large rivers (the Nandu, Changhua, and Wanquan rivers) on Hainan Island. In the present study, the pollution status, potential sources, and ecological risks of PFASs in these three major rivers were explored. Perfluorobutanonic acid (PFBA) (48.7%) was found to be the major PFASs in the surface waters, and perfluoroundecanoic acid (PFUnDA) (19.7%) was the major PFASs in the sediments of the three major rivers. The concentrations of ∑PFASs in the upper-midstream region were low due to minimal human influence and increased in the middle-lower reaches with increasing industrial activity and urbanization, whereas decreased at downstream sites near estuaries where river water was diluted with seawater. WWTP effluent, industrial wastewater discharge, the application and discharge of aqueous fire-fighting foam, storm runoff and landfill leachate were the major sources of PFASs in the three major rivers. In surface water, perfluorooctanoic acid (PFOA), perfluorooctane sulfonamide (PFOSA) and perfluorooctadecanoic acid (PFODA) posed low-moderate risks at 5.71-85.6% of the sampling sites. PFASs in the sediment posed no ecological risk. This study provides key data regarding the pollution status and potential sources of PFASs in large rivers on subtropical islands.
Collapse
Affiliation(s)
- Wang-Qing Tang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Tuan-Tuan Wang
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou, 570228, China; School of Ecology, Hainan University, Haikou, 570228, China
| | - Jiang-Wei Miao
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou, 570228, China; School of Ecology, Hainan University, Haikou, 570228, China
| | - Hua-Dong Tan
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Hong-Jin Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Tuan-Qi Guo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Zhong-Bing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, 16500, Praha, Suchdol, Czech Republic
| | - Chun-Yuan Wu
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Ling Mo
- Hainan Research Academy of Environmental Sciences, Haikou 571126, China
| | - Bi-Xian Mai
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Sai Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China.
| |
Collapse
|
11
|
Folorunsho O, Bogush A, Kourtchev I. Occurrence of emerging and persistent organic pollutants in the rivers Cam, Ouse and Thames, UK. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 962:178436. [PMID: 39813836 DOI: 10.1016/j.scitotenv.2025.178436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/31/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
The widespread occurrence of new and emerging and persistent organic pollutants (NEPs and POPs) in surface water poses a risk to drinking water supply and consequently human health. The aim of this work was to investigate the occurrence and potential transport of 42 target NEPs and POPs (including per-and polyfluoroalkyl substances (PFAS), pharmaceuticals, pesticides and bisphenols) along the rural and urban environments of three rivers in England. The type and concentrations of pollutants varied between the sampling days and points. Two pharmaceuticals (diclofenac and ibuprofen), two pesticides (diethyl-meta-toluamide (DEET) and prosulfocarb) and a range of PFAS were detected above the method detection limit. The observed PFAS include restricted perfluorooctanoic acid (PFOA), and perfluorooctanesulfonic acid (PFOS) and a newer generation substitute 6:2 fluorotelomer sulfonate (6:2 FTS). The levels of PFOS and diclofenac observed in all studied rivers exceeded the European environmental quality standard (EQS). PFOS and diclofenac high detection frequency in the river Ouse suggests their persistence and potential to contaminate connecting tributaries. An assessment of the ecological risk of prosulfocarb levels in the samples from river Ouse, using the risk quotient method, showed a potential risk to algae, planktonic crustaceans, and fish. Our results suggest that the presence of 12 NEPs and POPs, could potentially be influenced by anthropogenic activities across urban and rural environments of the studied rivers. The study highlights the need for continuous monitoring of restricted and new-generation chemicals in the surface waters to understand their impact on the ecosystem and public health.
Collapse
Affiliation(s)
- Omotola Folorunsho
- Centre for Agroecology Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton on Dunsmore, CV8 3LG, UK
| | - Anna Bogush
- Centre for Agroecology Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton on Dunsmore, CV8 3LG, UK
| | - Ivan Kourtchev
- Centre for Agroecology Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton on Dunsmore, CV8 3LG, UK.
| |
Collapse
|
12
|
Peter LG, Lee LS. Sources and Pathways of PFAS Occurrence in Water Sources: Relative Contribution of Land-Applied Biosolids in an Agricultural Dominated Watershed. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1344-1353. [PMID: 39779456 DOI: 10.1021/acs.est.4c09490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
This study evaluated PFAS occurrence in rural well water and surface water relative to land application of biosolids in a tile-drained agriculture-dominated watershed. Spatial data were used to identify potentially vulnerable rural wells based on their proximity to biosolid-permitted land and location with respect to groundwater flow. Water was collected from 103 private wells in Greater Tippecanoe County Indiana and 168 surface water locations within the Region of the Great Bend of the Wabash River watershed. Overall, results indicate that surface water (∑PFAS ≤ 169.4 ng/L) is more vulnerable to PFAS contamination than well water (∑PFAS ≤ 15.7 ng/L). Short-chain perfluoroalkyl acids made up 72% of the ∑PFAS in both water sources. Nonetheless, long-chain homologues were detected more frequently in surface water (94%) than well water (82%). Hierarchical cluster analysis identified biosolid-applied fields, WTTPs, and industrial discharges as PFAS sources in first-order streams with high ∑PFAS. Temporal trends revealed an inverse relationship between streamflow and concentrations in surface water sites impacted by point discharges and vice versa for diffuse sources, thereby providing complementary evidence of potential sources. The well water data set did not show a distinct spatial trend between ∑PFAS and distance from biosolid application or well characteristics.
Collapse
Affiliation(s)
- Lynda Godwin Peter
- Department of Agronomy, Ecological Sciences & Engineering Interdisciplinary Graduate Program, Purdue University, 915 Mitch Daniels Blvd, West Lafayette, Indiana 47907, United States
| | - Linda S Lee
- Department of Agronomy, Ecological Sciences & Engineering Interdisciplinary Graduate Program, Purdue University, 915 Mitch Daniels Blvd, West Lafayette, Indiana 47907, United States
- Environmental & Ecological Engineering, Purdue University, 915 Mitch Daniels Blvd., West Lafayette, Indiana 47907, United States
| |
Collapse
|
13
|
Anik AH, Basir MS, Sultan MB, Alam M, Rahman MM, Tareq SM. Unveiling the emerging concern of per- and polyfluoroalkyl substances (PFAS) and their potential impacts on estuarine ecosystems. MARINE POLLUTION BULLETIN 2025; 212:117554. [PMID: 39837172 DOI: 10.1016/j.marpolbul.2025.117554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/01/2024] [Accepted: 01/09/2025] [Indexed: 01/23/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have become ubiquitous chemicals that pose potentially serious threats to both human health and the integrity of the ecosystem. This review compiles current knowledge on PFAS contamination in estuaries, focusing on sources, abundance, distribution, fate, and toxic mechanisms. It also addresses the health risks associated with these compounds and identifies research gaps, offering recommendations for future studies. Estuaries are essential for maintaining biodiversity and serve as protective natural buffers against pollution flowing from land to sea. However, PFAS, known for their persistence and bioaccumulation potential, are detected in estuarine waters, sediments, and biota worldwide, with varying concentrations based on geographic locations and environmental matrices. Sources of PFAS in estuaries include routine items like nonstick kitchenware, industrial emissions, landfill sites, civilian and military airfields, and runoff from firefighting activities. The fate of PFAS in estuarine ecosystems is influenced by hydrology, biogeochemical interactions, and proximity to pollution sources.
Collapse
Affiliation(s)
- Amit Hasan Anik
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Dhaka 1216, Bangladesh.
| | - Md Samium Basir
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Dhaka 1216, Bangladesh
| | - Maisha Binte Sultan
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Dhaka 1216, Bangladesh
| | - Mahbub Alam
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Dhaka 1216, Bangladesh; Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
| | - Md Mostafizur Rahman
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Dhaka 1216, Bangladesh; Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh.
| | - Shafi M Tareq
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Dhaka 1216, Bangladesh; Hydrobiogeochemistry and Pollution Control Laboratory, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh.
| |
Collapse
|
14
|
Tonelli F, Masiero C, Aresi C, Torriani C, Villani S, Premoli G, Rossi A, Forlino A. Bone cell differentiation and mineralization in wild-type and osteogenesis imperfecta zebrafish are compromised by per- and poly-fluoroalkyl substances (PFAS). Sci Rep 2025; 15:2295. [PMID: 39825095 PMCID: PMC11748624 DOI: 10.1038/s41598-025-85967-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/07/2025] [Indexed: 01/20/2025] Open
Abstract
Perfluorinated compounds (PFAS) are well recognized toxic pollutants for humans, but if their effect is equally harmful for healthy and fragile people is unknown. Addressing this question represents a need for ensuring global health and wellbeing to all individuals in a world facing the progressive increase of aging and aging related diseases. This study aimed to evaluate the impact of perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and perfluorohexanoic acid (PFHxA) exposure on development and skeletal phenotype using the osteogenesis imperfecta (OI) zebrafish model Chihuahua (Chi/+), carrying a dominant glycine substitution in the α1 chain of collagen I and their wild-type (WT) littermates. To this purpose Chi/+ and WT zebrafish expressing the green fluorescent protein under the early osteoblast marker osterix were exposed from 1 to 6 days post fertilization to 0.36, 1.5 and 3.0 mg/L PFOS, 0.005 and 0.5 mg/L PFOA and 0.01, 0.48 and 16.0 mg/L PFHxA, and their development and skeletal phenotype investigated. Morphometric measurements, confocal microscopy evaluation of operculum area delimited by the fluorescent preosteoblasts and mineral deposition analysis following alizarin red staining were employed. PFOS and the highest concentration of PFHxA significantly impaired standard length in both genotypes. Osteoblast differentiation was significantly compromised by PFOS and by PFOA only in Chi/+. Limited to WT exposed to PFOA a reduced mineralization was also observed. No effect was detected after PFHxA exposure. Apoptosis was only activated by PFOA, specifically in Chi/+ mutant operculum osteoblasts. Interestingly, an altered lipid distribution in both WT and mutant fish was revealed after exposure to both pollutants. In conclusion, our data demonstrate that PFAS impair operculum development mainly compromising cell differentiation in mutant fish whereas alter lipid hepatic distribution in both genotypes with a more severe effect on Chi/+ preosteoblast survival. These results represent a first warning sign of the negative impact of PFAS exposure in presence of genetically determined skeletal fragility.
Collapse
Affiliation(s)
- Francesca Tonelli
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3B, 27100, Pavia, Italy
| | - Cecilia Masiero
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3B, 27100, Pavia, Italy
| | - Carla Aresi
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3B, 27100, Pavia, Italy
| | - Camilla Torriani
- Department of Public Health and Experimental and Forensic Medicine, Unit of Biostatistics and Clinical Epidemiology, University of Pavia, 27100, Pavia, Italy
| | - Simona Villani
- Department of Public Health and Experimental and Forensic Medicine, Unit of Biostatistics and Clinical Epidemiology, University of Pavia, 27100, Pavia, Italy
| | - Guido Premoli
- LabAnalysis Group, Casanova Lonati, 27041, Pavia, Italy
| | - Antonio Rossi
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3B, 27100, Pavia, Italy
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3B, 27100, Pavia, Italy.
| |
Collapse
|
15
|
Kim T, Eom S, Kim MK, Zoh KD. Degradation and defluorination of C 6F 13 PFASs with different functional groups by VUV/UV-based reduction and oxidation processes. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137216. [PMID: 39862768 DOI: 10.1016/j.jhazmat.2025.137216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/30/2024] [Accepted: 01/12/2025] [Indexed: 01/27/2025]
Abstract
Structural diversity can affect the degradability of per- and polyfluoroalkyl substances (PFASs) during water treatment. Here, three PFASs with different functional groups-C6F13-R, PFHpA, PFHxS, and 6:2 FTS-were degraded using vacuum ultraviolet (VUV/UV)-based treatments. While fully fluorinated PFASs-PFHpA and PFHxS-were degraded faster in the VUV/UV/sulfite reaction than in VUV/UV photolysis, VUV/UV photolysis was more effective for degrading 6:2 FTS by OH radicals produced through photolysis of water. PFCAs such as PFHxA, PFPeA, and PFBA were formed by VUV/UV photolysis of PFHpA and 6:2 FTS, but the PFCA formation was inhibited in the VUV/UV/sulfite reaction. The degradation of the three PFASs in the VUV/UV/sulfite reaction was mainly carried out by H/F and SO3•-/F exchange mechanisms, mediated by hydrated electrons (eaq-) produced in the reaction. During the VUV/UV/sulfite reaction, PFCA precursors were first formed as transformation products, which were further transformed into PFCAs by the following VUV/UV/H2O2 reaction, implying enhanced defluorination of three PFASs. Our results indicate that VUV/UV-based treatments can be an option for PFAS degradation and defluorination by combining advanced reduction and oxidation processes and utilizing both eaq- and oxidative radicals.
Collapse
Affiliation(s)
- Taeyeon Kim
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea
| | - Soyeon Eom
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea
| | - Moon-Kyung Kim
- Institute of Health & Environment, Seoul National University, Seoul, South Korea
| | - Kyung-Duk Zoh
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea; Institute of Health & Environment, Seoul National University, Seoul, South Korea.
| |
Collapse
|
16
|
Celis JE, Espejo W, Groffen T, Bervoets L, Padilha J, Mello FV, Sandoval M, Chiang G. Per- and polyfluoroalkylated substances (PFAS) in the feathers and excreta of Gentoo penguins (Pygoscelis papua) from the Antarctic Peninsula. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178333. [PMID: 39742582 DOI: 10.1016/j.scitotenv.2024.178333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/27/2024] [Accepted: 12/27/2024] [Indexed: 01/03/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) exhibit widespread global distribution, extending to remote regions including Antarctica. Despite potential adverse effects on seabirds, PFAS exposure among Antarctic penguins remains poorly studied. We investigated the occurrence of 29 PFAS compounds in feathers and excreta of Gentoo penguins (Pygoscelis papua) from Fildes Bay, Antarctica. Sample collection was conducted during the austral summer (February 2015) and analyzed by Ultra-performance liquid chromatography-tandem ES (-) mass spectrometry. The results showed that adults tend to accumulate more PFOA, PFPeS and NaDONA than chicks, with PFOA emerging as the predominant compound in feathers. The compounds PFHxA, PFDoDA, PFBS, PFOS, 4:2 FTS, 6:2 FTS, and PFEESA were only detected in penguin excreta, indicating that they are not absorbed into the organism. The detection of PFAS in penguin feathers and excreta not only indicates local contamination but also reaffirms the far-reaching impact of anthropogenic pollutants. This study presents the first documented occurrence of NaDONA in Antarctica, despite its status as a regulatory-compliant alternative to legacy PFAS compounds-a finding that needs deeper attention. The data can serve as a base for further research to understand the full extent of PFAS contamination and its implications for Antarctic wildlife and ecosystems.
Collapse
Affiliation(s)
- José E Celis
- Department of Animal Science, Facultad de Ciencias Veterinarias, Universidad de Concepción, Av. Vicente Méndez 595, Chillán, Chile
| | - Winfred Espejo
- Department of Soils & Natural Resources, Facultad de Agronomía, Universidad de Concepción, Av. Vicente Méndez 595, Chillán, Chile.
| | - Thimo Groffen
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Lieven Bervoets
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Janeide Padilha
- CBMA-Centre for Molecular and Environmental Biology/ ARNET-Aquatic Research Network, Department of Biology, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Flávia V Mello
- IPMA, Instituto Português do Mar e da Atmosfera, Divisão de Aquacultura e Valorização, I.P, Lisboa, Portugal
| | - Marco Sandoval
- Department of Soils & Natural Resources, Facultad de Agronomía, Universidad de Concepción, Av. Vicente Méndez 595, Chillán, Chile
| | - Gustavo Chiang
- Centro de Investigación para la Sustentabilidad (CIS-UNAB) & Department of Ecology and Biodiversity, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370251, Chile; Centro de Resiliencia, Adaptación y Mitigación (CReAM), Universidad Mayor, Av. Alemania 281, Temuco, Chile
| |
Collapse
|
17
|
Batikh A, Colombano S, Cochennec M, Davarzani D, Perrault A, Lions J, Grandclément J, Guyonnet D, Togola A, Zornig C, Devau N, Lion F, Alamooti A, Bristeau S, Djemil M, van Hullebusch ED. Mobilization of poly- and perfluoroalkyl substances (PFAS) from heterogeneous soils: Desorption by ethanol/xanthan gum mixture. JOURNAL OF HAZARDOUS MATERIALS 2025; 481:136496. [PMID: 39561539 DOI: 10.1016/j.jhazmat.2024.136496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 11/03/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024]
Abstract
Remediating soils contaminated by per- and polyfluoroalkyl substances (PFAS) is a challenging task due to the unique properties of these compounds, such as variable solubility and resistance to degradation. In-situ soil flushing with solvents has been considered as a remediation technique for PFAS-contaminated soils. The use of non-Newtonian fluids, displaying variable viscosity depending on the applied shear rate, can offer certain advantages in improving the efficiency of the process, particularly in heterogeneous porous media. In this work, the efficacy of ethanol/xanthan mixture (XE) in the recovery of a mixture of perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorohexane sulfonate (PFHxS), and perfluorobutane sulfonate (PFBS) from soil has been tested at lab-scale. XE's non-Newtonian behavior was examined through rheological measurements, confirming that ethanol did not affect xanthan gum's (XG) shear-thinning behavior. The recovery of PFAS in batch-desorption exceeded 95 % in ethanol, and 99 % in XE, except for PFBS which reached 94 %. 1D-column experiments revealed overshoots in PFAS breakthrough curves during ethanol and XE injection, due to over-solubilization. XE, (XG 0.05 % w/w) could recover 99 % PFOA, 98 % PFBS, 97 % PFHxS, and 92 % PFOS. Numerical modeling successfully reproduces breakthrough curves for PFOA, PFHxS, and PFBS with the convection-dispersion-sorption equation and Langmuir sorption isotherm.
Collapse
Affiliation(s)
- Ali Batikh
- BRGM (French Geological Survey), 3 Avenue Claude Guillemin, Orléans 45100, France; Université Paris Cité, Institut de physique du globe de Paris, CNRS, F-75005 Paris, France; COLAS Environnement, 91, rue de la Folliouse, 01700 Miribel, France.
| | - Stéfan Colombano
- BRGM (French Geological Survey), 3 Avenue Claude Guillemin, Orléans 45100, France
| | - Maxime Cochennec
- BRGM (French Geological Survey), 3 Avenue Claude Guillemin, Orléans 45100, France
| | - Dorian Davarzani
- BRGM (French Geological Survey), 3 Avenue Claude Guillemin, Orléans 45100, France
| | - Arnault Perrault
- COLAS Environnement, 91, rue de la Folliouse, 01700 Miribel, France
| | - Julie Lions
- BRGM (French Geological Survey), 3 Avenue Claude Guillemin, Orléans 45100, France
| | | | - Dominique Guyonnet
- BRGM (French Geological Survey), 3 Avenue Claude Guillemin, Orléans 45100, France
| | - Anne Togola
- BRGM (French Geological Survey), 3 Avenue Claude Guillemin, Orléans 45100, France
| | - Clément Zornig
- BRGM (French Geological Survey), 3 Avenue Claude Guillemin, Orléans 45100, France
| | - Nicolas Devau
- BRGM (French Geological Survey), 3 Avenue Claude Guillemin, Orléans 45100, France
| | - Fabien Lion
- BRGM (French Geological Survey), 3 Avenue Claude Guillemin, Orléans 45100, France
| | - Amir Alamooti
- BRGM (French Geological Survey), 3 Avenue Claude Guillemin, Orléans 45100, France
| | - Sébastien Bristeau
- BRGM (French Geological Survey), 3 Avenue Claude Guillemin, Orléans 45100, France
| | - Mohamed Djemil
- BRGM (French Geological Survey), 3 Avenue Claude Guillemin, Orléans 45100, France
| | - Eric D van Hullebusch
- Université Paris Cité, Institut de physique du globe de Paris, CNRS, F-75005 Paris, France
| |
Collapse
|
18
|
Aborode AT, Adesola RO, Idris I, Sakariyau Adio W, Olapade S, Oluwafisayo G, Onifade IA, Fakorede S, Bakare-Abidola T, Olaoye J, Ogunyemi AD, Ogundijo OA, Banwo OG, Bakre AA, Oladoye P, Adegoye G, Jinadu NA. Challenges Associated With PFAS Detection Method in Africa. ENVIRONMENTAL HEALTH INSIGHTS 2025; 19:11786302241310430. [PMID: 39759477 PMCID: PMC11694309 DOI: 10.1177/11786302241310430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 12/11/2024] [Indexed: 01/07/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a group of man-made chemicals that are widely present in many industries. Monitoring and analyzing PFAS in Africa is challenging due to the limited availability of mass spectrometry (MS), which is an essential technique for detecting PFAS. This review assesses the scope and impact of the shortage of mass spectrometry instruments in Africa, emphasizing the resulting limitations in monitoring environmental and public health threats. The review analyzes the existing PFAS monitoring, the accessibility of MS instruments, and the technical capabilities within the continent. This study suggests that fewer African countries have sufficient MS instruments, resulting in significant underreport of environmental data and related public health issues. The review proposes financial support and programs to address these difficulties to provide necessary MS instruments. The review suggests that it is highly important to develop regional centers of excellence for PFAS monitoring using MS instruments and investing in training programs to address the gap in monitoring efforts. So, enhancing these are crucial for the successful management of the environment and safeguarding public health from the effects of PFAS contamination.
Collapse
Affiliation(s)
| | - Ridwan Olamilekan Adesola
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ibrahim Idris
- Faculty of Veterinary Medicine, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Waheed Sakariyau Adio
- Department of Chemistry and Biochemistry, College of Science, Old Dominion University, Norfolk, VA, USA
| | - Segun Olapade
- Department of Chemistry, University of Louisville, Louisville, KY, USA
| | - Gladys Oluwafisayo
- Department of Biological and Environmental Sciences, University of Rhode Island, Kingston, RI, USA
| | | | - Sodiq Fakorede
- Department of Prosthetics and Orthotics, Federal University of Technology, Owerri, Nigeria
| | - Taiwo Bakare-Abidola
- Department of Environmental Science, Georgia Southern University, Statesboro, GA, USA
| | - Jelil Olaoye
- Department of Environmental Science, Georgia Southern University, Statesboro, GA, USA
| | | | - Oluwaseun Adeolu Ogundijo
- Department of Veterinary Public Health and Preventive Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olamilekan Gabriel Banwo
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adetolase Azizat Bakre
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Peter Oladoye
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | - Grace Adegoye
- Department of Recreation, Exercise and Sport Sciences, Western Colorado University, Gunnison, CO, USA
| | - Noimat Abeni Jinadu
- Department of Chemistry and Biochemistry, University of Alabama Birmingham, Birmingham, AL, USA
| |
Collapse
|
19
|
Gust KA, Kimble AN, Mylroie JE, Mayo ML, Wilbanks MS, Steward CSC, Chapman KA, Lotufo GR, Garcia-Reyero N, Moore DW. Bioconcentration, maternal transfer, and toxicokinetics of PFOS in a multi-generational zebrafish exposure. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:207-219. [PMID: 39887274 PMCID: PMC11790210 DOI: 10.1093/etojnl/vgae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 02/01/2025]
Abstract
To enable risk characterization of perfluorooctane sulfonic acid (PFOS) in extended chronic and multi-generational exposures, we assessed PFOS bioconcentration in zebrafish (Danio rerio) exposed continuously to environmentally-relevant PFOS concentrations (0, 0.1, 0.6, 3.2, 20, and 100 µg/L PFOS) through 180 days postfertilization (dpf) in parental (P) and first filial generation (F1) fish. Exposures included five replicate tanks per treatment where whole-body PFOS concentrations were measured using 20-35 fish per replicate at 14 and 29 dpf in the P generation and one fish of each sex per replicate at 180 dpf for the P and F1 generations. Perfluorooctane sulfonic acid accumulation reached an apparent steady state at ≤ 14 dpf where whole-body wet-weight concentrations remained constant through 180 dpf in the P and F1 generations. The median bioconcentration factor (BCF) of 934 L/kg was observed for all PFOS exposures with a range from 255 to 2,136 L/kg which varied with PFOS exposure concentration and sex of adult fish. Significantly lower BCFs were observed in 20 and 100 µg/L PFOS exposures versus 0.1 and 0.6 µg/L indicating exposure-concentration dependance. Additionally, males had significantly increased (∼2×) PFOS accumulation and BCFs versus females in both P and F1 generations. Maternal transfer of PFOS was observed from P females to F1 eggs where maternal whole-body and egg PFOS burdens were equivalent, suggesting PFOS transfer to eggs was not a depuration pathway. Finally, a toxicokinetic model was developed that reliably reproduced PFOS whole-body burdens (data within 1.64-fold of predicted values) across all exposure durations spanning the P and F1 generations, providing a tool for PFOS bioaccumulation predictions relevant for risk assessment of acute, chronic, and multi-generational exposures.
Collapse
Affiliation(s)
- Kurt A Gust
- US Army, Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi, United States
| | - Ashley N Kimble
- US Army, Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi, United States
| | - J Erik Mylroie
- US Army, Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi, United States
| | - Michael L Mayo
- US Army, Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi, United States
| | - Mitch S Wilbanks
- US Army, Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi, United States
| | | | - Kacy A Chapman
- US Army, Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi, United States
| | - Guilherme R Lotufo
- US Army, Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi, United States
| | - Natalia Garcia-Reyero
- US Army, Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi, United States
| | - David W Moore
- US Army, Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi, United States
| |
Collapse
|
20
|
Gomri C, Makhoul E, Koundia FN, Petit E, Raffy S, Bechelany M, Semsarilar M, Cretin M. Electrochemical advanced oxidation combined to electro-Fenton for effective treatment of perfluoroalkyl substances "PFAS" in water using a Magnéli phase-based anode. NANOSCALE ADVANCES 2024; 7:261-268. [PMID: 39600822 PMCID: PMC11586856 DOI: 10.1039/d4na00626g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Per-and polyfluoroalkyl substances (PFAS), known as "forever chemicals", are posing a considerable threat to human health and the environment, that conventional treatment methods are unable to treat. In recent years, electrochemical advanced oxidation emerged as a promising technology for the degradation of recalcitrant pollutants such as PFAS. This work reports the degradation of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), using a Magnéli phase-based anode type Ti4O7 by electro-oxidation and electro-oxidation combined with electro-Fenton. First the Ti4O7 anode was prepared from Rutile TiO2 powder and characterized, the results showed that the Ti n O2n-1 phase is the dominant phase. Afterward, the degradation of PFOA and PFOS was evaluated on the developed anode. After 5 hours of treatment, 52% and 82% of PFOA and PFOS were removed respectively. To improve this results electro-oxidation was combined with electro-Fenton, the degradation of both pollutants increased, 92% of PFOA was degraded and PFOS was totally removed after 5 hours of treatment. The energy consumption was also evaluated at t 1/2 which is defined as the time when half of the initial concentration of PFOA and PFOS was degraded. Combining the two degradation approaches showed promising results that need to be further optimized for potential application at large volumes.
Collapse
Affiliation(s)
- Chaimaa Gomri
- Institut Européen des Membranes-IEM (UMR 5635), Univ Montpellier, CNRS, ENSCM 34095 Montpellier France
| | - Elissa Makhoul
- Institut Européen des Membranes-IEM (UMR 5635), Univ Montpellier, CNRS, ENSCM 34095 Montpellier France
| | - Fatou Niang Koundia
- Institut Européen des Membranes-IEM (UMR 5635), Univ Montpellier, CNRS, ENSCM 34095 Montpellier France
| | - Eddy Petit
- Institut Européen des Membranes-IEM (UMR 5635), Univ Montpellier, CNRS, ENSCM 34095 Montpellier France
| | - Stéphane Raffy
- Saint-Gobain C.R.E.E. 550 Avenue Alphonse Jauffret 84300 Cavaillon France
| | - Mikhael Bechelany
- Institut Européen des Membranes-IEM (UMR 5635), Univ Montpellier, CNRS, ENSCM 34095 Montpellier France
- Gulf University for Science and Technology, GUST Kuwait
| | - Mona Semsarilar
- Institut Européen des Membranes-IEM (UMR 5635), Univ Montpellier, CNRS, ENSCM 34095 Montpellier France
| | - Marc Cretin
- Institut Européen des Membranes-IEM (UMR 5635), Univ Montpellier, CNRS, ENSCM 34095 Montpellier France
| |
Collapse
|
21
|
Sardiña P, Sharp S, Saaristo M, Coggan T, Hoak M, Leahy P. A quantitative classification method of land uses and assessment of per-and poly-fluoroalkyl substances (PFAS) occurrence in freshwater environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125272. [PMID: 39515568 DOI: 10.1016/j.envpol.2024.125272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/24/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
We developed a quantitative method for classifying land uses for PFAS-related investigations in freshwater environments and determined PFAS ambient concentrations associated with specific land-use classes. Furthermore, our study presents a comprehensive assessment of the ambient occurrence and risks of PFAS mixtures beyond the usually studied PFOS-PFOA mixtures. Eighty-five inland (freshwater only) sites were sampled for water, sediment, and riparian soil in Victoria, south-east Australia, and analyzed for 33 PFAS. PFAS were detected in 91% of water samples, 34% of sediment samples, and 28% of riparian soil samples. Four land-use classes were defined: remote, agricultural, mixed, and urban. In the remote land-use class, only PFOS was detected at a low ambient concentration (0.0002 μg/L) in one water sample. Short-chain PFCA were frequently detected in the agricultural and mixed water samples. PFBA had the highest median ambient concentration in both land uses (ca. 0.01 μg/L), contributing to both ΣPFAS (40%) and ΣPFCA (50%) concentrations. In the urban land-use class, several congeners (PFBA, PFPeA, PFHxA, PFOA, PFHxS, and PFOS) had median ambient concentrations at or close to 0.01 μg/L and contributed similarly to ΣPFAS (10-20%). Elevated risk to the aquatic environment was found only for PFOS in two mixed and eight urban sites. This pattern was consistent with the finding for PFAS mixtures, where the elevated risk was driven by PFOS at those same sites. Our study provides critical information about environmentally relevant ambient concentrations and PFAS mixtures. This information, together with the land-use classification approach presented herein, can be used as reference levels for several critical purposes, including identifying PFAS-contaminated sites, informing land use planning and development decisions, setting standards and guidelines, and tracking changes over time.
Collapse
Affiliation(s)
- Paula Sardiña
- Environment Protection Authority Victoria, Ernest Jones Drive, Macleod, Victoria, 3085, Australia.
| | - Simon Sharp
- Environment Protection Authority Victoria, Ernest Jones Drive, Macleod, Victoria, 3085, Australia
| | - Minna Saaristo
- Environment Protection Authority Victoria, Ernest Jones Drive, Macleod, Victoria, 3085, Australia
| | - Timothy Coggan
- Environment Protection Authority Victoria, Ernest Jones Drive, Macleod, Victoria, 3085, Australia
| | - Molly Hoak
- Environment Protection Authority Victoria, Ernest Jones Drive, Macleod, Victoria, 3085, Australia
| | - Paul Leahy
- Environment Protection Authority Victoria, Ernest Jones Drive, Macleod, Victoria, 3085, Australia
| |
Collapse
|
22
|
Liu Y, Wang Y, Ren T, Yu G, Meng X, Feng L, Li F, Zhang J, Wang C. Unraveling the long-term gastrointestinal impact of perinatal perfluorobutane sulfonate exposure on rat offspring: Intestinal barrier dysfunction and Th17/Treg imbalance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176858. [PMID: 39414058 DOI: 10.1016/j.scitotenv.2024.176858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS), especially long-chain perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), are increasingly acknowledged as a potential inflammatory bowel diseases (IBD) risk factor. Perfluorobutane sulfonate (PFBS), one kind of shorter chain alternative, has been reported to exhibit similar health hazards to those long-chain PFAS. However, the underlying mechanism underpinning PFBS-induced colonic inflammation has not been sufficiently elucidated. The T-helper-17 (Th17)/regulatory T (Treg) imbalance is a crucial event for the pathogenesis of colonic inflammation. In this study, we aimed to reveal whether and how perinatal PFBS exposure leads to the Th17/Treg imbalance and colonic inflammation in offspring. We firstly demonstrated in vivo that early-life PFBS exposure (0.5 mg/kg, 5 mg/kg) led to increased intestinal permeability and colonic inflammation accompanied by decreased expressions of tight junction protein 1 (Tjp1) and claudin-4 (Cldn4) and increased expressions of interleukin 17A (IL-17A) in colon of rat offspring. Further results indicated that PFBS exposure induces the Th17/Treg imbalance through upregulating the expression of retinoic acid receptor-related orphan receptor gamma t (Ror-γt) and transforming growth factor beta (TGF-β) and downregulating of forkhead box protein 3 (Foxp3) and IL-10 in colon. Moreover, metabolomics analyses indicated that bile secretion metabolism was significantly altered under PFBS exposure. The reduction of lithocholic acid and deoxycholic acid was closely related to the changes of TGF-β and IL-10 in colon, and may contribute to the perturbation of Th17/Treg balance and colonic inflammation. These results provide evidences for the immunotoxicity of PFBS and reveal the potential contribution to colonic inflammation, which raises concern on the health effects and risk assessment of short-chain PFAS.
Collapse
Affiliation(s)
- Yongjie Liu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environment Sciences, Shanghai 200233, China; Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yong Wang
- School of Architecture and Engineering, Yan'an University, Yan'an 716000, China
| | - Tai Ren
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Guoqi Yu
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xi Meng
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Liping Feng
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, USA
| | - Fei Li
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Department of Developmental and Behavioural Paediatric & Child Primary Care, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Jun Zhang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Cuiping Wang
- Department of Maternal and Child Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| |
Collapse
|
23
|
Li J, Duan W, An Z, Jiang Z, Li L, Guo M, Tan Z, Zeng X, Liu X, Liu Y, Li A, Guo H. Legacy and alternative per- and polyfluoroalkyl substances spatiotemporal distribution in China: Human exposure, environmental media, and risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135795. [PMID: 39278030 DOI: 10.1016/j.jhazmat.2024.135795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/22/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
In recent decades, China's rapid development has led to significant environmental pollution from the widespread use of chemical products. Per- and polyfluoroalkyl substances (PFAS) are among the most concerning pollutants due to their persistence and bioaccumulation. This article assesses PFAS exposure levels, distribution, and health risks in Chinese blood, environment, and food. Out of 4037 papers retrieved from November 2022 to December 31, 2023, 351 articles met the criteria. Findings show perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) as the main PFAS in both Chinese populations and the environment. The highest PFOA levels in Chinese populations were in Shandong (53.868 ng/mL), while Hubei had the highest PFOS levels (43.874 ng/mL). Similarly, water samples from Sichuan (2115.204 ng/L) and Jiangsu (368.134 ng/L) had the highest PFOA and PFOS levels, respectively. Although localized areas showed high PFAS concentrations. Additionally, developed areas had higher PFAS contamination. The researches conducted in areas such as Qinghai and Hainan remain limited, underscoring the imperative for further investigation. Temporal analysis indicates declining levels of some PFAS, but emerging alternatives require more research. Limited studies on PFAS concentrations in soil, atmosphere, and food emphasize the need for comprehensive research to mitigate human exposure.
Collapse
Affiliation(s)
- Jing Li
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Wenjing Duan
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Ziwen An
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Zexuan Jiang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Longfei Li
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Mingmei Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Zhenzhen Tan
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Xiuli Zeng
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Xuehui Liu
- Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang 050017, PR China
| | - Yi Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, PR China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, PR China.
| | - Huicai Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang 050017, PR China.
| |
Collapse
|
24
|
Zhang W, Lu Q, Chen H, Li Y, Hua Y, Wang J, Chen F, Zheng R. A novel high-throughput quantitative method for the determination of per- and poly-fluoroalkyl substances in human plasma based on UHPLC-Q/Orbitrap HRMS coupled with isotope internal standard. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136138. [PMID: 39467434 DOI: 10.1016/j.jhazmat.2024.136138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/02/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024]
Abstract
A novel method for the quantitative analysis of 56 per- and polyfluoroalkyl substances (PFASs) in human plasma was established on the basis of ultrahigh performance liquid chromatography tandem quadrupole Orbitrap high-resolution mass spectrometry (UHPLC-Q/Orbitrap HRMS) in combination with accurate customized mass databases and isotopic internal standards. A streamlined, high-throughput, and high-recovery (RE) sample pretreatment method was developed. The method's performance was evaluated in terms of linearity, limit of quantification, RE, repeatability, reproducibility, and matrix effect. The proposed method was applied in the simultaneous analysis of 56 PFASs in human plasma, and its results demonstrated high sensitivity, accuracy, and precision. The optimized method was implemented to analyze PFASs in 135 plasma samples, and 12 components were detected. The comparative analysis of the results from 135 plasma samples with domestic and international studies revealed elevated contents of PFOA, PFOS, PFBA, and PFTrDA, the moderate amounts of PFHxS, PFUdA, PFBS, and PFHpS, and the low concentrations of PFNA and PFDA. Notably, GenX was detected in human plasma for the first time. This finding suggests that the study region is contaminated with this substance. Correlation analysis revealed a strong relationship among PFNA, PFDA, and PFUdA, implying that these substances may have similar exposure sources.
Collapse
Affiliation(s)
- Wenting Zhang
- Physical and Chemical Laboratory, Fujian Provincial Center for Disease Control and Prevention, Fuzhou 350012, Fujian, China
| | - Qiuyan Lu
- Physical and Chemical Laboratory, Fujian Provincial Center for Disease Control and Prevention, Fuzhou 350012, Fujian, China
| | - Huafeng Chen
- Physical and Chemical Laboratory, Fujian Provincial Center for Disease Control and Prevention, Fuzhou 350012, Fujian, China
| | - Yuxiang Li
- Physical and Chemical Laboratory, Fujian Provincial Center for Disease Control and Prevention, Fuzhou 350012, Fujian, China
| | - Yongyou Hua
- Physical and Chemical Laboratory, Fujian Provincial Center for Disease Control and Prevention, Fuzhou 350012, Fujian, China
| | - Jing Wang
- School of Public Health, Fujian Medical University, Fuzhou 350112, Fujian, China
| | - Fa Chen
- School of Public Health, Fujian Medical University, Fuzhou 350112, Fujian, China
| | - Renjin Zheng
- Physical and Chemical Laboratory, Fujian Provincial Center for Disease Control and Prevention, Fuzhou 350012, Fujian, China; School of Public Health, Fujian Medical University, Fuzhou 350112, Fujian, China.
| |
Collapse
|
25
|
Sigler K, Messer TL, Ford W, Sanderson W. Occurrence, transformation, and transport of PFAS entering, leaving, and flowing past wastewater treatment plants with diverse land uses. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123129. [PMID: 39504663 DOI: 10.1016/j.jenvman.2024.123129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/21/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been detected ubiquitously throughout the environment. Wastewater treatment plants (WWTPs) have been identified as potential hotspots for the introduction of PFAS into the environment. Therefore, the occurrence, transformation, and transport of 18 PFAS in two WWTPs with varying treatment processes, prevailing land uses, and during two distinct time periods were investigated. Polar Organic Chemical Integrative Samplers (POCIS) were installed at two WWTPs in Central Kentucky during April and July of 2022. PFAS concentrations typically increased from influent to effluent at both WWTPs, regardless of wastewater treatment processes, but changes in surface water concentrations from upstream to downstream of the effluent mixing zones varied. Both WWTPs discharged the 18 PFAS at higher loads than received, indicating prevalent transformation of PFAS precursors and non-measured PFAS analytes into measurable PFAS. Nearly all measured PFAS persisted in aqueous (86-98%) compartments rather than sediment or biosolids (2-14%). All biosolids had low content of PFAS with the dominant compound being PFOS (1.59-2.60 ng/g). Based on recent US EPA proposed maximum contaminant levels, hazard indexes for drinking water were exceeded in effluent and downstream surface waters at both WWTPs. The WWTP located in a heavily developed area and downstream from a firefighting training facility, had significantly higher concentrations of most PFAS species at most monitoring sites and was less impacted by sampling period compared to the WWTP located in a moderately developed, pastured area. Findings support the importance of WWTPs and land use practices as contributing to PFAS impact to downstream ecosystems along with potentially increasing strains on downstream drinking water source waters in regions that are surface water dependent.
Collapse
Affiliation(s)
- Kyra Sigler
- Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY, USA
| | - Tiffany L Messer
- Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY, USA.
| | - William Ford
- Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY, USA
| | - Wayne Sanderson
- Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
26
|
Alvarez-Ruiz R, Lee LS, Choi Y. Fate of per- and polyfluoroalkyl substances at a 40-year dedicated municipal biosolids land disposal site. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176540. [PMID: 39332729 DOI: 10.1016/j.scitotenv.2024.176540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/04/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
The fate of per- and polyfluoroalkyl substances (PFAS) was evaluated at a site where municipal biosolids have been applied annually for 38 years as a waste management strategy. Soil cores (1.8 m in 30-cm sections), groundwater from four wells, and biosolids applied in 2022 were analyzed for PFAS (54 targeted, 17 semi-quantified) using liquid chromatography high resolution mass spectrometry including suspect screening. Total PFAS concentrations decreased with soil depth from 1700 ng/g to 2.06 ng/g. PFAS distribution in 2022 biosolids were 60 mol% perfluoroalkyl acid (PFAA) precursors and intermediates. The surface soil was dominated by long-chain PFAAs (67-76 mol%) reflecting precursor degradation after biosolids application. Presence of semi-quantified intermediates further reflects precursor degradation in surface soil. Long-chain PFAAs diminished with depth while short-chain PFAAs increased with up to 98 and 96 mol% short-chain PFAAs in the bottom depth and groundwater, respectively. PFAS distribution with depth is consistent with chain-length dependent sorption-impacted transport and the high organic carbon content of the surface soil (15.2 % OC) which subsequently decreased with depth (~2-3 % OC at >60 cm). High organic carbon content in the upper horizon is likely from decades of high biosolids application rates, which contributed to minimizing leaching of long-chain PFAS. While the well within the dedicated land disposal is not drinking water, for comparison only, PFAS concentrations in this well only marginally exceeded the EU drinking water directive for total PFAS and a few individual short-chain PFAS, but did exceed tenfold, the USEPA drinking water standard for PFOA.
Collapse
Affiliation(s)
| | - Linda S Lee
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA; Department of Environmental & Ecological Engineering, Purdue University, West Lafayette, IN 47907, USA; Ecological Sciences & Engineering Interdisciplinary Graduate Program, Purdue University, West Lafayette, IN 47907, USA.
| | - YounJeong Choi
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
27
|
Chokwe TB, Themba N, Mahlambi PN, Mngadi SV, Sibali LL. Poly- and per-fluoroalkyl substances (PFAS) in the African environments: progress, challenges, and future perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:65993-66008. [PMID: 39636544 DOI: 10.1007/s11356-024-35727-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Per- or poly-fluoroalkyl substances (PFAS) are a group of anthropogenic compounds that are used in a variety of industrial processes and consumer products with their ubiquitous presence in the environment recently gaining relevant attention. Progress and milestones on PFAS contamination within multiple environments from African continent are highlighted in this review. Identification and quantitation of PFAS within African environments is important to the public at large because of their toxicity and possible ecotoxicological risk. Two most studied classes of PFAS are perfluoro carboxylic acid (PFCA) (i.e., perfluorooctanoic acid (PFOA)) and perfluoro sulfonic acid (PFSA) (i.e., perfluoro sulfonic acid (PFOS)) with many more classes of PFAS been created by industry. Within the African continent, studies reported PFAS in water, sediments, soils, fish, dust, breastmilk, infant formulae, dust, atmosphere, marine species and wildlife. Southern Africa contributed more studies on the presence of PFAS in the environment with Central Africa contributing the least. Despite growing awareness of PFAS contamination in Africa, the number of studies, studied compounds, and concentration levels vary significantly across regions and matrices. While some countries in Southern and Western Africa have made progress in PFAS research, the overall disparity in research output highlights the urgency for increased attention, resources, and concerted efforts to comprehensively address PFAS contamination. This review also revealed PFAS contamination within freshwater environments, with non-existent data from marine water environments. Collaboration among scientists, policymakers, industry players as well as regional and international communities are essential to mitigate the impact of PFAS in the African environment.
Collapse
Affiliation(s)
- Tlou B Chokwe
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Christiaan de Wet Road, Florida, Johannesburg, 1709, South Africa.
- Infrastructure Department, Scientific Services Unit, Capricorn District Municipality, 24 Thabo Mbeki Street, Polokwane, 0699, South Africa.
| | - Nomathemba Themba
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Christiaan de Wet Road, Florida, Johannesburg, 1709, South Africa
| | - Precious N Mahlambi
- Department of Chemistry, University of KwaZulu-Natal, King Edward Avenue, Scottville, Pietermaritzburg, 3201, South Africa
| | - Sihle V Mngadi
- Scientific Services Department, Umgeni Waters, 310 Burger Street, Pietermaritzburg, 3201, South Africa
| | - Linda L Sibali
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Christiaan de Wet Road, Florida, Johannesburg, 1709, South Africa
| |
Collapse
|
28
|
Zheng J, Liu S, Yang J, Zheng S, Sun B. Per- and polyfluoroalkyl substances (PFAS) and cancer: Detection methodologies, epidemiological insights, potential carcinogenic mechanisms, and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176158. [PMID: 39255941 DOI: 10.1016/j.scitotenv.2024.176158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/01/2024] [Accepted: 09/07/2024] [Indexed: 09/12/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS), known as "forever chemicals," are synthetic chemicals which have been used since the 1940s. Given their remarkable thermostability and chemical stability, PFAS have been widely utilized in commercial products, including textiles, surfactants, food packages, nonstick coatings, and fire-fighting foams. Thus, PFAS are widely distributed worldwide and have been detected in human urine, blood, breast milk, tissues and other substances. Growing concerns over the risks of PFAS, including their toxicity and carcinogenicity, have attracted people's attention. Recent reviews have predominantly emphasized advancements in the detection, adsorption, and degradation of PFAS through their chemical structures and toxic properties; however, further examination of the literature is needed to determine the link between PFAS exposure and cancer risk. Here, we introduced different PFAS detection methods based on sensors and liquid chromatography-mass spectrometry (LC-MS). Then, we discussed epidemiological investigations on PFAS levels and cancer risks in recent years, as well as the mechanisms underlying the carcinogenesis. Finally, we proposed the "4C principles" for ongoing exploration and refinement in this field. This review highlights PFAS-cancer associations to fill knowledge gaps and provide evidence-based strategies for future research.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Sheng Liu
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06510, USA
| | - Junjie Yang
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Shujian Zheng
- Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA.
| | - Boshi Sun
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China; Division of Surgical Oncology, Department of Surgery, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
29
|
Elgarahy AM, Eloffy MG, Saber AN, Abouzid M, Rashad E, Ghorab MA, El-Sherif DM, Elwakeel KZ. Exploring the sources, occurrence, transformation, toxicity, monitoring, and remediation strategies of per- and polyfluoroalkyl substances: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1209. [PMID: 39556161 DOI: 10.1007/s10661-024-13334-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 10/25/2024] [Indexed: 11/19/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS), a class of man-made chemicals, possess unique properties that have rendered them indispensable in various industries and consumer goods. However, their extensive use and persistence in the environment have raised concerns about their potential repercussions on human health and the ecosystem. This review provides insights into the sources, occurrence, transformation, impacts, fate, monitoring, and remediation strategies for PFAS. Once released into the environment, these chemicals undergo intricate transformation processes, such as degradation, bioaccumulation, and biomagnification, which result in their far-reaching distribution and persistence. Their chemical stability results in persistent pollution, with far-reaching ecological and human health implications. Remediation strategies for PFAS are still in their infancy, and researchers are exploring innovative and sustainable methods for treating contaminated environments. Promising technologies such as adsorption, biodegradation, and electrochemical oxidation have shown the potential to remove PFAS from contaminated sites, yet the search for more efficient and sustainable solutions continues. In conclusion, this review emphasizes the urgent need for continued research and innovation to address the global environmental challenge posed by PFAS. As we move forward, it is imperative to prioritize sustainable solutions that minimize the detrimental consequences of these substances on human health and the environment.
Collapse
Affiliation(s)
- Ahmed M Elgarahy
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt
- Egyptian Propylene and Polypropylene Company (EPPC), Port-Said, Egypt
| | - M G Eloffy
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | - Ayman N Saber
- Pesticide Residues and Environmental Pollution Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Dokki, 12618, Giza, Egypt
- Department of Analytical Chemistry, Institute of Chemistry for Energy and the Environment, University of Córdoba, 14071, Cordoba, Spain
| | - Mohamed Abouzid
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 6 Święcickiego Street, 60-781, Poznan, Poland
| | - Emanne Rashad
- Department of Environmental Sciences, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mohamed A Ghorab
- Wildlife Toxicology Laboratory, Department of Animal Science, Institute for Integrative Toxicology (IIT), Michigan State University, East Lansing, MI, 48824, USA
| | - Dina M El-Sherif
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Khalid Z Elwakeel
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt.
- Department of Environmental Science, College of Science, University of Jeddah, Jeddah, Saudi Arabia.
| |
Collapse
|
30
|
Wang X, Lv Y, Qiang X, Liang S, Li R, Zhan J, Liu J. Perfluorooctanoic acid (PFOA) and its alternative perfluorobutanoic acid (PFBA) alter hepatic bile acid profiles via different pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175312. [PMID: 39122034 DOI: 10.1016/j.scitotenv.2024.175312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/28/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
The disruption of per- and polyfluoroalkyl substances (PFASs) on bile acid (BA) homeostasis has raised public concerns, making the evaluation of their effects and underlying mechanisms a high priority. Although the use of perfluorooctanoic acid (PFOA) has been restricted, it remains a widespread legacy PFAS in the environment. Concurrently, the use of its prevalent short-chain alternative, perfluorobutanoic acid (PFBA), is increasing, yet the toxicity assessment of PFBA remains inadequate. In this study, C57BL/6N mice were exposed to PFOA and PFBA (0.4 or 10 mg/kg body weight) by gavage for 28 days. The results showed that both PFOA and PFBA significantly increased hepatic weight, although PFBA exhibited lower bioaccumulation than PFOA in the liver. Targeted metabolomics revealed that PFOA significantly decreased total BA levels and altered their composition. Conversely, PFBA, without significantly altering total BA levels, notably changed their composition, such as increasing the proportion of cholic acid. Further investigations using in vivo and in vitro assays suggested that PFOA inhibited the expression of Cyp7A1, a key BA synthetase, potentially via PPARα activation, thereby reducing BA levels. In contrast, PFBA enhanced Cyp7A1 expression, associated with the inhibition of intestinal Farnesoid X receptor-fibroblast growth factor 15 (FXR-FGF15) pathway. This study evaluated the differences in the BA-interfering effects of PFOA and PFBA and shed light on the potential mechanisms, which will provide new insights into the health risks of legacy PFASs and their alternatives.
Collapse
Affiliation(s)
- Xiaoyuan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yinchuan Lv
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Xin Qiang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Shumin Liang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Ruosi Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Jing Zhan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| | - Jiaying Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
31
|
Ohoro CR, Amaku JF, Conradie J, Olisah C, Akpomie KG, Malloum A, Akpotu SO, Adegoke KA, Okeke ES, Omotola EO. Effect of physicochemical parameters on the occurrence of per- and polyfluoroalkyl substances (PFAS) in aquatic environment. MARINE POLLUTION BULLETIN 2024; 208:117040. [PMID: 39366060 DOI: 10.1016/j.marpolbul.2024.117040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/13/2024] [Accepted: 09/21/2024] [Indexed: 10/06/2024]
Abstract
Perfluoroalkyl substances (PFAS) and their distribution in aquatic environments have been studied extensively, but more information is needed to link these occurrences to their physicochemical characteristics. Understanding how these parameters influence PFAS can help predict their fate, mobility, and occurrences in water. This study reviewed the influence of physicochemical parameters on the occurrences of PFAS in aquatic environment using the relevant keywords to retrieve articles from databases spanning mostly between 2017 and 2024. The result suggests that high pH, turbidity, and dissolved oxygen, give high concentration of PFAS, while high electrical conductivity, temperature and salinity give low PFAS concentration in the water. Therefore, monitoring and safeguarding the aquatic bodies for human and environmental safety is imperative. Future studies should include the effects of the physicochemical properties on PFAS occurrences in the natural environment and focus on an organism's distinctive characteristics to comprehend the bioaccumulation and biomagnification of PFAS in them and environmental matrices.
Collapse
Affiliation(s)
- Chinemerem Ruth Ohoro
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11 Hoffman St, Potchefstroom 2520, South Africa.
| | - James F Amaku
- Department of Chemistry, Michael Okpara University of Agriculture, Umudike, Nigeria; Environmental Fate of Chemicals and Remediation Laboratory, Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, Gauteng, South Africa
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, Bloemfontein 9300, South Africa
| | - Chijioke Olisah
- Institute for Coastal and Marine Research (CMR), Nelson Mandela University, P.O. Box 77000, Gqeberha 6031, South Africa; Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 5/753, 625 00 Brno, Czech Republic
| | - Kovo G Akpomie
- Department of Chemistry, University of the Free State, Bloemfontein 9300, South Africa; Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| | - Alhadji Malloum
- Department of Chemistry, University of the Free State, Bloemfontein 9300, South Africa; Department of Physics, Faculty of Science, University of Maroua, Maroua, Cameroon
| | - Samson O Akpotu
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | - Kayode A Adegoke
- Department of Industrial Chemistry, First Technical University, Ibadan, Nigeria
| | - Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State, Nigeria; Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Elizabeth O Omotola
- Department of Chemical Sciences, Tai Solarin University of Education, Ijebu Ode PMB 2118, Ogun State, Nigeria
| |
Collapse
|
32
|
Petali JM, Pulster EL, McCarthy C, Pickard HM, Sunderland EM, Bangma J, Carignan CC, Robuck A, Crawford KA, Romano ME, Lohmann R, von Stackelburg K. Considerations and challenges in support of science and communication of fish consumption advisories for per- and polyfluoroalkyl substances. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:1839-1858. [PMID: 38752651 PMCID: PMC11486601 DOI: 10.1002/ieam.4947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 06/12/2024]
Abstract
Federal, state, tribal, or local entities in the United States issue fish consumption advisories (FCAs) as guidance for safer consumption of locally caught fish containing contaminants. Fish consumption advisories have been developed for commonly detected compounds such as mercury and polychlorinated biphenyls. The existing national guidance does not specifically address the unique challenges associated with bioaccumulation and consumption risk related to per- and polyfluoroalkyl substances (PFAS). As a result, several states have derived their own PFAS-related consumption guidelines, many of which focus on one frequently detected PFAS, known as perfluorooctane sulfonic acid (PFOS). However, there can be significant variation between tissue concentrations or trigger concentrations (TCs) of PFOS that support the individual state-issued FCAs. This variation in TCs can create challenges for risk assessors and risk communicators in their efforts to protect public health. The objective of this article is to review existing challenges, knowledge gaps, and needs related to issuing PFAS-related FCAs and to provide key considerations for the development of protective fish consumption guidance. The current state of the science and variability in FCA derivation, considerations for sampling and analytical methodologies, risk management, risk communication, and policy challenges are discussed. How to best address PFAS mixtures in the development of FCAs, in risk assessment, and establishment of effect thresholds remains a major challenge, as well as a source of uncertainty and scrutiny. This includes developments better elucidating toxicity factors, exposures to PFAS mixtures, community fish consumption behaviors, and evolving technology and analytical instrumentation, methods, and the associated detection limits. Given the evolving science and public interests informing PFAS-related FCAs, continued review and revision of FCA approaches and best practices are vital. Nonetheless, consistent, widely applicable, PFAS-specific approaches informing methods, critical concentration thresholds, and priority compounds may assist practitioners in PFAS-related FCA development and possibly reduce variability between states and jurisdictions. Integr Environ Assess Manag 2024;20:1839-1858. © 2024 The Author(s). Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Jonathan Michael Petali
- Environmental Health Program, New Hampshire Department of Environmental Services, Concord, New Hampshire, USA
| | - Erin L Pulster
- US Geological Survey, Columbia Environmental Research Center, Columbia, Missouri, USA
| | | | - Heidi M Pickard
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts, USA
| | - Elsie M Sunderland
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts, USA
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Jacqueline Bangma
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
- Center for Environmental Measurement and Modeling, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Courtney C Carignan
- Department Food Science and Human Nutrition, Department of Pharmacology and Toxicology Michigan State University, East Lansing, Michigan, USA
| | - Anna Robuck
- Environmental Effects Research Laboratory, US Environmental Protection Agency, Narragansett, Rhode Island, USA
| | - Kathryn A Crawford
- Environmental Studies Programs, Middlebury College, Middlebury, Vermont, USA
| | - Megan E Romano
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Rainer Lohmann
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| | - Katherine von Stackelburg
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
33
|
Fuller N, Suski JG, Lanasa S, Chanov MK, Jones DK, Haskins DL, Quinlin KA, Wigren MA, Hoverman JT, Choi YJ, Sepulveda MS, Lee LS, Lotufo GR, Kennedy A, May L, Harmon A, Biber T, Melby N, Moore DW, Key PB, Chung KW, Wirth EF, Anderson TA. Chronic Toxicity of Per- and Polyfluoroalkyl Substance-Free Firefighting Foams to Aquatic Organisms. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2436-2454. [PMID: 39189750 DOI: 10.1002/etc.5979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/28/2024]
Abstract
Amid global concern regarding the health and environmental impacts of per- and polyfluoroalkyl substances (PFAS), there is an urgent need to develop and implement alternative products without PFAS. Consequently, PFAS-free firefighting foams used for fire suppression have been developed for use in military and residential settings. To facilitate the selection of lower-risk PFAS-free foams, the present study focused on the chronic toxicity of seven PFAS-free and one PFAS-containing foam to six aquatic species. Target species included two cladocerans, Daphnia magna and Ceriodaphnia dubia; the chironomid Chironomus dilutus; the mysid Americamysis bahia; and two fish species, Pimephales promelas and Cyprinodon variegatus, with endpoints including growth, development, reproduction, and survival. To facilitate comparison and product toxicity rankings, effective concentrations (20%, 50%) and no- and lowest-observed-effect concentrations (NOECs and LOECs, respectively) were calculated. Effective concentrations, NOECs, and LOECs varied by over an order of magnitude among foams and species, with several of the PFAS-free formulations ranked as highly toxic based on US Environmental Protection Agency alternatives assessment hazard criteria. Overall, the PFAS-free foams were found to exhibit either similar or greater toxicity compared to the PFAS-containing reference foam across several species and endpoints. Nonmonotonic and hormetic dose responses were observed in D. magna for several of the tested foams, with increased reproduction and growth at intermediate exposures. Generally, tested foam toxicity rankings were consistent with a related acute toxicity study using the same species and formulations, and other research using soil invertebrates. Combined with related efforts for other taxa including mammals, birds, and plants, the present research will facilitate the selection of appropriate PFAS-free firefighting foams that minimize harm to the environment. Environ Toxicol Chem 2024;43:2436-2454. © 2024 SETAC.
Collapse
Affiliation(s)
- Neil Fuller
- EA Engineering, Science and Technology Inc., PBC, Hunt Valley, Maryland, USA
| | - Jamie G Suski
- EA Engineering, Science and Technology Inc., PBC, Hunt Valley, Maryland, USA
| | - Sarah Lanasa
- EA Engineering, Science and Technology Inc., PBC, Hunt Valley, Maryland, USA
| | - Michael K Chanov
- EA Engineering, Science and Technology Inc., PBC, Hunt Valley, Maryland, USA
| | - Devin K Jones
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
| | - David L Haskins
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
| | - Kathryn A Quinlin
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
| | - Maggie A Wigren
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
| | - Jason T Hoverman
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
| | - Youn J Choi
- Department of Agronomy, Purdue University, West Lafayette, Indiana, USA
| | - Maria S Sepulveda
- Department of Agronomy, Purdue University, West Lafayette, Indiana, USA
| | - Linda S Lee
- Department of Agronomy, Purdue University, West Lafayette, Indiana, USA
| | - Guilherme R Lotufo
- US Army Engineer Research and Development Center, Vicksburg, Mississippi
| | - Alan Kennedy
- US Army Engineer Research and Development Center, Vicksburg, Mississippi
| | - Lauren May
- US Army Engineer Research and Development Center, Vicksburg, Mississippi
| | - Ashley Harmon
- US Army Engineer Research and Development Center, Vicksburg, Mississippi
| | - Thomas Biber
- US Army Engineer Research and Development Center, Vicksburg, Mississippi
| | - Nicolas Melby
- US Army Engineer Research and Development Center, Vicksburg, Mississippi
| | - David W Moore
- US Army Engineer Research and Development Center, Vicksburg, Mississippi
| | - Peter B Key
- NOAA, National Centers for Coastal Ocean Sciences, Hollings Marine Laboratory, Charleston, South Carolina, USA
| | - Katy W Chung
- NOAA, National Centers for Coastal Ocean Sciences, Hollings Marine Laboratory, Charleston, South Carolina, USA
| | - Edward F Wirth
- NOAA, National Centers for Coastal Ocean Sciences, Hollings Marine Laboratory, Charleston, South Carolina, USA
| | - Todd A Anderson
- Department of Environmental Toxicology, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
34
|
V M Starling MC, Rodrigues DAS, Miranda GA, Jo S, Amorim CC, Ankley GT, Simcik M. Occurrence and potential ecological risks of PFAS in Pampulha Lake, Brazil, a UNESCO world heritage site. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174586. [PMID: 38997014 DOI: 10.1016/j.scitotenv.2024.174586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/30/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) comprise >4000 synthetic substances used in industrial applications and consumer products. PFAS used daily in households and manufacturing plants end up in domestic sewage, and industrial effluents can be discharged to surface water. Urban watersheds located in low and middle-income countries (LMIC), which lack sanitation infrastructure, are potential recipients of waste containing PFAS. Yet, only a few studies report PFAS occurrence in urban reservoirs and lakes, especially those located in the Global South due to resource limitations. This is the first study aimed to assess PFAS occurrence and ecological risks in Pampulha Lake, Brazil, a site which represents the reality of many other urban watersheds in LMIC as it is surrounded by densely populated areas and manufacturing plants. Surface water samples were collected monthly for 1 year from four sampling points at Pampulha Lake. Sample analysis was based on US Environmental Protection Agency Method 1633, which employs solid phase extraction followed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Species sensitivity distribution (SSD) curves were built to identify potentially susceptible species based on detected water concentrations. Bioaccumulation was estimated for fish tissue. Short-chain (perfluorobutanesulfonic acid, PFBS and perfluorohexanoic acid, PFHxA) and long-chain PFAS (perfluorodecanoic acid, PFDA; perfluorooctanoic acid, PFOA; perfluorododecanoic acid, PFDoA; and perfluorooctanesulfonic acid, PFOS) were detected at the μg L-1 range. Total PFAS concentrations in the wet season were generally higher than in the dry season, likely due to limited capacity of the treatment plant processing water from tributaries which receive raw sewage. More than 5 % of aquatic species are potentially susceptible to chronic effects of PFOS at detected concentrations (0.2-2.2 μg L-1). Predicted bioaccumulation of PFOS in fish was above advisory diet intake levels for humans. Results emphasize the need for studies related to PFAS occurrence in watersheds located in LMIC.
Collapse
Affiliation(s)
- Maria Clara V M Starling
- Universidade Federal de Minas Gerais, Department of Sanitary and Environmental Engineering, Research Group on Environmental Applications of Advanced Oxidation Processes, Av. Presidente Antônio Carlos 6627, Escola de Engenharia, Belo Horizonte 31270-901, MG, Brazil.
| | - Daniel A S Rodrigues
- Universidade Federal de Minas Gerais, Department of Sanitary and Environmental Engineering, Research Group on Environmental Applications of Advanced Oxidation Processes, Av. Presidente Antônio Carlos 6627, Escola de Engenharia, Belo Horizonte 31270-901, MG, Brazil
| | - Gisele A Miranda
- Universidade Federal de Minas Gerais, Department of Sanitary and Environmental Engineering, Research Group on Environmental Applications of Advanced Oxidation Processes, Av. Presidente Antônio Carlos 6627, Escola de Engenharia, Belo Horizonte 31270-901, MG, Brazil
| | - Suna Jo
- University of Minnesota, School of Public Health, 420 Delaware St SE, MMC 807, Minneapolis, MN 55455, USA
| | - Camila C Amorim
- Universidade Federal de Minas Gerais, Department of Sanitary and Environmental Engineering, Research Group on Environmental Applications of Advanced Oxidation Processes, Av. Presidente Antônio Carlos 6627, Escola de Engenharia, Belo Horizonte 31270-901, MG, Brazil
| | - Gerald T Ankley
- US Environmental Protection Agency, Office of Research and Development, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, MN 55804, USA
| | - Matt Simcik
- University of Minnesota, School of Public Health, 420 Delaware St SE, MMC 807, Minneapolis, MN 55455, USA
| |
Collapse
|
35
|
Peter KT, Gilbreath A, Gonzalez M, Tian Z, Wong A, Yee D, Miller EL, Avellaneda PM, Chen D, Patterson A, Fitzgerald N, Higgins CP, Kolodziej EP, Sutton R. Storms mobilize organophosphate esters, bisphenols, PFASs, and vehicle-derived contaminants to San Francisco Bay watersheds. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1760-1779. [PMID: 39291694 DOI: 10.1039/d4em00117f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In urban to peri-urban watersheds such as those surrounding San Francisco Bay, stormwater runoff is a major pathway by which contaminants enter aquatic ecosystems. We evaluated the occurrence of 154 organic contaminants via liquid chromatography coupled to tandem mass spectrometry, including organophosphate esters (OPEs), bisphenols, per- and polyfluoroalkyl substances (PFASs), and a suite of novel urban stormwater tracers (SWCECs; i.e., vehicle-derived chemicals, pesticides, pharmaceuticals/personal care products, benzothiazoles/benzotriazoles). Time-averaged composite sampling focused on storms in highly developed watersheds over four wet seasons, with complementary sampling in less-urban reference watersheds, near-shore estuarine sites, and the open Bay. Of the targeted contaminants, 68 (21 SWCECs, 29 OPEs, 3 bisphenols, 15 PFASs) were detected in ≥10 of 26 urban stormwater samples. Median concentrations exceeded 500 ng L-1 for 1,3-diphenylguanidine, hexa(methoxymethyl)melamine, and caffeine, and exceeded 300 ng L-1 for 2-hydroxy-benzothiazole, 5-methyl-1H-benzotriazole, pentachlorophenol, and tris(2-butoxyethyl) phosphate. Median individual PFAS concentrations were <10 ng L-1, with highest concentrations for PFHxA (180 ng L-1), PFOA (110 ng L-1), and PFOS (81 ng L-1). In six of eight urban stormwater samples analyzed for 6PPD-quinone (a tire rubber-derived transformation product), concentrations exceeded coho salmon acute toxicity thresholds, suggesting (sub)lethal impacts for sensitive species. Observed concentrations were generally significantly higher in highly developed watersheds relative to reference watersheds, but not statistically different in near-shore estuarine sites, suggesting substantial transient exposure potential at stormwater outfalls or creek outflows. Results emphasized the role of stormwater in contaminant transport, the importance of vehicles/roadways as contaminant sources, and the value of monitoring broad multi-analyte contaminant suites to enable comprehensive source and toxicity evaluations.
Collapse
Affiliation(s)
- Katherine T Peter
- Center for Urban Waters, Tacoma, WA 98421, USA
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA 98421, USA
| | | | - Melissa Gonzalez
- Center for Urban Waters, Tacoma, WA 98421, USA
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA 98421, USA
| | - Zhenyu Tian
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Adam Wong
- San Francisco Estuary Institute, Richmond, CA 94804, USA.
| | - Don Yee
- San Francisco Estuary Institute, Richmond, CA 94804, USA.
| | - Ezra L Miller
- San Francisco Estuary Institute, Richmond, CA 94804, USA.
| | | | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong 510632, China
| | | | - Nicole Fitzgerald
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Edward P Kolodziej
- Center for Urban Waters, Tacoma, WA 98421, USA
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA 98421, USA
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA
| | - Rebecca Sutton
- San Francisco Estuary Institute, Richmond, CA 94804, USA.
| |
Collapse
|
36
|
Bushong A, Sepúlveda M, Scherer M, Valachovic AC, Neill CM, Horn S, Choi Y, Lee LS, Baloni P, Hoskins T. Effects of Perfluorinated Alkyl Substances (PFAS) on Amphibian Body and Liver Conditions: Is Lipid Metabolism Being Perturbed throughout Metamorphosis? TOXICS 2024; 12:732. [PMID: 39453152 PMCID: PMC11510839 DOI: 10.3390/toxics12100732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/29/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) may interact with peroxisome proliferator activated receptors (PPARs) and alter lipid homeostasis. Using Xenopus laevis, we investigated the effect of PFAS on (a) lipid homeostasis and whether this correlated to changes in body and hepatic condition; (b) the expression of hepatic genes regulated by PPAR; and (c) the hepatic lipidome. We chronically exposed tadpoles to 0.5 µg/L of either PFOS, PFHxS, PFOA, PFHxA, a binary mixture of PFOS and PFHxS (0.5 µg/L of each), or a control, from NF stage 52 through metamorphic climax. Growth, development, and survival were not affected, but we detected a sex-specific decrease in body condition at NF 66 (6.8%) and in hepatic condition (16.6%) across metamorphic climax for male tadpoles exposed to PFOS. We observed weak evidence for the transient downregulation of apolipoprotein-V (apoa5) at NF 62 in tadpoles exposed to PFHxA. Acyl-CoA oxidase 1 (acox1) was downregulated only in males exposed to PFHxS (Ln(Fold Change) = -0.54). We detected PFAS-specific downregulation of structural glycerophospholipids, while semi-quantitative profiling detected the upregulation in numerous glycerophospholipids, sphingomyelins, and diglycerides. Overall, our findings indicate that PFAS can induce sex-specific effects that change across larval development and metamorphosis. We demonstrate that PFAS alter lipid metabolism at environmentally relevant concentrations through divergent mechanisms that may not be related to PPARs, with an absence of effects on body condition, demonstrating the need for more molecular studies to elucidate mechanisms of PFAS-induced lipid dysregulation in amphibians and in other taxa.
Collapse
Affiliation(s)
- Anna Bushong
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA; (M.S.)
| | - Maria Sepúlveda
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA; (M.S.)
- Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile
| | - Meredith Scherer
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA; (M.S.)
| | - Abigail C. Valachovic
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA; (M.S.)
| | - C. Melman Neill
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA; (M.S.)
| | - Sophia Horn
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA; (M.S.)
| | - Youn Choi
- Department of Agronomy and Environmental & Ecological Engineering, Interdisciplinary Ecological Sciences and Engineering, Purdue University, West Lafayette, IN 47907, USA; (Y.C.); (L.S.L.)
| | - Linda S. Lee
- Department of Agronomy and Environmental & Ecological Engineering, Interdisciplinary Ecological Sciences and Engineering, Purdue University, West Lafayette, IN 47907, USA; (Y.C.); (L.S.L.)
| | - Priyanka Baloni
- College of Health Sciences, Purdue University, West Lafayette, IN 47907, USA;
| | - Tyler Hoskins
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA; (M.S.)
| |
Collapse
|
37
|
Calisi A, Baranzini N, Marcolli G, Bon C, Rotondo D, Gualandris D, Pulze L, Grimaldi A, Dondero F. Evaluation of per- and polyfluoroalkyl substances (PFAS) toxic effects on the acute inflammatory response in the medicinal leech Hirudoverbana. CHEMOSPHERE 2024; 366:143519. [PMID: 39393581 DOI: 10.1016/j.chemosphere.2024.143519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Per- and polyfluoroalkyl (PFAS) substances are a large group of chemicals with elevated water and oil-resistance properties, widely implicated in various applicative fields. Due to the extensive use and high resistance to degradative factors, these compounds pose a significant risk of environmental spreading, bioaccumulating also in living organisms. In this context, despite many researches have been performed to demonstrate "legacy" PFAS harmfulness, only few data are still available about all the emerging fluorinated molecules, industrially introduced to replace the previous ones. For this reason, we proposed the medicinal leech Hirudo verbana as consolidated invertebrate model to assess the effects of four different PFAS (HFPO-DA, PFMoBa, PFOA and PFMOPrA) following freshwater dispersion. Morphological, immunohistochemical and molecular analyses demonstrate that, despite all the compounds basically induce an acute inflammatory and oxidative stress response, a different cellular and molecular response has been observed. Whereas for PFOA and PFMOPrA an increase in the tested concentration leads to a corresponding rise in the immune response, HFPO-DA and PFMoBa trigger an entirely opposite effect. Indeed, the significant recruitment of both granulocytes and macrophage like cells, typically involved in the removal of non-self, is inhibited with increasing concentrations of these compounds. The data collected revealed a different sensitivity of the leech immune system following PFAS exposure, requiring to deepen the current knowledge on the potential toxicity of these compounds.
Collapse
Affiliation(s)
- A Calisi
- Department of Science and Technological Innovation, University of Eastern Piedmont, 11 Teresa Michel Avenue, 15121, Alessandria, Italy.
| | - N Baranzini
- Department of Biotechnology and Life Sciences, University of Insubria, 3 J.H. Dunant Street, 21100, Varese, Italy.
| | - G Marcolli
- Department of Biotechnology and Life Sciences, University of Insubria, 3 J.H. Dunant Street, 21100, Varese, Italy.
| | - C Bon
- Department of Biotechnology and Life Sciences, University of Insubria, 3 J.H. Dunant Street, 21100, Varese, Italy.
| | - D Rotondo
- Department of Science and Technological Innovation, University of Eastern Piedmont, 11 Teresa Michel Avenue, 15121, Alessandria, Italy.
| | - D Gualandris
- Department of Science and Technological Innovation, University of Eastern Piedmont, 11 Teresa Michel Avenue, 15121, Alessandria, Italy.
| | - L Pulze
- Department of Biotechnology and Life Sciences, University of Insubria, 3 J.H. Dunant Street, 21100, Varese, Italy.
| | - A Grimaldi
- Department of Biotechnology and Life Sciences, University of Insubria, 3 J.H. Dunant Street, 21100, Varese, Italy.
| | - F Dondero
- Department of Science and Technological Innovation, University of Eastern Piedmont, 11 Teresa Michel Avenue, 15121, Alessandria, Italy.
| |
Collapse
|
38
|
Qian B, Rayner JL, Davis GB, Trinchi A, Collis G, Kyratzis IL, Kumar A. Per- and poly-fluoroalkyl substances (PFAS) sensing: A focus on representatively sampling soil vadose zones linked to nano-sensors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116932. [PMID: 39205356 DOI: 10.1016/j.ecoenv.2024.116932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are a group of organo-fluorine compounds that have been broadly used in consumer and industrial products spanning virtually all sectors. They can be found as surfactants, coatings and liners, polymer additives, fire retardants, adhesives, and many more. The chemical stability of the carbon fluorine bond and amphiphilic nature of PFAS result in their persistence and mobility in the environment via soil porewater, surface water and groundwater, with potential for adverse effects on the environment and human health. There is an emergent and increasing requirement for fast, low-cost, robust, and portable methods to detect PFAS, especially in the field. There may be thousands of PFAS compounds present in soil and water at extremely low concentration (0.01-250 ppb) that require measurement, and traditional technologies for continuous environmental sensing are challenged due to the complexity of soil chemistry. This paper presents a comprehensive review of potentially rapid PFAS measurement methods, focused on techniques for representative sampling of PFAS in porewater from contaminated soil, and approaches for pre-treatment of porewater samples to eliminate these interferences to be ready for PFAS-detecting sensors. The review discusses selectivity, a key factor underlying pre-treatment and sensing performance, and explores the interactions between PFAS and various sensors. PFAS chemical nano-sensors discussed are categorized in terms of the detection mechanism (electrochemical and optical). This review aims to provide guidance and outline the current challenges and implications for future routine PFAS sensing linked to soil porewater collection, to achieve more selective and effective PFAS sensors.
Collapse
Affiliation(s)
- Bin Qian
- CSIRO Environment, 147 Underwood Avenue, Floreat, Western Australia 6014, Australia.
| | - John L Rayner
- CSIRO Environment, 147 Underwood Avenue, Floreat, Western Australia 6014, Australia
| | - Greg B Davis
- CSIRO Environment, 147 Underwood Avenue, Floreat, Western Australia 6014, Australia
| | - Adrian Trinchi
- CSIRO Manufacturing, Research Way , Clayton, Melbourne, Victoria 3168, Australia
| | - Gavin Collis
- CSIRO Manufacturing, Research Way , Clayton, Melbourne, Victoria 3168, Australia
| | - Ilias Louis Kyratzis
- CSIRO Manufacturing, Research Way , Clayton, Melbourne, Victoria 3168, Australia
| | - Anand Kumar
- CSIRO Environment, 147 Underwood Avenue, Floreat, Western Australia 6014, Australia
| |
Collapse
|
39
|
Han J, Choong CE, Jang M, Lee J, Hyun S, Lee WS, Kim M. Causative mechanisms limiting the removal efficiency of short-chain per- and polyfluoroalkyl substances (PFAS) by activated carbon. CHEMOSPHERE 2024; 365:143320. [PMID: 39303790 DOI: 10.1016/j.chemosphere.2024.143320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/23/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Short-chain per and polyfluoroalkyl substances (PFAS) have been found to be relatively high in water treatment systems compared to long-chain PFAS because of the unsatisfactory adsorption efficiency of short-chain PFAS. Knowledge about why short-chain PFAS are less removed by porous carbon is very limited. The study focused on providing causal mechanisms that link the low adsorption of short-chain PFAS and proposing an improved method for removing both short- and long-chain PFAS. The long-chain PFAS with higher hydrophobicity diffused more quickly than the short-chain PFAS due to stronger partitioning driving forces. In the initial adsorption stage, therefore, pores of activated carbon were blocked by long-chain PFAS, which makes it difficult for the short-chain PFAS to enter the internal pores. Although several short-chain PFAS diffuse into the pores, the relatively more hydrophilic short-chain congeners cannot be fully adsorbed on activated carbon due to limited positively charged sites. Moreover, compared to larger particle sizes, smaller activated carbon particles have shorter pore channels near the surface, reducing the risk of pore-blocking and ensuring the pores remain accessible for more efficient adsorption. Additionally, these smaller particles offer a greater external surface area and more functional groups, which enhance the adsorption capacity. It indicates that the smaller particle size of activated carbon would have a positive effect on the short-chain PFAS removal.
Collapse
Affiliation(s)
- Junho Han
- Environmental Planning Institute, Seoul National University, Seoul, 08826, Republic of Korea; Department of Earth and Environmental Science, Rutgers University, New Jersey, 07102, United States
| | - Choe Earn Choong
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea; Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea; Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Junghee Lee
- Ministry of Environment, Hanam-si, Gyeonggi-do, 12902, Republic of Korea
| | - Seunghun Hyun
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Won-Seok Lee
- Yeongsan River Environment Research Center, National Institute of Environmental Research, Gwangju, 61945, Republic of Korea
| | - Minhee Kim
- Ministry of Environment, Hanam-si, Gyeonggi-do, 12902, Republic of Korea.
| |
Collapse
|
40
|
Li S, Zhao Z, Liu J, Zhang B, Han B, Ma Y, Jin L, Zhu N, Gao G, Lin T. Perfluoroalkyl and polyfluoroalkyl substances (PFAS) and nutrients from two constructed wetlands in a city of southeastern China. Heliyon 2024; 10:e37551. [PMID: 39309800 PMCID: PMC11415654 DOI: 10.1016/j.heliyon.2024.e37551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/02/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are a large class of toxic contaminants. Nutrients are closely related to the ecological health of aquatic systems. Both have received widespread global attention. This study investigated the concentrations, compositions, and spatial distributions of PFAS and nutrients in surface water from two constructed wetlands and the nearby drinking water treatment plants (DWTPs). We explored the natural environmental factors and human activities that affect the composition and distribution of pollutants in wetlands and assessed the ability of the DWTPs to remove contaminants. Concentrations of ∑32PFAS varied from 153 to 405 ng/L. Hexafluoropropylene oxide trimer acid (HFPO-TA) was the predominant substance accounting for 45 % of ∑32PFAS concentrations. It might originate from the emissions of indirect sources of PFAS related manufacturers. The detection rate of 6:2 fluorotelomer carboxylic acid (6:2 FTCA) was 100 % with concentrations ranging from 0.915 to 19.7 ng/L 6:2 FTCA might come from the biotransformation of indirect sources in the air. Concentrations of total nitrogen (TN) and total phosphorus (TP) were from 1.47 to 3.54 mg/L, and non-detect (ND) to 0.323 mg/L, respectively. Constructed wetlands could effectively remove PFAS under nutrient stress, however, the removal of PFAS depends on the characteristics of specific compounds and their sources. The removal rates for PFAS and nutrients could be promoted through artificial dredging. But wetland bioremediation could have two opposing effects. On the one hand, plants can take up pollutants from water via roots, leading to pollutant removal and purification. On the other hand, plants may also absorb precursor intermediates from the air through leaves and release them into the water, leading to increased pollutant concentrations. Thirty-two emerging PFAS were identified by high resolution mass spectrum. The drinking water treatment process removed PFAS and nutrients below the drinking water quality standards of China, however, 9 non-target PFAS compounds were still found in tap water. These results provide case support and a theoretical basis for the pollution control and sustainable development of typical ecological wetlands used as drinking water sources.
Collapse
Affiliation(s)
- Shiyue Li
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhen Zhao
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Jing Liu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Boxuan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Baocang Han
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yuntao Ma
- Jiaxing Jiayuan Testing Technology Service Co., Ltd, Jiaxing, 314000, China
| | - Limin Jin
- Jiaxing Key Laboratory of Environmental Risk Source Identification and Control, Jiaxing-Tongji Environmental Research Institute, Jiaxing, 314051, China
| | - Ningzheng Zhu
- Jiaxing Key Laboratory of Environmental Risk Source Identification and Control, Jiaxing-Tongji Environmental Research Institute, Jiaxing, 314051, China
| | - Guoping Gao
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Tian Lin
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
41
|
Li X, Ma Y, Zhang Y, Zhang X, Li H, Sun Y, Niu Z. Porphyrin metabolism and carbon fixation response of Skeletonema costatum at different growth phases to mixed emerging PFASs at environmental concentrations. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1465-1475. [PMID: 38973378 DOI: 10.1039/d4em00137k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs), especially as emerging compounds, have been widely detected in coastal seawater. However, the awareness of the interaction between PFASs at environmental concentrations and marine diatoms is still limited. In this study, Skeletonema costatum was exposed to three co-existing PFASs, namely hexafluoropropylene oxide dimer acid (HFPO-DA), 6 : 2 chlorinated polyfluorinated ether sulfonate (Cl-PFAES), and perfluoroethylcyclohexane sulfonate (PFECHS) (15-300 ng L-1 in total), for 14 days. In the 300 ng L-1 test group, the significant down-regulation of chlorophyllide a in porphyrin metabolism, light-harvesting capacity and carbon fixation were the main inhibitory mechanisms of photosynthesis by emerging PFASs at the 14th day compared to the 8th day, which indicated that they may have a shading effect on S. costatum. Additionally, mixed PFASs could also activate nicotinamide adenine dinucleotide phosphate (NADPH) oxidase by up-regulating gene gp91 and down-regulating genes CaM4 and NDPK2 to generate excessive ROS. This resulted in a decrease in the algal biomass, which would further weaken the primary productivity of S. costatum. Our findings illustrated that mixed emerging PFASs at environmental concentrations may interfere with the carbon balance of marine diatoms.
Collapse
Affiliation(s)
- Xiaofeng Li
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Yongzheng Ma
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Ying Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xiaohan Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Hongyu Li
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Yueling Sun
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Zhiguang Niu
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
42
|
Pietropoli E, Bardhi A, Simonato V, Zanella M, Iori S, Barbarossa A, Giantin M, Dacasto M, De Liguoro M, Pauletto M. Comparative toxicity assessment of alternative versus legacy PFAS: Implications for two primary trophic levels in freshwater ecosystems. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135269. [PMID: 39068881 DOI: 10.1016/j.jhazmat.2024.135269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Perfluoroalkyl substances (PFAS) are common environmental pollutants, but their toxicity framework remains elusive. This research focused on ten PFAS, evaluating their impacts on two ecotoxicologically relevant model organisms from distinct trophic levels: the crustacean Daphnia magna and the unicellular green alga Raphidocelis subcapitata. The results showed a greater sensitivity of R. subcapitata compared to D. magna. However, a 10-day follow-up to the 48 h immobilisation test in D. magna showed delayed mortality, underlining the limitations of relying on EC50 s from standard acute toxicity tests. Among the compounds scrutinized, Perfluorodecanoic acid (PFDA) was the most toxic to R. subcapitata, succeeded by Perfluorooctane sulfonate (PFOS), Perfluorobutanoic acid (PFBA), and Perfluorononanoic acid (PFNA), with the latter being the only one to show an algicidal effect. In the same species, assessment of binary mixtures of the compounds that demonstrated high toxicity in the single evaluation revealed either additive or antagonistic interactions. Remarkably, with an EC50 of 31 mg L-1, the short-chain compound PFBA, tested individually, exhibited toxicity levels akin to the notorious long-chain PFOS, and its harm to freshwater ecosystems cannot be ruled out. Despite mounting toxicological evidence and escalating environmental concentrations, PFBA has received little scientific attention and regulatory stewardship. It is strongly advisable that regulators re-evaluate its use to mitigate potential risks to the environmental and human health.
Collapse
Affiliation(s)
- Edoardo Pietropoli
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Padua, Italy.
| | - Anisa Bardhi
- Department of Veterinary Medical Sciences, University of Bologna Alma Mater Studiorum, 40064 Ozzano dell'Emilia, Bologna, Italy.
| | - Valentina Simonato
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Padua, Italy.
| | - Martina Zanella
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Padua, Italy.
| | - Silvia Iori
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Padua, Italy.
| | - Andrea Barbarossa
- Department of Veterinary Medical Sciences, University of Bologna Alma Mater Studiorum, 40064 Ozzano dell'Emilia, Bologna, Italy.
| | - Mery Giantin
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Padua, Italy.
| | - Mauro Dacasto
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Padua, Italy.
| | - Marco De Liguoro
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Padua, Italy.
| | - Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Padua, Italy.
| |
Collapse
|
43
|
Mumberg T, Ahrens L, Wanner P. Managed aquifer recharge as a potential pathway of contaminants of emerging concern into groundwater systems - A systematic review. CHEMOSPHERE 2024; 364:143030. [PMID: 39121959 DOI: 10.1016/j.chemosphere.2024.143030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Groundwater is an often-overlooked resource, while its declining quantity and quality is of global concern. To protect and ensure stable quantity and quality of groundwater systems used as drinking water supplies, a common method is to artificially recharge these groundwater supplies with surface water, a process called managed aquifer recharge (MAR), that has been used globally for decades. However, surface waters used for MAR often contain elevated concentrations of anthropogenic chemicals of emerging concern (CECs), such as plastics, pesticides, pharmaceuticals and personal care products (PPCPs), or per- and polyfluoroalkyl substances (PFAS). When infiltrating this surface water, MAR can thus act as a shortcut for CECs into groundwater systems and eventually drinking water supplies. Especially PFAS are an example of very persistent contaminants showing atypical transport patterns during MAR and thus posing a risk for ground- and drinking water contamination. This systematic review addresses the transport process of CECs through MAR systems by looking at (1) common CEC concentrations in surface waters, (2) factors affecting CEC transport and possible retention during MAR, such as sorption and other physio-chemical mechanisms of CECs, biological and chemical decomposition, or hydrogeological properties of the MAR system, and (3) key contaminants leaching through the MAR systems as well as possible treatment options to improve the retention of CECs during MAR. Since we are facing increasing needs for high quality drinking water, lower CEC drinking water guidelines as well as an increasing number of identified CECs in surface waters, we conclude with a series of recommendations and future research directions to address these issues. Those include the need for regular monitoring programs specifically addressing CECs and especially not yet regulated, (very) persistent and (very) mobile contaminants, such as PFAS, as well as redesigned MAR systems to ensure stable ground- and drinking water quantity and quality.
Collapse
Affiliation(s)
- Tabea Mumberg
- Department of Earth Sciences, University of Gothenburg, Medicinaregatan 7, Gothenburg, 413 90, Sweden.
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), P.O. Box 7050, 75007, Uppsala, Sweden
| | - Philipp Wanner
- Department of Earth Sciences, University of Gothenburg, Medicinaregatan 7, Gothenburg, 413 90, Sweden
| |
Collapse
|
44
|
Li Y, Zhao X, Li X, Zhang Y, Niu Z. The investigation of the enrichment behavior of identified PFAS and unknown PFAA-precursors in water and suspended particulate matter of the surface microlayer: A case study in Tianjin (China). WATER RESEARCH 2024; 260:121944. [PMID: 38909422 DOI: 10.1016/j.watres.2024.121944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/08/2024] [Accepted: 06/13/2024] [Indexed: 06/25/2024]
Abstract
The surface microlayer (SML) is an important air water interface layer, known as the skin of the ocean, which has chemical enrichment properties. Chemical enrichment in the SML can affect the occurrence of pollutants in the underlying water and air samples. Although the enrichment of per- and polyfluorinated substances (PFAS), a class of persistent organic pollutants of high concern, has been reported in the SML, information on the behavior of unknown PFAA-precursors in SML is lacked, and it is not clear whether there is a similar PFAS enrichment in suspended particulate matter (SPM) in the SML. Therefore, to investigate these questions, we conducted a systematic survey of 24 PFAS in 11 paired water and SPM samples from the SML and underlying water (U50cm and U2m) from the Duliujian River, which flows to the Bohai sea in Tianjin, China. The ∑PFAS mean concentrations in the water and SPM samples were 38.2 ng/L and 64.6 ng/g dw, respectively. The PFAS concentrations of PFAS in the SML were higher than those in the underlying water, and the enrichment factors (EFs) were greater in the SPM than that in the water. The long-chain PFAS EFs were greater than those for short-chain PFAS, indicating that the EFs were positively correlated with the hydrophobicity. Moreover, by applying the total oxidizable precursor (TOP) assay, the unknown PFAA-precursors (C5-C12) in the water and SPM contributed 11.4∼86.4 mol% and 7.1∼88.0 mol% to total PFAS, respectively. The ecological risk of the targeted PFAS in the SML was relatively higher than that in the underlying water, indicating that PFAS in the SML require more attention. Preliminary estimates indicate that the PFAS-enriched SML is an important exposure route that poses a potential risk to wildlife in rivers and oceans.
Collapse
Affiliation(s)
- Yuna Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xinhai Zhao
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaofeng Li
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
| | - Ying Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Zhiguang Niu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; International Joint Institute of Tianjin University, Fuzhou 350205, China
| |
Collapse
|
45
|
Huang X, Huang J, Wang K, Hao M, Geng M, Shi B, Hu C. Comparison of perfluoroalkyl substance adsorption performance by inorganic and organic silicon modified activated carbon. WATER RESEARCH 2024; 260:121919. [PMID: 38901313 DOI: 10.1016/j.watres.2024.121919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/03/2024] [Accepted: 06/09/2024] [Indexed: 06/22/2024]
Abstract
Owing to the persistence and increasingly stringent regulations of perfluoroalkyl substances (PFAS), it is necessary to improve their adsorption capacities using activated carbon (AC). However, their adsorption capacities are suppressed by dissolved organic matter (DOM). In this study, two ACs modified with organic silicon (C-OS) and inorganic silicon (C-IS) were synthesized and used for the adsorption of PFAS in raw water (RW). The results showed that the PFAS adsorption capacity of C-IS was much less influenced by DOM than that of the original AC (C-virgin). In RW, perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) adsorption capacities on C-IS were 15.08 and 3.65 times higher than those on C-virgin, respectively. DOM had less influence on the PFOA and PFOS adsorption kinetics of C-IS than C-OS and C-virgin. Under multi-PFAS condition, C-IS also exhibited slower desorption of short-chain PFAS and breakthrough in batch and column tests, respectively. Characterization of the ACs before and after adsorption and independent gradient modelling indicated that hydrogen bond interactions between the O-Si of C-IS and the -COOH or -CSO3H groups of PFAS contributed to PFAS adsorption. Density functional theory calculations demonstrated that the adsorption energy of C-IS was much lower than that of C-OS and C-virgin. The arrangement of PFAS molecules on C-OS was chaotic owing to the hydrophobic siloxane chain, whereas the arrangement of PFAS on C-IS was orderly in multi-layer or semi-micelle status and more favorable to PFAS adsorption. This study provides a new strategy for avoiding adverse effects of DOM on PFAS adsorption.
Collapse
Affiliation(s)
- Xin Huang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junhao Huang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Kaiyun Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Mingming Hao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Mengze Geng
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Chengzhi Hu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
46
|
Dhulia A, Abou-Khalil C, Kewalramani J, Sarkar D, Boufadel MC. Mobilization of per- and poly-fluoroalkyl substances (PFAS) in soils with different organic matter contents. CHEMOSPHERE 2024; 361:142503. [PMID: 38825242 DOI: 10.1016/j.chemosphere.2024.142503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
There is considerable interest in addressing soils contaminated with per- and polyfluoroalkyl substances (PFAS) because of the PFAS in the environment and associated health risks. The neutralization of PFAS in situ is challenging. Consequently, mobilizing the PFAS from the contaminated soils into an aqueous solution for subsequent handling has been pursued. Nonetheless, the efficiency of mobilization methods for removing PFAS can vary depending on site-specific factors, including the types and concentrations of PFAS compounds, soil characteristics. In the present study, the removal of perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) from artificially contaminated soils was investigated in a 2D laboratory setup using electrokinetic (EK) remediation and hydraulic flushing by applying a hydraulic gradient (HG) for a duration of 15 days. The percent removal of PFOA by EK was consistent (∼80%) after a 15-day treatment for all soils. The removal efficiency of PFOS by EK significantly varied with the OM content, where the PFOS removal increased from 14% at 5% OM to 60% at 50% OM. With HG, the percent removal increased for both PFOA and PFOS from about 20% at 5% OM up to 80% at 75% OM. Based on the results, the mobilization of PFAS from organic soil would be appropriate using both hydraulic flushing and EK considering their applicability and advantages over each other for site-specific factors and requirements.
Collapse
Affiliation(s)
- Anirban Dhulia
- Center for Natural Resources, Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Charbel Abou-Khalil
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, South Bend, IN, 46556, USA
| | | | - Dibyendu Sarkar
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Michel C Boufadel
- Center for Natural Resources, Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| |
Collapse
|
47
|
Fernando EY, Sarkar D, Rodwihok C, Satpathy A, Zhang J, Rahmati R, Datta R, Christodoulatos C, Boufadel M, Larson S, Zhang Z. Unrefined and Milled Ilmenite as a Cost-Effective Photocatalyst for UV-Assisted Destruction and Mineralization of PFAS. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3801. [PMID: 39124465 PMCID: PMC11312862 DOI: 10.3390/ma17153801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are fluorinated and refractory pollutants that are ubiquitous in industrial wastewater. Photocatalytic destruction of such pollutants with catalysts such as TiO2 and ZnO is an attractive avenue for removal of PFAS, but refined forms of such photocatalysts are expensive. This study, for the first time, utilized milled unrefined raw mineral ilmenite, coupled to UV-C irradiation to achieve mineralization of the two model PFAS compounds perfluorooctanoic acid (PFOA) and perfluoro octane sulfonic acid (PFOS). Results obtained using a bench-scale photocatalytic reactor system demonstrated rapid removal kinetics of PFAS compounds (>90% removal in less than 10 h) in environmentally-relevant concentrations (200-1000 ppb). Raw ilmenite was reused over three consecutive degradation cycles of PFAS, retaining >80% removal efficiency. Analysis of degradation products indicated defluorination and the presence of shorter-chain PFAS intermediates in the initial samples. End samples indicated the disappearance of short-chain PFAS intermediates and further accumulation of fluoride ions, suggesting that original PFAS compounds underwent mineralization due to an oxygen-radical-based photocatalytic destruction mechanism induced by TiO2 present in ilmenite and UV irradiation. The outcome of this study implies that raw ilmenite coupled to UV-C is suitable for cost-effective reactor operation and efficient photocatalytic destruction of PFAS compounds.
Collapse
Affiliation(s)
- Eustace Y. Fernando
- Department of Civil, Environmental and Ocean Engineering, Charles V. Schaefer, Jr. School of Engineering and Science, Rocco Technology Center, Stevens Institute of Technology, Hoboken, NJ 07030, USA; (E.Y.F.); (C.R.); (A.S.); (R.R.); (C.C.)
| | - Dibyendu Sarkar
- Department of Civil, Environmental and Ocean Engineering, Charles V. Schaefer, Jr. School of Engineering and Science, Rocco Technology Center, Stevens Institute of Technology, Hoboken, NJ 07030, USA; (E.Y.F.); (C.R.); (A.S.); (R.R.); (C.C.)
| | - Chatchai Rodwihok
- Department of Civil, Environmental and Ocean Engineering, Charles V. Schaefer, Jr. School of Engineering and Science, Rocco Technology Center, Stevens Institute of Technology, Hoboken, NJ 07030, USA; (E.Y.F.); (C.R.); (A.S.); (R.R.); (C.C.)
| | - Anshuman Satpathy
- Department of Civil, Environmental and Ocean Engineering, Charles V. Schaefer, Jr. School of Engineering and Science, Rocco Technology Center, Stevens Institute of Technology, Hoboken, NJ 07030, USA; (E.Y.F.); (C.R.); (A.S.); (R.R.); (C.C.)
| | - Jinxin Zhang
- Department of Chemistry and Chemical Biology, Charles V. Schaefer, Jr. School of Engineering and Science, Hoboken, NJ 07030, USA;
| | - Roxana Rahmati
- Department of Civil, Environmental and Ocean Engineering, Charles V. Schaefer, Jr. School of Engineering and Science, Rocco Technology Center, Stevens Institute of Technology, Hoboken, NJ 07030, USA; (E.Y.F.); (C.R.); (A.S.); (R.R.); (C.C.)
| | - Rupali Datta
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA;
| | - Christos Christodoulatos
- Department of Civil, Environmental and Ocean Engineering, Charles V. Schaefer, Jr. School of Engineering and Science, Rocco Technology Center, Stevens Institute of Technology, Hoboken, NJ 07030, USA; (E.Y.F.); (C.R.); (A.S.); (R.R.); (C.C.)
| | - Michel Boufadel
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 MLK Blvd, Newark, NJ 07101, USA;
| | - Steven Larson
- U.S. Army Engineer Research and Development Center (ERDC), 3909 Halls Ferry Road, Vicksburg, MS 39180, USA;
| | - Zhiming Zhang
- Henry M. Rowan College of Engineering, Rowan University, Rowan Hall, 600 North Campus Drive, Glassboro, NJ 08028, USA;
| |
Collapse
|
48
|
Yi Y, Feng Y, Shi Y, Xiao J, Liu M, Wang K. Per- and Polyfluoroalkyl Substances (PFASs) and Their Potential Effects on Female Reproductive Diseases. TOXICS 2024; 12:539. [PMID: 39195641 PMCID: PMC11358978 DOI: 10.3390/toxics12080539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a class of anthropogenic organic compounds widely present in the natural and human living environments. These emerging persistent pollutants can enter the human body through multiple channels, posing risks to human health. In particular, exposure to PFASs in women may cause a series of reproductive health hazards and infertility. Based on a review of the existing literature, this study preliminarily summarizes the effects of PFAS exposure on the occurrence and development of female reproductive endocrine diseases, such as polycystic ovary syndrome (PCOS), endometriosis, primary ovarian insufficiency (POI), and diminished ovarian reserve (DOR). Furthermore, we outline the relevant mechanisms through which PFASs interfere with the physiological function of the female ovary and finally highlight the role played by nutrients in reducing the reproductive health hazards caused by PFASs. It is worth noting that the physiological mechanisms of PFASs in the above diseases are still unclear. Therefore, it is necessary to further study the molecular mechanisms of PFASs in female reproductive diseases and the role of nutrients in this process.
Collapse
Affiliation(s)
- Yuqing Yi
- Department of Clinical Nutrition, Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China; (Y.Y.); (Y.F.); (Y.S.); (J.X.); (M.L.)
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Yang Feng
- Department of Clinical Nutrition, Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China; (Y.Y.); (Y.F.); (Y.S.); (J.X.); (M.L.)
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Yuechen Shi
- Department of Clinical Nutrition, Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China; (Y.Y.); (Y.F.); (Y.S.); (J.X.); (M.L.)
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Jiaming Xiao
- Department of Clinical Nutrition, Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China; (Y.Y.); (Y.F.); (Y.S.); (J.X.); (M.L.)
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Ming Liu
- Department of Clinical Nutrition, Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China; (Y.Y.); (Y.F.); (Y.S.); (J.X.); (M.L.)
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Ke Wang
- Department of Clinical Nutrition, Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China; (Y.Y.); (Y.F.); (Y.S.); (J.X.); (M.L.)
| |
Collapse
|
49
|
Savvidou P, Dotro G, Campo P, Coulon F, Lyu T. Constructed wetlands as nature-based solutions in managing per-and poly-fluoroalkyl substances (PFAS): Evidence, mechanisms, and modelling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173237. [PMID: 38761940 DOI: 10.1016/j.scitotenv.2024.173237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/07/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) have emerged as newly regulated micropollutants, characterised by extreme recalcitrance and environmental toxicity. Constructed wetlands (CWs), as a nature-based solution, have gained widespread application in sustainable water and wastewater treatment and offer multiple environmental and societal benefits. Despite CWs potential, knowledge gaps persist in their PFAS removal capacities, associated mechanisms, and modelling of PFAS fate. This study carried out a systematic literature review, supplemented by unpublished experimental data, demonstrating the promise of CWs for PFAS removal from the influents of varying sources and characteristics. Median removal performances of 64, 46, and 0 % were observed in five free water surface (FWS), four horizontal subsurface flow (HF), and 18 vertical flow (VF) wetlands, respectively. PFAS adsorption by the substrate or plant root/rhizosphere was deemed as a key removal mechanism. Nevertheless, the available dataset resulted unsuitable for a quantitative analysis. Data-driven models, including multiple regression models and machine learning-based Artificial Neural Networks (ANN), were employed to predict PFAS removal. These models showed better predictive performance compared to various mechanistic models, which include two adsorption isotherms. The results affirmed that artificial intelligence is an efficient tool for modelling the removal of emerging contaminants with limited knowledge of chemical properties. In summary, this study consolidated evidence supporting the use of CWs for mitigating new legacy PFAS contaminants. Further research, especially long-term monitoring of full-scale CWs treating real wastewater, is crucial to obtain additional data for model development and validation.
Collapse
Affiliation(s)
- Pinelopi Savvidou
- School of Water, Energy and Environment, Cranfield University, College Road, Cranfield, Bedfordshire MK43 0AL, United Kingdom
| | - Gabriela Dotro
- School of Water, Energy and Environment, Cranfield University, College Road, Cranfield, Bedfordshire MK43 0AL, United Kingdom
| | - Pablo Campo
- School of Water, Energy and Environment, Cranfield University, College Road, Cranfield, Bedfordshire MK43 0AL, United Kingdom
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, College Road, Cranfield, Bedfordshire MK43 0AL, United Kingdom
| | - Tao Lyu
- School of Water, Energy and Environment, Cranfield University, College Road, Cranfield, Bedfordshire MK43 0AL, United Kingdom.
| |
Collapse
|
50
|
Pervez MN, Jiang T, Mahato JK, Ilango AK, Kumaran Y, Zuo Y, Zhang W, Efstathiadis H, Feldblyum JI, Yigit MV, Liang Y. Surface Modification of Graphene Oxide for Fast Removal of Per- and Polyfluoroalkyl Substances (PFAS) Mixtures from River Water. ACS ES&T WATER 2024; 4:2968-2980. [PMID: 39021580 PMCID: PMC11249979 DOI: 10.1021/acsestwater.4c00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 07/20/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) make up a diverse group of industrially derived organic chemicals that are of significant concern due to their detrimental effects on human health and ecosystems. Although other technologies are available for removing PFAS, adsorption remains a viable and effective method. Accordingly, the current study reported a novel type of graphene oxide (GO)-based adsorbent and tested their removal performance toward removing PFAS from water. Among the eight adsorbents tested, GO modified by a cationic surfactant, cetyltrimethylammonium chloride (CTAC), GO-CTAC was found to be the best, showing an almost 100% removal for all 11 PFAS tested. The adsorption kinetics were best described by the pseudo-second-order model, indicating rapid adsorption. The isotherm data were well supported by the Toth model, suggesting that PFAS adsorption onto GO-CTAC involved complex interactions. Detailed characterization using scanning electron microscopy-energy dispersive X-ray spectroscopy, Fourier transform infrared, thermogravimetric analysis, X-ray diffraction, and X-ray photoelectron spectroscopy confirmed the proposed adsorption mechanisms, including electrostatic and hydrophobic interactions. Interestingly, the performance of GO-CTAC was not influenced by the solution pH, ionic strength, or natural organic matter. Furthermore, the removal efficiency of PFAS at almost 100% in river water demonstrated that GO-CTAC could be a suitable adsorbent for capturing PFAS in real surface water.
Collapse
Affiliation(s)
- Md. Nahid Pervez
- Department
of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Tao Jiang
- Department
of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Jaydev Kumar Mahato
- Department
of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Aswin Kumar Ilango
- Department
of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Yamini Kumaran
- Department
of Nanoscale Science and Engineering, University
at Albany, State University of New York, Albany, New York 12222, United States
| | - Yuwei Zuo
- Department
of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Weilan Zhang
- Department
of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Haralabos Efstathiadis
- Department
of Nanoscale Science and Engineering, University
at Albany, State University of New York, Albany, New York 12222, United States
| | - Jeremy I. Feldblyum
- Department
of Chemistry, University at Albany, State
University of New York, Albany, New York 12222, United States
| | - Mehmet V. Yigit
- Department
of Chemistry, University at Albany, State
University of New York, Albany, New York 12222, United States
| | - Yanna Liang
- Department
of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, New York 12222, United States
| |
Collapse
|