1
|
Jiménez-Jiménez FJ, Alonso-Navarro H, Salgado-Cámara P, García-Martín E, Agúndez JAG. Antioxidant Therapies in the Treatment of Multiple Sclerosis. Biomolecules 2024; 14:1266. [PMID: 39456199 PMCID: PMC11506420 DOI: 10.3390/biom14101266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Several studies have proposed a potential role for oxidative stress in the development of multiple sclerosis (MS). For this reason, it seems tentative to think that treatment with antioxidant substances could be useful in the treatment of this disease. In this narrative review, we provide a summary of the current findings on antioxidant treatments, both in experimental models of MS, especially in experimental autoimmune encephalomyelitis (EAE) and in the cuprizone-induced demyelination model, and clinical trials in patients diagnosed with MS. Practically all the antioxidants tested in experimental models of MS have shown improvement in clinical parameters, in delaying the evolution of the disease, and in improving histological and biochemical parameters, including decreased levels of markers of inflammation and oxidative stress in the central nervous system and other tissues. Only a few clinical trials have been carried out to investigate the potential efficacy of antioxidant substances in patients with MS, most of them in the short term and involving a short series of patients, so the results of these should be considered inconclusive. In this regard, it would be desirable to design long-term, randomized, multicenter clinical trials with a long series of patients, assessing several antioxidants that have demonstrated efficacy in experimental models of MS.
Collapse
Grants
- PI18/00540 Fondo de Investigación Sanitaria, Instituto de Salud Carlos, Madrid, Spain
- PI21/01683 Fondo de Investigación Sanitaria, Instituto de Salud Carlos III, Madrid, Spain
- IB20134 Junta de Extremadura, Mérida, Spain
- GR21073 Junta de Extremadura, Mérida, Spain
Collapse
Affiliation(s)
| | - Hortensia Alonso-Navarro
- Section of Neurology, Hospital Universitario del Sureste, E28500 Arganda del Rey, Spain; (H.A.-N.); (P.S.-C.)
| | - Paula Salgado-Cámara
- Section of Neurology, Hospital Universitario del Sureste, E28500 Arganda del Rey, Spain; (H.A.-N.); (P.S.-C.)
| | - Elena García-Martín
- University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, E10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| | - José A. G. Agúndez
- University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, E10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| |
Collapse
|
2
|
Bánáti D, Hellman-Regen J, Mack I, Young HA, Benton D, Eggersdorfer M, Rohn S, Dulińska-Litewka J, Krężel W, Rühl R. Defining a vitamin A5/X specific deficiency - vitamin A5/X as a critical dietary factor for mental health. INT J VITAM NUTR RES 2024; 94:443-475. [PMID: 38904956 DOI: 10.1024/0300-9831/a000808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
A healthy and balanced diet is an important factor to assure a good functioning of the central and peripheral nervous system. Retinoid X receptor (RXR)-mediated signaling was identified as an important mechanism of transmitting major diet-dependent physiological and nutritional signaling such as the control of myelination and dopamine signalling. Recently, vitamin A5/X, mainly present in vegetables as provitamin A5/X, was identified as a new concept of a vitamin which functions as the nutritional precursor for enabling RXR-mediated signaling. The active form of vitamin A5/X, 9-cis-13,14-dehydroretinoic acid (9CDHRA), induces RXR-activation, thereby acting as the central switch for enabling various heterodimer-RXR-signaling cascades involving various partner heterodimers like the fatty acid and eicosanoid receptors/peroxisome proliferator-activated receptors (PPARs), the cholesterol receptors/liver X receptors (LXRs), the vitamin D receptor (VDR), and the vitamin A(1) receptors/retinoic acid receptors (RARs). Thus, nutritional supply of vitamin A5/X might be a general nutritional-dependent switch for enabling this large cascade of hormonal signaling pathways and thus appears important to guarantee an overall organism homeostasis. RXR-mediated signaling was shown to be dependent on vitamin A5/X with direct effects for beneficial physiological and neuro-protective functions mediated systemically or directly in the brain. In summary, through control of dopamine signaling, amyloid β-clearance, neuro-protection and neuro-inflammation, the vitamin A5/X - RXR - RAR - vitamin A(1)-signaling might be "one of" or even "the" critical factor(s) necessary for good mental health, healthy brain aging, as well as for preventing drug addiction and prevention of a large array of nervous system diseases. Likewise, vitamin A5/X - RXR - non-RAR-dependent signaling relevant for myelination/re-myelination and phagocytosis/brain cleanup will contribute to such regulations too. In this review we discuss the basic scientific background, logical connections and nutritional/pharmacological expert recommendations for the nervous system especially considering the ageing brain.
Collapse
Affiliation(s)
- Diána Bánáti
- Department of Food Engineering, Faculty of Engineering, University of Szeged, Hungary
| | - Julian Hellman-Regen
- Department of Psychiatry, Charité-Campus Benjamin Franklin, Section Neurobiology, University Medicine Berlin, Germany
| | - Isabelle Mack
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Germany
| | - Hayley A Young
- Faculty of Medicine, Health and Life Sciences, Swansea University, UK
| | - David Benton
- Faculty of Medicine, Health and Life Sciences, Swansea University, UK
| | - Manfred Eggersdorfer
- Department of Healthy Ageing, University Medical Center Groningen (UMCG), The Netherlands
| | - Sascha Rohn
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Germany
| | | | - Wojciech Krężel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | | |
Collapse
|
3
|
Derivation and comprehensive analysis of ageing-related genes in intervertebral disc degeneration for prediction and immunology. Mech Ageing Dev 2023; 211:111794. [PMID: 36841375 DOI: 10.1016/j.mad.2023.111794] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/12/2022] [Accepted: 02/20/2023] [Indexed: 02/27/2023]
Abstract
Intervertebral disc degeneration (IDD) is triggered primarily by ageing, a process characterized by intrinsic, multifaceted and progressive characteristics. Regarding the crucial senescence genes and underlying regulatory mechanisms leading to the etiology of IDD, there is still some uncertainty. In this study, we used gene expression patterns from the GEO database to create a diagnostic model of IDD using differential ageing-related genes (DARG). We examine the relative dynamics of immune cells by single-sample gene set. On the basis of transcription factor (TF) miRNA and miRNA-mRNA pairs, the regulatory network for transcription and post-transcriptional processes was built. The active therapeutic components and Chinese herbal remedies of the main ageing genes were investigated using a network pharmacology approach. 20 DARGs were combined to create a diagnostic model, and both the training and validation sets had an area under the ROC curve of 1. We found alterations in many cell types in IDD tissue, but mainly in activated dendritic cells, type 17 T helper cells, and mast cells. We identified a regulatory axis for STAT1/miR-4306/PPARA based on the correlations between gene expression and targeting. Active substances (Naringenin and Quercetin) and herbs (Aurantii fructus and Eucommiae cortex) targeting PPARA for the treatment of IDD were discovered through network pharmacology. These results provide a theoretical framework for identifying and treating IDD. For the first time, we were able to diagnose IDD patients using 20 ageing-related indicators. At the same time, TF-miRNA-mRNA in conjunction with network pharmacology enabled the identification of prospective therapeutic targets and pharmacological processes.
Collapse
|
4
|
Role of JAK-STAT and PPAR-Gamma Signalling Modulators in the Prevention of Autism and Neurological Dysfunctions. Mol Neurobiol 2022; 59:3888-3912. [PMID: 35437700 DOI: 10.1007/s12035-022-02819-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/23/2022] [Indexed: 01/10/2023]
Abstract
The Janus-kinase (JAK) and signal transducer activator of transcription (STAT) signalling pathways regulate gene expression and control various factors involved in normal physiological functions such as cell proliferation, neuronal development, and cell survival. JAK activation phosphorylates STAT3 in astrocytes and microglia, and this phosphorylation has been linked to mitochondrial damage, apoptosis, neuroinflammation, reactive astrogliosis, and genetic mutations. As a regulator, peroxisome proliferator-activated receptor gamma (PPAR-gamma), in relation to JAK-STAT signalling, prevents this phosphorylation and aids in the treatment of the above-mentioned neurocomplications. Changes in cellular signalling may also contribute to the onset and progression of autism. Thus, PPAR-gamma agonist upregulation may be associated with JAK-STAT signal transduction downregulation. It may also be responsible for attenuating neuropathological changes by stimulating SOCS3 or involving RXR or SMRT, thereby reducing transcription of the various cytokine proteins and genes involved in neuronal damage. Along with JAK-STAT inhibitors, PPAR-gamma agonists could be used as target therapeutic interventions for autism. This research-based review explores the potential involvement and mutual regulation of JAK-STAT and PPAR-gamma signalling in controlling multiple pathological factors associated with autism.
Collapse
|
5
|
A novel fatty acid-binding protein 5 and 7 inhibitor ameliorates oligodendrocyte injury in multiple sclerosis mouse models. EBioMedicine 2021; 72:103582. [PMID: 34624687 PMCID: PMC8502714 DOI: 10.1016/j.ebiom.2021.103582] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/27/2021] [Accepted: 09/03/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is an autoimmune disease characterised by the demyelination of mature oligodendrocytes in the central nervous system. Recently, several studies have indicated the vital roles of fatty acid-binding proteins (FABPs) 5 and 7 in regulating the immune response. METHODS We assessed a novel FABP5/FABP7 inhibitor, FABP ligand 6 (MF 6), as a potential therapeutic for MS therapy. In vivo, we established MOG35-55-administered experimental autoimmune encephalomyelitis (EAE) mice as an MS mouse model, followed by prophylactic and symptomatic treatment with MF 6. The therapeutic effect of MF 6 was determined using behavioural and biochemical analyses. In vitro, MF 6 effects on astrocytes and oligodendrocytes were examined using both astrocyte primary culture and KG-1C cell lines. FINDINGS Prophylactic and symptomatic MF 6 therapy reduced myelin loss and clinical EAE symptoms. Furthermore, oxidative stress levels and GFAP-positive and ionised calcium-binding adaptor protein-1-positive cells were reduced in the spinal cord of MF 6-treated mice. In addition, MF 6 attenuated lipopolysaccharide-stimulated interleukin-1β and tumour necrosis factor-α accumulation in primary astrocyte culture. Moreover, MF 6 indicated a powerful protective function for the mitochondria in the oligodendrocytes of EAE mice via FABP5 inhibition. INTERPRETATIONS MF 6 is a potent inhibitor of FABP5 and FABP7; targeted inhibition of the two proteins may confer potential therapeutic effects in MS via immune inhibition and oligodendrocyte protection. FUNDING This work was supported by the Strategic Research Program for Brain Sciences from the Japan Agency for Medical Research and Development (JP17dm0107071, JP18dm0107071, JP19dm0107071, and JP20dm0107071).
Collapse
|
6
|
Willems S, Zaienne D, Merk D. Targeting Nuclear Receptors in Neurodegeneration and Neuroinflammation. J Med Chem 2021; 64:9592-9638. [PMID: 34251209 DOI: 10.1021/acs.jmedchem.1c00186] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nuclear receptors, also known as ligand-activated transcription factors, regulate gene expression upon ligand signals and present as attractive therapeutic targets especially in chronic diseases. Despite the therapeutic relevance of some nuclear receptors in various pathologies, their potential in neurodegeneration and neuroinflammation is insufficiently established. This perspective gathers preclinical and clinical data for a potential role of individual nuclear receptors as future targets in Alzheimer's disease, Parkinson's disease, and multiple sclerosis, and concomitantly evaluates the level of medicinal chemistry targeting these proteins. Considerable evidence suggests the high promise of ligand-activated transcription factors to counteract neurodegenerative diseases with a particularly high potential of several orphan nuclear receptors. However, potent tools are lacking for orphan receptors, and limited central nervous system exposure or insufficient selectivity also compromises the suitability of well-studied nuclear receptor ligands for functional studies. Medicinal chemistry efforts are needed to develop dedicated high-quality tool compounds for the therapeutic validation of nuclear receptors in neurodegenerative pathologies.
Collapse
Affiliation(s)
- Sabine Willems
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Daniel Zaienne
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| |
Collapse
|
7
|
Leal AS, Reich LA, Moerland JA, Zhang D, Liby KT. Potential therapeutic uses of rexinoids. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 91:141-183. [PMID: 34099107 DOI: 10.1016/bs.apha.2021.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The discovery of nuclear receptors, particularly retinoid X receptors (RXR), and their involvement in numerous pathways related to development sparked interest in their immunomodulatory properties. Genetic models using deletion or overexpression of RXR and the subsequent development of several small molecules that are agonists or antagonists of this receptor support a promising therapeutic role for these receptors in immunology. Bexarotene was approved in 1999 for the treatment of cutaneous T cell lymphoma. Several other small molecule RXR agonists have since been synthesized with limited preclinical development, but none have yet achieved FDA approval. Cancer treatment has recently been revolutionized with the introduction of immune checkpoint inhibitors, but their success has been restricted to a minority of patients. This review showcases the emerging immunomodulatory effects of RXR and the potential of small molecules that target this receptor as therapies for cancer and other diseases. Here we describe the essential roles that RXR and partner receptors play in T cells, dendritic cells, macrophages and epithelial cells, especially within the tumor microenvironment. Most of these effects are site and cancer type dependent but skew immune cells toward an anti-inflammatory and anti-tumor effect. This beneficial effect on immune cells supports the promise of combining rexinoids with approved checkpoint blockade therapies in order to enhance efficacy of the latter and to delay or potentially eliminate drug resistance. The data compiled in this review strongly suggest that targeting RXR nuclear receptors is a promising new avenue in immunomodulation for cancer and other chronic inflammatory diseases.
Collapse
Affiliation(s)
- Ana S Leal
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States
| | - Lyndsey A Reich
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States
| | - Jessica A Moerland
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States
| | - Di Zhang
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States
| | - Karen T Liby
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
8
|
Sargazi S, Mirani Sargazi F, Moudi M, Heidari Nia M, Saravani R, Mirinejad S, Shahraki S, Shakiba M. Impact of Proliferator-Activated Receptor γ Gene Polymorphisms on Risk of Schizophrenia: A Case-Control Study and Computational Analyses. IRANIAN JOURNAL OF PSYCHIATRY 2020; 15:286-296. [PMID: 33240378 PMCID: PMC7610076 DOI: 10.18502/ijps.v15i4.4294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Objective: Schizophrenia (SCZ) is a common psychiatric disorder characterized by a complex mode of inheritance. Peroxisome proliferator-activated receptor-γ (PPARG) mainly regulates lipid and glucose metabolisms while it is constitutively expressed in rat primary microglial cultures. This preliminary study was aimed to investigate the relationship of two polymorphisms in the PPARG gene, rs1801282 C/G, and rs3856806 C/T, to the risk of SCZ in the southeast Iranian population. Method: A total of 300 participants (150 patients with SCZ and 150 healthy controls) were enrolled. Genotyping was done using the amplification refractory mutation system polymerase chain reaction (ARMS–PCR) technique. Computational analyses were carried out to predict the potential effects of the studied polymorphisms. Results: A significant link was found between genotypes of rs1801282 and SCZ susceptibility. The G allele of rs1801282 in CG and GG form of the codominant model increased the risk of SCZ by 2.49 and 2.64 folds, respectively. With regards to rs3856806, enhanced risk of SCZ was also observed under different inheritance models except for the overdominant model. Also, the T allele of rs3856806 enhanced the risk of SCZ by 3.19 fold. Computational analyses predicted that rs1801282 polymorphism might alter the secondary structure of PPARG-mRNA and protein function. At the same time, the other variant created the binding sites for some enhancer and silencer motifs. Conclusion: Our findings showed that PPARG rs1821282 and rs3856806 polymorphisms associate with SCZ susceptibility. Replication studies in different ethnicities with a larger population are needed to validate our findings.
Collapse
Affiliation(s)
- Saman Sargazi
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Fariba Mirani Sargazi
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mahdiyeh Moudi
- Genetics of Noncommunicable Disease Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Milad Heidari Nia
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ramin Saravani
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran.,Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Sheida Shahraki
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mansoor Shakiba
- Department of Psychiatry, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
9
|
Hoxha M, Spahiu E, Prendi E, Zappacosta B. A Systematic Review on the Role of Arachidonic Acid Pathway in Multiple Sclerosis. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 21:160-187. [PMID: 32842948 DOI: 10.2174/1871527319666200825164123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/28/2020] [Accepted: 07/17/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND & OBJECTIVE Multiple sclerosis (MS) is an inflammatory neurodegenerative disease characterized by destruction of oligodendrocytes, immune cell infiltration and demyelination. Inflammation plays a significant role in MS, and the inflammatory mediators such as eicosanoids, leukotrienes, superoxide radicals are involved in pro-inflammatory responses in MS. In this systematic review we tried to define and discuss all the findings of in vivo animal studies and human clinical trials on the potential association between arachidonic acid (AA) pathway and multiple sclerosis. METHODS A systematic literature search across Pubmed, Scopus, Embase and Cochrane database was conducted. This systematic review was performed according to PRISMA guidelines. RESULTS A total of 146 studies were included, of which 34 were conducted in animals, 58 in humans, and 60 studies reported the role of different compounds that target AA mediators or their corresponding enzymes/ receptors, and can have a therapeutic effect in MS. These results suggest that eicosanoids have significant roles in experimental autoimmune encephalomyelitis (EAE) and MS. The data from animal and human studies elucidated that PGI2, PGF2α, PGD2, isoprostanes, PGE2, PLA2, LTs are increased in MS. PLA2 inhibition modulates the progression of the disease. PGE1 analogues can be a useful option in the treatment of MS. CONCLUSIONS All studies reported the beneficial effects of COX and LOX inhibitors in MS. The hybrid compounds, such as COX-2 inhibitors/TP antagonists and 5-LOX inhibitors can be an innovative approach for multiple sclerosis treatment. Future work in MS should shed light in synthesizing new compounds targeting arachidonic acid pathway.
Collapse
Affiliation(s)
- Malvina Hoxha
- Department of Chemical-Toxicological and Pharmacological Evaluations of Drugs, Faculty of Pharmacy, Catholic University Our Lady of Good Counsel, Rruga Dritan Hoxha, Tirana. Albania
| | | | - Emanuela Prendi
- Catholic University Our Lady of Good Counsel, Department of Biomedical Sciences, Rruga Dritan Hoxha, Tirana. Albania
| | - Bruno Zappacosta
- Department of Chemical-Toxicological and Pharmacological Evaluations of Drugs, Faculty of Pharmacy, Catholic University Our Lady of Good Counsel, Rruga Dritan Hoxha, Tirana. Albania
| |
Collapse
|
10
|
Fakan B, Szalardy L, Vecsei L. Exploiting the Therapeutic Potential of Endogenous Immunomodulatory Systems in Multiple Sclerosis-Special Focus on the Peroxisome Proliferator-Activated Receptors (PPARs) and the Kynurenines. Int J Mol Sci 2019; 20:ijms20020426. [PMID: 30669473 PMCID: PMC6358998 DOI: 10.3390/ijms20020426] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/13/2019] [Accepted: 01/15/2019] [Indexed: 01/20/2023] Open
Abstract
Multiple sclerosis (MS) is a progressive neurodegenerative disease, characterized by autoimmune central nervous system (CNS) demyelination attributable to a disturbed balance between encephalitic T helper 1 (Th1) and T helper 17 (Th17) and immunomodulatory regulatory T cell (Treg) and T helper 2 (Th2) cells, and an alternatively activated macrophage (M2) excess. Endogenous molecular systems regulating these inflammatory processes have recently been investigated to identify molecules that can potentially influence the course of the disease. These include the peroxisome proliferator-activated receptors (PPARs), PPARγ coactivator-1alpha (PGC-1α), and kynurenine pathway metabolites. Although all PPARs ameliorate experimental autoimmune encephalomyelitis (EAE), recent evidence suggests that PPARα, PPARβ/δ agonists have less pronounced immunomodulatory effects and, along with PGC-1α, are not biomarkers of neuroinflammation in contrast to PPARγ. Small clinical trials with PPARγ agonists have been published with positive results. Proposed as immunomodulatory and neuroprotective, the therapeutic use of PGC-1α activation needs to be assessed in EAE/MS. The activation of indolamine 2,3-dioxygenase (IDO), the rate-limiting step of the kynurenine pathway of tryptophan (Trp) metabolism, plays crucial immunomodulatory roles. Indeed, Trp metabolites have therapeutic relevance in EAE and drugs with structural analogy to kynurenines, such as teriflunomide, are already approved for MS. Further studies are required to gain deeper knowledge of such endogenous immunomodulatory pathways with potential therapeutic implications in MS.
Collapse
Affiliation(s)
- Bernadett Fakan
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, H-6725 Szeged, Semmelweis u. 6, Hungary.
| | - Levente Szalardy
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, H-6725 Szeged, Semmelweis u. 6, Hungary.
| | - Laszlo Vecsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, H-6725 Szeged, Semmelweis u. 6, Hungary.
- MTA-SZTE Neuroscience Research Group, H-6725 Szeged, Semmelweis u. 6, Hungary.
| |
Collapse
|
11
|
Bitarafan S, Mohammadpour Z, Jafarirad S, Harirchian MH, Yekaninejad MS, Saboor-Yaraghi AA. The effect of retinyl-palmitate on the level of pro and anti-inflammatory cytokines in multiple sclerosis patients: A randomized double blind clinical trial. Clin Neurol Neurosurg 2019; 177:101-105. [PMID: 30640138 DOI: 10.1016/j.clineuro.2019.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 01/03/2019] [Accepted: 01/05/2019] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Multiple sclerosis (MS) is an inflammatory and autoimmune disease associated with the imbalance of cytokines secreted from CD4+ T cells. Studies have shown that vitamin A and its active derivatives are able to modulate the immune system in MS patients. The aim of the present study was to investigate the effect of supplementation of retinyl palmitate (RP), the dietary form of vitamin A, on pro- and anti-inflammatory cytokines in the plasma and supernatants of cultured peripheral blood mononuclear cells (PBMCs) of MS patients. PATIENTS AND METHODS Thirty-six relapsing-remitting MS patients were enrolled in this double-blind randomized clinical trial. Participants received one capsule of 25,000 IU RP or a placebo per day for six months. Blood samples were taken before and after intervention. After intervention, the PBMCs were isolated and cultured. The levels of pro- and anti-inflammatory cytokines in the plasma and supernatant of cells stimulated with myelin oligodendrocyte glycoprotein, phytohemagglutinin or vehicle (media) were determined. The sample t-test and Mann Whitney U test were used to compare data between groups. RESULTS The changes in pro-inflammatory cytokine levels (IL-1β, TNF-α, IFN- γ, IL-2, IL-6, and IL-17) in the serum and supernatant of MS patients were not significant (p > 0.05). There were also no significant changes in the levels of anti-inflammatory cytokines (IL-10, IL-13, IL-4, and TGF-β) (p > 0.05). CONCLUSION Unexpectedly, this study found no significant changes in cytokine levels after six months of RP supplementation in MS patients. The results of other studies by our team have shown significant changes in the gene expression of the cytokines in response to RP supplements. Therefore, we recommend that periodic follow-up of RP supplementation may be needed to reveal changes in the level of the cytokines in the plasma and PBMCs and to clarify the real effect of RP on the immune factor levels in the serum of MS patients.
Collapse
Affiliation(s)
- Sama Bitarafan
- Iranian Center of Neurological Research, Neuroscience Institute, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Zinat Mohammadpour
- Iranian Center of Neurological Research, Neuroscience Institute, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran; Liver Transplantation Research Center, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sima Jafarirad
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran; Nutrition and Metabolic Disease Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad-Hossein Harirchian
- Iranian Center of Neurological Research, Neuroscience Institute, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mir Saeed Yekaninejad
- Department of Epidemiology and Biostatics, School of Public Health, Tehran University of Medical Sciences, International Campus, Tehran, Iran
| | - Ali Akbar Saboor-Yaraghi
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Orio L, Alen F, Pavón FJ, Serrano A, García-Bueno B. Oleoylethanolamide, Neuroinflammation, and Alcohol Abuse. Front Mol Neurosci 2019; 11:490. [PMID: 30687006 PMCID: PMC6333756 DOI: 10.3389/fnmol.2018.00490] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/18/2018] [Indexed: 12/28/2022] Open
Abstract
Neuroinflammation is a complex process involved in the physiopathology of many central nervous system diseases, including addiction. Alcohol abuse is characterized by induction of peripheral inflammation and neuroinflammation, which hallmark is the activation of innate immunity toll-like receptors 4 (TLR4). In the last years, lipid transmitters have generated attention as modulators of parts of the addictive process. Specifically, the bioactive lipid oleoylethanolamide (OEA), which is an endogenous acylethanolamide, has shown a beneficial profile for alcohol abuse. Preclinical studies have shown that OEA is a potent anti-inflammatory and antioxidant compound that exerts neuroprotective effects in alcohol abuse. Exogenous administration of OEA blocks the alcohol-induced TLR4-mediated pro-inflammatory cascade, reducing the release of proinflammatory cytokines and chemokines, oxidative and nitrosative stress, and ultimately, preventing the neural damage in frontal cortex of rodents. The mechanisms of action of OEA are discussed in this review, including a protective action in the intestinal barrier. Additionally, OEA blocks cue-induced reinstatement of alcohol-seeking behavior and reduces the severity of withdrawal symptoms in animals, together with the modulation of alcohol-induced depression-like behavior and other negative motivational states associated with the abstinence, such as the anhedonia. Finally, exposure to alcohol induces OEA release in blood and brain of rodents. Clinical evidences will be highlighted, including the OEA release and the correlation of plasma OEA levels with TLR4-dependent peripheral inflammatory markers in alcohol abusers. In base of these evidences we hypothesize that the endogenous release of OEA could be a homeostatic signal to counteract the toxic action of alcohol and we propose the exploration of OEA-based pharmacotherapies to treat alcohol-use disorders.
Collapse
Affiliation(s)
- Laura Orio
- Department of Psychobiology and Methods in Behavioral Science, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain.,Red de Trastornos Adictivos (RTA), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Francisco Alen
- Department of Psychobiology and Methods in Behavioral Science, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain
| | - Francisco Javier Pavón
- Red de Trastornos Adictivos (RTA), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga-Universidad de Málaga, Málaga, Spain
| | - Antonia Serrano
- Red de Trastornos Adictivos (RTA), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga-Universidad de Málaga, Málaga, Spain
| | - Borja García-Bueno
- Department of Pharmacology and Toxicology, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental, IMAS and IUING, Madrid, Spain
| |
Collapse
|
13
|
LoPresti P. Silent Free Fall at Disease Onset: A Perspective on Therapeutics for Progressive Multiple Sclerosis. Front Neurol 2018; 9:973. [PMID: 30542317 PMCID: PMC6277889 DOI: 10.3389/fneur.2018.00973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/29/2018] [Indexed: 01/08/2023] Open
Abstract
Central nervous system (CNS) degeneration occurs during multiple sclerosis (MS) following several years of reversible autoimmune demyelination. Progressive CNS degeneration appears later during the course of relapsing-remitting MS (RRMS), although it starts insidiously at disease onset. We propose that there is an early subclinical phase also for primary-progressive (PP) MS. Consensus exists that many different cell types are involved during disease onset. Furthermore, the response to the initial damage, which is specific for each individual, would result in distinct pathological pathways that add complexity to the disease and the mechanisms underlying progressive CNS degeneration. Progressive MS is classified as either active or not active, as well as with or without progression. Different forms of progressive MS might reflect distinct or overlapping pathogenetic pathways. Disease mechanisms should be determined for each patient at diagnosis and the time of treatment. Until individualized and time-sensitive treatments that specifically target the molecular mechanisms of the progressive aspect of the disease are identified, combined therapies directed at anti-inflammation, regeneration, and neuroprotection are the most effective for preventing MS progression. This review presents selected therapeutics in support of the overall idea of a multidimensional therapy applied early in the disease. This approach could limit damage and increase CNS repair. By targeting several cellular populations (i.e., microglia, astrocytes, neurons, oligodendrocytes, and lymphocytes) and multiple pathological processes (e.g., inflammation, demyelination, synaptopathy, and excitatory/inhibitory imbalance) progressive MS could be attenuated. Early timing for such multidimensional therapy is proposed as the prerequisite for effectively halting progressive MS.
Collapse
Affiliation(s)
- Patrizia LoPresti
- Department of Psychology, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
14
|
Nor Effa SZ, Yaacob NS, Mohd Nor N. Crosstalk between PPARγ Ligands and Inflammatory-Related Pathways in Natural T-Regulatory Cells from Type 1 Diabetes Mouse Model. Biomolecules 2018; 8:E135. [PMID: 30400642 PMCID: PMC6315476 DOI: 10.3390/biom8040135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/24/2018] [Accepted: 08/28/2018] [Indexed: 02/07/2023] Open
Abstract
Immunomodulation, as a means of immunotherapy, has been studied in major research and clinical laboratories for many years. T-Regulatory (Treg) cell therapy is one of the modulators used in immunotherapy approaches. Similarly, nuclear receptor peroxisome proliferator activated receptor gamma (PPARγ) has extensively been shown to play a role as an immuno-modulator during inflammation. Given their mutual roles in downregulating the immune response, current study examined the influence of PPARγ ligands i.e., thiazolidinedione (TZD) class of drugs on Forkhead Box P3 (Foxp3) expression and possible crosstalk between PPARγ and nTreg cells of Non-Obese Diabetes (NOD) and Non-Obese Diabetes Resistant (NOR) mice. Results showed that TZD drug, ciglitazone and natural ligand of PPARγ 15d-prostaglandin downregulated Foxp3 expression in activated nTreg cells from both NOD and NOR mice. Interestingly, addition of the PPARγ inhibitor, GW9662 further downregulated Foxp3 expression in these cells from both mice. We also found that PPARγ ligands negatively regulate Foxp3 expression in activated nTreg cells via PPARγ-independent mechanism(s). These results demonstrate that both natural and synthetic PPARγ ligands capable of suppressing Foxp3 expression in activated nTreg cells of NOD and NOR mice. This may suggest that the effect of PPARγ ligands in modulating Foxp3 expression in activated nTreg cells is different from their reported effects on effector T cells. Given the capability to suppress Foxp3 gene, it is possible to be tested as immunomodulators in cancer-related studies. The co-lateral use of PPARγ ligands in nTreg cells in inducing tolerance towards pseudo-self antigens as in tumor microenvironment may uphold beneficial outcomes.
Collapse
Affiliation(s)
- S Zulkafli Nor Effa
- School of Health Sciences, Universiti Sains Malaysia, Kelantan, Kubang Kerian 16150, Malaysia.
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Malaysia.
| | - Nik Soriani Yaacob
- School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Kubang Kerian 16150, Malaysia.
| | - Norazmi Mohd Nor
- School of Health Sciences, Universiti Sains Malaysia, Kelantan, Kubang Kerian 16150, Malaysia.
| |
Collapse
|
15
|
Portavella M, Rodriguez-Espinosa N, Galeano P, Blanco E, Romero JI, Holubiec MI, Rodriguez de Fonseca F, Fernández-Espejo E. Oleoylethanolamide and Palmitoylethanolamide Protect Cultured Cortical Neurons Against Hypoxia. Cannabis Cannabinoid Res 2018; 3:171-178. [PMID: 30255158 PMCID: PMC6148719 DOI: 10.1089/can.2018.0013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Introduction: Perinatal hypoxic-ischemic (HI) encephalopathy is defined as a neurological syndrome where the newborn suffers from acute ischemia and hypoxia during the perinatal period. New therapies are needed. The acylethanolamides, oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), possess neuroprotective properties, and they could be effective against perinatal HI. These lipid mediators act through peroxisome proliferator-activated receptors subtype α (PPARα), or transient receptor potential vanilloid (TRPV), such as TRPV subtype 1 and 4. Materials and Methods: The objectives of this study were to discern: (1) the neuroprotective role of OEA and PEA in parietotemporal cortical neurons of newborn rats and mice subjected to hypoxia, and (2) the role of the receptors, PPARα, TRPV1, and TRPV4, in neuroprotective effects. Cell culture of cortical neurons and the lactate dehydrogenase assay was carried out. The role of receptors was discerned by using selective antagonist and agonist ligands, as well as knockout (KO) PPARα mice. Results: The findings indicate that OEA and PEA exert neuroprotective effects on cultured cortical neurons subjected to a hypoxic episode. These protective effects are not mediated by the receptors, PPARα, TRPV1, or TRPV4, because neither PPARα KO mice nor receptor ligands significantly modify OEA and PEA-induced effects. Blocking TRPV4 with RN1734 is neuroprotective per se, and cotreatment with OEA and PEA is able to enhance neuroprotective effects of the acylethanolamides. Since stimulating TRPV4 was devoid of effects on OEA and PEA-induced protective effects, effects of RN1734 cotreatment seem to be a consequence of additive actions. Conclusion: The lipid mediators, OEA and PEA, exert neuroprotective effects on cultured cortical neurons subjected to hypoxia. Coadministration of OEA or PEA, and the TRPV4 antagonist RN1734 is able to enhance neuroprotective effects. These in vitro results could be of utility for developing new therapeutic tools against perinatal HI.
Collapse
Affiliation(s)
- Manuel Portavella
- Laboratory of Animal Behavior and Neuroscience, Department of Experimental Psychology, Faculty of Psychology, Universidad de Sevilla, Seville, Spain
| | - Nieves Rodriguez-Espinosa
- Neurophysiology and Molecular Neurology Lab, Department of Medical Physiology and Biophysics, Faculty of Medicine, Universidad de Sevilla, Seville, Spain
| | - Pablo Galeano
- Biochemical Research Institute of Buenos Aires (IIBBA-CONICET), Buenos Aires, Argentina
| | - Eduardo Blanco
- University of Lleida, Medical Research Institute, Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Juan I Romero
- Biochemical Research Institute of Buenos Aires (IIBBA-CONICET), Buenos Aires, Argentina
| | - Mariana I Holubiec
- Biochemical Research Institute of Buenos Aires (IIBBA-CONICET), Buenos Aires, Argentina
| | | | - Emilio Fernández-Espejo
- Neurophysiology and Molecular Neurology Lab, Department of Medical Physiology and Biophysics, Faculty of Medicine, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
16
|
Castelli V, d'Angelo M, Antonosante A, Catanesi M, Benedetti E, Desideri G, Cimini A. Physiology and Pathophysiology of PPARs in the Eye. NUCLEAR RECEPTOR RESEARCH 2018. [DOI: 10.11131/2018/101370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy
| | - Michele d'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy
| | - Andrea Antonosante
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy
| | - Mariano Catanesi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy
| | | | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, Philadelphia, USA
| |
Collapse
|
17
|
Vallée A, Vallée JN, Guillevin R, Lecarpentier Y. Interactions Between the Canonical WNT/Beta-Catenin Pathway and PPAR Gamma on Neuroinflammation, Demyelination, and Remyelination in Multiple Sclerosis. Cell Mol Neurobiol 2018; 38:783-795. [PMID: 28905149 DOI: 10.1007/s10571-017-0550-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/09/2017] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis (MS) is marked by neuroinflammation and demyelination with loss of oligodendrocytes in the central nervous system. The immune response is regulated by WNT/beta-catenin pathway in MS. Activated NF-kappaB, a major effector of neuroinflammation, and upregulated canonical WNT/beta-catenin pathway positively regulate each other. Demyelinating events present an upregulation of WNT/beta-catenin pathway, whereas proper myelinating phases show a downregulation of WNT/beta-catenin pathway essential for the promotion of oligodendrocytes precursors cells proliferation and differentiation. The activation of WNT/beta-catenin pathway results in differentiation failure and impairment in remyelination. However, PI3K/Akt pathway and TCF7L2, two downstream targets of WNT/beta-catenin pathway, are upregulated and promote proper remyelination. The interactions of these signaling pathways remain unclear. PPAR gamma activation can inhibit NF-kappaB, and can also downregulate the WNT/beta-catenin pathway. PPAR gamma and canonical WNT/beta-catenin pathway act in an opposite manner. PPAR gamma agonists appear as a promising treatment for the inhibition of demyelination and the promotion of proper remyelination through the control of both NF-kappaB activity and canonical WNT/beta-catenin pathway.
Collapse
Affiliation(s)
- Alexandre Vallée
- Experimental and Clinical Neurosciences Laboratory, INSERM U1084, University of Poitiers, Poitiers, France.
- Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, Poitiers, France.
| | - Jean-Noël Vallée
- Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, Poitiers, France
- CHU Amiens Picardie, University of Picardie Jules Verne (UPJV), Amiens, France
| | - Rémy Guillevin
- DACTIM, UMR CNRS 7348, University of Poitiers et CHU de Poitiers, Poitiers, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), Meaux, France
| |
Collapse
|
18
|
Mousavi Nasl-Khameneh A, Mirshafiey A, Naser Moghadasi A, Chahardoli R, Mahmoudi M, Parastouei K, Yekaninejad MS, Saboor-Yaraghi AA. Combination treatment of docosahexaenoic acid (DHA) and all-trans-retinoic acid (ATRA) inhibit IL-17 and RORγt gene expression in PBMCs of patients with relapsing-remitting multiple sclerosis. Neurol Res 2017; 40:11-17. [PMID: 29155646 DOI: 10.1080/01616412.2017.1382800] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Multiple sclerosis (MS) is a demyelinating disorder with a complex autoimmune pathophysiology. Its initiation and progression correlate with IL-17 and the related transcription factor, RORγt. All-trans retinoic acid (ATRA) is a bioactive derivative of vitamin A, and docosahexaenoic acid (DHA) is an active metabolite of omega-3 fatty acid; both have immunomodulatory effects in many immune disorders. This study investigated the effects of DHA and ATRA individually and in combination on IL-17 and RORγt gene expression in peripheral blood mononuclear cells (PBMCs) of relapsing-remitting MS (RRMS) patients who were receiving interferon beta (IFN-β). METHODS The PBMCs of 15 RRMS patients were treated in vitro with 1 μM of ATRA and 15 μM of DHA as single and combination treatments for assessing probable additive or synergistic effects. RESULTS The results showed that single treatment of ATRA (p = 0.05) could significantly decrease the expression of IL-17 gene and single treatment of ATRA (p = 0.04) and single treatment of DHA (p = 0.05) induced significant inhibition on the expression of RORγt gene. The suppressive effect of combined treatment with ATRA and DHA on IL-17 (p = 0.02) and RORγt (p = 0.01) was also found significant showing that the combined treatments can have additive effects. DISCUSSION These results indicate that both DHA and ATRA might help control disease progression in IFN-β treated RRMS patients with the strongest effects produced by a combination of the two compounds.
Collapse
Affiliation(s)
- Ateke Mousavi Nasl-Khameneh
- a Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, International Campus , Tehran University of Medical Sciences , Tehran , Iran
| | - Abbas Mirshafiey
- b Department of Immunology, School of Public Health , Tehran University of Medical Sciences , Tehran , Iran
| | - Abdorreza Naser Moghadasi
- c Department of Neurology and MS Research Center, Neuroscience Institute , Sina Hospital, Tehran University of Medical Sciences , Tehran , Iran
| | - Reza Chahardoli
- d Endocrine Research Center, Research Institute for Endocrine Sciences , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Maryam Mahmoudi
- e Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics , Tehran University of Medical Sciences , Tehran , Iran
| | - Karim Parastouei
- e Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics , Tehran University of Medical Sciences , Tehran , Iran
| | - Mir Saeed Yekaninejad
- f Department of Epidemiology and Biostatistics, School of Public Health , Tehran University of Medical Sciences , Tehran , Iran
| | - Ali Akbar Saboor-Yaraghi
- b Department of Immunology, School of Public Health , Tehran University of Medical Sciences , Tehran , Iran.,e Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics , Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
19
|
Motavaf M, Sadeghizadeh M, Javan M. Attempts to Overcome Remyelination Failure: Toward Opening New Therapeutic Avenues for Multiple Sclerosis. Cell Mol Neurobiol 2017; 37:1335-1348. [PMID: 28224237 DOI: 10.1007/s10571-017-0472-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 02/12/2017] [Indexed: 01/02/2023]
Abstract
Multiple sclerosis (MS) is a chronic immune-mediated disorder of the central nervous system that results in destruction of the myelin sheath wrapped around the axons and eventual axon degeneration. The disease is pathologically heterogeneous; however, perhaps its most frustrating aspect is the lack of efficient regenerative response for remyelination. Current treatment strategies are based on anti-inflammatory or immunomodulatory medications that have the potential to reduce the numbers of newly evolving lesions. However, therapies are still required that can repair already damaged myelin for which current treatments are not effective. A prerequisite for the development of such new treatments is understanding the reasons for insufficient endogenous repair. This review briefly summarizes the currently suggested causes of remyelination failure in MS and possible solutions.
Collapse
Affiliation(s)
- Mahsa Motavaf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-331, Tehran, Islamic Republic of Iran.
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran.
| |
Collapse
|
20
|
Abstract
We have witnessed major successes in the development of effective immunomodulatory therapies capable of reducing adaptive immune-mediated myelin damage in MS over the last 30 years. However, until it is possible to prevent MS or initiate treatment before it has already caused lesions there is a need to repair myelin damage to prevent further axonal loss. The past decade has brought remarkable advances in our understanding of oligodendrocyte biology and the related search for remyelinating therapies in humans. In this review, we first outline the basic biology of central nervous system myelin and remyelination, including a discussion of the major identified pathways and targets that might help yield CNS remyelinating drugs. In conjunction, we provide an overview of techniques that have helped identify compounds capable of promoting oligodendrocyte precursor cell differentiation and myelination. This includes the methods for both initial in vitro screening and subsequent in vivo confirmation of the target. We then review methods proposed to quantify human remyelination in vivo, including visual evoked potentials and putative imaging modalities. As the remyelination era approaches, with the announcement of the first positive trial in remyelination, we are now tasked with answering new questions regarding patient-specific factors (e.g., age) that may influence the extent and optimal therapeutic window for remyelination.
Collapse
Affiliation(s)
- Riley M Bove
- Department of Neurology Weill Institute for the Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
| | - Ari J Green
- Department of Neurology Weill Institute for the Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
21
|
Szalardy L, Zadori D, Bencsik K, Vecsei L, Klivenyi P. Unlike PPARgamma, neither other PPARs nor PGC-1alpha is elevated in the cerebrospinal fluid of patients with multiple sclerosis. Neurosci Lett 2017; 651:128-133. [PMID: 28483651 DOI: 10.1016/j.neulet.2017.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/05/2017] [Accepted: 05/05/2017] [Indexed: 02/06/2023]
Abstract
Corroborating with prior experimental findings, we recently reported the pronounced elevation of peroxisome proliferator-activated receptor gamma (PPARγ) protein concentration in the cerebrospinal fluid (CSF) of patients with multiple sclerosis (MS), in association with neuroinflammatory markers and clinical severity. Based on subsequent reports on the possible involvement of other PPARs and PPARγ coactivator-1alpha (PGC-1α) in neuroinflammation in MS, we analyzed the protein levels of PPARα, PPARβ/δ, and PGC-1α in a subset of CSF samples from the same cohort of relapsing-remitting MS patients. Unlike PPARγ, none of these proteins were found elevated in MS patients (n=25) compared to non-inflammatory controls (n=16), with the levels of PPARα and PPARβ/δ found generally below the limit of detection, and that of PGC-1α being detectable but comparable in both groups. The clinical and laboratory associations previously reported with PPARγ were however significant even in this smaller subset. The potential underlying causes of these differential alterations are discussed. The findings suggest that despite their proposed involvement in the regulation of inflammatory processes in MS, PPARα, PPARβ/δ, and PGC-1α proteins are not potential biomarkers of neuroinflammation in MS, and indicate a preferential role of PPARγ in the endogenous regulation of autoimmune response in the human CNS within its receptor family.
Collapse
Affiliation(s)
- Levente Szalardy
- Department of Neurology, University of Szeged, H-6725, Szeged, Semmelweis u. 6, Hungary
| | - Denes Zadori
- Department of Neurology, University of Szeged, H-6725, Szeged, Semmelweis u. 6, Hungary
| | - Krisztina Bencsik
- Department of Neurology, University of Szeged, H-6725, Szeged, Semmelweis u. 6, Hungary
| | - Laszlo Vecsei
- Department of Neurology, University of Szeged, H-6725, Szeged, Semmelweis u. 6, Hungary; MTA-SZTE Neuroscience Research Group, H-6725, Szeged, Semmelweis u. 6, Hungary
| | - Peter Klivenyi
- Department of Neurology, University of Szeged, H-6725, Szeged, Semmelweis u. 6, Hungary.
| |
Collapse
|
22
|
Albrecht S, Fleck AK, Kirchberg I, Hucke S, Liebmann M, Klotz L, Kuhlmann T. Activation of FXR pathway does not alter glial cell function. J Neuroinflammation 2017; 14:66. [PMID: 28351411 PMCID: PMC5371249 DOI: 10.1186/s12974-017-0833-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 03/06/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The nuclear receptor farnesoid-X-receptor (FXR; NR1H4) is expressed not only in the liver, gut, kidney and adipose tissue but also in the immune cells. FXR has been shown to confer protection in several animal models of inflammation, including experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). FXR agonists are currently tested in clinical trials for treatment of human metabolic diseases. The beneficial effect of FXR agonists in EAE suggests that FXR might represent a potential target in inflammatory-demyelinating CNS diseases, such as MS. In MS, oligodendrocytes not only undergo cell death but also contribute to remyelination. This repair mechanism is impaired due to a differentiation block of oligodendroglial progenitor cells. Activation of other nuclear receptors that heterodimerize with FXR promote oligodendroglial differentiation. Therefore, we wanted to address the functional relevance of FXR for glial cells, especially for oligodendroglial differentiation. METHODS We isolated primary murine oligodendrocytes from FXR-deficient (FXR Ko) and wild-type (WT) mice and determined the effect of FXR deficiency and activation on oligodendroglial differentiation by analysing markers of oligodendroglial progenitor cells (OPCs) and mature oligodendrocytes (OLs) using qRT-PCR and immunocytochemistry. Additionally, we determined whether FXR activation modulates the pro-inflammatory profile of astrocytes or microglia and whether this may subsequently modulate oligodendroglial differentiation. These in vitro studies were complemented by histological analyses of oligodendrocytes in FXR Ko mice. RESULTS FXR is expressed by OPCs and mature oligodendrocytes. However, lack of FXR did not affect oligodendroglial differentiation in vitro or in vivo. Furthermore, activation of FXR using the synthetic agonist GW4064 did not affect oligodendroglial differentiation, remyelination in an ex vivo model or the expression of pro-inflammatory molecules in astrocytes or microglia. Concordantly, no effects of supernatants from macrophages cultured in the presence of GW4064 were observed regarding a possible indirect impact on oligodendroglial differentiation. CONCLUSIONS Our data suggest that FXR is dispensable for oligodendroglial differentiation and that FXR agonists, such as GW4064, represent a potential therapeutic approach for MS which specifically targets peripheral immune cells including macrophages but not brain-resident cells, such as oligodendrocytes, astrocytes or microglia.
Collapse
Affiliation(s)
- Stefanie Albrecht
- Institute of Neuropathology, University Hospital Münster, 48149, Münster, Germany
| | - Ann-Katrin Fleck
- Department of Neurology, University of Münster, 48149, Münster, Germany
| | - Ina Kirchberg
- Institute of Neuropathology, University Hospital Münster, 48149, Münster, Germany
| | - Stephanie Hucke
- Department of Neurology, University of Münster, 48149, Münster, Germany
| | - Marie Liebmann
- Department of Neurology, University of Münster, 48149, Münster, Germany
| | - Luisa Klotz
- Department of Neurology, University of Münster, 48149, Münster, Germany.
| | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital Münster, 48149, Münster, Germany.
| |
Collapse
|
23
|
Xu D, Cai L, Guo S, Xie L, Yin M, Chen Z, Zhou H, Su Y, Zeng Z, Zhang X. Virtual screening and experimental validation identify novel modulators of nuclear receptor RXRα from Drugbank database. Bioorg Med Chem Lett 2017; 27:1055-1061. [DOI: 10.1016/j.bmcl.2016.12.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 11/16/2022]
|
24
|
Jia H, Xu S, Liu Q, Liu J, Xu J, Li W, Jin Y, Ji Q. Effect of pioglitazone on neuropathic pain and spinal expression of TLR-4 and cytokines. Exp Ther Med 2016; 12:2644-2650. [PMID: 27698768 DOI: 10.3892/etm.2016.3643] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 01/08/2015] [Indexed: 12/30/2022] Open
Abstract
The molecular mechanisms underlying neuropathic pain have yet to be elucidated. The present study aimed to examine the modulation of neuroimmune activation in the spinal cord by the synthetic peroxisome proliferator-activated receptor gamma (PPAR-γ) agonist, pioglitazone (Pio), in a rat model of neuropathic pain induced by chronic constriction injury (CCI). Rats were randomly assigned into four groups: Sham surgery with vehicle, chronic constriction injury with vehicle or Pio (10 mg/kg), and chronic constriction injury with Pio and a PPAR-γ antagonist GW9662 (2 mg/kg). Pio or vehicle was administered 1 h prior to the surgery and continued daily until day 7 post-surgery. Paw pressure threshold was measured prior to surgery and on days 0, 1, 3 and 7 post-surgery. Microglia activation markers macrophage antigen complex-1, the mRNA expression levels of tumor necrosis factor α and interleukin-1β, and the mRNA expression levels of toll like receptor (TLR-4) in the lumbar spinal cord were determined. Administration of Pio resulted in the prominent attenuation of mechanical hyperalgesia. In addition, Pio was able to significantly inhibit neuroimmune activation characterized by glial activation, the production of cytokines and expression levels of TLR-4. Concurrent administration of a PPAR-γ antagonist, GW9662, reversed the effects of Pio. The antihyperalgesic effect of administration of Pio in rats receiving CCI may, in part, be attributed to the inhibition of neuroimmune activation associated with the sustaining of neuropathic pain.
Collapse
Affiliation(s)
- Hongbin Jia
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Shuangshuang Xu
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Qingzhen Liu
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Jian Liu
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Jianguo Xu
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Weiyan Li
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Yi Jin
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Qing Ji
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
25
|
Sevastou I, Pryce G, Baker D, Selwood DL. Characterisation of Transcriptional Changes in the Spinal Cord of the Progressive Experimental Autoimmune Encephalomyelitis Biozzi ABH Mouse Model by RNA Sequencing. PLoS One 2016; 11:e0157754. [PMID: 27355629 PMCID: PMC4927105 DOI: 10.1371/journal.pone.0157754] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/04/2016] [Indexed: 11/30/2022] Open
Abstract
Multiple sclerosis (MS) is a debilitating immune-mediated neurological disorder affecting young adults. MS is primarily relapsing-remitting, but neurodegeneration and disability accumulate from disease onset. The most commonly used mouse MS models exhibit a monophasic immune response with fast accumulation of neurological damage that does not allow the study of progressive neurodegeneration. The chronic relapsing and secondary progressive EAE (pEAE) Biozzi ABH mouse model of MS exhibits a reproducible relapsing-remitting disease course that slowly accumulates permanent neurological deficit and develops a post-relapsing progressive disease that permits the study of demyelination and neurodegeneration. RNA sequencing (RNAseq) was used to explore global gene expression in the pEAE Biozzi ABH mouse. Spinal cord tissue RNA from pEAE Biozzi ABH mice and healthy age-matched controls was sequenced. 2,072 genes were differentially expressed (q<0.05) from which 1,397 were significantly upregulated and 675 were significantly downregulated. This hypothesis-free investigation characterised the genomic changes that describe the pEAE mouse model. The differentially expressed genes revealed a persistent immunoreactant phenotype, combined with downregulation of the cholesterol biosynthesis superpathway and the LXR/RXR activation pathway. Genes differentially expressed include the myelination genes Slc17a7, Ugt8A and Opalin, the neuroprotective genes Sprr1A, Osm and Wisp2, as well as genes identified as MS risk factors, including RGs14 and Scap2. Novel genes with unestablished roles in EAE or MS were also identified. The identification of differentially expressed novel genes and genes involved in MS pathology, opens the door to their functional study in the pEAE mouse model which recapitulates some of the important clinical features of progressive MS.
Collapse
Affiliation(s)
- Ioanna Sevastou
- Department of Medicinal Chemistry, UCL Wolfson Institute for Biomedical Science, London, WC1E 6BT, United Kingdom
| | - Gareth Pryce
- Neuroimmmunology Unit, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT, United Kingdom
| | - David Baker
- Neuroimmmunology Unit, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT, United Kingdom
| | - David L. Selwood
- Department of Medicinal Chemistry, UCL Wolfson Institute for Biomedical Science, London, WC1E 6BT, United Kingdom
- * E-mail:
| |
Collapse
|
26
|
Goswami R, Kaplan MH. Essential vitamins for an effective T cell response. World J Immunol 2016; 6:39-59. [DOI: 10.5411/wji.v6.i1.39] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/07/2015] [Accepted: 11/25/2015] [Indexed: 02/06/2023] Open
Abstract
Effective adaptive immune responses rely upon appropriate activation of T cells by antigenic peptide-major histocompatibility complex on the surface of antigen presenting cells (APCs). Activation relies on additional signals including co-stimulatory molecules on the surface of the APCs that promote T cell expansion. The immune response is further sculpted by the cytokine environment. However, T cells also respond to other environmental signals including hormones, neurotransmitters, and vitamins. In this review, we summarize the mechanisms through which vitamins A and D impact immune responses, particularly in the context of T cell responses.
Collapse
|
27
|
Tomas-Roig J, Wirths O, Salinas-Riester G, Havemann-Reinecke U. The Cannabinoid CB1/CB2 Agonist WIN55212.2 Promotes Oligodendrocyte Differentiation In Vitro and Neuroprotection During the Cuprizone-Induced Central Nervous System Demyelination. CNS Neurosci Ther 2016; 22:387-95. [PMID: 26842941 PMCID: PMC5067581 DOI: 10.1111/cns.12506] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/07/2015] [Accepted: 12/08/2015] [Indexed: 12/13/2022] Open
Abstract
Aim and methods Different types of insults to the CNS lead to axon demyelination. Remyelination occurs when the CNS attempts to recover from myelin loss and requires the activation of oligodendrocyte precursor cells. With the rationale that CB1 receptor is expressed in oligodendrocytes and marijuana consumption alters CNS myelination, we study the effects of the cannabinoid agonist WIN55212.2 in (1) an in vitro model of oligodendrocyte differentiation and (2) the cuprizone model for demyelination. Results The synthetic cannabinoid agonist WIN55212.2 at 1 μM increased the myelin basic protein mRNA and protein expression in vitro. During cuprizone‐induced acute demyelination, the administration of 0.5 mg/kg WIN55212.2 confers more myelinated axons, increased the expression of retinoid X receptor alpha, and declined nogo receptor expression. Controversially, 1 mg/kg of the drug increased the number of demyelinated axons and reduced the expression of nerve growth factor inducible, calreticulin and myelin‐related genes coupling specifically with a decrease in 2′,3′‐cyclic nucleotide 3′ phosphodiesterase expression. Conclusion The cannabinoid agonist WIN55212.2 promotes oligodendrocyte differentiation in vitro. Moreover, 0.5 mg/kg of the drug confers neuroprotection during cuprizone‐induced demyelination, while 1 mg/kg aggravates the demyelination process.
Collapse
Affiliation(s)
- Jordi Tomas-Roig
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany.,Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Oliver Wirths
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Gabriela Salinas-Riester
- Department of Developmental Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Ursula Havemann-Reinecke
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany.,Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| |
Collapse
|
28
|
Bernstock JD, Lee YJ, Peruzzotti-Jametti L, Southall N, Johnson KR, Maric D, Volpe G, Kouznetsova J, Zheng W, Pluchino S, Hallenbeck JM. A novel quantitative high-throughput screen identifies drugs that both activate SUMO conjugation via the inhibition of microRNAs 182 and 183 and facilitate neuroprotection in a model of oxygen and glucose deprivation. J Cereb Blood Flow Metab 2016; 36:426-41. [PMID: 26661196 PMCID: PMC4759677 DOI: 10.1177/0271678x15609939] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/05/2015] [Accepted: 08/27/2015] [Indexed: 01/06/2023]
Abstract
The conjugation/de-conjugation of Small Ubiquitin-like Modifier (SUMO) has been shown to be associated with a diverse set of physiologic/pathologic conditions. The clinical significance and ostensible therapeutic utility offered via the selective control of the global SUMOylation process has become readily apparent in ischemic pathophysiology. Herein, we describe the development of a novel quantitative high-throughput screening (qHTS) system designed to identify small molecules capable of increasing SUMOylation via the regulation/inhibition of members of the microRNA (miRNA)-182 family. This assay employs a SHSY5Y human neuroblastoma cell line stably transfected with a dual firefly-Renilla luciferase reporter system for identification of specific inhibitors of either miR-182 or miR-183. In this study, we have identified small molecules capable of inducing increased global conjugation of SUMO in both SHSY5Y cells and rat E18-derived primary cortical neurons. The protective effects of a number of the identified compounds were confirmed via an in vitro ischemic model (oxygen/glucose deprivation). Of note, this assay can be easily repurposed to allow high-throughput analyses of the potential drugability of other relevant miRNA(s) in ischemic pathobiology.
Collapse
Affiliation(s)
- Joshua D Bernstock
- Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH), Bethesda, MD, USA Department of Clinical Neurosciences, Division of Stem Cell Neurobiology, Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Yang-ja Lee
- Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH), Bethesda, MD, USA
| | - Luca Peruzzotti-Jametti
- Department of Clinical Neurosciences, Division of Stem Cell Neurobiology, Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Noel Southall
- National Center for Advancing Translational Sciences, National Institutes of Health (NCATS/NIH), Bethesda, MD, USA
| | - Kory R Johnson
- Bioinformatics Section, Information Technology & Bioinformatics Program, Division of Intramural Research (DIR), (NINDS/NIH), Bethesda, MD, USA
| | - Dragan Maric
- Flow Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH), Bethesda, MD, USA
| | - Giulio Volpe
- Department of Clinical Neurosciences, Division of Stem Cell Neurobiology, Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Jennifer Kouznetsova
- National Center for Advancing Translational Sciences, National Institutes of Health (NCATS/NIH), Bethesda, MD, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health (NCATS/NIH), Bethesda, MD, USA
| | - Stefano Pluchino
- Department of Clinical Neurosciences, Division of Stem Cell Neurobiology, Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - John M Hallenbeck
- Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH), Bethesda, MD, USA
| |
Collapse
|
29
|
Methods for Testing Immunological Factors. DRUG DISCOVERY AND EVALUATION: PHARMACOLOGICAL ASSAYS 2016. [PMCID: PMC7122208 DOI: 10.1007/978-3-319-05392-9_45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Hypersensitivity reactions can be elicited by various factors: either immunologically induced, i.e., allergic reactions to natural or synthetic compounds mediated by IgE, or non-immunologically induced, i.e., activation of mediator release from cells through direct contact, without the induction of, or the mediation through immune responses. Mediators responsible for hypersensitivity reactions are released from mast cells. An important preformed mediator of allergic reactions found in these cells is histamine. Specific allergens or the calcium ionophore 48/80 induce release of histamine from mast cells. The histamine concentration can be determined with the o-phthalaldehyde reaction.
Collapse
|
30
|
Sandoval-Hernández A, Contreras MJ, Jaramillo J, Arboleda G. Regulation of Oligodendrocyte Differentiation and Myelination by Nuclear Receptors: Role in Neurodegenerative Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 949:287-310. [DOI: 10.1007/978-3-319-40764-7_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
31
|
Mallucci G, Peruzzotti-Jametti L, Bernstock JD, Pluchino S. The role of immune cells, glia and neurons in white and gray matter pathology in multiple sclerosis. Prog Neurobiol 2015; 127-128:1-22. [PMID: 25802011 PMCID: PMC4578232 DOI: 10.1016/j.pneurobio.2015.02.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 11/24/2014] [Accepted: 02/27/2015] [Indexed: 12/14/2022]
Abstract
Multiple sclerosis is one of the most common causes of chronic neurological disability beginning in early to middle adult life. Multiple sclerosis is idiopathic in nature, yet increasing correlative evidence supports a strong association between one's genetic predisposition, the environment and the immune system. Symptoms of multiple sclerosis have primarily been shown to result from a disruption in the integrity of myelinated tracts within the white matter of the central nervous system. However, recent research has also highlighted the hitherto underappreciated involvement of gray matter in multiple sclerosis disease pathophysiology, which may be especially relevant when considering the accumulation of irreversible damage and progressive disability. This review aims at providing a comprehensive overview of the interplay between inflammation, glial/neuronal damage and regeneration throughout the course of multiple sclerosis via the analysis of both white and gray matter lesional pathology. Further, we describe the common pathological mechanisms underlying both relapsing and progressive forms of multiple sclerosis, and analyze how current (as well as future) treatments may interact and/or interfere with its pathology. Understanding the putative mechanisms that drive disease pathogenesis will be key in helping to develop effective therapeutic strategies to prevent, mitigate, and treat the diverse morbidities associated with multiple sclerosis.
Collapse
Affiliation(s)
- Giulia Mallucci
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, Wellcome Trust-MRC Stem Cell Institute and NIHR Biomedical Research Centre, University of Cambridge, CB2 0PY, UK
- Department of Brain and Behavioural Sciences, National Neurological Institute C. Mondino, University of Pavia, 27100 Pavia, Italy
| | - Luca Peruzzotti-Jametti
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, Wellcome Trust-MRC Stem Cell Institute and NIHR Biomedical Research Centre, University of Cambridge, CB2 0PY, UK
| | - Joshua D. Bernstock
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, Wellcome Trust-MRC Stem Cell Institute and NIHR Biomedical Research Centre, University of Cambridge, CB2 0PY, UK
- National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH), Bldg10/Rm5B06, MSC 1401, 10 Center Drive, Bethesda, MD 20892, USA
| | - Stefano Pluchino
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, Wellcome Trust-MRC Stem Cell Institute and NIHR Biomedical Research Centre, University of Cambridge, CB2 0PY, UK
| |
Collapse
|
32
|
Drew PD, Johnson JW, Douglas JC, Phelan KD, Kane CJM. Pioglitazone blocks ethanol induction of microglial activation and immune responses in the hippocampus, cerebellum, and cerebral cortex in a mouse model of fetal alcohol spectrum disorders. Alcohol Clin Exp Res 2015; 39:445-54. [PMID: 25703036 DOI: 10.1111/acer.12639] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 11/14/2014] [Indexed: 12/23/2022]
Abstract
BACKGROUND Fetal alcohol spectrum disorders (FASD) result from fetal exposure to alcohol and are the leading cause of mental retardation in the United States. There is currently no effective treatment that targets the causes of these disorders. Thus, novel therapies are critically needed to limit the neurodevelopmental and neurodegenerative pathologies associated with FASD. METHODS A neonatal mouse FASD model was used to examine the role of the neuroimmune system in ethanol (EtOH)-induced neuropathology. Neonatal C57BL/6 mice were treated with EtOH, with or without pioglitazone, on postnatal days 4 through 9, and tissue was harvested 1 day post treatment. Pioglitazone is a peroxisome proliferator-activated receptor (PPAR)-γ agonist that exhibits anti-inflammatory activity and is neuroprotective. We compared the effects of EtOH with or without pioglitazone on cytokine and chemokine expression and microglial morphology in the hippocampus, cerebellum, and cerebral cortex. RESULTS In EtOH-treated animals compared with controls, cytokines interleukin-1β and tumor necrosis factor-α mRNA levels were increased significantly in the hippocampus, cerebellum, and cerebral cortex. Chemokine CCL2 mRNA was increased significantly in the hippocampus and cerebellum. Pioglitazone effectively blocked the EtOH-induced increase in the cytokines and chemokine in all tissues to the level expressed in handled-only and vehicle-treated control animals. EtOH also produced a change in microglial morphology in all brain regions that was indicative of microglial activation, and pioglitazone blocked this EtOH-induced morphological change. CONCLUSIONS These studies indicate that EtOH activates microglia to a pro-inflammatory stage and also increases the expression of neuroinflammatory cytokines and chemokines in diverse regions of the developing brain. Further, the anti-inflammatory and neuroprotective PPAR-γ agonist pioglitazone blocked these effects. It is proposed that microglial activation and inflammatory molecules expressed as a result of EtOH treatment during brain development contribute to the sequelae associated with FASD. Thus, pioglitazone and anti-inflammatory pharmaceuticals more broadly have potential as novel therapeutics for FASD.
Collapse
Affiliation(s)
- Paul D Drew
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | | | | | | |
Collapse
|
33
|
Zhao XR, Gonzales N, Aronowski J. Pleiotropic role of PPARγ in intracerebral hemorrhage: an intricate system involving Nrf2, RXR, and NF-κB. CNS Neurosci Ther 2014; 21:357-66. [PMID: 25430543 DOI: 10.1111/cns.12350] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/10/2014] [Accepted: 10/11/2014] [Indexed: 12/13/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a subtype of stroke involving formation of hematoma within brain parenchyma, which accounts for 8-15% of all strokes in Western societies and 20-30% among Asian populations, and has a 1-year mortality rate >50%. The high mortality and severe morbidity make ICH a major public health problem. Only a few evidence-based targeted treatments are used for ICH management, and interventions focus primarily on supportive care and comorbidity prevention. Even in patients who survive the ictus, extravasated blood (including plasma components) and subsequent intrahematoma hemolytic products trigger a series of adverse events within the brain parenchyma, leading to secondary brain injury, edema and severe neurological deficits or death. Although the hematoma in humans gradually resolves within months, full restoration of neurological function can be slow and often incomplete, leaving survivors with devastating neurological deficits. During past years, peroxisome proliferator-activated receptor gamma (PPARγ) transcription factor and its agonists received recognition as important players in regulating not only glucose and lipid metabolism (which underlies its therapeutic effect in type 2 diabetes mellitus), and more recently, as an instrumental pleiotropic regulator of antiinflammation, antioxidative regulation, and phagocyte-mediated cleanup processes. PPARγ agonists have emerged as potential therapeutic target for stroke. The use of PPARγ as a therapeutic target appears to have particularly strong compatibility toward pathogenic components of ICH. In addition to its direct genomic effect, PPARγ may interact with transcription factor, NF-κB, which may underlie many aspects of the antiinflammatory effect of PPARγ. Furthermore, PPARγ appears to regulate expression of Nrf2, another transcription factor and master regulator of detoxification and antioxidative regulation. Finally, the synergistic costimulation of PPARγ and retinoid X receptor, RXR, may play an additional role in the therapeutic modulation of PPARγ function. In this article, we outline the main components of the role of PPARγ in ICH pathogenesis.
Collapse
Affiliation(s)
- Xiu-Rong Zhao
- Department of Neurology, Stroke Research Center, University of Texas Medical School - Houston, Houston, TX, USA
| | | | | |
Collapse
|
34
|
Schmitz K, Barthelmes J, Stolz L, Beyer S, Diehl O, Tegeder I. "Disease modifying nutricals" for multiple sclerosis. Pharmacol Ther 2014; 148:85-113. [PMID: 25435020 DOI: 10.1016/j.pharmthera.2014.11.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 11/20/2014] [Indexed: 12/26/2022]
Abstract
The association between vitamin D and multiple sclerosis has (re)-opened new interest in nutrition and natural compounds in the prevention and treatment of this neuroinflammatory disease. The dietary amount and type of fat, probiotics and biologicals, salmon proteoglycans, phytoestrogens and protease inhibitor of soy, sodium chloride and trace elements, and fat soluble vitamins including D, A and E were all considered as disease-modifying nutraceuticals. Studies in experimental autoimmune encephalomyelitis mice suggest that poly-unsaturated fatty acids and their 'inflammation-resolving' metabolites and the gut microflora may reduce auto-aggressive immune cells and reduce progression or risk of relapse, and infection with whipworm eggs may positively change the gut-brain communication. Encouraged by the recent interest in multiple sclerosis-nutrition nature's pharmacy has been searched for novel compounds with anti-inflammatory, immune-modifying and antioxidative properties, the most interesting being the scorpion toxins that inhibit specific potassium channels of T cells and antioxidative compounds including the green tea flavonoid epigallocatechin-3-gallate, curcumin and the mustard oil glycoside from e.g. broccoli and sulforaphane. They mostly also inhibit pro-inflammatory signaling through NF-κB or toll-like receptors and stabilize the blood brain barrier. Disease modifying functions may also complement analgesic and anti-spastic effects of cannabis, its constituents, and of 'endocannabinoid enhancing' drugs or nutricals like inhibitors of fatty acid amide hydrolase. Nutricals will not solve multiple sclerosis therapeutic challenges but possibly support pharmacological interventions or unearth novel structures.
Collapse
Affiliation(s)
- Katja Schmitz
- The MS Study Group of the TRIP-Graduate School, Goethe-University Frankfurt, Germany
| | - Julia Barthelmes
- The MS Study Group of the TRIP-Graduate School, Goethe-University Frankfurt, Germany
| | - Leonie Stolz
- The MS Study Group of the TRIP-Graduate School, Goethe-University Frankfurt, Germany
| | - Susanne Beyer
- The MS Study Group of the TRIP-Graduate School, Goethe-University Frankfurt, Germany
| | - Olaf Diehl
- The MS Study Group of the TRIP-Graduate School, Goethe-University Frankfurt, Germany
| | - Irmgard Tegeder
- The MS Study Group of the TRIP-Graduate School, Goethe-University Frankfurt, Germany.
| |
Collapse
|
35
|
Pisanu A, Lecca D, Mulas G, Wardas J, Simbula G, Spiga S, Carta AR. Dynamic changes in pro- and anti-inflammatory cytokines in microglia after PPAR-γ agonist neuroprotective treatment in the MPTPp mouse model of progressive Parkinson's disease. Neurobiol Dis 2014; 71:280-91. [DOI: 10.1016/j.nbd.2014.08.011] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 07/31/2014] [Accepted: 08/06/2014] [Indexed: 11/25/2022] Open
|
36
|
Bahi A, Nurulain SM, Ojha S. Ethanol intake and ethanol-conditioned place preference are reduced in mice treated with the bioflavonoid agent naringin. Alcohol 2014; 48:677-85. [PMID: 25288222 DOI: 10.1016/j.alcohol.2014.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/14/2014] [Accepted: 06/20/2014] [Indexed: 10/24/2022]
Abstract
Recently, PPAR-γ activation has emerged as a potential treatment for alcoholism. However, the adverse effects of synthetic PPAR-γ activators, despite being effective drugs, prompted the need for novel PPAR-γ agonists that retain efficacy and potency with a lower potential of side effects. Hence, naringin, a bioflavonoid isolated from citrus fruits and recently identified as a natural ligand of PPAR-γ, has begun to be evaluated for treatment of alcoholism. It is well known to possess several therapeutic benefits in addition to its anti-anxiety and antidepressant properties. In the present study, we assessed whether naringin treatment possesses anti-ethanol reward properties in C57BL/6 mice. We used the two-bottle choice drinking paradigm and ethanol-induced conditioned place preference (CPP) to examine the effect of naringin treatment on ethanol drinking. Results have shown that, compared with vehicle, naringin (10-100 mg/kg) significantly and dose-dependently decreased voluntary ethanol intake and preference in a two-bottle choice drinking paradigm [3-15% (v/v) escalating over 2 weeks], with no significant effect observed on saccharin [0.02-0.08% (w/v)] or on quinine [15-60 μM (w/v)] intake. In addition, there was no significant difference in blood ethanol concentration (BEC) between groups following naringin administration of 3 g of ethanol/kg body weight. Interestingly, when mice were treated with vehicle or naringin (30 mg/kg) before injection of ethanol (1.5 g/kg) during conditioning days, naringin inhibited the acquisition of ethanol-CPP. More importantly, these effects were significantly attenuated when mice were pre-injected with the peroxisome proliferator-activated receptor-γ (PPAR-γ) antagonist, GW9662. Taken together, the present findings are the first to implicate naringin and PPAR-γ receptors in the behavioral and reward-related effects of ethanol and raise the question of whether specific drugs that target PPAR-γ receptors could potentially reduce excessive ethanol consumption and preference.
Collapse
|
37
|
Yamamoto A, Kakuta H, Sugimoto Y. Involvement of glucocorticoid receptor activation on anti-inflammatory effect induced by peroxisome proliferator-activated receptor γ agonist in mice. Int Immunopharmacol 2014; 22:204-8. [PMID: 24975659 DOI: 10.1016/j.intimp.2014.06.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 06/04/2014] [Accepted: 06/13/2014] [Indexed: 02/03/2023]
Abstract
Glucocorticoids are effective anti-inflammatory agents widely used for the treatment of acute and chronic inflammatory diseases. Recent in vitro studies have proposed that glucocorticoid receptor (GR) activation is involved in peroxisome proliferator-activated receptor γ (PPARγ) agonist-induced effects. In this study, to examine the involvement of the GR in PPARγ agonist- and retinoid X receptor (RXR) agonist-mediated anti-inflammatory effects in vivo, we tested the anti-inflammatory effects of dexamethasone (a GR agonist) with pioglitazone (a PPARγ agonist) or 6-[N-ethyl-N-(3-isopropoxy-4-isopropylphenyl)-amino] nicotinic acid (NEt-3IP; an RXR agonist) by using an experimental model of carrageenan-induced inflammation. We also evaluated the effects of a GR antagonist on PPARγ agonist- or RXR agonist-induced anti-inflammatory effects. Results showed that the GR antagonist RU486 reduced the anti-inflammatory effects of GR or PPARγ agonists but not those of the RXR agonist. In addition, combinations of GR and PPARγ agonists or GR and RXR agonists had no effect on carrageenan-induced paw edema. Moreover, the PPARγ antagonist GW9662 and RXR antagonist 6-[N-4-(trifluoromethyl)-benzenesulfonyl-N-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-2-naphthyl)-amino] nicotinic acid (NS-4TF) had no effect on the anti-inflammatory effect of the GR agonist dexamethasone. Therefore, it is suggested that GR activation in vivo does not play a direct role in PPARγ/RXR heterodimer signaling. In contrast, pioglitazone showed a partial anti-inflammatory effect via GR activation. These data provide evidence for the pro-inflammatory activity of pioglitazone.
Collapse
Affiliation(s)
- Atsuki Yamamoto
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Tsushima-naka 1-1-1, Kita-ku, Okayama 700-8530, Japan
| | - Hiroki Kakuta
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Tsushima-naka 1-1-1, Kita-ku, Okayama 700-8530, Japan
| | - Yukio Sugimoto
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Tsushima-naka 1-1-1, Kita-ku, Okayama 700-8530, Japan.
| |
Collapse
|
38
|
Dentesano G, Serratosa J, Tusell JM, Ramón P, Valente T, Saura J, Solà C. CD200R1 and CD200 expression are regulated by PPAR-γ in activated glial cells. Glia 2014; 62:982-98. [PMID: 24639050 DOI: 10.1002/glia.22656] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 02/25/2014] [Accepted: 02/25/2014] [Indexed: 12/18/2022]
Abstract
The mechanisms that control microglial activation are of interest, since neuroinflammation, which involves reactive microglia, may be an additional target in the search for therapeutic strategies to treat neurodegenerative diseases. Neuron-microglia interaction through contact-dependent or independent mechanisms is involved in the regulation of the microglial phenotype in both physiological and pathological conditions. The interaction between CD200, which is mainly present in neurons but also in astrocytes, and CD200R1, which is mainly present in microglia, is one of the mechanisms involved in keeping the microglial proinflammatory phenotype under control in physiological conditions. Alterations in the expression of CD200 and CD200R1 have been described in neurodegenerative diseases, but little is known about the mechanism of regulation of these proteins under physiological or pathological conditions. The aim of this work was to study the modulation of CD200 and CD200R1 expression by peroxisome proliferator-activated receptor gamma (PPAR-γ), a transcription factor involved in the control of the inflammatory response. Mouse primary neuronal and glial cultures and neuron-microglia cocultures were treated with the PPAR-γ endogenous ligand 15-deoxy-Δ(12, 14) -prostaglandin J2 (15d-PGJ2 ) in the presence and absence of lipopolysaccharide plus interferon-γ (LPS/IFN-γ)-induced glial activation. We show that 15d-PGJ2 inhibits the pro-inflammatory response and prevents both CD200R1 downregulation and CD200 upregulation in reactive glial cells. In addition, 15d-PGJ2 abrogates reactive-microglia induced neurotoxicity in neuron-microglia cultures through a CD200-CD200R1 dependent mechanism. These results suggest that PPAR-γ modulates CD200 and CD200R1 gene expression and that CD200-CD200R1 interaction is involved in the anti-inflammatory and neuroprotective action of PPAR-γ agonists.
Collapse
Affiliation(s)
- Guido Dentesano
- Department of Cerebral Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas (CSIC), Institut d'Investigacions Biomèdiques August-Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
39
|
The systemic administration of oleoylethanolamide exerts neuroprotection of the nigrostriatal system in experimental Parkinsonism. Int J Neuropsychopharmacol 2014; 17:455-68. [PMID: 24169105 DOI: 10.1017/s1461145713001259] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Oleoylethanolamide (OEA) is an agonist of the peroxisome proliferator-activated receptor α (PPARα) and has been described to exhibit neuroprotective properties when administered locally in animal models of several neurological disorder models, including stroke and Parkinson's disease. However, there is little information regarding the effectiveness of systemic administration of OEA on Parkinson's disease. In the present study, OEA-mediated neuroprotection has been tested on in vivo and in vitro models of 6-hydroxydopamine (6-OH-DA)-induced degeneration. The in vivo model was based on the intrastriatal infusion of the neurotoxin 6-OH-DA, which generates Parkinsonian symptoms. Rats were treated 2 h before and after the 6-OH-DA treatment with systemic OEA (0.5, 1, and 5 mg/kg). The Parkinsonian symptoms were evaluated at 1 and 4 wk after the development of lesions. The functional status of the nigrostriatal system was studied through tyrosine-hydroxylase (TH) and hemeoxygenase-1 (HO-1, oxidation marker) immunostaining as well as by monitoring the synaptophysin content. In vitro cell cultures were also treated with OEA and 6-OH-DA. As expected, our results revealed 6-OH-DA induced neurotoxicity and behavioural deficits; however, these alterations were less severe in the animals treated with the highest dose of OEA (5 mg/kg). 6-OH-DA administration significantly reduced the striatal TH-immunoreactivity (ir) density, synaptophysin expression, and the number of nigral TH-ir neurons. Moreover, 6-OH-DA enhanced striatal HO-1 content, which was blocked by OEA (5 mg/kg). In vitro, 0.5 and 1 μM of OEA exerted significant neuroprotection on cultured nigral neurons. These effects were abolished after blocking PPARα with the selective antagonist GW6471. In conclusion, systemic OEA protects the nigrostriatal circuit from 6-OH-DA-induced neurotoxicity through a PPARα-dependent mechanism.
Collapse
|
40
|
Huang JK, Jarjour AA, ffrench-Constant C, Franklin RJM. Retinoid X receptors as a potential avenue for regenerative medicine in multiple sclerosis. Expert Rev Neurother 2014; 11:467-8. [DOI: 10.1586/ern.11.34] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
41
|
Drew PD, Kane CJM. Fetal alcohol spectrum disorders and neuroimmune changes. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 118:41-80. [PMID: 25175861 DOI: 10.1016/b978-0-12-801284-0.00003-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The behavioral consequences of fetal alcohol spectrum disorders (FASD) are serious and persist throughout life. The causative mechanisms underlying FASD are poorly understood. However, much has been learned about FASD from human structural and functional studies as well as from animal models, which have provided a greater understanding of the mechanisms underlying FASD. Using animal models of FASD, it has been recently discovered that ethanol induces neuroimmune activation in the developing brain. The resulting microglial activation, production of proinflammatory molecules, and alteration in expression of developmental genes are postulated to alter neuron survival and function and lead to long-term neuropathological and cognitive defects. It has also been discovered that microglial loss occurs, reducing microglia's ability to protect neurons and contribute to neuronal development. This is important, because emerging evidence demonstrates that microglial depletion during brain development leads to long-term neuropathological and cognitive defects. Interestingly, the behavioral consequences of microglial depletion and neuroimmune activation in the fetal brain are particularly relevant to FASD. This chapter reviews the neuropathological and behavioral abnormalities of FASD and delineates correlates in animal models. This serves as a foundation to discuss the role of the neuroimmune system in normal brain development, the consequences of microglial depletion and neuroinflammation, the evidence of ethanol induction of neuroinflammatory processes in animal models of FASD, and the development of anti-inflammatory therapies as a new strategy for prevention or treatment of FASD. Together, this knowledge provides a framework for discussion and further investigation of the role of neuroimmune processes in FASD.
Collapse
Affiliation(s)
- Paul D Drew
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Cynthia J M Kane
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
| |
Collapse
|
42
|
Abstract
Traumatic injury or disease of the spinal cord and brain elicits multiple cellular and biochemical reactions that together cause or are associated with neuropathology. Specifically, injury or disease elicits acute infiltration and activation of immune cells, death of neurons and glia, mitochondrial dysfunction, and the secretion of substrates that inhibit axon regeneration. In some diseases, inflammation is chronic or non-resolving. Ligands that target PPARs (peroxisome proliferator-activated receptors), a group of ligand-activated transcription factors, are promising therapeutics for neurologic disease and CNS injury because their activation affects many, if not all, of these interrelated pathologic mechanisms. PPAR activation can simultaneously weaken or reprogram the immune response, stimulate metabolic and mitochondrial function, promote axon growth and induce progenitor cells to differentiate into myelinating oligodendrocytes. PPAR activation has beneficial effects in many pre-clinical models of neurodegenerative diseases and CNS injury; however, the mechanisms through which PPARs exert these effects have yet to be fully elucidated. In this review we discuss current literature supporting the role of PPAR activation as a therapeutic target for treating traumatic injury and degenerative diseases of the CNS.
Collapse
|
43
|
Freilich RW, Woodbury ME, Ikezu T. Integrated expression profiles of mRNA and miRNA in polarized primary murine microglia. PLoS One 2013; 8:e79416. [PMID: 24244499 PMCID: PMC3823621 DOI: 10.1371/journal.pone.0079416] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 09/23/2013] [Indexed: 12/21/2022] Open
Abstract
Neuroinflammation contributes to many neurologic disorders including Alzheimer’s disease, multiple sclerosis, and stroke. Microglia is brain resident myeloid cells and have emerged as a key driver of the neuroinflammatory responses. MicroRNAs (miRNAs) provide a novel layer of gene regulation and play a critical role in regulating the inflammatory response of peripheral macrophages. However, little is known about the miRNA in inflammatory activation of microglia. To elucidate the role that miRNAs have on microglial phenotypes under classical (M1) or alternative (M2) activation under lipopolysaccharide (‘M1’-skewing) and interleukin-4 (‘M2a’-skewing) stimulation conditions, we performed microarray expression profiling and bioinformatics analysis of both mRNA and miRNA using primary cultured murine microglia. miR-689, miR-124, and miR-155 were the most strongly associated miRNAs predicted to mediate pro-inflammatory pathways and M1-like activation phenotype. miR-155, the most strongly up-regulated miRNA, regulates the signal transducer and activator of transcription 3 signaling pathway enabling the late phase response to M1-skewing stimulation. Reduced expression in miR-689 and miR-124 are associated with dis-inhibition of many canonical inflammatory pathways. miR-124, miR-711, miR-145 are the strongly associated miRNAs predicted to mediate anti-inflammatory pathways and M2-like activation phenotype. Reductions in miR-711 and miR-124 may regulate inflammatory signaling pathways and peroxisome proliferator-activated receptor-gamma pathway. miR-145 potentially regulate peripheral monocyte/macrophage differentiation and faciliate the M2-skewing phenotype. Overall, through combined miRNA and mRNA expression profiling and bioinformatics analysis we have identified six miRNAs and their putative roles in M1 and M2-skewing of microglial activation through different signaling pathways.
Collapse
Affiliation(s)
- Robert W. Freilich
- Laboratory of Molecular NeuroTherapeutics, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Maya E. Woodbury
- Laboratory of Molecular NeuroTherapeutics, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Neuroscience, Boston University, Boston, Massachusetts, United States of America
| | - Tsuneya Ikezu
- Laboratory of Molecular NeuroTherapeutics, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Neurology and Alzheimer’s Disease Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
44
|
Promoting return of function in multiple sclerosis: An integrated approach. Mult Scler Relat Disord 2013; 2:S2211-0348(13)00044-8. [PMID: 24363985 DOI: 10.1016/j.msard.2013.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis is a disease characterized by inflammatory demyelination, axonal degeneration and progressive brain atrophy. Most of the currently available disease modifying agents proved to be very effective in managing the relapse rate, however progressive neuronal damage continues to occur and leads to progressive accumulation of irreversible disability. For this reason, any therapeutic strategy aimed at restoration of function must take into account not only immunomodulation, but also axonal protection and new myelin formation. We further highlight the importance of an holistic approach, which considers the variability of therapeutic responsiveness as the result of the interplay between genetic differences and the epigenome, which is in turn affected by gender, age and differences in life style including diet, exercise, smoking and social interaction.
Collapse
|
45
|
Szalardy L, Zadori D, Tanczos E, Simu M, Bencsik K, Vecsei L, Klivenyi P. Elevated levels of PPAR-gamma in the cerebrospinal fluid of patients with multiple sclerosis. Neurosci Lett 2013; 554:131-4. [PMID: 24021801 DOI: 10.1016/j.neulet.2013.08.069] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/21/2013] [Accepted: 08/28/2013] [Indexed: 11/19/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ), a ligand-activated transcriptional factor involved in the regulation of glucose and lipid metabolism, has gained interest as a potential therapeutic target in multiple sclerosis (MS) due to its potent immunoregulatory properties and the therapeutic efficacy of its ligands in experimental autoimmune encephalitis (EAE). Elevated expression of PPARγ has been observed in the spinal cord of EAE mice and in an in vitro model of antigen-induced demyelination; however, no reports have yet been available on the PPARγ status in the central nervous system of human individuals with MS. Aiming to identify a possible alteration, the present study assessed the levels of PPARγ protein in the cerebrospinal fluid (CSF) of MS patients via ELISA technique. We report a pronounced elevation in the CSF levels of PPARγ in MS patients (n=35) compared to non-inflammatory controls (n=22). This elevation was independent of blood-CSF barrier integrity, but correlated with CSF white blood cell count and IgG index, associating the observed elevation with neuroinflammation. Controlling for potential confounders, the CSF levels of PPARγ further displayed a moderate but significant association with clinical severity. Corroborating with prior experimental findings, these results may contribute to our understanding about the role of PPARγ in MS, and may implicate this protein as a potential CSF biomarker of the disease.
Collapse
Affiliation(s)
- Levente Szalardy
- Department of Neurology, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | | | | | | | | | | | | |
Collapse
|
46
|
PPARγ Agonists in Adaptive Immunity: What Do Immune Disorders and Their Models Have to Tell Us? PPAR Res 2013; 2013:519724. [PMID: 23983678 PMCID: PMC3747405 DOI: 10.1155/2013/519724] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/17/2013] [Accepted: 06/27/2013] [Indexed: 01/25/2023] Open
Abstract
Adaptive immunity has evolved as a very powerful and highly specialized tool of host defense. Its classical protagonists are lymphocytes of the T- and B-cell lineage. Cytokines and chemokines play a key role as effector mechanisms of the adaptive immunity. Some autoimmune and inflammatory diseases are caused by disturbance of the adaptive immune system. Recent advances in understanding the pathogenesis of autoimmune diseases have led to research on new molecular and therapeutic targets. PPARγ are members of the nuclear receptor superfamily and are transcription factors involved in lipid metabolism as well as innate and adaptive immunity. PPARγ is activated by synthetic and endogenous ligands. Previous studies have shown that PPAR agonists regulate T-cell survival, activation and T helper cell differentiation into effector subsets: Th1, Th2, Th17, and Tregs. PPARγ has also been associated with B cells. The present review addresses these issues by placing PPARγ agonists in the context of adaptive immune responses and the relation of the activation of these receptors with the expression of cytokines involved in adaptive immunity.
Collapse
|
47
|
Hemdan NYA, Birkenmeier G, Wichmann G. Key molecules in the differentiation and commitment program of T helper 17 (Th17) cells up-to-date. Immunol Lett 2012; 148:97-109. [PMID: 23036716 DOI: 10.1016/j.imlet.2012.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 09/19/2012] [Accepted: 09/21/2012] [Indexed: 01/02/2023]
Abstract
The mechanisms underlying autoimmunity and cancer remain elusive. However, perpendicular evidence has been evolved in the past decade that T helper (Th)17 cells and their related molecules are implicated in initiation and induction of various disease settings including both diseases. Meanwhile, extensive research on Th17 cells elucidated various molecules including cytokines and transcription factors as well as signaling pathways involved in the differentiation, maturation, survival and ultimate commitment of Th17 cells. In the current review, we revise the mechanistic underpinnings delivered by recent research on these molecules in the Th17 differentiation/commitment concert. We emphasize on those molecules proposed as targets for attaining potential therapies of various autoimmune disorders and cancer, aiming both at dampening the dark-side of Th17 repertoire and simultaneously potentiating its benefits in the roster of the antimicrobial response.
Collapse
Affiliation(s)
- Nasr Y A Hemdan
- ENT-Research Lab, Department of Otolaryngology, Head and Neck Surgery, Faculty of Medicine, University of Leipzig, Liebig Str. 21, 04103 Leipzig, Germany.
| | | | | |
Collapse
|
48
|
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease that is considered by many people to have an autoimmune aetiology. In recent years, new data emerging from histopathology, imaging and other studies have expanded our understanding of the disease and may change the way in which it is treated. Conceptual shifts have included: first, an appreciation of the extent to which the neuron and its axon are affected in MS, and second, elucidation of how the neurobiology of axon-glial and, particularly, axon-myelin interaction may influence disease progression. In this article, we review advances in both areas, focusing on the molecular mechanisms underlying axonal loss in acute inflammation and in chronic demyelination, and discussing how the restoration of myelin sheaths via the regenerative process of remyelination might prevent axon degeneration. An understanding of these processes could lead to better strategies for the prevention and treatment of axonal loss, which will ultimately benefit patients with MS.
Collapse
|
49
|
Modulating Microglia Activity with PPAR-γ Agonists: A Promising Therapy for Parkinson’s Disease? Neurotox Res 2012; 23:112-23. [DOI: 10.1007/s12640-012-9342-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 06/08/2012] [Accepted: 07/18/2012] [Indexed: 12/11/2022]
|
50
|
David S, Greenhalgh AD, López-Vales R. Role of phospholipase A2s and lipid mediators in secondary damage after spinal cord injury. Cell Tissue Res 2012; 349:249-67. [PMID: 22581384 DOI: 10.1007/s00441-012-1430-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 04/05/2012] [Indexed: 11/26/2022]
Abstract
Inflammation is considered to be an important contributor to secondary damage after spinal cord injury (SCI). This secondary damage leads to further exacerbation of tissue loss and functional impairments. The immune responses that are triggered by injury are complex and are mediated by a variety of factors that have both detrimental and beneficial effects. In this review, we focus on the diverse effects of the phospholipase A(2) (PLA(2)) superfamily and the downstream pathways that generate a large number of bioactive lipid mediators, some of which have pro-inflammatory and demyelinating effects, whereas others have anti-inflammatory and pro-resolution properties. For each of these lipid mediators, we provide an overview followed by a discussion of their expression and role in SCI. Where appropriate, we have compared the latter with their role in other neurological conditions. The PLA(2) pathway provides a number of targets for therapeutic intervention for the treatment of SCI and other neurological conditions.
Collapse
Affiliation(s)
- Samuel David
- Center for Research in Neuroscience, The Research Institute of the McGill University Health Center, Livingston Hall, Room L7-210, 1650 Cedar Ave., Montreal, Quebec, Canada, H3G 1A4,
| | | | | |
Collapse
|