1
|
Baduel P, Sammarco I, Barrett R, Coronado‐Zamora M, Crespel A, Díez‐Rodríguez B, Fox J, Galanti D, González J, Jueterbock A, Wootton E, Harney E. The evolutionary consequences of interactions between the epigenome, the genome and the environment. Evol Appl 2024; 17:e13730. [PMID: 39050763 PMCID: PMC11266121 DOI: 10.1111/eva.13730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/30/2024] [Accepted: 05/22/2024] [Indexed: 07/27/2024] Open
Abstract
The epigenome is the suite of interacting chemical marks and molecules that helps to shape patterns of development, phenotypic plasticity and gene regulation, in part due to its responsiveness to environmental stimuli. There is increasing interest in understanding the functional and evolutionary importance of this sensitivity under ecologically realistic conditions. Observations that epigenetic variation abounds in natural populations have prompted speculation that it may facilitate evolutionary responses to rapid environmental perturbations, such as those occurring under climate change. A frequent point of contention is whether epigenetic variants reflect genetic variation or are independent of it. The genome and epigenome often appear tightly linked and interdependent. While many epigenetic changes are genetically determined, the converse is also true, with DNA sequence changes influenced by the presence of epigenetic marks. Understanding how the epigenome, genome and environment interact with one another is therefore an essential step in explaining the broader evolutionary consequences of epigenomic variation. Drawing on results from experimental and comparative studies carried out in diverse plant and animal species, we synthesize our current understanding of how these factors interact to shape phenotypic variation in natural populations, with a focus on identifying similarities and differences between taxonomic groups. We describe the main components of the epigenome and how they vary within and between taxa. We review how variation in the epigenome interacts with genetic features and environmental determinants, with a focus on the role of transposable elements (TEs) in integrating the epigenome, genome and environment. And we look at recent studies investigating the functional and evolutionary consequences of these interactions. Although epigenetic differentiation in nature is likely often a result of drift or selection on stochastic epimutations, there is growing evidence that a significant fraction of it can be stably inherited and could therefore contribute to evolution independently of genetic change.
Collapse
Affiliation(s)
- Pierre Baduel
- Institut de Biologie de l'Ecole Normale SupérieurePSL University, CNRSParisFrance
| | - Iris Sammarco
- Institute of Botany of the Czech Academy of SciencesPrůhoniceCzechia
| | - Rowan Barrett
- Redpath Museum and Department of BiologyMcGill UniversityMontrealCanada
| | | | | | | | - Janay Fox
- Redpath Museum and Department of BiologyMcGill UniversityMontrealCanada
| | - Dario Galanti
- Institute of Evolution and Ecology (EvE)University of TuebingenTübingenGermany
| | | | - Alexander Jueterbock
- Algal and Microbial Biotechnology Division, Faculty of Biosciences and AquacultureNord UniversityBodøNorway
| | - Eric Wootton
- Redpath Museum and Department of BiologyMcGill UniversityMontrealCanada
| | - Ewan Harney
- Institute of Evolutionary BiologyCSIC, UPFBarcelonaSpain
- School of BiosciencesUniversity of SheffieldSheffieldUK
| |
Collapse
|
2
|
He Z, Zhang J, Chen Y, Ai C, Gong X, Xu D, Wang H. Transgenerational inheritance of adrenal steroidogenesis inhibition induced by prenatal dexamethasone exposure and its intrauterine mechanism. Cell Commun Signal 2023; 21:294. [PMID: 37853416 PMCID: PMC10585925 DOI: 10.1186/s12964-023-01303-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/30/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Adrenal gland is the synthesis and secretion organ of glucocorticoid, which is crucial to fetal development and postnatal fate. Recently, we found that prenatal dexamethasone exposure (PDE) could cause adrenal dysfunction in offspring rats, but its multigenerational genetic effects and related mechanisms have not been reported. METHODS The PDE rat model was established, and female filial generation 1 (F1) rats mate with wild males to produce the F2, the same way for the F3. Three generation rats were sacrificed for the related detection. SW-13 cells were used to clarify the epigenetic molecular mechanism. RESULTS This study confirmed that PDE could activate fetal adrenal glucocorticoid receptor (GR). The activated GR, on the one hand, up-regulated Let-7b (in human cells) to inhibit steroidogenic acute regulatory protein (StAR) expression directly; on the other hand, down-regulated CCCTC binding factor (CTCF) and up-regulated DNA methyltransferase 3a/3b (Dnmt3a/3b), resulting in H19 hypermethylation and low expression. The decreased interaction of H19 and let-7 can further inhibit adrenal steroidogenesis. Additionally, oocytes transmitted the expression change of H19/let-7c axis to the next generation rats. Due to its genetic stability, F2 generation oocytes indirectly exposed to dexamethasone also inhibited H19 expression, which could be inherited to the F3 generation. CONCLUSIONS This cascade effect of CTCF/H19/Let-7c ultimately resulted in the transgenerational inheritance of adrenal steroidogenesis inhibition of PDE offspring. This study deepens the understanding of the intrauterine origin of adrenal developmental toxicity, and it will provide evidence for the systematic analysis of the transgenerational inheritance effect of acquired traits induced by PDE. Video Abstract.
Collapse
Affiliation(s)
- Zheng He
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, China
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jinzhi Zhang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, China
| | - Yawen Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, China
| | - Can Ai
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, China
| | - Xiaohan Gong
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, China
| | - Dan Xu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan, 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan, 430071, China.
| |
Collapse
|
3
|
Zeid D, Toussaint AB, Dressler CC, Schumacher SP, Do C, Desalvo H, Selamawi D, Bongiovanni AR, Mayberry HL, Carr GV, Wimmer ME. Paternal morphine exposure in rats reduces social play in adolescent male progeny without affecting drug-taking behavior in juvenile males or female offspring. Mol Cell Neurosci 2023; 126:103877. [PMID: 37385516 PMCID: PMC10528482 DOI: 10.1016/j.mcn.2023.103877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/02/2023] [Accepted: 06/24/2023] [Indexed: 07/01/2023] Open
Abstract
The ongoing opioid addiction crisis necessitates the identification of novel risk factors to improve prevention and treatment of opioid use disorder. Parental opioid exposure has recently emerged as a potential regulator of offspring vulnerability to opioid misuse, in addition to heritable genetic liability. An understudied aspect of this "missing heritability" is the developmental presentation of these cross-generational phenotypes. This is an especially relevant question in the context of inherited addiction-related phenotypes, given the prominent role of developmental processes in the etiology of psychiatric disorders. Paternal morphine self-administration was previously shown to alter the sensitivity to the reinforcing and antinociceptive properties of opioids in the next generation. Here, phenotyping was expanded to include the adolescent period, with a focus on endophenotypes related to opioid use disorders and pain. Paternal morphine exposure did not alter heroin or cocaine self-administration in male and female juvenile progeny. Further, baseline sensory reflexes related to pain were unaltered in morphine-sired adolescent rats of either sex. However, morphine-sired adolescent males exhibited a reduction in social play behavior. Our findings suggest that, in morphine-sired male offspring, paternal opioid exposure does not affect opioid intake during adolescence, suggesting that this phenotype does not emerge until later in life. Altered social behaviors in male morphine-sired adolescents indicate that the changes in drug-taking behavior in adults sired by morphine-exposed sires may be due to more complex factors not yet fully assessed.
Collapse
Affiliation(s)
- Dana Zeid
- Department of Psychology and Neuroscience, College of Liberal Arts, Temple University, United States of America
| | - Andre B Toussaint
- Zuckerman Mind Brain Behavior Institute, Columbia University, United States of America
| | - Carmen C Dressler
- Department of Psychology and Neuroscience, College of Liberal Arts, Temple University, United States of America
| | - Samuel P Schumacher
- Department of Psychology and Neuroscience, College of Liberal Arts, Temple University, United States of America
| | - Chau Do
- Department of Psychology and Neuroscience, College of Liberal Arts, Temple University, United States of America
| | - Heather Desalvo
- Department of Psychology and Neuroscience, College of Liberal Arts, Temple University, United States of America
| | - Danait Selamawi
- Department of Psychology and Neuroscience, College of Liberal Arts, Temple University, United States of America
| | - Angela R Bongiovanni
- Department of Psychology and Neuroscience, College of Liberal Arts, Temple University, United States of America
| | - Hannah L Mayberry
- Department of Psychology and Neuroscience, College of Liberal Arts, Temple University, United States of America
| | - Gregory V Carr
- Lieber Institute of Brain Development, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, United States of America
| | - Mathieu E Wimmer
- Department of Psychology and Neuroscience, College of Liberal Arts, Temple University, United States of America.
| |
Collapse
|
4
|
Kyriazis M, Swas L, Orlova T. The Impact of Hormesis, Neuronal Stress Response, and Reproduction, upon Clinical Aging: A Narrative Review. J Clin Med 2023; 12:5433. [PMID: 37629475 PMCID: PMC10455615 DOI: 10.3390/jcm12165433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/05/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
INTRODUCTION The primary objective of researchers in the biology of aging is to gain a comprehensive understanding of the aging process while developing practical solutions that can enhance the quality of life for older individuals. This involves a continuous effort to bridge the gap between fundamental biological research and its real-world applications. PURPOSE In this narrative review, we attempt to link research findings concerning the hormetic relationship between neurons and germ cells, and translate these findings into clinically relevant concepts. METHODS We conducted a literature search using PubMed, Embase, PLOS, Digital Commons Network, Google Scholar and Cochrane Library from 2000 to 2023, analyzing studies dealing with the relationship between hormetic, cognitive, and reproductive aspects of human aging. RESULTS The process of hormesis serves as a bridge between the biology of neuron-germ cell interactions on one hand, and the clinical relevance of these interactions on the other. Details concerning these processes are discussed here, emphasizing new research which strengthens the overall concept. CONCLUSIONS This review presents a scientifically and clinically relevant argument, claiming that maintaining a cognitively active lifestyle may decrease age-related degeneration, and improve overall health in aging. This is a totally novel approach which reflects current developments in several relevant aspects of our biology, technology, and society.
Collapse
|
5
|
Alipour V, Shojaei A, Rezaei M, Mirnajafi-Zadeh J, Azizi H. Intergenerational consequences of adolescent morphine exposure on learning and memory. Neurosci Lett 2023; 808:137303. [PMID: 37196975 DOI: 10.1016/j.neulet.2023.137303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/01/2023] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
Drug addiction is a worldwide social and medical disorder. More than 50 percent of drug abusers start their substance abuse in adolescence between the ages of 15-19. Adolescence is a sensitive and crucial period for the development and maturity of the brain. Chronic exposure to morphine, particularly during this period, lead to long-lasting effects, including effects that extend to the next generation. The current study examined the intergenerational effects of paternal morphine exposure during adolescence on learning and memory. In this study, male Wistar rats were exposed to increasing doses of morphine (5-25 mg/kg, s.c.) or saline for 10 days at postnatal days (PND) 30-39 during adolescence. Following a 20-day drug-free period, the treated male rats were mated with naïve females. Adult male offspring (PND 60-80) were tested for working memory, novel object recognition memory, spatial memory, and passive avoidance memory using the Y-Maze, novel object recognition, Morris water maze, and shuttle box tests, respectively. The spontaneous alternation (as measured in the Y-Maze test) was significantly less in the morphine-sired group compared to the saline-sired one. The offspring showed significantly less discrimination index in the novel object recognition test when compared to the control group. Morphine-sired offspring tended to spend significantly more time in the target quadrant and less escape latency in the Morris water maze on probe day when compared to the saline-sired ones. The offspring showed significantly less step-through latency to enter the dark compartment compared to the control group when measured in the shuttle box test. Paternal exposure to morphine during adolescence impaired working, novel object recognition, and passive avoidance memory in male offspring. Spatial memory changed in the morphine-sired group compared to the saline-sired one.
Collapse
Affiliation(s)
- Vida Alipour
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Shojaei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Brain Sciences and Cognition, Tarbiat Modares University, Tehran, Iran
| | - Mahmoud Rezaei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Brain Sciences and Cognition, Tarbiat Modares University, Tehran, Iran
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Brain Sciences and Cognition, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
6
|
Fallet M, Blanc M, Di Criscio M, Antczak P, Engwall M, Guerrero Bosagna C, Rüegg J, Keiter SH. Present and future challenges for the investigation of transgenerational epigenetic inheritance. ENVIRONMENT INTERNATIONAL 2023; 172:107776. [PMID: 36731188 DOI: 10.1016/j.envint.2023.107776] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Epigenetic pathways are essential in different biological processes and in phenotype-environment interactions in response to different stressors and they can induce phenotypic plasticity. They encompass several processes that are mitotically and, in some cases, meiotically heritable, so they can be transferred to subsequent generations via the germline. Transgenerational Epigenetic Inheritance (TEI) describes the phenomenon that phenotypic traits, such as changes in fertility, metabolic function, or behavior, induced by environmental factors (e.g., parental care, pathogens, pollutants, climate change), can be transferred to offspring generations via epigenetic mechanisms. Investigations on TEI contribute to deciphering the role of epigenetic mechanisms in adaptation, adversity, and evolution. However, molecular mechanisms underlying the transmission of epigenetic changes between generations, and the downstream chain of events leading to persistent phenotypic changes, remain unclear. Therefore, inter-, (transmission of information between parental and offspring generation via direct exposure) and transgenerational (transmission of information through several generations with disappearance of the triggering factor) consequences of epigenetic modifications remain major issues in the field of modern biology. In this article, we review and describe the major gaps and issues still encountered in the TEI field: the general challenges faced in epigenetic research; deciphering the key epigenetic mechanisms in inheritance processes; identifying the relevant drivers for TEI and implement a collaborative and multi-disciplinary approach to study TEI. Finally, we provide suggestions on how to overcome these challenges and ultimately be able to identify the specific contribution of epigenetics in transgenerational inheritance and use the correct tools for environmental science investigation and biomarkers identification.
Collapse
Affiliation(s)
- Manon Fallet
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, 70182 Örebro, Sweden; Department of Biochemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd, Oxford OX1 3QU, United Kingdom.
| | - Mélanie Blanc
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, INRAE, Palavas, France
| | - Michela Di Criscio
- Department of Organismal Biology, Uppsala University, Norbyv. 18A, 75236 Uppsala, Sweden
| | - Philipp Antczak
- University of Cologne, Faculty of Medicine and Cologne University Hospital, Center for Molecular Medicine Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, University of Cologne, Cologne, Germany
| | - Magnus Engwall
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, 70182 Örebro, Sweden
| | | | - Joëlle Rüegg
- Department of Organismal Biology, Uppsala University, Norbyv. 18A, 75236 Uppsala, Sweden
| | - Steffen H Keiter
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, 70182 Örebro, Sweden
| |
Collapse
|
7
|
Food abundance in men before puberty predicts a range of cancers in grandsons. Nat Commun 2022; 13:7507. [PMID: 36473854 PMCID: PMC9726939 DOI: 10.1038/s41467-022-35217-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
Nutritional conditions early in human life may influence phenotypic characteristics in later generations. A male-line transgenerational pathway, triggered by the early environment, has been postulated with support from animal and a small number of human studies. Here we analyse individuals born in Uppsala Sweden 1915-29 with linked data from their children and parents, which enables us to explore the hypothesis that pre-pubertal food abundance may trigger a transgenerational effect on cancer events. We used cancer registry and cause-of-death data to analyse 3422 cancer events in grandchildren (G2) by grandparental (G0) food access. We show that variation in harvests and food access in G0 predicts cancer occurrence in G2 in a specific way: abundance among paternal grandfathers, but not any other grandparent, predicts cancer occurrence in grandsons but not in granddaughters. This male-line response is observed for several groups of cancers, suggesting a general susceptibility, possibly acquired in early embryonic development. We observed no transgenerational influence in the middle generation.
Collapse
|
8
|
Sanadgol N, König L, Drino A, Jovic M, Schaefer M. Experimental paradigms revisited: oxidative stress-induced tRNA fragmentation does not correlate with stress granule formation but is associated with delayed cell death. Nucleic Acids Res 2022; 50:6919-6937. [PMID: 35699207 PMCID: PMC9262602 DOI: 10.1093/nar/gkac495] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 05/13/2022] [Accepted: 05/25/2022] [Indexed: 12/24/2022] Open
Abstract
tRNA fragmentation is an evolutionarily conserved molecular phenomenon. tRNA-derived small RNAs (tsRNAs) have been associated with many cellular processes, including improved survival during stress conditions. Here, we have revisited accepted experimental paradigms for modeling oxidative stress resulting in tRNA fragmentation. Various cell culture models were exposed to oxidative stressors followed by determining cell viability, the production of specific tsRNAs and stress granule formation. These experiments revealed that exposure to stress parameters commonly used to induce tRNA fragmentation negatively affected cell viability after stress removal. Quantification of specific tsRNA species in cells responding to experimental stress and in cells that were transfected with synthetic tsRNAs indicated that neither physiological nor non-physiological copy numbers of tsRNAs induced the formation of stress granules. Furthermore, the increased presence of tsRNA species in culture medium collected from stressed cells indicated that cells suffering from experimental stress exposure gave rise to stable extracellular tsRNAs. These findings suggest a need to modify current experimental stress paradigms in order to allow separating the function of tRNA fragmentation during the acute stress response from tRNA fragmentation as a consequence of ongoing cell death, which will have major implications for the current perception of the biological function of stress-induced tsRNAs.
Collapse
Affiliation(s)
- Nasim Sanadgol
- Medical University of Vienna, Center for Anatomy and Cell Biology, Division of Cell and Developmental Biology, Schwarzspanierstraße 17, A-1090 Vienna, Austria
| | - Lisa König
- Medical University of Vienna, Center for Anatomy and Cell Biology, Division of Cell and Developmental Biology, Schwarzspanierstraße 17, A-1090 Vienna, Austria
| | - Aleksej Drino
- Medical University of Vienna, Center for Anatomy and Cell Biology, Division of Cell and Developmental Biology, Schwarzspanierstraße 17, A-1090 Vienna, Austria
| | - Michaela Jovic
- Medical University of Vienna, Center for Anatomy and Cell Biology, Division of Cell and Developmental Biology, Schwarzspanierstraße 17, A-1090 Vienna, Austria
| | - Matthias R Schaefer
- Medical University of Vienna, Center for Anatomy and Cell Biology, Division of Cell and Developmental Biology, Schwarzspanierstraße 17, A-1090 Vienna, Austria
| |
Collapse
|
9
|
Li X, Wang M, Liu S, Chen X, Qiao Y, Yang X, Yao J, Wu S. Paternal transgenerational nutritional epigenetic effect: A new insight into nutritional manipulation to reduce the use of antibiotics in animal feeding. ANIMAL NUTRITION 2022; 11:142-151. [PMID: 36204282 PMCID: PMC9527621 DOI: 10.1016/j.aninu.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 11/15/2022]
Abstract
The use of antibiotics in animal feeding has been banned in many countries because of increasing concerns about the development of bacterial resistance to antibiotics and potential issues on food safety. Searching for antibiotic substitutes is essential. Applying transgenerational epigenetic technology to animal production could be an alternative. Some environmental changes can be transferred to memory-like responses in the offspring through epigenetic mechanisms without changing the DNA sequence. In this paper, we reviewed those nutrients and non-nutritional additives that have transgenerational epigenetic effects, including some amino acids, vitamins, and polysaccharides. The paternal transgenerational nutritional epigenetic regulation was particularly focused on mechanism of the substantial contribution of male stud animals to the animal industries. We illustrated the effects of paternal transgenerational epigenetics on the metabolism and immunity in farming animals and proposed strategies to modulate male breeding livestock or poultry.
Collapse
Affiliation(s)
- Xinyi Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Medicine, Karolinska Institutet, Solna, Stockholm 17165, Sweden
| | - Mengya Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shimin Liu
- Institute of Agriculture, University of Western Australia, Crawley, WA 6009, Australia
| | - Xiaodong Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yu Qiao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Animal Engineering, Yangling Vocational and Technical College, Yangling, Shaanxi 712100, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Corresponding authors.
| | - Shengru Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Corresponding authors.
| |
Collapse
|
10
|
Vogt G. Paradigm shifts in animal epigenetics: Research on non-model species leads to new insights into dependencies, functions and inheritance of DNA methylation. Bioessays 2022; 44:e2200040. [PMID: 35618444 DOI: 10.1002/bies.202200040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/06/2022]
Abstract
Recent investigations with non-model species and whole-genome approaches have challenged several paradigms in animal epigenetics. They revealed that epigenetic variation in populations is not the mere consequence of genetic variation, but is a semi-independent or independent source of phenotypic variation, depending on mode of reproduction. DNA methylation is not positively correlated with genome size and phylogenetic position as earlier believed, but has evolved differently between and within higher taxa. Epigenetic marks are usually not completely erased in the zygote and germ cells as generalized from mouse, but often persist and can be transgenerationally inherited, making them evolutionarily relevant. Gene body methylation and promoter methylation are similar in vertebrates and invertebrates with well methylated genomes but transposon silencing through methylation is variable. The new data also suggest that animals use epigenetic mechanisms to cope with rapid environmental changes and to adapt to new environments. The main benefiters are asexual populations, invaders, sessile taxa and long-lived species.
Collapse
Affiliation(s)
- Günter Vogt
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
11
|
Zhao X, Li B, Xiong Y, Xia Z, Hu S, Sun Z, Wang H, Ao Y. Prenatal caffeine exposure induced renal developmental toxicity and transgenerational effect in rat offspring. Food Chem Toxicol 2022; 165:113082. [PMID: 35537649 DOI: 10.1016/j.fct.2022.113082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/24/2022] [Accepted: 04/23/2022] [Indexed: 10/18/2022]
Abstract
Epidemiological studies revealed that prenatal caffeine exposure (PCE) is associated with adverse gestational outcomes and susceptibility to chronic diseases in offspring, yet the effects of PCE on glomerulosclerosis susceptibility in adult female offspring and its intergenerational transmission remain to be further investigated. Here, we found that PCE caused fetal kidney dysplasia and glomerulosclerosis of the female offspring. Besides, the kidney of F1 offspring in PCE group exhibited the "low expressional programming of AT2R" and "GC-IGF1 programming" alteration. Intergenerational genetic studies revealed that the renal defect and GC-IGF1 programming alteration was inherited to F2 adult female offspring derived from the female germ line, but Low expression of AT2R did not extend to the F2 female offspring. Taken together, PCE caused renal dysplasia and adult glomerulosclerosis in the F1 female offspring, which might be mediated by renal AT2R low expressional programming and GC-IGF1 axis alteration. Furthermore, PCE induced transgenerational toxicity on kidney, and GC-IGF1 programming alteration might be the potential molecular mechanism. This study provided experimental evidence for the mechanism study of the intergenerational inheritance of kidney developmental toxicity caused by PCE.
Collapse
Affiliation(s)
- Xiaoqi Zhao
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Bin Li
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China; Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Ying Xiong
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Zhiping Xia
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Shuangshuang Hu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Zhaoxia Sun
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan, 430071, China
| | - Ying Ao
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan, 430071, China.
| |
Collapse
|
12
|
Sciorio R, Esteves SC. Contemporary Use of ICSI and Epigenetic Risks to Future Generations. J Clin Med 2022; 11:jcm11082135. [PMID: 35456226 PMCID: PMC9031244 DOI: 10.3390/jcm11082135] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 12/19/2022] Open
Abstract
Since the birth of Louise Brown in 1978 via IVF, reproductive specialists have acquired enormous knowledge and refined several procedures, which are nowadays applied in assisted reproductive technology (ART). One of the most critical steps in this practice is the fertilization process. In the early days of IVF, a remarkable concern was the unpleasant outcomes of failed fertilization, overtaken by introducing intracytoplasmic sperm injection (ICSI), delineating a real breakthrough in modern ART. ICSI became standard practice and was soon used as the most common method to fertilize oocytes. It has been used for severe male factor infertility and non-male factors, such as unexplained infertility or advanced maternal age, without robust scientific evidence. However, applying ICSI blindly is not free of potential detrimental consequences since novel studies report possible health consequences to offspring. DNA methylation and epigenetic alterations in sperm cells of infertile men might help explain some of the adverse effects reported in ICSI studies on reproductive health in future generations. Collected data concerning the health of ICSI children over the past thirty years seems to support the notion that there might be an increased risk of epigenetic disorders, congenital malformations, chromosomal alterations, and subfertility in babies born following ICSI compared to naturally conceived children. However, it is still to be elucidated to what level these data are associated with the cause of infertility or the ICSI technique. This review provides an overview of epigenetic mechanisms and possible imprinting alterations following the use of ART, in particular ICSI. It also highlights the sperm contribution to embryo epigenetic regulation and the risks of in vitro culture conditions on epigenetic dysregulation. Lastly, it summarizes the literature concerning the possible epigenetic disorders in children born after ART.
Collapse
Affiliation(s)
- Romualdo Sciorio
- Edinburgh Assisted Conception Programme, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
- Correspondence:
| | - Sandro C. Esteves
- Androfert, Andrology and Human Reproduction Clinic, Campinas 13075-460, Brazil;
- Department of Surgery, Division of Urology, University of Campinas, Campinas 13083-970, Brazil
- Faculty of Health, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
13
|
D'avila LF, Dias VT, Trevizol F, Metz VG, Roversi K, Milanesi L, Maurer LH, Baranzelli J, Emanuelli T, Burger ME. INTERESTERIFIED FAT MATERNAL CONSUMPTION BEFORE CONCEPTION PROGRAMMS MEMORY AND LEARNING OF ADULTHOOD OFFSPRING: how big is this deleterious repercussion? Toxicol Lett 2022; 361:10-20. [PMID: 35301046 DOI: 10.1016/j.toxlet.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 11/25/2022]
Abstract
In recent years, interesterified fat (IF) has largely replaced trans fat in industrialized food. Studies of our research group showed that IF consumption may not be safe for central nervous system (CNS) functions. Our current aim was to evaluate IF maternal consumption before conception on cognitive performance of adult rat offspring. Female Wistar rats were fed with standard chow plus 20% soybean and fish oil mix (control group) or plus 20% IF from weaning until adulthood (before mating), when the diets were replaced by standard chow only. Following the gestation and pups' development, locomotion and memory performance followed by neurotrophin immunocontent and fatty acids (FA) profile in the hippocampus of the adulthood male offspring were quantified. Maternal IF consumption before conception decreased hippocampal palmitoleic acid incorporation, proBDNF and BDNF levels, decreasing both exploratory activity and memory performance in adult offspring. Considering that, the adult male offspring did not consume IF directly, further studies are needed to understand the molecular mechanisms and if the IF maternal preconception consumption could induce the epigenetic changes observed here. Our outcomes reinforce an immediate necessity to monitor and / or question the replacement of trans fat by IF with further studies involving CNS functions.
Collapse
Affiliation(s)
- Lívia Ferraz D'avila
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), RS, Brazil.
| | - Verônica Tironi Dias
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), RS, Brazil.
| | - Fabíola Trevizol
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), RS, Brazil.
| | - Vinícia Garzella Metz
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), RS, Brazil.
| | - Karine Roversi
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), RS, Brazil.
| | - Laura Milanesi
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), RS, Brazil.
| | - Luana Haselein Maurer
- Programa de Pós-graduação em Ciência e Tecnologia dos Alimentos, Universidade Federal de Santa Maria (UFSM), RS, Brazil.
| | - Júlia Baranzelli
- Programa de Pós-graduação em Ciência e Tecnologia dos Alimentos, Universidade Federal de Santa Maria (UFSM), RS, Brazil.
| | - Tatiana Emanuelli
- Programa de Pós-graduação em Ciência e Tecnologia dos Alimentos, Universidade Federal de Santa Maria (UFSM), RS, Brazil.
| | - Marilise Escobar Burger
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), RS, Brazil; Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria (UFSM), RS, Brazil.
| |
Collapse
|
14
|
Panera N, Mandato C, Crudele A, Bertrando S, Vajro P, Alisi A. Genetics, epigenetics and transgenerational transmission of obesity in children. Front Endocrinol (Lausanne) 2022; 13:1006008. [PMID: 36452324 PMCID: PMC9704419 DOI: 10.3389/fendo.2022.1006008] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Sedentary lifestyle and consumption of high-calorie foods have caused a relentless increase of overweight and obesity prevalence at all ages. Its presently epidemic proportion is disquieting due to the tight relationship of obesity with metabolic syndrome and several other comorbidities which do call for urgent workarounds. The usual ineffectiveness of present therapies and failure of prevention campaigns triggered overtime a number of research studies which have unveiled some relevant aspects of obesity genetic and epigenetic inheritable profiles. These findings are revealing extremely precious mainly to serve as a likely extra arrow to allow the clinician's bow to achieve still hitherto unmet preventive goals. Evidence now exists that maternal obesity/overnutrition during pregnancy and lactation convincingly appears associated with several disorders in the offspring independently of the transmission of a purely genetic predisposition. Even the pre-conception direct exposure of either father or mother gametes to environmental factors can reprogram the epigenetic architecture of cells. Such phenomena lie behind the transfer of the obesity susceptibility to future generations through a mechanism of epigenetic inheritance. Moreover, a growing number of studies suggests that several environmental factors such as maternal malnutrition, hypoxia, and exposure to excess hormones and endocrine disruptors during pregnancy and the early postnatal period may play critical roles in programming childhood adipose tissue and obesity. A deeper understanding of how inherited genetics and epigenetics may generate an obesogenic environment at pediatric age might strengthen our knowledge about pathogenetic mechanisms and improve the clinical management of patients. Therefore, in this narrative review, we attempt to provide a general overview of the contribution of heritable genetic and epigenetic patterns to the obesity susceptibility in children, placing a particular emphasis on the mother-child dyad.
Collapse
Affiliation(s)
- Nadia Panera
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Claudia Mandato
- Pediatrics Section, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Salermo, Italy
- *Correspondence: Anna Alisi, ; Claudia Mandato,
| | - Annalisa Crudele
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Sara Bertrando
- Pediatrics Clinic, San Giovanni di Dio e Ruggi d’Aragona University Hospital, Salerno, Italy
| | - Pietro Vajro
- Pediatrics Section, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Salermo, Italy
| | - Anna Alisi
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- *Correspondence: Anna Alisi, ; Claudia Mandato,
| |
Collapse
|
15
|
Anastasiadi D, Venney CJ, Bernatchez L, Wellenreuther M. Epigenetic inheritance and reproductive mode in plants and animals. Trends Ecol Evol 2021; 36:1124-1140. [PMID: 34489118 DOI: 10.1016/j.tree.2021.08.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022]
Abstract
Epigenetic inheritance is another piece of the puzzle of nongenetic inheritance, although the prevalence, sources, persistence, and phenotypic consequences of heritable epigenetic marks across taxa remain unclear. We systematically reviewed over 500 studies from the past 5 years to identify trends in the frequency of epigenetic inheritance due to differences in reproductive mode and germline development. Genetic, intrinsic (e.g., disease), and extrinsic (e.g., environmental) factors were identified as sources of epigenetic inheritance, with impacts on phenotype and adaptation depending on environmental predictability. Our review shows that multigenerational persistence of epigenomic patterns is common in both plants and animals, but also highlights many knowledge gaps that remain to be filled. We provide a framework to guide future studies towards understanding the generational persistence and eco-evolutionary significance of epigenomic patterns.
Collapse
Affiliation(s)
- Dafni Anastasiadi
- The New Zealand Institute for Plant and Food Research Ltd, Nelson Research Centre, 293 Akersten St, Nelson 7010, New Zealand
| | - Clare J Venney
- Institut de Biologie Intégrative des Systèmes (IBIS), Département de Biologie, Université Laval, 1030 Avenue de la Médecine, G1V 0A6, Québec, QC, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative des Systèmes (IBIS), Département de Biologie, Université Laval, 1030 Avenue de la Médecine, G1V 0A6, Québec, QC, Canada
| | - Maren Wellenreuther
- The New Zealand Institute for Plant and Food Research Ltd, Nelson Research Centre, 293 Akersten St, Nelson 7010, New Zealand; School of Biological Sciences, The University of Auckland, 3A Symonds St, Auckland 1010, New Zealand.
| |
Collapse
|
16
|
Ben Maamar M, Nilsson EE, Skinner MK. Epigenetic transgenerational inheritance, gametogenesis and germline development†. Biol Reprod 2021; 105:570-592. [PMID: 33929020 PMCID: PMC8444706 DOI: 10.1093/biolre/ioab085] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/12/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
One of the most important developing cell types in any biological system is the gamete (sperm and egg). The transmission of phenotypes and optimally adapted physiology to subsequent generations is in large part controlled by gametogenesis. In contrast to genetics, the environment actively regulates epigenetics to impact the physiology and phenotype of cellular and biological systems. The integration of epigenetics and genetics is critical for all developmental biology systems at the cellular and organism level. The current review is focused on the role of epigenetics during gametogenesis for both the spermatogenesis system in the male and oogenesis system in the female. The developmental stages from the initial primordial germ cell through gametogenesis to the mature sperm and egg are presented. How environmental factors can influence the epigenetics of gametogenesis to impact the epigenetic transgenerational inheritance of phenotypic and physiological change in subsequent generations is reviewed.
Collapse
Affiliation(s)
- Millissia Ben Maamar
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Eric E Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
17
|
Portera M, Mandrioli M. Who's afraid of epigenetics? Habits, instincts, and Charles Darwin's evolutionary theory. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2021; 43:20. [PMID: 33569656 PMCID: PMC7875938 DOI: 10.1007/s40656-021-00376-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
Our paper aims at bringing to the fore the crucial role that habits play in Charles Darwin's theory of evolution by means of natural selection. We have organized the paper in two steps: first, we analyse value and functions of the concept of habit in Darwin's early works, notably in his Notebooks, and compare these views to his mature understanding of the concept in the Origin of Species and later works; second, we discuss Darwin's ideas on habits in the light of today's theories of epigenetic inheritance, which describe the way in which the functioning and expression of genes is modified by the environment, and how these modifications are transmitted over generations. We argue that Darwin's lasting and multifaceted interest in the notion of habit, throughout his intellectual life, is both conceptually and methodologically relevant. From a conceptual point of view, intriguing similarities can be found between Darwin's (early) conception of habit and contemporary views on epigenetic inheritance. From a methodological point of view, we suggest that Darwin's plastic approach to habits, from his early writings up to the mature works, can provide today's evolutionary scientists with a viable methodological model to address the challenging task of extending and expanding evolutionary theory, with particular reference to the integration of epigenetic mechanisms into existing models of evolutionary change. Over his entire life Darwin has modified and reassessed his views on habits as many times as required by evidence: his work on this notion may represent the paradigm of a habit of good scientific research methodology.
Collapse
Affiliation(s)
- Mariagrazia Portera
- Dipartimento di Lettere e Filosofia, University of Florence, Firenze, Italy.
| | - Mauro Mandrioli
- Dipartimento di Scienze della Vita, University of Modena e Reggio Emilia, Modena, Italy
| |
Collapse
|
18
|
miRNA320a-3p/RUNX2 signal programming mediates the transgenerational inheritance of inhibited ovarian estrogen synthesis in female offspring rats induced by prenatal dexamethasone exposure. Pharmacol Res 2021; 165:105435. [PMID: 33485996 DOI: 10.1016/j.phrs.2021.105435] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 12/11/2020] [Accepted: 01/05/2021] [Indexed: 11/22/2022]
Abstract
Our previous studies found that prenatal dexamethasone exposure could cause abnormal follicular development in fetal rats. This study intends to observe the transgenerational inheritance effects of ovarian estrogen inhibition in offspring exposed to dexamethasone (0.2 mg/kg • d) from gestational day 9 (GD9) to GD20 in Wistar rats, and explore the intrauterine programming mechanisms. Prenatal dexamethasone exposure reduced the expression of ovarian cytochrome P450 aromatase (P450arom), the level of serum estradiol (E2) and the number of primordial follicles, while increased the number of atresia follicles before and after birth in F1 offspring rats. At the same time, the expression of miRNA320a-3p in F1 ovaries was down-regulated, and RUNX2 expression increased significantly. These changes were continued to F2 and F3 generations, accompanied by consistently down-regulated miRNA320a-3p expression in oocyte of F1 and F2 adult offspring. In vitro, fetal rat ovaries and KGN human ovarian granulosa cells were treated with dexamethasone. It showed that dexamethasone decreased miRNA320a-3p and P450arom expression, as well as E2 synthesis, and increased RUNX2 expression. All these effects could be reversed by the GR antagonist RU486. The overexpression of miRNA320a-3p in vitro could also reverse the effects of dexamethasone on RUNX2, P450arom, and E2 levels. The dual-luciferase reporter gene experiment further confirmed the direct targeted regulation of miRNA320a-3p on RUNX2. These results indicate that prenatal dexamethasone exposure induces ovarian E2 synthesis inhibition mediated by the GR/miRNA320a-3p/RUNX2/P450arom cascade signal in fetal rat ovary, which has transgenerational inheritance effects and may related to the inhibited miRNA320a-3p expression in oocyte.
Collapse
|
19
|
Skinner MK, Nilsson EE. Role of environmentally induced epigenetic transgenerational inheritance in evolutionary biology: Unified Evolution Theory. ENVIRONMENTAL EPIGENETICS 2021; 7:dvab012. [PMID: 34729214 PMCID: PMC8557805 DOI: 10.1093/eep/dvab012] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 05/15/2023]
Abstract
The current evolutionary biology theory primarily involves genetic alterations and random DNA sequence mutations to generate the phenotypic variation required for Darwinian natural selection to act. This neo-Darwinian evolution is termed the Modern Evolution Synthesis and has been the primary paradigm for nearly 100 years. Although environmental factors have a role in neo-Darwinian natural selection, Modern Evolution Synthesis does not consider environment to impact the basic molecular processes involved in evolution. An Extended Evolutionary Synthesis has recently developed that extends the modern synthesis to consider non-genetic processes. Over the past few decades, environmental epigenetics research has been demonstrated to regulate genetic processes and directly generate phenotypic variation independent of genetic sequence alterations. Therefore, the environment can on a molecular level through non-genetic (i.e. epigenetic) mechanisms directly influence phenotypic variation, genetic variation, inheritance and adaptation. This direct action of the environment to alter phenotype that is heritable is a neo-Lamarckian concept that can facilitate neo-Darwinian (i.e. Modern Synthesis) evolution. The integration of genetics, epigenetics, Darwinian theory, Lamarckian concepts, environment, and epigenetic inheritance provides a paradigm shift in evolution theory. The role of environmental-induced epigenetic transgenerational inheritance in evolution is presented to describe a more unified theory of evolutionary biology.
Collapse
Affiliation(s)
- Michael K Skinner
- **Correspondence address. Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA. Tel: +1 509-335-1524; E-mail:
| | - Eric E Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| |
Collapse
|
20
|
Lowry JL, Ryan ÉB, Esengul YT, Siddique N, Siddique T. Intricacies of aetiology in intrafamilial degenerative disease. Brain Commun 2020; 2:fcaa120. [PMID: 33134917 PMCID: PMC7585693 DOI: 10.1093/braincomms/fcaa120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/23/2020] [Accepted: 07/10/2020] [Indexed: 02/07/2023] Open
Abstract
The genetic underpinnings of late-onset degenerative disease have typically been determined by screening families for the segregation of genetic variants with the disease trait in affected, but not unaffected, individuals. However, instances of intrafamilial etiological heterogeneity, where pathogenic variants in a culprit gene are not shared among all affected family members, continue to emerge and confound gene-discovery and genetic counselling efforts. Discordant intrafamilial cases lacking a mutation shared by other affected family members are described as disease phenocopies. This description often results in an over-simplified acceptance of an environmental cause of disease in the phenocopy cases, while the role of intrafamilial genetic heterogeneity, shared de novo mutations or epigenetic aberrations in such families is often ignored. On a related note, it is now evident that the same disease-associated variant can be present in individuals exhibiting clinically distinct phenotypes, thereby genetically uniting seemingly unrelated syndromes to form a spectrum of disease. Herein, we discuss the intricacies of determining complex degenerative disease aetiology and suggest alternative mechanisms of disease transmission that may account for the apparent missing heritability of disease.
Collapse
Affiliation(s)
- Jessica L Lowry
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Éanna B Ryan
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.,Northwestern University Interdepartmental Neuroscience Program, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Y Taylan Esengul
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Nailah Siddique
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Teepu Siddique
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.,Northwestern University Interdepartmental Neuroscience Program, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.,Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.,Department of Pathology Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
21
|
Golding J, Gregory S, Matthews S, Smith D, Suarez-Perez A, Bowring C, Iles Caven Y, Birmingham K, Pembrey M, Suderman M, Northstone K. Ancestral childhood environmental exposures occurring to the grandparents and great-grandparents of the ALSPAC study children. Wellcome Open Res 2020; 5:207. [PMID: 33043146 PMCID: PMC7527864 DOI: 10.12688/wellcomeopenres.16257.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2020] [Indexed: 11/20/2022] Open
Abstract
Background: Cohort studies tend to be designed to look forward from the time of enrolment of the participants, but there is considerable evidence that the previous generations have a particular relevance not only in the genes that they have passed on, their cultural beliefs and attitudes, but also in the ways in which previous environmental exposures may have had non-genetic impacts, particularly for exposures during fetal life or in childhood. Methods: To investigate such non-genetic inheritance, we have collected information on the childhoods of the ancestors of the cohort of births comprising the original Avon Longitudinal Study of Parents and Children (ALSPAC). The data collected on the study child's grandparents and great grandparents comprise: (a) countries of birth; (b) years of birth; (c) age at onset of smoking; (d) whether the ancestral mothers smoked during pregnancy; (e) social class of the household; (f) information on 19 potentially traumatic situations in their childhoods such as death of a parent, being taken into care, not having enough to eat, or being in a war situation; (g) causes of death for those ancestors who had died. The ages at which the individual experienced the traumatic situations distinguished between ages <6; 6-11, and 12-16 years. The numbers of ancestors on which data were obtained varied from 1128 paternal great-grandfathers to 4122 maternal great grandmothers. These ancestral data will be available for analysis to bona fide researchers on application to the ALSPAC Executive Committee.
Collapse
Affiliation(s)
- Jean Golding
- Bristol Medical School (PHS), University of Bristol, Bristol, BS8 2BN, UK
| | - Steven Gregory
- Bristol Medical School (PHS), University of Bristol, Bristol, BS8 2BN, UK
| | - Sarah Matthews
- Bristol Medical School (PHS), University of Bristol, Bristol, BS8 2BN, UK
| | - Daniel Smith
- Bristol Medical School (PHS), University of Bristol, Bristol, BS8 2BN, UK
| | | | - Claire Bowring
- Bristol Medical School (PHS), University of Bristol, Bristol, BS8 2BN, UK
| | - Yasmin Iles Caven
- Bristol Medical School (PHS), University of Bristol, Bristol, BS8 2BN, UK
| | - Karen Birmingham
- Bristol Medical School (PHS), University of Bristol, Bristol, BS8 2BN, UK
| | - Marcus Pembrey
- Bristol Medical School (PHS), University of Bristol, Bristol, BS8 2BN, UK
| | - Matthew Suderman
- Bristol Medical School (PHS), University of Bristol, Bristol, BS8 2BN, UK
| | - Kate Northstone
- Bristol Medical School (PHS), University of Bristol, Bristol, BS8 2BN, UK
| |
Collapse
|
22
|
Hashimoto M, Ho G, Takamatsu Y, Wada R, Sugama S, Takenouchi T, Waragai M, Masliah E. Possible Role of Amyloid Cross-Seeding in Evolvability and Neurodegenerative Disease. JOURNAL OF PARKINSONS DISEASE 2020; 9:793-802. [PMID: 31524179 PMCID: PMC6839461 DOI: 10.3233/jpd-191675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aging-related neurodegenerative disorders are frequently associated with the aggregation of multiple amyloidogenic proteins (APs), although the reason why such detrimental phenomena have emerged in the post-reproductive human brain across evolution is unclear. Speculatively, APs might provide physiological benefits for the human brain during developmental/reproductive stages. Of relevance, it is noteworthy that cross-seeding (CS) of APs has recently been characterized in cellular and animal models of neurodegenerative disease, and that normal physiological CS of multiple APs has also been observed in lower organisms, including yeast and bacteria. In this context, our main objective is to discuss a possible involvement of the CS of APs in promoting evolvability, a hypothetical view regarding the function of APs as an inheritance of acquired characteristics against human brain stressors, which are transgenerationally transmitted to offspring via germ cells. Mechanistically, the protofibrils formed by the CS of multiple APs might confer hormesis more potently than individual APs. By virtue of greater encoded stress information in parental brains being available, the brains of offspring can cope more efficiently with forth-coming stressors. On the other hand, subsequent neurodegeneration caused by APs in parental brain through the antagonistic pleiotropy mechanism in aging, may suggest that synergistically, multiple APs might be more detrimental compared to singular AP in neurodegeneration. Taken together, we suggest that the CS of multiple APs might be involved in both evolvability and neurodegenerative disease in human brain, which may be mechanistically and therapeutically important.
Collapse
Affiliation(s)
- Makoto Hashimoto
- Tokyo Metropolitan Institute of Medical Science, Setagaya-Ku, Tokyo, Japan
| | - Gilbert Ho
- PCND Neuroscience Research Institute, Poway, CA, USA
| | - Yoshiki Takamatsu
- Tokyo Metropolitan Institute of Medical Science, Setagaya-Ku, Tokyo, Japan
| | - Ryoko Wada
- Tokyo Metropolitan Institute of Medical Science, Setagaya-Ku, Tokyo, Japan
| | - Shuei Sugama
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | - Takato Takenouchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Masaaki Waragai
- Tokyo Metropolitan Institute of Medical Science, Setagaya-Ku, Tokyo, Japan
| | - Eliezer Masliah
- Division of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
23
|
Intrauterine RAS programming alteration-mediated susceptibility and heritability of temporal lobe epilepsy in male offspring rats induced by prenatal dexamethasone exposure. Arch Toxicol 2020; 94:3201-3215. [PMID: 32494933 DOI: 10.1007/s00204-020-02796-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/28/2020] [Indexed: 12/22/2022]
Abstract
Partial temporal lobe epilepsy (TLE) has an intrauterine developmental origin. This study was aimed at elucidating the heritable effects and programming mechanism of TLE in offspring rats induced by prenatal dexamethasone exposure (PDE). Pregnant Wistar rats were injected subcutaneously with dexamethasone (0.2 mg/kg day) from gestational day 9 to 20. The F1 and F2 generations of male offspring were administered lithium pilocarpine (LiPC) for electroencephalography and video monitoring in epilepsy or behavioral tests. Results showed that the PDE + LiPC group exhibited TLE susceptibility, which continued throughout F2 generation. Expression of hippocampal glucocorticoid receptor (GR), CCAAT enhancer-binding protein α (C/EBPα), intrauterine renin-angiotensin system (RAS) classical pathway related genes, the H3K27ac level in angiotensin-converting enzyme (ACE) promoter, as well as high mobility group box 1 (HMGB1) and toll-like receptor 4 (TLR4) were increased, but glutamate dehydrogenase (GLUD) 1/2 expression were decreased, accompanied by increased glutamate levels in PDE fetal and adult rats, as well as in F1 and F2 offspring of the PDE + LiPC group. These consistent changes were also observed by treating the H19-7 fetal hippocampal cell line with dexamethasone and were reversed by GR inhibitor (RU486) and ACE inhibitor (enalaprilat). Our results confirmed that PDE-induced H3K27ac enrichment in the ACE promoter and enhanced the RAS classic pathway via activating GR-C/EBPα-p300 in utero, which caused changes of the HMGB1 pathway and glutamate excitatory damage. Intrauterine programming mediated by abnormal histone modification of hippocampal ACE could continue to adulthood and even F2 generation, which induced the heritability of TLE in male offspring rats.
Collapse
|
24
|
Hall A, Northstone K, Iles-Caven Y, Ellis G, Gregory S, Golding J, Pembrey M. Intolerance of loud sounds in childhood: Is there an intergenerational association with grandmaternal smoking in pregnancy? PLoS One 2020; 15:e0229323. [PMID: 32092095 PMCID: PMC7039668 DOI: 10.1371/journal.pone.0229323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 02/04/2020] [Indexed: 01/08/2023] Open
Abstract
Recent research using the Avon Longitudinal Study of Parents and Children (ALSPAC) demonstrated an association between maternal grandmother smoking in pregnancy and the autistic traits of impaired social communication and repetitive behaviour in granddaughters but not grandsons, but of paternal grandmother smoking and early development of myopia in the grandchild. Here we investigate whether grandmaternal smoking in pregnancy is associated with intolerance to loud sounds. ALSPAC collected information during the index pregnancy from the study parents on the smoking habits, social and other features of their own parents. Maternal report when the child was aged 6 and 13 included hating loud sounds; at age 11 the child was tested for volume preference for listening to music through headphones. Statistical analysis compared results for grandchildren in relation to whether a parent had been exposed in utero to maternal smoking, adjusted for their grandparents' social and demographic attributes. We hypothesised that there would be sex differences in the effects of grandmaternal prenatal smoking, based on previous intergenerational studies. For 6-year-old children maternal report of intolerance to loud noise was more likely in grandsons if the maternal grandmother had smoked [adjusted odds ratio (AOR) 1.27; 95% confidence interval (CI) 1.03,1.56; P = 0.025], but less likely in girls [AOR 0.82; 95%CI 0.63,1.07] Pinteraction <0.05. If the paternal grandmother had smoked the grandchildren were less likely to be intolerant, especially girls. The objective measure of choice of volume for music through headphones showed that grandsons of both maternal and paternal smoking grandmothers were less likely to choose high volumes compared with granddaughters (P<0.05). In line with our prior hypothesis of sex differences, we showed that grandsons were more intolerant of loud sounds than granddaughters particularly at age 6, and this was confirmed by objective measures at age 11.
Collapse
Affiliation(s)
- Amanda Hall
- School of Life and Health Sciences, Aston University, Birmingham, England, United Kingdom
| | - Kate Northstone
- Bristol Medical School (Public Health Sciences), University of Bristol, Bristol, England, United Kingdom
| | - Yasmin Iles-Caven
- Centre for Academic Child Health, Bristol Medical School (Public Health Sciences), University of Bristol, Bristol, England, United Kingdom
| | - Genette Ellis
- Centre for Academic Child Health, Bristol Medical School (Public Health Sciences), University of Bristol, Bristol, England, United Kingdom
| | - Steve Gregory
- Centre for Academic Child Health, Bristol Medical School (Public Health Sciences), University of Bristol, Bristol, England, United Kingdom
| | - Jean Golding
- Centre for Academic Child Health, Bristol Medical School (Public Health Sciences), University of Bristol, Bristol, England, United Kingdom
| | - Marcus Pembrey
- Centre for Academic Child Health, Bristol Medical School (Public Health Sciences), University of Bristol, Bristol, England, United Kingdom
| |
Collapse
|
25
|
Anastasiadi D, Piferrer F. Epimutations in Developmental Genes Underlie the Onset of Domestication in Farmed European Sea Bass. Mol Biol Evol 2020; 36:2252-2264. [PMID: 31289822 PMCID: PMC6759067 DOI: 10.1093/molbev/msz153] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Domestication of wild animals induces a set of phenotypic characteristics collectively known as the domestication syndrome. However, how this syndrome emerges is still not clear. Recently, the neural crest cell deficit hypothesis proposed that it is generated by a mildly disrupted neural crest cell developmental program, but clear support is lacking due to the difficulties of distinguishing pure domestication effects from preexisting genetic differences between farmed and wild mammals and birds. Here, we use a farmed fish as model to investigate the role of persistent changes in DNA methylation (epimutations) in the process of domestication. We show that early domesticates of sea bass, with no genetic differences with wild counterparts, contain epimutations in tissues with different embryonic origins. About one fifth of epimutations that persist into adulthood are established by the time of gastrulation and affect genes involved in developmental processes that are expressed in embryonic structures, including the neural crest. Some of these genes are differentially expressed in sea bass with lower jaw malformations, a key feature of domestication syndrome. Interestingly, these epimutations significantly overlap with cytosine-to-thymine polymorphisms after 25 years of selective breeding. Furthermore, epimutated genes coincide with genes under positive selection in other domesticates. We argue that the initial stages of domestication include dynamic alterations in DNA methylation of developmental genes that affect the neural crest. Our results indicate a role for epimutations during the beginning of domestication that could be fixed as genetic variants and suggest a conserved molecular process to explain Darwin’s domestication syndrome across vertebrates.
Collapse
Affiliation(s)
- Dafni Anastasiadi
- Institut de Ciències del Mar, Spanish National Research Council (CSIC), Barcelona, Spain.,The New Zealand Institute for Plant & Food Research, Nelson, New Zealand
| | - Francesc Piferrer
- Institut de Ciències del Mar, Spanish National Research Council (CSIC), Barcelona, Spain
| |
Collapse
|
26
|
Sperm RNA: Quo vadis? Semin Cell Dev Biol 2020; 97:123-130. [DOI: 10.1016/j.semcdb.2019.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 06/26/2019] [Accepted: 07/08/2019] [Indexed: 12/27/2022]
|
27
|
Paternal inheritance of diet induced metabolic traits correlates with germline regulation of diet induced coding gene expression. Genomics 2020; 112:567-573. [DOI: 10.1016/j.ygeno.2019.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/27/2019] [Accepted: 04/11/2019] [Indexed: 12/20/2022]
|
28
|
Williams C, Suderman M, Guggenheim JA, Ellis G, Gregory S, Iles-Caven Y, Northstone K, Golding J, Pembrey M. Grandmothers' smoking in pregnancy is associated with a reduced prevalence of early-onset myopia. Sci Rep 2019; 9:15413. [PMID: 31659193 PMCID: PMC6817861 DOI: 10.1038/s41598-019-51678-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 10/02/2019] [Indexed: 12/30/2022] Open
Abstract
Myopia (near sightedness) is the most common vision disorder resulting in visual impairment worldwide. We tested the hypothesis that intergenerational, non-genetic heritable effects influence refractive development, using grandparental prenatal smoking as a candidate exposure. Using data from the Avon Longitudinal Study of Parents and Children (ALSPAC), we found that the prevalence of myopia at age 7 was lower if the paternal grandmother had smoked in pregnancy, an association primarily found among grandsons compared to granddaughters. There was a weaker, non-sex-specific, reduction in the prevalence of myopia at age 7 if the maternal grandmother had smoked in pregnancy. For children who became myopic later (between 7 and 15 years of age) there were no associations with either grandmother smoking. Differences between early and late-onset myopia were confirmed with DNA methylation patterns: there were very distinct and strong associations with methylation for early-onset but not later-onset myopia.
Collapse
Affiliation(s)
- Cathy Williams
- Centre for Academic Child Health, Population Health Sciences, Bristol Medical School, Oakfield House, Oakfield Grove, University of Bristol, Bristol, BS8 2BN, UK.
| | - Matthew Suderman
- MRC Integrative Epidemiology Unit, Bristol Medical School, Oakfield House, Oakfield Grove, University of Bristol, Bristol, BS8 2BN, UK
| | - Jeremy A Guggenheim
- School of Optometry & Vision Sciences, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Genette Ellis
- Centre for Academic Child Health, Population Health Sciences, Bristol Medical School, Oakfield House, Oakfield Grove, University of Bristol, Bristol, BS8 2BN, UK
| | - Steve Gregory
- Centre for Academic Child Health, Population Health Sciences, Bristol Medical School, Oakfield House, Oakfield Grove, University of Bristol, Bristol, BS8 2BN, UK
| | - Yasmin Iles-Caven
- Centre for Academic Child Health, Population Health Sciences, Bristol Medical School, Oakfield House, Oakfield Grove, University of Bristol, Bristol, BS8 2BN, UK
| | - Kate Northstone
- ALSPAC, Oakfield House, Oakfield Grove, University of Bristol, Bristol, BS8 2BN, UK
| | - Jean Golding
- Centre for Academic Child Health, Population Health Sciences, Bristol Medical School, Oakfield House, Oakfield Grove, University of Bristol, Bristol, BS8 2BN, UK.
| | - Marcus Pembrey
- Centre for Academic Child Health, Population Health Sciences, Bristol Medical School, Oakfield House, Oakfield Grove, University of Bristol, Bristol, BS8 2BN, UK
| |
Collapse
|
29
|
Hashimoto M, Ho G, Takamatsu Y, Shimizu Y, Sugama S, Takenouchi T, Waragai M, Masliah E. Evolvability and Neurodegenerative Disease: Antagonistic Pleiotropy Phenomena Derived from Amyloid Aggregates. JOURNAL OF PARKINSONS DISEASE 2019; 8:405-408. [PMID: 30010144 PMCID: PMC6130413 DOI: 10.3233/jpd-181365] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
At present, the precise physiological role of neurodegenerative disease-related amyloidogenic proteins (APs), including α-synuclein in Parkinson’s disease and β-amyloid in Alzheimer’s disease, remains unclear. Because of similar adaptability of both human brain neurons and yeast cells to diverse environmental stressors, we previously proposed that the concept of evolvability in yeast prion could also be applied to APs in human brain. However, the mechanistic relevance of evolvability to neurodegenerative disorders is elusive. Therefore, our objective is to discuss our hypothesis that evolvability and neurodegenerative disease may represent a form of antagonistic pleiotropy derived from the aggregates of APs. Importantly, such a perspective may provide an outlook of the entire course of sporadic neurodegenerative diseases.
Collapse
Affiliation(s)
- Makoto Hashimoto
- Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Gilbert Ho
- PCND Neuroscience Research Institute, Poway, CA, USA
| | - Yoshiki Takamatsu
- Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Yuka Shimizu
- Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Shuei Sugama
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | - Takato Takenouchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Masaaki Waragai
- Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Eliezer Masliah
- Division of Neurosciences, National Institute on Aging, Bethesda, MD, USA
| |
Collapse
|
30
|
Behavioral Epigenetics: Perspectives Based on Experience-Dependent Epigenetic Inheritance. EPIGENOMES 2019; 3:epigenomes3030018. [PMID: 34968228 PMCID: PMC8594690 DOI: 10.3390/epigenomes3030018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 11/16/2022] Open
Abstract
Epigenetic regulation plays an important role in gene regulation, and epigenetic markers such as DNA methylation and histone modifications are generally described as switches that regulate gene expression. Behavioral epigenetics is defined as the study of how epigenetic alterations induced by experience and environmental stress may affect animal behavior. It studies epigenetic alterations due to environmental enrichment. Generally, molecular processes underlying epigenetic regulation in behavioral epigenetics include DNA methylation, post-translational histone modifications, noncoding RNA activity, and other unknown molecular processes. Whether the inheritance of epigenetic features will occur is a crucial question. In general, the mechanism underlying inheritance can be explained by two main phenomena: Germline-mediated epigenetic inheritance and interact epigenetic inheritance of somatic cells through germline. In this review, we focus on examining behavioral epigenetics based on its possible modes of inheritance and discuss the considerations in the research of epigenetic transgenerational inheritance.
Collapse
|
31
|
Rajaleid K, Vågerö D. Stress resilience in young men mediates the effect of childhood trauma on their offspring's birth weight - An analysis of 250,000 families. SSM Popul Health 2019; 8:100429. [PMID: 31249858 PMCID: PMC6584590 DOI: 10.1016/j.ssmph.2019.100429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/06/2019] [Accepted: 06/08/2019] [Indexed: 10/31/2022] Open
Abstract
Experiencing the death of a parent during childhood is a severe trauma that seems to affect the next generation's birth weight. We studied the consequences of parental loss during childhood for men's psychological and physiological characteristics at age 18, and whether these were important for their first-born offspring's birth outcomes. We used a structured life-course approach and four-way decomposition analysis to analyse data for 250,427 three-generation families retrieved from nationwide Swedish registers and found that psychological resilience was impaired and body mass index was higher in men who had experienced parental death. Both characteristics were linked to offspring birth weight. This was lower by 18.0 g (95% confidence interval: 5.7, 30.3) for men who lost a parent at ages 8-17 compared to other ages. Resilience mediated 40% of this influence. Mediation by body mass index, systolic and diastolic blood pressure was negligible, as was the effect of parental loss on length of gestation. There was no mediation by the education of the men's future spouse. Previous literature has indicated that the period before puberty, the "slow growth period", is sensitive. Our evidence suggests that this may be too narrow a restriction: boys aged 8-17 appear to be particularly likely to respond to parental loss in a way which affects their future offspring's birth weight. We conclude that the observed transgenerational influence on birth weight is mediated by the father's psychological resilience but not by his body mass index or blood pressure.
Collapse
Affiliation(s)
- Kristiina Rajaleid
- Centre for Health Equity Studies, Department of Public Health Sciences, Stockholm University, Stockholm, Sweden.,Stress Research Institute, Stockholm University, Stockholm, Sweden
| | - Denny Vågerö
- Centre for Health Equity Studies, Department of Public Health Sciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
32
|
Abello J, Nguyen TDT, Marasini R, Aryal S, Weiss ML. Biodistribution of gadolinium- and near infrared-labeled human umbilical cord mesenchymal stromal cell-derived exosomes in tumor bearing mice. Theranostics 2019; 9:2325-2345. [PMID: 31149047 PMCID: PMC6531310 DOI: 10.7150/thno.30030] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/11/2019] [Indexed: 02/06/2023] Open
Abstract
We speculate that exosomes derived from human umbilical cord mesenchymal stromal cells (HUC-MSCs) will accumulate within tumors and have the potential for both tumor location or drug delivery. Methods: To determine proof of concept, HUC-MSC exosomes were labeled with an MRI contrast agent, gadolinium, or a near infrared dye. Exosome accumulation within ectopic osteosarcoma tumor-bearing mice was determined by 14.1 T MRI or bioimaging over 24-48 h after injection. In vitro studies examine the accumulation and physiological effect of exosomes on human and mouse osteosarcoma cell lines by MTT assay, confocal microscopy, and flow cytometry. Results: Systemic HUC-MSC exosomes accumulated continuously in tumor over a 24-48 h post-injection period. In contrast, synthetic lipid nanoparticles accumulate in tumor only for the first 3 h post-injection. Conclusion: These results suggest that HUC-MSCs exosomes accumulate within human or mouse osteosarcoma cells in vitro and in vivo over a 24 to 48 h after infusion.
Collapse
|
33
|
Samblas M, Milagro FI, Martínez A. DNA methylation markers in obesity, metabolic syndrome, and weight loss. Epigenetics 2019; 14:421-444. [PMID: 30915894 DOI: 10.1080/15592294.2019.1595297] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The fact that not all individuals exposed to the same environmental risk factors develop obesity supports the hypothesis of the existence of underlying genetic and epigenetic elements. There is suggestive evidence that environmental stimuli, such as dietary pattern, particularly during pregnancy and early life, but also in adult life, can induce changes in DNA methylation predisposing to obesity and related comorbidities. In this context, the DNA methylation marks of each individual have emerged not only as a promising tool for the prediction, screening, diagnosis, and prognosis of obesity and metabolic syndrome features, but also for the improvement of weight loss therapies in the context of precision nutrition. The main objectives in this field are to understand the mechanisms involved in transgenerational epigenetic inheritance, and featuring the nutritional and lifestyle factors implicated in the epigenetic modifications. Likewise, DNA methylation modulation caused by diet and environment may be a target for newer therapeutic strategies concerning the prevention and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Mirian Samblas
- a Department of Nutrition, Food Science and Physiology; Centre for Nutrition Research , University of Navarra , Pamplona , Spain
| | - Fermín I Milagro
- a Department of Nutrition, Food Science and Physiology; Centre for Nutrition Research , University of Navarra , Pamplona , Spain.,b CIBERobn, CIBER Fisiopatología de la Obesidad y Nutrición , Instituto de Salud Carlos III. Madrid , Spain.,c IdiSNA, Instituto de Investigación Sanitaria de Navarra (IdiSNA) , Pamplona , Spain
| | - Alfredo Martínez
- a Department of Nutrition, Food Science and Physiology; Centre for Nutrition Research , University of Navarra , Pamplona , Spain.,b CIBERobn, CIBER Fisiopatología de la Obesidad y Nutrición , Instituto de Salud Carlos III. Madrid , Spain.,c IdiSNA, Instituto de Investigación Sanitaria de Navarra (IdiSNA) , Pamplona , Spain.,d IMDEA, Research Institute on Food & Health Sciences , Madrid , Spain
| |
Collapse
|
34
|
Karunakar P, Bhalla A, Sharma A. Transgenerational inheritance of cold temperature response in Drosophila. FEBS Lett 2019; 593:594-600. [PMID: 30779346 DOI: 10.1002/1873-3468.13343] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 02/15/2019] [Accepted: 02/16/2019] [Indexed: 12/20/2022]
Abstract
Intergenerational inheritance of transcriptional responses induced by low temperature rearing has recently been shown in Drosophila. Besides germline inheritance, fecal transfer experiments indirectly suggested that the acquired microbiome may also have contributed to the transcriptional responses in offspring. Here, we analyze expression data on inheritance of the cold-induced effects in conjunction with previously reported transcriptomic differences between flies with a microbiota or axenic flies and provide support for a contribution of the acquired microbiome to the offspring phenotype. Also, based on a similar analysis in conjunction with diet- and metabolism-related fly transcriptome data, we predicted and, then, experimentally confirmed that cold regulates triglyceride levels both inter- as well as trans-generationally.
Collapse
Affiliation(s)
- Pinreddy Karunakar
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research, New Delhi, India
| | - Ameek Bhalla
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research, New Delhi, India
| | - Abhay Sharma
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research, New Delhi, India
| |
Collapse
|
35
|
Morgan CP, Chan JC, Bale TL. Driving the Next Generation: Paternal Lifetime Experiences Transmitted via Extracellular Vesicles and Their Small RNA Cargo. Biol Psychiatry 2019; 85:164-171. [PMID: 30580777 PMCID: PMC6309802 DOI: 10.1016/j.biopsych.2018.09.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/29/2018] [Accepted: 09/17/2018] [Indexed: 10/28/2022]
Abstract
Epidemiological studies provide strong evidence for the impact of diverse paternal life experiences on offspring neurodevelopmental disease risk. While these associations are well established, the molecular mechanisms underlying these intergenerational transmissions remain elusive, though recent studies focusing on the influence of paternal experience before conception have implicated germ cell epigenetic programming. Any model accounting for the germline transfer of nongenetic information from sire to offspring must include certain components, such as 1) a vector to carry any signal from the paternal compartment to the maternal reproductive tract and future embryo; 2) a molecular signal, encoded by a paternal experience, to carry this memory and enact downstream responses; and 3) a target cell or tissue to receive the signal and convert it into an effect on embryonic development. We explore the current understanding of the potential processes and candidate factors that may serve as these components. We specifically discuss the growing appreciation for the importance of extracellular vesicles in these processes, beginning with their known role in delivering potential signals, including small RNAs, to sperm, the prototypical vector, during their posttesticular maturation. Finally, we explore the possibility that paternal extracellular vesicles could themselves serve as vectors, delivering signals not only to gametes or the zygote but also to tissues of the maternal reproductive tract to influence fetal development.
Collapse
Affiliation(s)
- Christopher P Morgan
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jennifer C Chan
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Tracy L Bale
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
36
|
Vågerö D, Pinger PR, Aronsson V, van den Berg GJ. Paternal grandfather's access to food predicts all-cause and cancer mortality in grandsons. Nat Commun 2018; 9:5124. [PMID: 30538239 PMCID: PMC6290014 DOI: 10.1038/s41467-018-07617-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 11/09/2018] [Indexed: 12/14/2022] Open
Abstract
Studies of animals and plants suggest that nutritional conditions in one generation may affect phenotypic characteristics in subsequent generations. A small number of human studies claim to show that pre-pubertal nutritional experience trigger a sex-specific transgenerational response along the male line. A single historical dataset, the Överkalix cohorts in northern Sweden, is often quoted as evidence. To test this hypothesis on an almost 40 times larger dataset we collect harvest data during the pre-pubertal period of grandparents (G0, n = 9,039) to examine its potential association with mortality in children (G1, n = 7,280) and grandchildren (G2, n = 11,561) in the Uppsala Multigeneration Study. We find support for the main Överkalix finding: paternal grandfather's food access in pre-puberty predicts his male, but not female, grandchildren's all-cause mortality. In our study, cancer mortality contributes strongly to this pattern. We are unable to reproduce previous results for diabetes and cardiovascular mortality.
Collapse
Affiliation(s)
- Denny Vågerö
- CHESS, Centre for Health Equity Studies, Department of Public Health Sciences, SE-106 91 Stockholm University, Stockholm, Sweden.
| | - Pia R Pinger
- Department of Economics, University of Bonn, Adenauerallee 24-42, 53113, Bonn, Germany.,briq, Institute on Behavior & Inequality, Bonn, Germany
| | - Vanda Aronsson
- CHESS, Centre for Health Equity Studies, Department of Public Health Sciences, SE-106 91 Stockholm University, Stockholm, Sweden
| | - Gerard J van den Berg
- Department of Economics, Priory Rd Complex, University of Bristol, Bristol, BS8 ITU, United Kingdom.,IFAU, Institute for Evaluation of Labor Market and Education Policy, Uppsala, Sweden
| |
Collapse
|
37
|
Motor and Nonmotor Symptoms of Parkinson's Disease: Antagonistic Pleiotropy Phenomena Derived from α-Synuclein Evolvability? PARKINSONS DISEASE 2018; 2018:5789424. [PMID: 30595837 PMCID: PMC6282124 DOI: 10.1155/2018/5789424] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/01/2018] [Accepted: 10/18/2018] [Indexed: 12/16/2022]
Abstract
Lewy body diseases, such as Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA), are associated with a wide range of nonmotor symptoms (NMS), including cognitive impairment, depression and anxiety, sleep disorders, gastrointestinal symptoms, and autonomic failure. The reason why such diverse and disabling NMS have not been weeded out but have persisted across evolution is unknown. As such, one possibility would be that the NMS might be somehow beneficial during development and/or reproductive stages, a possibility consistent with our recent view as to the evolvability of amyloidogenic proteins (APs) such as α-synuclein (αS) and amyloid-β (Aβ) in the brain. Based on the heterogeneity of protofibrillar AP forms in terms of structure and cytotoxicity, we recently proposed that APs might act as vehicles to deliver information regarding diverse internal and environmental stressors. Also, we defined evolvability to be an epigenetic phenomenon whereby APs are transgenerationally transmitted from parents to offspring to cope with future brain stressors in the offspring, likely benefitting the offspring. In this context, the main objective is to discuss whether NMS might be relevant to evolvability. According to this view, information regarding NMS may be transgenerationally transmitted by heterogeneous APs to offspring, preventing or attenuating the stresses related to such symptoms. On the other hand, NMS associated with Lewy body pathology might manifest through an aging-associated antagonistic pleiotropy mechanism. Given that NMS are not only specific to Lewy body diseases but also displayed in other disorders, including amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD), these conditions might share common mechanisms related to evolvability. This might give insight into novel therapy strategies based on antagonistic pleiotropy rather than on individual NMS from which to develop disease-modifying therapies.
Collapse
|
38
|
Eshraghi RS, Deth RC, Mittal R, Aranke M, Kay SIS, Moshiree B, Eshraghi AA. Early Disruption of the Microbiome Leading to Decreased Antioxidant Capacity and Epigenetic Changes: Implications for the Rise in Autism. Front Cell Neurosci 2018; 12:256. [PMID: 30158857 PMCID: PMC6104136 DOI: 10.3389/fncel.2018.00256] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/27/2018] [Indexed: 12/20/2022] Open
Abstract
Currently, 1 out of every 59 children in the United States is diagnosed with autism. While initial research to find the possible causes for autism were mostly focused on the genome, more recent studies indicate a significant role for epigenetic regulation of gene expression and the microbiome. In this review article, we examine the connections between early disruption of the developing microbiome and gastrointestinal tract function, with particular regard to susceptibility to autism. The biological mechanisms that accompany individuals with autism are reviewed in this manuscript including immune system dysregulation, inflammation, oxidative stress, metabolic and methylation abnormalities as well as gastrointestinal distress. We propose that these autism-associated biological mechanisms may be caused and/or sustained by dysbiosis, an alteration to the composition of resident commensal communities relative to the community found in healthy individuals and its redox and epigenetic consequences, changes that in part can be due to early use and over-use of antibiotics across generations. Further studies are warranted to clarify the contribution of oxidative stress and gut microbiome in the pathophysiology of autism. A better understanding of the microbiome and gastrointestinal tract in relation to autism will provide promising new opportunities to develop novel treatment modalities.
Collapse
Affiliation(s)
- Rebecca S. Eshraghi
- Division of Gastroenterology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Richard C. Deth
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Rahul Mittal
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Mayank Aranke
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Sae-In S. Kay
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Baharak Moshiree
- Division of Gastroenterology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Adrien A. Eshraghi
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
39
|
Conradt E, Adkins DE, Crowell SE, Raby KL, Diamond L, Ellis B. Incorporating epigenetic mechanisms to advance fetal programming theories. Dev Psychopathol 2018; 30:807-824. [PMID: 30068415 PMCID: PMC6079515 DOI: 10.1017/s0954579418000469] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Decades of fetal programming research indicates that we may be able to map the origins of many physical, psychological, and medical variations and morbidities before the birth of the child. While great strides have been made in identifying associations between prenatal insults, such as undernutrition or psychosocial stress, and negative developmental outcomes, far less is known about how adaptive responses to adversity regulate the developing phenotype to match stressful conditions. As the application of epigenetic methods to human behavior has exploded in the last decade, research has begun to shed light on the role of epigenetic mechanisms in explaining how prenatal conditions shape later susceptibilities to mental and physical health problems. In this review, we describe and attempt to integrate two dominant fetal programming models: the cumulative stress model (a disease-focused approach) and the match-mismatch model (an evolutionary-developmental approach). In conjunction with biological sensitivity to context theory, we employ these two models to generate new hypotheses regarding epigenetic mechanisms through which prenatal and postnatal experiences program child stress reactivity and, in turn, promote development of adaptive versus maladaptive phenotypic outcomes. We conclude by outlining priority questions and future directions for the fetal programming field.
Collapse
|
40
|
Abstract
Darwin's gemmules were supposed to be "thrown off" by cells and were "inconceivably minute and numerous as the stars in heaven." They were capable of self-propagation and diffusion from cell to cell, and circulation through the system. The word "gene" coined by Wilhelm Johannsen, was derived from de Vries's term "pangen," itself a substitute for "gemmule" in Darwin's Pangenesis. Johannsen resisted the "morphological" conception of genes as particles with a certain structure. Morgan's genes were considered to be stable entities arranged in an orderly linear pattern on chromosomes, like beads on a string. In the late 1940s, McClintock challenged the concept of the stability of the gene when she discovered that some genes could move within a chromosome and between chromosomes. In 1948, Mandel and Metais reported the presence of cell-free nucleic acids in human blood for the first time. Over the past several decades, it has been universally accepted that almost all types of cells not only shed molecules such as cell-free DNA (including genomic DNA, tumor DNA and fetal DNA), RNAs (including mRNA and small RNAs) and prions, but also release into the extracellular environment diverse types of membrane vesicles (known as extracellular vesicles) containing DNA, RNA and proteins. Thus Darwin's speculative gemmules of the 19th century have become the experimentally demonstrated circulating cell-free DNA, mobile RNAs, prions and extracellular vesicles.
Collapse
Affiliation(s)
- Yongsheng Liu
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China; Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
41
|
Torday J, Miller WB. Terminal addition in a cellular world. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 135:1-10. [DOI: 10.1016/j.pbiomolbio.2017.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/14/2017] [Accepted: 12/18/2017] [Indexed: 02/04/2023]
|
42
|
Increased H3K27ac level of ACE mediates the intergenerational effect of low peak bone mass induced by prenatal dexamethasone exposure in male offspring rats. Cell Death Dis 2018; 9:638. [PMID: 29844424 PMCID: PMC5974192 DOI: 10.1038/s41419-018-0701-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/03/2018] [Accepted: 05/07/2018] [Indexed: 12/21/2022]
Abstract
Prenatal dexamethasone exposure (PDE) induces developmental toxicities of multiple organs in offspring. Here, we verified the intergenerational effect of low peak bone mass induced by PDE and investigated its intrauterine programming mechanism. Pregnant rats were injected subcutaneously with 0.2 mg/kg/d dexamethasone from gestation day (GD) 9 to 20. Some pregnant rats were killed for the fetuses on GD20, and the rest went on to spontaneous labor to produce the first-generation (F1) offspring. The adult F1 male offspring were mated with normal females to produce the F2 offspring. In vivo, PDE leads to low peak bone mass in F1 male offspring rats at postnatal week (PW) 28. Furthermore, PDE reduced the bone mass in F1 male offspring from GD20 to PW12. Meanwhile, the osteogenic differentiation was suppressed and the local renin–angiotensin system (RAS) was activated continuously by PDE. Moreover, the histone 3 lysine 27 acetylation (H3K27ac) level in angiotensin-converting enzyme (ACE) promoter region was increased by PDE from GD20 to PW12. Likewise, PDE induced the low peak bone mass and the activated local RAS in F2 male offspring. Meaningfully, the H3K27ac level of ACE was increased by PDE in the F2 offspring. In vitro, dexamethasone inhibited bone marrow mesenchymal stem cells (BMSCs) osteogenic differentiation and promoted RAS activation. Furthermore, dexamethasone recruited CCAAT/enhancer-binding protein α and p300 into the BMSCs nucleus by activating glucocorticoid receptor, which cooperatively increased the H3K27ac level in the ACE promoter region. In conclusion, PDE induced the low peak bone mass and its intergenerational effect, which was mediated by sustained activation of RAS via increasing H3K27ac level of ACE.
Collapse
|
43
|
Li Y, Lei X, Guo W, Wu S, Duan Y, Yang X, Yang X. Transgenerational endotoxin tolerance-like effect caused by paternal dietary Astragalus polysaccharides in broilers' jejunum. Int J Biol Macromol 2018; 111:769-779. [DOI: 10.1016/j.ijbiomac.2018.01.095] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 01/05/2018] [Accepted: 01/14/2018] [Indexed: 02/08/2023]
|
44
|
Pembrey ME. Does cross-generational epigenetic inheritance contribute to cultural continuity? ENVIRONMENTAL EPIGENETICS 2018; 4:dvy004. [PMID: 29732169 PMCID: PMC5920305 DOI: 10.1093/eep/dvy004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 02/28/2018] [Accepted: 03/04/2018] [Indexed: 06/08/2023]
Abstract
Human studies of cross-generational epigenetic inheritance have to consider confounding by social patterning down the generations, often referred to as 'cultural inheritance'. This raises the question to what extent is 'cultural inheritance' itself epigenetically mediated rather than just learnt. Human studies of non-genetic inheritance have demonstrated that, beyond foetal life, experiences occurring in mid-childhood before puberty are the most likely to be associated with cross-generational responses in the next generation(s). It is proposed that cultural continuity is played out along the axis, or 'payoff', between responsiveness and stability. During the formative years of childhood a stable family and/or home permits small children to explore and thereby learn. To counter disruptions to this family home ideal, cultural institutions such as local schools, religious centres and market places emerged to provide ongoing stability, holding the received wisdom of the past in an accessible state. This cultural support allows the growing child to freely indulge their responsiveness. Some of these prepubertal experiences induce epigenetic responses that also transfer molecular signals to the gametes through which they contribute to the conception of future offspring. In parallel co-evolution with growing cultural support for increasing responsiveness, 'runaway' responsiveness is countered by the positive selection of genetic variants that dampen responsiveness. Testing these ideas within longitudinal multigenerational cohorts will need information on ancestors/parents' own communities and experiences (Exposome scans) linked to ongoing Phenome scans on grandchildren; coupled with epigenome analysis, metastable epialleles and DNA methylation age. Interactions with genetic variants affecting responsiveness should help inform the broad hypothesis.
Collapse
Affiliation(s)
- Marcus E Pembrey
- Centre for Child and Adolescent Health, University of Bristol, Bristol, UK
- Great Ormond Street Institute of Child Health, Faculty of Population Health Sciences, University College London, London, UK
| |
Collapse
|
45
|
|
46
|
Bard JBL. Tinkering and the Origins of Heritable Anatomical Variation in Vertebrates. BIOLOGY 2018; 7:E20. [PMID: 29495378 PMCID: PMC5872046 DOI: 10.3390/biology7010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/16/2018] [Accepted: 02/18/2018] [Indexed: 11/16/2022]
Abstract
Evolutionary change comes from natural and other forms of selection acting on existing anatomical and physiological variants. While much is known about selection, little is known about the details of how genetic mutation leads to the range of heritable anatomical variants that are present within any population. This paper takes a systems-based view to explore how genomic mutation in vertebrate genomes works its way upwards, though changes to proteins, protein networks, and cell phenotypes to produce variants in anatomical detail. The evidence used in this approach mainly derives from analysing anatomical change in adult vertebrates and the protein networks that drive tissue formation in embryos. The former indicate which processes drive variation-these are mainly patterning, timing, and growth-and the latter their molecular basis. The paper then examines the effects of mutation and genetic drift on these processes, the nature of the resulting heritable phenotypic variation within a population, and the experimental evidence on the speed with which new variants can appear under selection. The discussion considers whether this speed is adequate to explain the observed rate of evolutionary change or whether other non-canonical, adaptive mechanisms of heritable mutation are needed. The evidence to hand suggests that they are not, for vertebrate evolution at least.
Collapse
Affiliation(s)
- Jonathan B L Bard
- Department of Anatomy, Physiology & Genetics, University of Oxford, Oxford OX313QX, UK.
| |
Collapse
|
47
|
Hashimoto M, Ho G, Sugama S, Takamatsu Y, Shimizu Y, Takenouchi T, Waragai M, Masliah E. Evolvability of Amyloidogenic Proteins in Human Brain. J Alzheimers Dis 2018; 62:73-83. [PMID: 29439348 PMCID: PMC5817905 DOI: 10.3233/jad-170894] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2017] [Indexed: 12/29/2022]
Abstract
Currently, the physiological roles of amyloidogenic proteins (APs) in human brain, such as amyloid-β and α-synuclein, are elusive. Given that many APs arose by gene duplication and have been resistant against the pressures of natural selection, APs may be associated with some functions that are advantageous for survival of offspring. Nonetheless, evolvability is the sole physiological quality of APs that has been characterized in microorganisms such as yeast. Since yeast and human brain may share similar strategies in coping with diverse range of critical environmental stresses, the objective of this paper was to discuss the potential role of evolvability of APs in aging-associated neurodegenerative disorders, including Alzheimer's disease and Parkinson's disease. Given the heterogeneity of APs in terms of structure and cytotoxicity, it is argued that APs might be involved in preconditioning against diverse stresses in human brain. It is further speculated that these stress-related APs, most likely protofibrillar forms, might be transmitted to offspring via the germline, conferring preconditioning against forthcoming stresses. Thus, APs might represent a vehicle for the inheritance of the acquired characteristics against environmental stresses. Curiously, such a characteristic of APs is reminiscent of Charles Darwin's 'gemmules', imagined molecules of heritability described in his pangenesis theory. We propose that evolvability might be a physiological function of APs during the reproductive stage and neurodegenerative diseases could be a by-product effect manifested later in aging. Collectively, our evolvability hypothesis may play a complementary role in the pathophysiology of APs with the conventional amyloid cascade hypothesis.
Collapse
Affiliation(s)
- Makoto Hashimoto
- Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Gilbert Ho
- PCND Neuroscience Research Institute, Poway, CA, USA
| | - Shuei Sugama
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | - Yoshiki Takamatsu
- Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Yuka Shimizu
- Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Takato Takenouchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Masaaki Waragai
- Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Eliezer Masliah
- Division of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
48
|
Hashimoto M, Ho G, Takamatsu Y, Wada R, Sugama S, Takenouchi T, Masliah E, Waragai M. Possible Role of the Polyglutamine Elongation in Evolution of Amyloid-Related Evolvability. J Huntingtons Dis 2018; 7:297-307. [PMID: 30372687 PMCID: PMC6294593 DOI: 10.3233/jhd-180309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The polyglutamine (polyQ) diseases, such as Huntington's disease and the spinocerebellar ataxias, are characterized by the accumulation of elongated polyQ sequences (epolyQ) and mostly occur during midlife. Considering that polyQ disorders have not been selected out in evolution, there might be important physiological functions of epolyQ during development and/or reproduction. In a similar context, the physiological functions of neurodegeneration-associated amyloidogenic proteins (APs), such as β-amyloid in Alzheimer's disease and α-synuclein in Parkinson's disease, remain elusive. In this regard, we recently proposed that evolvability for coping with diverse stressors in the brain, which is beneficial for offspring, might be relevant to the physiological functions of APs. Given analogous properties of APs and epolyQ in terms of neurotoxic amyloid-fibril formation, the objective of this paper is to determine whether evolvability could also be applied to the physiological functions of epolyQ. Indeed, APs and epolyQ are similar in many ways, including functional redundancy of non-amyloidogenic homologues, hormesis conferred by the heterogeneity of the stress-induced protein aggregates, the transgenerational prion-like transmission of the protein aggregates via germ cells, and the antagonistic pleiotropy relationship between evolvability and neurodegenerative disease. Given that epolyQ is widely expressed from microorganisms to human brain, whereas APs are only identified in vertebrates, evolvability of epolyQ is considered to be much more primitive compared to those of APs during evolution. Collectively, epolyQ may be not only be important in the pathophysiology of polyQ diseases, but also in the evolution of amyloid-related evolvability.
Collapse
Affiliation(s)
- Makoto Hashimoto
- Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Setagaya-ku, Tokyo, Japan
| | - Gilbert Ho
- PCND Neuroscience Research Institute, Poway, CA, USA
| | - Yoshiki Takamatsu
- Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Setagaya-ku, Tokyo, Japan
| | - Ryoko Wada
- Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Setagaya-ku, Tokyo, Japan
| | - Shuei Sugama
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | - Takato Takenouchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Eliezer Masliah
- Division of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Masaaki Waragai
- Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Setagaya-ku, Tokyo, Japan
| |
Collapse
|
49
|
Keating ST, van Diepen JA, Riksen NP, El-Osta A. Epigenetics in diabetic nephropathy, immunity and metabolism. Diabetologia 2018; 61:6-20. [PMID: 29128937 PMCID: PMC6448927 DOI: 10.1007/s00125-017-4490-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/22/2017] [Indexed: 01/01/2023]
Abstract
When it comes to the epigenome, there is a fine line between clarity and confusion-walk that line and you will discover another fascinating level of transcription control. With the genetic code representing the cornerstone of rules for information that is encoded to proteins somewhere above the genome level there is a set of rules by which chemical information is also read. These epigenetic modifications show a different side of the genetic code that is diverse and regulated, hence modifying genetic transcription transiently, ranging from short- to long-term alterations. While this complexity brings exquisite control it also poses a formidable challenge to efforts to decode mechanisms underlying complex disease. Recent technological and computational advances have improved unbiased acquisition of epigenomic patterns to improve our understanding of the complex chromatin landscape. Key to resolving distinct chromatin signatures of diabetic complications is the identification of the true physiological targets of regulatory proteins, such as reader proteins that recognise, writer proteins that deposit and eraser proteins that remove specific chemical moieties. But how might a diverse group of proteins regulate the diabetic landscape from an epigenomic perspective? Drawing from an ever-expanding compendium of experimental and clinical studies, this review details the current state-of-play and provides a perspective of chromatin-dependent mechanisms implicated in diabetic complications, with a special focus on diabetic nephropathy. We hypothesise a codified signature of the diabetic epigenome and provide examples of prime candidates for chemical modification. As for the pharmacological control of epigenetic marks, we explore future strategies to expedite and refine the search for clinically relevant discoveries. We also consider the challenges associated with therapeutic strategies targeting epigenetic pathways.
Collapse
Affiliation(s)
- Samuel T Keating
- Department of Internal Medicine, Department of Internal Medicine (463), Radboud University Medical Center, Nijmegen, PO Box 9101, 6500 HB, Nijmegen, the Netherlands.
| | - Janna A van Diepen
- Department of Internal Medicine, Department of Internal Medicine (463), Radboud University Medical Center, Nijmegen, PO Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Niels P Riksen
- Department of Internal Medicine, Department of Internal Medicine (463), Radboud University Medical Center, Nijmegen, PO Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Assam El-Osta
- Central Clinical School, Monash University, 99 Commercial Road, Melbourne, VIC, 3004, Australia.
- Department of Pathology, The University of Melbourne, Parkville, VIC, Australia.
- Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
50
|
Why is parental lifespan linked to children's chances of reaching a high age? A transgenerational hypothesis. SSM Popul Health 2017; 4:45-54. [PMID: 29349272 PMCID: PMC5769101 DOI: 10.1016/j.ssmph.2017.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 12/17/2022] Open
Abstract
Purpose Transgenerational determinants of longevity are poorly understood. We used data from four linked generations (G0, G1, G2 and G3) of the Uppsala Birth Cohort Multigeneration Study to address this issue. Methods Mortality in G1 (N = 9565) was followed from 1961–2015 and analysed in relation to tertiles of their parents’ (G0) age-at-death using Cox regression. Parental social class and marital status were adjusted for in the analyses, as was G1’s birth order and adult social class. For an almost entirely deceased segment of G1 (n = 1149), born 1915–1917, we compared exact age-at-death with G0 parents’ age-at-death. Finally, we explored ‘resilience’ as a potentially important mechanism for intergenerational transmission of longevity, using conscript information from psychological interviews of G2 and G3 men. Results G0 men’s and women’s ages-at-death were independently associated with G1 midlife and old age mortality. This association was robust and minimally reduced when G0 and G1 social class were adjusted for. We observed an increased lifespan in all social groups. Median difference in age-at-death for sons compared to fathers was + 3.9 years, and + 6.9 years for daughters compared to mothers. Parents’ and maternal grandmother’s longevity were associated with resilience in subsequent generations. Resilience scores of G2 men were also associated with those of their G3 sons and with their own mortality in midlife. Conclusions The chance of reaching a high age is transmitted from parents to children in a modest, but robust way. Longevity inheritance is paralleled by the inheritance of individual resilience. Individual resilience, we propose, develops in the first part of life as a response to adversity and early experience in general. This gives rise to a transgenerational pathway, distinct from social class trajectories. A theory of longevity inheritance should bring together previous thinking around general susceptibility, frailty and resilience with new insights from epigenetics and social epidemiology. Parents’ ages-at-death predict children's midlife and old-age mortality. We speculate that these results reflect early programming of resilience. Male resilience, measured at age 18, predicts mortality between ages 50 and 65. Resilience is transmitted across generations, from fathers to sons. Male descendants to long-lived parents are somewhat more resilient than their peers.
Collapse
|