1
|
Liu SH, Shangguan ZS, Maitiaximu P, Li ZP, Chen XX, Li CD. Estrogen restores disordered lipid metabolism in visceral fat of prediabetic mice. World J Diabetes 2024; 15:988-1000. [PMID: 38766434 PMCID: PMC11099359 DOI: 10.4239/wjd.v15.i5.988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/26/2024] [Accepted: 03/11/2024] [Indexed: 05/10/2024] Open
Abstract
BACKGROUND Visceral obesity is increasingly prevalent among adolescents and young adults and is commonly recognized as a risk factor for type 2 diabetes. Estrogen [17β-estradiol (E2)] is known to offer protection against obesity via diverse me-chanisms, while its specific effects on visceral adipose tissue (VAT) remain to be fully elucidated. AIM To investigate the impact of E2 on the gene expression profile within VAT of a mouse model of prediabetes. METHODS Metabolic parameters were collected, encompassing body weight, weights of visceral and subcutaneous adipose tissues (VAT and SAT), random blood glucose levels, glucose tolerance, insulin tolerance, and overall body composition. The gene expression profiles of VAT were quantified utilizing the Whole Mouse Genome Oligo Microarray and subsequently analyzed through Agilent Feature Extraction software. Functional and pathway analyses were conducted employing Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses, respectively. RESULTS Feeding a high-fat diet (HFD) moderately increased the weights of both VAT and SAT, but this increase was mitigated by the protective effect of endogenous E2. Conversely, ovariectomy (OVX) led to a significant increase in VAT weight and the VAT/SAT weight ratio, and this increase was also reversed with E2 treatment. Notably, OVX diminished the expression of genes involved in lipid metabolism compared to HFD feeding alone, signaling a widespread reduction in lipid metabolic activity, which was completely counteracted by E2 administration. This study provides a comprehensive insight into E2's local and direct protective effects against visceral adiposity in VAT at the gene level. CONCLUSION In conclusion, the present study demonstrated that the HFD-induced over-nutritional challenge disrupted the gene expression profile of visceral fat, leading to a universally decreased lipid metabolic status in E2 deficient mice. E2 treatment effectively reversed this condition, shedding light on the mechanistic role and therapeutic potential of E2 in combating visceral obesity.
Collapse
Affiliation(s)
- Su-Huan Liu
- Research Base of Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian Province, China
- Research Center for Translational Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, Fujian Province, China
| | - Zhao-Shui Shangguan
- Research Center for Translational Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, Fujian Province, China
| | - Paiziliya Maitiaximu
- Research Center for Translational Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, Fujian Province, China
| | - Zhi-Peng Li
- Research Center for Translational Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, Fujian Province, China
| | - Xin-Xin Chen
- Research Center for Translational Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, Fujian Province, China
| | - Can-Dong Li
- Research Base of Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian Province, China
| |
Collapse
|
2
|
Anuar AM, Minami A, Matsushita H, Ogino K, Fujita K, Nakao H, Kimura S, Sabaratnam V, Umehara K, Kurebayashi Y, Takahashi T, Kanazawa H, Wakatsuki A, Suzuki T, Takeuchi H. Ameliorating Effect of the Edible Mushroom Hericium erinaceus on Depressive-Like Behavior in Ovariectomized Rats. Biol Pharm Bull 2022; 45:1438-1443. [PMID: 36184501 DOI: 10.1248/bpb.b22-00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Estrogen deficiency during menopause causes a variety of neurological symptoms, including depression. The edible Lion's Mane mushroom, Hericium erinaceus (Bull.: Fr.) Pers. (HE), is a medicinal mushroom that has the potential for a neuroprotective effect and ameliorating neurological diseases, such as depression, anxiety, and neurodegenerative diseases. HE contains phytoestrogens, including daidzein and genistein. However, the ameliorating effect of HE on menopausal symptoms is not well understood. Here we investigated the impact of methanol extract of the HE fruiting body on depressive-like behavior in postmenopausal model rats. The activation of estrogen receptor alpha (ERα) causes body weight loss and uterine weight gain. Body weight gain and uterine weight loss by estrogen deficiency in ovariectomized (OVX) rats were reversed with 17β-estradiol (E2) but not with HE. Thus, the phytoestrogens in HE may hardly activate ERα. Estrogen receptor beta (ERβ) is expressed in the brain, and activation of ERβ ameliorates menopausal depressive symptoms. Notably, depressive-like behavior in OVX rats evaluated in forced swim test was reduced by administration of not only E2 but also HE for 92 d. Long-term activation of ERα increases the risk of breast and uterine cancers. HE, therefore, may be effective in treating menopausal depression without the risk of carcinogenesis caused by ERα activation.
Collapse
Affiliation(s)
- Azliza Mad Anuar
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | - Akira Minami
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | - Hiroshi Matsushita
- Department of Obstetrics and Gynecology, School of Medicine, Aichi Medical University
| | - Kanako Ogino
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | - Kosei Fujita
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | - Hatsune Nakao
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | - Shota Kimura
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | - Vikineswary Sabaratnam
- Mushroom Research Centre, University of Malaya.,Institute of Biological Sciences, Faculty of Science, University of Malaya
| | - Kaoru Umehara
- Faculty of Pharmaceutical Sciences, Yokohama University of Pharmacy
| | - Yuuki Kurebayashi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | - Tadanobu Takahashi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | | | - Akihiko Wakatsuki
- Department of Obstetrics and Gynecology, School of Medicine, Aichi Medical University
| | - Takashi Suzuki
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | - Hideyuki Takeuchi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
3
|
Shiffler JA, Goerger KA, Gorres‐Martens BK. Estrogen receptor α activation modulates the gut microbiome and type 2 diabetes risk factors. Physiol Rep 2022; 10:e15344. [PMID: 35698449 PMCID: PMC9193963 DOI: 10.14814/phy2.15344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 11/24/2022] Open
Abstract
Estradiol and exercise can decrease risk factors associated with type 2 diabetes (T2D) including total body weight gain and abdominal fat gain. Estradiol functions through estrogen receptor (ER) α and ERβ. Some studies suggest that activation of ERα may provide protection against T2D. Female Wistar rats were ovariectomized and fed a high-fat diet for 10 weeks and divided into the following 5 experimental groups: (1) no treatment (control), (2) exercise, (3) estradiol, (4) propylpyrazoletriyl (a selective ERα agonist), and (5) diarylpropionitrile (a selective ERβ agonist). ERα activation decreased the abundance of Firmicutes, and ERα and ERβ activation increased the abundance of Bacteroidetes. ERα activation decreased food consumption, and ERα and ERβ activation increased voluntary activity. Exercise was the only treatment to decrease the blood glucose and serum insulin levels. ERα activation, but not ERβ, increased hepatic protein expression of ACC and FAS and decreased hepatic protein expression of LPL. ERα activation also decreased hepatic mRNA expression of PPARα and PPARγ. This study elucidates the functions of estradiol by assessing specific activation of ERα and ERβ. As obesity increases the abundance of Firmicutes and decreases the abundance of Bacteroidetes, our study shows that ERα activation can restore the gut microbiome to non-obese abundances. This study further provides novel insights into ERα's role in hepatic fat metabolism via regulation of ACC, FAS, LPL, PPARα, and PPARγ.
Collapse
Affiliation(s)
- Janelle A. Shiffler
- Exercise and Sport Sciences DepartmentAugustana UniversitySioux FallsSouth DakotaUSA
| | - Krista A. Goerger
- Biology DepartmentUniversity of Sioux FallsSioux FallsSouth DakotaUSA
| | | |
Collapse
|
4
|
Molina-Molina E, Furtado GE, Jones JG, Portincasa P, Vieira-Pedrosa A, Teixeira AM, Barros MP, Bachi ALL, Sardão VA. The advantages of physical exercise as a preventive strategy against NAFLD in postmenopausal women. Eur J Clin Invest 2022; 52:e13731. [PMID: 34890043 DOI: 10.1111/eci.13731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND The prevalence and severity of nonalcoholic fatty liver disease (NAFLD) increase in women after menopause. This narrative review discusses the causes and consequences of NAFLD in postmenopausal women and describes how physical activity can contribute to its prevention. METHODS The authors followed the narrative review method to perform a critical and objective analysis of the current knowledge on the topic. The Medical Subject Heading keywords 'physical exercise', 'menopause', 'hormone replacement therapy', 'estradiol' and 'NAFLD' were used to establish a conceptual framework. The databases used to collect relevant references included Medline and specialized high-impact journals. RESULTS Higher visceral adiposity, higher rate of lipolysis in adipose tissue after oestrogen drop and changes in the expression of housekeeping proteins involved in hepatic lipid management are observed in women after menopause, contributing to NAFLD. Excessive liver steatosis leads to hepatic insulin resistance, oxidative stress and inflammation, accelerating NAFLD progression. Physical activity brings beneficial effects against several postmenopausal-associated complications, including NAFLD progression. Aerobic and resistance exercises partially counteract alterations induced by metabolic syndrome in sedentary postmenopausal women, impacting NAFLD progression and severity. CONCLUSIONS With the increased global obesity epidemic in developing countries, NAFLD is becoming a severe problem with increased prevalence in women after menopause. Evidence shows that physical activity may delay NAFLD development and severity in postmenopausal women, although the prescription of age-appropriate physical activity programmes is advisable to assure the health benefits.
Collapse
Affiliation(s)
- Emilio Molina-Molina
- Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Clinica Medica "A. Murri", Bari, Italy
| | - Guilherme Eustaquio Furtado
- Health Sciences Research Unit: Nursing (UICISA:E), Nursing School of Coimbra (ESEnfC), Coimbra, Portugal.,Research Unit for Sport and Physical Activity (CIDAF) Faculty of Sport Science and Physical Education, FCDEF-UC), University of Coimbra, Coimbra, Portugal
| | - John G Jones
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Piero Portincasa
- Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Clinica Medica "A. Murri", Bari, Italy
| | - Ana Vieira-Pedrosa
- Research Unit for Sport and Physical Activity (CIDAF) Faculty of Sport Science and Physical Education, FCDEF-UC), University of Coimbra, Coimbra, Portugal
| | - Ana Maria Teixeira
- Research Unit for Sport and Physical Activity (CIDAF) Faculty of Sport Science and Physical Education, FCDEF-UC), University of Coimbra, Coimbra, Portugal
| | - Marcelo Paes Barros
- Institute of Physical Activity Sciences and Sports (ICAFE), Interdisciplinary Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - André Luís Lacerda Bachi
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology, São Paulo, Brazil.,Department of Otorhinolaryngology, ENT Lab, Federal University of São Paulo (UNIFESP), São Paulo, Brazil.,Post-Graduation Program in Health Sciences, Santo Amaro University (UNISA), São Paulo, Brazil
| | - Vilma A Sardão
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Faculty of Sport Science and Physical Education, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
5
|
Marlatt KL, Pitynski-Miller DR, Gavin KM, Moreau KL, Melanson EL, Santoro N, Kohrt WM. Body composition and cardiometabolic health across the menopause transition. Obesity (Silver Spring) 2022; 30:14-27. [PMID: 34932890 PMCID: PMC8972960 DOI: 10.1002/oby.23289] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/15/2021] [Accepted: 08/09/2021] [Indexed: 12/23/2022]
Abstract
Every year, 2 million women reach menopause in the United States, and they may spend 40% or more of their life in a postmenopausal state. In the years immediately preceding menopause-known as the menopause transition (or perimenopause)-changes in hormones and body composition increase a woman's overall cardiometabolic risk. In this narrative review, we summarize the changes in weight, body composition, and body fat distribution, as well as the changes in energy intake, energy expenditure, and other cardiometabolic risk factors (lipid profile, glucose metabolism, sleep health, and vascular function), that occur during the menopause transition. We also discuss the benefits of lifestyle interventions in women in the earlier stages of menopause before these detrimental changes occur. Finally, we discuss how to include perimenopausal women in research studies so that women across the life-span are adequately represented.
Collapse
Affiliation(s)
- Kara L. Marlatt
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Dori R. Pitynski-Miller
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Eastern Colorado VA Health Care System, Geriatric Research Education and Clinical Center (GRECC), Denver, Colorado, USA
| | - Kathleen M. Gavin
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Eastern Colorado VA Health Care System, Geriatric Research Education and Clinical Center (GRECC), Denver, Colorado, USA
| | - Kerrie L. Moreau
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Eastern Colorado VA Health Care System, Geriatric Research Education and Clinical Center (GRECC), Denver, Colorado, USA
| | - Edward L. Melanson
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Eastern Colorado VA Health Care System, Geriatric Research Education and Clinical Center (GRECC), Denver, Colorado, USA
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Nanette Santoro
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Wendy M. Kohrt
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Eastern Colorado VA Health Care System, Geriatric Research Education and Clinical Center (GRECC), Denver, Colorado, USA
| |
Collapse
|
6
|
Genistein Regulates Lipid Metabolism via Estrogen Receptor β and Its Downstream Signal Akt/mTOR in HepG2 Cells. Nutrients 2021; 13:nu13114015. [PMID: 34836271 PMCID: PMC8622023 DOI: 10.3390/nu13114015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/20/2022] Open
Abstract
Genistein (GEN) has been shown to significantly inhibit hepatic triglyceride accretion triggered by estrogen deficiency. The main purpose of this in vitro study was to investigate the function and molecular mechanism of estrogen receptor β (ERβ) in regulating hepatic lipid metabolism induced by GEN. Different doses of GEN or GEN with an ERβ antagonist were treated with HepG2 cells. Results showed that 25 μM GEN significantly diminished triglyceride levels. Meanwhile, GEN downregulated the levels of genes and proteins involved in lipogenesis, such as sterol-regulatory element-binding protein-1c (SREBP-1c), fatty acid synthase (FASN), and stearoyl-coenzyme A desaturase 1 (SCD1), and upregulated the gene and protein levels of the regulation factors responsible for fatty acid β-oxidation, such as carnitine palmitoyltransferase 1α (CPT-1α) and peroxisome proliferator-activated receptor α (PPARα). Furthermore, 25 μM GEN reduced the levels of phosphorylation of protein kinase B (Akt) and mechanistic target of rapamycin (mTOR). Moreover, most of these effects from GEN were reverted by pretreatment with the antagonist of ERβ. In conclusion, GEN improved hepatic lipid metabolism by activating ERβ and further modulation of Akt/mTOR signals. The results provide novel aspects of the regulatory mechanism of ERβ on hepatic lipid metabolism and might help to profoundly understand the functions of food-derived phytoestrogens in preventing and treating hepatic steatosis in postmenopausal women.
Collapse
|
7
|
Fritsch LJ, McCaulley SJ, Johnson CR, Lawson NJ, Gorres-Martens BK. Exercise prevents whole body type 2 diabetes risk factors better than estradiol replacement in rats. J Appl Physiol (1985) 2021; 131:1520-1531. [PMID: 34590912 DOI: 10.1152/japplphysiol.00098.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The absence of estrogens in postmenopausal women is linked to an increased risk of type 2 diabetes (T2D) and estradiol replacement can decrease this risk. Notably, exercise can also treat and prevent T2D. This study seeks to understand the molecular mechanisms by which estradiol and exercise induce their beneficial effects via assessing whole body and cellular changes. Female Wistar rats were ovariectomized and fed a high-fat diet for 10 wk and divided into the following four experimental groups: 1) no treatment (control), 2) exercise (Ex), 3) estradiol replacement, and 4) Ex + estradiol. Both Ex and estradiol decreased the total body weight gain. However, only exercise effectively reduced the white adipose tissue (WAT) weight gain, food intake, blood glucose levels, and serum insulin levels. At the molecular level, exercise increased the noninsulin-stimulated pAkt levels in the WAT. In the liver, estradiol increased the protein expression of acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) and estradiol decreased the hepatic protein expression of lipoprotein lipase (LPL). In the WAT, estradiol and exercise increased the protein expression of adipose triglyceride lipase (ATGL). Exercise provides better protection against T2D when considering whole body measurements, which may be due to increased noninsulin-stimulated pAkt in the WAT. However, at the cellular level, several molecular changes in fat metabolism and fat storage occurred in the liver and WAT with estradiol treatment.NEW & NOTEWORTHY Exercise provides better protection than estradiol against type 2 diabetes when considering whole body measurements including adipose tissue weight, blood glucose levels, and serum insulin levels, which may be due to increased noninsulin-stimulated pAkt in the adipose tissue. However, at the cellular level, several molecular changes in fat metabolism and fat storage occurred in the liver and adipose tissue with estradiol treatment.
Collapse
Affiliation(s)
- Luke J Fritsch
- Biology Department, Augustana University, Sioux Falls, South Dakota
| | - Skylar J McCaulley
- Biology Department, University of Sioux Falls, Sioux Falls, South Dakota
| | - Colton R Johnson
- Exercise Science Department, University of Sioux Falls, Sioux Falls, South Dakota
| | - Nicholaus J Lawson
- Exercise Science Department, University of Sioux Falls, Sioux Falls, South Dakota
| | | |
Collapse
|
8
|
Leis K, Kulczyńska A, Racinowski M, Kaczor P, Gołębiewski J, Januszko-Giergielewicz B. Genistein–a supplement improving efficiency of the human body: A review. Sci Sports 2021. [DOI: 10.1016/j.scispo.2020.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Early Postnatal Genistein Administration Affects Mice Metabolism and Reproduction in a Sexually Dimorphic Way. Metabolites 2021; 11:metabo11070449. [PMID: 34357343 PMCID: PMC8303179 DOI: 10.3390/metabo11070449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 12/30/2022] Open
Abstract
The phytoestrogen genistein (GEN) may interfere with permanent morphological changes in the brain circuits sensitive to estrogen. Due to the frequent use of soy milk in the neonatal diet, we aimed to study the effects of early GEN exposure on some physiological and reproductive parameters. Mice of both sexes from PND1 to PND8 were treated with GEN (50 mg/kg body weight, comparable to the exposure level in babies fed with soy-based formulas). When adult, we observed, in GEN-treated females, an advanced pubertal onset and an altered estrous cycle, and, in males, a decrease of testicle weight and fecal testosterone concentration. Furthermore, we observed an increase in body weight and altered plasma concentrations of metabolic hormones (leptin, ghrelin, triiodothyronine) limited to adult females. Exposure to GEN significantly altered kisspeptin and POMC immunoreactivity only in females and orexin immunoreactivity in both sexes. In conclusion, early postnatal exposure of mice to GEN determines long-term sex-specific organizational effects. It impairs the reproductive system and has an obesogenic effect only in females, which is probably due to the alterations of neuroendocrine circuits controlling metabolism; thus GEN, should be classified as a metabolism disrupting chemical.
Collapse
|
10
|
Fleischer AW, Schalk JC, Wetzel EA, Hanson AM, Sem DS, Donaldson WA, Frick KM. Long-term oral administration of a novel estrogen receptor beta agonist enhances memory and alleviates drug-induced vasodilation in young ovariectomized mice. Horm Behav 2021; 130:104948. [PMID: 33571507 PMCID: PMC8680219 DOI: 10.1016/j.yhbeh.2021.104948] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/09/2020] [Accepted: 01/19/2021] [Indexed: 01/11/2023]
Abstract
Development of estrogen therapies targeting the β (ERβ) but not α (ERα) estrogen receptor is critically needed for the treatment of negative menopausal symptoms, as ERα activation increases health risks like cancer. Here, we determined the effects of long-term oral treatment with EGX358, a novel highly selective ERβ agonist, on memory, vasodilation, and affect in young ovariectomized mice. Mice were orally gavaged daily for 9 weeks with vehicle, 17β-estradiol (E2), the ERβ agonist diarylpropionitrile (DPN), or EGX358 at doses that enhance memory when delivered acutely. Tail skin temperature was recorded as a proxy for vasodilation following injection of vehicle or senktide, a tachykinin receptor 3 agonist used to model hot flashes. Anxiety-like behavior was assessed in the open field (OF) and elevated plus maze (EPM), and depression-like behavior was measured in the tail suspension (TST) and forced swim tests (FST). Finally, memory was assessed in object recognition (OR) and object placement (OP) tasks. E2, DPN, and EGX358 reduced senktide-mediated increases in tail skin temperature compared to vehicle. All three treatments also enhanced memory in the OR and OP tasks, whereas vehicle did not. Although E2 increased time spent in the center of the OF, no other treatment effects were observed in the OF, EPM, TST, or FST. These data suggest that long-term ERβ activation can reduce hot flash-like symptoms and enhance spatial and object recognition memories in ovariectomized mice. Thus, the highly selective ERβ agonist EGX358 may be a promising avenue for reducing menopause-related hot flashes and memory dysfunction.
Collapse
Affiliation(s)
- Aaron W Fleischer
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States of America.
| | - Jayson C Schalk
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States of America.
| | - Edward A Wetzel
- Department of Chemistry, Marquette University, Milwaukee, WI 53201-1881, United States of America.
| | - Alicia M Hanson
- Department Pharmaceutical Sciences, Concordia University Wisconsin, Mequon, WI 53097, United States of America; Center for Structure-Based Drug Design and Development, Concordia University Wisconsin, Mequon, WI 53097, United States of America.
| | - Daniel S Sem
- Department Pharmaceutical Sciences, Concordia University Wisconsin, Mequon, WI 53097, United States of America; Center for Structure-Based Drug Design and Development, Concordia University Wisconsin, Mequon, WI 53097, United States of America.
| | - William A Donaldson
- Department of Chemistry, Marquette University, Milwaukee, WI 53201-1881, United States of America.
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States of America.
| |
Collapse
|
11
|
Sul OJ, Hyun HJ, Rajasekaran M, Suh JH, Choi HS. Estrogen enhances browning in adipose tissue by M2 macrophage polarization via heme oxygenase-1. J Cell Physiol 2021; 236:1875-1888. [PMID: 32716106 DOI: 10.1002/jcp.29971] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/14/2020] [Indexed: 12/19/2022]
Abstract
Loss of ovarian function results in increased fat mass, leading to the accumulation of adipose tissue macrophages that participate in chronic inflammation. We hypothesized that ovariectomy (OVX)-induced increases in body weight and fat mass are associated with decreased adipose tissue (AT) browning due to estrogen (E2 ) deficiency. In mice, OVX decreased AT browning along with increased body weight, fat mass, and size of lipid droplets 12 weeks after surgery. Exogenous E2 recovered the OVX-induced changes. AT browning was enhanced by M2 macrophages induced by exogenous E2. E2 -induced M2 polarization occurred due to the increased expression of heme oxygenase-1 (HO-1) in macrophages, leading to decreased reactive oxygen species levels. Collectively, we demonstrated that E2 enhances AT browning via M2 polarization mediated by HO-1.
Collapse
Affiliation(s)
- Ok-Joo Sul
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea
| | - Hyo-Jung Hyun
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea
| | | | - Jae-Hee Suh
- Department of Pathology, Ulsan University Hospital, Ulsan, Korea
| | - Hye-Seon Choi
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea
| |
Collapse
|
12
|
Genistein Modulated Lipid Metabolism, Hepatic PPARγ, and Adiponectin Expression in Bilateral Ovariectomized Rats with Nonalcoholic Steatohepatitis (NASH). Antioxidants (Basel) 2020; 10:antiox10010024. [PMID: 33383845 PMCID: PMC7824652 DOI: 10.3390/antiox10010024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/17/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was to evaluate the protective effects of genistein on lipid accumulation and apoptosis in estrogen deficient rats with NASH. Female Sprague-Dawley rats (n = 48) were divided into ovariectomized (OVX) and non-OVX groups. Each group was then sub-divided into 3 subgroups; control, NASH (rats fed with a high-fat, high-fructose (HFHF) diet), and NASH+Gen (rats fed with HFHF diet plus daily genistein at 16 mg/kg BW). Results showed that HFHF diet induced liver fat accumulation in both non-OVX and OVX rats, which was evidenced by hepatic steatosis on liver pathology and increased hepatic free fatty acid (FFA) and triglyceride levels. Hepatic fat accumulation was significantly more severe in NASH rats with OVX than non-OVX. Hepatocyte apoptosis was more severe in NASH groups compared with that in control groups. Genistein administration significantly improved histopathology of NASH in both non-OVX and OVX rats and attenuated hepatic lipid accumulation, oxidative stress, and hepatocyte apoptosis. Genistein also down-regulated PPARγ and up-regulated adiponectin expression. In summary, NASH could be worsened by estrogen deficiency, indicating the protective action of estrogen on NASH. Genistein administration alleviated hepatic steatosis and apoptosis through the down-regulation of PPARγ and up-regulation of adiponectin expression.
Collapse
|
13
|
Moghazy H, Abdeen Mahmoud A, Elbadre H, Abdel Aziz HO. Protective Effect of Oxytocin Against Bone Loss in a Female Rat Model of Osteoporosis. Rep Biochem Mol Biol 2020; 9:147-155. [PMID: 33178863 DOI: 10.29252/rbmb.9.2.147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Introduction: Oxytocin (OT) has been proposed to assist in the regulation of bone remodeling and to exert an antiosteoporotic effect. We evaluated the possible protective effect of OT against bone degeneration in ovariectomized (OVX) rats. Methods The study was performed on three groups of adult female rats; group I was subjected to sham operation, group II was subjected to ovariectomy, and group III was subjected to ovariectomy and intraperitoneal injection with OT for eight successive weeks. At the end of the study, bone mass density (BMD) was measured; then the rats were euthanized and their blood and bone tissues were examined. Results The group II rats had significantly less BMD and greater serum bone-specific alkaline phosphatase (bALP), osteocalcin (OC), and tartrate-resistant acid phosphatase (TRAP) levels than the group I rats. Furthermore, group II rats had fewer osteocytes and osteoblasts, and less OPG/RANKL mRNA expression than group I rats. The groups I and III and rats showed no significant differences in BMD, bALP, OC, TRAP, OPG/RANKL mRNA expression, or osteocyte and osteoblast numbers. Conclusion Oxytocin may have an antiosteoporotic effect in OVX rats.
Collapse
Affiliation(s)
- Hoda Moghazy
- Medical Physiology Department, Faculty of Medicine, Sohag University, Egypt
| | - Aida Abdeen Mahmoud
- Medical Biochemistry Department, Faculty of Medicine, Sohag University, Egypt
| | - Hala Elbadre
- Medical Biochemistry Department, Faculty of Medicine, Assiut University, Egypt
| | | |
Collapse
|
14
|
Gu C, Cai J, Fan X, Bian Y, Yang X, Xia Q, Sun C, Jiang X. Theoretical investigation of AhR binding property with relevant structural requirements for AhR-mediated toxicity of polybrominated diphenyl ethers. CHEMOSPHERE 2020; 249:126554. [PMID: 32213394 DOI: 10.1016/j.chemosphere.2020.126554] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 06/10/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are more frequently suspected with the induction of toxicity via signal transduction pathway of cytosolic aryl hydrocarbon receptor (AhR), the initial binding to which is assumed to be an essential prerequisite during the ligand-dependent activation. However, the AhR binding property and associated toxicity of PBDEs is yet to be clearly known for lacking insights into the structural requirements at molecular level. To understand the AhR binding property of PBDEs, the ligand binding domain (LBD) of AhR was simulatively developed on homologous protein after basic validation of geometrical rationality and the binding interaction profile was visually described using molecular docking approach. For AhR binding, the offset or edge-on π-π stackings with aromatic motifs including Phe289, Phe345 and His285 were shown to be structurally required whereas the electrostatic attraction validated for AhR binding to dioxins might be less effective for 2,2',3,4,4'-pentabromodiphenyl ether (BDE-85). Besides the demands of less steric hindrance from alanines and weak formulation of hydrogen bonds, the dispersion force through large contact and polarization of S-π electrons seemed to be impactful when BDE-85 were closer to Cys327, Met334 or Met342. With theoretical computation of AhR binding energies, the more significant correlativity with bioassays was derived especially for the lowly/moderately brominated congeners, and could be used to predict the AhR binding affinity on certain degree. The informative results would thus not only help well understand the molecular basis of AhR-mediated toxicity but give an approach for accelerative evaluation of AhR binding and toxicity of PBDEs.
Collapse
Affiliation(s)
- Chenggang Gu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China.
| | - Jun Cai
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China; University of the Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xiuli Fan
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China; University of the Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yongrong Bian
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Xinglun Yang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Qiying Xia
- Shandong Province Key Laboratory of Soil Conservation and Environmental Protection, Linyi University, Linyi, 276005, PR China.
| | - Cheng Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, PR China
| | - Xin Jiang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China.
| |
Collapse
|
15
|
Sabbatini AR, Kararigas G. Estrogen-related mechanisms in sex differences of hypertension and target organ damage. Biol Sex Differ 2020; 11:31. [PMID: 32487164 PMCID: PMC7268741 DOI: 10.1186/s13293-020-00306-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
Hypertension (HTN) is a primary risk factor for cardiovascular (CV) events, target organ damage (TOD), premature death and disability worldwide. The pathophysiology of HTN is complex and influenced by many factors including biological sex. Studies show that the prevalence of HTN is higher among adults aged 60 and over, highlighting the increase of HTN after menopause in women. Estrogen (E2) plays an important role in the development of systemic HTN and TOD, exerting several modulatory effects. The influence of E2 leads to alterations in mechanisms regulating the sympathetic nervous system, renin-angiotensin-aldosterone system, body mass, oxidative stress, endothelial function and salt sensitivity; all associated with a crucial inflammatory state and influenced by genetic factors, ultimately resulting in cardiac, vascular and renal damage in HTN. In the present article, we discuss the role of E2 in mechanisms accounting for the development of HTN and TOD in a sex-specific manner. The identification of targets with therapeutic potential would contribute to the development of more efficient treatments according to individual needs.
Collapse
Affiliation(s)
| | - Georgios Kararigas
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.
| |
Collapse
|
16
|
Estradiol Replacement Improves High-Fat Diet-Induced Obesity by Suppressing the Action of Ghrelin in Ovariectomized Rats. Nutrients 2020; 12:nu12040907. [PMID: 32224927 PMCID: PMC7230822 DOI: 10.3390/nu12040907] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/17/2020] [Accepted: 03/24/2020] [Indexed: 12/16/2022] Open
Abstract
This study aims to investigate the effects of estradiol replacement on the orexigenic action of ghrelin in ovariectomized (OVX) obese rats fed with a high-fat diet (HFD). Four weeks after OVX at 9 weeks of age, Wistar rats were subcutaneously implanted with either 17β-estradiol (E2) or placebo (Pla) pellets and started on HFD feeding. After 4 weeks, growth hormone-releasing peptide (GHRP)-6, a growth hormone secretagogue receptor (GHSR) agonist injected intraperitoneally, induced changes in HFD intake, and c-Fos-positive neurons in the hypothalamic arcuate nucleus (ARC) were measured in both groups. The ghrelin protein and mRNA levels, as well as GHSR protein in stomach, were analyzed by Western blotting and real-time PCR. HFD increased energy intake and body weight in the Pla group, while it temporarily reduced these in the E2 group. GHRP-6 enhanced HFD intake and activated neurons in the ARC only in the Pla group. Furthermore, gastric ghrelin and GHSR protein levels were lower in the E2 group than in the Pla group, but plasma acyl ghrelin levels were similar in both groups. Our results suggest that E2 replacement improves obesity by inhibiting the orexigenic action of ghrelin via downregulation of ghrelin and its receptor in stomach in HFD-fed OVX rats.
Collapse
|
17
|
Gorres-Martens BK, Field TJ, Schmidt ER, Munger KA. Exercise prevents HFD- and OVX-induced type 2 diabetes risk factors by decreasing fat storage and improving fuel utilization. Physiol Rep 2019; 6:e13783. [PMID: 29981201 PMCID: PMC6035332 DOI: 10.14814/phy2.13783] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 11/24/2022] Open
Abstract
Previous studies suggest that the loss of estrogens increase one's risk for type 2 diabetes (T2D), and combining the loss of estrogens with a high-fat diet (HFD) poses an even greater risk for T2D. The extent to which exercise can ameliorate the deleterious effects of estrogen loss combined with a HFD and the molecular mechanisms accounting for the whole body changes is currently unknown. Therefore, we fed female Wistar rats a standard diet or a HFD for 10 weeks. The rats fed the HFD were either ovariectomized (OVX) or their ovaries remained intact. A subset of the HFD/OVX rats also underwent exercise training on a motor-driven treadmill. Exercise significantly reduced the total body weight gain, periuterine white adipose tissue (WAT) weight, hyperglycemia, and hyperinsulinemia. Additionally, the ability to store fat, as measured by lipoprotein lipase (LPL) in the WAT, was increased in the HFD/OVX group; however, exercise reduced the LPL levels. Furthermore, the combination of the HFD with OVX decreased the WAT citrate synthase protein level, which was increased with exercise. These data suggest that even during the combined HFD/OVX physiological state, exercise can decrease several risk factors associated with T2D, decrease fat storage, and increase fuel utilization.
Collapse
Affiliation(s)
| | - Tyler J Field
- Exercise and Sport Sciences Department, Augustana University, Sioux Falls, South Dakota
| | - Emma R Schmidt
- Exercise and Sport Sciences Department, Augustana University, Sioux Falls, South Dakota
| | - Karen A Munger
- Research & Development, Sioux Falls VA Health Care System, Sioux Falls, South Dakota
| |
Collapse
|
18
|
Dalgaard LB, Dalgas U, Andersen JL, Rossen NB, Møller AB, Stødkilde-Jørgensen H, Jørgensen JO, Kovanen V, Couppé C, Langberg H, Kjær M, Hansen M. Influence of Oral Contraceptive Use on Adaptations to Resistance Training. Front Physiol 2019; 10:824. [PMID: 31312144 PMCID: PMC6614284 DOI: 10.3389/fphys.2019.00824] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/12/2019] [Indexed: 02/01/2023] Open
Abstract
Introduction: The majority of young women use oral contraceptives (OCs). Use of OCs has been associated with lower myofibrillar protein and tendon collagen synthesis rates, but it is unknown whether OCs will limit the adaptive response of myotendinous tissue to resistance training. Design and Methods: Fourteen healthy untrained young regular OC users (24 ± 1 years, fat% 32 ± 1, 35 ± 2 ml⋅min-1⋅kg-1) and 14 NOC users (non-OC, controls) (24 ± 1 years, fat% 32 ± 2, 34 ± 2 ml⋅min-1⋅kg-1) performed a 10-week supervised lower extremity progressive resistance training program. Before and after the intervention biopsies from the vastus lateralis muscle and the patellar tendon were obtained. Muscle (quadriceps) and tendon cross-sectional area (CSA) was determined by magnetic resonance imaging (MRI) scans, and muscle fiber CSA was determined by histochemistry. Maximal isometric knee extension strength was assessed by dynamometry while 1 repetition maximum (RM) was determined during knee extension. Results: Training enhanced CSA in both muscle (p < 0.001) and tendon (p < 0.01). A trend toward a greater increase in muscle CSA was observed for OC (11%) compared to NOC (8%) (interaction p = 0.06). Analysis of mean muscle fiber type CSA showed a trend toward an increase in type II muscle fiber area in both groups (p = 0.11, interaction p = 0.98), whereas type I muscle fiber CSA increased in the OC group (n = 9, 3821 ± 197 to 4490 ± 313 mm2, p < 0.05), but not in NOC (n = 7, 4020 ± 348 to 3777 ± 354 mm2, p = 0.40) (interaction p < 0.05). Post hoc analyses indicated that the effect of OCs on muscle mass increase was induced by the OC-users (n = 7), who used OCs containing 30 μg ethinyl estradiol (EE), whereas the response in users taking OCs with 20 μg EE (n = 7) did not differ from NOC. Both the OC and NOC group experienced an increase in maximal knee strength (p < 0.001) and 1RM leg extension (p < 0.001) after the training period with no difference between groups. Conclusion: Use of OCs during a 10-week supervised progressive resistance training program was associated with a trend toward a greater increase in muscle mass and a significantly greater increase in type I muscle fiber area compared to controls. Yet, use of OCs did not influence the overall increase in muscle strength related to training.
Collapse
Affiliation(s)
- Line B Dalgaard
- Section of Sport Science, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Ulrik Dalgas
- Section of Sport Science, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Jesper L Andersen
- Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Institute of Sports Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicklas B Rossen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark.,Department of Endocrinology and Internal Medicine, Medical Research Laboratories, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Jens Otto Jørgensen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark.,Department of Endocrinology and Internal Medicine, Medical Research Laboratories, Aarhus University Hospital, Aarhus, Denmark
| | - Vuokko Kovanen
- Faculty of Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Christian Couppé
- Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Institute of Sports Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henning Langberg
- Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Institute of Sports Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.,CopenRehab, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Kjær
- Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Institute of Sports Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Hansen
- Section of Sport Science, Department of Public Health, Aarhus University, Aarhus, Denmark.,Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Institute of Sports Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Reitzner SM, Hengevoss J, Isenmann E, Diel P. Modulation of exercise training related adaptation of body composition and regulatory pathways by anabolic steroids. J Steroid Biochem Mol Biol 2019; 190:44-53. [PMID: 30926427 DOI: 10.1016/j.jsbmb.2019.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 10/27/2022]
Abstract
Anabolic steroids have a long history of abuse in amateur and professional athletics. However, their interaction with training and the resulting effects on body composition and tissue adaptation, relying on a concert of factors and pathways, remain under investigation. This study aims at investigating the changes of body composition and the expression of selected genes and pathways essential for this adaptation process. Therefore, male wistar rats were treated with the anabolic steroid metandienone in two groups (n = 16; metandienone, metandienone + exercise) alongside with control groups (n = 16; control, exercise). Following a 6-week steep-angle treadmill training protocol, weight of organs, visceral fat and muscles was determined. M. gastrocnemius was histologically assessed by ATPase staining, mRNA and protein levels of factors of regeneration, hypertrophy and myogenesis and selected master regulators and markers were determined. Results show additive effects of anabolic steroids and exercise on body, tibia and reproductive organs weight. Mm. gastrocnemius and soleus weight was increased by training but not anabolic steroids. Muscle fiber diameter and composition remained unchanged. Visceral fat mass and fat cell size was affected by training and anabolic steroids but no additive effects could be observed. Exercise and anabolic steroids result in a complex regulation of the expression of genes in M. Gastrocnemius involved in skeletal muscle metabolism, hypertrophy, inflammation and regeneration. In summary, our data suggests distinct molecular mechanisms involved in the adaptation of the skeletal muscle to anabolic androgenic steroids and exercise. Metandienone treatment neither results in skeletal muscle hypertrophy nor liver-toxic effects but in an induction of skeletal muscle regeneration and an activation of endocrine negative feedback. Moreover our study demonstrates that visceral fat and bone responds with higher sensitivity to ASS and exercise than the skeletal muscle. This apparent plasticity of adipose and bone tissue rather than skeletal muscle could indicate a potentially superior future role of fat rather than muscle related parameters to detect and AAS abuse in a biologic passport strategy in professional athletes.
Collapse
Affiliation(s)
| | - Jonas Hengevoss
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Germany
| | - Eduard Isenmann
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Germany
| | - Patrick Diel
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Germany
| |
Collapse
|
20
|
Sung ES, Kim JH. The resistance training effects of different weight level during menstrual cycle in female. J Exerc Rehabil 2019; 15:249-253. [PMID: 31111008 PMCID: PMC6509460 DOI: 10.12965/jer.193808.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/28/2019] [Indexed: 01/21/2023] Open
Abstract
We examined the different effects of body mass index (BMI) level on resistance training during menstrual cycle. Thirty-six female subjects performed resistance training and subjects were divided into three groups: BMIunder, BMInorm, BMIover. Subjects completed 12 weeks of sub-maximal resistance training with 3 sets of 8–12 repetitions. Maximum isometric force test was measured before and after training in the follicular phase (FP) and the luteal phase (LP). Maximum isometric force of whole groups (BMIunder, BMInorm, BMIover) was significantly increased both FP and LP after 12-week resistance training. Maximum isometric force after training and absolute increase value in BMInorm and BMIover were no significantly different between FP and LP. However, significant different of maximum isometric force after training (FP, 79.08±11.60; LP, 84.05±12.38) and absolute increase value (FP, 9.63±5.47; LP, 15.13±6.06) were found between FP and LP just by BMIunder. We suggest that if muscle strength is measured in the FP (LP) before training and then they should be measured same phase, such as FP and LP after training and BMIunder can be influenced muscle strength in LP.
Collapse
Affiliation(s)
- Eun-Sook Sung
- Department of Graduate School of Alternative Medicine, Kyonggi University, Seoul, Korea
| | - Jung-Hyun Kim
- Department of Physical Therapy, College of Health Welfare, Woosong University, Daejeon, Korea
| |
Collapse
|
21
|
Genistein ameliorated obesity accompanied with adipose tissue browning and attenuation of hepatic lipogenesis in ovariectomized rats with high-fat diet. J Nutr Biochem 2019; 67:111-122. [DOI: 10.1016/j.jnutbio.2019.02.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 01/21/2019] [Accepted: 02/13/2019] [Indexed: 02/06/2023]
|
22
|
Xing L, Jin B, Fu X, Zhu J, Guo X, Xu W, Mou X, Wang Z, Jiang F, Zhou Y, Chen X, Shu J. Identification of functional estrogen response elements in glycerol channel Aquaporin-7 gene. Climacteric 2019; 22:466-471. [PMID: 30888885 DOI: 10.1080/13697137.2019.1580255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- L. Xing
- Department of Reproductive Endocrinology, Zhejiang Provincial People‘s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
| | - B. Jin
- Department of Reproductive Endocrinology, Zhejiang Provincial People‘s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
| | - X. Fu
- Department of Reproductive Endocrinology, Zhejiang Provincial People‘s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
| | - J. Zhu
- Department of Reproductive Endocrinology, Zhejiang Provincial People‘s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
| | - X. Guo
- Department of Reproductive Endocrinology, Zhejiang Provincial People‘s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
| | - W. Xu
- Department of Reproductive Endocrinology, Zhejiang Provincial People‘s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
| | - X. Mou
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, Hangzhou, Zhejiang, P.R. China
| | - Z. Wang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, Hangzhou, Zhejiang, P.R. China
| | - F. Jiang
- The First Clinical Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Y. Zhou
- The First Clinical Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - X. Chen
- Department of Reproductive Endocrinology, Zhejiang Provincial People‘s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, Hangzhou, Zhejiang, P.R. China
| | - J. Shu
- Department of Reproductive Endocrinology, Zhejiang Provincial People‘s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
- The First Clinical Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| |
Collapse
|
23
|
Hua L, Zhuo Y, Jiang D, Li J, Huang X, Zhu Y, Li Z, Yan L, Jin C, Jiang X, Che L, Fang Z, Lin Y, Xu S, Li J, Feng B, Wu D. Identification of hepatic fibroblast growth factor 21 as a mediator in 17β‐estradiol‐induced white adipose tissue browning. FASEB J 2018; 32:5602-5611. [DOI: 10.1096/fj.201800240r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Lun Hua
- Institute of Animal Nutrition and Ministry of Education of ChinaSichuan Agricultural UniversityChengduChina
- Key Laboratory for Animal Disease‐Resistant NutritionMinistry of Education of ChinaSichuan Agricultural UniversityChengduChina
| | - Yong Zhuo
- Institute of Animal Nutrition and Ministry of Education of ChinaSichuan Agricultural UniversityChengduChina
- Key Laboratory for Animal Disease‐Resistant NutritionMinistry of Education of ChinaSichuan Agricultural UniversityChengduChina
| | - Dandan Jiang
- Institute of Animal Nutrition and Ministry of Education of ChinaSichuan Agricultural UniversityChengduChina
- Key Laboratory for Animal Disease‐Resistant NutritionMinistry of Education of ChinaSichuan Agricultural UniversityChengduChina
| | - Jing Li
- Institute of Animal Nutrition and Ministry of Education of ChinaSichuan Agricultural UniversityChengduChina
- Key Laboratory for Animal Disease‐Resistant NutritionMinistry of Education of ChinaSichuan Agricultural UniversityChengduChina
| | - Xiaohua Huang
- Institute of Animal Nutrition and Ministry of Education of ChinaSichuan Agricultural UniversityChengduChina
- Key Laboratory for Animal Disease‐Resistant NutritionMinistry of Education of ChinaSichuan Agricultural UniversityChengduChina
| | - Yingguo Zhu
- Institute of Animal Nutrition and Ministry of Education of ChinaSichuan Agricultural UniversityChengduChina
- Key Laboratory for Animal Disease‐Resistant NutritionMinistry of Education of ChinaSichuan Agricultural UniversityChengduChina
| | - Zhen Li
- Institute of Animal Nutrition and Ministry of Education of ChinaSichuan Agricultural UniversityChengduChina
- Key Laboratory for Animal Disease‐Resistant NutritionMinistry of Education of ChinaSichuan Agricultural UniversityChengduChina
| | - Lijun Yan
- Institute of Animal Nutrition and Ministry of Education of ChinaSichuan Agricultural UniversityChengduChina
- Key Laboratory for Animal Disease‐Resistant NutritionMinistry of Education of ChinaSichuan Agricultural UniversityChengduChina
| | - Chao Jin
- Institute of Animal Nutrition and Ministry of Education of ChinaSichuan Agricultural UniversityChengduChina
- Key Laboratory for Animal Disease‐Resistant NutritionMinistry of Education of ChinaSichuan Agricultural UniversityChengduChina
| | - Xuemei Jiang
- Institute of Animal Nutrition and Ministry of Education of ChinaSichuan Agricultural UniversityChengduChina
- Key Laboratory for Animal Disease‐Resistant NutritionMinistry of Education of ChinaSichuan Agricultural UniversityChengduChina
| | - Lianqiang Che
- Institute of Animal Nutrition and Ministry of Education of ChinaSichuan Agricultural UniversityChengduChina
- Key Laboratory for Animal Disease‐Resistant NutritionMinistry of Education of ChinaSichuan Agricultural UniversityChengduChina
| | - Zhengfeng Fang
- Institute of Animal Nutrition and Ministry of Education of ChinaSichuan Agricultural UniversityChengduChina
- Key Laboratory for Animal Disease‐Resistant NutritionMinistry of Education of ChinaSichuan Agricultural UniversityChengduChina
| | - Yan Lin
- Institute of Animal Nutrition and Ministry of Education of ChinaSichuan Agricultural UniversityChengduChina
- Key Laboratory for Animal Disease‐Resistant NutritionMinistry of Education of ChinaSichuan Agricultural UniversityChengduChina
| | - Shengyu Xu
- Institute of Animal Nutrition and Ministry of Education of ChinaSichuan Agricultural UniversityChengduChina
| | - Jian Li
- Institute of Animal Nutrition and Ministry of Education of ChinaSichuan Agricultural UniversityChengduChina
| | - Bin Feng
- Institute of Animal Nutrition and Ministry of Education of ChinaSichuan Agricultural UniversityChengduChina
- Key Laboratory for Animal Disease‐Resistant NutritionMinistry of Education of ChinaSichuan Agricultural UniversityChengduChina
| | - De Wu
- Institute of Animal Nutrition and Ministry of Education of ChinaSichuan Agricultural UniversityChengduChina
- Key Laboratory for Animal Disease‐Resistant NutritionMinistry of Education of ChinaSichuan Agricultural UniversityChengduChina
| |
Collapse
|
24
|
Zheng W, Rogoschin J, Niehoff A, Oden K, Kulling SE, Xie M, Diel P. Combinatory effects of phytoestrogens and exercise on body fat mass and lipid metabolism in ovariectomized female rats. J Steroid Biochem Mol Biol 2018; 178:73-81. [PMID: 29122708 DOI: 10.1016/j.jsbmb.2017.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/03/2017] [Accepted: 11/05/2017] [Indexed: 12/11/2022]
Abstract
The purpose of this study was to investigate the combinatory effects of an isoflavone (ISO)-rich diet and exercise on fat mass and lipid metabolism in ovariectomized (OVX) rats. Therefore the female Wistar rats were sedentary, performed an intense treadmill uphill running, received ISOs, or a combination of ISOs and running after ovariectomy. The exercise reduced visceral fat mass, adipocyte size and serum leptin in Sham animals and antagonized the increases of these parameters induced by OVX. ISOs reduced OVX induced increase of serum leptin. The combination of training and ISOs was most effective in reducing serum triglyceride levels. In OVX rats the training stimulated the expression of genes associated with fatty acid synthesis (SREBP-1c and FAS) in adipose tissue, soleus muscle, liver and genes associated with fatty acid oxidation (PPARδ and PGC-1α) in adipose tissue. ISOs stimulated the expression of SREBP-1c and FAS in soleus muscle and PGC-1α in adipose tissue, whereas suppressed hepatic SREBP-1c and FAS expression. Strong additive effects of ISOs combined with the training were observed for PPARδ and PGC-1α expressions in soleus muscle. In conclusion our results demonstrate that both the training and ISOs affect fat mass and fatty acid metabolism in OVX rats. The training seems to have a higher impact than ISO exposure in regulating gene expression in adipose tissue. However, the strongest effects for several of the addressed parameters could be observed in the combination group especially in the soleus muscle. Therefore a combination of training and an ISO-rich diet may have beneficial effects on fatty acid metabolism and could be a concept for the prevention of obesity in postmenopausal females.
Collapse
Affiliation(s)
- Wenya Zheng
- Institute of Cardiovascular Research and Sports Medicine, Department of Molecular and Cellular Sports Medicine, German Sport University Cologne, Germany.
| | - Jana Rogoschin
- Institute of Cardiovascular Research and Sports Medicine, Department of Molecular and Cellular Sports Medicine, German Sport University Cologne, Germany
| | - Anja Niehoff
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Germany; Cologne Center for Musculoskeletal Biomechanics, Medical Faculty, University of Cologne, Germany
| | - Kristina Oden
- Institute of Cardiovascular Research and Sports Medicine, Department of Molecular and Cellular Sports Medicine, German Sport University Cologne, Germany
| | - Sabine E Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Karlsruhe, Germany
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Patrick Diel
- Institute of Cardiovascular Research and Sports Medicine, Department of Molecular and Cellular Sports Medicine, German Sport University Cologne, Germany
| |
Collapse
|
25
|
Kristina Parr M, Müller-Schöll A. Pharmacology of doping agents—mechanisms promoting muscle hypertrophy. AIMS MOLECULAR SCIENCE 2018. [DOI: 10.3934/molsci.2018.2.131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
26
|
Perinatal maternal high-fat diet induces early obesity and sex-specific alterations of the endocannabinoid system in white and brown adipose tissue of weanling rat offspring. Br J Nutr 2017; 118:788-803. [PMID: 29110748 DOI: 10.1017/s0007114517002884] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Perinatal maternal high-fat (HF) diet programmes offspring obesity. Obesity is associated with overactivation of the endocannabinoid system (ECS) in adult subjects, but the role of the ECS in the developmental origins of obesity is mostly unknown. The ECS consists of endocannabinoids, cannabinoid receptors (cannabinoid type-1 receptor (CB1) and cannabinoid type-2 receptor (CB2)) and metabolising enzymes. We hypothesised that perinatal maternal HF diet would alter the ECS in a sex-dependent manner in white and brown adipose tissue of rat offspring at weaning in parallel to obesity development. Female rats received standard diet (9 % energy content from fat) or HF diet (29 % energy content from fat) before mating, during pregnancy and lactation. At weaning, male and female offspring were killed for tissue harvest. Maternal HF diet induced early obesity, white adipocyte hypertrophy and increased lipid accumulation in brown adipose tissue associated with sex-specific changes of the ECS's components in weanling rats. In male pups, maternal HF diet decreased CB1 and CB2 protein in subcutaneous adipose tissue. In female pups, maternal HF diet increased visceral and decreased subcutaneous CB1. In brown adipose tissue, maternal HF diet increased CB1 regardless of pup sex. In addition, maternal HF diet differentially changed oestrogen receptor across the adipose depots in male and female pups. The ECS and oestrogen signalling play an important role in lipogenesis, adipogenesis and thermogenesis, and we observed early changes in their targets in adipose depots of the offspring. The present findings provide insights into the involvement of the ECS in the developmental origins of metabolic disease induced by inadequate maternal nutrition in early life.
Collapse
|
27
|
Leblanc DR, Schneider M, Angele P, Vollmer G, Docheva D. The effect of estrogen on tendon and ligament metabolism and function. J Steroid Biochem Mol Biol 2017. [PMID: 28629994 DOI: 10.1016/j.jsbmb.2017.06.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Tendons and ligaments are crucial structures inside the musculoskeletal system. Still many issues in the treatment of tendon diseases and injuries have yet not been resolved sufficiently. In particular, the role of estrogen-like compound (ELC) in tendon biology has received until now little attention in modern research, despite ELC being a well-studied and important factor in the physiology of other parts of the musculoskeletal system. In this review we attempt to summarize the available information on this topic and to determine many open questions in this field.
Collapse
Affiliation(s)
- D R Leblanc
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University Munich, Germany
| | - M Schneider
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - P Angele
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - G Vollmer
- Molecular Cell Physiology and Endocrinology, Institute of Zoology, Technical University, Dresden, Germany
| | - D Docheva
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany; Department of Medical Biology, Medical University-Plodiv, Plodiv, Bulgaria.
| |
Collapse
|
28
|
Zheng W, Hengevoß J, Soukup ST, Kulling SE, Xie M, Diel P. An isoflavone enriched diet increases skeletal muscle adaptation in response to physical activity in ovariectomized rats. Mol Nutr Food Res 2017; 61. [PMID: 28497652 DOI: 10.1002/mnfr.201600843] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 04/25/2017] [Accepted: 05/02/2017] [Indexed: 11/08/2022]
Abstract
SCOPE This study was to investigate anabolic adaptation of skeletal muscle in response to an isoflavone (ISO) enriched diet, training and their combinations in ovariectomized (OVX) rats. METHODS AND RESULTS Female Wistar rats were sedentary, performed treadmill uphill running, received ISOs, or a combination of ISOs and running after ovariectomy. Body weight was increased by OVX. Both ISO and training treatment antagonized this increase. The weights of soleus and gastrocnemius muscles were increased only when training and ISOs were combined. In soleus muscle insulin-like growth factor (IGF)-1R, MyoD and Myogenin expressions were only up-regulated by training in Sham groups. However, a stimulation of IGF-1R and MyoD expression could be observed when ISOs and training were combined. In gastrocnemius muscle MyoD and Myogenin expressions were stimulated by either training or ISOs. Additive effects were detected when combining the two interventions. CONCLUSION Our results indicate that the combination of ISOs and exercise is more efficient in increasing relative skeletal muscle mass and the expression of molecular markers related to anabolic adaptation in the skeletal muscle of female rats.
Collapse
Affiliation(s)
- Wenya Zheng
- Institute of Cardiovascular Research and Sports Medicine, Department of Molecular and Cellular Sports Medicine, German Sport University Cologne, Germany
| | - Jonas Hengevoß
- Institute of Cardiovascular Research and Sports Medicine, Department of Molecular and Cellular Sports Medicine, German Sport University Cologne, Germany
| | - Sebastian T Soukup
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Karlsruhe, Germany
| | - Sabine E Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Karlsruhe, Germany
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Patrick Diel
- Institute of Cardiovascular Research and Sports Medicine, Department of Molecular and Cellular Sports Medicine, German Sport University Cologne, Germany
| |
Collapse
|
29
|
Russell AL, Grimes JM, Cruthirds DF, Westerfield J, Wooten L, Keil M, Weiser MJ, Landauer MR, Handa RJ, Wu TJ, Larco DO. Dietary Isoflavone-Dependent and Estradiol Replacement Effects on Body Weight in the Ovariectomized (OVX) Rat. Horm Metab Res 2017; 49:457-465. [PMID: 28482370 PMCID: PMC5820000 DOI: 10.1055/s-0043-108250] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
17β-Estradiol is known to regulate energy metabolism and body weight. Ovariectomy results in body weight gain while estradiol administration results in a reversal of weight gain. Isoflavones, found in rodent chow, can mimic estrogenic effects making it crucial to understand the role of these compounds on metabolic regulation. The goal of this study is to examine the effect of dietary isoflavones on body weight regulation in the ovariectomized rat. This study will examine how dietary isoflavones can interact with estradiol treatment to affect body weight. Consistent with previous findings, animals fed an isoflavone-rich diet had decreased body weight (p<0.05), abdominal fat (p<0.05), and serum leptin levels (p<0.05) compared to animals fed an isoflavone-free diet. Estradiol replacement resulted in decreased body weight (p<0.05), abdominal fat (p<0.05), and serum leptin (p<0.05). Current literature suggests the involvement of cytokines in the inflammatory response of body weight gain. We screened a host of cytokines and chemokines that may be altered by dietary isoflavones or estradiol replacement. Serum cytokine analysis revealed significant (p<0.05) diet-dependent increases in inflammatory cytokines (keratinocyte-derived chemokine). The isoflavone-free diet in OVX rats resulted in the regulation of the following cytokines and chemokines: interleukin-10, interleukin-18, serum regulated on activation, normal T cell expressed and secreted, and monocyte chemoattractant protein-1 (p<0.05). Overall, these results reveal that estradiol treatment can have differential effects on energy metabolism and body weight regulation depending on the presence of isoflavones in rodent chow.
Collapse
Affiliation(s)
- Ashley L. Russell
- Program in Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jamie Moran Grimes
- Program in Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Danette F. Cruthirds
- Program in Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Joanna Westerfield
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Lawren Wooten
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | - Michael J. Weiser
- DSM Nutritional Products Inc., Human Nutrition & Health, Boulder, Colorado, USA
| | - Michael R. Landauer
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Robert J. Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - T. John Wu
- Program in Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Darwin O. Larco
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
30
|
Matsushita H, Minami A, Kanazawa H, Suzuki T, Subhadhirasakul S, Watanabe K, Wakatsuki A. Long-term supplementation with young coconut juice does not prevent bone loss but rather alleviates body weight gain in ovariectomized rats. Biomed Rep 2017; 6:585-591. [PMID: 28529739 DOI: 10.3892/br.2017.883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/22/2017] [Indexed: 12/24/2022] Open
Abstract
Young coconut (Cocos nucifera Linn.) juice (YCJ) has traditionally been consumed to alleviate symptoms associated with the menopause. Recently, the authors demonstrated that short-term (6-week) YCJ supplementation to ovariectomized rats resulted in increased bone mass and bone formation parameter, suggesting that YCJ consumption has a positive effect on bone metabolism and may represent an intervention to help slow the bone loss during menopause transition. The present study sought to determine how long-term (12-week) YCJ supplementation affects bone metabolism in ovariectomized rats, to investigate whether such supplementation may be helpful to in osteoporosis treatment. Ten-week-old female Wistar rats were subjected to either a sham operation (Sham) or bilateral ovariectomy (Ovx). The Ovx+YCJ group received 5X-concentrated YCJ at a dose of 15 ml/kg/day for 12 weeks. Rats in the Ovx group had significantly lower femur bone mineral density than those in the Sham group. YCJ supplementation did not significantly affect this difference. However, YCJ prevented the increase in bone area of the mid third of the femur, a site high in cortical bone, and body weight gain observed following Ovx. Our findings indicate that long-term YCJ intake does not alter bone loss, but rather alleviates body weight gain following menopause.
Collapse
Affiliation(s)
- Hiroshi Matsushita
- Department of Obstetrics and Gynecology, School of Medicine, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | - Akira Minami
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Hiroaki Kanazawa
- Department of Functional Anatomy, School of Nursing, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Takashi Suzuki
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Sanan Subhadhirasakul
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkhla University, Hat-Yai, Songkhla 90110, Thailand
| | - Kazushi Watanabe
- Department of Obstetrics and Gynecology, School of Medicine, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | - Akihiko Wakatsuki
- Department of Obstetrics and Gynecology, School of Medicine, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| |
Collapse
|
31
|
Soukup ST, Müller DR, Kurrat A, Diel P, Kulling SE. Influence of testosterone on phase II metabolism and availability of soy isoflavones in male Wistar rats. Arch Toxicol 2017; 91:1649-1661. [PMID: 27743010 DOI: 10.1007/s00204-016-1853-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/15/2016] [Indexed: 01/16/2023]
Abstract
Genistein and daidzein are the main isoflavones in soy. Their potential beneficial or adverse effects in males like the prevention of prostate cancer or the impact on reproductive functions are controversially discussed. Major determinants of their bioactivity are the absorption and biotransformation of isoflavones. In this study, we focused on the influence of testosterone on plasma availability and phase II metabolism of isoflavones. Male Wistar rats, receiving an isoflavones rich diet, were randomized into three groups: Two groups were orchiectomized (ORX) at postnatal day (PND) 80 and treated for 11 days with testosterone propionate (TP) (ORX TP group) or a vehicle (ORX group) after a 7 days lasting hormonal decline. The third group served as control and remained intact. Rats were sacrificed at PND 98. ORX rats had reduced isoflavones plasma levels. Differently regulated mRNA expressions of transporters relevant for transport of phase II metabolites in liver and kidney may be responsible for this reduction, more precisely Slc10a1 and Slc21a1 in kidney as well as Slc22a8 in liver. While main phase II metabolites in intact rats were disulfates and sulfoglucuronides, the amount of sulfate conjugates was significantly diminished by ORX. In accordance with that, mRNA expression of different sulfotransferases was reduced in liver by ORX. The observed effects could be almost restored by TP treatment. In conclusion, testosterone, and likely further androgens, has a huge impact on phase II metabolism and availability of isoflavones by influencing the expression of different sulfotransferases and transporters.
Collapse
Affiliation(s)
- Sebastian T Soukup
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany
| | - Dennis R Müller
- Department of Molecular and Cellular Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Anne Kurrat
- Department of Molecular and Cellular Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Patrick Diel
- Department of Molecular and Cellular Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Sabine E Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany.
| |
Collapse
|
32
|
Ahmad Hair H, Suhaili Mo N, Khamdiah K SN, Azdina Jam J, Mohamed IN, Nazrun Shu A. Therapeutic Effects of Labisia pumila on Estrogen-deficiency Related Disorders: An Evidence Based Review. INT J PHARMACOL 2016. [DOI: 10.3923/ijp.2016.451.460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
33
|
An BH, Jeong H, Zhou W, Liu X, Kim S, Jang CY, Kim HS, Sohn J, Park HJ, Sung NH, Hong CY, Chang M. Evaluation of the Biological Activity of Opuntia ficus indica as a Tissue- and Estrogen Receptor Subtype-Selective Modulator. Phytother Res 2016; 30:971-80. [PMID: 26989859 DOI: 10.1002/ptr.5602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 02/07/2016] [Accepted: 02/09/2016] [Indexed: 11/07/2022]
Abstract
Phytoestrogens are selective estrogen receptor modulators (SERMs) with potential for use in hormone replacement therapy (HRT) to relieve peri/postmenopausal symptoms. This study was aimed at elucidating the molecular mechanisms underlying the SERM properties of the extract of Korean-grown Opuntia ficus-indica (KOFI). The KOFI extract induced estrogen response element (ERE)-driven transcription in breast and endometrial cancer cell lines and the expression of endogenous estrogen-responsive genes in breast cancer cells. The flavonoid content of different KOFI preparations affected ERE-luciferase activities, implying that the flavonoid composition likely mediated the estrogenic activities in cells. Oral administration of KOFI decreased the weight gain and levels of both serum glucose and triglyceride in ovariectomized (OVX) rats. Finally, KOFI had an inhibitory effect on the 17β-estradiol-induced proliferation of the endometrial epithelium in OVX rats. Our data demonstrate that KOFI exhibited SERM activity with no uterotrophic side effects. Therefore, KOFI alone or in combination with other botanical supplements, vitamins, or minerals may be an effective and safe alternative active ingredient to HRTs, for the management of postmenopausal symptoms. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Byoung Ha An
- Department of Food and Nutrition, College of Life Sciences, Sookmyung Women's University, 100, Chungparo 47-gil, Seoul, 140-742, Republic of Korea
| | - Hyesoo Jeong
- Graduate School of Biological Sciences, Sookmyung Women's University, 100, Chungparo 47-gil, Seoul, 140-742, Republic of Korea
| | - Wenmei Zhou
- Graduate School of Biological Sciences, Sookmyung Women's University, 100, Chungparo 47-gil, Seoul, 140-742, Republic of Korea
| | - Xiyuan Liu
- Graduate School of Biological Sciences, Sookmyung Women's University, 100, Chungparo 47-gil, Seoul, 140-742, Republic of Korea
| | - Soolin Kim
- Graduate School of Biological Sciences, Sookmyung Women's University, 100, Chungparo 47-gil, Seoul, 140-742, Republic of Korea
| | - Chang Young Jang
- Department of Pharmacy, College of Pharmacy, Sookmyung Women's University, 100, Chungparo 47-gil, Seoul, 140-742, Republic of Korea
| | - Hyun-Sook Kim
- Department of Food and Nutrition, College of Life Sciences, Sookmyung Women's University, 100, Chungparo 47-gil, Seoul, 140-742, Republic of Korea
| | - Johann Sohn
- Natural F&P Corp. 39 Yangcheongsongdae-gil, Ochang-eup, Chongwon-gu, Cheongju-si, Chungbuk, Korea
| | - Hye-Jin Park
- Natural F&P Corp. 39 Yangcheongsongdae-gil, Ochang-eup, Chongwon-gu, Cheongju-si, Chungbuk, Korea
| | - Na-Hye Sung
- Natural F&P Corp. 39 Yangcheongsongdae-gil, Ochang-eup, Chongwon-gu, Cheongju-si, Chungbuk, Korea
| | - Cheol Yi Hong
- Natural F&P Corp. 39 Yangcheongsongdae-gil, Ochang-eup, Chongwon-gu, Cheongju-si, Chungbuk, Korea
| | - Minsun Chang
- Department of Medical and Pharmaceutical Science, College of Science, Sookmyung Women's University, 100, Chungparo 47-gil, Seoul, 140-742, Republic of Korea
| |
Collapse
|
34
|
Kurrat A, Blei T, Kluxen FM, Mueller DR, Piechotta M, Soukup ST, Kulling SE, Diel P. Lifelong exposure to dietary isoflavones reduces risk of obesity in ovariectomized Wistar rats. Mol Nutr Food Res 2015; 59:2407-18. [PMID: 26346629 DOI: 10.1002/mnfr.201500240] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 08/20/2015] [Accepted: 08/23/2015] [Indexed: 12/17/2022]
Abstract
SCOPE Traditional Asian diet rich in soy isoflavones (ISOs) is discussed to be linked to a lower obesity prevalence. In lifelong and short-term exposure scenarios we investigated effects of an ISO-rich diet on the body composition and development of obesity in female rats. METHODS AND RESULTS Female Wistar rats grew up on ISO-free or ISO-rich control diet (CON ISO: 467 mg/kg diet). Starting postnatal day 83, ovariectomized and intact animals received high calorie Western diet (WD) in the absence or presence of ISO (WD ISO: 431 mg/kg diet) for 12 weeks to induce obesity or maintained on respective control diet (CON). One group starting ISO exposure after ovariectomy mimics short-term ISO exposure in postmenopausal Western women. Lifelong but not short-term ISO exposure resulted in reduced body weight, visceral fat mass, serum leptin, and smaller adipocytes. ISO decreased hepatic SREBP-1c, ACC, FAS, and PPARγ mRNA expression in nonobese animals. Moreover, ovariectomy reduced skeletal muscle weight, which was antagonized by both short-term and lifelong ISO exposure. CONCLUSION Our results indicate that in female rats lifelong but not short-term ISO intake reduces the risk to develop obesity. Furthermore, lifelong and short-term ISO exposure may antagonize loss of skeletal muscle mass induced by ovariectomy.
Collapse
Affiliation(s)
- Anne Kurrat
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sports University, Cologne, Germany
| | - Tina Blei
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sports University, Cologne, Germany
| | - Felix M Kluxen
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sports University, Cologne, Germany
| | - Dennis R Mueller
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sports University, Cologne, Germany
| | - Marion Piechotta
- Clinic for Cattle, Endocrinology, University of Veterinary Medicine, Hannover, Germany
| | - Sebastian T Soukup
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Karlsruhe, Germany
| | - Sabine E Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Karlsruhe, Germany
| | - Patrick Diel
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sports University, Cologne, Germany
| |
Collapse
|
35
|
Weigt C, Hertrampf T, Flenker U, Hülsemann F, Kurnaz P, Fritzemeier KH, Diel P. Effects of estradiol, estrogen receptor subtype-selective agonists and genistein on glucose metabolism in leptin resistant female Zucker diabetic fatty (ZDF) rats. J Steroid Biochem Mol Biol 2015; 154:12-22. [PMID: 26134426 DOI: 10.1016/j.jsbmb.2015.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 06/19/2015] [Accepted: 06/22/2015] [Indexed: 01/22/2023]
Abstract
The leptin resistant Zucker diabetic fatty (ZDF) rats are hyperphagic and become obese, but whereas the males develop type 2 diabetes mellitus (T2DM), the females remain euglycaemic. As estrogen deficiency is known to increase the risk of developing T2DM, we evaluated the role of ER subtypes alpha and beta in the development of glucose tolerance in leptin resistant ovariectomized (OVX) ZDF rats. At least six rats per group were treated with either vehicle (OVX), 17β-estradiol (E2), ER subtype-selective agonists (Alpha and Beta), or genistein (Gen) for 17 weeks. At the end of the treatment period a glucose tolerance assay was performed and the metabolic flux of (13)C-glucose for the E2 group was investigated. OVX ZDF rats treated with E2, Alpha, Beta, and Gen tolerated the glucose significantly better than untreated controls. E2 treatment increased absorbance/flux of (13)C-glucose to metabolic relevant tissues such liver, adipose tissue, gastrocnemius, and soleus muscle. Moreover, whereas Alpha treatment markedly increased mRNA expression of GLUT4 in gastrocnemius muscle, Beta treatment resulted in the largest fiber sizes of the soleus muscle. Treatment with Gen increased both the mRNA expression of GLUT 4 and the fiber sizes in the skeletal muscle. In addition, E2 and Alpha treatment decreased food intake and body weight gain. In summary, estrogen-improved glucose absorption is mediated via different molecular mechanisms: while activation of ER alpha seems to stimulate muscular GLUT4 functionality, activation of ER beta results in a hypertrophy of muscle fibers. In addition, selective activation of ER alpha decreased food intake and body weight gain. Our data further indicate that ER subtype-selective agonists and genistein improve systemic glucose tolerance also in the absence of a functional leptin signaling pathway.
Collapse
Affiliation(s)
- Carmen Weigt
- German Sports University Cologne, Institute of Cardiovascular Research and Sports Medicine, Department of Cellular and Molecular Sports Medicine, Am Sportpark Müngersdorf 6, 50933 Köln, Germany.
| | - Torsten Hertrampf
- German Sports University Cologne, Institute of Cardiovascular Research and Sports Medicine, Department of Cellular and Molecular Sports Medicine, Am Sportpark Müngersdorf 6, 50933 Köln, Germany.
| | - Ulrich Flenker
- German Sports University Cologne, Institute of Biochemistry, Am Sportpark Müngersdorf 6, 50933 Köln, Germany.
| | - Frank Hülsemann
- German Sports University Cologne, Institute of Biochemistry, Am Sportpark Müngersdorf 6, 50933 Köln, Germany.
| | - Pinar Kurnaz
- German Sports University Cologne, Institute of Cardiovascular Research and Sports Medicine, Department of Cellular and Molecular Sports Medicine, Am Sportpark Müngersdorf 6, 50933 Köln, Germany.
| | | | - Patrick Diel
- German Sports University Cologne, Institute of Cardiovascular Research and Sports Medicine, Department of Cellular and Molecular Sports Medicine, Am Sportpark Müngersdorf 6, 50933 Köln, Germany.
| |
Collapse
|
36
|
Blei T, Soukup ST, Schmalbach K, Pudenz M, Möller FJ, Egert B, Wörtz N, Kurrat A, Müller D, Vollmer G, Gerhäuser C, Lehmann L, Kulling SE, Diel P. Dose-dependent effects of isoflavone exposure during early lifetime on the rat mammary gland: Studies on estrogen sensitivity, isoflavone metabolism, and DNA methylation. Mol Nutr Food Res 2015; 59:270-83. [PMID: 25410811 DOI: 10.1002/mnfr.201400480] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 10/23/2014] [Accepted: 10/29/2014] [Indexed: 12/23/2022]
Abstract
SCOPE Isoflavone (ISO) exposure during adolescence modulates 17β-estradiol (E2) sensitivity of the adult mammary gland. The present study investigated the dose dependency of these effects focusing on proliferation, estrogen receptor dependent and independent gene expression, as well as DNA methylation and ISO metabolism. METHODS AND RESULTS Female Wistar rats were lifelong exposed to an ISO-depleted diet or to diets enriched with a soy ISO extract (ISO-rich diet (IRD)) causing plasma concentrations as observed minimally (IRDlow) and maximally (IRDhigh) in Asian women. The extract was characterized by both phytochemical analysis and E-Screen. Rats were ovariectomized at postnatal day (PND) 80 and treated with E2 from PND94 to 97. In contrast to uterine response, body weight and visceral fat mass were affected by ISO. In the mammary gland, both E2-induced proliferation (proliferating cell nuclear antigen staining) and estrogen receptor activation (progesterone receptor staining) were significantly reduced by IRDhigh but not by IRDlow, which however attenuated Gdf15 mRNA expression. DNA methylation analysis revealed significant differences in the promoter regions of Aldhl1, Extl1, and WAP between IRDhigh and ISO-depleted diet. CONCLUSION Lifelong exposure to ISO results in dose-dependent differential effects on proliferation, gene expression, and DNA methylation in rat mammary glands. Yet, a decrease in estrogen responsiveness was only achieved by IRDhigh.
Collapse
Affiliation(s)
- Tina Blei
- German Sports University Cologne, Köln, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ko BS, Lee HW, Kim DS, Kang S, Ryuk JA, Park S. Supplementing with Opuntia ficus-indica Mill and Dioscorea nipponica Makino extracts synergistically attenuates menopausal symptoms in estrogen-deficient rats. JOURNAL OF ETHNOPHARMACOLOGY 2014; 155:267-276. [PMID: 24875644 DOI: 10.1016/j.jep.2014.05.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/04/2014] [Accepted: 05/17/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Prickly pear cactus grown in Korea (Opuntia ficus-indica Mill, KC) and Buchema (Dioscorea nipponica Makino, B) have been traditionally used in East Asia and South America to treat various metabolic diseases. The aim of the present study was to determine whether the extracts of KC, B, and KC+B can prevent the impairments of energy, glucose, lipid and bone homeostasis in estrogen-deficient ovariectomized (OVX) rats and to explore their mechanisms. MATERIALS AND METHODS OVX rats were divided into 4 groups and fed high fat diets supplemented with either 3% dextrin (control), 3% KC, 3% B or 1.5% KC+1.5% B. Sham rats were fed 3% dextrin. After 12 weeks of diet consumption, energy, lipid, glucose and bone metabolisms were analyzed and Wnt signaling in the femur and hepatic signaling were determined. RESULTS OVX impaired energy, glucose and lipid metabolism and decreased uterine and bone masses. B and KC+B prevented the decrease in energy expenditure, especially from fat oxidation, in OVX rats, but did not affect food intake. KC+B and B reduced body weight and visceral fat levels, as compared to the OVX-control, by decreasing fat synthesis and inhibiting FAS and SREBP-1c expression. KC+B and B prevented the increases in serum lipid levels and insulin resistance by improving hepatic insulin signaling (pIRS→pAkt→pGSK-3β). KC and KC+B also prevented decreases in bone mineral density (BMD) in the femur and lumbar spine in OVX rats. This was related to decreased expressions of bone turnover markers such as serum osteocalcin, alkaline phosphatase (ALP) and bone-specific ALP levels, and increased serum P levels. KC and KC+B upregulated low-density lipoprotein receptor-related protein 5 and β-catenin in OVX rats, but suppressed the expression of dickkopf-related protein 1. B alone improved energy, lipid and glucose homeostasis, but not bone loss, whereas KC alone enhanced BMD, but not energy, lipid or glucose homeostasis. CONCLUSION KC+B synergistically attenuated impairments of bone, energy, lipid and glucose metabolism by OVX, suggesting potential efficacy of the combination for alleviating menopausal symptoms.
Collapse
Affiliation(s)
- Byoung-Seob Ko
- Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Hye Won Lee
- Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Da Sol Kim
- Food & Nutrition, Obesity/Diabetes Center, Hoseo University, Asan, South Korea
| | - Suna Kang
- Food & Nutrition, Obesity/Diabetes Center, Hoseo University, Asan, South Korea
| | - Jin Ah Ryuk
- Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Sunmin Park
- Food & Nutrition, Obesity/Diabetes Center, Hoseo University, Asan, South Korea.
| |
Collapse
|
38
|
Parr MK, Zhao P, Haupt O, Ngueu ST, Hengevoss J, Fritzemeier KH, Piechotta M, Schlörer N, Muhn P, Zheng WY, Xie MY, Diel P. Estrogen receptor beta is involved in skeletal muscle hypertrophy induced by the phytoecdysteroid ecdysterone. Mol Nutr Food Res 2014; 58:1861-72. [DOI: 10.1002/mnfr.201300806] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 04/28/2014] [Accepted: 04/30/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Maria Kristina Parr
- Center for Preventive Doping Research; German Sport University; Cologne Germany
- Institute of Pharmacy; Freie Universität Berlin; Germany
| | - Piwen Zhao
- School of Preclinical Medicine; Beijing University of Chinese Medicine; Bejing P. R. China
| | - Oliver Haupt
- Center for Preventive Doping Research; German Sport University; Cologne Germany
- Central Institute of the Bundeswehr Medical Service; Garching-Hochbrück Germany
| | | | - Jonas Hengevoss
- Center for Preventive Doping Research; German Sport University; Cologne Germany
| | | | - Marion Piechotta
- Clinic for Cattle, Endocrinology Laboratory; University of Veterinary Medicine Hannover; Hannover Germany
| | - Nils Schlörer
- Institute of Organic Chemistry; University of Cologne; Germany
| | | | - Wen-Ya Zheng
- Center for Preventive Doping Research; German Sport University; Cologne Germany
- State Key Laboratory of Food Science and Technology; Nanchang University; Nanchang P. R. China
| | - Ming-Yong Xie
- State Key Laboratory of Food Science and Technology; Nanchang University; Nanchang P. R. China
| | - Patrick Diel
- Center for Preventive Doping Research; German Sport University; Cologne Germany
| |
Collapse
|
39
|
Beranger GE, Pisani DF, Castel J, Djedaini M, Battaglia S, Amiaud J, Boukhechba F, Ailhaud G, Michiels JF, Heymann D, Luquet S, Amri EZ. Oxytocin reverses ovariectomy-induced osteopenia and body fat gain. Endocrinology 2014; 155:1340-52. [PMID: 24506069 DOI: 10.1210/en.2013-1688] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Osteoporosis and overweight/obesity constitute major worldwide public health burdens that are associated with aging. A high proportion of women develop osteoporosis and increased intraabdominal adiposity after menopause. which leads to bone fractures and metabolic disorders. There is no efficient treatment without major side effects for these 2 diseases. We previously showed that the administration of oxytocin (OT) normalizes ovariectomy-induced osteopenia and bone marrow adiposity in mice. Ovariectomized mice, used as an animal model mimicking menopause, were treated with OT or vehicle. Trabecular bone parameters and fat mass were analyzed using micro-computed tomography. Herein, we show that this effect on trabecular bone parameters was mediated through the restoration of osteoblast/osteoclast cross talk via the receptor activator of nuclear factor-κB ligand /osteoprotegerin axis. Moreover, the daily administration of OT normalized body weight and intraabdominal fat depots in ovariectomized mice. Intraabdominal fat mass is more sensitive to OT that sc fat depots, and this inhibitory effect is mediated through inhibition of adipocyte precursor's differentiation with a tendency to lower adipocyte size. OT treatment did not affect food intake, locomotors activity, or energy expenditure, but it did promote a shift in fuel utilization favoring lipid oxidation. In addition, the decrease in fat mass resulted from the inhibition of the adipose precursor's differentiation. Thus, OT constitutes an effective strategy for targeting osteopenia, overweight, and fat mass redistribution without any detrimental effects in a mouse model mimicking the menopause.
Collapse
Affiliation(s)
- Guillaume E Beranger
- University of Nice Sophia Antipolis (G.E.B., D.F.P., M.D., G.A., E.-Z.A.) and Centre National de la Recherche Scientifique (CNRS) (G.B., D.F.P., M.D., G.A., E.-Z.A.), Institut de Biologie Valrose (iBV), Unite Mixte de Recherché (UMR) 7277, 06100 Nice, France; Institut National de la Sante et de la Recherche Medicale (INSERM) (G.E.B., D.F.P., M.D., G.A., E.-Z.A.), iBV, U1091, 06100 Nice, France; University of Paris Diderot (J.C., S.L.), Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA) UMR 8251, CNRS, F-75205 Paris, France; University of Nantes (S.B., J.A., D.H.), INSERM, UMR 957, Nantes, Equipe Labellisée Ligue Contre le Cancer 2012, France; Graftys SA (F.B.), Aix-en-Provence, France; University of Nice Sophia Antipolis (J.-F.M.), Unite de Formation et de Recherche Médecine, Nice, France F-06189; and Anatomopathology Service (J.-F.M.), Pasteur Hospital, Centre Hospitalier Universitaire de Nice, Nice, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Lizcano F, Guzmán G. Estrogen Deficiency and the Origin of Obesity during Menopause. BIOMED RESEARCH INTERNATIONAL 2014; 2014:757461. [PMID: 24734243 PMCID: PMC3964739 DOI: 10.1155/2014/757461] [Citation(s) in RCA: 306] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 01/03/2014] [Accepted: 01/06/2014] [Indexed: 12/27/2022]
Abstract
Sex hormones strongly influence body fat distribution and adipocyte differentiation. Estrogens and testosterone differentially affect adipocyte physiology, but the importance of estrogens in the development of metabolic diseases during menopause is disputed. Estrogens and estrogen receptors regulate various aspects of glucose and lipid metabolism. Disturbances of this metabolic signal lead to the development of metabolic syndrome and a higher cardiovascular risk in women. The absence of estrogens is a clue factor in the onset of cardiovascular disease during the menopausal period, which is characterized by lipid profile variations and predominant abdominal fat accumulation. However, influence of the absence of these hormones and its relationship to higher obesity in women during menopause are not clear. This systematic review discusses of the role of estrogens and estrogen receptors in adipocyte differentiation, and its control by the central nervous systemn and the possible role of estrogen-like compounds and endocrine disruptors chemicals are discussed. Finally, the interaction between the decrease in estrogen secretion and the prevalence of obesity in menopausal women is examined. We will consider if the absence of estrogens have a significant effect of obesity in menopausal women.
Collapse
Affiliation(s)
- Fernando Lizcano
- Biomedical Research Center, Universidad de La Sabana (CIBUS), km 7, Autopista Norte de Bogota, Chia, Colombia ; Fundacion Cardio-Infantil Instituto de Cardiologia, Bogota, Colombia
| | - Guillermo Guzmán
- Biomedical Research Center, Universidad de La Sabana (CIBUS), km 7, Autopista Norte de Bogota, Chia, Colombia
| |
Collapse
|
41
|
Weigt C, Hertrampf T, Kluxen FM, Flenker U, Hülsemann F, Fritzemeier KH, Diel P. Molecular effects of ER alpha- and beta-selective agonists on regulation of energy homeostasis in obese female Wistar rats. Mol Cell Endocrinol 2013; 377:147-58. [PMID: 23871901 DOI: 10.1016/j.mce.2013.07.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 07/10/2013] [Accepted: 07/11/2013] [Indexed: 01/12/2023]
Abstract
The molecular mechanisms underlying the effects of selective ER subtype activation on lipogenesis, adipogenesis, lipid utilization and storage as well as glucose metabolism are currently largely unknown and were analyzed in female OVX Wistar rats on a high-fat diet. Rats received estradiol (E2), ER subtype-selective agonists (Alpha and Beta), and genistein (Gen) for 10 weeks. In adipose tissue, treatment with E2, Alpha, and Beta significantly decreased lipogenic (SREBP-1c, FAS) and adipogenic genes (LPL, PPAR gamma). In liver and skeletal muscle of E2-, Alpha-, Beta-, and Gen-treated animals, lipogenesis and triglyceride accumulation were significantly reduced. Increased hepatic and muscular PPAR gamma mRNA expression was observed in untreated, Beta- and Gen-treated animals, which correlates with increased hepatic glucose uptake. However, only untreated animals showed impaired insulin sensitivity compared to all other groups. Therefore, PPAR gamma up-regulation in untreated animals suggests a compensatory mechanism, probably due to increased triglyceride accumulation in non-adipose tissues. Beta- and Gen-treated animals may benefit from the anabolic potency of ER beta that ameliorates lipid and glucose utilization in muscle. Activation of either ER subtype reduces fat enrichment and improves insulin sensitivity. Depending on the investigated tissue, different molecular pathways seem to be involved.
Collapse
Affiliation(s)
- Carmen Weigt
- German Sports University Cologne, Institute of Cardiovascular Research and Sports Medicine, Department of Cellular and Molecular Sports Medicine, Am Sportpark Müngersdorf 6, 50933 Köln, Germany.
| | | | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Claudio ERG, Endlich PW, Santos RL, Moysés MR, Bissoli NS, Gouvêa SA, Silva JF, Lemos VS, Abreu GR. Effects of chronic swimming training and oestrogen therapy on coronary vascular reactivity and expression of antioxidant enzymes in ovariectomized rats. PLoS One 2013; 8:e64806. [PMID: 23755145 PMCID: PMC3670897 DOI: 10.1371/journal.pone.0064806] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 04/19/2013] [Indexed: 01/14/2023] Open
Abstract
The aim of this study was to evaluate the effects of swimming training (SW) and oestrogen replacement therapy (ERT) on coronary vascular reactivity and the expression of antioxidant enzymes in ovariectomized rats. Animals were randomly assigned to one of five groups: sham (SH), ovariectomized (OVX), ovariectomized with E2 (OE2), ovariectomized with exercise (OSW), and ovariectomized with E2 plus exercise (OE2+SW). The SW protocol (5×/week, 60 min/day) and/or ERT were conducted for 8 weeks; the vasodilator response to bradykinin was analysed (Langendorff Method), and the expression of antioxidant enzymes (SOD-1 and 2, catalase) and eNOS and iNOS were evaluated by Western blotting. SW and ERT improved the vasodilator response to the highest dose of bradykinin (1000 ng). However, in the OSW group, this response was improved at 100, 300 and 1000 ng when compared to OVX (p<0,05). The SOD-1 expression was increased in all treated/trained groups compared to the OVX group (p<0,05), and catalase expression increased in the OSW group only. In the trained group, eNOS increased vs. OE2, and iNOS decreased vs. SHAM (p<0,05). SW may represent an alternative to ERT by improving coronary vasodilation, most likely by increasing antioxidant enzyme and eNOS expression and augmenting NO bioavailability.
Collapse
Affiliation(s)
- Erick R G Claudio
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória-ES, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Rivera P, Pérez-Martín M, Pavón FJ, Serrano A, Crespillo A, Cifuentes M, López-Ávalos MD, Grondona JM, Vida M, Fernández-Llebrez P, de Fonseca FR, Suárez J. Pharmacological administration of the isoflavone daidzein enhances cell proliferation and reduces high fat diet-induced apoptosis and gliosis in the rat hippocampus. PLoS One 2013; 8:e64750. [PMID: 23741384 PMCID: PMC3669353 DOI: 10.1371/journal.pone.0064750] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 04/17/2013] [Indexed: 12/16/2022] Open
Abstract
Soy extracts have been claimed to be neuroprotective against brain insults, an effect related to the estrogenic properties of isoflavones. However, the effects of individual isoflavones on obesity-induced disruption of adult neurogenesis have not yet been analyzed. In the present study we explore the effects of pharmacological administration of daidzein, a main soy isoflavone, in cell proliferation, cell apoptosis and gliosis in the adult hippocampus of animals exposed to a very high-fat diet. Rats made obese after 12-week exposure to a standard or high-fat (HFD, 60%) diets were treated with daidzein (50 mg kg(-1)) for 13 days. Then, plasma levels of metabolites and metabolic hormones, cell proliferation in the subgranular zone of the dentate gyrus (SGZ), and immunohistochemical markers of hippocampal cell apoptosis (caspase-3), gliosis (GFAP and Iba-1), food reward factor FosB and estrogen receptor alpha (ERα) were analyzed. Treatment with daidzein reduced food/caloric intake and body weight gain in obese rats. This was associated with glucose tolerance, low levels of HDL-cholesterol, insulin, adiponectin and testosterone, and high levels of leptin and 17β-estradiol. Daidzein increased the number of phospho-histone H3 and 5-bromo-2-deoxyuridine (BrdU)-ir cells detected in the SGZ of standard diet and HFD-fed rats. Daidzein reversed the HFD-associated enhanced immunohistochemical expression of caspase-3, FosB, GFAP, Iba-1 and ERα in the hippocampus, being more prominent in the dentate gyrus. These results suggest that pharmacological treatment with isoflavones regulates metabolic alterations associated with enhancement of cell proliferation and reduction of apoptosis and gliosis in response to high-fat diet.
Collapse
Affiliation(s)
- Patricia Rivera
- Laboratorio de Medicina Regenerativa (UGC Salud Mental), Instituto de Investigación Biomédica (IBIMA), Complejo Hospitalario de Málaga (Hospital Carlos Haya), Pabellón de Gobierno, Málaga, Spain
- CIBER OBN, Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación, Madrid, Spain
| | - Margarita Pérez-Martín
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Francisco J. Pavón
- Laboratorio de Medicina Regenerativa (UGC Salud Mental), Instituto de Investigación Biomédica (IBIMA), Complejo Hospitalario de Málaga (Hospital Carlos Haya), Pabellón de Gobierno, Málaga, Spain
- CIBER OBN, Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación, Madrid, Spain
| | - Antonia Serrano
- Laboratorio de Medicina Regenerativa (UGC Salud Mental), Instituto de Investigación Biomédica (IBIMA), Complejo Hospitalario de Málaga (Hospital Carlos Haya), Pabellón de Gobierno, Málaga, Spain
- CIBER OBN, Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación, Madrid, Spain
| | - Ana Crespillo
- Laboratorio de Medicina Regenerativa (UGC Salud Mental), Instituto de Investigación Biomédica (IBIMA), Complejo Hospitalario de Málaga (Hospital Carlos Haya), Pabellón de Gobierno, Málaga, Spain
- CIBER OBN, Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación, Madrid, Spain
| | - Manuel Cifuentes
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- CIBER BBN, Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación, Madrid, Spain
| | - María-Dolores López-Ávalos
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Jesús M. Grondona
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Margarita Vida
- Laboratorio de Medicina Regenerativa (UGC Salud Mental), Instituto de Investigación Biomédica (IBIMA), Complejo Hospitalario de Málaga (Hospital Carlos Haya), Pabellón de Gobierno, Málaga, Spain
- CIBER OBN, Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación, Madrid, Spain
| | - Pedro Fernández-Llebrez
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Laboratorio de Medicina Regenerativa (UGC Salud Mental), Instituto de Investigación Biomédica (IBIMA), Complejo Hospitalario de Málaga (Hospital Carlos Haya), Pabellón de Gobierno, Málaga, Spain
- CIBER OBN, Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación, Madrid, Spain
| | - Juan Suárez
- Laboratorio de Medicina Regenerativa (UGC Salud Mental), Instituto de Investigación Biomédica (IBIMA), Complejo Hospitalario de Málaga (Hospital Carlos Haya), Pabellón de Gobierno, Málaga, Spain
- CIBER OBN, Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación, Madrid, Spain
| |
Collapse
|
45
|
Ren XM, Guo LH. Molecular toxicology of polybrominated diphenyl ethers: nuclear hormone receptor mediated pathways. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2013; 15:702-8. [PMID: 23467608 DOI: 10.1039/c3em00023k] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are used in large quantities as flame retardant additives in commercial products. Bio-monitoring data show that PBDE concentrations have increased rapidly in the bodies of wildlife and human over the last few decades. Based on the studies on experimental animals, the toxicological endpoints of exposure to PBDEs are likely to be thyroid homeostasis disruption, neuro-developmental deficits, reproductive ineffectiveness and even cancer. Unfortunately, the available molecular toxicological evidence for these endpoints is still very limited. This review focuses on the recent studies on the molecular mechanisms of PBDE toxicities carried out through the hormone receptor pathways, including thyroid hormone receptor, estrogen receptor, androgen receptor, progesterone receptor and aryl hydrocarbon receptor pathways. The general approach in the mechanistic investigation is to examine the in vitro direct binding of a PBDE with a receptor, the in vitro recruitment of a co-activator or co-repressor by the ligand-bound receptor, and the participation of the ligand in the receptor-mediated transcription pathways in cells. It is hoped that further studies in this area would provide more insights into the potential risks of PBDEs to human health.
Collapse
Affiliation(s)
- Xiao-Min Ren
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | | |
Collapse
|
46
|
Sinchak K, Wagner EJ. Estradiol signaling in the regulation of reproduction and energy balance. Front Neuroendocrinol 2012; 33:342-63. [PMID: 22981653 PMCID: PMC3496056 DOI: 10.1016/j.yfrne.2012.08.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 08/18/2012] [Accepted: 08/22/2012] [Indexed: 12/14/2022]
Abstract
Our knowledge of membrane estrogenic signaling mechanisms and their interactions that regulate physiology and behavior has grown rapidly over the past three decades. The discovery of novel membrane estrogen receptors and their signaling mechanisms has started to reveal the complex timing and interactions of these various signaling mechanisms with classical genomic steroid actions within the nervous system to regulate physiology and behavior. The activation of the various estrogenic signaling mechanisms is site specific and differs across the estrous cycle acting through both classical genomic mechanisms and rapid membrane-initiated signaling to coordinate reproductive behavior and physiology. This review focuses on our current understanding of estrogenic signaling mechanisms to promote: (1) sexual receptivity within the arcuate nucleus of the hypothalamus, (2) estrogen positive feedback that stimulates de novo neuroprogesterone synthesis to trigger the luteinizing hormone surge important for ovulation and estrous cyclicity, and (3) alterations in energy balance.
Collapse
Affiliation(s)
- Kevin Sinchak
- Department of Biological Sciences, California State University, Long Beach, 1250 Bellflower Blvd., Long Beach, CA 90840-9502, United States.
| | | |
Collapse
|