1
|
Urich TJ, Tsiknia AA, Ali N, Park J, Mack WJ, Cortessis VK, Dinalo JE, Yassine HN. APOE ε4 and Dietary Patterns in Relation to Cognitive Function: An Umbrella Review of Systematic Reviews. Nutr Rev 2024:nuae156. [PMID: 39499795 DOI: 10.1093/nutrit/nuae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024] Open
Abstract
CONTEXT Carrying the apolipoprotein ε4 allele (APOE ε4) is the strongest genetic risk factor for late-onset Alzheimer's disease. There is some evidence suggesting that APOE ε4 may modulate the influence of diet on cognitive function. OBJECTIVE This umbrella review of systematic reviews evaluates the existing literature on the effect of dietary interventions on cognitive and brain-imaging outcomes by APOE status. DATA SOURCES PubMed, EMBASE, Web of Science, and Scopus were searched using terms appropriate to each area of research, from their respective starting dates of coverage until March 2023. DATA EXTRACTION Two independent reviewers conducted data extraction and performed a quality appraisal using the Measurement Tool to Assess Systematic Reviews (AMSTAR) 2. DATA ANALYSIS Six total reviews were included in the final analysis. Four reviews evaluated randomized controlled trials on individuals aged 50-93 years ranging the entire cognitive continuum. One review combined observational studies and clinical trials conducted on both cognitively healthy and cognitively impaired individuals (age range: 50-90), and 1 review included observational studies of both cognitively healthy and cognitively impaired adults (age range: 50-75). RESULTS Both observational studies and clinical trials yielded inconclusive results attributed to both practical limitations associated with longitudinal follow-up and issues of methodological quality. Except for the Mediterranean diet, dietary interventions, such as the ketogenic diet, nutraceuticals, and supplements, were generally not effective in older APOE ε4 carriers. This review considers plausible biological mechanisms that might explain why older and cognitively impaired APOE ε4 carriers were less likely to benefit. CONCLUSION This review identifies notable gaps in the literature, such as a shortage of studies conducted in middle-aged and cognitively healthy APOE ε4 carriers assessing the impact of dietary interventions and provides suggestions for novel trial designs.
Collapse
Affiliation(s)
- Thomas J Urich
- Department of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Amaryllis A Tsiknia
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA 90033, United States
| | - Nada Ali
- Department of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Jackson Park
- Department of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Wendy J Mack
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA 90033, United States
| | - Victoria K Cortessis
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA 90033, United States
| | - Jennifer E Dinalo
- Norris Medical Library, University of Southern California, Los Angeles, CA 90033, United States
| | - Hussein N Yassine
- Department of Medicine, University of Southern California, Los Angeles, CA 90033, United States
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA 90033, United States
| |
Collapse
|
2
|
Peña-Bautista C, Álvarez-Sánchez L, Balaguer Á, Raga L, García-Vallés L, Baquero M, Cháfer-Pericás C. Defining Alzheimer's Disease through Proteomic CSF Profiling. J Proteome Res 2024; 23:5096-5106. [PMID: 39373095 DOI: 10.1021/acs.jproteome.4c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Alzheimer disease (AD) is the main cause of dementia, and its complexity is not yet completely understood. Proteomic profiles can provide useful information to explore the pathways involved and the heterogeneity among AD patients. A proteomic analysis was performed in cerebrospinal fluid (CSF) samples from mild cognitive impairment due to AD (MCI-AD) and control individuals; both groups were classified by amyloid β42/amyloid β40 levels in CSF (data available in BioStudies database (S-BSST1456)). The analysis based on PLS regression and volcano plot identified 7 proteins (FOLR2, PPP3CA, SMOC2, STMN1, TAGLN3, TMEM132B, and UCHL1) mainly related to protein phosphorylation, structure maintenance, inflammation, and protein degradation. Enrichment analysis revealed the involvement of different biological processes related to neuronal mechanisms and synapses, lipid and carbohydrate metabolism, immune system and inflammation, vascular, hormones, and response to stimuli, and cell signaling and adhesion. In addition, the proteomic profile showed some association with the levels of AD biomarkers in CSF. Regarding the subtypes, two MCI-AD subgroups were identified: one could be related to synapsis and neuronal functions and the other to innate immunity. The study of the proteomic profile in the CSF of AD patients reflects the heterogeneity of biochemical pathways involved in AD.
Collapse
Affiliation(s)
- Carmen Peña-Bautista
- Alzheimer's Disease Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Lourdes Álvarez-Sánchez
- Alzheimer's Disease Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Ángel Balaguer
- Faculty of Mathematical Sciences, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Luis Raga
- Alzheimer's Disease Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Lorena García-Vallés
- Alzheimer's Disease Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Miguel Baquero
- Division of Neurology, Hospital Universitari I Politècnic La Fe, 46026 Valencia, Spain
| | - Consuelo Cháfer-Pericás
- Alzheimer's Disease Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| |
Collapse
|
3
|
Berlekamp M, Reifegerste D, Temmann LJ. Effects of Health Responsibility Frames on Attributions, Emotions, and Social Support Intentions in the Context of Dementias. HEALTH COMMUNICATION 2024; 39:3159-3169. [PMID: 38281921 DOI: 10.1080/10410236.2024.2307204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
When news stories cover health and diseases, they often address issues of responsibility. These responsibility frames can affect recipients' responsibility beliefs (i.e., attributions) and thereby affect emotions and motivations to support people affected by health problems. To date, it is not fully understood how responsibility frames affect these attributions, emotions, and social support intentions in the context of dementia. In an online experiment with N = 1,059 German participants, we tested the effects of different responsibility frames (individual vs. contextual) on social support intentions through responsibility attributions and emotional reactions in the context of dementia. Results show that responsibility frames affect responsibility attributions and social support intentions. Mediation analysis shows that the effect of contextual responsibility frames on social support intention is partially mediated by responsibility attribution and emotions (sympathy and anger). We discuss these findings considering framing effects research and media coverage.
Collapse
Affiliation(s)
- Mara Berlekamp
- Department of Media and Communication, Ludwig-Maximilians-Universität München
| | | | | |
Collapse
|
4
|
Luo Y, Li X, Zhou C, Liu G, Jia X, Yang X, Li A, Gong H, Feng Z. Mapping sagittal-plane reference brain atlas of the cynomolgus macaque (Macaca fascicularis) based on consecutive cytoarchitectonic images. Brain Struct Funct 2024; 229:2045-2057. [PMID: 39192084 PMCID: PMC11485111 DOI: 10.1007/s00429-024-02851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
The brain atlas is essential for exploring the anatomical structure and function of the brain. Non-human primates, such as cynomolgus macaque, have received increasing attention due to their genetic similarity to humans. However, current macaque brain atlases only offer coarse sections with intervals along the coronal direction, failing to meet the needs of single-cell resolution studies in functional and multi-omics research of the macaque brain. To address this issue, we utilized fluorescence micro-optical sectioning tomography to obtain sub-micron resolution cytoarchitectonic images of the macaque brain at the sagittal plane. Based on the obtained 8000 image sequences, a reference brain atlas comprising 45 sagittal sections was created, delineating 270 brain regions other than the cortex. Additionally, a website was established to share the reference atlas corresponding image data. This study is expected to provide an essential dataset and tool for scientists studying the macaque brain.
Collapse
Affiliation(s)
- Yue Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiangning Li
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China
| | - Can Zhou
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Guangcai Liu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xueyan Jia
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215123, China
| | - Xiaoquan Yang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, China
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215123, China
| | - Anan Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, China
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215123, China
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, China
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215123, China
| | - Zhao Feng
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China.
| |
Collapse
|
5
|
Parul, Singh A, Shukla S. Novel techniques for early diagnosis and monitoring of Alzheimer's disease. Expert Rev Neurother 2024:1-14. [PMID: 39435792 DOI: 10.1080/14737175.2024.2415985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/09/2024] [Indexed: 10/23/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) is the most common neurodegenerative disorder, which is characterized by a progressive loss of cognitive functions. The high prevalence, chronicity, and multimorbidity are very common in AD, which significantly impair the quality of life and functioning of patients. Early detection and accurate diagnosis of Alzheimer's disease (AD) can stop the illness from progressing thereby postponing its symptoms. Therefore, for the early diagnosis and monitoring of AD, more sensitive, noninvasive, straightforward, and affordable screening tools are needed. AREAS COVERED This review summarizes the importance of early detection methods and novel techniques for Alzheimer's disease diagnosis that can be used by healthcare professionals. EXPERT OPINION Early diagnosis assists the patient and caregivers to understand the problem establishing reasonable goals and making future plans together. Early diagnosis techniques not only help in monitoring disease progression but also provide crucial information for the development of novel therapeutic targets. Researchers can plan to potentially alleviate symptoms or slow down the progression of Alzheimer's disease by identifying early molecular changes and targeting altered pathways.
Collapse
Affiliation(s)
- Parul
- Division of Neuroscience and Ageing biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Animesh Singh
- Division of Neuroscience and Ageing biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shubha Shukla
- Division of Neuroscience and Ageing biology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
6
|
Wang S, Wang Y. Mechanism of action of "cistanche deserticola-Polygala" in treating Alzheimer's disease based on network pharmacology methods and molecular docking analysis. IET Syst Biol 2024. [PMID: 39393018 DOI: 10.1049/syb2.12100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 10/13/2024] Open
Abstract
This article used network pharmacology, molecular docking, GEO analysis, and Gene Set Enrichment Analysis to obtain 38 main chemical components and 66 corresponding targets involved in Alzheimer's disease (AD) treatment in "Cistanche deserticola-Polygala". Through further Gene Ontology and Kyoto Encyclopaedia of Genes and Genomes enrichment analysis, we obtained AD signalling pathways, calcium signalling pathways, and other signalling pathways related to the treatment of AD with "Cistanche deserticola-Polygala". Molecular docking showed that most of the core chemical components had good binding ability with the core targets. This article aims to reveal the mechanism of "Cistanche deserticola-Polygala" in treating AD and provide a basis for the treatment of AD with "Cistanche deserticola-Polygala".
Collapse
Affiliation(s)
- Shaoqiang Wang
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao, China
| | - Yifan Wang
- The Seventh Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
7
|
Kotarba S, Kozłowska M, Scios M, Saramowicz K, Barczuk J, Granek Z, Siwecka N, Wiese W, Golberg M, Galita G, Sychowski G, Majsterek I, Rozpędek-Kamińska W. Potential Mechanisms of Tunneling Nanotube Formation and Their Role in Pathology Spread in Alzheimer's Disease and Other Proteinopathies. Int J Mol Sci 2024; 25:10797. [PMID: 39409126 PMCID: PMC11477428 DOI: 10.3390/ijms251910797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia worldwide. The etiopathogenesis of this disease remains unknown. Currently, several hypotheses attempt to explain its cause, with the most well-studied being the cholinergic, beta-amyloid (Aβ), and Tau hypotheses. Lately, there has been increasing interest in the role of immunological factors and other proteins such as alpha-synuclein (α-syn) and transactive response DNA-binding protein of 43 kDa (TDP-43). Recent studies emphasize the role of tunneling nanotubes (TNTs) in the spread of pathological proteins within the brains of AD patients. TNTs are small membrane protrusions composed of F-actin that connect non-adjacent cells. Conditions such as pathogen infections, oxidative stress, inflammation, and misfolded protein accumulation lead to the formation of TNTs. These structures have been shown to transport pathological proteins such as Aβ, Tau, α-syn, and TDP-43 between central nervous system (CNS) cells, as confirmed by in vitro studies. Besides their role in spreading pathology, TNTs may also have protective functions. Neurons burdened with α-syn can transfer protein aggregates to glial cells and receive healthy mitochondria, thereby reducing cellular stress associated with α-syn accumulation. Current AD treatments focus on alleviating symptoms, and clinical trials with Aβ-lowering drugs have proven ineffective. Therefore, intensifying research on TNTs could bring scientists closer to a better understanding of AD and the development of effective therapies.
Collapse
Affiliation(s)
- Szymon Kotarba
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Marta Kozłowska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Małgorzata Scios
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Kamil Saramowicz
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Julia Barczuk
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Zuzanna Granek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Natalia Siwecka
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Wojciech Wiese
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Michał Golberg
- Department of Histology and Embryology, Medical University of Lodz, 90-419 Lodz, Poland;
| | - Grzegorz Galita
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Grzegorz Sychowski
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Wioletta Rozpędek-Kamińska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| |
Collapse
|
8
|
Shou F, Li G, Morshedi M. Long Non-coding RNA ANRIL and Its Role in the Development of Age-Related Diseases. Mol Neurobiol 2024; 61:7919-7929. [PMID: 38443729 DOI: 10.1007/s12035-024-04074-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/23/2024] [Indexed: 03/07/2024]
Abstract
ANRIL is known as a lncRNA that has many linear and circular isoforms and its polymorphisms are observed to be associated with the pathogenesis of many diseases including age-related diseases. Age-related diseases including atherosclerosis, ischemic heart disease, and Alzheimer's and Parkinson's disease are the most common cause of mortality in both developed and undeveloped countries and that is why a better understanding of their pathogenesis and underlying mechanisms is necessary for controlling their healthcare burden.In this review, we aim to gather the data of researches which have investigated the role of ANRIL in aging and its related diseases. The conclusions of this paper might give a new insight for decreasing the mortality rate of these diseases.
Collapse
Affiliation(s)
- Feiyan Shou
- Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China
| | - Gang Li
- Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China.
| | - Mohammadamin Morshedi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
9
|
Geigenmüller JN, Tari AR, Wisloff U, Walker TL. The relationship between adult hippocampal neurogenesis and cognitive impairment in Alzheimer's disease. Alzheimers Dement 2024; 20:7369-7383. [PMID: 39166771 PMCID: PMC11485317 DOI: 10.1002/alz.14179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024]
Abstract
Neurogenesis persists throughout adulthood in the hippocampus and contributes to specific cognitive functions. In Alzheimer's disease (AD), the hippocampus is affected by pathology and functional impairment early in the disease. Human AD patients have reduced adult hippocampal neurogenesis (AHN) levels compared to age-matched healthy controls. Similarly, rodent AD models show a decrease in AHN before the onset of the classical hallmarks of AD pathology. Conversely, enhancement of AHN can protect against AD pathology and ameliorate memory deficits in both rodents and humans. Therefore, impaired AHN may be a contributing factor of AD-associated cognitive decline, rather than an effect of it. In this review we outline the regulation and function of AHN in healthy individuals, and highlight the relationship between AHN dysfunction and cognitive impairments in AD. The existence of AHN in humans and its relevance in AD patients will also be discussed, with an outlook toward future research directions. HIGHLIGHTS: Adult hippocampal neurogenesis occurs in the brains of mammals including humans. Adult hippocampal neurogenesis is reduced in Alzheimer's disease in humans and animal models.
Collapse
Affiliation(s)
| | - Atefe R. Tari
- The Cardiac Exercise Research Group at Department of Circulation and Medical ImagingFaculty of Medicine and Health SciencesNorwegian University of Science and Technology (NTNU)TrondheimNorway
- Department of Neurology and Clinical NeurophysiologySt. Olavs University Hospital, Trondheim University HospitalTrondheimNorway
| | - Ulrik Wisloff
- The Cardiac Exercise Research Group at Department of Circulation and Medical ImagingFaculty of Medicine and Health SciencesNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Tara L. Walker
- Clem Jones Centre for Ageing Dementia ResearchQueensland Brain InstituteThe University of QueenslandBrisbaneAustralia
| |
Collapse
|
10
|
Zhong K, Cummings J. A critical review of brexpiprazole oral tablets as the first drug approved to treat agitation symptoms associated with dementia due to Alzheimer's disease. Expert Rev Neurother 2024:1-9. [PMID: 39344050 DOI: 10.1080/14737175.2024.2407836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
INTRODUCTION Agitation is a common and disruptive syndrome in dementia due to Alzheimer's disease (AD). Brexpiprazole was recently approved for this agitation of AD dementia and is the only therapy approved for this indication. AREAS COVERED The authors review the chemistry, pharmacokinetics, mechanism of action, and pharmacodynamics of brexpiprazole. Phase 2/3 and Phase 3 studies of brexpiprazole for the treatment of agitation in dementia due to AD are described. These studies demonstrated efficacy and safety for the 2 mg/d and 3 mg/d doses. Agitation reduction from baseline was significantly greater in the active treatment groups compared to the participants on placebo as measured by the Cohen-Mansfield Agitation Inventory, the primary outcome. Treatment benefit was demonstrated on the Clinician Global Impression - Severity, the key secondary outcome. Safety and tolerability were comparable in drug and placebo arms of the studies. EXPERT OPINION Approval by the Food and Drug Administration (FDA) of brexpiprazole for the treatment of agitation in dementia due to AD is an important milestone and regulatory precedent. This is the first approval for the treatment of any neuropsychiatric syndrome of AD. Brexpiprazole has a 'black box' warning for its use in psychosis caused by dementia due to an observed increase in mortality when using this class of antipsychotic agents in patients with dementia. Post-marketing surveillance will be key to understanding the safety profile of brexpiprazole. Brexpiprazole may be prioritized over the 'off label' use of other potential treatments for agitation.
Collapse
Affiliation(s)
- Kate Zhong
- Chambers-Grundy Center for Transformative Neuroscience, Alzheimer's Disease and Related Dementia Innovation Incubator (INNOVATOR), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, NV, USA
| | - Jeffrey Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Pam Quirk Brain Health and Biomarker Laboratory, Alzheimer's Disease and Related Dementia Innovation Incubator (INNOVATOR), Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, NV, USA
| |
Collapse
|
11
|
Liu S, Park T, Krüger DM, Pena-Centeno T, Burkhardt S, Schutz AL, Huang YN, Rosewood T, Chaudhuri S, Cho M, Risacher SL, Wan Y, Shaw LM, Sananbenesi F, Brodsky AS, Lin H, Krunic A, Blusztajn JK, Saykin AJ, Delalle I, Fischer A, Nho K. Plasma miRNAs across the Alzheimer's disease continuum: Relationship to central biomarkers. Alzheimers Dement 2024. [PMID: 39291737 DOI: 10.1002/alz.14230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/19/2024]
Abstract
INTRODUCTION MicroRNAs (miRNAs) play important roles in gene expression regulation and Alzheimer's disease (AD) pathogenesis. METHODS We investigated the association between baseline plasma miRNAs and central AD biomarkers from the Alzheimer's Disease Neuroimaging Initiative (ADNI; N = 803): amyloid, tau, and neurodegeneration (A/T/N). Differentially expressed miRNAs and their targets were identified, followed by pathway enrichment analysis. Machine learning approaches were applied to investigate the role of miRNAs as blood biomarkers. RESULTS We identified nine, two, and eight miRNAs significantly associated with A/T/N positivity, respectively. We identified 271 genes targeted by amyloid-related miRNAs with estrogen signaling receptor-mediated signaling among the enriched pathways. Additionally, 220 genes targeted by neurodegeneration-related miRNAs showed enrichment in pathways including the insulin growth factor 1 pathway. The classification performance of demographic information for A/T/N positivity was increased up to 9% with the inclusion of miRNAs. DISCUSSION Plasma miRNAs were associated with central A/T/N biomarkers, highlighting their potential as blood biomarkers. HIGHLIGHTS We performed association analysis of microRNAs (miRNAs) with amyloid/tau/neurodegeneration (A/T/N) biomarker positivity. We identified dysregulated miRNAs for A/T/N biomarker positivity. We identified Alzheimer's disease biomarker-specific/common pathways related to miRNAs. miRNAs improved the classification for A/T/N positivity by up to 9%. Our study highlights the potential of miRNAs as blood biomarkers.
Collapse
Affiliation(s)
- Shiwei Liu
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Tamina Park
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Dennis M Krüger
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Bioinformatics Unit, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Tonatiuh Pena-Centeno
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Bioinformatics Unit, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Susanne Burkhardt
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Anna-Lena Schutz
- Research Group for Genome Dynamics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Yen-Ning Huang
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Thea Rosewood
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Soumilee Chaudhuri
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - MinYoung Cho
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Shannon L Risacher
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yang Wan
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Leslie M Shaw
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Farahnaz Sananbenesi
- Research Group for Genome Dynamics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Alexander S Brodsky
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Warren Alpert Medical School at Brown University, Providence, Rhode Island, USA
| | - Honghuang Lin
- Department of Medicine, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Andre Krunic
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Jan Krzysztof Blusztajn
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Andrew J Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ivana Delalle
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Andre Fischer
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Department for Psychiatry and Psychotherapy, University Medical Center of Göttingen, Georg-August University, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
- German Center for Cardiovascular Diseases (DZHK), Göttingen, Germany
| | - Kwangsik Nho
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
12
|
Zhang Y, Yuan X, Jiang Z, Hu R, Liang H, Mao Q, Xiong Y, Zhang J, Liu M. The relationship between multimorbidity and cognitive function in older Chinese adults: based on propensity score matching. Front Public Health 2024; 12:1422000. [PMID: 39328989 PMCID: PMC11425792 DOI: 10.3389/fpubh.2024.1422000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024] Open
Abstract
Objective The goal of this study was to further validate the effect of multimorbidity on cognitive performance in older adults after controlling for confounders using propensity score matching (PSM). Methods A cross-sectional survey of older adult people aged 60 years or older selected by convenience sampling was conducted in seven medical institutions, three communities, and five nursing homes in Zunyi City, Guizhou Province. The data collected included general information, health-related information, and Mini-Mental State Examination (MMSE) scores. Variables were controlled for confounders by PSM to analyze differences in cognitive ability between multimorbidity and nonmultimorbidity older adults. Logistic regression and multivariate-adjusted restricted cubic spline (RCS) curves for matched samples were used to assess the relationship between multimorbidity and cognitive decline. Results A total of 14,175 respondents were enrolled, and the mean age of the participants included in this study was 71.26 ± 7.1 years, including 7,170 (50. 58%) of the participants were males, 7,005 (49.42%) were females, and 5,482 participants (38.67%) were screened for cognitive decline. After PSM, logistic regression analysis revealed that multimorbidity was a risk factor for cognitive decline (OR = 1.392, 95% CI = 1.271-1.525, p < 0.001). The RCS show that the risk of cognitive decline is always greater in older adults with multimorbidity than in older adults without multimorbidity at the same age. Age, sex, marital status, educational level, monthly income, drinking status, participation in social activities, and exercise were influential factors for cognitive decline in older adults (p < 0.05). The incidence of cognitive decline in older adults with multimorbidity was also greater than that in older adults with one chronic disease (p < 0.001). Conclusion The risk of cognitive decline in older adults with multimorbidity is greater than that in older adults without multimorbidity; therefore, the government should strengthen the prevention and treatment of multimorbidity in older adults to further protect their cognitive abilities.
Collapse
Affiliation(s)
- Yumeng Zhang
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Faculty of Nursing, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiaoli Yuan
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhixia Jiang
- College Office, Guizhou Nursing Vocational College, Guiyang, Guizhou, China
| | - Rujun Hu
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Heting Liang
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Qingyun Mao
- Faculty of Nursing, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yan Xiong
- Faculty of Nursing, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jiabi Zhang
- Kweichow Moutai Hospital, Renhuai, Guizhou, China
| | - Mi Liu
- Kweichow Moutai Hospital, Renhuai, Guizhou, China
| |
Collapse
|
13
|
Uwishema O, Kassahun Bekele B, Nazir A, Filbert Luta E, Abdulnaser Al-Saab E, Jacques Desire I, Franklin Ozioma C, Wojtara M. Breaking barriers: addressing inequities in Alzheimer's disease diagnosis and treatment in Africa. Ann Med Surg (Lond) 2024; 86:5299-5303. [PMID: 39239000 PMCID: PMC11374311 DOI: 10.1097/ms9.0000000000002344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/24/2024] [Indexed: 09/07/2024] Open
Abstract
Introduction Alzheimer's disease represents a substantial and escalating public health threat across Africa. Alzheimer's disease leads to substantial cognitive impairment and memory loss, placing a heavy burden on the affected individuals and their families, friends, and caregivers. It affects 2.67 million people in Africa, the majority of whom live in sub-Saharan Africa. The prevalence of this disease is expected to rise drastically to approximately 150 million individuals worldwide by 2050, as estimated by the WHO. Aim This paper offers an integrative profile of Alzheimer's disease in Africa, spanning known genetic and modifiable risks, discusses the existing challenges in diagnosis and treatment, projections on prevalence and disability-adjusted life year burden through 2050, and priority policy responses needed to rebalance the equation. Methods This paper examines available literature to summarize current knowledge on risk factors, diagnosis, treatments, and burden of Alzheimer's disease in Africa. Gather epidemiological assessments, clinical guidelines, and commentary related to Alzheimer's disease in Africa. Results The data reveals concerning realities regarding Alzheimer's disease diagnosis and care in Africa. Diagnostic infrastructure shortcomings, resource limitations, and knowledge gaps emerge as recurring barriers. Positron emission tomography scans, cerebrospinal fluid assays, and other mainstay detection modalities common in developed countries show restricted availability. Conclusion Addressing Africa's Alzheimer's disease crisis demands a multipronged strategy to uplift diagnostic capacities, treatment availability, specialist training, public awareness, and coordinated policymaking. Prioritizing biomarkers and imaging to confirm early neurodegeneration is foundational, alongside drug access expansion.
Collapse
Affiliation(s)
| | - Bezawit Kassahun Bekele
- Oli Health Magazine Organization, Research and Education
- Department of medicine, University of Nigeria, Nsukka, Nigeria
- Addis Ababa University, School of Medicine, Addis Ababa, Ethiopia
| | - Abubakar Nazir
- Oli Health Magazine Organization, Research and Education
- Department of Medicine, King Edward Medical University, Lahore, Pakistan
| | - Erick Filbert Luta
- Oli Health Magazine Organization, Research and Education
- Department of medicine, Muhimbili University of Health and Allied Sciences (MUHAS), Dar es Salaam, Tanzania
- Department of medicine, Tanzania Medical Students Association (TAMSA)
| | - Elaf Abdulnaser Al-Saab
- Oli Health Magazine Organization, Research and Education
- Department of medicine, Al Iraqia University School of Medicine, Baghdad, Iraq
| | - Irakiza Jacques Desire
- Oli Health Magazine Organization, Research and Education
- Department of medicine, University of Rwanda, Kigali, Rwanda
| | - Chukwuma Franklin Ozioma
- Oli Health Magazine Organization, Research and Education
- Department of medicine, University of Nigeria, Nsukka, Nigeria
| | - Magda Wojtara
- Oli Health Magazine Organization, Research and Education
| |
Collapse
|
14
|
Sethi P, Bhaskar R, Singh KK, Gupta S, Han SS, Avinash D, Abomughaid MM, Koul A, Rani B, Ghosh S, Jha NK, Sinha JK. Exploring advancements in early detection of Alzheimer's disease with molecular assays and animal models. Ageing Res Rev 2024; 100:102411. [PMID: 38986845 DOI: 10.1016/j.arr.2024.102411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
Alzheimer's Disease (AD) is a challenging neurodegenerative condition, with overwhelming implications for affected individuals and healthcare systems worldwide. Animal models have played a crucial role in studying AD pathogenesis and testing therapeutic interventions. Remarkably, studies on the genetic factors affecting AD risk, such as APOE and TREM2, have provided valuable insights into disease mechanisms. Early diagnosis has emerged as a crucial factor in effective AD management, as demonstrated by clinical studies emphasizing the benefits of initiating treatment at early stages. Novel diagnostic technologies, including RNA sequencing of microglia, offer promising avenues for early detection and monitoring of AD progression. Therapeutic strategies remain to evolve, with a focus on targeting amyloid beta (Aβ) and tau pathology. Advances in animal models, such as APP-KI mice, and the advancement of anti-Aβ drugs signify progress towards more effective treatments. Therapeutically, the focus has shifted towards intricate approaches targeting multiple pathological pathways simultaneously. Strategies aimed at reducing Aβ plaque accumulation, inhibiting tau hyperphosphorylation, and modulating neuroinflammation are actively being explored, both in preclinical models and clinical trials. While challenges continue in developing validated animal models and translating preclinical findings to clinical success, the continuing efforts in understanding AD at molecular, cellular, and clinical levels offer hope for improved management and eventual prevention of this devastating disease.
Collapse
Affiliation(s)
- Paalki Sethi
- GloNeuro, Sector 107, Vishwakarma Road, Noida, Uttar Pradesh 201301, India
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeonsang 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeonsang 38541, Republic of Korea
| | - Krishna Kumar Singh
- Symbiosis Centre for Information Technology (SCIT), Rajiv Gandhi InfoTech Park, Hinjawadi, Pune, Maharashtra 411057, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeonsang 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeonsang 38541, Republic of Korea
| | - D Avinash
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Apurva Koul
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab 140307, India
| | - Bindu Rani
- Department of Medicine, National Institute of Medical Sciences, NIMS University, Jaipur, Rajsthan, India
| | - Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida, Uttar Pradesh 201301, India.
| | - Niraj Kumar Jha
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab 140401, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India.
| | | |
Collapse
|
15
|
Zhao J, Lu F, Yu H, Cao J, Su Z, Zhao J. Proteomic analysis of baicalin intervention on protein expression and modification in the hippocampus of Alzheimer's disease model rat. Int J Neurosci 2024:1-10. [PMID: 39136404 DOI: 10.1080/00207454.2024.2332963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 09/03/2024]
Abstract
OBJECTIVE We aimed to explore the treatment effect and therapeutic mechanisms of baicalin in Alzheimer's disease (AD). METHODS The AD rat model was established by intracerebroventricular injection of Aβ1-40, with rats in the baicalin group receiving baicalin intraventricular injections. Morris Water Maze and Hematoxylin-eosin (H&E) Staining were employed to detect the successful model construction and baicalin treatment effect. The proteins extracted from the hippocampus were subjected to proteomics analysis. Bioinformatics technology was employed for differential protein screening, functional classification, and enrichment. Western Blot was employed to validate the expressions of differentially expressed proteins (DEPs) and the protein modification alternations. RESULTS Water maze test confirmed the successful AD model construction and baicalin can improve learning and memory abilities. A total of 26 DEPs associated with 28 Gene Ontology (GO) functions were identified in the model and 32 DEPs were obtained between the baicalin group and the model. Bioinformatics analysis demonstrated that AD occurrence resulted in neuronal dysfunction and was associated with immune responses. The baicalin therapeutic effect on AD may be associated with metabolic processes, vitamin response, angiogenesis regulation, and fatty acid response. Immunoglobulin heavy constant mu (Ighm) and Immunoglobulin G2a (IgG2a) exhibited significant increases in AD and baicalin attenuated their expressions, while Fatty acid desaturase 1 (Fads1) exhibited a significantly diminished expression and baicalin could reverse the trend. Succinylation detection exhibited the differentially expressed at 35 kD between the model and baicalin group. CONCLUSION Baicalin intervention may ameliorate cognitive impairment in AD rats by modulating the expressions of proteins and the succinylation modifications.
Collapse
Affiliation(s)
- Jiwei Zhao
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Fan Lu
- Shandong Public Health Clinical Center, Shandong University, Jinan, Shandong, China
| | - Hongli Yu
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jingwei Cao
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Zhiqiang Su
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jingkun Zhao
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
16
|
Zhang J, Zhang Y, Wang J, Xia Y, Zhang J, Chen L. Recent advances in Alzheimer's disease: Mechanisms, clinical trials and new drug development strategies. Signal Transduct Target Ther 2024; 9:211. [PMID: 39174535 PMCID: PMC11344989 DOI: 10.1038/s41392-024-01911-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/18/2024] [Accepted: 07/02/2024] [Indexed: 08/24/2024] Open
Abstract
Alzheimer's disease (AD) stands as the predominant form of dementia, presenting significant and escalating global challenges. Its etiology is intricate and diverse, stemming from a combination of factors such as aging, genetics, and environment. Our current understanding of AD pathologies involves various hypotheses, such as the cholinergic, amyloid, tau protein, inflammatory, oxidative stress, metal ion, glutamate excitotoxicity, microbiota-gut-brain axis, and abnormal autophagy. Nonetheless, unraveling the interplay among these pathological aspects and pinpointing the primary initiators of AD require further elucidation and validation. In the past decades, most clinical drugs have been discontinued due to limited effectiveness or adverse effects. Presently, available drugs primarily offer symptomatic relief and often accompanied by undesirable side effects. However, recent approvals of aducanumab (1) and lecanemab (2) by the Food and Drug Administration (FDA) present the potential in disrease-modifying effects. Nevertheless, the long-term efficacy and safety of these drugs need further validation. Consequently, the quest for safer and more effective AD drugs persists as a formidable and pressing task. This review discusses the current understanding of AD pathogenesis, advances in diagnostic biomarkers, the latest updates of clinical trials, and emerging technologies for AD drug development. We highlight recent progress in the discovery of selective inhibitors, dual-target inhibitors, allosteric modulators, covalent inhibitors, proteolysis-targeting chimeras (PROTACs), and protein-protein interaction (PPI) modulators. Our goal is to provide insights into the prospective development and clinical application of novel AD drugs.
Collapse
Affiliation(s)
- Jifa Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yinglu Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, TN, USA
| | - Yilin Xia
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxian Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lei Chen
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
17
|
Yoon JH, Lee H, Kwon D, Lee D, Lee S, Cho E, Kim J, Kim D. Integrative approach of omics and imaging data to discover new insights for understanding brain diseases. Brain Commun 2024; 6:fcae265. [PMID: 39165479 PMCID: PMC11334939 DOI: 10.1093/braincomms/fcae265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/03/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024] Open
Abstract
Treatments that can completely resolve brain diseases have yet to be discovered. Omics is a novel technology that allows researchers to understand the molecular pathways underlying brain diseases. Multiple omics, including genomics, transcriptomics and proteomics, and brain imaging technologies, such as MRI, PET and EEG, have contributed to brain disease-related therapeutic target detection. However, new treatment discovery remains challenging. We focused on establishing brain multi-molecular maps using an integrative approach of omics and imaging to provide insights into brain disease diagnosis and treatment. This approach requires precise data collection using omics and imaging technologies, data processing and normalization. Incorporating a brain molecular map with the advanced technologies through artificial intelligence will help establish a system for brain disease diagnosis and treatment through regulation at the molecular level.
Collapse
Affiliation(s)
- Jong Hyuk Yoon
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Hagyeong Lee
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Dayoung Kwon
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Dongha Lee
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Seulah Lee
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Eunji Cho
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Jaehoon Kim
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Dayea Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, Republic of Korea
| |
Collapse
|
18
|
Zhang B, Zhao J, Yan C, Bai Y, Guo P, Wang C, Wang Z, Du G, Liu A. Combination of RNA-seq and proteomics reveals the mechanism of DL0410 treatment in APP/PS1 transgenic mouse model of Alzheimer's disease. Biomed Pharmacother 2024; 177:116940. [PMID: 38925020 DOI: 10.1016/j.biopha.2024.116940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
There is a lack of a systematic understanding of the specific mechanism of action of DL0410 in AD treatment. In this study, the combination of RNA-seq and proteomics was firstly employed to uncover the mechanism of action of DL0410 in APP/PS1 transgenic mice. The results of behavioral tests showed that oral administration of DL0410 for 8 weeks improved memory and cognition of APP/PS1 mice. DL0410 significantly reduced β-amyloid deposition and resulted in significant upregulation of synaptophysin, PSD95 and NMDAR/ CaMKⅡ signaling pathway in the hippocampus and cortex, indicating that DL0410 improved synaptic plasticity in APP/PS1 mice, which agrees with the results of RNA-seq and proteomics. Furthermore, the enrichment results of differentially expressed genes identified by RNA-seq and proteomics demonstrate the potential protective effects of DL0410 against oxidative stress and mitochondrial dysfunction. As expected, DL0410 dose-dependently ameliorated oxidative damage and markedly increased the expression of PGC-1α, TFAM, SOD1 and SOD2. Mitochondrial high-resolution respirometry results revealed that mitochondrial respiratory function was significantly improved in APP/PS1 mice administered with DL0410. In addition, DL0410 treatment reduced oxidative damage, strengthened antioxidant system and improved mitochondrial function in Aβ-induced HT22 cells. Altogether, our findings suggest the potential of DL0410 as a novel candidate for AD treatment.
Collapse
Affiliation(s)
- Baoyue Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 10050, China; Beijing Key Lab of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Qilu Hospital of Shandong University, Qingdao 266000, China
| | - Jun Zhao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 10050, China; Beijing Key Lab of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Caiqin Yan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 10050, China; Beijing Key Lab of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yiming Bai
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 10050, China; Beijing Key Lab of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Pengfei Guo
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 10050, China; Beijing Key Lab of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Chao Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 10050, China; Beijing Key Lab of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zhe Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 10050, China; Beijing Key Lab of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Guanhua Du
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 10050, China; Beijing Key Lab of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ailin Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 10050, China; Beijing Key Lab of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
19
|
Behl T, Kaur I, Sehgal A, Khandige PS, Imran M, Gulati M, Khalid Anwer M, Elossaily GM, Ali N, Wal P, Gasmi A. The link between Alzheimer's disease and stroke: A detrimental synergism. Ageing Res Rev 2024; 99:102388. [PMID: 38914265 DOI: 10.1016/j.arr.2024.102388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 06/26/2024]
Abstract
Being age-related disorders, both Alzheimer's disease (AD) and stroke share multiple risk factors, such as hypertension, smoking, diabetes, and apolipoprotein E (APOE) Ɛ4 genotype, and coexist in patients. Accumulation of amyloid-β plaques and neurofibrillary tangled impair cognitive potential, leading to AD. Blocked blood flow in the neuronal tissues, causes neurodegeneration and cell death in stroke. AD is commonly characterized by cerebral amyloid angiopathy, which significantly elevates the risk of hemorrhagic stroke. Patients with AD and stroke have been both reported to exhibit greater cognitive impairment, followed by multiple pathophysiological mechanisms shared between the two. The manuscript aims to elucidate the relationship between AD and stroke, as well as the common pathways and risk factors while understanding the preventive therapies that might limit the negative impacts of this correlation, with diagnostic modalities and current AD treatments. The authors provide a comprehensive review of the link and aid the healthcare professionals to identify suitable targets and risk factors, that may retard cognitive decline and neurodegeneration in patients. However, more intricate research is required in this regard and an interdisciplinary approach that would target both the vascular and neurodegenerative factors would improve the quality of life in AD patients.
Collapse
Affiliation(s)
- Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India.
| | - Ishnoor Kaur
- University of Glasgow, College of Medical, Veterinary and Life Sciences, Glasgow, United Kingdom
| | - Aayush Sehgal
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana, Punjab, India
| | - Prasanna Shama Khandige
- NITTE (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmacology, Mangaluru, Karnataka, India
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Gehan M Elossaily
- Department of Baisc Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Pranay Wal
- PSIT Kanpur, Department of Pharmacy, Uttar Pradesh, India
| | - Amin Gasmi
- Societe Francophone de Nutritherapie et de Nutrigenetique Appliquee, Villeurbanne, France; International Institute of Nutrition and Micronutrition Sciences, Saint Etienne, France
| |
Collapse
|
20
|
Li W, Sun L, Yue L, Xiao S. Diagnostic and predictive power of plasma proteins in Alzheimer's disease: a cross-sectional and longitudinal study in China. Sci Rep 2024; 14:17557. [PMID: 39080359 PMCID: PMC11289122 DOI: 10.1038/s41598-024-66195-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
Convenient and effective biomarkers are essential for the early diagnosis and treatment of Alzheimer's disease (AD). In the cross-sectional study, 103 patients with AD, 82 patients with aMCI and 508 normal controls (NC) were enrolled. The single-molecule array (Simoa) technique was used to assess the levels of plasma proteins, including NfL, T-tau, P-tau-181, Aβ40, Aβ42. Montreal Cognitive Assessment (MoCA) was used to assess the overall cognitive function of all subjects. Moreover, Amyloid PET and structural head MRI were also performed in a subset of the population. In the follow-up, the previous 508 normal older adults were followed up for two years, then COX regression analysis was used to investigate the association between baseline plasma proteins and future cognitive outcomes. NfL, T-tau, P-tau-181, Aβ40, Aβ42 and Aβ42/40 were altered in AD dementia, and NfL, Aβ42 and Aβ42/40 significantly outperformed all plasma proteins in differentiating AD dementia from NC, while NfL and Aβ42/40 could effectively distinguish between aMCI and NC. However, only plasma NfL was associated with future cognitive decline, and it was negatively correlated with MoCA (r = - 0.298, p < 0.001) and the volume of the left globus pallidus (r = - 0.278, p = 0.033). Plasma NfL can help distinguish between cognitively normal and cognitively impaired individuals (MCI/dementia) at the syndrome level. However, since we have not introduced other biomarkers for AD, such as PET CT or cerebrospinal fluid, and have not verified in other neurodegenerative diseases, whether plasma NFL can be used as a biomarker for AD needs to be further studied and explored.
Collapse
Affiliation(s)
- Wei Li
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| | - Lin Sun
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Yue
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China.
| | - Shifu Xiao
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
21
|
Kuźniar J, Kozubek P, Czaja M, Leszek J. Correlation between Alzheimer's Disease and Gastrointestinal Tract Disorders. Nutrients 2024; 16:2366. [PMID: 39064809 PMCID: PMC11279885 DOI: 10.3390/nu16142366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Alzheimer's disease is the most common cause of dementia globally. The pathogenesis is multifactorial and includes deposition of amyloid-β in the central nervous system, presence of intraneuronal neurofibrillary tangles and a decreased amount of synapses. It remains uncertain what causes the progression of the disease. Nowadays, it is suggested that the brain is connected to the gastrointestinal tract, especially the enteric nervous system and gut microbiome. Studies have found a positive association between AD and gastrointestinal diseases such as periodontitis, Helicobacter pylori infection, inflammatory bowel disease and microbiome disorders. H. pylori and its metabolites can enter the CNS via the oropharyngeal olfactory pathway and may predispose to the onset and progression of AD. Periodontitis may cause systemic inflammation of low severity with high levels of pro-inflammatory cytokines and neutrophils. Moreover, lipopolysaccharide from oral bacteria accompanies beta-amyloid in plaques that form in the brain. Increased intestinal permeability in IBS leads to neuronal inflammation from transference. Chronic inflammation may lead to beta-amyloid plaque formation in the intestinal tract that spreads to the brain via the vagus nerve. The microbiome plays an important role in many bodily functions, such as nutrient absorption and vitamin production, but it is also an important factor in the development of many diseases, including Alzheimer's disease. Both the quantity and diversity of the microbiome change significantly in patients with AD and even in people in the preclinical stage of the disease, when symptoms are not yet present. The microbiome influences the functioning of the central nervous system through, among other things, the microbiota-gut-brain axis. Given the involvement of the microbiome in the pathogenesis of AD, antibiotic therapy, probiotics and prebiotics, and faecal transplantation are being considered as possible therapeutic options.
Collapse
Affiliation(s)
- Julia Kuźniar
- Student Scientific Group of Psychiatry, Faculty of Medicine, Wroclaw Medical University, 50-369 Wroclaw, Poland; (P.K.); (M.C.)
| | - Patrycja Kozubek
- Student Scientific Group of Psychiatry, Faculty of Medicine, Wroclaw Medical University, 50-369 Wroclaw, Poland; (P.K.); (M.C.)
| | - Magdalena Czaja
- Student Scientific Group of Psychiatry, Faculty of Medicine, Wroclaw Medical University, 50-369 Wroclaw, Poland; (P.K.); (M.C.)
| | - Jerzy Leszek
- Department of Psychiatry, Faculty of Medicine, Wroclaw Medical University, 50-369 Wroclaw, Poland;
| |
Collapse
|
22
|
Wang C, Hei Y, Liu Y, Bajpai AK, Li Y, Guan Y, Xu F, Yao C. Systems genetics identifies methionine as a high risk factor for Alzheimer's disease. Front Neurosci 2024; 18:1381889. [PMID: 39081851 PMCID: PMC11286400 DOI: 10.3389/fnins.2024.1381889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024] Open
Abstract
As a dietary strategy, methionine restriction has been reported to promote longevity and regulate metabolic disorders. However, the role and possible regulatory mechanisms underlying methionine in neurodegenerative diseases such as Alzheimer's disease (AD), remain unexplored. This study utilized the data from BXD recombinant inbred (RI) mice to establish a correlation between the AD phenotype in mice and methionine level. Gene enrichment analysis indicated that the genes associated with the concentration of methionine in the midbrain are involved in the dopaminergic synaptic signaling pathway. Protein interaction network analysis revealed that glycogen synthase kinase 3 beta (GSK-3β) was a key regulator of the dopaminergic synaptic pathway and its expression level was significantly correlated with the AD phenotype. Finally, in vitro experiments demonstrated that methionine deprivation could reduce the expression of Aβ and phosphorylated Tau, suggesting that lowering methionine levels in humans may be a preventive or therapeutic strategy for AD. In conclusion, our findings support that methionine is a high risk factor for AD. These findings predict potential regulatory network, theoretically supporting methionine restriction to prevent AD.
Collapse
Affiliation(s)
- Congmin Wang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yu Hei
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yu Liu
- School of Pharmacy, Binzhou Medical University, Yantai, China
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, China
| | - Akhilesh Kumar Bajpai
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Yuhe Li
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yawen Guan
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Fuyi Xu
- School of Pharmacy, Binzhou Medical University, Yantai, China
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, China
| | - Cuifang Yao
- School of Pharmacy, Binzhou Medical University, Yantai, China
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, China
| |
Collapse
|
23
|
Mosquera-Heredia MI, Vidal OM, Morales LC, Silvera-Redondo C, Barceló E, Allegri R, Arcos-Burgos M, Vélez JI, Garavito-Galofre P. Long Non-Coding RNAs and Alzheimer's Disease: Towards Personalized Diagnosis. Int J Mol Sci 2024; 25:7641. [PMID: 39062884 PMCID: PMC11277322 DOI: 10.3390/ijms25147641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Alzheimer's disease (AD), a neurodegenerative disorder characterized by progressive cognitive decline, is the most common form of dementia. Currently, there is no single test that can diagnose AD, especially in understudied populations and developing countries. Instead, diagnosis is based on a combination of medical history, physical examination, cognitive testing, and brain imaging. Exosomes are extracellular nanovesicles, primarily composed of RNA, that participate in physiological processes related to AD pathogenesis such as cell proliferation, immune response, and neuronal and cardiovascular function. However, the identification and understanding of the potential role of long non-coding RNAs (lncRNAs) in AD diagnosis remain largely unexplored. Here, we clinically, cognitively, and genetically characterized a sample of 15 individuals diagnosed with AD (cases) and 15 controls from Barranquilla, Colombia. Advanced bioinformatics, analytics and Machine Learning (ML) techniques were used to identify lncRNAs differentially expressed between cases and controls. The expression of 28,909 lncRNAs was quantified. Of these, 18 were found to be differentially expressed and harbored in pivotal genes related to AD. Two lncRNAs, ENST00000608936 and ENST00000433747, show promise as diagnostic markers for AD, with ML models achieving > 95% sensitivity, specificity, and accuracy in both the training and testing datasets. These findings suggest that the expression profiles of lncRNAs could significantly contribute to advancing personalized AD diagnosis in this community, offering promising avenues for early detection and follow-up.
Collapse
Affiliation(s)
- Maria I. Mosquera-Heredia
- Department of Medicine, Universidad del Norte, Barranquilla 081007, Colombia; (M.I.M.-H.); (O.M.V.); (L.C.M.); (C.S.-R.)
| | - Oscar M. Vidal
- Department of Medicine, Universidad del Norte, Barranquilla 081007, Colombia; (M.I.M.-H.); (O.M.V.); (L.C.M.); (C.S.-R.)
| | - Luis C. Morales
- Department of Medicine, Universidad del Norte, Barranquilla 081007, Colombia; (M.I.M.-H.); (O.M.V.); (L.C.M.); (C.S.-R.)
| | - Carlos Silvera-Redondo
- Department of Medicine, Universidad del Norte, Barranquilla 081007, Colombia; (M.I.M.-H.); (O.M.V.); (L.C.M.); (C.S.-R.)
| | - Ernesto Barceló
- Instituto Colombiano de Neuropedagogía, Barranquilla 080020, Colombia;
- Department of Health Sciences, Universidad de La Costa, Barranquilla 080002, Colombia
- Grupo Internacional de Investigación Neuro-Conductual (GIINCO), Universidad de La Costa, Barranquilla 080002, Colombia
| | - Ricardo Allegri
- Institute for Neurological Research FLENI, Montañeses 2325, Buenos Aires C1428AQK, Argentina;
| | - Mauricio Arcos-Burgos
- Grupo de Investigación en Psiquiatría (GIPSI), Departamento de Psiquiatría, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellin 050010, Colombia;
| | - Jorge I. Vélez
- Department of Industrial Engineering, Universidad del Norte, Barranquilla 081007, Colombia
| | - Pilar Garavito-Galofre
- Department of Medicine, Universidad del Norte, Barranquilla 081007, Colombia; (M.I.M.-H.); (O.M.V.); (L.C.M.); (C.S.-R.)
| |
Collapse
|
24
|
Li J, Feng Y, Li Y, He P, Zhou Q, Tian Y, Yao R, Yao Y. Ferritinophagy: A novel insight into the double-edged sword in ferritinophagy-ferroptosis axis and human diseases. Cell Prolif 2024; 57:e13621. [PMID: 38389491 PMCID: PMC11216947 DOI: 10.1111/cpr.13621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/19/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024] Open
Abstract
Nuclear receptor coactive 4 (NCOA4), which functions as a selective cargo receptor, is a critical regulator of the particularly autophagic degradation of ferritin, a process known as ferritinophagy. Mechanistically, NCOA4-mediated ferritinophagy performs an increasingly vital role in the maintenance of intracellular iron homeostasis by promoting ferritin transport and iron release as needed. Ferritinophagy is not only involved in iron-dependent responses but also in the pathogenesis and progression of various human diseases, including metabolism-related, neurodegenerative, cardiovascular and infectious diseases. Therefore, ferritinophagy is of great importance in maintaining cell viability and function and represents a potential therapeutic target. Recent studies indicated that ferritinophagy regulates the signalling pathway associated with ferroptosis, a newly discovered type of cell death characterised by iron-dependent lipid peroxidation. Although accumulating evidence clearly demonstrates the importance of the interplay between dysfunction in iron metabolism and ferroptosis, a deeper understanding of the double-edged sword effect of ferritinophagy in ferroptosis has remained elusive. Details of the mechanisms underlying the ferritinophagy-ferroptosis axis in regulating relevant human diseases remain to be elucidated. In this review, we discuss the latest research findings regarding the mechanisms that regulate the biological function of NCOA4-mediated ferritinophagy and its contribution to the pathophysiology of ferroptosis. The important role of the ferritinophagy-ferroptosis axis in human diseases will be discussed in detail, highlighting the great potential of targeting ferritinophagy in the treatment of diseases.
Collapse
Affiliation(s)
- Jing‐Yan Li
- Department of EmergencyThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Yan‐Hua Feng
- Department of OrthopedicsHebei Provincial Chidren's HospitalShijiazhuangChina
| | - Yu‐Xuan Li
- Translational Medicine Research CenterMedical Innovation Research Division and Fourth Medical Center of the Chinese PLA General HospitalBeijingChina
| | - Peng‐Yi He
- Translational Medicine Research CenterMedical Innovation Research Division and Fourth Medical Center of the Chinese PLA General HospitalBeijingChina
| | - Qi‐Yuan Zhou
- Department of EmergencyThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Ying‐Ping Tian
- Department of EmergencyThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Ren‐Qi Yao
- Translational Medicine Research CenterMedical Innovation Research Division and Fourth Medical Center of the Chinese PLA General HospitalBeijingChina
| | - Yong‐Ming Yao
- Department of EmergencyThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
- Translational Medicine Research CenterMedical Innovation Research Division and Fourth Medical Center of the Chinese PLA General HospitalBeijingChina
| |
Collapse
|
25
|
De Guia IL, Eslick S, Naismith SL, Kanduri S, Shah TM, Martins RN. The Crosstalk Between Amyloid-β, Retina, and Sleep for the Early Diagnosis of Alzheimer's Disease: A Narrative Review. J Alzheimers Dis Rep 2024; 8:1009-1021. [PMID: 39114553 PMCID: PMC11305848 DOI: 10.3233/adr-230150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/17/2024] [Indexed: 08/10/2024] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia, which is characterised by progressive memory loss and accumulation of hallmark markers amyloid-β (Aβ) and neurofibrillary tangles in the diseased brain. The current gold standard diagnostic methods have limitations of being invasive, costly, and not easily accessible. Thus, there is a need for new avenues, such as imaging the retina for early AD diagnosis. Sleep disruption is symptomatically frequent across preclinical and AD subjects. As circadian activity, such as the sleep-wake cycle, is linked to the retina, analysis of their association may be useful additions for achieving predictive AD diagnosis. In this narrative review, we provide an overview of human retina studies concerning the deposition of Aβ, the role of the retina in sleep-wake cycle, the disruption of sleep in AD, and to gather evidence for the associations between Aβ, the retina, and sleep. Understanding the mechanisms behind the associations between Aβ, retina, and sleep could assist in the interpretation of retinal changes accurately in AD.
Collapse
Affiliation(s)
| | - Shaun Eslick
- Macquarie University, North Ryde, NSW, Australia
| | - Sharon L. Naismith
- Faculty of Science, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | | | | | - Ralph N. Martins
- Macquarie University, North Ryde, NSW, Australia
- Edith Cowen University, Joondalup, WA, Australia
- Australian Alzheimer’s Research Foundation, Nedlands, WA, Australia
| |
Collapse
|
26
|
Bonanni R, Cariati I, Cifelli P, Frank C, Annino G, Tancredi V, D'Arcangelo G. Exercise to Counteract Alzheimer's Disease: What Do Fluid Biomarkers Say? Int J Mol Sci 2024; 25:6951. [PMID: 39000060 PMCID: PMC11241657 DOI: 10.3390/ijms25136951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/14/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Neurodegenerative diseases (NDs) represent an unsolved problem to date with an ever-increasing population incidence. Particularly, Alzheimer's disease (AD) is the most widespread ND characterized by an accumulation of amyloid aggregates of beta-amyloid (Aβ) and Tau proteins that lead to neuronal death and subsequent cognitive decline. Although neuroimaging techniques are needed to diagnose AD, the investigation of biomarkers within body fluids could provide important information on neurodegeneration. Indeed, as there is no definitive solution for AD, the monitoring of these biomarkers is of strategic importance as they are useful for both diagnosing AD and assessing the progression of the neurodegenerative state. In this context, exercise is known to be an effective non-pharmacological management strategy for AD that can counteract cognitive decline and neurodegeneration. However, investigation of the concentration of fluid biomarkers in AD patients undergoing exercise protocols has led to unclear and often conflicting results, suggesting the need to clarify the role of exercise in modulating fluid biomarkers in AD. Therefore, this critical literature review aims to gather evidence on the main fluid biomarkers of AD and the modulatory effects of exercise to clarify the efficacy and usefulness of this non-pharmacological strategy in counteracting neurodegeneration in AD.
Collapse
Affiliation(s)
- Roberto Bonanni
- Department of Biomedicine and Prevention, "Tor Vergata" University of Rome, 00133 Rome, Italy
| | - Ida Cariati
- Department of Systems Medicine, "Tor Vergata" University of Rome, 00133 Rome, Italy
| | - Pierangelo Cifelli
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Claudio Frank
- UniCamillus-Saint Camillus International University of Health Sciences, 00131 Rome, Italy
| | - Giuseppe Annino
- Department of Systems Medicine, "Tor Vergata" University of Rome, 00133 Rome, Italy
- Centre of Space Bio-Medicine, "Tor Vergata" University of Rome, 00133 Rome, Italy
- Sports Engineering Laboratory, Department of Industrial Engineering, "Tor Vergata" University of Rome, 00133 Rome, Italy
| | - Virginia Tancredi
- Department of Systems Medicine, "Tor Vergata" University of Rome, 00133 Rome, Italy
- Centre of Space Bio-Medicine, "Tor Vergata" University of Rome, 00133 Rome, Italy
| | - Giovanna D'Arcangelo
- Department of Systems Medicine, "Tor Vergata" University of Rome, 00133 Rome, Italy
- Centre of Space Bio-Medicine, "Tor Vergata" University of Rome, 00133 Rome, Italy
| |
Collapse
|
27
|
Iqbal I, Saqib F, Mubarak Z, Latif MF, Wahid M, Nasir B, Shahzad H, Sharifi-Rad J, Mubarak MS. Alzheimer's disease and drug delivery across the blood-brain barrier: approaches and challenges. Eur J Med Res 2024; 29:313. [PMID: 38849950 PMCID: PMC11161981 DOI: 10.1186/s40001-024-01915-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024] Open
Abstract
Alzheimer's disease (AD) is a diverse disease with a complex pathophysiology. The presence of extracellular β-amyloid deposition as neuritic plaques and intracellular accumulation of hyper-phosphorylated tau as neurofibrillary tangles remain the core neuropathologic criteria for diagnosing Alzheimer's disease. Nonetheless, several recent basic discoveries have revealed significant pathogenic roles for other essential cellular and molecular processes. Previously, there were not so many disease-modifying medications (DMT) available as drug distribution through the blood-brain barrier (BBB) is difficult due to its nature, especially drugs of polypeptides nature and proteins. Recently FDA has approved lecanemab as DMT for its proven efficacy. It is also complicated to deliver drugs for diseases like epilepsy or any brain tumor due to the limitations of the BBB. After the advancements in the drug delivery system, different techniques are used to transport the medication across the BBB. Other methods are used, like enhancement of brain blood vessel fluidity by liposomes, infusion of hyperosmotic solutions, and local intracerebral implants, but these are invasive approaches. Non-invasive approaches include the formulation of nanoparticles and their coating with polymers. This review article emphasizes all the above-mentioned techniques, procedures, and challenges to transporting medicines across the BBB. It summarizes the most recent literature dealing with drug delivery across the BBB.
Collapse
Affiliation(s)
- Iram Iqbal
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
- Primary and Secondary Healthcare Department, Govt of the Punjab, Lahore, Pakistan
| | - Fatima Saqib
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Zobia Mubarak
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
- Primary and Secondary Healthcare Department, Govt of the Punjab, Lahore, Pakistan
| | - Muhammad Farhaj Latif
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muqeet Wahid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Bushra Nasir
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Hamna Shahzad
- Department of Biochemistry, Bahauddin Zakariya University Multan, Multan, Pakistan
| | - Javad Sharifi-Rad
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea.
| | - Mohammad S Mubarak
- Department of Chemistry, The University of Jordan, Amman, 11942, Jordan.
| |
Collapse
|
28
|
Gallo A, Lipari A, Di Francesco S, Ianuà E, Liperoti R, Cipriani MC, Martone AM, De Candia E, Landi F, Montalto M. Platelets and Neurodegenerative Diseases: Current Knowledge and Future Perspectives. Int J Mol Sci 2024; 25:6292. [PMID: 38927999 PMCID: PMC11203688 DOI: 10.3390/ijms25126292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Platelets have a fundamental role in mediating hemostasis and thrombosis. However, more recently, a new idea is making headway, highlighting the importance of platelets as significant actors in modulating immune and inflammatory responses. In particular, platelets have an important role in the development of vascular amyloid-b-peptide(ab) deposits, known to play a relevant role in Alzheimer's disease (AD) through accumulation and deposition within the frontal cortex and hippocampus in the brain. The involvement of platelets in the pathogenesis of AD opens up the highly attractive possibility of applying antiplatelet therapy for the treatment and/or prevention of AD, but conclusive results are scarce. Even less is known about the potential role of platelets in mild cognitive impairment (MCI). The aim to this brief review is to summarize current knowledge on this topic and to introduce the new perspectives on the possible role of platelet activation as therapeutic target both in AD and MCI.
Collapse
Affiliation(s)
- Antonella Gallo
- Department of Geriatrics, Orthopedics and Rheumatology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, 00168 Rome, Italy; (R.L.); (M.C.C.); (A.M.M.); (F.L.); (M.M.)
| | - Alice Lipari
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (S.D.F.); (E.I.)
| | - Silvino Di Francesco
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (S.D.F.); (E.I.)
| | - Eleonora Ianuà
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (S.D.F.); (E.I.)
| | - Rosa Liperoti
- Department of Geriatrics, Orthopedics and Rheumatology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, 00168 Rome, Italy; (R.L.); (M.C.C.); (A.M.M.); (F.L.); (M.M.)
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (S.D.F.); (E.I.)
| | - Maria Camilla Cipriani
- Department of Geriatrics, Orthopedics and Rheumatology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, 00168 Rome, Italy; (R.L.); (M.C.C.); (A.M.M.); (F.L.); (M.M.)
| | - Anna Maria Martone
- Department of Geriatrics, Orthopedics and Rheumatology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, 00168 Rome, Italy; (R.L.); (M.C.C.); (A.M.M.); (F.L.); (M.M.)
| | - Erica De Candia
- Haemorrhagic and Thrombotic Diseases Unit, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, 00168 Rome, Italy;
- Department of Translation Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesco Landi
- Department of Geriatrics, Orthopedics and Rheumatology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, 00168 Rome, Italy; (R.L.); (M.C.C.); (A.M.M.); (F.L.); (M.M.)
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (S.D.F.); (E.I.)
| | - Massimo Montalto
- Department of Geriatrics, Orthopedics and Rheumatology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, 00168 Rome, Italy; (R.L.); (M.C.C.); (A.M.M.); (F.L.); (M.M.)
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (S.D.F.); (E.I.)
| |
Collapse
|
29
|
Wang J, Huang Q, He K, Li J, Guo T, Yang Y, Lin Z, Li S, Vanderlinden G, Huang Y, Van Laere K, Guan Y, Guo Q, Ni R, Li B, Xie F. Presynaptic density determined by SV2A PET is closely associated with postsynaptic metabotropic glutamate receptor 5 availability and independent of amyloid pathology in early cognitive impairment. Alzheimers Dement 2024; 20:3876-3888. [PMID: 38634334 PMCID: PMC11180932 DOI: 10.1002/alz.13817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 04/19/2024]
Abstract
INTRODUCTION Metabotropic glutamate receptor 5 (mGluR5) is involved in regulating integrative brain function and synaptic transmission. Aberrant mGluR5 signaling and relevant synaptic failure play a key role in the pathophysiological mechanism of Alzheimer's disease (AD). METHODS Ten cognitively impaired (CI) individuals and 10 healthy controls (HCs) underwent [18F]SynVesT-1 and [18F]PSS232 positron emission tomography (PET)/magnetic resonance to assess synaptic density and mGluR5 availability. The associations between mGluR5 availability and synaptic density were examined. A mediation analysis was performed to investigate the possible mediating effects of mGluR5 availability and synaptic loss on the relationship between amyloid deposition and cognition. RESULTS CI patients exhibited lower mGluR5 availability and synaptic density in the medial temporal lobe than HCs. Regional synaptic density was closely associated with regional mGluR5 availability. mGluR5 availability and synaptic loss partially mediated the relationship between amyloid deposition and cognition. CONCLUSIONS Reductions in mGluR5 availability and synaptic density exhibit similar spatial patterns in AD and are closely linked. HIGHLIGHTS Cognitively impaired patients exhibited lower mGluR5 availability and synaptic density in the medial temporal lobe than HCs. Reductions in mGluR5 availability and synaptic density exhibit similar spatial patterns in AD. Regional synaptic density was closely associated with regional mGluR5 availability. mGluR5 availability and synaptic loss partially mediated the relationship between amyloid deposition and global cognition. With further research, modulating mGluR5 availability might be a potential therapeutic strategy for improving synaptic function in AD.
Collapse
Affiliation(s)
- Jie Wang
- Department of Nuclear Medicine & PET CenterHuashan Hospital, Fudan UniversityShanghaiChina
| | - Qi Huang
- Department of Nuclear Medicine & PET CenterHuashan Hospital, Fudan UniversityShanghaiChina
| | - Kun He
- Department of Nuclear Medicine & PET CenterHuashan Hospital, Fudan UniversityShanghaiChina
| | - Junpeng Li
- Department of Nuclear Medicine & PET CenterHuashan Hospital, Fudan UniversityShanghaiChina
| | - Tengfei Guo
- Institute of Biomedical Engineering, Shenzhen Bay LaboratoryShenzhenChina
| | - Yang Yang
- Beijing United Imaging Research Institute of Intelligent ImagingBeijingChina
| | - Zengping Lin
- Central Research Institute, United Imaging Healthcare Group Co., LtdShanghaiChina
| | - Songye Li
- Department of Radiology and Biomedical ImagingPET CenterYale University School of MedicineNew HavenConnecticutUSA
| | - Greet Vanderlinden
- Department of Imaging and PathologyNuclear Medicine and Molecular Imaging, KU LeuvenLeuvenBelgium
| | - Yiyun Huang
- Department of Radiology and Biomedical ImagingPET CenterYale University School of MedicineNew HavenConnecticutUSA
| | - Koen Van Laere
- Department of Imaging and PathologyNuclear Medicine and Molecular Imaging, KU LeuvenLeuvenBelgium
| | - Yihui Guan
- Department of Nuclear Medicine & PET CenterHuashan Hospital, Fudan UniversityShanghaiChina
| | - Qihao Guo
- Department of GerontologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Ruiqing Ni
- Institute for Biomedical Engineering, University of Zurich & ETH ZurichZurichSwitzerland
- Institute for Regenerative MedicineUniversity of ZurichZurichSwitzerland
| | - Binying Li
- Department of Neurology and Institute of NeurologyRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fang Xie
- Department of Nuclear Medicine & PET CenterHuashan Hospital, Fudan UniversityShanghaiChina
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan UniversityShanghaiChina
| |
Collapse
|
30
|
Zu L, Wang X, Liu P, Xie J, Zhang X, Liu W, Li Z, Zhang S, Li K, Giannetti A, Bi W, Chiavaioli F, Shi L, Guo T. Ultrasensitive and Multiple Biomarker Discrimination for Alzheimer's Disease via Plasmonic & Microfluidic Sensing Technologies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308783. [PMID: 38509587 PMCID: PMC11200013 DOI: 10.1002/advs.202308783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/03/2024] [Indexed: 03/22/2024]
Abstract
As the population ages, the worldwide prevalence of Alzheimer's disease (AD) as the most common dementia in the elderly is increasing dramatically. However, a long-term challenge is to achieve rapid and accurate early diagnosis of AD by detecting hallmarks such as amyloid beta (Aβ42). Here, a multi-channel microfluidic-based plasmonic fiber-optic biosensing platform is established for simultaneous detection and differentiation of multiple AD biomarkers. The platform is based on a gold-coated, highly-tilted fiber Bragg grating (TFBG) and a custom-developed microfluidics. TFBG excites a high-density, narrow-cladding-mode spectral comb that overlaps with the broad absorption of surface plasmons for high-precision interrogation, enabling ultrasensitive monitoring of analytes. In situ detection and in-parallel discrimination of different forms of Aβ42 in cerebrospinal fluid (CSF) are successfully demonstrated with a detection of limit in the range of ≈30-170 pg mL-1, which is one order of magnitude below the clinical cut-off level in AD onset, providing high detection sensitivity for early diagnosis of AD. The integration of the TFBG sensor with multi-channel microfluidics enables simultaneous detection of multiple biomarkers using sub-µL sample volumes, as well as combining initial binding rate and real-time response time to differentiate between multiple biomarkers in terms of binding kinetics. With the advantages of multi-parameter, low consumption, and highly sensitive detection, the sensor represents an urgently needed potentials for large-scale diagnosis of diseases at early stage.
Collapse
Affiliation(s)
- Lijiao Zu
- Institute of Photonics TechnologyJinan UniversityGuangzhou510632China
| | - Xicheng Wang
- Institute of Photonics TechnologyJinan UniversityGuangzhou510632China
| | - Peng Liu
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan UniversityGuangzhou510632China
| | - Jiwei Xie
- Institute of Photonics TechnologyJinan UniversityGuangzhou510632China
| | - Xuejun Zhang
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of MedicineBeth Israel Deaconess Medical Center, Harvard UniversityBoston02215USA
| | - Weiru Liu
- Institute of Photonics TechnologyJinan UniversityGuangzhou510632China
| | - Zhencheng Li
- Institute of Photonics TechnologyJinan UniversityGuangzhou510632China
| | - Shiqing Zhang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan UniversityGuangzhou510632China
| | - Kaiwei Li
- Institute of Photonics TechnologyJinan UniversityGuangzhou510632China
| | - Ambra Giannetti
- National Research Council of Italy (CNR), Institute of Applied Physics “Nello Carrara” (IFAC)Sesto Fiorentino50019Italy
| | - Wei Bi
- Department of NeurologyThe First Affiliated Hospital of Jinan UniversityGuangzhou510632China
| | - Francesco Chiavaioli
- National Research Council of Italy (CNR), Institute of Applied Physics “Nello Carrara” (IFAC)Sesto Fiorentino50019Italy
| | - Lei Shi
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan UniversityGuangzhou510632China
| | - Tuan Guo
- Institute of Photonics TechnologyJinan UniversityGuangzhou510632China
| |
Collapse
|
31
|
Biačková N, Adamová A, Klírová M. Transcranial alternating current stimulation in affecting cognitive impairment in psychiatric disorders: a review. Eur Arch Psychiatry Clin Neurosci 2024; 274:803-826. [PMID: 37682331 PMCID: PMC11127835 DOI: 10.1007/s00406-023-01687-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023]
Abstract
Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation method that, through its manipulation of endogenous oscillations, can affect cognition in healthy adults. Given the fact that both endogenous oscillations and cognition are impaired in various psychiatric diagnoses, tACS might represent a suitable intervention. We conducted a search of Pubmed and Web of Science databases and reviewed 27 studies where tACS is used in psychiatric diagnoses and cognition change is evaluated. TACS is a safe and well-tolerated intervention method, suitable for multiple-sessions protocols. It can be administered at home, individualized according to the patient''s anatomical and functional characteristics, or used as a marker of disease progression. The results are varying across diagnoses and applied protocols, with some protocols showing a long-term effect. However, the overall number of studies is small with a great variety of diagnoses and tACS parameters, such as electrode montage or used frequency. Precise mechanisms of tACS interaction with pathophysiological processes are only partially described and need further research. Currently, tACS seems to be a feasible method to alleviate cognitive impairment in psychiatric patients; however, a more robust confirmation of efficacy of potential protocols is needed to introduce it into clinical practise.
Collapse
Affiliation(s)
- Nina Biačková
- Neurostimulation Department, National Institute of Mental Health, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Andrea Adamová
- Neurostimulation Department, National Institute of Mental Health, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Monika Klírová
- Neurostimulation Department, National Institute of Mental Health, Klecany, Czech Republic.
- Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
32
|
Thipani Madhu M, Balaji O, Kandi V, Ca J, Harikrishna GV, Metta N, Mudamanchu VK, Sanjay BG, Bhupathiraju P. Role of the Glymphatic System in Alzheimer's Disease and Treatment Approaches: A Narrative Review. Cureus 2024; 16:e63448. [PMID: 39077280 PMCID: PMC11285013 DOI: 10.7759/cureus.63448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2024] [Indexed: 07/31/2024] Open
Abstract
Currently, there is unavailability of disease-modifying medication for Alzheimer's disease (AD), a debilitating neurological disorder. The pathogenesis of AD appears to be complex and could be influenced by the glymphatic system present in the central nervous system (CNS). Amyloid-beta (Aβ) and other metabolic wastes are eliminated from the brain interstitium by the glymphatic system, which encompasses perivascular channels and astroglial cells. Dysfunction of the glymphatic system, which could occur due to decreased aquaporin 4 (AQP4) expression, aging-related alterations in the human brain, and sleep disruptions, may contribute to the pathogenesis of AD and also accelerate the development of AD by causing a buildup of harmful proteins like Aβ. Promising approaches have been examined for reducing AD pathology, including non-pharmacological therapies that target glymphatic function, like exercise and sleep regulation. In addition, preclinical research has also demonstrated the therapeutic potential of pharmaceutical approaches targeted at augmenting AQP4-mediated glymphatic flow. To identify the precise processes driving glymphatic dysfunction in AD and to find new treatment targets, more research is required. Innovative diagnostic and treatment approaches for AD could be made possible by techniques such as dynamic contrast-enhanced MRI, which promises to evaluate glymphatic function in neurodegenerative diseases. Treatment options for AD and other neurodegenerative diseases may be improved by comprehending and utilizing the glymphatic system's function in preserving brain homeostasis and targeting the mechanisms involved in glymphatic functioning. This review intends to enhance the understanding of the complex link between AD and the glymphatic system and focuses on the function of AQP4 channels in promoting waste clearance and fluid exchange.
Collapse
Affiliation(s)
- Mansi Thipani Madhu
- Internal Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Ojas Balaji
- Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Venkataramana Kandi
- Clinical Microbiology, Prathima Institute of Medical Sciences, Karimnagar, IND
| | - Jayashankar Ca
- Internal Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | | | - Nirosha Metta
- Neurology, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | | | - Bhangdiya G Sanjay
- Internal Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Praful Bhupathiraju
- Internal Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| |
Collapse
|
33
|
Xie PL, Zheng MY, Han R, Chen WX, Mao JH. Pharmacological mTOR inhibitors in ameliorating Alzheimer's disease: current review and perspectives. Front Pharmacol 2024; 15:1366061. [PMID: 38873415 PMCID: PMC11169825 DOI: 10.3389/fphar.2024.1366061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/25/2024] [Indexed: 06/15/2024] Open
Abstract
Traditionally, pharmacological mammalian/mechanistic targets of rapamycin (mTOR) kinase inhibitors have been used during transplantation and tumor treatment. Emerging pre-clinical evidence from the last decade displayed the surprising effectiveness of mTOR inhibitors in ameliorating Alzheimer's Disease (AD), a common neurodegenerative disorder characterized by progressive cognitive function decline and memory loss. Research shows mTOR activation as an early event in AD development, and inhibiting mTOR may promote the resolution of many hallmarks of Alzheimer's. Aberrant protein aggregation, including amyloid-beta (Aβ) deposition and tau filaments, and cognitive defects, are reversed upon mTOR inhibition. A closer inspection of the evidence highlighted a temporal dependence and a hallmark-specific nature of such beneficial effects. Time of administration relative to disease progression, and a maintenance of a functional lysosomal system, could modulate its effectiveness. Moreover, mTOR inhibition also exerts distinct effects between neurons, glial cells, and endothelial cells. Different pharmacological properties of the inhibitors also produce different effects based on different blood-brain barrier (BBB) entry capacities and mTOR inhibition sites. This questions the effectiveness of mTOR inhibition as a viable AD intervention strategy. In this review, we first summarize the different mTOR inhibitors available and their characteristics. We then comprehensively update and discuss the pre-clinical results of mTOR inhibition to resolve many of the hallmarks of AD. Key pathologies discussed include Aβ deposition, tauopathies, aberrant neuroinflammation, and neurovascular system breakdowns.
Collapse
Affiliation(s)
- Pei-Lun Xie
- University College London, London, United Kingdom
| | | | - Ran Han
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Wei-Xin Chen
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Jin-Hua Mao
- Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
34
|
Luo R, Zeraatkar D, Glymour M, Ellis RJ, Estiri H, Patel CJ. Specification curve analysis to identify heterogeneity in risk factors for dementia: findings from the UK Biobank. BMC Med 2024; 22:216. [PMID: 38807092 PMCID: PMC11134914 DOI: 10.1186/s12916-024-03424-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/13/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND In 2020, the Lancet Commission identified 12 risk factors as priorities for prevention of dementia, and other studies identified APOE e4/e4 genotype and family history of Alzheimer's disease strongly associated with dementia outcomes; however, it is unclear how robust these relationships are across dementia subtypes and analytic scenarios. Specification curve analysis (SCA) is a new tool to probe how plausible analytical scenarios influence outcomes. METHODS We evaluated the heterogeneity of odds ratios for 12 risk factors reported from the Lancet 2020 report and two additional strong associated non-modifiable factors (APOE e4/e4 genotype and family history of Alzheimer's disease) with dementia outcomes across 450,707 UK Biobank participants using SCA with 5357 specifications across dementia subtypes (outcomes) and analytic models (e.g., standard demographic covariates such as age or sex and/or 14 correlated risk factors). RESULTS SCA revealed variable dementia risks by subtype and age, with associations for TBI and APOE e4/e4 robust to model specification; in contrast, diabetes showed fluctuating links with dementia subtypes. We found that unattributed dementia participants had similar risk factor profiles to participants with defined subtypes. CONCLUSIONS We observed heterogeneity in the risk of dementia, and estimates of risk were influenced by the inclusion of a combination of other modifiable risk factors; non-modifiable demographic factors had a minimal role in analytic heterogeneity. Future studies should report multiple plausible analytic scenarios to test the robustness of their association. Considering these combinations of risk factors could be advantageous for the clinical development and evaluation of novel screening models for different types of dementia.
Collapse
Affiliation(s)
- Renhao Luo
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Dena Zeraatkar
- Department of Anesthesia and Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Canada
| | - Maria Glymour
- Department of Epidemiology, School of Public Health, Boston University, Boston, MA, USA
| | - Randall J Ellis
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Hossein Estiri
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Chirag J Patel
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
35
|
Garcia RI, Khemka S, Roghani AK, Reddy RP, Pattoor V, Jacob M, Reddy A, Sehar U, Reddy PH. Caring for Individuals with Alzheimer's Disease: A Spotlight on Hispanic Caregivers. J Alzheimers Dis Rep 2024; 8:877-902. [PMID: 38910940 PMCID: PMC11191631 DOI: 10.3233/adr-240035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/18/2024] [Indexed: 06/25/2024] Open
Abstract
A caregiver is a constantly evolving role that an individual most likely undertakes at some point in their lifetime. With discoveries and research in increasing life expectancy, the prevalence of neurological-related diseases, such as Alzheimer's disease (AD) and dementia, is certainly likely to require more caregivers. The demand for AD caregivers is escalating as the prevalence of the disease continues to rise. The projected rise in AD within the Hispanic population in the United States over the next few decades is expected to be the most significant among all ethnic groups. The Hispanic population faces unique dementia risks due to cultural factors like language barriers, lower education, and limited healthcare access. Higher rates of conditions such as diabetes and cardiovascular disease further elevate dementia risk. Family dynamics and caregiving responsibilities also differ, affecting dementia management within Hispanic households. Addressing these distinct challenges requires culturally sensitive approaches to diagnosis, treatment, and support for Hispanic individuals and their family's facing dementia. With AD and other dementia becoming more prevalent, this article will attempt to expand upon the status of caregivers concerning their economic, health, and cultural statuses. We will attempt to focus on the Hispanic caregivers that live in Texas and more specifically, West Texas due to the lack of current literature that applies to this area of Texas. Lastly, we discuss the ramifications of a multitude of factors that affect caregivers in Texas and attempt to provide tools that can be readily available for Hispanics and others alike.
Collapse
Affiliation(s)
- Ricardo Isaiah Garcia
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Sachi Khemka
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Aryan Kia Roghani
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Frenship High School, Lubbock, TX, USA
| | - Ruhananhad P. Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Lubbock High School, Lubbock, TX, USA
| | - Vasanthkumar Pattoor
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- University of South Florida, Tampa, FL, USA
| | - Michael Jacob
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Aananya Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Lubbock High School, Lubbock, TX, USA
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P. Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Nutritional Sciences Department, College of Human Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Speech, Language and Hearing Services, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
36
|
Valdez-Gaxiola CA, Rosales-Leycegui F, Gaxiola-Rubio A, Moreno-Ortiz JM, Figuera LE. Early- and Late-Onset Alzheimer's Disease: Two Sides of the Same Coin? Diseases 2024; 12:110. [PMID: 38920542 PMCID: PMC11202866 DOI: 10.3390/diseases12060110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/04/2024] [Accepted: 05/18/2024] [Indexed: 06/27/2024] Open
Abstract
Early-onset Alzheimer's disease (EOAD), defined as Alzheimer's disease onset before 65 years of age, has been significantly less studied than the "classic" late-onset form (LOAD), although EOAD often presents with a more aggressive disease course, caused by variants in the APP, PSEN1, and PSEN2 genes. EOAD has significant differences from LOAD, including encompassing diverse phenotypic manifestations, increased genetic predisposition, and variations in neuropathological burden and distribution. Phenotypically, EOAD can be manifested with non-amnestic variants, sparing the hippocampi with increased tau burden. The aim of this article is to review the different genetic bases, risk factors, pathological mechanisms, and diagnostic approaches between EOAD and LOAD and to suggest steps to further our understanding. The comprehension of the monogenic form of the disease can provide valuable insights that may serve as a roadmap for understanding the common form of the disease.
Collapse
Affiliation(s)
- César A. Valdez-Gaxiola
- División de Genética, Centro de Investigación Biomédica de Occidente, IMSS, Guadalajara 44340, Jalisco, Mexico; (C.A.V.-G.); (F.R.-L.)
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Frida Rosales-Leycegui
- División de Genética, Centro de Investigación Biomédica de Occidente, IMSS, Guadalajara 44340, Jalisco, Mexico; (C.A.V.-G.); (F.R.-L.)
- Maestría en Ciencias del Comportamiento, Instituto de Neurociencias, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Abigail Gaxiola-Rubio
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico;
- Facultad de Medicina, Universidad Autónoma de Guadalajara, Zapopan 45129, Jalisco, Mexico
| | - José Miguel Moreno-Ortiz
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
- Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Luis E. Figuera
- División de Genética, Centro de Investigación Biomédica de Occidente, IMSS, Guadalajara 44340, Jalisco, Mexico; (C.A.V.-G.); (F.R.-L.)
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
37
|
Paprzycka O, Wieczorek J, Nowak I, Madej M, Strzalka-Mrozik B. Potential Application of MicroRNAs and Some Other Molecular Biomarkers in Alzheimer's Disease. Curr Issues Mol Biol 2024; 46:5066-5084. [PMID: 38920976 PMCID: PMC11202417 DOI: 10.3390/cimb46060304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/05/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Alzheimer's disease (AD) is the world's most common neurodegenerative disease, expected to affect up to one-third of the elderly population in the near future. Among the major challenges in combating AD are the inability to reverse the damage caused by the disease, expensive diagnostic tools, and the lack of specific markers for the early detection of AD. This paper highlights promising research directions for molecular markers in AD diagnosis, including the diagnostic potential of microRNAs. The latest molecular methods for diagnosing AD are discussed, with particular emphasis on diagnostic techniques prior to the appearance of full AD symptoms and markers detectable in human body fluids. A collection of recent studies demonstrates the promising potential of molecular methods in AD diagnosis, using miRNAs as biomarkers. Up- or downregulation in neurodegenerative diseases may not only provide a new diagnostic tool but also serve as a marker for differentiating neurodegenerative diseases. However, further research in this direction is needed.
Collapse
Affiliation(s)
- Olga Paprzycka
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (O.P.); (J.W.); (M.M.)
| | - Jan Wieczorek
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (O.P.); (J.W.); (M.M.)
| | - Ilona Nowak
- Silesia LabMed, Centre for Research and Implementation, Medical University of Silesia, 40-752 Katowice, Poland;
| | - Marcel Madej
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (O.P.); (J.W.); (M.M.)
- Silesia LabMed, Centre for Research and Implementation, Medical University of Silesia, 40-752 Katowice, Poland;
| | - Barbara Strzalka-Mrozik
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (O.P.); (J.W.); (M.M.)
| |
Collapse
|
38
|
Sadek J, Diaz-Piedra B, Saleh L, MacDonald L. A narrative review: suicide and suicidal behaviour in older adults. Front Psychiatry 2024; 15:1395462. [PMID: 38800059 PMCID: PMC11117711 DOI: 10.3389/fpsyt.2024.1395462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Globally, suicide is a public health concern that claims the lives of many each year. The complex etiology and factors contributing to the risk of suicide make it hard to predict the likelihood of death by suicide. Suicide rates have been increasing over the past 25 years in patients aged 65 years and older, and with the expected increases in the size of the older adult population and the under-detection of suicide risk, these rates may continue to increase. To mitigate and attempt to limit this expected increase, it is important to understand the risk and protective factors of suicide in older adults. This narrative review focuses on individuals above the age of 65 and encompasses relevant peer-reviewed publications from the past 25 years to cover fatal and non-fatal suicidal behaviour. It summarizes several important risk factors for suicide and suicidal behaviors while considering how risk can be detected, assessed, prevented, and mitigated. Screening methods to detect suicide and depression in older adults were examined based on their effectiveness and suitability for use in this population. Lastly, the impacts of the COVID-19 pandemic on suicide rates in older adults were described.
Collapse
Affiliation(s)
- Joseph Sadek
- Professor, Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | | | - Leah Saleh
- Faculty of Science, Dalhousie University, Halifax, NS, Canada
| | - Luke MacDonald
- MD Candidate, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
39
|
Shao Z, Lu Y, Xing A, He X, Xie H, Hu M. Effect of outer membrane vesicles of Lactobacillus pentosus on Tau phosphorylation and CDK5-Calpain pathway in mice. Exp Gerontol 2024; 189:112400. [PMID: 38484904 DOI: 10.1016/j.exger.2024.112400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/16/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Alzheimer's disease (AD) stands as a neurodegenerative disorder causing cognitive decline, posing a significant health concern for the elderly population in China. This study explored the effects of outer membrane vesicles (OMVs) from the gut microbiota of AD patients on learning and memory abilities and Tau protein phosphorylation in mice. In contrast to the OMVs from healthy controls and the PBS treatment group, mice treated with AD-OMVs exhibited notable declines in learning and memory capabilities, as evidenced by results from the Morris water maze, Y-maze, and novel object recognition tests. Immunohistochemistry and Western blot assessments unveiled elevated levels of hyperphosphorylated Tau in the cortex and hippocampus of mice treated with AD-OMVs. However, there were no alterations observed in the total Tau levels. In addition, AD-OMVs treated mice showed increased neuroinflammation indicated by elevated astrocytes and microglia. Molecular mechanism studies demonstrated that AD-OMVs could activate GSK3β, CDK5-Calpain and NF-κB pathways in mice hippocampus. These studies suggest AD patient gut microbiota derived OMVs can promote host Tau phosphorylation and improved neuroinflammation.
Collapse
Affiliation(s)
- Zhongying Shao
- Department of liver diseases, Tai'an Traditional Chinese Medicine Hospital, Tai'an City, Shandong Province, China
| | - Yanjun Lu
- Department of liver diseases, Tai'an Traditional Chinese Medicine Hospital, Tai'an City, Shandong Province, China
| | - Aihong Xing
- TCM Prevent&Health Care Dept Tai'an Traditional Chinese Medicine Hospital, Tai'an City, Shandong Province, China
| | - Xiying He
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an City, Shandong Province, China
| | - Hongyan Xie
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an City, Shandong Province, China
| | - Ming Hu
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an City, Shandong Province, China.
| |
Collapse
|
40
|
Hong H, Yu L, Cong W, Kang K, Gao Y, Guan Q, Meng X, Zhang H, Zhou Z. Cross-Talking Pathways of Rapidly Accelerated Fibrosarcoma-1 (RAF-1) in Alzheimer's Disease. Mol Neurobiol 2024; 61:2798-2807. [PMID: 37940778 DOI: 10.1007/s12035-023-03765-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
Alzheimer's disease (AD) becomes one of the main global burden diseases with the aging population. This study was to investigate the potential molecular mechanisms of rapidly accelerated fibrosarcoma-1 (RAF-1) in AD through bioinformatics analysis. Differential gene expression analysis was performed in GSE132903 dataset. We used weight gene correlation network analysis (WGCNA) to evaluate the relations among co-expression modules and construct global regulatory network. Cross-talking pathways of RAF-1 in AD were identified by functional enrichment analysis. Totally, 2700 differentially expressed genes (DEGs) were selected between AD versus non-dementia control and RAF-1-high versus low group. Among them, DEGs in turquoise module strongly associated with AD and high expression of RAF-1 were enriched in vascular endothelial growth factor (VEGF), neurotrophin, mitogen-activated protein kinase (MAPK) signaling pathway, oxidative phosphorylation, GABAergic synapse, and axon guidance. Moreover, cross-talking pathways of RAF-1, including MAPK, VEGF, neurotrophin signaling pathways, and axon guidance, were identified by global regulatory network. The performance evaluation of AUC was 84.2%. The gene set enrichment analysis (GSEA) indicated that oxidative phosphorylation and synapse-related biological processes were enriched in RAF-1-high and AD group. Our findings strengthened the potential roles of high RAF-1 level in AD pathogenesis, which were mediated by MAPK, VEGF, neurotrophin signaling pathways, and axon guidance.
Collapse
Affiliation(s)
- Hong Hong
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Lujiao Yu
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Wenqiang Cong
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Kexin Kang
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Yazhu Gao
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Qing Guan
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Xin Meng
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, Shenyang, 110001, Liaoning, China
| | - Haiyan Zhang
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Zhike Zhou
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
41
|
Guo H, Tian Q, Qin X, Luo Q, Gong X, Gao Q. Systematic evaluation and meta-analysis of the effects of major dietary patterns on cognitive function in healthy adults. Nutr Neurosci 2024:1-17. [PMID: 38689541 DOI: 10.1080/1028415x.2024.2342164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
PURPOSE Evidence shows diet promotes brain health. Combining foods and nutrients may have beneficial synergistic effects, but the effects on cognitive function interventions are inconsistent. So, a meta-analysis of RCTs was conducted to examine the specific effects on cognitive function. METHODS We searched four databases from creation to April 2023. Eligible randomized controlled trials were identified. A random-effects meta-analysis was used to combine standardized mean differences (SMD) (95% confidence intervals [CI]), and homogeneity tests for a variance were calculated. RESULTS A total of 19 studies involving 12,119 participants were included in this systematic review. The dietary intervention group had a positive effect on overall cognitive functioning compared to the control group (SMD = 0.14, 95% CI [0.08, 0.20], P < 0.00001). The dietary intervention improved executive function, processing speed and language skills (SMD = -0.10, 95% CI [-0.17,-0.04], P = 0.002, I2 = 0%), (SMD = -0.16, 95% CI [-0.23,-0.09], P < 0.00001, I2 = 0%), (SMD = 0.10, 95% CI [0.01, 0.20], P = 0.03, I2 = 0%). The dietary intervention had no effect on delayed memory and spatial ability (SMD = 0.04, 95% CI [-0.02, 0.09], P = 0.20, I2 = 0%), (SMD = 0.08, 95% CI [-0.01, 0.16], P = 0.08, I2 = 0%). CONCLUSION The Mediterranean diet, a diet with restricted caloric intake, a diet incorporating aerobic exercise, a low-carbohydrate diet, and a healthy lifestyle diet (increased intake of fruits and vegetables, and weight and blood pressure management) appear to have positive effects on cognitively healthy adults, as reflected in their overall cognitive, processing speed, executive, and language functions. PROSPERO REGISTRATION NUMBER CRD42023414704.
Collapse
Affiliation(s)
- HanQing Guo
- School of Public Health, Ningxia Medical University, Yinchuan, People's Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Qi Tian
- School of Public Health, Ningxia Medical University, Yinchuan, People's Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, People's Republic of China
| | - XueMei Qin
- School of Public Health, Ningxia Medical University, Yinchuan, People's Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Qing Luo
- School of Public Health, Ningxia Medical University, Yinchuan, People's Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, People's Republic of China
| | - XiuMei Gong
- Nutrition Department of Laizhou People's Hospital, TanTai, People's Republic of China
| | - Qinghan Gao
- School of Public Health, Ningxia Medical University, Yinchuan, People's Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, People's Republic of China
| |
Collapse
|
42
|
Pszczołowska M, Walczak K, Miśków W, Antosz K, Batko J, Kurpas D, Leszek J. Chronic Traumatic Encephalopathy as the Course of Alzheimer's Disease. Int J Mol Sci 2024; 25:4639. [PMID: 38731858 PMCID: PMC11083609 DOI: 10.3390/ijms25094639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
This editorial investigates chronic traumatic encephalopathy (CTE) as a course of Alzheimer's disease (AD). CTE is a debilitating neurodegenerative disease that is the result of repeated mild traumatic brain injury (TBI). Many epidemiological studies show that experiencing a TBI in early or middle life is associated with an increased risk of dementia later in life. Chronic traumatic encephalopathy (CTE) and Alzheimer's disease (AD) present a series of similar neuropathological features that were investigated in this work like recombinant tau into filaments or the accumulation and aggregation of Aβ protein. However, these two conditions differ from each other in brain-blood barrier damage. The purpose of this review was to evaluate information about CTE and AD from various articles, focusing especially on new therapeutic possibilities for the improvement in cognitive skills.
Collapse
Affiliation(s)
- Magdalena Pszczołowska
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (M.P.)
| | - Kamil Walczak
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (M.P.)
| | - Weronika Miśków
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (M.P.)
| | - Katarzyna Antosz
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (M.P.)
| | - Joanna Batko
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (M.P.)
| | - Donata Kurpas
- Faculty of Health Sciences, Wroclaw Medical University, Ul. Kazimierza Bartla 5, 51-618 Wrocław, Poland
| | - Jerzy Leszek
- Clinic of Psychiatry, Department of Psychiatry, Wroclaw Medical University, Ludwika Pasteura 10, 50-367 Wrocław, Poland
| |
Collapse
|
43
|
Zhang XY, Li YQ, Yin ZH, Bao QN, Xia MZ, Chen ZH, Zhong WQ, Wu KX, Yao J, Liang FR. Supplements for cognitive ability in patients with mild cognitive impairment or Alzheimer's disease: a protocol for systematic review and network meta-analysis of randomised controlled trials. BMJ Open 2024; 14:e077623. [PMID: 38569691 PMCID: PMC10989123 DOI: 10.1136/bmjopen-2023-077623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/22/2024] [Indexed: 04/05/2024] Open
Abstract
INTRODUCTION Considering the increasing incidence of Alzheimer's disease (AD) and mild cognitive impairment (MCI) worldwide, there is an urgent need to identify efficacious, safe and convenient treatments. Numerous investigations have been conducted on the use of supplements in this domain, with oral supplementation emerging as a viable therapeutic approach for AD or MCI. Nevertheless, given the multitude of available supplements, it becomes imperative to identify the optimal treatment regimen. METHODS AND ANALYSIS Eight academic databases and three clinical trial registries will be searched from their inception to 1 June 2023. To identify randomised controlled trials investigating the effects of supplements on patients with AD or MCI, two independent reviewers (X-YZ and Y-QL) will extract relevant information from eligible articles, while the risk of bias in the included studies will be assessed using the Rob 2.0 tool developed by the Cochrane Collaboration. The primary outcome of interest is the overall cognitive function. Pair-wise meta-analysis will be conducted using RevMan V.5.3, while network meta-analysis will be carried out using Stata 17.0 and ADDIS 1.16.8. Heterogeneity test, data synthesis and subgroup analysis will be performed if necessary. The GRADE system will be employed to assess the quality of evidence. This study is scheduled to commence on 1 June 2023 and conclude on 1 October 2023. ETHICS AND DISSEMINATION Ethics approval is not required for systematic review and network meta-analysis. The results will be submitted to a peer-reviewed journal or at a conference. TRIAL REGISTRATION NUMBER PROSPERO (CRD42023414700).
Collapse
Affiliation(s)
- Xin-Yue Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Acupuncture Clinical Research Center of Sichuan Province, Chengdu, China
| | - Ya-Qin Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Acupuncture Clinical Research Center of Sichuan Province, Chengdu, China
| | - Zi-Han Yin
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Acupuncture Clinical Research Center of Sichuan Province, Chengdu, China
| | - Qiong-Nan Bao
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Acupuncture Clinical Research Center of Sichuan Province, Chengdu, China
| | - Man-Ze Xia
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Acupuncture Clinical Research Center of Sichuan Province, Chengdu, China
| | - Zheng-Hong Chen
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Acupuncture Clinical Research Center of Sichuan Province, Chengdu, China
| | - Wan-Qi Zhong
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Acupuncture Clinical Research Center of Sichuan Province, Chengdu, China
| | - Ke-Xin Wu
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Acupuncture Clinical Research Center of Sichuan Province, Chengdu, China
| | - Jin Yao
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Acupuncture Clinical Research Center of Sichuan Province, Chengdu, China
| | - Fan-Rong Liang
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Acupuncture Clinical Research Center of Sichuan Province, Chengdu, China
| |
Collapse
|
44
|
Sinha T, Bokhari SFH, Khan MU, Sarim Shaheer M, Amir M, Zia BF, Bakht D, Javed MA, Almadhoun MKIK, Burhanuddin M, Puli ST. Gazing Beyond the Horizon: A Systematic Review Unveiling the Theranostic Potential of Quantum Dots in Alzheimer's Disease. Cureus 2024; 16:e58677. [PMID: 38770476 PMCID: PMC11103116 DOI: 10.7759/cureus.58677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2024] [Indexed: 05/22/2024] Open
Abstract
Alzheimer's disease (AD), a neurodegenerative disorder characterized by cognitive decline, poses a significant healthcare challenge worldwide. The accumulation of amyloid-beta (Aβ) plaques and hyperphosphorylated tau protein drives neuronal degeneration and neuroinflammation, perpetuating disease progression. Despite advancements in understanding the cellular and molecular mechanisms, treatment hurdles persist, emphasizing the need for innovative intervention strategies. Quantum dots (QDs) emerge as promising nanotechnological tools with unique photo-physical properties, offering advantages over conventional imaging modalities. This systematic review endeavors to elucidate the theranostic potential of QDs in AD by synthesizing preclinical and clinical evidence. A comprehensive search across electronic databases yielded 20 eligible studies investigating the diagnostic, therapeutic, or combined theranostic applications of various QDs in AD. The findings unveil the diverse roles of QDs, including inhibiting Aβ and tau aggregation, modulating amyloidogenesis pathways, restoring membrane fluidity, and enabling simultaneous detection of AD biomarkers. The review highlights the potential of QDs in targeting multiple pathological hallmarks, delivering therapeutic payloads across the blood-brain barrier, and facilitating real-time imaging and high-throughput screening. While promising, challenges such as biocompatibility, surface modifications, and clinical translation warrant further investigation. This systematic review provides a comprehensive synthesis of the theranostic potential of QDs in AD, paving the way for translational research and clinical implementation.
Collapse
Affiliation(s)
- Tanya Sinha
- Medical Education, Tribhuvan University, Kathmandu, NPL
| | | | | | - Muhammad Sarim Shaheer
- Internal Medicine, Faisalabad Medical University, Faisalabad, PAK
- Biochemistry, ABWA Medical College, Faisalabad, PAK
| | - Maaz Amir
- Medicine and Surgery, King Edward Medical University, Lahore, PAK
| | - Beenish Fatima Zia
- Medicine, Fatima Memorial Hospital College of Medicine and Dentistry, Lahore, PAK
| | - Danyal Bakht
- Medicine and Surgery, King Edward Medical University, Lahore, PAK
| | | | | | | | - Sai Teja Puli
- Internal Medicine, Bhaskar Medical College, Hyderabad, IND
| |
Collapse
|
45
|
Ma Y, Wei S, Dang L, Gao L, Shang S, Hu N, Peng W, Zhao Y, Yuan Y, Zhou R, Wang Y, Gao F, Wang J, Qu Q. Association between the triglyceride-glucose index and cognitive impairment in China: a community population-based cross-sectional study. Nutr Neurosci 2024; 27:342-352. [PMID: 36976719 DOI: 10.1080/1028415x.2023.2193765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
INTRODUCTION Insulin resistance (IR) is a feature of metabolic syndrome and plays an important role in cognitive impairment (CI). The triglyceride-glucose (TyG) index is a convenient and cost-effective surrogate for assessing IR. This study aimed to assess the association between the TyG index and CI. METHODS This community population-based cross-sectional study used a cluster-sampling methodology. All participants underwent the education-based Mini-Mental State Examination (MMSE), and those with CI were identified using standard thresholds. The fasting blood triglyceride and glucose levels were measured in the morning, and the TyG index was calculated as ln (½ fasting triglyceride level [mg/dL] × fasting blood glucose level [mg/dL]). Multivariable logistic regression and subgroup analysis were used to assess the relationship between the TyG index and CI. RESULTS This study included 1484 subjects, of which 93 (6.27%) met the CI criteria. Multivariable logistic regression showed that CI incidence increased by 64% per unit increase in the TyG index (odds ratio [OR] = 1.64, 95% confidence interval [CI]: 1.02-2.63, p = 0.042). CI risk was 2.64-fold higher in the highest TyG index quartile compared to the lowest TyG index quartile (OR = 2.64, 95% CI: 1.19-5.85, p = 0.016). Finally, interaction analysis showed that sex, age, hypertension, and diabetes did not significantly affect the association between the TyG index and CI. CONCLUSION The present study suggested that an elevated TyG index was associated with a higher CI risk. Subjects with a higher TyG index should manage and treat at an early stage to alleviate the cognitive decline.
Collapse
Affiliation(s)
- Yimeng Ma
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Shan Wei
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Liangjun Dang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Ling Gao
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Suhang Shang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Ningwei Hu
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Wei Peng
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yi Zhao
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Ye Yuan
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Rong Zhou
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yanyu Wang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Fan Gao
- Clinical Research Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Jin Wang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Qiumin Qu
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
- Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
46
|
Wang Y, Jiang J, Chen S, Chen Q, Yan X, Shen X. Elucidating the therapeutic mechanism of Hengqing II decoction in Alzheimer's disease using network pharmacology and molecular docking techniques. Fitoterapia 2024; 174:105860. [PMID: 38367649 DOI: 10.1016/j.fitote.2024.105860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/02/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
PURPOSE The aim of our research was to investigate the mechanism of the Hengqing II decoction in treating Alzheimer's disease (AD) through network pharmacology and experimental validation methods. METHODS Firstly, the major chemical compounds of Hengqing II decoction were characterized by ultra-high-performance liquid chromatography-high resolution mass spectrometry (UHPLC-Q-TOF-MS/MS), and the gene sets related to AD treatment by Hengqing II decoction were collected through the database of PubChem, Swiss TargetPrediction, and DisGeNET. Secondly, a multi-level molecular network of "Traditional Chinese medicine (TCM)-compound-target-disease" was constructed and visualized using the STRING platform and Cytoscape 3.9.1 software, and the enrichment analysis based on the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway databases was performed to predict the potential active compounds and targets of Hengqing II decoction for treating AD. Finally, molecular docking simulation was applied to investigate the binding interactions between potential active compounds and key targets, and the western blotting technique was employed to examine the expression levels of AKT1, TNF-α, and NOS2 proteins affected by active compounds. RESULTS Totally 120 compounds in Hengqing II decoction were characterized by UHPLC-Q-TOF-MS/MS. Network pharmacology results showed that potential active compounds in Hengqing II decoction in treating AD included catalpol, gastrodin, and rehmannioside D, etc., and the main target proteins were TNF-α, NOS2, and AKT1. Further functional enrichment analysis revealed that Hengqing II decoction mainly exerted its therapeutic effects on AD by regulating lipid and atherosclerosis signaling pathways, AD signaling pathways, AKT1 signaling pathways, and PTGS2 signaling pathways. CONCLUSION Hengqing II decoction exerted therapeutic effects on AD through multi-component, multi-target, and multi-pathway regulation, and its action mechanisms were related to oxidative stress, neuroinflammation, autophagy, and other pathways. Our research laid the data foundation for further exploration of action mechanism and clarification of clinical positioning and provided new ideas and clues in TCM formula research.
Collapse
Affiliation(s)
- Yajing Wang
- Department of Pharmacy, Changzhou University. Changzhou, PR China
| | - Jiahui Jiang
- Department of Pharmacy, Changzhou University. Changzhou, PR China
| | - Shuyu Chen
- Department of Pharmacy, Changzhou University. Changzhou, PR China
| | - Qian Chen
- Department of Pharmacy, Changzhou University. Changzhou, PR China
| | - Xiaojing Yan
- Changzhou Key Laboratory of Human Use Experience Research & Transformation of Menghe Medical School, Changzhou Hospital affiliated to Nanjing University of Chinese Medicine, Changzhou, PR China
| | - Xiaozhong Shen
- Guangdong Food and Drug Vocational College, Guangzhou, PR China.
| |
Collapse
|
47
|
Shan X, Lv S, Huang P, Zhang W, Jin C, Liu Y, Li Y, Jia Y, Chu X, Peng C, Zhang C. Classic Famous Prescription Kai-Xin-San Ameliorates Alzheimer's Disease via the Wnt/β-Catenin Signaling Pathway. Mol Neurobiol 2024; 61:2297-2312. [PMID: 37874481 DOI: 10.1007/s12035-023-03707-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023]
Abstract
Kai-Xin-San (KXS) is a classic famous prescription composed of Polygalae Radix, Ginseng Radix et Rhizoma, Acori Tatarinowii Rhizoma, and Poria. Clinically, KXS is effective in treating amnesia and regulating cognitive dysfunction of Alzheimer's disease (AD), whereas its mechanism of action is still unclear. In this study, the AD model rats were established by combining intraperitoneal injection of D-galactose (150 mg/kg/day) and intracerebral injection of Aβ25-35 (10 μL) to investigate the meliorative effect of KXS on AD and explore its mechanism. After 1-month KXS treatment, Morris water maze test showed that different doses of KXS all improved the cognitive impairment of AD rats. The results of hematoxylin and eosin staining, Nissl staining, and Tunnel staining showed that the neuron injury in the hippocampal CA1 region of the AD rats was markedly improved after KXS treatment. Concurrently, KXS reversed the levels of biochemical indexes of AD rats. Furthermore, the protein expressions of Wnt1 and β-catenin in KXS groups were remarkably increased, while the expressions of Bax and caspase-3 were significantly decreased. Besides, KXS-medicated serum reduced the levels of tumor necrosis factor-α, interleukin-1β, and reactive oxygen species and regulated the protein expressions of β-catenin, glycogen synthase kinase-3β (GSK-3β), p-GSK-3β, Bax, and caspase-3 in Aβ25-35-induced pheochromocytoma cells. Most importantly, this effect was attenuated by the Wnt inhibitor IWR-1. Our results suggest that KXS improves cognitive and memory function of AD rats, and its neuroprotective mechanism may be mediated through the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xiaoxiao Shan
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, 230012, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Shujie Lv
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, 230012, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Peng Huang
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, 230012, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Wei Zhang
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, 230012, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Chuanshan Jin
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, 230012, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Yuanxu Liu
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, 230012, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Yangyang Li
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, 230012, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Yong Jia
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, 230012, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Xiaoqin Chu
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China.
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China.
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, 230012, Anhui, China.
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
| | - Can Peng
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China.
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China.
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, 230012, Anhui, China.
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
| | - Caiyun Zhang
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China.
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China.
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, 230012, Anhui, China.
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
| |
Collapse
|
48
|
Xu M, Li J, Xia L, Du Y, Wu B, Shi X, Tian N, Pang Y, Yi L, Chen M, Song W, Dong Z. PCSK6 exacerbates Alzheimer's disease pathogenesis by promoting MT5-MMP maturation. Exp Neurol 2024; 374:114688. [PMID: 38216110 DOI: 10.1016/j.expneurol.2024.114688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/18/2023] [Accepted: 01/06/2024] [Indexed: 01/14/2024]
Abstract
Proprotein convertase subtilisin/kexin type 6 (PCSK6) is a calcium-dependent serine proteinase that regulates the proteolytic activity of various precursor proteins and facilitates protein maturation. Dysregulation of PCSK6 expression or function has been implicated in several pathological processes including nervous system diseases. However, whether and how PCSK6 is involved in the pathogenesis of Alzheimer's disease (AD) remains unclear. In this study, we reported that the expression of PCSK6 was significantly increased in the brain tissues of postmortem AD patients and APP23/PS45 transgenic AD model mice, as well as N2AAPP cells. Genetic knockdown of PCSK6 reduced amyloidogenic processing of APP in N2AAPP cells by suppressing the activation of membrane-type 5-matrix metalloproteinase (MT5-MMP), referred to as η-secretase. We further found that PCSK6 cleaved and activated MT5-MMP by recognizing the RRRNKR sequence in its N-terminal propeptide domain in N2A cells. The mutation or knockout of this cleavage motif prevented PCSK6 from interacting with MT5-MMP and performing cleavage. Importantly, genetic knockdown of PCSK6 with adeno-associated virus (AAV) reduced Aβ production and ameliorated hippocampal long-term potentiation (LTP) and long-term spatial learning and memory in APP23/PS45 transgenic mice. Taken together, these results demonstrate that genetic knockdown of PCSK6 effectively alleviate AD-related pathology and cognitive impairments by inactivating MT5-MMP, highlighting its potential as a novel therapeutic target for AD treatment.
Collapse
Affiliation(s)
- Mingliang Xu
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Junjie Li
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Lei Xia
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Yehong Du
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Bin Wu
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Xiuyu Shi
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Na Tian
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Yayan Pang
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Lilin Yi
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Mulan Chen
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Weihong Song
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Clinical Research Center for Mental Disorders, School of Mental Health and The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Zhifang Dong
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.
| |
Collapse
|
49
|
Hsu CC, Wang SI, Lin HC, Lin ES, Yang FP, Chang CM, Wei JCC. Difference of Cerebrospinal Fluid Biomarkers and Neuropsychiatric Symptoms Profiles among Normal Cognition, Mild Cognitive Impairment, and Dementia Patient. Int J Mol Sci 2024; 25:3919. [PMID: 38612729 PMCID: PMC11012002 DOI: 10.3390/ijms25073919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
The delineation of biomarkers and neuropsychiatric symptoms across normal cognition, mild cognitive impairment (MCI), and dementia stages holds significant promise for early diagnosis and intervention strategies. This research investigates the association of neuropsychiatric symptoms, evaluated via the Neuropsychiatric Inventory (NPI), with cerebrospinal fluid (CSF) biomarkers (Amyloid-β42, P-tau, T-tau) across a spectrum of cognitive states to enhance diagnostic accuracy and treatment approaches. Drawing from the National Alzheimer's Coordinating Center's Uniform Data Set Version 3, comprising 977 individuals with normal cognition, 270 with MCI, and 649 with dementia. To assess neuropsychiatric symptoms, we employed the NPI to understand the behavioral and psychological symptoms associated with each cognitive category. For the analysis of CSF biomarkers, we measured levels of Amyloid-β42, P-tau, and T-tau using the enzyme-linked immunosorbent assay (ELISA) and Luminex multiplex xMAP assay protocols. These biomarkers are critical in understanding the pathophysiological underpinnings of Alzheimer's disease and its progression, with specific patterns indicative of disease stage and severity. This study cohort consists of 1896 participants, which is composed of 977 individuals with normal cognition, 270 with MCI, and 649 with dementia. Dementia is characterized by significantly higher NPI scores, which are largely reflective of mood-related symptoms (p < 0.001). In terms of biomarkers, normal cognition shows median Amyloid-β at 656.0 pg/mL, MCI at 300.6 pg/mL, and dementia at 298.8 pg/mL (p < 0.001). Median P-tau levels are 36.00 pg/mL in normal cognition, 49.12 pg/mL in MCI, and 58.29 pg/mL in dementia (p < 0.001). Median T-tau levels are 241.0 pg/mL in normal cognition, 140.6 pg/mL in MCI, and 298.3 pg/mL in dementia (p < 0.001). Furthermore, the T-tau/Aβ-42 ratio increases progressively from 0.058 in the normal cognition group to 0.144 in the MCI group, and to 0.209 in the dementia group (p < 0.001). Similarly, the P-tau/Aβ-42 ratio also escalates from 0.305 in individuals with normal cognition to 0.560 in MCI, and to 0.941 in dementia (p < 0.001). The notable disparities in NPI and CSF biomarkers among normal, MCI and Alzheimer's patients underscore their diagnostic potential. Their combined assessment could greatly improve early detection and precise diagnosis of MCI and dementia, facilitating more effective and timely treatment strategies.
Collapse
Affiliation(s)
- Ching-Chi Hsu
- Board of Directors, Wizcare Medical Corporation Aggregate, Taichung 404, Taiwan;
- International Intercollegiate Ph.D. Program, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Shiow-Ing Wang
- Center for Health Data Science, Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan;
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Hong-Chun Lin
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan;
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Eric S. Lin
- Department of Economics, National Tsing Hua University, Hsinchu 300, Taiwan;
- EMBA/MBA/MFB/MPM/HBA Programs, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Fan-Pei Yang
- Department of Foreign Languages and Literatures, National Tsinghua University, Hsinchu 300, Taiwan;
- Department of Oral and Maxillofacial Radiology, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan
| | - Ching-Mao Chang
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan;
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - James Cheng-Chung Wei
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Nursing, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Allergy, Immunology and Rheumatology, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 402, Taiwan
| |
Collapse
|
50
|
Dimitriou NK, Nousia A, Georgopoulou EN, Martzoukou M, Liampas I, Dardiotis E, Nasios G. Language and Communication Interventions in People with Alzheimer's Disease: A Systematic Review. Healthcare (Basel) 2024; 12:741. [PMID: 38610163 PMCID: PMC11011709 DOI: 10.3390/healthcare12070741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Although language impairment is frequently observed in patients with Alzheimer's disease (pwAD), targeted language rehabilitation is often overlooked. The present study reviews published evidence on the impact of language training, either alone or in combination with cognitive training, on cognitive outcomes in pwAD. A systematic search of PubMed, Google Scholar, and Cochrane was carried out, including studies published from inception to November 2023. A total of eight research articles (four randomized controlled trials and four observational studies) met the inclusion criteria: six assessed language training combined with cognitive training and two evaluated language rehabilitation alone. Regarding language and non-language (mainly memory, attention, and executive functions) outcomes, there was a consensus among studies that language rehabilitation (alone or in combination with cognitive training) yields positive results. Some of the articles also explored the impact on patients' and their caregivers' quality of life, with all but one showing improvement. Consequently, the combination of language and cognitive training leads to improvements across various cognitive domains. However, limited evidence supports the value of sole language rehabilitation. This conclusion is influenced by heterogeneity among studies (different types and duration of interventions, small participant sets, various assessment tools), and, thus, further research is warranted.
Collapse
Affiliation(s)
- Nefeli K. Dimitriou
- Department of Speech and Language Therapy, School of Health Sciences, University of Ioannina, 45500 Ioannina, Greece; (N.K.D.); (E.-N.G.); (G.N.)
| | - Anastasia Nousia
- Department of Speech and Language Therapy, University of Peloponnese, 24100 Kalamata, Greece;
| | - Eleni-Nefeli Georgopoulou
- Department of Speech and Language Therapy, School of Health Sciences, University of Ioannina, 45500 Ioannina, Greece; (N.K.D.); (E.-N.G.); (G.N.)
| | - Maria Martzoukou
- Lab of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Ioannis Liampas
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larissa, Greece;
| | - Efthimios Dardiotis
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larissa, Greece;
| | - Grigorios Nasios
- Department of Speech and Language Therapy, School of Health Sciences, University of Ioannina, 45500 Ioannina, Greece; (N.K.D.); (E.-N.G.); (G.N.)
| |
Collapse
|