1
|
Li Y, Xiao J, Li C, Yang M. Memory inflation: Beyond the acute phase of viral infection. Cell Prolif 2024:e13705. [PMID: 38992867 DOI: 10.1111/cpr.13705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 07/13/2024] Open
Abstract
Memory inflation is confirmed as the most commonly dysregulation of host immunity with antigen-independent manner in mammals after viral infection. By generating large numbers of effector/memory and terminal differentiated effector memory CD8+ T cells with diminished naïve subsets, memory inflation is believed to play critical roles in connecting the viral infection and the onset of multiple diseases. Here, we reviewed the current understanding of memory inflated CD8+ T cells in their distinct phenotypic features that different from exhausted subsets; the intrinsic and extrinsic roles in regulating the formation of memory inflation; and the key proteins in maintaining the expansion and proliferation of inflationary populations. More importantly, based on the evidences from both clinic and animal models, we summarized the potential mechanisms of memory inflation to trigger autoimmune neuropathies, such as Guillain-Barré syndrome and multiple sclerosis; the correlations of memory inflation between tumorigenesis and resistance of tumour immunotherapies; as well as the effects of memory inflation to facilitate vascular disease progression. To sum up, better understanding of memory inflation could provide us an opportunity to beyond the acute phase of viral infection, and shed a light on the long-term influences of CD8+ T cell heterogeneity in dampen host immune homeostasis.
Collapse
Affiliation(s)
- Yanfei Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Xiao
- Centre for Translational Research in Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chen Li
- Centre for Translational Research in Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Mu Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Centre for Translational Research in Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
2
|
Liu C, Zeng X, Xiong Z, Bahabayi A, Hasimu A, Liu T, Zheng M, Ren L, Alimu X, Lu S. Id1 expression in CD4 T cells promotes differentiation and function of follicular helper T cells and upregulation of related functional molecules. Immunology 2024; 172:408-419. [PMID: 38501859 DOI: 10.1111/imm.13782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 03/06/2024] [Indexed: 03/20/2024] Open
Abstract
Although the roles of E proteins and inhibitors of DNA-binding (Id) in T follicular helper (TFH) and T follicular regulatory (TFR) cells have been previously reported, direct models demonstrating the impact of multiple E protein members have been lacking. To suppress all E proteins including E2A, HEB and E2-2, we overexpressed Id1 in CD4 cells using a CD4-Id1 mouse model, to observe any changes in TFH and TFR cell differentiation. Our objective was to gain better understanding of the roles that E proteins and Id molecules play in the differentiation of TFH and TFR cells. The CD4-Id1 transgenic (TG) mice that we constructed overexpressed Id1 in CD4 cells, inhibiting E protein function. Our results showed an increase in the proportion and absolute numbers of Treg, TFH and TFR cells in the spleen of TG mice. Additionally, the expression of surface characterisation molecules PD-1 and ICOS was significantly upregulated in TFH and TFR cells. The study also revealed a downregulation of the marginal zone B cell precursor and an increase in the activation and secretion of IgG1 in spleen B cells. Furthermore, the peripheral TFH cells of TG mice enhanced the function of assisting B cells. RNA sequencing results indicated that a variety of TFH-related functional molecules were upregulated in TFH cells of Id1 TG mice. In conclusion, E proteins play a crucial role in regulating TFH/TFR cell differentiation and function and suppressing E protein activity promotes germinal centre humoral immunity, which has important implications for immune regulation and treating related diseases.
Collapse
Affiliation(s)
- Chen Liu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Xingyue Zeng
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Ziqi Xiong
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Ayibaota Bahabayi
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Ainizati Hasimu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Tianci Liu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Mohan Zheng
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Liwei Ren
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiayidan Alimu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Songsong Lu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| |
Collapse
|
3
|
Nguyen C, Kudek M, Zander R, Niu H, Shen J, Bauer A, Alson D, Khatun A, Chen Y, Sun J, Drobyski W, Edelson BT, Cui W. Bhlhe40 Promotes CD4+ T Helper 1 Cell and Suppresses T Follicular Helper Cell Differentiation during Viral Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1829-1842. [PMID: 38619295 DOI: 10.4049/jimmunol.2300355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
In response to acute infection, naive CD4+ T cells primarily differentiate into T helper 1 (Th1) or T follicular helper (Tfh) cells that play critical roles in orchestrating cellular or humoral arms of immunity, respectively. However, despite the well established role of T-bet and BCL-6 in driving Th1 and Tfh cell lineage commitment, respectively, whether additional transcriptional circuits also underlie the fate bifurcation of Th1 and Tfh cell subsets is not fully understood. In this article, we study how the transcriptional regulator Bhlhe40 dictates the Th1/Tfh differentiation axis in mice. CD4+ T cell-specific deletion of Bhlhe40 abrogates Th1 but augments Tfh differentiation. We also assessed an increase in germinal center B cells and Ab production, suggesting that deletion of Bhlhe40 in CD4+ T cells not only alters Tfh differentiation but also their capacity to provide help to B cells. To identify molecular mechanisms by which Bhlhe40 regulates Th1 versus Tfh lineage choice, we first performed epigenetic profiling in the virus specific Th1 and Tfh cells following LCMV infection, which revealed distinct promoter and enhancer activities between the two helper cell lineages. Furthermore, we identified that Bhlhe40 directly binds to cis-regulatory elements of Th1-related genes such as Tbx21 and Cxcr6 to activate their expression while simultaneously binding to regions of Tfh-related genes such as Bcl6 and Cxcr5 to repress their expression. Collectively, our data suggest that Bhlhe40 functions as a transcription activator to promote Th1 cell differentiation and a transcription repressor to suppress Tfh cell differentiation.
Collapse
Affiliation(s)
- Christine Nguyen
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
- Versiti Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
| | - Matthew Kudek
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
- Versiti Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
| | - Ryan Zander
- Versiti Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA
| | - Hongshen Niu
- Department of Pathology, Northwestern University, Chicago, IL
| | - Jian Shen
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
- Versiti Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
- Department of Pathology, Northwestern University, Chicago, IL
| | - Ashley Bauer
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
- Versiti Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
- Department of Pathology, Northwestern University, Chicago, IL
| | - Donia Alson
- Versiti Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
| | - Achia Khatun
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
- Versiti Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
| | - Yao Chen
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
- Versiti Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Sun
- University of Virginia School of Medicine, Charlottesville, VA
| | - William Drobyski
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Brian T Edelson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Weiguo Cui
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
- Versiti Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
- Department of Pathology, Northwestern University, Chicago, IL
| |
Collapse
|
4
|
Ho VWT, Boon LH, Cui J, Juequn Z, Shunmuganathan B, Gupta R, Tan NYJ, Qian X, Purushotorman K, Fong S, Renia L, Ng LFP, Angeli V, Chen J, Kennedy BK, Ong CWM, Macary PA. Relative deficiency in interferon-γ-secreting CD4+ T cells is strongly associated with poorer COVID-19 vaccination responses in older adults. Aging Cell 2024; 23:e14099. [PMID: 38317404 PMCID: PMC11019126 DOI: 10.1111/acel.14099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024] Open
Abstract
Although the two-dose mRNA vaccination regime provides protection against SARS-CoV-2, older adults have been shown to exhibit poorer vaccination responses. In addition, the role of vaccine-induced T-cell responses is not well characterised. We aim to assess the impact of age on immune responses after two doses of the BNT162b2 mRNA vaccine, focussing on antigen-specific T-cells. A prospective 3-month study was conducted on 15 young (median age 31 years, interquartile range (IQR) 25-35 years) and 14 older adults (median age 72 years, IQR 70-73 years). We assessed functional, neutralising antibody responses against SARS-CoV-2 variants using ACE-2 inhibition assays, and changes in B and T-cell subsets by high-dimensional flow cytometry. Antigen-specific T-cell responses were also quantified by intracellular cytokine staining and flow cytometry. Older adults had attenuated T-helper (Th) response to vaccination, which was associated with weaker antibody responses and decreased SARS-CoV-2 neutralisation. Antigen-specific interferon-γ (IFNγ)-secreting CD4+ T-cells to wild-type and Omicron antigens increased in young adults, which was strongly positively correlated with their neutralising antibody responses. Conversely, this relationship was negative in older adults. Hence, older adults' relative IFNγ-secreting CD4+ T cell deficiency might explain their poorer COVID-19 vaccination responses. Further exploration into the aetiology is needed and would be integral in developing novel vaccination strategies and improving infection outcomes in older adults.
Collapse
Affiliation(s)
- Vanda W. T. Ho
- Division of Geriatric Medicine, Department of MedicineNational University HospitalSingaporeSingapore
- Immunology Translational Research Program, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Infectious Diseases Translational Research Program, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Low Heng Boon
- Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Jianzhou Cui
- Immunology Translational Research Program, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- NUS Immunology Program, Life Sciences InstituteNational University of SingaporeSingaporeSingapore
- NUS‐Cambridge Immune Phenotyping Centre (NCIPC), Life Sciences InstituteNational University of SingaporeSingaporeSingapore
| | - Zhou Juequn
- Metabolic Core, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Bhuvaneshwari Shunmuganathan
- Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- NUS‐Cambridge Immune Phenotyping Centre (NCIPC), Life Sciences InstituteNational University of SingaporeSingaporeSingapore
- Antibody Engineering Programme, Life Sciences InstituteNational University of SingaporeSingaporeSingapore
| | - Rashi Gupta
- Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- NUS‐Cambridge Immune Phenotyping Centre (NCIPC), Life Sciences InstituteNational University of SingaporeSingaporeSingapore
| | - Nikki Y. J. Tan
- Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- NUS‐Cambridge Immune Phenotyping Centre (NCIPC), Life Sciences InstituteNational University of SingaporeSingaporeSingapore
| | - Xinlei Qian
- Antibody Engineering Programme, Life Sciences InstituteNational University of SingaporeSingaporeSingapore
| | - Kiren Purushotorman
- Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- NUS‐Cambridge Immune Phenotyping Centre (NCIPC), Life Sciences InstituteNational University of SingaporeSingaporeSingapore
- Antibody Engineering Programme, Life Sciences InstituteNational University of SingaporeSingaporeSingapore
| | - Siew‐Wai Fong
- A*STAR Infectious Diseases Labs (A*STAR ID Labs)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Laurent Renia
- A*STAR Infectious Diseases Labs (A*STAR ID Labs)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
| | - Lisa F. P. Ng
- A*STAR Infectious Diseases Labs (A*STAR ID Labs)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Veronique Angeli
- Immunology Translational Research Program, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Jinmiao Chen
- Immunology Translational Research Program, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Singapore Immunology Network (SIgN)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Brian K. Kennedy
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of Biochemistry and Physiology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Catherine W. M. Ong
- Infectious Diseases Translational Research Program, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingaporeSingapore
- Division of Infectious Diseases, Department of MedicineNational University HospitalSingaporeSingapore
| | - Paul A. Macary
- Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- NUS‐Cambridge Immune Phenotyping Centre (NCIPC), Life Sciences InstituteNational University of SingaporeSingaporeSingapore
- Antibody Engineering Programme, Life Sciences InstituteNational University of SingaporeSingaporeSingapore
| |
Collapse
|
5
|
Jin Y, He Y, Liu B, Zhang X, Song C, Wu Y, Hu W, Yan Y, Chen N, Ding Y, Ou Y, Wu Y, Zhang M, Xing S. Single-cell RNA sequencing reveals the dynamics and heterogeneity of lymph node immune cells during acute and chronic viral infections. Front Immunol 2024; 15:1341985. [PMID: 38352870 PMCID: PMC10863051 DOI: 10.3389/fimmu.2024.1341985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction The host immune response determines the differential outcome of acute or chronic viral infections. The comprehensive comparison of lymphoid tissue immune cells at the single-cell level between acute and chronic viral infections is largely insufficient. Methods To explore the landscape of immune responses to acute and chronic viral infections, single-cell RNA sequencing(scRNA-seq), scTCR-seq and scBCR-seq were utilized to evaluate the longitudinal dynamics and heterogeneity of lymph node CD45+ immune cells in mouse models of acute (LCMV Armstrong) and chronic (LCMV clone 13) viral infections. Results In contrast with acute viral infection, chronic viral infection distinctly induced more robust NK cells and plasma cells at the early stage (Day 4 post-infection) and acute stage (Day 8 post-infection), respectively. Moreover, chronic viral infection exerted decreased but aberrantly activated plasmacytoid dendritic cells (pDCs) at the acute phase. Simultaneously, there were significantly increased IgA+ plasma cells (MALT B cells) but differential usage of B-cell receptors in chronic infection. In terms of T-cell responses, Gzma-high effector-like CD8+ T cells were significantly induced at the early stage in chronic infection, which showed temporally reversed gene expression throughout viral infection and the differential usage of the most dominant TCR clonotype. Chronic infection also induced more robust CD4+ T cell responses, including follicular helper T cells (Tfh) and regulatory T cells (Treg). In addition, chronic infection compromised the TCR diversity in both CD8+ and CD4+ T cells. Discussion In conclusion, gene expression and TCR/BCR immune repertoire profiling at the single-cell level in this study provide new insights into the dynamic and differential immune responses to acute and chronic viral infections.
Collapse
Affiliation(s)
- Yubei Jin
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Yudan He
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China
| | - Bing Liu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Xiaohui Zhang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Caimei Song
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Yunchen Wu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Wenjing Hu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Yiwen Yan
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Nuo Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Yingying Ding
- Department of Life Sciences, Bengbu Medical College, Bengbu, Anhui, China
| | - Yuanyuan Ou
- Department of Life Sciences, Bengbu Medical College, Bengbu, Anhui, China
| | - Yixiu Wu
- Department of Life Sciences, Bengbu Medical College, Bengbu, Anhui, China
| | - Mingxia Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, The Third People’s Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Shaojun Xing
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| |
Collapse
|
6
|
Pallikkuth S, Kvistad D, Sirupangi T, Kizhner A, Pahwa R, Cameron MJ, Richardson B, Williams S, Ayupe A, Brooks M, Petrovas C, Villinger F, Pahwa S. IL-21-IgFc immunotherapy alters transcriptional landscape of lymph node cells leading to enhanced flu vaccine response in aging and SIV infection. Aging Cell 2023; 22:e13984. [PMID: 37712598 PMCID: PMC10652303 DOI: 10.1111/acel.13984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/16/2023] Open
Abstract
Aging people living with HIV (PWH) frequently manifest impaired antibody (Ab) responses to seasonal flu vaccination which has been attributed to ongoing inflammation and immune activation. We have recently reported a similar scenario in old simian immunodeficiency virus (SIV) infected rhesus macaques (RM) with controlled viremia and have been able to compensate for this deficiency by immunotherapy with interleukin (IL)-21-IgFc. To understand the underlying mechanisms of IL-21-induced immunomodulation leading to enhanced flu vaccine response in aging and SIV, we have investigated draining lymph node (LN) cells of IL-21-treated and -untreated animals at postvaccination. We observed IL-21-induced proliferation of flu-specific LN memory CD4 T cells, expansion of B cells expressing IL-21 receptor (IL-21R), and modest expansion of T follicular helper cells (Tfh) co-expressing T-cell immunoreceptor with Ig and ITIM domains (TIGIT) and DNAX accessory molecule (DNAM-1). Transcriptional analysis of LN cells of IL-21-treated animals revealed significant inhibition of germinal center (GC) Tfh and B-cell interferon signaling pathways along with enhanced B-cell development and antigen presentation pathways. We conclude that IL-21 treatment at the time of flu vaccination in aging SIV-infected animals modulates the inductive LN GC activity, to reverse SIV-associated LN Tfh and B-cell dysfunction. IL-21 is a potential candidate molecule for immunotherapy to enhance flu vaccine responses in aging PWH who have deficient antibody responses.
Collapse
Affiliation(s)
- Suresh Pallikkuth
- Department of Microbiology and ImmunologyUniversity of Miami School of MedicineMiamiFloridaUSA
| | - Daniel Kvistad
- Department of Microbiology and ImmunologyUniversity of Miami School of MedicineMiamiFloridaUSA
| | - Tirupataiah Sirupangi
- New Iberia Research Center and Department of BiologyUniversity of Louisiana at LafayetteNew IberiaLouisianaUSA
| | - Alexander Kizhner
- Department of Microbiology and ImmunologyUniversity of Miami School of MedicineMiamiFloridaUSA
| | - Rajendra Pahwa
- Department of Microbiology and ImmunologyUniversity of Miami School of MedicineMiamiFloridaUSA
| | - Mark J. Cameron
- Department of Quantitative and Population Health SciencesCase Western Reserve UniversityClevelandOhioUSA
| | - Brian Richardson
- Department of Quantitative and Population Health SciencesCase Western Reserve UniversityClevelandOhioUSA
| | - Sion Williams
- Department of Neurology, Onco‐Genomics Shared Resource, Sylvester Comprehensive Cancer CenterUniversity of Miami School of MedicineMiamiFloridaUSA
| | - Ana Ayupe
- Onco‐Genomics Shared Resource, Sylvester Comprehensive Cancer CenterUniversity of Miami School of MedicineMiamiFloridaUSA
| | - Marissa Brooks
- Onco‐Genomics Shared Resource, Sylvester Comprehensive Cancer CenterUniversity of Miami School of MedicineMiamiFloridaUSA
| | - Constantinos Petrovas
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research CenterNIAID, NIHBethesdaMarylandUSA
- Department of Laboratory Medicine and PathologyInstitute of Pathology, Lausanne University Hospital and Lausanne UniversityLausanneSwitzerland
| | - Francois Villinger
- New Iberia Research Center and Department of BiologyUniversity of Louisiana at LafayetteNew IberiaLouisianaUSA
| | - Savita Pahwa
- Department of Microbiology and ImmunologyUniversity of Miami School of MedicineMiamiFloridaUSA
| |
Collapse
|
7
|
Burt P, Thurley K. Distribution modeling quantifies collective T H cell decision circuits in chronic inflammation. SCIENCE ADVANCES 2023; 9:eadg7668. [PMID: 37703364 PMCID: PMC10881075 DOI: 10.1126/sciadv.adg7668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/11/2023] [Indexed: 09/15/2023]
Abstract
Immune responses are tightly regulated by a diverse set of interacting immune cell populations. Alongside decision-making processes such as differentiation into specific effector cell types, immune cells initiate proliferation at the beginning of an inflammation, forming two layers of complexity. Here, we developed a general mathematical framework for the data-driven analysis of collective immune cell dynamics. We identified qualitative and quantitative properties of generic network motifs, and we specified differentiation dynamics by analysis of kinetic transcriptome data. Furthermore, we derived a specific, data-driven mathematical model for T helper 1 versus T follicular helper cell-fate decision dynamics in acute and chronic lymphocytic choriomeningitis virus infections in mice. The model recapitulates important dynamical properties without model fitting and solely by using measured response-time distributions. Model simulations predict different windows of opportunity for perturbation in acute and chronic infection scenarios, with potential implications for optimization of targeted immunotherapy.
Collapse
Affiliation(s)
- Philipp Burt
- Systems Biology of Inflammation, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
- Institute for Theoretical Biophysics, Humboldt University, Berlin, Germany
| | - Kevin Thurley
- Systems Biology of Inflammation, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
- Biomathematics Division, Institute of Experimental Oncology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
8
|
Subburayalu J. Immune surveillance and humoral immune responses in kidney transplantation - A look back at T follicular helper cells. Front Immunol 2023; 14:1114842. [PMID: 37503334 PMCID: PMC10368994 DOI: 10.3389/fimmu.2023.1114842] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 06/22/2023] [Indexed: 07/29/2023] Open
Abstract
T follicular helper cells comprise a specialized, heterogeneous subset of immune-competent T helper cells capable of influencing B cell responses in lymphoid tissues. In physiology, for example in response to microbial challenges or vaccination, this interaction chiefly results in the production of protecting antibodies and humoral memory. In the context of kidney transplantation, however, immune surveillance provided by T follicular helper cells can take a life of its own despite matching of human leukocyte antigens and employing the latest immunosuppressive regiments. This puts kidney transplant recipients at risk of subclinical and clinical rejection episodes with a potential risk for allograft loss. In this review, the current understanding of immune surveillance provided by T follicular helper cells is briefly described in physiological responses to contrast those pathological responses observed after kidney transplantation. Sensitization of T follicular helper cells with the subsequent emergence of detectable donor-specific human leukocyte antigen antibodies, non-human leukocyte antigen antibodies their implication for kidney transplantation and lessons learnt from other transplantation "settings" with special attention to antibody-mediated rejection will be addressed.
Collapse
Affiliation(s)
- Julien Subburayalu
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Center for Regenerative Therapies (CRTD), Technische Universität Dresden, Dresden, Germany
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
9
|
Hassanzadeh Y, Yaghobi R, Pakzad P, Geramizadeh B. Decreased frequency of Th22 cells and IL-22 cytokine in kidney transplant patients with active cytomegalovirus infection. BMC Immunol 2023; 24:18. [PMID: 37403036 DOI: 10.1186/s12865-023-00555-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/29/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND The immunity of CD4+ T cell subsets against human cytomegalovirus (HCMV) is considerable due to their essential role in controlling the infection in transplant individuals. Previously explained CD4+ subsets such as T helper (Th) 1 have been proven to have a protective role against HCMV infection, while the role of the recently identified Th22 subset has not been described yet. Here, the frequency changes of Th22 cells and the IL-22 cytokine production were investigated in kidney transplant recipients with and without HCMV infection. METHODS Twenty kidney transplant patients and ten healthy controls were enrolled in this study. Patients were categorized into HCMV + and HCMV- groups based on the HCMV DNA real-time PCR results. After isolating CD4+ T cells from PBMCs, the phenotype (CCR6+CCR4+CCR10+) and cytokine profile (IFN-γ-IL-17-IL-22+) of Th22 cells were analyzed by flow cytometry. The gene expression of Aryl Hydrocarbon Receptor (AHR) transcription factor was analyzed by real-time PCR. RESULTS The phenotype frequency of these cells was lower in recipients with infection than in those without infection and healthy controls (1.88 ± 0.51 vs. 4.31 ± 1.05; P = 0.03 and 4.22 ± 0.72; P = 0.01, respectively). A lower Th22 cytokine profile was observed in patients with infection than in the two other groups (0.18 ± 0.03 vs. 0.20 ± 0.03; P = 0.96 and 0.33 ± 0.05; P = 0.04, respectively). AHR expression was also lower in patients with active infection. CONCLUSIONS Overall, this study for the first time suggests that the reduced levels of Th22 subset and IL-22 cytokine in patients with active HCMV infection might indicate the protective role of these cells against HCMV.
Collapse
Affiliation(s)
- Yashgin Hassanzadeh
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ramin Yaghobi
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Parviz Pakzad
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Bita Geramizadeh
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
10
|
Sun L, Su Y, Jiao A, Wang X, Zhang B. T cells in health and disease. Signal Transduct Target Ther 2023; 8:235. [PMID: 37332039 PMCID: PMC10277291 DOI: 10.1038/s41392-023-01471-y] [Citation(s) in RCA: 133] [Impact Index Per Article: 133.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/20/2023] Open
Abstract
T cells are crucial for immune functions to maintain health and prevent disease. T cell development occurs in a stepwise process in the thymus and mainly generates CD4+ and CD8+ T cell subsets. Upon antigen stimulation, naïve T cells differentiate into CD4+ helper and CD8+ cytotoxic effector and memory cells, mediating direct killing, diverse immune regulatory function, and long-term protection. In response to acute and chronic infections and tumors, T cells adopt distinct differentiation trajectories and develop into a range of heterogeneous populations with various phenotype, differentiation potential, and functionality under precise and elaborate regulations of transcriptional and epigenetic programs. Abnormal T-cell immunity can initiate and promote the pathogenesis of autoimmune diseases. In this review, we summarize the current understanding of T cell development, CD4+ and CD8+ T cell classification, and differentiation in physiological settings. We further elaborate the heterogeneity, differentiation, functionality, and regulation network of CD4+ and CD8+ T cells in infectious disease, chronic infection and tumor, and autoimmune disease, highlighting the exhausted CD8+ T cell differentiation trajectory, CD4+ T cell helper function, T cell contributions to immunotherapy and autoimmune pathogenesis. We also discuss the development and function of γδ T cells in tissue surveillance, infection, and tumor immunity. Finally, we summarized current T-cell-based immunotherapies in both cancer and autoimmune diseases, with an emphasis on their clinical applications. A better understanding of T cell immunity provides insight into developing novel prophylactic and therapeutic strategies in human diseases.
Collapse
Affiliation(s)
- Lina Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China.
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China.
| |
Collapse
|
11
|
Ekman-Joelsson BM, Brandström P, Allén M, Andersson B, Wåhlander H, Mellgren K, Ekwall O. Immunological differences between heart- and kidney-transplanted children: a cross-sectional study. Cardiol Young 2023; 33:787-792. [PMID: 35747950 DOI: 10.1017/s1047951122001743] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Post-transplantation lymphoproliferative disorder is a potentially mortal complication after heart transplantation in children. As the immune system plays a crucial role in the development of lymphoma, we explored the influence of thymus function in relation to immunosuppressive treatment in organ-transplanted children and healthy control subjects. A prospective case-control study was performed at a single centre, in which 36 children who had undergone heart transplantation were compared to two control groups: 34 kidney-transplanted children and 33 healthy age- and sex-matched children. T- and B-lymphocyte subtypes and monocytes were analysed by flow cytometry, and T-cell receptor excision circles were assessed using quantitative polymerase chain reaction. Heart-transplanted children had a lymphocyte profile characterised by reduced or absent thymic function with low numbers of T-cell receptor excision circles and total and naïve T cells, together with immune activation against the allograft. Despite similar immunosuppressive treatment, the kidney-transplanted group showed an activated T-lymphocyte compartment.
Collapse
Affiliation(s)
- Britt-Marie Ekman-Joelsson
- Department of Pediatrics, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Per Brandström
- Department of Pediatrics, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maria Allén
- Department of Pediatrics, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bengt Andersson
- Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Håkan Wåhlander
- Department of Pediatrics, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Karin Mellgren
- Department of Pediatrics, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Olov Ekwall
- Department of Pediatrics, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
12
|
Vimali J, Yong YK, Murugesan A, Tan HY, Zhang Y, Ashwin R, Raju S, Balakrishnan P, Larsson M, Velu V, Shankar EM. Chronic viral infection compromises the quality of circulating mucosal-invariant T cells and follicular T helper cells via expression of both activating and inhibitory receptors. RESEARCH SQUARE 2023:rs.3.rs-2862719. [PMID: 37163092 PMCID: PMC10168456 DOI: 10.21203/rs.3.rs-2862719/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Chronic viral infection results in impaired immune responses rendering viral persistence. Here, we investigated the role of immune activation and compared the quality of T-cell responses in chronic HBV, HCV, and HIV infections. Cytokines were measured using a commercial Bio-plex Pro Human Cytokine Grp I Panel 17-plex kit (BioRad, Hercules, CA, USA). Inflammation was assessed by measuring an array of plasma cytokines, and peripheral CD4+ T cells including circulating Tfh cells, CD8+ T cells, and TCR iVα7.2+ MAIT cells in chronic HBV, HCV, and HIV-infected patients and healthy controls. The cells were characterized based markers pertaining to immune activation (CD69, ICOS, and CD27) proliferation (Ki67), cytokine production (TNF-α, IFN-γ) and exhaustion (PD-1). The cytokine levels and T cell phenotypes together with cell markers were correlated with surrogate markers of disease progression. The activation marker CD69 was significantly increased in CD4+ hi T cells, while CD8+ MAIT cells expressing IFN-γ were significantly increased in chronic HBV, HCV and HIV infections. Six cell phenotypes, viz., TNF-α+CD4+ lo T cells, CD69+CD8+ T cells, CD69+CD4+ MAIT cells, PD-1+CD4+ hi T cells, PD-1+CD8+ T cells, Ki67+CD4+ MAIT cells were independently associated with decelerating the plasma viral load (PVL). TNF-α levels showed a positive correlation with increase in cytokine levels and decrease in PVL. Chronic viral infection negatively impacts the quality of peripheral MAIT cells and TFH cells via expression of both activating and inhibitory receptors.
Collapse
Affiliation(s)
- Jaisheela Vimali
- Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | | | - Amudhan Murugesan
- Department of Microbiology, Government Theni Medical College and Hospital, Theni, India
| | | | | | - Rajeev Ashwin
- Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Sivadoss Raju
- Directorate of Public Health and Preventive Medicine, Chennai, India
| | - Pachamuthu Balakrishnan
- Centre for Infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Marie Larsson
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden
| | - Vijayakumar Velu
- Department of Pathology and Laboratory Medicine, Emory National Primate Research Center, Emory University, Atlanta GA, United States
| | - Esaki M Shankar
- Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| |
Collapse
|
13
|
Lee C, Lee H, Park JC, Im SH. Microbial Components and Effector Molecules in T Helper Cell Differentiation and Function. Immune Netw 2023; 23:e7. [PMID: 36911805 PMCID: PMC9995987 DOI: 10.4110/in.2023.23.e7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/12/2023] [Accepted: 02/12/2023] [Indexed: 03/07/2023] Open
Abstract
The mammalian intestines harbor trillions of commensal microorganisms composed of thousands of species that are collectively called gut microbiota. Among the microbiota, bacteria are the predominant microorganism, with viruses, protozoa, and fungi (mycobiota) making up a relatively smaller population. The microbial communities play fundamental roles in the maturation and orchestration of the immune landscape in health and disease. Primarily, the gut microbiota modulates the immune system to maintain homeostasis and plays a crucial role in regulating the pathogenesis and pathophysiology of inflammatory, neuronal, and metabolic disorders. The microbiota modulates the host immune system through direct interactions with immune cells or indirect mechanisms such as producing short-chain acids and diverse metabolites. Numerous researchers have put extensive efforts into investigating the role of microbes in immune regulation, discovering novel immunomodulatory microbial species, identifying key effector molecules, and demonstrating how microbes and their key effector molecules mechanistically impact the host immune system. Consequently, recent studies suggest that several microbial species and their immunomodulatory molecules have therapeutic applicability in preclinical settings of multiple disorders. Nonetheless, it is still unclear why and how a handful of microorganisms and their key molecules affect the host immunity in diverse diseases. This review mainly discusses the role of microbes and their metabolites in T helper cell differentiation, immunomodulatory function, and their modes of action.
Collapse
Affiliation(s)
- Changhon Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Haena Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - John Chulhoon Park
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Sin-Hyeog Im
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
- Institute for Convergence Research and Education, Yonsei University, Seoul 03722, Korea
- ImmunoBiome Inc., Pohang 37673, Korea
| |
Collapse
|
14
|
Ruedas-Torres I, Sánchez-Carvajal JM, Carrasco L, Pallarés FJ, Larenas-Muñoz F, Rodríguez-Gómez IM, Gómez-Laguna J. PRRSV-1 induced lung lesion is associated with an imbalance between costimulatory and coinhibitory immune checkpoints. Front Microbiol 2023; 13:1007523. [PMID: 36713151 PMCID: PMC9878400 DOI: 10.3389/fmicb.2022.1007523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 12/16/2022] [Indexed: 01/15/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) induces a dysregulation on the innate and adaptive immune responses. T-cell activation requires a proper interaction and precise balance between costimulatory and coinhibitory molecules, commonly known as immune checkpoints. This study aims to evaluate the expression of immune checkpoints in lung and tracheobronchial lymph node from piglets infected with two PRRSV-1 strains of different virulence during the early stage of infection. Seventy 4-week-old piglets were grouped into three experimental groups: (i) control, (ii) 3249-infected group (low virulent strain), and (iii) Lena-infected group (virulent strain) and were euthanized at 1, 3, 6, 8, and 13 days post-infection (dpi). Lung and tracheobronchial lymph node were collected to evaluate histopathological findings, PRRSV viral load and mRNA expression of costimulatory (CD28, CD226, TNFRSF9, SELL, ICOS, and CD40) and coinhibitory (CTLA4, TIGIT, PD1/PDL1, TIM3, LAG3, and IDO1) molecules through RT-qPCR. Our findings highlight a mild increase of costimulatory molecules together with an earlier and stronger up-regulation of coinhibitory molecules in both organs from PRRSV-1-infected animals, especially in the lung from virulent Lena-infected animals. The simultaneous expression of coinhibitory immune checkpoints could work in synergy to control and limit the inflammation-induced tissue damage. Further studies should be addressed to determine the role of these molecules in later stages of PRRSV infection.
Collapse
|
15
|
Feng G, Sun Y, Wang S, Lv Y, Yan C, Zhu Y, Zheng Y, Cui D. Phenotypes of peripheral CD4 + T helper cell subsets in pregnant women with HBeAg-negative chronic asymptomatic HBV carriers. Front Cell Infect Microbiol 2023; 13:1126311. [PMID: 36816578 PMCID: PMC9929458 DOI: 10.3389/fcimb.2023.1126311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 01/18/2023] [Indexed: 02/04/2023] Open
Abstract
Background Chronic hepatitis B virus (HBV) infection is a major public health problem worldwide, and mother-to-child transmission is the key mode of HBV infection. CD4+ T helper (Th) cells play a critical role in the immune microenvironment of specific maternal tolerance to the foetus during pregnancy. However, the roles of Th cell subsets in pregnant women (PW) with chronic asymptomatic HBV carriers (ASCs) remain completely unclear. Here, we aimed to characterize CD4+ T-cell immunity in PW with hepatitis Be antigen (HBeAg)-negative chronic ASCs. Methods Human peripheral blood mononuclear cells (PBMCs) from PW without HBV infection or with chronic ASCs and healthy controls (HC) were isolated, and CD4+ Th cell subsets were detected by flow cytometry in addition to serum cytokines. Serological HBV markers, liver function and hormone levels of these individuals were also tested. Results The frequencies of circulating T follicular helper (Tfh) type 2 (Tfh2) cells were significantly evaluated, but Tfh1 cell frequencies were notably decreased in PW compared to HC. Moreover, the frequencies of Th22 cells were only notably increased in PW with chronic ASCs in comparison with PW. Additionally, increased levels of serum IL-4 were positively correlated with Tfh2 cell frequencies in healthy PW. Interestingly, serum P4 levels were positively associated with the frequencies of circulating Tfh2 or Th2 cells but were negatively related to the frequencies of circulating Tfh17 or Th17 cells in healthy PW. Although there were some changes in the other CD4+ Th cell frequencies and cytokine levels or other references, significant differences were not found among HC, healthy PW, PW with HBeAg-negative chronic ASCs. Conclusion CD4+ Th cell subsets played a critical role in the immune microenvironment of PW, and these findings provided potential evidence for why PW with chronic ASCs did not receive antenatal antiviral prophylaxis.
Collapse
Affiliation(s)
- Guofang Feng
- Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Sun
- Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shifen Wang
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Lv
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cuilin Yan
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, China
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yimin Zhu
- Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Yimin Zhu, ; Yongsheng Zheng, ; Dawei Cui,
| | - Yongsheng Zheng
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
- *Correspondence: Yimin Zhu, ; Yongsheng Zheng, ; Dawei Cui,
| | - Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, China
- *Correspondence: Yimin Zhu, ; Yongsheng Zheng, ; Dawei Cui,
| |
Collapse
|
16
|
Wang J, Nan Y, Liu M, Hu K. The Role of CD4 + T Cells in the Immunotherapy of Brain Disease by Secreting Different Cytokines. J Neuroimmune Pharmacol 2022; 17:409-422. [PMID: 36443518 DOI: 10.1007/s11481-022-10056-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022]
Abstract
Upon different stimulation, naïve CD4+ T cells differentiate into various subsets of T helper (Th) cells, including Th1, Th2, Th17, and Tregs. They play both protective and pathogenic roles in the central nervous system (CNS) by secreting different cytokines. Failure of the homeostasis of the subgroups in the CNS can result in different brain diseases. Recently, immunotherapy has drawn more and more attention in the therapy of various brain diseases. Here, we describe the role of different CD4+ T cell subsets and their secreted cytokines in various brain diseases, as well as the ways in which by affecting CD4+ T cells in therapy of the CNS diseases. Understanding the role of CD4+ T cells and their secreted cytokines in the immunotherapy of brain disease will provide new targets and therapeutics for the treatment of brain disease. The role of CD4 + T cell subtypes in different diseases and their associated regulatory genes, proteins, and enzymes. CD4 + T cell subtypes play both protective (green) and pathogenic (red) roles in different brain diseases. The immune regulatory effects of CD4 + T cells and their subtypes are promoted or inhibited by different genes, proteins, and enzymes.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yunrong Nan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Mei Liu
- Industrial Development Center of Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Kaili Hu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
17
|
Brunet-Ratnasingham E, Morou A, Dubé M, Niessl J, Baxter AE, Tastet O, Brassard N, Ortega-Delgado G, Charlebois R, Freeman GJ, Tremblay C, Routy JP, Kaufmann DE. Immune checkpoint expression on HIV-specific CD4+ T cells and response to their blockade are dependent on lineage and function. EBioMedicine 2022; 84:104254. [PMID: 36150362 PMCID: PMC9508408 DOI: 10.1016/j.ebiom.2022.104254] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 11/29/2022] Open
Abstract
Background Immune checkpoint blockade (ICB) partially reverses the dysfunctional state of antigen-specific T cell in chronic infections. However, its impact on the diverse subsets of CD4+ T cells in humans is largely unknown. Methods We examined immune checkpoint (IC) expression and function in HIV-specific CD4+ T cells of viremic individuals (≥5000 vRNA cp/ml, n = 17) prior to ART and persons with spontaneous (n = 11) or therapy-induced (n = 16) viral suppression (<40 cp/ml). We investigated IC patterns associated with exhaustion-related transcription factors and chemokine receptors using activation-induced marker assays. We determined effector functions representative of TFH, TH1, and TH17/TH22 using RNA flow cytometric fluorescence in situ hybridization (FISH). We compared increase in cytokine expression upon ICB across functions and patient status. Findings Expression of dysfunction-related molecules, such as transcription factors and ICs PD-1, TIGIT, and CD200, followed a hierarchy associated with infection status and effector profile. In vitro responsiveness to PD-L1 blockade varied with defined functions rather than IC levels: frequencies of cells with TH1- and TH17/TH22-, but not TFH-related functions, increased. Cells co-expressing TH1 and TFH functions showed response to ICB, suggesting that the cell's state rather than function dictates responsiveness to PD-L1 blockade. Response to PD-L1 blockade was strongest in viremic participants and reduced after ART initiation. Interpretation Our data highlight a polarization-specific regulation of IC expression and differing sensitivities of antigen-specific T helper subsets to PD-1-mediated inhibition. This heterogeneity may direct and constrain ICB efficacy in restoring CD4+ T cell function in HIV infection and other diseases. Funding NIH, CIHR, CFI, FRQS
Collapse
Affiliation(s)
- Elsa Brunet-Ratnasingham
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada; Université de Montréal, Montreal, Quebec, Canada
| | - Antigoni Morou
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada; Université de Montréal, Montreal, Quebec, Canada
| | - Mathieu Dubé
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Julia Niessl
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada; Université de Montréal, Montreal, Quebec, Canada
| | - Amy E Baxter
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada; Université de Montréal, Montreal, Quebec, Canada
| | - Olivier Tastet
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Nathalie Brassard
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Gloria Ortega-Delgado
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Roxanne Charlebois
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - Cécile Tremblay
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada; Université de Montréal, Montreal, Quebec, Canada
| | - Jean-Pierre Routy
- Chronic Viral Illnesses Service and Division of Hematology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Daniel E Kaufmann
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada; Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
18
|
Shlesinger D, Hong KL, Shammas G, Page N, Sandu I, Agrafiotis A, Kreiner V, Fonta N, Vincenti I, Wagner I, Piccinno M, Mariotte A, Klimek B, Dizerens R, Manero-Carranza M, Kuhn R, Ehling R, Frei L, Khodaverdi K, Panetti C, Joller N, Oxenius A, Merkler D, Reddy ST, Yermanos A. Single-cell immune repertoire sequencing of B and T cells in murine models of infection and autoimmunity. Genes Immun 2022; 23:183-195. [PMID: 36028771 PMCID: PMC9519453 DOI: 10.1038/s41435-022-00180-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 11/09/2022]
Abstract
Adaptive immune repertoires are composed by the ensemble of B and T-cell receptors within an individual, reflecting both past and current immune responses. Recent advances in single-cell sequencing enable recovery of the complete adaptive immune receptor sequences in addition to transcriptional information. Here, we recovered transcriptome and immune repertoire information for polyclonal T follicular helper cells following lymphocytic choriomeningitis virus (LCMV) infection, CD8+ T cells with binding specificity restricted to two distinct LCMV peptides, and B and T cells isolated from the nervous system in the context of experimental autoimmune encephalomyelitis. We could relate clonal expansion, germline gene usage, and clonal convergence to cell phenotypes spanning activation, memory, naive, antibody secretion, T-cell inflation, and regulation. Together, this dataset provides a resource for immunologists that can be integrated with future single-cell immune repertoire and transcriptome sequencing datasets.
Collapse
Affiliation(s)
- Danielle Shlesinger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Kai-Lin Hong
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Ghazal Shammas
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Nicolas Page
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Ioana Sandu
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Andreas Agrafiotis
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Victor Kreiner
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Nicolas Fonta
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Ilena Vincenti
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Ingrid Wagner
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Margot Piccinno
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Alexandre Mariotte
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Bogna Klimek
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Raphael Dizerens
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Raphael Kuhn
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Roy Ehling
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Lester Frei
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Keywan Khodaverdi
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Camilla Panetti
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Nicole Joller
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | | | - Doron Merkler
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Division of Clinical Pathology, Geneva University Hospital, Geneva, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Alexander Yermanos
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
19
|
Govender M, Hopkins FR, Göransson R, Svanberg C, Shankar EM, Hjorth M, Nilsdotter-Augustinsson Å, Sjöwall J, Nyström S, Larsson M. T cell perturbations persist for at least 6 months following hospitalization for COVID-19. Front Immunol 2022; 13:931039. [PMID: 36003367 PMCID: PMC9393525 DOI: 10.3389/fimmu.2022.931039] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/14/2022] [Indexed: 01/08/2023] Open
Abstract
COVID-19 is being extensively studied, and much remains unknown regarding the long-term consequences of the disease on immune cells. The different arms of the immune system are interlinked, with humoral responses and the production of high-affinity antibodies being largely dependent on T cell immunity. Here, we longitudinally explored the effect COVID-19 has on T cell populations and the virus-specific T cells, as well as neutralizing antibody responses, for 6-7 months following hospitalization. The CD8+ TEMRA and exhausted CD57+ CD8+ T cells were markedly affected with elevated levels that lasted long into convalescence. Further, markers associated with T cell activation were upregulated at inclusion, and in the case of CD69+ CD4+ T cells this lasted all through the study duration. The levels of T cells expressing negative immune checkpoint molecules were increased in COVID-19 patients and sustained for a prolonged duration following recovery. Within 2-3 weeks after symptom onset, all COVID-19 patients developed anti-nucleocapsid IgG and spike-neutralizing IgG as well as SARS-CoV-2-specific T cell responses. In addition, we found alterations in follicular T helper (TFH) cell populations, such as enhanced TFH-TH2 following recovery from COVID-19. Our study revealed significant and long-term alterations in T cell populations and key events associated with COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Melissa Govender
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Francis R. Hopkins
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Robin Göransson
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Clinical Immunology and Transfusion Medicine, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Cecilia Svanberg
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Esaki M. Shankar
- Infection Biology, Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Maria Hjorth
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Clinical Immunology and Transfusion Medicine, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Åsa Nilsdotter-Augustinsson
- Divison of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Johanna Sjöwall
- Divison of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Sofia Nyström
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Clinical Immunology and Transfusion Medicine, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Marie Larsson
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- *Correspondence: Marie Larsson,
| |
Collapse
|
20
|
Hwang SM, Im SH, Rudra D. Signaling networks controlling ID and E protein activity in T cell differentiation and function. Front Immunol 2022; 13:964581. [PMID: 35983065 PMCID: PMC9379924 DOI: 10.3389/fimmu.2022.964581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
E and inhibitor of DNA binding (ID) proteins are involved in various cellular developmental processes and effector activities in T cells. Recent findings indicate that E and ID proteins are not only responsible for regulating thymic T cell development but also modulate the differentiation, function, and fate of peripheral T cells in multiple immune compartments. Based on the well-established E and ID protein axis (E-ID axis), it has been recognized that ID proteins interfere with the dimerization of E proteins, thus restricting their transcriptional activities. Given this close molecular relationship, the extent of expression or stability of these two protein families can dynamically affect the expression of specific target genes involved in multiple aspects of T cell biology. Therefore, it is essential to understand the endogenous proteins or extrinsic signaling pathways that can influence the dynamics of the E-ID axis in a cell-specific and context-dependent manner. Here, we provide an overview of E and ID proteins and the functional outcomes of the E-ID axis in the activation and function of multiple peripheral T cell subsets, including effector and memory T cell populations. Further, we review the mechanisms by which endogenous proteins and signaling pathways alter the E-ID axis in various T cell subsets influencing T cell function and fate at steady-state and in pathological settings. A comprehensive understanding of the functions of E and ID proteins in T cell biology can be instrumental in T cell-specific targeting of the E-ID axis to develop novel therapeutic modalities in the context of autoimmunity and cancer.
Collapse
Affiliation(s)
- Sung-Min Hwang
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, United States
| | - Sin-Hyeog Im
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
- Institute for Convergence Research and Education, Yonsei University, Seoul, South Korea
- ImmunoBiome Inc., Bio Open Innovation Center, Pohang, South Korea
- *Correspondence: Sin-Hyeog Im, ; Dipayan Rudra,
| | - Dipayan Rudra
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- *Correspondence: Sin-Hyeog Im, ; Dipayan Rudra,
| |
Collapse
|
21
|
Wang Y, Tian Q, Ye L. The Differentiation and Maintenance of SARS-CoV-2-Specific Follicular Helper T Cells. Front Cell Infect Microbiol 2022; 12:953022. [PMID: 35909969 PMCID: PMC9329515 DOI: 10.3389/fcimb.2022.953022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
Upon acute viral infection, virus-specific CD4+ T cells differentiate into either TH1 cells or follicular helper T (TFH) cells. The molecular pathways governing such bimodal cell fate commitment remain elusive. Additionally, effector virus-specific TFH cells further differentiate into corresponding memory population, which confer long-term protection against re-infection of same viruses by providing immediate help to virus-specific memory B cells. Currently, the molecular mechanisms underlying the long-term maintenance of memory TFH cells are largely unknown. In this review, we discuss current understanding of early differentiation of virus-specific effector TFH cells and long-term maintenance of virus-specific memory TFH cells in mouse models of viral infection and patients of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection.
Collapse
Affiliation(s)
- Yifei Wang
- Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Qin Tian
- Dermatology Hospital, Southern Medical University, Guangzhou, China
- Institute of Immunology, The People’s Liberation Army (PLA), Third Military Medical University, Chongqing, China
| | - Lilin Ye
- Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Institute of Immunology, The People’s Liberation Army (PLA), Third Military Medical University, Chongqing, China
- *Correspondence: Lilin Ye,
| |
Collapse
|
22
|
The Big Potential of Small Particles: Lipid-Based Nanoparticles and Exosomes in Vaccination. Vaccines (Basel) 2022; 10:vaccines10071119. [PMID: 35891282 PMCID: PMC9320421 DOI: 10.3390/vaccines10071119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 12/13/2022] Open
Abstract
Some of the most significant medical achievements in recent history are the development of distinct and effective vaccines, and the improvement of the efficacy of previously existing ones, which have contributed to the eradication of many dangerous and life-threatening diseases. Immunization depends on the generation of a physiological memory response and protection against infection. It is therefore crucial that antigens are delivered in an efficient manner, to elicit a robust immune response. The recent approval of COVID-19 vaccines containing lipid nanoparticles encapsulating mRNA demonstrates the broad potential of lipid-based delivery systems. In light of this, the present review article summarizes currently synthesized lipid-based nanoparticles such as liposomes, lipid-nano particles, or cell-derived exosomes.
Collapse
|
23
|
Cui D, Jiang D, Yan C, Liu X, Lv Y, Xie J, Chen Y. Immune Checkpoint Molecules Expressed on CD4 + T Cell Subsets in Chronic Asymptomatic Hepatitis B Virus Carriers With Hepatitis B e Antigen-Negative. Front Microbiol 2022; 13:887408. [PMID: 35572697 PMCID: PMC9093708 DOI: 10.3389/fmicb.2022.887408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Background Chronic hepatitis B virus (HBV) infection remains a major public health problem worldwide. Immune checkpoint molecules expressed on CD4+ T cells play critical roles in chronic HBV infection. However, their roles in chronic asymptomatic HBV carriers (ASCs) with hepatitis B e antigen (HBeAg)-negative remain unclear. In this study, we explored the role of immune checkpoint molecules expressed on CD4+ T cell subsets in chronic ASCs with HBeAg-negative. Methods Human peripheral blood mononuclear cells (PBMCs) from the ASCs with HBeAg-negative and healthy controls (HC) were isolated, and immune checkpoint molecules expressed on CD4+ T cell subsets and serum cytokines were detected by flow cytometry. Moreover, the mRNA expressions of immune checkpoint molecules were analyzed by a real-time quantitative PCR assay. Results In comparison with HC, CD4+ T cells highly expressed LAG-3, TIM-3, and PD-1 in PBMCs from chronic ASCs with HBeAg-negative. Interestingly, the expressions of TIM-3 and PD-1 on circulating follicular helper T (Tfh) cells in ASCs were significantly high. Moreover, high expressions of LAG-3, TIM-3, and PD-1 were different among Treg, Th1, Th2, and Th17 cells. In addition, the expressions of TIM-3 and CTLA-4 mRNA in PBMCs from ASCs were significantly elevated. However, the frequency of CTLA-4+CD4+ T cell subsets in PBMCs from ASCs was not different from HC. The levels of six cytokines in serum from ASCs were not clearly different from HC. Conclusion Immune checkpoint molecules highly expressed on CD4+ T cell subsets indicated an important role in chronic ASCs with HBeAg-negative, which provided potential therapeutic targets in the pathogenesis of chronic HBV infection.
Collapse
Affiliation(s)
- Dawei Cui
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Institute of Laboratory Medicine, Zhejiang University, Hangzhou, China.,Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Daixi Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cuilin Yan
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Institute of Laboratory Medicine, Zhejiang University, Hangzhou, China
| | - Xia Liu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Yan Lv
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jue Xie
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Chen
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Institute of Laboratory Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Barman S, Soni D, Brook B, Nanishi E, Dowling DJ. Precision Vaccine Development: Cues From Natural Immunity. Front Immunol 2022; 12:662218. [PMID: 35222350 PMCID: PMC8866702 DOI: 10.3389/fimmu.2021.662218] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 12/21/2021] [Indexed: 12/31/2022] Open
Abstract
Traditional vaccine development against infectious diseases has been guided by the overarching aim to generate efficacious vaccines normally indicated by an antibody and/or cellular response that correlates with protection. However, this approach has been shown to be only a partially effective measure, since vaccine- and pathogen-specific immunity may not perfectly overlap. Thus, some vaccine development strategies, normally focused on targeted generation of both antigen specific antibody and T cell responses, resulting in a long-lived heterogenous and stable pool of memory lymphocytes, may benefit from better mimicking the immune response of a natural infection. However, challenges to achieving this goal remain unattended, due to gaps in our understanding of human immunity and full elucidation of infectious pathogenesis. In this review, we describe recent advances in the development of effective vaccines, focusing on how understanding the differences in the immunizing and non-immunizing immune responses to natural infections and corresponding shifts in immune ontogeny are crucial to inform the next generation of infectious disease vaccines.
Collapse
Affiliation(s)
- Soumik Barman
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Dheeraj Soni
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Byron Brook
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Etsuro Nanishi
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - David J Dowling
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
25
|
Shiozawa S, Tsumiyama K, Miyazaki Y, Uto K, Sakurai K, Nakashima T, Matsuyama H, Doi A, Tarui M, Izumikawa M, Kimura M, Fujita Y, Satonaka C, Horiuchi T, Matsubara T, Oribe M, Yamane T, Kagawa H, Li QZ, Mizuno K, Mukai Y, Murakami K, Enya T, Tsukimoto S, Hakata Y, Miyazawa M, Shiozawa K. DOCK8-expressing T follicular helper cells newly generated beyond self-organized criticality cause systemic lupus erythematosus. iScience 2022; 25:103537. [PMID: 34977502 PMCID: PMC8689056 DOI: 10.1016/j.isci.2021.103537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/01/2021] [Accepted: 11/24/2021] [Indexed: 11/24/2022] Open
Abstract
Pathogens including autoantigens all failed to induce systemic lupus erythematosus (SLE). We, instead, studied the integrity of host's immune response that recognized pathogen. By stimulating TCR with an antigen repeatedly to levels that surpass host's steady-state response, self-organized criticality, SLE was induced in mice normally not prone to autoimmunity, wherein T follicular helper (Tfh) cells expressing the guanine nucleotide exchange factor DOCK8 on the cell surface were newly generated. DOCK8+Tfh cells passed through TCR re-revision and induced varieties of autoantibody and lupus lesions. They existed in splenic red pulp and peripheral blood of active lupus patients, which subsequently declined after therapy. Autoantibodies and disease were healed by anti-DOCK8 antibody in the mice including SLE-model (NZBxNZW) F1 mice. Thus, DOCK8+Tfh cells generated after repeated TCR stimulation by immunogenic form of pathogen, either exogenous or endogenous, in combination with HLA to levels that surpass system's self-organized criticality, cause SLE. Autoimmunity seldom takes place under integrated steady-state immune response Repeated invasion by pathogen, such as measles virus, is not exceptional but routine in life DOCK8+Tfh is generated upon TCR overstimulation by pathogen beyond self-organized criticality Newly generated DOCK8+Tfh induces autoantibodies and SLE, i.e., autoimmunity
Collapse
Affiliation(s)
- Shunichi Shiozawa
- Institute for Rheumatic Diseases, 944-25 Fujita, Katoshi 673-1462, Japan.,Department of Medicine, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874-0838, Japan.,Division of Bioregulation, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Sumaku, Kobe 654-0142, Japan.,Department of Medicine, Rheumatology and Orthopedic Surgery, Matsubara Mayflower Hospital, 944-25 Fujita, Katoshi 673-1462, Japan
| | - Ken Tsumiyama
- Institute for Rheumatic Diseases, 944-25 Fujita, Katoshi 673-1462, Japan.,Department of Medicine, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874-0838, Japan.,Division of Bioregulation, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Sumaku, Kobe 654-0142, Japan.,Department of Medicine, Rheumatology and Orthopedic Surgery, Matsubara Mayflower Hospital, 944-25 Fujita, Katoshi 673-1462, Japan
| | - Yumi Miyazaki
- Department of Medicine, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874-0838, Japan.,Division of Bioregulation, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Sumaku, Kobe 654-0142, Japan
| | - Kenichi Uto
- Division of Bioregulation, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Sumaku, Kobe 654-0142, Japan
| | - Keiichi Sakurai
- Institute for Rheumatic Diseases, 944-25 Fujita, Katoshi 673-1462, Japan.,Department of Medicine, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874-0838, Japan
| | - Toshie Nakashima
- Division of Bioregulation, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Sumaku, Kobe 654-0142, Japan
| | - Hiroko Matsuyama
- Division of Bioregulation, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Sumaku, Kobe 654-0142, Japan
| | - Ai Doi
- Division of Bioregulation, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Sumaku, Kobe 654-0142, Japan
| | - Miho Tarui
- Division of Bioregulation, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Sumaku, Kobe 654-0142, Japan
| | - Manabu Izumikawa
- Division of Bioregulation, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Sumaku, Kobe 654-0142, Japan
| | - Mai Kimura
- Division of Bioregulation, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Sumaku, Kobe 654-0142, Japan
| | - Yuko Fujita
- Division of Bioregulation, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Sumaku, Kobe 654-0142, Japan
| | - Chisako Satonaka
- Division of Bioregulation, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Sumaku, Kobe 654-0142, Japan
| | - Takahiko Horiuchi
- Department of Medicine, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874-0838, Japan
| | - Tsukasa Matsubara
- Department of Medicine, Rheumatology and Orthopedic Surgery, Matsubara Mayflower Hospital, 944-25 Fujita, Katoshi 673-1462, Japan
| | - Motohiro Oribe
- Oribe Clinic, 1-8-15 Higashi-Odori, Oita 870-0823, Japan
| | - Takashi Yamane
- Department of Rheumatology, Kakogawa City Hospital, 439 Honmachi, Kakogawa 675-8611, Japan
| | - Hidetoshi Kagawa
- Department of Medicine, Red Cross Society Himeji Hospital, 1-12-1 Shimoteno, Himeji 670-8540, Japan
| | - Quan-Zhen Li
- Department of Immunology, University of Texas Southwestern Medical Center, 6001 Forest Park Road/ND 6.504, Dallas, TX 75390-8814, USA
| | - Keiko Mizuno
- Drug Discovery Platform, KAN Research Institute, Inc., 6-8-2 Minatojimaminamicho, Kobe 650-0047, Japan
| | - Yohei Mukai
- Drug Discovery Platform, KAN Research Institute, Inc., 6-8-2 Minatojimaminamicho, Kobe 650-0047, Japan
| | - Kazuhiro Murakami
- Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsujima, Aobaku 981-8558, Japan
| | - Takuji Enya
- Department of Immunology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan.,Department of Pediatrics, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Shota Tsukimoto
- Department of Immunology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan.,Department of Anesthesiology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Yoshiyuki Hakata
- Department of Immunology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Masaaki Miyazawa
- Department of Immunology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan.,Kindai University Anti-Aging Center, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Kazuko Shiozawa
- Department of Medicine, Rheumatology and Orthopedic Surgery, Matsubara Mayflower Hospital, 944-25 Fujita, Katoshi 673-1462, Japan.,Rheumatology and Collagen Disease Center, Hyogo Prefectural Kakogawa Medical Center, 203 Kanno, Kakogawa 675-8555, Japan
| |
Collapse
|
26
|
Abstract
Exceptional efforts have been undertaken to shed light into the biology of adaptive immune responses to SARS-CoV-2. T cells occupy a central role in adaptive immunity to mediate helper functions to different arms of the immune system and are fundamental to mediate protection, control, and clearance of most viral infections. Even though many questions remain unsolved, there is a growing literature linking specific T cell characteristics to differential COVID-19 severity and vaccine outcome. In this review, we summarize our current understanding of CD4+ and CD8+ T cell responses in acute and convalescent COVID-19. Further, we discuss the T cell literature coupled to pre-existing immunity and vaccines and highlight the need to look beyond blood to fully understand how T cells function in the tissue space.
Collapse
Affiliation(s)
- Julia Niessl
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Takuya Sekine
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Buggert
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
27
|
Cui D, Tang Y, Jiang Q, Jiang D, Zhang Y, Lv Y, Xu D, Wu J, Xie J, Wen C, Lu L. Follicular Helper T Cells in the Immunopathogenesis of SARS-CoV-2 Infection. Front Immunol 2021; 12:731100. [PMID: 34603308 PMCID: PMC8481693 DOI: 10.3389/fimmu.2021.731100] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/01/2021] [Indexed: 12/21/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a serious infectious disease that has led to a global pandemic with high morbidity and mortality. High-affinity neutralizing antibody is important for controlling infection, which is closely regulated by follicular helper T (Tfh) cells. Tfh cells play a central role in promoting germinal center reactions and driving cognate B cell differentiation for antibody secretion. Available studies indicate a close relationship between virus-specific Tfh cell-mediated immunity and SARS-CoV-2 infection progression. Although several lines of evidence have suggested that Tfh cells contribute to the control of SARS-CoV-2 infection by eliciting neutralizing antibody productions, further studies are needed to elucidate Tfh-mediated effector mechanisms in anti-SARS-CoV-2 immunity. Here, we summarize the functional features and roles of virus-specific Tfh cells in the immunopathogenesis of SARS-CoV-2 infection and in COVID-19 vaccines, and highlight the potential of targeting Tfh cells as therapeutic strategy against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuan Tang
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, Hong Kong, SAR China.,Chongqing International Institute for Immunology, Chongqing, China
| | - Qi Jiang
- Department of Blood Transfusion, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Daixi Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yun Zhang
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Lv
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dandan Xu
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jue Xie
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengping Wen
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, Hong Kong, SAR China.,Chongqing International Institute for Immunology, Chongqing, China
| |
Collapse
|
28
|
Huda MN, Nafiujjaman M, Deaguero IG, Okonkwo J, Hill ML, Kim T, Nurunnabi M. Potential Use of Exosomes as Diagnostic Biomarkers and in Targeted Drug Delivery: Progress in Clinical and Preclinical Applications. ACS Biomater Sci Eng 2021; 7:2106-2149. [PMID: 33988964 PMCID: PMC8147457 DOI: 10.1021/acsbiomaterials.1c00217] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022]
Abstract
Exosomes are cell-derived vesicles containing heterogeneous active biomolecules such as proteins, lipids, mRNAs, receptors, immune regulatory molecules, and nucleic acids. They typically range in size from 30 to 150 nm in diameter. An exosome's surfaces can be bioengineered with antibodies, fluorescent dye, peptides, and tailored for small molecule and large active biologics. Exosomes have enormous potential as a drug delivery vehicle due to enhanced biocompatibility, excellent payload capability, and reduced immunogenicity compared to alternative polymeric-based carriers. Because of active targeting and specificity, exosomes are capable of delivering their cargo to exosome-recipient cells. Additionally, exosomes can potentially act as early stage disease diagnostic tools as the exosome carries various protein biomarkers associated with a specific disease. In this review, we summarize recent progress on exosome composition, biological characterization, and isolation techniques. Finally, we outline the exosome's clinical applications and preclinical advancement to provide an outlook on the importance of exosomes for use in targeted drug delivery, biomarker study, and vaccine development.
Collapse
Affiliation(s)
- Md Nurul Huda
- Environmental Science & Engineering, University of Texas at El Paso, El Paso, TX 79968
| | - Md Nafiujjaman
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824
| | - Isaac G Deaguero
- Biomedical Engineering, University of Texas at El Paso, El Paso, TX 79968
| | - Jude Okonkwo
- John A Paulson School of Engineering, Harvard University, Cambridge, MA 02138
| | - Meghan L. Hill
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824
| | - Taeho Kim
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824
| | - Md Nurunnabi
- Environmental Science & Engineering, University of Texas at El Paso, El Paso, TX 79968
- Biomedical Engineering, University of Texas at El Paso, El Paso, TX 79968
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968
| |
Collapse
|
29
|
Künzli M, Reuther P, Pinschewer DD, King CG. Opposing effects of T cell receptor signal strength on CD4 T cells responding to acute versus chronic viral infection. eLife 2021; 10:61869. [PMID: 33684030 PMCID: PMC7943189 DOI: 10.7554/elife.61869] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 02/22/2021] [Indexed: 12/14/2022] Open
Abstract
A hallmark of adaptive immunity is CD4 T cells’ ability to differentiate into specialized effectors. A long-standing question is whether T cell receptor (TCR) signal strength can dominantly instruct the development of Th1 and T follicular helper (Tfh) cells across distinct infectious contexts. We characterized the differentiation of murine CD4 TCR transgenic T cells responding to altered peptide ligand lymphocytic choriomeningitis viruses (LCMV) derived from acute and chronic parental strains. We found that TCR signal strength exerts opposite and hierarchical effects on the balance of Th1 and Tfh cells responding to acute versus persistent infection. TCR signal strength correlates positively with Th1 generation during acute but negatively during chronic infection. Weakly activated T cells express lower levels of markers associated with chronic T cell stimulation and may resist functional inactivation. We anticipate that the panel of recombinant viruses described herein will be valuable for investigating a wide range of CD4 T cell responses.
Collapse
Affiliation(s)
- Marco Künzli
- Immune Cell Biology Laboratory, Department of Biomedicine, University of Basel, University Hospital Basel, Basel, Switzerland
| | - Peter Reuther
- Division of Experimental Virology, Department of Biomedicine - Haus Petersplatz, University of Basel, Basel, Switzerland
| | - Daniel D Pinschewer
- Division of Experimental Virology, Department of Biomedicine - Haus Petersplatz, University of Basel, Basel, Switzerland
| | - Carolyn G King
- Immune Cell Biology Laboratory, Department of Biomedicine, University of Basel, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
30
|
Trefzer A, Kadam P, Wang SH, Pennavaria S, Lober B, Akçabozan B, Kranich J, Brocker T, Nakano N, Irmler M, Beckers J, Straub T, Obst R. Dynamic adoption of anergy by antigen-exhausted CD4 + T cells. Cell Rep 2021; 34:108748. [PMID: 33567282 DOI: 10.1016/j.celrep.2021.108748] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 09/21/2020] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
Exhausted immune responses to chronic diseases represent a major challenge to global health. We study CD4+ T cells in a mouse model with regulatable antigen presentation. When the cells are driven through the effector phase and are then exposed to different levels of persistent antigen, they lose their T helper 1 (Th1) functions, upregulate exhaustion markers, resemble naturally anergic cells, and modulate their MAPK, mTORC1, and Ca2+/calcineurin signaling pathways with increasing dose and time. They also become unable to help B cells and, at the highest dose, undergo apoptosis. Transcriptomic analyses show the dynamic adjustment of gene expression and the accumulation of T cell receptor (TCR) signals over a period of weeks. Upon antigen removal, the cells recover their functionality while losing exhaustion and anergy markers. Our data suggest an adjustable response of CD4+ T cells to different levels of persisting antigen and contribute to a better understanding of chronic disease.
Collapse
Affiliation(s)
- Anne Trefzer
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Pallavi Kadam
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Shu-Hung Wang
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Stefanie Pennavaria
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Benedikt Lober
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Batuhan Akçabozan
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Jan Kranich
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Thomas Brocker
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Naoko Nakano
- Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Zentrum München GmbH, 85764 Neuherberg, Germany
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Zentrum München GmbH, 85764 Neuherberg, Germany; Chair of Experimental Genetics, Technische Universität München, 85354 Freising, Germany; German Center for Diabetes Research (DZD e. V.), Neuherberg, Germany
| | - Tobias Straub
- Bioinformatics Core Facility, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Reinhard Obst
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
31
|
Cardenas MA, Prokhnevska N, Kissick HT. Organized immune cell interactions within tumors sustain a productive T-cell response. Int Immunol 2021; 33:27-37. [PMID: 32827212 PMCID: PMC7771196 DOI: 10.1093/intimm/dxaa057] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022] Open
Abstract
Tumor-infiltrating CD8 T cells are associated with improved patient survival and response to immunotherapy in various cancers. Persistent antigen leads to CD8 T-cell exhaustion, where proliferation/self-renewal and killing are divided within distinct subsets of CD8 T cells in the tumor. CD8 T-cell responses in chronic antigen settings must be maintained for long periods of time, suggesting that mechanisms that regulate chronic CD8 T-cell responses may differ from those in acute settings. Currently, factors that regulate the maintenance of stem-like CD8 T cells in the tumor or their differentiation into terminally differentiated cells are unknown. In this review, we discuss the role of dendritic cells in the activation and differentiation of CD8 T-cell subsets within secondary lymphoid tissue and tumors. In addition, we examine changes in CD4 T-cell differentiation in response to chronic antigens and consider how subset-specific mechanisms could assist the stem-like and terminally differentiated CD8 T-cell subsets. Finally, we highlight how tumor-infiltrating CD4 T cells and dendritic cells interact with CD8 T cells within organized lymphoid-like areas in the tumor and propose a CD8 T-cell differentiation model that requires the collaboration of CD4 T cells and dendritic cells. These organized interactions coordinate the anti-tumor response and control disease progression by mechanisms that regulate CD8 T-cell differentiation, which permit the maintenance of an effective balance of stem-like and terminally differentiated CD8 T cells.
Collapse
Affiliation(s)
| | | | - Haydn T Kissick
- Department of Urology, Emory University, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
- Emory Vaccine Centre, Atlanta, GA, USA
| |
Collapse
|
32
|
Dong L, He Y, Cao Y, Wang Y, Jia A, Wang Y, Yang Q, Li W, Bi Y, Liu G. Functional differentiation and regulation of follicular T helper cells in inflammation and autoimmunity. Immunology 2020; 163:19-32. [PMID: 33128768 DOI: 10.1111/imm.13282] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Follicular T helper (TFH ) cells are specialized T cells that support B cells, which are essential for humoral immunity. TFH cells express the transcription factor B-cell lymphoma 6 (Bcl-6), chemokine (C-X-C motif) receptor (CXCR) 5, the surface receptors programmed cell death protein 1 (PD-1) and inducible T-cell costimulator (ICOS), the cytokine IL-21 and other molecules. The activation, proliferation and differentiation of TFH cells are closely related to dynamic changes in cellular metabolism. In this review, we summarize the progress made in understanding the development and functional differentiation of TFH cells. Specifically, we focus on the regulatory mechanisms of TFH cell functional differentiation, including regulatory signalling pathways and the metabolic regulatory mechanisms of TFH cells. In addition, TFH cells are closely related to immune-associated diseases, including infections, autoimmune diseases and cancers.
Collapse
Affiliation(s)
- Lin Dong
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Ying He
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yejin Cao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yuexin Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Anna Jia
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yufei Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Qiuli Yang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Wanjie Li
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
33
|
Niessl J, Baxter AE, Morou A, Brunet-Ratnasingham E, Sannier G, Gendron-Lepage G, Richard J, Delgado GG, Brassard N, Turcotte I, Fromentin R, Bernard NF, Chomont N, Routy JP, Dubé M, Finzi A, Kaufmann DE. Persistent expansion and Th1-like skewing of HIV-specific circulating T follicular helper cells during antiretroviral therapy. EBioMedicine 2020; 54:102727. [PMID: 32268275 PMCID: PMC7136607 DOI: 10.1016/j.ebiom.2020.102727] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/17/2020] [Accepted: 03/04/2020] [Indexed: 12/13/2022] Open
Abstract
Background Untreated HIV infection leads to alterations in HIV-specific CD4+ T cells including increased expression of co-inhibitory receptors (IRs) and skewing toward a T follicular helper cell (Tfh) signature. However, which changes are maintained after suppression of viral replication with antiretroviral therapy (ART) is poorly known. Methods We analyzed blood CD4+ T cells specific to HIV and comparative viral antigens in ART-treated people using a cytokine-independent activation-induced marker assay alone or in combination with functional readouts. Findings In intra-individual comparisons, HIV-specific CD4+ T cells were characterized by a larger fraction of circulating Tfh (cTfh) cells than CMV- and HBV-specific cells and preferentially expressed multiple IRs and showed elevated production of the Tfh cytokines CXCL13 and IL-21. In addition, HIV-specific cTfh exhibited a predominant Th1-like phenotype and function when compared to cTfh of other specificities, contrasting with a reduction in Th1-functions in HIV-specific non-cTfh. Using longitudinal samples, we demonstrate that this distinct HIV-specific cTfh profile was induced during chronic untreated HIV infection, persisted on ART and correlated with the translation-competent HIV reservoir but not with the total HIV DNA reservoir. Interpretation Expansion and altered features of HIV-specific cTfh cells are maintained during ART and may be driven by persistent HIV antigen expression. Funding This work was supported by the National Institutes of Health (NIH), the Canadian Institutes of Health Research (CIHR) and the FRQS AIDS and Infectious Diseases Network.
Collapse
Affiliation(s)
- Julia Niessl
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montreal, QC, Canada; Consortium for HIV/AIDS Vaccine Development (CHAVD), La Jolla, CA, United States
| | - Amy E Baxter
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montreal, QC, Canada; Consortium for HIV/AIDS Vaccine Development (CHAVD), La Jolla, CA, United States
| | - Antigoni Morou
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montreal, QC, Canada
| | - Elsa Brunet-Ratnasingham
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montreal, QC, Canada
| | - Gérémy Sannier
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montreal, QC, Canada
| | - Gabrielle Gendron-Lepage
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montreal, QC, Canada
| | - Jonathan Richard
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montreal, QC, Canada
| | - Gloria-Gabrielle Delgado
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montreal, QC, Canada
| | - Nathalie Brassard
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montreal, QC, Canada
| | - Isabelle Turcotte
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montreal, QC, Canada
| | - Rémi Fromentin
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montreal, QC, Canada
| | - Nicole F Bernard
- Chronic Viral Illnesses Service and Division of Hematology, McGill University Health Centre, Montreal, QC, Canada
| | - Nicolas Chomont
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montreal, QC, Canada
| | - Jean-Pierre Routy
- Chronic Viral Illnesses Service and Division of Hematology, McGill University Health Centre, Montreal, QC, Canada; Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Mathieu Dubé
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montreal, QC, Canada
| | - Andrés Finzi
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montreal, QC, Canada
| | - Daniel E Kaufmann
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montreal, QC, Canada; Consortium for HIV/AIDS Vaccine Development (CHAVD), La Jolla, CA, United States.
| |
Collapse
|
34
|
Zhao S, Xu W, Xie YX, Chen WW, Zhao M. CXCR5 + CD4 + T cell subsets and their relationship to immune dysfunction in chronic hepatitis B-associated liver cirrhosis. J Gastroenterol Hepatol 2020; 35:689-695. [PMID: 31519041 DOI: 10.1111/jgh.14866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/07/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIM Hepatitis B-associated liver cirrhosis (HBC) leads to profound alterations of immune systems, especially disruptions of B cell immune responses. CXCR5+ CD4+ T cells (including T follicular helper [Tfh] cells and T follicular regulatory [Tfr] cells) are responsible for the regulation of B cell functions. The aim of this study was to dissect the roles of CXCR5+ CD4+ T cell subset in B cell disruption caused by HBC. METHODS Forty-one patients with HBC and 15 healthy controls were enrolled in this study. ELISA, flow cytometric analysis, and cell coculture were performed to analyze the properties of Tfh and Tfr. RESULTS We observed significantly decreased memory B cells and increased plasma B cells in HBC patients, as well as significant upregulation of lipopolysaccharide binding protein and soluble CD14 in plasma of decompensated HBCs patients. The downregulation of Tfh17 was observed in HBC patients with spontaneous bacterial peritonitis compared with those without. The decrease of Tfh17 was paralleled with Child-Pugh grade and negatively correlated with plasma B cells and soluble CD14 in HBC patients. Interleukin (IL)-21+ Tfh of HBC patients was also downregulated compared with healthy controls, and it was positively correlated with memory B cells and the upregulation of IL-10+ Tfr. It was then revealed that Tfr could inhibit the secretion of IL-21 by Tfh, and the blocking of IL-10 could diminish this effect. CONCLUSIONS The changes of the frequency and function of Tfh and Tfr may play an important role in disease progression and immune dysfunction of HBC.
Collapse
Affiliation(s)
- Shuang Zhao
- Department of infectious Disease, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Treatment and Research Center forInfectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Wen Xu
- Treatment and Research Center forInfectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yang-Xin Xie
- Treatment and Research Center forInfectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,Medical School, 301 Military Hospital, Beijing, China
| | - Wei-Wei Chen
- Treatment and Research Center forInfectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Min Zhao
- Treatment and Research Center forInfectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
35
|
Morou A, Brunet-Ratnasingham E, Dubé M, Charlebois R, Mercier E, Darko S, Brassard N, Nganou-Makamdop K, Arumugam S, Gendron-Lepage G, Yang L, Niessl J, Baxter AE, Billingsley JM, Rajakumar PA, Lefebvre F, Johnson RP, Tremblay C, Routy JP, Wyatt RT, Finzi A, Douek DC, Kaufmann DE. Altered differentiation is central to HIV-specific CD4 + T cell dysfunction in progressive disease. Nat Immunol 2019; 20:1059-1070. [PMID: 31308541 PMCID: PMC6642691 DOI: 10.1038/s41590-019-0418-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 05/03/2019] [Indexed: 12/19/2022]
Abstract
Dysfunction of virus-specific CD4+ T cells in chronic human infections is poorly understood. We performed genome-wide transcriptional analyses and functional assays of CD4+ T cells specific for human immunodeficiency virus (HIV) from HIV-infected people before and after initiation of antiretroviral therapy (ART). A follicular helper T cell (TFH cell)-like profile characterized HIV-specific CD4+ T cells in viremic infection. HIV-specific CD4+ T cells from people spontaneously controlling the virus (elite controllers) robustly expressed genes associated with the TH1, TH17 and TH22 subsets of helper T cells. Viral suppression by ART resulted in a distinct transcriptional landscape, with a reduction in the expression of genes associated with TFH cells, but persistently low expression of genes associated with TH1, TH17 and TH22 cells compared to the elite controller profile. Thus, altered differentiation is central to the impairment of HIV-specific CD4+ T cells and involves both gain of function and loss of function.
Collapse
Affiliation(s)
- Antigoni Morou
- Research Centre of the Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
- Université de Montréal, Montreal, Quebec, Canada
| | - Elsa Brunet-Ratnasingham
- Research Centre of the Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
- Université de Montréal, Montreal, Quebec, Canada
| | - Mathieu Dubé
- Research Centre of the Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, CA, USA
| | - Roxanne Charlebois
- Research Centre of the Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Eloi Mercier
- Canadian Centre for Computational Genomics-Montréal Node, Montreal, Quebec, Canada
| | - Sam Darko
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Nathalie Brassard
- Research Centre of the Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | | | - Sahaana Arumugam
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Gabrielle Gendron-Lepage
- Research Centre of the Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
- Université de Montréal, Montreal, Quebec, Canada
| | - Lifei Yang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Julia Niessl
- Research Centre of the Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
- Université de Montréal, Montreal, Quebec, Canada
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, CA, USA
| | - Amy E Baxter
- Research Centre of the Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
- Université de Montréal, Montreal, Quebec, Canada
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, CA, USA
- University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - James M Billingsley
- Yerkes National Primate Research Center and Emory University, Atlanta, GA, USA
| | | | - François Lefebvre
- Canadian Centre for Computational Genomics-Montréal Node, Montreal, Quebec, Canada
| | - R Paul Johnson
- Yerkes National Primate Research Center and Emory University, Atlanta, GA, USA
| | - Cécile Tremblay
- Research Centre of the Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
- Université de Montréal, Montreal, Quebec, Canada
| | - Jean-Pierre Routy
- Chronic Viral Illnesses Service and Division of Hematology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Richard T Wyatt
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, CA, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Andrés Finzi
- Research Centre of the Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
- Université de Montréal, Montreal, Quebec, Canada
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Daniel E Kaufmann
- Research Centre of the Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.
- Université de Montréal, Montreal, Quebec, Canada.
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, CA, USA.
| |
Collapse
|
36
|
Zhang J, Liu W, Wen B, Xie T, Tang P, Hu Y, Huang L, Jin K, Zhang P, Liu Z, Niu L, Qu X. Circulating CXCR3 + Tfh cells positively correlate with neutralizing antibody responses in HCV-infected patients. Sci Rep 2019; 9:10090. [PMID: 31300682 PMCID: PMC6626020 DOI: 10.1038/s41598-019-46533-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 07/01/2019] [Indexed: 02/07/2023] Open
Abstract
Circulating T follicular helper (cTfh) cells have been identified as counterparts of germinal center Tfh (GC Tfh) cells in humans and can support T-dependent B cell maturation and antibody production in vitro. However, the role of cTfh cells in neutralizing antibody (nAb) responses in HCV infection remains unclear. Here, we characterized the phenotype and function of cTfh cells and demonstrated the associations of cTfh cells and their subsets with nAb responses in HCV infection. A total of 38 HCV-infected individuals and 28 healthy controls were enrolled from a pool of injection drug users. The frequency and function of blood Tfh cells were analyzed by flow cytometry. The titers and breadths of serum nAbs were measured using HCV pseudo-particle neutralization assays. Herein, we report several key observations. First, HCV infection skewed cTfh toward CXCR3+ cTfh cell differentiation. Second, the frequency of CXCR3+ cTfh cells positively correlated with HCV nAb titers and breadths. Third, CXCR3+ cTfh cells showed higher expression of Tfh-associated molecules (PD-1, ICOS, IL-21, Bcl-6) compared with CXCR3− cTfh cells from individuals with HCV infection. Coculture of cTfh cells and autologous memory B cells in vitro indicated that CXCR3+ cTfh cells show a superior ability to support HCV E2-specific B cell expansion compared with CXCR3− cTfh cells from individuals with HCV infection. HCV infection skews cTfh cells toward CXCR3-biased Tfh cell differentiation, which positively correlates with the magnitude and breadth of the HCV nAb response. It is our hope that these findings will provide insights for the rational design of a nAb-based HCV vaccine.
Collapse
Affiliation(s)
- Jian Zhang
- Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Chenzhou, Hunan, 423000, China
| | - Wenpei Liu
- Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Chenzhou, Hunan, 423000, China.,Affiliated The First People's Hospital of Chenzhou, Southern Medical University, Chenzhou, Hunan, 423000, China
| | - Bo Wen
- Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Chenzhou, Hunan, 423000, China
| | - Ting Xie
- Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Chenzhou, Hunan, 423000, China
| | - Ping Tang
- Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Chenzhou, Hunan, 423000, China
| | - Yabin Hu
- Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Chenzhou, Hunan, 423000, China
| | - Liyan Huang
- Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Chenzhou, Hunan, 423000, China
| | - Kun Jin
- Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Chenzhou, Hunan, 423000, China
| | - Ping Zhang
- Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Chenzhou, Hunan, 423000, China
| | - Ziyan Liu
- Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Chenzhou, Hunan, 423000, China
| | - Ling Niu
- Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Chenzhou, Hunan, 423000, China
| | - Xiaowang Qu
- Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Chenzhou, Hunan, 423000, China. .,Affiliated The First People's Hospital of Chenzhou, Southern Medical University, Chenzhou, Hunan, 423000, China.
| |
Collapse
|
37
|
Takeshita M, Suzuki K, Kondo Y, Morita R, Okuzono Y, Koga K, Kassai Y, Gamo K, Takiguchi M, Kurisu R, Mototani H, Ebisuno Y, Yoshimura A, Takeuchi T. Multi-dimensional analysis identified rheumatoid arthritis-driving pathway in human T cell. Ann Rheum Dis 2019; 78:1346-1356. [PMID: 31167762 PMCID: PMC6788883 DOI: 10.1136/annrheumdis-2018-214885] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/19/2019] [Accepted: 05/21/2019] [Indexed: 12/25/2022]
Abstract
Objectives Rheumatoid arthritis (RA) is an autoimmune disease accompanied by lymphocyte infiltration into joint synovium. While T cells are considered to be important for its pathogenesis, the features that are the most relevant to disease and how they change after treatment remain unclear. The aim of this study was to clarify the characteristics of T cells in RA, comprehensively. Methods We enrolled a total of 311 patients with RA and 73 healthy participants, and carefully classified them by disease state, constructed multiple cohorts and analysed clinical samples from them in a stepwise manner. We performed immunophenotyping with multiple evaluation axes, and two independent transcriptome analyses complementary to each other. Results We identified that ‘effector memory-Tfh’ subset was specifically expanded in the peripheral blood (PB) of patients with RA in correlation with disease activity, and reverted after treatment. Besides, we revealed distinct features of T cells in synovial fluid (SF) that the expression of Tfh/Tph-related genes and pro-inflammatory cytokines and chemokines, including CXCL13, were significantly enriched, whereas these phenotype were Th1-like. Finally, we identified specific pathways, such as mTORC1, IL-2-stat5, E2F, cell cycle and interferon-related genes, that were significantly enriched in SF, in particular, as well as PB of untreated patients with RA, and notably, these features reverted after treatment. Conclusion Our multi-dimensional investigation identified disease relevant T-cell subsets and gene signatures deeply involved in pathogenesis of RA. These findings could aid in our understanding of essential roles of T cells in RA and will facilitate to development better diagnostic and therapeutic interventions.
Collapse
Affiliation(s)
- Masaru Takeshita
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Katsuya Suzuki
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Yasushi Kondo
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Rimpei Morita
- Department of Microbiology and Immunology, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Yuumi Okuzono
- Research, Immunology Unit, Takeda Pharmaceutical Co Ltd, Fujisawa-Shi, Kanagawa, Japan
| | - Keiko Koga
- Research, Immunology Unit, Takeda Pharmaceutical Co Ltd, Fujisawa-Shi, Kanagawa, Japan
| | - Yoshiaki Kassai
- Research, Immunology Unit, Takeda Pharmaceutical Co Ltd, Fujisawa-Shi, Kanagawa, Japan
| | - Kanae Gamo
- Research, Immunology Unit, Takeda Pharmaceutical Co Ltd, Fujisawa-Shi, Kanagawa, Japan
| | - Maiko Takiguchi
- Research, Immunology Unit, Takeda Pharmaceutical Co Ltd, Fujisawa-Shi, Kanagawa, Japan
| | - Rina Kurisu
- Research, Immunology Unit, Takeda Pharmaceutical Co Ltd, Fujisawa-Shi, Kanagawa, Japan
| | - Hideyuki Mototani
- Research, Immunology Unit, Takeda Pharmaceutical Co Ltd, Fujisawa-Shi, Kanagawa, Japan
| | - Yukihiko Ebisuno
- Research, Immunology Unit, Takeda Pharmaceutical Co Ltd, Fujisawa-Shi, Kanagawa, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Tsutomu Takeuchi
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
38
|
Huang Q, Hu J, Tang J, Xu L, Ye L. Molecular Basis of the Differentiation and Function of Virus Specific Follicular Helper CD4 + T Cells. Front Immunol 2019; 10:249. [PMID: 30828337 PMCID: PMC6384271 DOI: 10.3389/fimmu.2019.00249] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 01/29/2019] [Indexed: 12/12/2022] Open
Abstract
During viral infection, virus-specific follicular helper T cells provide important help to cognate B cells for their survival, consecutive proliferation and mutation and eventual differentiation into memory B cells and antibody-secreting plasma cells. Similar to Tfh cells generated in other conditions, the differentiation of virus-specific Tfh cells can also be characterized as a process involved multiple factors and stages, however, which also exhibits distinct features. Here, we mainly focus on the current understanding of Tfh fate commitment, functional maturation, lineage maintenance and memory transition and formation in the context of viral infection.
Collapse
Affiliation(s)
- Qizhao Huang
- Cancer Center, The General Hospital of Western Theater Command, Chengdu, China.,Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Jianjun Hu
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Jianfang Tang
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Lifan Xu
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing, China
| |
Collapse
|
39
|
Cano-Romero FL, Laguna Goya R, Utrero-Rico A, Gómez-Massa E, Arroyo-Sánchez D, Suárez-Fernández P, Lora D, Andrés A, Castro-Panete MJ, Paz-Artal E. Longitudinal profile of circulating T follicular helper lymphocytes parallels anti-HLA sensitization in renal transplant recipients. Am J Transplant 2019; 19:89-97. [PMID: 29947147 DOI: 10.1111/ajt.14987] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/27/2018] [Accepted: 06/19/2018] [Indexed: 01/25/2023]
Abstract
Antibody-mediated rejection is responsible for 30%-50% of renal graft failures. Differentiation of B cells into antibody-producing plasmablasts depends on the collaboration of follicular helper T cells (Tfh). We analyzed circulating Tfh (cTfh) in kidney recipients and studied cTfh relationship with anti-HLA antibody production and graft outcome. cTfh were longitudinally analyzed in a prospective cohort of patients (n = 206), pre- and posttransplantation. Clinical data, HLA sensitization, and cTfh function were recorded. Both pretransplant and 6-month posttransplant cTfh were able to derive IgG-producing plasmablasts. Pretransplant cTfh was decreased in patients, especially in those who received dialysis. However, these cells were increased in patients with previous allograft or transfusions and in HLA-sensitized recipients. After transplantation cTfh expanded, significantly more in patients who developed de novo anti-HLA antibodies than in patients who remained unsensitized. Augmented pretransplant cTfh positively correlated with higher intensity of pretransplant anti-HLA class I and with de novo anti-HLA class I and anti-HLA class II antibodies. Consistently, pretransplantation cTfh were higher in patients who experienced acute rejection (HR = 1.14 [1.04-1.25]). Thus, we show a role for Tfh in anti-HLA sensitization and rejection. Multicenter studies with additional patient cohorts are needed to validate these results. Immunosuppressive drugs targeting Tfh could be useful to improve outcomes.
Collapse
Affiliation(s)
- Francisco Luis Cano-Romero
- Department of Immunology, Hospital 12 de Octubre, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Rocío Laguna Goya
- Department of Immunology, Hospital 12 de Octubre, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.,Department of Immunology, Universidad Complutense de Madrid, Madrid, Spain.,Department of Pharmaceutical Sciences, Universidad San Pablo CEU, Madrid, Spain
| | - Alberto Utrero-Rico
- Department of Immunology, Hospital 12 de Octubre, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Elena Gómez-Massa
- Department of Immunology, Hospital 12 de Octubre, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Daniel Arroyo-Sánchez
- Department of Immunology, Hospital 12 de Octubre, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Patricia Suárez-Fernández
- Department of Immunology, Hospital 12 de Octubre, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - David Lora
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.,CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Amado Andrés
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.,Department of Nephrology, Hospital 12 de Octubre, Madrid, Spain
| | - Mª José Castro-Panete
- Department of Immunology, Hospital 12 de Octubre, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Estela Paz-Artal
- Department of Immunology, Hospital 12 de Octubre, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.,Department of Immunology, Universidad Complutense de Madrid, Madrid, Spain.,Department of Pharmaceutical Sciences, Universidad San Pablo CEU, Madrid, Spain
| |
Collapse
|
40
|
Siu JHY, Surendrakumar V, Richards JA, Pettigrew GJ. T cell Allorecognition Pathways in Solid Organ Transplantation. Front Immunol 2018; 9:2548. [PMID: 30455697 PMCID: PMC6230624 DOI: 10.3389/fimmu.2018.02548] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/17/2018] [Indexed: 02/02/2023] Open
Abstract
Transplantation is unusual in that T cells can recognize alloantigen by at least two distinct pathways: as intact MHC alloantigen on the surface of donor cells via the direct pathway; and as self-restricted processed alloantigen via the indirect pathway. Direct pathway responses are viewed as strong but short-lived and hence responsible for acute rejection, whereas indirect pathway responses are typically thought to be much longer lasting and mediate the progression of chronic rejection. However, this is based on surprisingly scant experimental evidence, and the recent demonstration that MHC alloantigen can be re-presented intact on recipient dendritic cells-the semi-direct pathway-suggests that the conventional view may be an oversimplification. We review recent advances in our understanding of how the different T cell allorecognition pathways are triggered, consider how this generates effector alloantibody and cytotoxic CD8 T cell alloresponses and assess how these responses contribute to early and late allograft rejection. We further discuss how this knowledge may inform development of cellular and pharmacological therapies that aim to improve transplant outcomes, with focus on the use of induced regulatory T cells with indirect allospecificity and on the development of immunometabolic strategies. KEY POINTS Acute allograft rejection is likely mediated by indirect and direct pathway CD4 T cell alloresponses.Chronic allograft rejection is largely mediated by indirect pathway CD4 T cell responses. Direct pathway recognition of cross-dressed endothelial derived MHC class II alloantigen may also contribute to chronic rejection, but the extent of this contribution is unknown.Late indirect pathway CD4 T cell responses will be composed of heterogeneous populations of allopeptide specific T helper cell subsets that recognize different alloantigens and are at various stages of effector and memory differentiation.Knowledge of the precise indirect pathway CD4 T cell responses active at late time points in a particular individual will likely inform the development of alloantigen-specific cellular therapies and will guide immunometabolic modulation.
Collapse
|
41
|
Fang D, Cui K, Mao K, Hu G, Li R, Zheng M, Riteau N, Reiner SL, Sher A, Zhao K, Zhu J. Transient T-bet expression functionally specifies a distinct T follicular helper subset. J Exp Med 2018; 215:2705-2714. [PMID: 30232200 PMCID: PMC6219743 DOI: 10.1084/jem.20180927] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/21/2018] [Accepted: 08/31/2018] [Indexed: 12/24/2022] Open
Abstract
The mechanisms underlying the differentiation of T follicular helper (Tfh) cell subsets are poorly understood. Here, Fang et al. show that the NKG2Dhigh Tfh cells in germinal centers with a history of T-bet expression represent the IFN-γ–producing Tfh subset. T follicular helper (Tfh) cells express transcription factor BCL-6 and cytokine IL-21. Mature Tfh cells are also capable of producing IFN-γ without expressing the Th1 transcription factor T-bet. Whether this IFN-γ–producing Tfh population represents a unique Tfh subset with a distinct differentiation pathway is poorly understood. By using T-bet fate–mapping mouse strains, we discovered that almost all the IFN-γ–producing Tfh cells have previously expressed T-bet and express high levels of NKG2D. DNase I hypersensitivity analysis indicated that the Ifng gene locus is partially accessible in this “ex–T-bet” population with a history of T-bet expression. Furthermore, multicolor tissue imaging revealed that the ex–T-bet Tfh cells found in germinal centers express IFN-γ in situ. Finally, we found that IFN-γ–expressing Tfh cells are absent in T-bet–deficient mice, but fully present in mice with T-bet deletion at late stages of T cell differentiation. Together, our findings demonstrate that transient expression of T-bet epigenetically imprints the Ifng locus for cytokine production in this Th1-like Tfh cell subset.
Collapse
Affiliation(s)
- Difeng Fang
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Kairong Cui
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Kairui Mao
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Gangqing Hu
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Rao Li
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Mingzhu Zheng
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Nicolas Riteau
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Steven L Reiner
- Department of Microbiology and Immunology, Columbia University Medical Center, New York
| | - Alan Sher
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Jinfang Zhu
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
42
|
Greczmiel U, Oxenius A. The Janus Face of Follicular T Helper Cells in Chronic Viral Infections. Front Immunol 2018; 9:1162. [PMID: 29887868 PMCID: PMC5982684 DOI: 10.3389/fimmu.2018.01162] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/09/2018] [Indexed: 12/28/2022] Open
Abstract
Chronic infections with non-cytopathic viruses constitutively expose virus-specific adaptive immune cells to cognate antigen, requiring their numeric and functional adaptation. Virus-specific CD8 T cells are compromised by various means in their effector functions, collectively termed T cell exhaustion. Alike CD8 T cells, virus-specific CD4 Th1 cell responses are gradually downregulated but instead, follicular T helper (TFH) cell differentiation and maintenance is strongly promoted during chronic infection. Thereby, the immune system promotes antibody responses, which bear less immune-pathological risk compared to cytotoxic and pro-inflammatory T cell responses. This emphasis on TFH cells contributes to tolerance of the chronic infection and is pivotal for the continued maturation and adaptation of the antibody response, leading eventually to the emergence of virus-neutralizing antibodies, which possess the potential to control the established chronic infection. However, sustained high levels of TFH cells can also result in a less stringent B cell selection process in active germinal center reactions, leading to the activation of virus-unspecific B cells, including self-reactive B cells, and to hypergammaglobulinemia. This dispersal of B cell help comes at the expense of a stringently selected virus-specific antibody response, thereby contributing to its delayed maturation. Here, we discuss these opposing facets of TFH cells in chronic viral infections.
Collapse
Affiliation(s)
- Ute Greczmiel
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | | |
Collapse
|
43
|
Raju S, Kometani K, Kurosaki T, Shaw AS, Egawa T. The adaptor molecule CD2AP in CD4 T cells modulates differentiation of follicular helper T cells during chronic LCMV infection. PLoS Pathog 2018; 14:e1007053. [PMID: 29734372 PMCID: PMC5957453 DOI: 10.1371/journal.ppat.1007053] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 05/17/2018] [Accepted: 04/24/2018] [Indexed: 12/24/2022] Open
Abstract
CD4 T cell-mediated help to CD8 T cells and B cells is a critical arm of the adaptive immune system required for control of pathogen infection. CD4 T cells express cytokines and co-stimulatory molecules that support a sustained CD8 T cell response and also enhance generation of protective antibody by germinal center B cells. However, the molecular components that modulate CD4 T cell functions in response to viral infection or vaccine are incompletely understood. Here we demonstrate that inactivation of the signaling adaptor CD2-associated protein (CD2AP) promotes CD4 T cell differentiation towards the follicular helper lineage, leading to enhanced control of viral infection by augmented germinal center response in chronic lymphocytic choriomeningitis virus (LCMV) infection. The enhanced follicular helper differentiation is associated with extended duration of TCR signaling and enhanced cytokine production of CD2AP-deficient CD4 T cells specifically under TH1 conditions, while neither prolonged TCR signaling nor enhanced follicular helper differentiation was observed under conditions that induce other helper effector subsets. Despite the structural similarity between CD2AP and the closely related adaptor protein CIN85, we observed defective antibody-mediated control of chronic LCMV infection in mice lacking CIN85 in T cells, suggesting non-overlapping and potentially antagonistic roles for CD2AP and CIN85. These results suggest that tuning of TCR signaling by targeting CD2AP improves protective antibody responses in viral infection. Enhancing the production of protective antibodies in response to infection or vaccine is critically important for host protection. However, we have only limited knowledge about molecular targets to enhance functions of CD4 helper T cells that are essential for antibody affinity maturation and class switching. In this work, we found that inhibiting the function of the adaptor molecule CD2AP results in enhanced antibody responses and improved protection of mice from chronic infection by LCMV. Mice lacking CD2AP specifically in T cells showed enhanced CD4 T cell differentiation towards the follicular helper subset, which is a critical regulator of antibody responses, and generated more germinal center B cells leading to production of mutated, protective antibodies. This effect was specific to CD4 T cells in type-I immune responses, associated with viral infection, while deletion of CD2AP had little impact on CD4 T cells in type-II immune responses or CD8 T cells. Our results thus suggest that CD2AP can be a specific target to enhance antiviral protective immunity during viral infection or vaccination.
Collapse
Affiliation(s)
- Saravanan Raju
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Kohei Kometani
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Tomohiro Kurosaki
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Andrey S. Shaw
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Takeshi Egawa
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|