1
|
Treccarichi S, Failla P, Vinci M, Musumeci A, Gloria A, Vasta A, Calabrese G, Papa C, Federico C, Saccone S, Calì F. UNC5C: Novel Gene Associated with Psychiatric Disorders Impacts Dysregulation of Axon Guidance Pathways. Genes (Basel) 2024; 15:306. [PMID: 38540364 PMCID: PMC10970690 DOI: 10.3390/genes15030306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 06/14/2024] Open
Abstract
The UNC-5 family of netrin receptor genes, predominantly expressed in brain tissues, plays a pivotal role in various neuronal processes. Mutations in genes involved in axon development contribute to a wide spectrum of human diseases, including developmental, neuropsychiatric, and neurodegenerative disorders. The NTN1/DCC signaling pathway, interacting with UNC5C, plays a crucial role in central nervous system axon guidance and has been associated with psychiatric disorders during adolescence in humans. Whole-exome sequencing analysis unveiled two compound heterozygous causative mutations within the UNC5C gene in a patient diagnosed with psychiatric disorders. In silico analysis demonstrated that neither of the observed variants affected the allosteric linkage between UNC5C and NTN1. In fact, these mutations are located within crucial cytoplasmic domains, specifically ZU5 and the region required for the netrin-mediated axon repulsion of neuronal growth cones. These domains play a critical role in forming the supramodular protein structure and directly interact with microtubules, thereby ensuring the functionality of the axon repulsion process. We emphasize that these mutations disrupt the aforementioned processes, thereby associating the UNC5C gene with psychiatric disorders for the first time and expanding the number of genes related to psychiatric disorders. Further research is required to validate the correlation of the UNC5C gene with psychiatric disorders, but we suggest including it in the genetic analysis of patients with psychiatric disorders.
Collapse
Affiliation(s)
- Simone Treccarichi
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (P.F.); (M.V.); (A.M.); (A.G.); (A.V.); (G.C.); (C.P.); (F.C.)
| | - Pinella Failla
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (P.F.); (M.V.); (A.M.); (A.G.); (A.V.); (G.C.); (C.P.); (F.C.)
| | - Mirella Vinci
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (P.F.); (M.V.); (A.M.); (A.G.); (A.V.); (G.C.); (C.P.); (F.C.)
| | - Antonino Musumeci
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (P.F.); (M.V.); (A.M.); (A.G.); (A.V.); (G.C.); (C.P.); (F.C.)
| | - Angelo Gloria
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (P.F.); (M.V.); (A.M.); (A.G.); (A.V.); (G.C.); (C.P.); (F.C.)
| | - Anna Vasta
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (P.F.); (M.V.); (A.M.); (A.G.); (A.V.); (G.C.); (C.P.); (F.C.)
| | - Giuseppe Calabrese
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (P.F.); (M.V.); (A.M.); (A.G.); (A.V.); (G.C.); (C.P.); (F.C.)
| | - Carla Papa
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (P.F.); (M.V.); (A.M.); (A.G.); (A.V.); (G.C.); (C.P.); (F.C.)
| | - Concetta Federico
- Department Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy;
| | - Salvatore Saccone
- Department Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy;
| | - Francesco Calì
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (P.F.); (M.V.); (A.M.); (A.G.); (A.V.); (G.C.); (C.P.); (F.C.)
| |
Collapse
|
2
|
Lafta MS, Mwinyi J, Affatato O, Rukh G, Dang J, Andersson G, Schiöth HB. Exploring sex differences: insights into gene expression, neuroanatomy, neurochemistry, cognition, and pathology. Front Neurosci 2024; 18:1340108. [PMID: 38449735 PMCID: PMC10915038 DOI: 10.3389/fnins.2024.1340108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/09/2024] [Indexed: 03/08/2024] Open
Abstract
Increased knowledge about sex differences is important for development of individualized treatments against many diseases as well as understanding behavioral and pathological differences. This review summarizes sex chromosome effects on gene expression, epigenetics, and hormones in relation to the brain. We explore neuroanatomy, neurochemistry, cognition, and brain pathology aiming to explain the current state of the art. While some domains exhibit strong differences, others reveal subtle differences whose overall significance warrants clarification. We hope that the current review increases awareness and serves as a basis for the planning of future studies that consider both sexes equally regarding similarities and differences.
Collapse
Affiliation(s)
- Muataz S. Lafta
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Jessica Mwinyi
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
- Centre for Women’s Mental Health, Uppsala University, Uppsala, Sweden
| | - Oreste Affatato
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
- Centre for Women’s Mental Health, Uppsala University, Uppsala, Sweden
| | - Gull Rukh
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Junhua Dang
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Gerhard Andersson
- Department of Behavioural Sciences and Learning, Linköping University, Linköping, Sweden
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Eichenauer H, Ehlert U. The association between prenatal famine, DNA methylation and mental disorders: a systematic review and meta-analysis. Clin Epigenetics 2023; 15:152. [PMID: 37716973 PMCID: PMC10505322 DOI: 10.1186/s13148-023-01557-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/14/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Undernutrition in pregnant women is an unfavorable environmental condition that can affect the intrauterine development via epigenetic mechanisms and thus have long-lasting detrimental consequences for the mental health of the offspring later in life. One epigenetic mechanism that has been associated with mental disorders and undernutrition is alterations in DNA methylation. The effect of prenatal undernutrition on the mental health of adult offspring can be analyzed through quasi-experimental studies such as famine studies. The present systematic review and meta-analysis aims to analyze the association between prenatal famine exposure, DNA methylation, and mental disorders in adult offspring. We further investigate whether altered DNA methylation as a result of prenatal famine exposure is prospectively linked to mental disorders. METHODS We conducted a systematic search of the databases PubMed and PsycINFO to identify relevant records up to September 2022 on offspring whose mothers experienced famine directly before and/or during pregnancy, examining the impact of prenatal famine exposure on the offspring's DNA methylation and/or mental disorders or symptoms. RESULTS The systematic review showed that adults who were prenatally exposed to famine had an increased risk of schizophrenia and depression. Several studies reported an association between prenatal famine exposure and hyper- or hypomethylation of specific genes. The largest number of studies reported differences in DNA methylation of the IGF2 gene. Altered DNA methylation of the DUSP22 gene mediated the association between prenatal famine exposure and schizophrenia in adult offspring. Meta-analysis confirmed the increased risk of schizophrenia following prenatal famine exposure. For DNA methylation, meta-analysis was not suitable due to different microarrays/data processing approaches and/or unavailable data. CONCLUSION Prenatal famine exposure is associated with an increased risk of mental disorders and DNA methylation changes. The findings suggest that changes in DNA methylation of genes involved in neuronal, neuroendocrine, and immune processes may be a mechanism that promotes the development of mental disorders such as schizophrenia and depression in adult offspring. Such findings are crucial given that undernutrition has risen worldwide, increasing the risk of famine and thus also of negative effects on mental health.
Collapse
Affiliation(s)
- Heike Eichenauer
- Clinical Psychology and Psychotherapy, University of Zurich, Binzmühlestrasse 14, 8050, Zurich, Switzerland
| | - Ulrike Ehlert
- Clinical Psychology and Psychotherapy, University of Zurich, Binzmühlestrasse 14, 8050, Zurich, Switzerland.
| |
Collapse
|
4
|
Treble-Barna A, Heinsberg LW, Stec Z, Breazeale S, Davis TS, Kesbhat AA, Chattopadhyay A, VonVille HM, Ketchum AM, Yeates KO, Kochanek PM, Weeks DE, Conley YP. Brain-derived neurotrophic factor (BDNF) epigenomic modifications and brain-related phenotypes in humans: A systematic review. Neurosci Biobehav Rev 2023; 147:105078. [PMID: 36764636 PMCID: PMC10164361 DOI: 10.1016/j.neubiorev.2023.105078] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/17/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
Epigenomic modifications of the brain-derived neurotrophic factor (BDNF) gene have been postulated to underlie the pathogenesis of neurodevelopmental, psychiatric, and neurological conditions. This systematic review summarizes current evidence investigating the association of BDNF epigenomic modifications (DNA methylation, non-coding RNA, histone modifications) with brain-related phenotypes in humans. A novel contribution is our creation of an open access web-based application, the BDNF DNA Methylation Map, to interactively visualize specific positions of CpG sites investigated across all studies for which relevant data were available. Our literature search of four databases through September 27, 2021 returned 1701 articles, of which 153 met inclusion criteria. Our review revealed exceptional heterogeneity in methodological approaches, hindering the identification of clear patterns of robust and/or replicated results. We summarize key findings and provide recommendations for future epigenomic research. The existing literature appears to remain in its infancy and requires additional rigorous research to fulfill its potential to explain BDNF-linked risk for brain-related conditions and improve our understanding of the molecular mechanisms underlying their pathogenesis.
Collapse
Affiliation(s)
- Amery Treble-Barna
- Department of Physical Medicine & Rehabilitation, School of Medicine, University of Pittsburgh, PA 15261, USA.
| | - Lacey W Heinsberg
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Zachary Stec
- Department of Physical Medicine & Rehabilitation, School of Medicine, University of Pittsburgh, PA 15261, USA.
| | - Stephen Breazeale
- Department of Health and Human Development, School of Nursing, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Tara S Davis
- Department of Health Promotion and Development, School of Nursing, University of Pittsburgh, PA 15261, USA.
| | | | - Ansuman Chattopadhyay
- Molecular Biology Information Service, Health Sciences Library System, University of Pittsburgh, USA
| | - Helena M VonVille
- Health Sciences Library System, University of Pittsburgh, PA 15261, USA.
| | - Andrea M Ketchum
- Emeritus Health Sciences Library System, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Keith Owen Yeates
- Department of Psychology, Alberta Children's Hospital Research Institute and Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N1N4, Canada.
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, PA 15261, USA.
| | - Daniel E Weeks
- Department of Human Genetics and Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Yvette P Conley
- Department of Human Genetics, School of Nursing, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
5
|
Cahill S, Chandola T, Hager R. Genetic Variants Associated With Resilience in Human and Animal Studies. Front Psychiatry 2022; 13:840120. [PMID: 35669264 PMCID: PMC9163442 DOI: 10.3389/fpsyt.2022.840120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/19/2022] [Indexed: 11/15/2022] Open
Abstract
Resilience is broadly defined as the ability to maintain or regain functioning in the face of adversity and is influenced by both environmental and genetic factors. The identification of specific genetic factors and their biological pathways underpinning resilient functioning can help in the identification of common key factors, but heterogeneities in the operationalisation of resilience have hampered advances. We conducted a systematic review of genetic variants associated with resilience to enable the identification of general resilience mechanisms. We adopted broad inclusion criteria for the definition of resilience to capture both human and animal model studies, which use a wide range of resilience definitions and measure very different outcomes. Analyzing 158 studies, we found 71 candidate genes associated with resilience. OPRM1 (Opioid receptor mu 1), NPY (neuropeptide Y), CACNA1C (calcium voltage-gated channel subunit alpha1 C), DCC (deleted in colorectal carcinoma), and FKBP5 (FKBP prolyl isomerase 5) had both animal and human variants associated with resilience, supporting the idea of shared biological pathways. Further, for OPRM1, OXTR (oxytocin receptor), CRHR1 (corticotropin-releasing hormone receptor 1), COMT (catechol-O-methyltransferase), BDNF (brain-derived neurotrophic factor), APOE (apolipoprotein E), and SLC6A4 (solute carrier family 6 member 4), the same allele was associated with resilience across divergent resilience definitions, which suggests these genes may therefore provide a starting point for further research examining commonality in resilience pathways.
Collapse
Affiliation(s)
- Stephanie Cahill
- Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
- Faculty of Humanities, Cathie Marsh Institute for Social Research, The University of Manchester, Manchester, United Kingdom
| | - Tarani Chandola
- Faculty of Humanities, Cathie Marsh Institute for Social Research, The University of Manchester, Manchester, United Kingdom
- Methods Hub, Department of Sociology, Faculty of Social Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Reinmar Hager
- Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
6
|
Berdenis van Berlekom A, Notman N, Sneeboer MAM, Snijders GJLJ, Houtepen LC, Nispeling DM, He Y, Dracheva S, Hol EM, Kahn RS, de Witte LD, Boks MP. DNA methylation differences in cortical grey and white matter in schizophrenia. Epigenomics 2021; 13:1157-1169. [PMID: 34323598 PMCID: PMC8386513 DOI: 10.2217/epi-2021-0077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/09/2021] [Indexed: 01/27/2023] Open
Abstract
Aim: Identify grey- and white-matter-specific DNA-methylation differences between schizophrenia (SCZ) patients and controls in postmortem brain cortical tissue. Materials & methods: Grey and white matter were separated from postmortem brain tissue of the superior temporal and medial frontal gyrus from SCZ (n = 10) and control (n = 11) cases. Genome-wide DNA-methylation analysis was performed using the Infinium EPIC Methylation Array (Illumina, CA, USA). Results: Four differentially methylated regions associated with SCZ status and tissue type (grey vs white matter) were identified within or near KLF9, SFXN1, SPRED2 and ALS2CL genes. Gene-expression analysis showed differential expression of KLF9 and SFXN1 in SCZ. Conclusion: Our data show distinct differences in DNA methylation between grey and white matter that are unique to SCZ, providing new leads to unravel the pathogenesis of SCZ.
Collapse
Affiliation(s)
- Amber Berdenis van Berlekom
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Translational Neuroscience, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Nina Notman
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marjolein AM Sneeboer
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Translational Neuroscience, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Gijsje JLJ Snijders
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lotte C Houtepen
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Danny M Nispeling
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Yujie He
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Translational Neuroscience, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - Stella Dracheva
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mental Illness Research, Education, & Clinical Center (VISN 2 South), James J Peters VA Medical Center, Bronx, NY, 10468, USA
| | - Elly M Hol
- Department of Translational Neuroscience, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - René S Kahn
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mental Illness Research, Education, & Clinical Center (VISN 2 South), James J Peters VA Medical Center, Bronx, NY, 10468, USA
| | - Lot D de Witte
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Marco P Boks
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
7
|
da Costa AEM, Gomes NS, Gadelha Filho CVJ, Linhares MGOES, da Costa RO, Chaves Filho AJM, Cordeiro RC, Vasconcelos GS, da Silva FER, Araujo TDS, Vasconcelos SMM, Lucena DF, Macêdo DS. Sex influences in the preventive effects of peripubertal supplementation with N-3 polyunsaturated fatty acids in mice exposed to the two-hit model of schizophrenia. Eur J Pharmacol 2021; 897:173949. [PMID: 33607108 DOI: 10.1016/j.ejphar.2021.173949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/30/2021] [Accepted: 02/11/2021] [Indexed: 01/05/2023]
Abstract
Schizophrenia is a devastating neurodevelopmental disorder. The animal model based on perinatal immune activation, as first-hit, combined with peripubertal stress, as a second hit, has gained evidence in recent years. Omega-3 polyunsaturated fatty acids (n3-PUFAs) is being a promise for schizophrenia prevention. Nevertheless, the influence of sex in schizophrenia neurobiology and prevention has been neglected. Thus, the present study evaluates the preventive effects of n3-PUFAs in both sexes' mice submitted to the two-hit model and the participation of oxidative changes in this mechanism. The two-hit consisted of polyI:C administration from postnatal days (PNs) 5-7, and unpredictable stress from PNs35-43. n3-PUFAs were administered from PNs30-60. Prepulse inhibition of the startle reflex (PPI), social interaction, and Y-maze tests were conducted between PNs70-72 to evaluate positive-, negative-, and cognitive-like schizophrenia symptoms. We assessed brain oxidative changes in brain areas and plasma. Both sexes' two-hit mice presented deficits in PPI, social interaction, and working memory that were prevented by n3-PUFAs. In two-hit females, n3-PUFAs prevented increments in nitrite levels in the prefrontal cortex (PFC), hippocampus, striatum, and plasma TBARS levels. In two-hit males, n3-PUFAs prevented the increase in TBARS in the PFC, hippocampus, and striatum. Notably, male mice that received only n3-PUFAs without hit exposure presented impairments in working memory and social interaction. These results add further preclinical evidence for n3-PUFAs as an accessible and effective alternative in preventing behavioral and oxidative changes related to schizophrenia but call attention to the need for precaution in this indication due to hit- and sex-sensitive issues.
Collapse
Affiliation(s)
- Ayane Edwiges Moura da Costa
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Nayana Soares Gomes
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Carlos Venício Jatai Gadelha Filho
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | | | - Roberta Oliveira da Costa
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Adriano José Maia Chaves Filho
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Rafaela Carneiro Cordeiro
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Germana Silva Vasconcelos
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Francisco Eliclécio Rodrigues da Silva
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Tatiane da Silva Araujo
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Silvânia Maria Mendes Vasconcelos
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - David Freitas Lucena
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Danielle S Macêdo
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil; National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, SP, Brazil.
| |
Collapse
|
8
|
Hoare J, Stein DJ, Heany SJ, Fouche JP, Phillips N, Er S, Myer L, Zar HJ, Horvath S, Levine AJ. Accelerated epigenetic aging in adolescents from low-income households is associated with altered development of brain structures. Metab Brain Dis 2020; 35:1287-1298. [PMID: 32671535 PMCID: PMC7606536 DOI: 10.1007/s11011-020-00589-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 06/23/2020] [Indexed: 10/23/2022]
Abstract
The relationship between cognitive performance, macro and microstructural brain anatomy and accelerated aging as measured by a highly accurate epigenetic biomarker of aging known as the epigenetic clock in healthy adolescents has not been studied. Healthy adolescents enrolled in the Cape Town Adolescent Antiretroviral Cohort Study were studied cross sectionally. The Illumina Infinium Methylation EPIC array was used to generate DNA methylation data from the blood samples of 44 adolescents aged 9 to 12 years old. The epigenetic clock software and method was used to estimate two measures, epigenetic age acceleration residual (AAR) and extrinsic epigenetic age acceleration (EEAA). Each participant underwent neurocognitive testing, T1 structural magnetic resonance imaging (MRI), and diffusion tensor imaging (DTI). Correlation tests were run between the two epigenetic aging measures and 10 cognitive functioning domains, to assess for differences in cognitive performance as epigenetic aging increases. In order to investigate the associations of epigenetic age acceleration on brain structure, we developed stepwise multiple regression models in R (version 3.4.3, 2017) including grey and white matter volumes, cortical thickness, and cortical surface area, as well as DTI measures of white matter microstructural integrity. In addition to negatively affecting two cognitive domains, visual memory (p = .026) and visual spatial acuity (p = .02), epigenetic age acceleration was associated with alterations of brain volumes, cortical thickness, cortical surface areas and abnormalities in neuronal microstructure in a range of regions. Stress was a significant predictor (p = .029) of AAR. Understanding the drivers of epigenetic age acceleration in adolescents could lead to valuable insights into the development of neurocognitive impairment in adolescents.
Collapse
Affiliation(s)
- Jacqueline Hoare
- Department of Psychiatry and Mental Health, University of Cape Town, Groote Schuur Hospital, Observatory, Cape Town, 7925, South Africa.
| | - Dan J Stein
- Department of Psychiatry and Mental Health, University of Cape Town, Groote Schuur Hospital, Observatory, Cape Town, 7925, South Africa
- SA MRC Unit on Risk & Resilience in Mental Disorders, Cape Town, South Africa
| | - Sarah J Heany
- Department of Psychiatry and Mental Health, University of Cape Town, Groote Schuur Hospital, Observatory, Cape Town, 7925, South Africa
| | - Jean-Paul Fouche
- Department of Psychiatry and Mental Health, University of Cape Town, Groote Schuur Hospital, Observatory, Cape Town, 7925, South Africa
| | - Nicole Phillips
- Department of Psychiatry and Mental Health, University of Cape Town, Groote Schuur Hospital, Observatory, Cape Town, 7925, South Africa
| | - Sebnem Er
- Department of Statistics, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Landon Myer
- Centre for Infectious Disease Epidemiology and Research, School of Public Health & Family Medicine, University of Cape Town, Cape Town, South Africa
- Division of Epidemiology and Biostatistics, School of Public Health & Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, Cape Town, South Africa
- SA Medical Research Council Unit on Child and Adolescent Health, Cape Town, South Africa
| | - Steve Horvath
- Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Biostatistics, School of Public Health, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Andrew J Levine
- SA MRC Unit on Risk & Resilience in Mental Disorders, Cape Town, South Africa
- Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| |
Collapse
|
9
|
Branje S, Geeraerts S, de Zeeuw EL, Oerlemans AM, Koopman-Verhoeff ME, Schulz S, Nelemans S, Meeus W, Hartman CA, Hillegers MHJ, Oldehinkel AJ, Boomsma DI. Intergenerational transmission: Theoretical and methodological issues and an introduction to four Dutch cohorts. Dev Cogn Neurosci 2020; 45:100835. [PMID: 32823179 PMCID: PMC7451818 DOI: 10.1016/j.dcn.2020.100835] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/27/2020] [Accepted: 08/04/2020] [Indexed: 01/09/2023] Open
Abstract
Behaviors, traits and characteristics are transmitted from parents to offspring because of complex genetic and non-genetic processes. We review genetic and non-genetic mechanisms of intergenerational transmission of psychopathology and parenting and focus on recent methodological advances in disentangling genetic and non-genetic factors. In light of this review, we propose that future studies on intergenerational transmission should aim to disentangle genetic and non-genetic transmission, take a long-term longitudinal perspective, and focus on paternal and maternal intergenerational transmission. We present four large longitudinal cohort studies within the Consortium on Individual Development, which together address many of these methodological challenges. These four cohort studies aim to examine the extent to which genetic and non-genetic transmission from the parental generation shapes parenting behavior and psychopathology in the next generation, as well as the extent to which self-regulation and social competence mediate this transmission. Conjointly, these four cohorts provide a comprehensive approach to the study of intergenerational transmission.
Collapse
Affiliation(s)
- Susan Branje
- Youth and Family, Department of Educational and Pedagogical Sciences, Utrecht University, Utrecht, the Netherlands.
| | - Sanne Geeraerts
- Youth and Family, Department of Educational and Pedagogical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Eveline L de Zeeuw
- Netherlands Twin Register, Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Anoek M Oerlemans
- Department of Psychiatry, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - M Elisabeth Koopman-Verhoeff
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center Rotterdam-Sophia Children's Hospital, Rotterdam, the Netherlands; The Generation R Study Group, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Susanne Schulz
- Youth and Family, Department of Educational and Pedagogical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Stefanie Nelemans
- Youth and Family, Department of Educational and Pedagogical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Wim Meeus
- Youth and Family, Department of Educational and Pedagogical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Catharina A Hartman
- Department of Psychiatry, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Manon H J Hillegers
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center Rotterdam-Sophia Children's Hospital, Rotterdam, the Netherlands; The Generation R Study Group, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Albertine J Oldehinkel
- Department of Psychiatry, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Dorret I Boomsma
- Netherlands Twin Register, Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
10
|
Oldenburg KS, O’Shea TM, Fry RC. Genetic and epigenetic factors and early life inflammation as predictors of neurodevelopmental outcomes. Semin Fetal Neonatal Med 2020; 25:101115. [PMID: 32444251 PMCID: PMC7363586 DOI: 10.1016/j.siny.2020.101115] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Among individuals born very preterm, perinatal inflammation, particularly if sustained or recurring, is highly likely to contribute to adverse neurodevelopmental outcomes, including cerebral white matter damage, cerebral palsy, cognitive impairment, attention-deficit/hyperactivity disorder, and autism spectrum disorder. Antecedents and correlates of perinatal inflammation include socioeconomic disadvantage, maternal obesity, maternal infections, fetal growth restriction, neonatal sepsis, necrotizing enterocolitis, and prolonged mechanical ventilation. Genetic factors can modify susceptibility to perinatal inflammation and to neurodevelopmental disorders. Preliminary evidence supports a role of epigenetic markers as potential mediators of the presumed effects of preterm birth and/or its consequences on neurodevelopment later in life. Further study is needed of factors such as sex, psychosocial stressors, and environmental exposures that could modify the relationship of early life inflammation to later neurodevelopmental impairments. Also needed are pharmacological and non-pharmacological interventions to attenuate inflammation towards the goal of improving the neurodevelopment of individuals born very preterm.
Collapse
Affiliation(s)
- Kirsi S. Oldenburg
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill
| | - T. Michael O’Shea
- Department of Pediatrics (Neonatology), University of North Carolina School of Medicine
| | - Rebecca C. Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill
| |
Collapse
|
11
|
Transient receptor potential vanilloid 1 antagonism in neuroinflammation, neuroprotection and epigenetic regulation: potential therapeutic implications for severe psychiatric disorders treatment. Psychiatr Genet 2020; 30:39-48. [DOI: 10.1097/ypg.0000000000000249] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Maternal Folic Acid Supplementation Mediates Offspring Health via DNA Methylation. Reprod Sci 2020; 27:963-976. [PMID: 32124397 DOI: 10.1007/s43032-020-00161-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 10/24/2022]
Abstract
The clinical significance of periconceptional folic acid supplementation (FAS) in the prevention of neonatal neural tube defects (NTDs) has been recognized for decades. Epidemiological data and experimental findings have consistently been indicating an association between folate deficiency in the first trimester of pregnancy and poor fetal development as well as offspring health (i.e., NTDs, isolated orofacial clefts, neurodevelopmental disorders). Moreover, compelling evidence has suggested adverse effects of folate overload during perinatal period on offspring health (i.e., immune diseases, autism, lipid disorders). In addition to several single-nucleotide polymorphisms (SNPs) in genes related to folate one-carbon metabolism (FOCM), folate concentrations in maternal serum/plasma/red blood cells must be considered when counseling FAS. Epigenetic information encoded by 5-methylcytosines (5mC) plays a critical role in fetal development and offspring health. S-adenosylmethionine (SAM), a methyl donor for 5mC, could be derived from FOCM. As such, folic acid plays a double-edged sword role in offspring health via mediating DNA methylation. However, the underlying epigenetic mechanism is still largely unclear. In this review, we summarized the link across DNA methylation, maternal FAS, and offspring health to provide more evidence for clinical guidance in terms of precise FAS dosage and time point. Future studies are, therefore, required to set up the reference intervals of folate concentrations at different trimesters of pregnancy for different populations and to clarify the epigenetic mechanism for specific offspring diseases.
Collapse
|
13
|
Sakharkar AJ, Kyzar EJ, Gavin DP, Zhang H, Chen Y, Krishnan HR, Grayson DR, Pandey SC. Altered amygdala DNA methylation mechanisms after adolescent alcohol exposure contribute to adult anxiety and alcohol drinking. Neuropharmacology 2019; 157:107679. [PMID: 31229451 PMCID: PMC6681823 DOI: 10.1016/j.neuropharm.2019.107679] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 06/08/2019] [Accepted: 06/18/2019] [Indexed: 01/04/2023]
Abstract
Binge drinking during adolescence increases the risk for neuropsychiatric disorders including alcoholism in adulthood. DNA methylation in post-mitotic neurons is an important epigenetic modification that plays a crucial role in neurodevelopment. We examined the effects of intermittent ethanol exposure during adolescence on adult behavior and whether DNA methylation changes provide a plausible explanation for the lasting effects of this developmental insult. One hour after last adolescent intermittent ethanol (AIE), growth arrest and DNA damage inducible protein 45 (Gadd45a, Gadd45b, and Gadd45g) mRNA expression was increased and DNA methyltransferase (DNMT) activity and Dnmt3b expression was decreased in the amygdala as compared to adolescent intermittent saline (AIS) rats. However, AIE rats 24 h after last exposure displayed increased DNMT activity but normalized Gadd45 and Dnmt3b mRNA expression compared to AIS rats. In adulthood, rats exposed to AIE show increased Dnmt3b mRNA expression and DNMT activity, along with decreased Gadd45g mRNA expression in the amygdala. DNA methylation of neuropeptide Y (Npy) and brain-derived neurotrophic factor (Bdnf) exon IV is increased in the AIE adult amygdala compared to AIS adult rats. Treatment with the DNMT inhibitor 5-azacytidine (5-azaC) at adulthood normalizes the AIE-induced DNA hypermethylation of Npy and Bdnf exon IV with concomitant reversal of AIE-induced anxiety-like and alcohol-drinking behaviors. These results suggest that binge-like ethanol exposure during adolescence leads to dysregulation in DNA methylation mechanisms in the amygdala which may contribute to behavioral phenotypes of anxiety and alcohol use in adulthood.
Collapse
Affiliation(s)
- Amul J Sakharkar
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, IL, 60612, USA
| | - Evan J Kyzar
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, IL, 60612, USA
| | - David P Gavin
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, IL, 60612, USA
| | - Huaibo Zhang
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, IL, 60612, USA
| | - Ying Chen
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Harish R Krishnan
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, IL, 60612, USA
| | - Dennis R Grayson
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA; Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, IL, 60612, USA.
| |
Collapse
|
14
|
Isac L, Jiquan S. Interleukin 10 promotor gene polymorphism in the pathogenesis of psoriasis. ACTA DERMATOVENEROLOGICA ALPINA PANNONICA ET ADRIATICA 2019. [DOI: 10.15570/actaapa.2019.29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Goodman JH. Perinatal depression and infant mental health. Arch Psychiatr Nurs 2019; 33:217-224. [PMID: 31227073 DOI: 10.1016/j.apnu.2019.01.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/24/2019] [Indexed: 12/19/2022]
Abstract
A mother's mental health during pregnancy and the first year postpartum is of the utmost importance to the cognitive, social, and emotional development of her child. Perinatal depression is associated with increased risk for wide-ranging adverse child development effects that can affect infant and early childhood mental health. Although effective treatments for perinatal depression exist, it is currently unclear if treatment of maternal depression alone is sufficient to ameliorate the negative effects of maternal depression on child outcomes. Interventions focused on the mother-infant relationship and dyadic interaction may be required to address the potential effect of maternal depression on the child. This paper provides an overview of maternal perinatal depression, the risk it poses for infant/early-childhood mental health, strategies for intervention that include mitigating depression and decreasing risk to the child, and implications for psychiatric nurses who work with perinatal women. Early identification and treatment of perinatal depression are critical to ensure optimal infant development and the child's future mental health.
Collapse
Affiliation(s)
- Janice H Goodman
- MGH Institute of Health Professions, School of Nursing, 36 1st Avenue, Boston, MA 02129, United States of America.
| |
Collapse
|
16
|
Kraaijenvanger EJ, He Y, Spencer H, Smith AK, Bos PA, Boks MP. Epigenetic variability in the human oxytocin receptor (OXTR) gene: A possible pathway from early life experiences to psychopathologies. Neurosci Biobehav Rev 2019; 96:127-142. [DOI: 10.1016/j.neubiorev.2018.11.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 11/23/2018] [Accepted: 11/24/2018] [Indexed: 02/09/2023]
|
17
|
Abstract
The prenatal period is increasingly considered as a crucial target for the primary prevention of neurodevelopmental and psychiatric disorders. Understanding their pathophysiological mechanisms remains a great challenge. Our review reveals new insights from prenatal brain development research, involving (epi)genetic research, neuroscience, recent imaging techniques, physical modeling, and computational simulation studies. Studies examining the effect of prenatal exposure to maternal distress on offspring brain development, using brain imaging techniques, reveal effects at birth and up into adulthood. Structural and functional changes are observed in several brain regions including the prefrontal, parietal, and temporal lobes, as well as the cerebellum, hippocampus, and amygdala. Furthermore, alterations are seen in functional connectivity of amygdalar-thalamus networks and in intrinsic brain networks, including default mode and attentional networks. The observed changes underlie offspring behavioral, cognitive, emotional development, and susceptibility to neurodevelopmental and psychiatric disorders. It is concluded that used brain measures have not yet been validated with regard to sensitivity, specificity, accuracy, or robustness in predicting neurodevelopmental and psychiatric disorders. Therefore, more prospective long-term longitudinal follow-up studies starting early in pregnancy should be carried out, in order to examine brain developmental measures as mediators in mediating the link between prenatal stress and offspring behavioral, cognitive, and emotional problems and susceptibility for disorders.
Collapse
|
18
|
Prenatal stress and the development of psychopathology: Lifestyle behaviors as a fundamental part of the puzzle. Dev Psychopathol 2018; 30:1129-1144. [PMID: 30068418 DOI: 10.1017/s0954579418000494] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Maternal psychological stress, depression, and anxiety during pregnancy (prenatal stress; PNS) are thought to impact fetal development with long-term effects on offspring outcome. These effects would include physical and mental health, including psychopathology. Maternal sleep, diet, and exercise during pregnancy are lifestyle behaviors that are understudied and often solely included in PNS studies as confounders. However, there are indications that these lifestyle behaviors may actually constitute essential mediators between PNS and fetal programming processes. The goal of this theoretical review was to investigate this idea by looking at the evidence for associations between PNS and sleep, diet, and exercise, and by piecing together the information on potential underlying mechanisms and causal pathways through which these factors may affect the offspring. The analysis of the literature led to the conclusion that sleep, diet, and exercise during pregnancy, may have fundamental roles as mediators between PNS and maternal pregnancy physiology. By integrating these lifestyle behaviors into models of prenatal programming of development, a qualitatively higher and more comprehensive understanding of the prenatal origins of psychopathology can be obtained. The review finalizes by discussing some of the present challenges facing the field of PNS and offspring programming, and offering solutions for future research.
Collapse
|
19
|
Yehuda R, Lehrner A. Intergenerational transmission of trauma effects: putative role of epigenetic mechanisms. World Psychiatry 2018; 17:243-257. [PMID: 30192087 PMCID: PMC6127768 DOI: 10.1002/wps.20568] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 12/18/2022] Open
Abstract
This paper reviews the research evidence concerning the intergenerational transmission of trauma effects and the possible role of epigenetic mechanisms in this transmission. Two broad categories of epigenetically mediated effects are highlighted. The first involves developmentally programmed effects. These can result from the influence of the offspring's early environmental exposures, including postnatal maternal care as well as in utero exposure reflecting maternal stress during pregnancy. The second includes epigenetic changes associated with a preconception trauma in parents that may affect the germline, and impact fetoplacental interactions. Several factors, such as sex-specific epigenetic effects following trauma exposure and parental developmental stage at the time of exposure, explain different effects of maternal and paternal trauma. The most compelling work to date has been done in animal models, where the opportunity for controlled designs enables clear interpretations of transmissible effects. Given the paucity of human studies and the methodological challenges in conducting such studies, it is not possible to attribute intergenerational effects in humans to a single set of biological or other determinants at this time. Elucidating the role of epigenetic mechanisms in intergenerational effects through prospective, multi-generational studies may ultimately yield a cogent understanding of how individual, cultural and societal experiences permeate our biology.
Collapse
Affiliation(s)
- Rachel Yehuda
- James J. Peters Bronx Veterans Affairs Hospital, Bronx, NY, USA
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amy Lehrner
- James J. Peters Bronx Veterans Affairs Hospital, Bronx, NY, USA
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
20
|
A Simple Method for Visualization of Locus-Specific H4K20me1 Modifications in Living Caenorhabditis elegans Single Cells. G3-GENES GENOMES GENETICS 2018; 8:2249-2255. [PMID: 29724885 PMCID: PMC6027889 DOI: 10.1534/g3.118.200333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recently, advances in next-generation sequencing technologies have enabled genome-wide analyses of epigenetic modifications; however, it remains difficult to analyze the states of histone modifications at a single-cell resolution in living multicellular organisms because of the heterogeneity within cellular populations. Here we describe a simple method to visualize histone modifications on the specific sequence of target locus at a single-cell resolution in living Caenorhabditis elegans, by combining the LacO/LacI system and a genetically-encoded H4K20me1-specific probe, “mintbody”. We demonstrate that Venus-labeled mintbody and mTurquoise2-labeled LacI can co-localize on an artificial chromosome carrying both the target locus and LacO sequences, where H4K20me1 marks the target locus. We demonstrate that our visualization method can precisely detect H4K20me1 depositions on the her-1 gene sequences on the artificial chromosome, to which the dosage compensation complex binds to regulate sex determination. The degree of H4K20me1 deposition on the her-1 sequences on the artificial chromosome correlated strongly with sex, suggesting that, using the artificial chromosome, this method can reflect context-dependent changes of H4K20me1 on endogenous genomes. Furthermore, we demonstrate live imaging of H4K20me1 depositions on the artificial chromosome. Combined with ChIP assays, this mintbody-LacO/LacI visualization method will enable analysis of developmental and context-dependent alterations of locus-specific histone modifications in specific cells and elucidation of the underlying molecular mechanisms.
Collapse
|
21
|
Ciuculete DM, Boström AE, Tuunainen AK, Sohrabi F, Kular L, Jagodic M, Voisin S, Mwinyi J, Schiöth HB. Changes in methylation within the STK32B promoter are associated with an increased risk for generalized anxiety disorder in adolescents. J Psychiatr Res 2018; 102:44-51. [PMID: 29604450 DOI: 10.1016/j.jpsychires.2018.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 12/20/2022]
Abstract
Generalized anxiety disorder (GAD) is highly prevalent among adolescents. An early detection of individuals at risk may prevent later psychiatric condition. Genome-wide studies investigating single nucleotide polymorphisms (SNPs) concluded that a focus on epigenetic mechanisms, which mediate the impact of environmental factors, could more efficiently help the understanding of GAD pathogenesis. We investigated the relationship between epigenetic shifts in blood and the risk to develop GAD, evaluated by the Development and Well-Being Assessment (DAWBA) score, in 221 otherwise healthy adolescents. Our analysis focused specifically on methylation sites showing high inter-individual variation but low tissue-specific variation, in order to infer a potential correlation between results obtained in blood and brain. Two statistical methods were applied, 1) a linear model with limma and 2) a likelihood test followed by Bonferroni correction. Methylation findings were validated in a cohort of 160 adults applying logistic models against the outcome variable "anxiety treatment obtained in the past" and studied in a third cohort with regards to associated expression changes measured in monocytes. One CpG site showed 1% increased methylation in adolescents at high risk of GAD (cg16333992, padj. = 0.028, estimate = 3.22), as confirmed in the second cohort (p = 0.031, estimate = 1.32). The identified and validated CpG site is located within the STK32B promoter region and its methylation level was positively associated with gene expression. Gene ontology analysis revealed that STK32B is involved in stress response and defense response. Our results provide evidence that shifts in DNA methylation are associated with a modulated risk profile for GAD in adolescence.
Collapse
Affiliation(s)
- Diana M Ciuculete
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24 Uppsala, Sweden.
| | - Adrian E Boström
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24 Uppsala, Sweden
| | - Anna-Kaisa Tuunainen
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24 Uppsala, Sweden
| | - Farah Sohrabi
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24 Uppsala, Sweden
| | - Lara Kular
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Maja Jagodic
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Sarah Voisin
- Institute of Sport, Exercise and Active Living, Victoria University, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24 Uppsala, Sweden
| | - Jessica Mwinyi
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24 Uppsala, Sweden
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24 Uppsala, Sweden
| |
Collapse
|
22
|
Cecil CA, Walton E, Jaffee SR, O’Connor T, Maughan B, Relton CL, Smith RG, McArdle W, Gaunt TR, Ouellet-Morin I, Barker ED. Neonatal DNA methylation and early-onset conduct problems: A genome-wide, prospective study. Dev Psychopathol 2018; 30:383-397. [PMID: 28595673 PMCID: PMC7612607 DOI: 10.1017/s095457941700092x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Early-onset conduct problems (CP) are a key predictor of adult criminality and poor mental health. While previous studies suggest that both genetic and environmental risks play an important role in the development of early-onset CP, little is known about potential biological processes underlying these associations. In this study, we examined prospective associations between DNA methylation (cord blood at birth) and trajectories of CP (4-13 years), using data drawn from the Avon Longitudinal Study of Parents and Children. Methylomic variation at seven loci across the genome (false discovery rate < 0.05) differentiated children who go on to develop early-onset (n = 174) versus low (n = 86) CP, including sites in the vicinity of the monoglyceride lipase (MGLL) gene (involved in endocannabinoid signaling and pain perception). Subthreshold associations in the vicinity of three candidate genes for CP (monoamine oxidase A [MAOA], brain-derived neurotrophic factor [BDNF], and FK506 binding protein 5 [FKBP5]) were also identified. Within the early-onset CP group, methylation levels of the identified sites did not distinguish children who will go on to persist versus desist in CP behavior over time. Overall, we found that several of the identified sites correlated with prenatal exposures, and none were linked to known genetic methylation quantitative trait loci. Findings contribute to a better understanding of epigenetic patterns associated with early-onset CP.
Collapse
Affiliation(s)
| | - Esther Walton
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, UK
| | - Sara R. Jaffee
- Department of Psychology, University of Pennsylvania, USA
| | | | - Barbara Maughan
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Caroline L. Relton
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, UK
| | | | - Wendy McArdle
- School of Social and Community Medicine, University of Bristol, UK
| | - Tom R. Gaunt
- School of Social and Community Medicine, University of Bristol, UK
| | | | - Edward D. Barker
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| |
Collapse
|
23
|
Barker ED, Walton E, Cecil CAM. Annual Research Review: DNA methylation as a mediator in the association between risk exposure and child and adolescent psychopathology. J Child Psychol Psychiatry 2018; 59:303-322. [PMID: 28736860 DOI: 10.1111/jcpp.12782] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/17/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND DNA methylation (DNAm) is a potential mechanism for propagating the effects of environmental exposures on child and adolescent mental health. In recent years, this field has experienced steady growth. METHODS We provide a strategic review of the current child and adolescent literature to evaluate evidence for a mediating role of DNAm in the link between environmental risks and psychopathological outcomes, with a focus on internalising and externalising difficulties. RESULTS Based on the studies presented, we conclude that there is preliminary evidence to support that (a) environmental factors, such as diet, neurotoxic exposures and stress, influence offspring DNAm, and that (b) variability in DNAm, in turn, is associated with child and adolescent psychopathology. Overall, very few studies have examined DNAm in relation to both exposures and outcomes, and almost all analyses have been correlational in nature. CONCLUSIONS DNAm holds potential as a biomarker indexing both environmental risk exposure and vulnerability for child psychopathology. However, the extent to which it may represent a causal mediator is not clear. In future, collection of prospective risk exposure, DNAm and outcomes - as well as functional characterisation of epigenetic findings - will assist in determining the role of DNAm in the link between risk exposure and psychopathology.
Collapse
Affiliation(s)
- Edward D Barker
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Esther Walton
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Charlotte A M Cecil
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
24
|
Rowland AS, Skipper BJ, Rabiner DL, Qeadan F, Campbell RA, Naftel AJ, Umbach DM. Attention-Deficit/Hyperactivity Disorder (ADHD): Interaction between socioeconomic status and parental history of ADHD determines prevalence. J Child Psychol Psychiatry 2018; 59:213-222. [PMID: 28801917 PMCID: PMC5809323 DOI: 10.1111/jcpp.12775] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/08/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Many studies have reported a higher prevalence of Attention-Deficit/Hyperactivity Disorder (ADHD) among disadvantaged populations, but few have considered how parental history of ADHD might modify that relationship. We evaluated whether the prevalence of ADHD varies by socioeconomic status (SES) and parental history of ADHD in a population-sample of elementary school children age 6-14 years. METHODS We screened all children in grades 1-5 in 17 schools in one North Carolina (U.S.) county for ADHD using teacher rating scales and 1,160 parent interviews, including an ADHD structured interview (DISC). We combined parent and teacher ratings to determine DSM-IV ADHD status. Data analysis was restricted to 967 children with information about parental history of ADHD. SES was measured by family income and respondent education. RESULTS We found an interaction between family income and parental history of ADHD diagnosis (p = .016). The SES gradient was stronger in families without a parental history and weaker among children with a parental history. Among children without a parental history of ADHD diagnosis, low income children had 6.2 times the odds of ADHD (95% CI 3.4-11.3) as high income children after adjusting for covariates. Among children with a parental history, all had over 10 times the odds of ADHD as high income children without a parental history but the SES gradient between high and low income children was less pronounced [odds ratio (OR) = 1.4, 95% CI 0.6-3.5]. CONCLUSIONS Socioeconomic status and parental history of ADHD are each strong risk factors for ADHD that interact to determine prevalence. More research is needed to dissect the components of SES that contribute to risk of ADHD. Future ADHD research should evaluate whether the strength of other environmental risk factors vary by parental history. Early identification and interventions for children with low SES or parental histories of ADHD should be explored.
Collapse
Affiliation(s)
- Andrew S. Rowland
- College of Population Health, UNM Health Sciences Center, Mailstop MSC09-5070, 1 University of New Mexico, Albuquerque, NM 87131
| | - Betty J. Skipper
- UNM Department of Family and Community Medicine, UNM Health Sciences Center, Albuquerque, NM
| | - David L. Rabiner
- Department of Psychology & Neuroscience, Duke University, Durham NC
| | - Fares Qeadan
- Department of Internal Medicine, Division of Epidemiology, Biostatistics, & Preventive Medicine, UNM Health Sciences Center, Albuquerque, NM
| | | | - A. Jack Naftel
- Department of Psychiatry, UNC School of Medicine, Chapel Hill, NC
| | - David M. Umbach
- Biostatistics and Computational Biology Branch, NIH, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC
| |
Collapse
|
25
|
Kilic S, Ozdemir O, Silan F, Isik S, Yildiz O, Karaagacli D, Silan C, Ogretmen Z. Possible association between germline methylenetetrahydrofolate reductase gene polymorphisms and psoriasis risk in a Turkish population. Clin Exp Dermatol 2018; 42:8-13. [PMID: 28028860 DOI: 10.1111/ced.12909] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2015] [Indexed: 01/10/2023]
Abstract
BACKGROUND Psoriasis is a common chronic inflammatory skin disease caused by genetic and epigenetic factors. There are conflicting results in the literature about the association between psoriasis and the methylenetetrahydrofolate reductase gene (MTHFR), ranging from strong linkage to no association. AIM To investigate the association between the germline MTHFR polymorphisms C677T and A1298C with psoriasis risk in a Turkish population. METHODS The study enrolled 84 patients with psoriasis and 212 healthy controls (HCs) without any history of psoriasis. DNA was extracted from peripheral blood samples of patients and HCs, and real-time PCR was used for genotyping. Results were compared by Pearson χ² test and multiple logistic regression models. RESULTS The frequency of both the MTHFR 677TT and A1298C (homozygous) genotypes was statistically significantly different from HCs. Point mutations were detected in all patients with early-onset psoriasis (before the age of 20 years). The T allele of MTHFR 677 and the C allele of MTHFR 1298 increased psoriasis risk by 12.4- and 17.0-fold, respectively, in patients compared with HCs. CONCLUSION A possible association was detected betweengermline MTHFR 677 C>T and 1298 A>C genotypes and psoriasis risk in a Turkish population. These results need to be confirmed in further studies with larger sample sizes.
Collapse
Affiliation(s)
- S Kilic
- Department of Dermatology, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - O Ozdemir
- Department of Medical Genetics, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - F Silan
- Department of Medical Genetics, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - S Isik
- Department of Dermatology, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - O Yildiz
- Department of Medical Genetics, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - D Karaagacli
- Department of Medical Genetics, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - C Silan
- Department of Pharmacology, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Z Ogretmen
- Department of Dermatology, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey
| |
Collapse
|
26
|
Hibbeln JR, SanGiovanni JP, Golding J, Emmett PM, Northstone K, Davis JM, Schuckit M, Heron J. Meat Consumption During Pregnancy and Substance Misuse Among Adolescent Offspring: Stratification of TCN2 Genetic Variants. Alcohol Clin Exp Res 2017; 41:1928-1937. [PMID: 28975627 DOI: 10.1111/acer.13494] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/29/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Reducing meat consumption is often advised; however, inadvertent nutritional deficiencies during pregnancy may result in residual neurodevelopmental harms to offspring. This study assessed possible effects of maternal diets in pregnancy on adverse substance use among adolescent offspring. METHODS Pregnant women and their 13-year-old offspring taking part in a prospective birth cohort study, the Avon Longitudinal Study of Parents and Children (ALSPAC), provided Food Frequency Questionnaire data from which dietary patterns were derived using principal components analysis. Multivariable logistic regression models including potential confounders evaluated adverse alcohol, cannabis, and tobacco use of the children at 15 years of age. RESULTS Lower maternal meat consumption was associated with greater problematic substance use among 15-year-old offspring in dose-response patterns. Comparing never to daily meat consumption after adjustment, risks were greater for all categories of problem substance use: alcohol, odds ratio OR = 1.75, 95% CI = (1.23, 2.56), p < 0.001; tobacco use OR = 1.85, 95% CI = (1.28, 2.63), p < 0.001; and cannabis OR = 2.70, 95% CI = (1.89, 4.00), p < 0.001. Given the likelihood of residual confounding, potential causality was evaluated using stratification for maternal allelic variants that impact biological activity of cobalamin (vitamin B12) and iron. Lower meat consumption disproportionally increased the risks of offspring substance misuse among mothers with optimally functional (homozygous) variants (rs1801198) of the gene transcobalamin 2 gene (TCN2) which encodes the vitamin B12 transport protein transcobalamin 2 implicating a causal role for cobalamin deficits. Functional maternal variants in iron metabolism were unrelated to the adverse substance use. Risks potentially attributable to cobalamin deficits during pregnancy include adverse adolescent alcohol, cannabis, and tobacco use (14, 37, and 23, respectively). CONCLUSIONS Lower prenatal meat consumption was associated with increased risks of adolescent substance misuse. Interactions between TCN2 variant status and meat intake implicate cobalamin deficiencies.
Collapse
Affiliation(s)
- Joseph R Hibbeln
- Section on Nutritional Neurosciences, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - John Paul SanGiovanni
- Section on Nutritional Neurosciences, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland.,Georgetown University School of Medicine, Washington, District of Columbia
| | - Jean Golding
- School of Social and Community Based Medicine, University of Bristol, Bristol, United Kingdom
| | - Pauline M Emmett
- School of Social and Community Based Medicine, University of Bristol, Bristol, United Kingdom
| | - Kate Northstone
- School of Social and Community Based Medicine, University of Bristol, Bristol, United Kingdom
| | - John M Davis
- University of Illinois at Chicago, Chicago, Illinois
| | - Marc Schuckit
- University of California, San Diego, San Diego, California
| | - Jon Heron
- School of Social and Community Based Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
27
|
|
28
|
Crews FT, Vetreno RP, Broadwater MA, Robinson DL. Adolescent Alcohol Exposure Persistently Impacts Adult Neurobiology and Behavior. Pharmacol Rev 2016; 68:1074-1109. [PMID: 27677720 PMCID: PMC5050442 DOI: 10.1124/pr.115.012138] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Adolescence is a developmental period when physical and cognitive abilities are optimized, when social skills are consolidated, and when sexuality, adolescent behaviors, and frontal cortical functions mature to adult levels. Adolescents also have unique responses to alcohol compared with adults, being less sensitive to ethanol sedative-motor responses that most likely contribute to binge drinking and blackouts. Population studies find that an early age of drinking onset correlates with increased lifetime risks for the development of alcohol dependence, violence, and injuries. Brain synapses, myelination, and neural circuits mature in adolescence to adult levels in parallel with increased reflection on the consequence of actions and reduced impulsivity and thrill seeking. Alcohol binge drinking could alter human development, but variations in genetics, peer groups, family structure, early life experiences, and the emergence of psychopathology in humans confound studies. As adolescence is common to mammalian species, preclinical models of binge drinking provide insight into the direct impact of alcohol on adolescent development. This review relates human findings to basic science studies, particularly the preclinical studies of the Neurobiology of Adolescent Drinking in Adulthood (NADIA) Consortium. These studies focus on persistent adult changes in neurobiology and behavior following adolescent intermittent ethanol (AIE), a model of underage drinking. NADIA studies and others find that AIE results in the following: increases in adult alcohol drinking, disinhibition, and social anxiety; altered adult synapses, cognition, and sleep; reduced adult neurogenesis, cholinergic, and serotonergic neurons; and increased neuroimmune gene expression and epigenetic modifiers of gene expression. Many of these effects are specific to adolescents and not found in parallel adult studies. AIE can cause a persistence of adolescent-like synaptic physiology, behavior, and sensitivity to alcohol into adulthood. Together, these findings support the hypothesis that adolescent binge drinking leads to long-lasting changes in the adult brain that increase risks of adult psychopathology, particularly for alcohol dependence.
Collapse
Affiliation(s)
- Fulton T Crews
- Bowles Center for Alcohol Studies (F.T.C., R.P.V., M.A.B., D.L.R.), Department of Psychiatry (F.T.C., D.L.R.), and Department of Pharmacology (F.T.C.), School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Ryan P Vetreno
- Bowles Center for Alcohol Studies (F.T.C., R.P.V., M.A.B., D.L.R.), Department of Psychiatry (F.T.C., D.L.R.), and Department of Pharmacology (F.T.C.), School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Margaret A Broadwater
- Bowles Center for Alcohol Studies (F.T.C., R.P.V., M.A.B., D.L.R.), Department of Psychiatry (F.T.C., D.L.R.), and Department of Pharmacology (F.T.C.), School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Donita L Robinson
- Bowles Center for Alcohol Studies (F.T.C., R.P.V., M.A.B., D.L.R.), Department of Psychiatry (F.T.C., D.L.R.), and Department of Pharmacology (F.T.C.), School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
29
|
Mansur RB, Cunha GR, Asevedo E, Zugman A, Rizzo LB, Grassi-Oliveira R, Levandowski ML, Gadelha A, Pan PM, Teixeira AL, McIntyre RS, Mari JJ, Rohde LA, Miguel EC, Bressan RA, Brietzke E. Association of serum interleukin-6 with mental health problems in children exposed to perinatal complications and social disadvantage. Psychoneuroendocrinology 2016; 71:94-101. [PMID: 27258821 DOI: 10.1016/j.psyneuen.2016.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/18/2016] [Accepted: 05/16/2016] [Indexed: 11/28/2022]
Abstract
There is consistent evidence that inflammation is involved in mental disorders pathogenesis. Herein, using data from the High Risk Cohort Study for Psychiatric Disorders, we investigated the relationship between parental mood disorders (PMD), environmental factors, serum interleukin-6 (IL6) and mental health problems in children aged 6-12. We measured the serum levels of IL6 in 567 children. Information related to socio-demographic characteristics, mental health problems and multiple risk factors, as well as parent's psychiatric diagnosis, was captured. We evaluated two groups of environmental risk factors (i.e. perinatal complications and social disadvantage) using a cumulative risk model. Results showed that higher serum levels of IL6 were associated with PMD (RR=1.072, p=0.001), perinatal complications (RR=1.022, p=0.013) and social disadvantage (RR=1.024, p=0.021). There was an interaction between PMD and social disadvantage (RR=1.141, p=0.021), as the effect of PMD on IL6 was significantly higher in children exposed to higher levels of social disadvantage. Moreover, there was a positive correlation between IL6 and mental health problems (RR=1.099, p=0.026), which was moderated by exposure to perinatal complications or social disadvantage (RR=1.273, p=0.015 and RR=1.179, p=0.048, respectively). In conclusions, there is evidence of a differential inflammatory activation in children with PMD and exposure to environmental risk factors, when compared to matched peers. Systemic inflammation may be involved in the pathway linking familial risk and mental health problems.
Collapse
Affiliation(s)
- Rodrigo B Mansur
- National Institute of Developmental Psychiatry for Children and Adolescents, CNPq, São Paulo, Brazil; PRISMA-Program for Recognition and Intervention in Individuals in At-Risk Mental State, Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil; Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Canada.
| | - Graccielle R Cunha
- National Institute of Developmental Psychiatry for Children and Adolescents, CNPq, São Paulo, Brazil; PRISMA-Program for Recognition and Intervention in Individuals in At-Risk Mental State, Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Elson Asevedo
- National Institute of Developmental Psychiatry for Children and Adolescents, CNPq, São Paulo, Brazil; PRISMA-Program for Recognition and Intervention in Individuals in At-Risk Mental State, Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - André Zugman
- National Institute of Developmental Psychiatry for Children and Adolescents, CNPq, São Paulo, Brazil; PRISMA-Program for Recognition and Intervention in Individuals in At-Risk Mental State, Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Lucas B Rizzo
- National Institute of Developmental Psychiatry for Children and Adolescents, CNPq, São Paulo, Brazil; PRISMA-Program for Recognition and Intervention in Individuals in At-Risk Mental State, Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil; Department of Psychiatry, University of Tuebingen, Tuebingen, Germany
| | - Rodrigo Grassi-Oliveira
- National Institute of Developmental Psychiatry for Children and Adolescents, CNPq, São Paulo, Brazil; Institute of Biomedical Research, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mateus L Levandowski
- National Institute of Developmental Psychiatry for Children and Adolescents, CNPq, São Paulo, Brazil; Institute of Biomedical Research, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ary Gadelha
- National Institute of Developmental Psychiatry for Children and Adolescents, CNPq, São Paulo, Brazil; PRISMA-Program for Recognition and Intervention in Individuals in At-Risk Mental State, Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Pedro M Pan
- National Institute of Developmental Psychiatry for Children and Adolescents, CNPq, São Paulo, Brazil; PRISMA-Program for Recognition and Intervention in Individuals in At-Risk Mental State, Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Antônio L Teixeira
- National Institute of Developmental Psychiatry for Children and Adolescents, CNPq, São Paulo, Brazil; Interdisciplinary Laboratory of Medical Investigation, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Canada
| | - Jair J Mari
- National Institute of Developmental Psychiatry for Children and Adolescents, CNPq, São Paulo, Brazil; PRISMA-Program for Recognition and Intervention in Individuals in At-Risk Mental State, Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Luís A Rohde
- National Institute of Developmental Psychiatry for Children and Adolescents, CNPq, São Paulo, Brazil; Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Eurípedes C Miguel
- National Institute of Developmental Psychiatry for Children and Adolescents, CNPq, São Paulo, Brazil; Department of Psychiatry, Universidade de São Paulo, São Paulo, Brazil
| | - Rodrigo A Bressan
- National Institute of Developmental Psychiatry for Children and Adolescents, CNPq, São Paulo, Brazil; PRISMA-Program for Recognition and Intervention in Individuals in At-Risk Mental State, Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Elisa Brietzke
- National Institute of Developmental Psychiatry for Children and Adolescents, CNPq, São Paulo, Brazil; PRISMA-Program for Recognition and Intervention in Individuals in At-Risk Mental State, Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
30
|
Mansur RB, Cunha GR, Asevedo E, Zugman A, Zeni-Graiff M, Rios AC, Sethi S, Maurya PK, Levandowski ML, Gadelha A, Pan PM, Stertz L, Belangero SI, Kauer-Sant' Anna M, Teixeira AL, Mari JJ, Rohde LA, Miguel EC, McIntyre RS, Grassi-Oliveira R, Bressan RA, Brietzke E. Socioeconomic Disadvantage Moderates the Association between Peripheral Biomarkers and Childhood Psychopathology. PLoS One 2016; 11:e0160455. [PMID: 27489945 PMCID: PMC4973983 DOI: 10.1371/journal.pone.0160455] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/19/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Socioeconomic disadvantage (SED) has been consistently associated with early life mental health problems. SED has been shown to impact multiple biological systems, including the regulation of neurotrophic proteins, immune-inflammatory and oxidative stress markers, which, conversely, have been reported to be relevant to physiological and pathological neurodevelopment This study investigated the relationship between SED, different domains of psychopathology, serum levels of interleukin-6 (IL6), thiobarbituric acid-reactive substance (TBARS) and brain-derived neurotrophic factor (BDNF). We hypothesized that a composite of socioeconomic risk would be associated with psychopathology and altered levels of peripheral biomarkers. In addition, we hypothesized that SED would moderate the associations between mental health problems, IL6, TBARS and BDNF. METHODS AND FINDINGS Using a cross-sectional design, we measured the serum levels of IL6, TBARS and BDNF in 495 children aged 6 to 12. We also investigated socio-demographic characteristics and mental health problems using the Child Behaviour Checklist (CBCL) DSM-oriented scales. SED was evaluated using a cumulative risk model. Generalized linear models were used to assess associations between SED, biomarkers levels and psychopathology. SED was significantly associated with serum levels of IL6 (RR = 1.026, 95% CI 1.004; 1.049, p = 0.020) and TBARS (RR = 1.077, 95% CI 1.028; 1.127, p = 0.002). The association between SED and BDNF was not statistically significant (RR = 1.031, 95% CI 0.997; 1.066, p = 0.077). SED was also significantly associated with all CBCL DSM-oriented scales (all p < 0.05), whereas serum biomarkers (i.e. IL6, TBARS, BDNF) were associated with specific subscales. Moreover, the associations between serum biomarkers and domains of psychopathology were moderated by SED, with stronger correlations between mental health problems, IL6, TBARS, and BDNF being observed in children with high SED. CONCLUSIONS In children, SED is highly associated with mental health problems. Our findings suggest that this association may be moderated via effects on multiple interacting neurobiological systems.
Collapse
Affiliation(s)
- Rodrigo B. Mansur
- National Institute of Developmental Psychiatry for Children and Adolescents, CNPq, São Paulo, Brazil
- Interdisciplinary Lab for Clinical Neurosciences (LiNC), Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, Brazil
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Canada
- * E-mail:
| | - Graccielle R. Cunha
- National Institute of Developmental Psychiatry for Children and Adolescents, CNPq, São Paulo, Brazil
- Interdisciplinary Lab for Clinical Neurosciences (LiNC), Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - Elson Asevedo
- National Institute of Developmental Psychiatry for Children and Adolescents, CNPq, São Paulo, Brazil
- Interdisciplinary Lab for Clinical Neurosciences (LiNC), Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - André Zugman
- National Institute of Developmental Psychiatry for Children and Adolescents, CNPq, São Paulo, Brazil
- Interdisciplinary Lab for Clinical Neurosciences (LiNC), Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - Maiara Zeni-Graiff
- Interdisciplinary Lab for Clinical Neurosciences (LiNC), Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - Adiel C. Rios
- Interdisciplinary Lab for Clinical Neurosciences (LiNC), Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - Sumit Sethi
- Interdisciplinary Lab for Clinical Neurosciences (LiNC), Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - Pawan K. Maurya
- Interdisciplinary Lab for Clinical Neurosciences (LiNC), Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - Mateus L. Levandowski
- National Institute of Developmental Psychiatry for Children and Adolescents, CNPq, São Paulo, Brazil
- Institute of Biomedical Research, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ary Gadelha
- National Institute of Developmental Psychiatry for Children and Adolescents, CNPq, São Paulo, Brazil
- Interdisciplinary Lab for Clinical Neurosciences (LiNC), Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - Pedro M. Pan
- National Institute of Developmental Psychiatry for Children and Adolescents, CNPq, São Paulo, Brazil
- Interdisciplinary Lab for Clinical Neurosciences (LiNC), Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - Laura Stertz
- National Institute of Developmental Psychiatry for Children and Adolescents, CNPq, São Paulo, Brazil
- Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, United States of America
| | - Síntia I. Belangero
- National Institute of Developmental Psychiatry for Children and Adolescents, CNPq, São Paulo, Brazil
- Interdisciplinary Lab for Clinical Neurosciences (LiNC), Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - Márcia Kauer-Sant' Anna
- National Institute of Developmental Psychiatry for Children and Adolescents, CNPq, São Paulo, Brazil
- Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Antônio L. Teixeira
- National Institute of Developmental Psychiatry for Children and Adolescents, CNPq, São Paulo, Brazil
- Interdisciplinary Laboratory of Medical Investigation, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jair J. Mari
- National Institute of Developmental Psychiatry for Children and Adolescents, CNPq, São Paulo, Brazil
- Interdisciplinary Lab for Clinical Neurosciences (LiNC), Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - Luis A. Rohde
- National Institute of Developmental Psychiatry for Children and Adolescents, CNPq, São Paulo, Brazil
- Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Euripedes C. Miguel
- National Institute of Developmental Psychiatry for Children and Adolescents, CNPq, São Paulo, Brazil
- Department of Psychiatry, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Roger S. McIntyre
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Canada
| | - Rodrigo Grassi-Oliveira
- National Institute of Developmental Psychiatry for Children and Adolescents, CNPq, São Paulo, Brazil
- Institute of Biomedical Research, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rodrigo A. Bressan
- National Institute of Developmental Psychiatry for Children and Adolescents, CNPq, São Paulo, Brazil
- Interdisciplinary Lab for Clinical Neurosciences (LiNC), Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - Elisa Brietzke
- National Institute of Developmental Psychiatry for Children and Adolescents, CNPq, São Paulo, Brazil
- Interdisciplinary Lab for Clinical Neurosciences (LiNC), Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, Brazil
| |
Collapse
|
31
|
Palma-Gudiel H, Córdova-Palomera A, Eixarch E, Deuschle M, Fañanás L. Maternal psychosocial stress during pregnancy alters the epigenetic signature of the glucocorticoid receptor gene promoter in their offspring: a meta-analysis. Epigenetics 2016; 10:893-902. [PMID: 26327302 DOI: 10.1080/15592294.2015.1088630] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Prenatal stress has been widely associated with a number of short- and long-term pathological outcomes. Epigenetic mechanisms are thought to partially mediate these environmental insults into the fetal physiology. One of the main targets of developmental programming is the hypothalamic-pituitary-adrenal (HPA) axis as it is the main regulator of the stress response. Accordingly, an increasing number of researchers have recently focused on the putative association between DNA methylation at the glucocorticoid receptor gene (NR3C1) and prenatal stress, among other types of psychosocial stress. The current study aims to systematically review and meta-analyze the existing evidence linking several forms of prenatal stress with DNA methylation at the region 1F of the NR3C1 gene. The inclusion of relevant articles allowed combining empirical evidence from 977 individuals by meta-analytic techniques, whose methylation assessments showed overlap across 5 consecutive CpG sites (GRCh37/hg19 chr5:142,783,607-142,783,639). From this information, methylation levels at CpG site 36 displayed a significant correlation to prenatal stress (r = 0.14, 95% CI: 0.05-0.23, P = 0.002). This result supports the proposed association between a specific CpG site located at the NR3C1 promoter and prenatal stress. Several confounders, such as gender, methylation at other glucocorticoid-related genes, and adjustment for pharmacological treatments during pregnancy, should be taken into account in further studies.
Collapse
Affiliation(s)
- H Palma-Gudiel
- a Anthropology Unit; Department of Animal Biology, Faculty of Biology; and Instituto de Biomedicina (IBUB); Universidad de Barcelona (UB) ; Barcelona , Spain
| | - A Córdova-Palomera
- a Anthropology Unit; Department of Animal Biology, Faculty of Biology; and Instituto de Biomedicina (IBUB); Universidad de Barcelona (UB) ; Barcelona , Spain.,b Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) ; Madrid , Spain
| | - E Eixarch
- c Fetal i+D Fetal Medicine Research Center; BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine; Hospital Clínic and Hospital Sant Joan de Deu; IDIBAPS; University of Barcelona ; Barcelona , Spain.,d Centre for Biomedical Research on Rare Diseases (CIBER-ER) ; Madrid , Spain
| | - M Deuschle
- e Central Institute of Mental Health; Faculty of Medicine Mannheim; University of Heidelberg ; Heidelberg , Germany
| | - L Fañanás
- a Anthropology Unit; Department of Animal Biology, Faculty of Biology; and Instituto de Biomedicina (IBUB); Universidad de Barcelona (UB) ; Barcelona , Spain.,b Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) ; Madrid , Spain
| |
Collapse
|
32
|
Kyzar EJ, Floreani C, Teppen TL, Pandey SC. Adolescent Alcohol Exposure: Burden of Epigenetic Reprogramming, Synaptic Remodeling, and Adult Psychopathology. Front Neurosci 2016; 10:222. [PMID: 27303256 PMCID: PMC4885838 DOI: 10.3389/fnins.2016.00222] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/06/2016] [Indexed: 12/22/2022] Open
Abstract
Adolescence represents a crucial phase of synaptic maturation characterized by molecular changes in the developing brain that shape normal behavioral patterns. Epigenetic mechanisms play an important role in these neuromaturation processes. Perturbations of normal epigenetic programming during adolescence by ethanol can disrupt these molecular events, leading to synaptic remodeling and abnormal adult behaviors. Repeated exposure to binge levels of alcohol increases the risk for alcohol use disorder (AUD) and comorbid psychopathology including anxiety in adulthood. Recent studies in the field clearly suggest that adolescent alcohol exposure causes widespread and persistent changes in epigenetic, neurotrophic, and neuroimmune pathways in the brain. These changes are manifested by altered synaptic remodeling and neurogenesis in key brain regions leading to adult psychopathology such as anxiety and alcoholism. This review details the molecular mechanisms underlying adolescent alcohol exposure-induced changes in synaptic plasticity and the development of alcohol addiction-related phenotypes in adulthood.
Collapse
Affiliation(s)
- Evan J Kyzar
- Department of Psychiatry, Center for Alcohol Research in Epigenetics, University of Illinois at ChicagoChicago, IL, USA; Jesse Brown Veterans Affairs Medical CenterChicago, IL, USA
| | - Christina Floreani
- Department of Psychiatry, Center for Alcohol Research in Epigenetics, University of Illinois at ChicagoChicago, IL, USA; Jesse Brown Veterans Affairs Medical CenterChicago, IL, USA
| | - Tara L Teppen
- Department of Psychiatry, Center for Alcohol Research in Epigenetics, University of Illinois at ChicagoChicago, IL, USA; Jesse Brown Veterans Affairs Medical CenterChicago, IL, USA
| | - Subhash C Pandey
- Department of Psychiatry, Center for Alcohol Research in Epigenetics, University of Illinois at ChicagoChicago, IL, USA; Jesse Brown Veterans Affairs Medical CenterChicago, IL, USA; Anatomy and Cell Biology, University of Illinois at ChicagoChicago, IL, USA
| |
Collapse
|
33
|
Homberg JR, Kyzar EJ, Scattoni ML, Norton WH, Pittman J, Gaikwad S, Nguyen M, Poudel MK, Ullmann JFP, Diamond DM, Kaluyeva AA, Parker MO, Brown RE, Song C, Gainetdinov RR, Gottesman II, Kalueff AV. Genetic and environmental modulation of neurodevelopmental disorders: Translational insights from labs to beds. Brain Res Bull 2016; 125:79-91. [PMID: 27113433 DOI: 10.1016/j.brainresbull.2016.04.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/25/2016] [Accepted: 04/20/2016] [Indexed: 01/12/2023]
Abstract
Neurodevelopmental disorders (NDDs) are a heterogeneous group of prevalent neuropsychiatric illnesses with various degrees of social, cognitive, motor, language and affective deficits. NDDs are caused by aberrant brain development due to genetic and environmental perturbations. Common NDDs include autism spectrum disorder (ASD), intellectual disability, communication/speech disorders, motor/tic disorders and attention deficit hyperactivity disorder. Genetic and epigenetic/environmental factors play a key role in these NDDs with significant societal impact. Given the lack of their efficient therapies, it is important to gain further translational insights into the pathobiology of NDDs. To address these challenges, the International Stress and Behavior Society (ISBS) has established the Strategic Task Force on NDDs. Summarizing the Panel's findings, here we discuss the neurobiological mechanisms of selected common NDDs and a wider NDD+ spectrum of associated neuropsychiatric disorders with developmental trajectories. We also outline the utility of existing preclinical (animal) models for building translational and cross-diagnostic bridges to improve our understanding of various NDDs.
Collapse
Affiliation(s)
- Judith R Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Evan J Kyzar
- Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA; The International Stress and Behavior Society (ISBS) and ZENEREI Research Center, Slidell, LA, USA
| | - Maria Luisa Scattoni
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanita, Rome, Italy
| | | | - Julian Pittman
- Department of Biological and Environmental Sciences, Troy University, Troy, AL, USA
| | - Siddharth Gaikwad
- The International Stress and Behavior Society (ISBS) and ZENEREI Research Center, Slidell, LA, USA
| | - Michael Nguyen
- The International Stress and Behavior Society (ISBS) and ZENEREI Research Center, Slidell, LA, USA; New York University School of Medicine, NY, NY, USA
| | - Manoj K Poudel
- The International Stress and Behavior Society (ISBS) and ZENEREI Research Center, Slidell, LA, USA
| | - Jeremy F P Ullmann
- Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland, Australia; Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - David M Diamond
- Department of Psychology, University of South Florida, Tampa, FL, USA; J.A. Haley Veterans Hospital, Research and Development Service, Tampa, FL, USA
| | - Aleksandra A Kaluyeva
- The International Stress and Behavior Society (ISBS) and ZENEREI Research Center, Slidell, LA, USA
| | - Matthew O Parker
- School of Health Sciences and Social Work, University of Portsmouth, Portsmouth, UK
| | - Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Cai Song
- Research Institute of Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong, China; Graduate Institute of Neural and Cognitive Sciences, China Medical University Hospital, Taichung, Taiwan
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region, Russia
| | | | - Allan V Kalueff
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.
| |
Collapse
|
34
|
Zhao Y, Castellanos FX. Annual Research Review: Discovery science strategies in studies of the pathophysiology of child and adolescent psychiatric disorders--promises and limitations. J Child Psychol Psychiatry 2016; 57:421-39. [PMID: 26732133 PMCID: PMC4760897 DOI: 10.1111/jcpp.12503] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/17/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND Psychiatric science remains descriptive, with a categorical nosology intended to enhance interobserver reliability. Increased awareness of the mismatch between categorical classifications and the complexity of biological systems drives the search for novel frameworks including discovery science in Big Data. In this review, we provide an overview of incipient approaches, primarily focused on classically categorical diagnoses such as schizophrenia (SZ), autism spectrum disorder (ASD), and attention-deficit/hyperactivity disorder (ADHD), but also reference convincing, if focal, advances in cancer biology, to describe the challenges of Big Data and discovery science, and outline approaches being formulated to overcome existing obstacles. FINDINGS A paradigm shift from categorical diagnoses to a domain/structure-based nosology and from linear causal chains to complex causal network models of brain-behavior relationship is ongoing. This (r)evolution involves appreciating the complexity, dimensionality, and heterogeneity of neuropsychiatric data collected from multiple sources ('broad' data) along with data obtained at multiple levels of analysis, ranging from genes to molecules, cells, circuits, and behaviors ('deep' data). Both of these types of Big Data landscapes require the use and development of robust and powerful informatics and statistical approaches. Thus, we describe Big Data analysis pipelines and the promise and potential limitations in using Big Data approaches to study psychiatric disorders. CONCLUSIONS We highlight key resources available for psychopathological studies and call for the application and development of Big Data approaches to dissect the causes and mechanisms of neuropsychiatric disorders and identify corresponding biomarkers for early diagnosis.
Collapse
Affiliation(s)
- Yihong Zhao
- Department of Child and Adolescent Psychiatry, NYU Child Study Center at NYU Langone Medical Center, New York, NY 10016, USA
| | - F. Xavier Castellanos
- Department of Child and Adolescent Psychiatry, NYU Child Study Center at NYU Langone Medical Center, New York, NY 10016, USA,Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| |
Collapse
|
35
|
Houtepen LC, van Bergen AH, Vinkers CH, Boks MPM. DNA methylation signatures of mood stabilizers and antipsychotics in bipolar disorder. Epigenomics 2016; 8:197-208. [DOI: 10.2217/epi.15.98] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aim: In view of the potential effects of psychiatric drugs on DNA methylation, we investigated whether medication use in bipolar disorder is associated with DNA methylation signatures. Experimental procedures: Blood-based DNA methylation patterns of six frequently used psychotropic drugs (lithium, quetiapine, olanzapine, lamotrigine, carbamazepine, and valproic acid) were examined in 172 bipolar disorder patients. After adjustment for cell type composition, we investigated gene networks, principal components, hypothesis-driven genes and epigenome-wide individual loci. Results: Valproic acid and quetiapine were significantly associated with altered methylation signatures after adjustment for drug-related changes on celltype composition. Conclusion: Psychiatric drugs influence DNA methylation patterns over and above cell type composition in bipolar disorder. Drug-related changes in DNA methylation are therefore not only an important confounder in psychiatric epigenetics but may also inform on the biological mechanisms underlying drug efficacy.
Collapse
Affiliation(s)
- Lotte C Houtepen
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Annet H van Bergen
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Christiaan H Vinkers
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Marco PM Boks
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| |
Collapse
|
36
|
Pediatric asthma and autism-genomic perspectives. Clin Transl Med 2015; 4:37. [PMID: 26668064 PMCID: PMC4678135 DOI: 10.1186/s40169-015-0078-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/29/2015] [Indexed: 02/06/2023] Open
Abstract
High-throughput technologies, ranging from microarrays to NexGen sequencing of RNA and genomic DNA, have opened new avenues for exploration of the pathobiology of human disease. Comparisons of the architecture of the genome, identification of mutated or modified sequences, and pre-and post- transcriptional regulation of gene expression as disease specific biomarkers are revolutionizing our understanding of the causes of disease and are guiding the development of new therapies. There is enormous heterogeneity in types of genomic variation that occur in human disease. Some are inherited, while others are the result of new somatic or germline mutations or errors in chromosomal replication. In this review, we provide examples of changes that occur in the human genome in two of the most common chronic pediatric disorders, autism and asthma. The incidence and economic burden of both of these disorders are increasing worldwide. Genomic variations have the potential to serve as biomarkers for personalization of therapy and prediction of outcomes.
Collapse
|
37
|
Crews SM, McCleery WT, Hutson MS. Pathway to a phenocopy: Heat stress effects in early embryogenesis. Dev Dyn 2015; 245:402-13. [PMID: 26498920 DOI: 10.1002/dvdy.24360] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 10/09/2015] [Accepted: 10/13/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Heat shocks applied at the onset of gastrulation in early Drosophila embryos frequently lead to phenocopies of U-shaped mutants-having characteristic failures in the late morphogenetic processes of germband retraction and dorsal closure. The pathway from nonspecific heat stress to phenocopied abnormalities is unknown. RESULTS Drosophila embryos subjected to 30-min, 38 °C heat shocks at gastrulation appear to recover and restart morphogenesis. Post-heat-shock development appears normal, albeit slower, until a large fraction of embryos develop amnioserosa holes (diameters > 100 µm). These holes are positively correlated with terminal U-shaped phenocopies. They initiate between amnioserosa cells and open over tens of minutes by evading normal wound healing responses. They are not caused by tissue-wide increases in mechanical stress or decreases in cell-cell adhesion, but instead appear to initiate from isolated apoptosis of amnioserosa cells. CONCLUSIONS The pathway from heat shock to U-shaped phenocopies involves the opening of one or more large holes in the amnioserosa that compromise its structural integrity and lead to failures in morphogenetic processes that rely on amnioserosa-generated tensile forces. The proposed mechanism by which heat shock leads to hole initiation and expansion is heterochonicity, i.e., disruption of morphogenetic coordination between embryonic and extra-embryonic cell types.
Collapse
Affiliation(s)
- Sarah M Crews
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee
| | - W Tyler McCleery
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee
| | - M Shane Hutson
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee.,Vanderbilt Institute for Integrative Biosystem Research and Education, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
38
|
Grayson DR, Guidotti A. Merging data from genetic and epigenetic approaches to better understand autistic spectrum disorder. Epigenomics 2015; 8:85-104. [PMID: 26551091 PMCID: PMC4864049 DOI: 10.2217/epi.15.92] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that is characterized by a wide range of cognitive and behavioral abnormalities. Genetic research has identified large numbers of genes that contribute to ASD phenotypes. There is compelling evidence that environmental factors contribute to ASD through influences that differentially impact the brain through epigenetic mechanisms. Both genetic mutations and epigenetic influences alter gene expression in different cell types of the brain. Mutations impact the expression of large numbers of genes and also have downstream consequences depending on specific pathways associated with the mutation. Environmental factors impact the expression of sets of genes by altering methylation/hydroxymethylation patterns, local histone modification patterns and chromatin remodeling. Herein, we discuss recent developments in the research of ASD with a focus on epigenetic pathways as a complement to current genetic screening.
Collapse
Affiliation(s)
- Dennis R Grayson
- Department of Psychiatry, The Psychiatric Institute, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60607, USA
| | - Alessandro Guidotti
- Department of Psychiatry, The Psychiatric Institute, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60607, USA
| |
Collapse
|
39
|
Boyce WT, Kobor MS. Development and the epigenome: the 'synapse' of gene-environment interplay. Dev Sci 2015; 18:1-23. [PMID: 25546559 DOI: 10.1111/desc.12282] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/14/2014] [Indexed: 12/21/2022]
Abstract
This paper argues that there is a revolution afoot in the developmental science of gene-environment interplay. We summarize, for an audience of developmental researchers and clinicians, how epigenetic processes - chromatin structural modifications that regulate gene expression without changing DNA sequences - may offer a strong, parsimonious account for the convergence of genetic and contextual variation in the genesis of adaptive and maladaptive development. Epigenetic processes may play a plausible explanatory role in understanding: divergent trajectories and sexual dimorphisms in brain development; statistical interactions between genes and environments; the biological embedding of early psychosocial adversities; the linkages of such adversities to disorders of mental health; the striking individual variation in the strength of those linkages; the molecular origins of critical and sensitive periods; and the transgenerational inheritance of risk and protection. Taken together, these arguments converge in a claim that epigenetic processes constitute a promising and illuminating point of connection - a 'synapse' - between genes and environments.
Collapse
Affiliation(s)
- W Thomas Boyce
- Departments of Pediatrics and Psychiatry, University of California, San Francisco, USA; Child and Brain Development Program, Canadian Institute for Advanced Research, Canada
| | | |
Collapse
|
40
|
Liu CH, Keshavan MS, Tronick E, Seidman LJ. Perinatal Risks and Childhood Premorbid Indicators of Later Psychosis: Next Steps for Early Psychosocial Interventions. Schizophr Bull 2015; 41:801-16. [PMID: 25904724 PMCID: PMC4466191 DOI: 10.1093/schbul/sbv047] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Schizophrenia and affective psychoses are debilitating disorders that together affect 2%-3% of the adult population. Approximately 50%-70% of the offspring of parents with schizophrenia manifest a range of observable difficulties including socioemotional, cognitive, neuromotor, speech-language problems, and psychopathology, and roughly 10% will develop psychosis. Despite the voluminous work on premorbid vulnerabilities to psychosis, especially on schizophrenia, the work on premorbid intervention approaches is scarce. While later interventions during the clinical high-risk (CHR) phase of psychosis, characterized primarily by attenuated positive symptoms, are promising, the CHR period is a relatively late phase of developmental derailment. This article reviews and proposes potential targets for psychosocial interventions during the premorbid period, complementing biological interventions described by others in this Special Theme issue. Beginning with pregnancy, parents with psychoses may benefit from enhanced prenatal care, social support, parenting skills, reduction of symptoms, and programs that are family-centered. For children at risk, we propose preemptive early intervention and cognitive remediation. Empirical research is needed to evaluate these interventions for parents and determine whether interventions for parents and children positively influence the developmental course of the offspring.
Collapse
Affiliation(s)
- Cindy H Liu
- Department of Psychiatry, Harvard Medical School, Massachusetts Mental Health Center Division of Public Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA; Department of Psychology, University of Massachusetts, Boston, MA;
| | - Matcheri S Keshavan
- Department of Psychiatry, Harvard Medical School, Massachusetts Mental Health Center Division of Public Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA
| | - Ed Tronick
- Department of Psychology, University of Massachusetts, Boston, MA; Department of Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Larry J Seidman
- Department of Psychiatry, Harvard Medical School, Massachusetts Mental Health Center Division of Public Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA; Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
41
|
Blum K, Febo M, Smith DE, Roy AK, Demetrovics Z, Cronjé FJ, Femino J, Agan G, Fratantonio JL, Pandey SC, Badgaiyan RD, Gold MS. Neurogenetic and epigenetic correlates of adolescent predisposition to and risk for addictive behaviors as a function of prefrontal cortex dysregulation. J Child Adolesc Psychopharmacol 2015; 25:286-92. [PMID: 25919973 PMCID: PMC4442554 DOI: 10.1089/cap.2014.0146] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
As addiction professionals, we are becoming increasingly concerned about preteenagers and young adults' involvement with substance abuse as a way of relieving stress and anger. The turbulent underdeveloped central nervous system, especially in the prefrontal cortex (PFC), provides impetus to not only continue important neuroimaging studies in both human and animal models, but also to encourage preventive measures and cautions embraced by governmental and social media outlets. It is well known that before people reach their 20s, PFC development is undergoing significant changes and, as such, hijacks appropriate decision making in this population. We are further proposing that early genetic testing for addiction risk alleles will offer important information that could potentially be utilized by their parents and caregivers prior to use of psychoactive drugs by these youth. Understandably, family history, parenting styles, and attachment may be modified by various reward genes, including the known bonding substances oxytocin/vasopressin, which effect dopaminergic function. Well-characterized neuroimaging studies continue to reflect region-specific differential responses to drugs and food (including other non-substance-addictive behaviors) via either "surfeit" or "deficit." With this in mind, we hereby propose a "reward deficiency solution system" that combines early genetic risk diagnosis, medical monitoring, and nutrigenomic dopamine agonist modalities to combat this significant global dilemma that is preventing our youth from leading normal productive lives, which will in turn make them happier.
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Psychiatry and McKnight Brain Institute, University of Florida, College of Medicine, Gainesville, Florida.,Division of Addiction Services, Dominion Diagnostics, LLC, North Kingstown, Rhode Island.,Department of Addiction Research & Therapy, Malibu Beach Recovery Center, Malibu Beach, California.,Human Integrative Services & Translational Science, Department of Psychiatry, University of Vermont College of Medicine, Burlington, Vermont
| | - Marcelo Febo
- Department of Psychiatry and McKnight Brain Institute, University of Florida, College of Medicine, Gainesville, Florida
| | - David E. Smith
- Division of Addiction Services, Dominion Diagnostics, LLC, North Kingstown, Rhode Island.,Institute of Health & Aging, University of California, San Francisco, California
| | | | - Zsolt Demetrovics
- Department of Clinical Psychology and Addiction, Institute of Psychology, Eötvös Loránd University, Budapest, Hungary
| | | | - John Femino
- Department of Clinical Medicine, Meadows Edge Recovery Center, North Kingston, Rhode Island
| | - Gozde Agan
- Division of Addiction Services, Dominion Diagnostics, LLC, North Kingstown, Rhode Island
| | - James L. Fratantonio
- Division of Applied Clinical Research, Dominion Diagnostics, LLC, North Kingstown, Rhode Island
| | - Subhash C. Pandey
- Department of Psychiatry, University of Illinois at Chicago and Jesse Brown VA Medical Center, Chicago, Illinois
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, University of Minnesota College of Medicine, Minneapolis, Minnesota
| | - Mark S. Gold
- Department of Psychiatry and McKnight Brain Institute, University of Florida, College of Medicine, Gainesville, Florida.,Department of Addiction Research & Therapy, Malibu Beach Recovery Center, Malibu Beach, California
| |
Collapse
|
42
|
Millan MJ, Goodwin GM, Meyer-Lindenberg A, Ove Ögren S. Learning from the past and looking to the future: Emerging perspectives for improving the treatment of psychiatric disorders. Eur Neuropsychopharmacol 2015; 25:599-656. [PMID: 25836356 DOI: 10.1016/j.euroneuro.2015.01.016] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 01/28/2015] [Indexed: 02/06/2023]
Abstract
Modern neuropsychopharmacology commenced in the 1950s with the serendipitous discovery of first-generation antipsychotics and antidepressants which were therapeutically effective yet had marked adverse effects. Today, a broader palette of safer and better-tolerated agents is available for helping people that suffer from schizophrenia, depression and other psychiatric disorders, while complementary approaches like psychotherapy also have important roles to play in their treatment, both alone and in association with medication. Nonetheless, despite considerable efforts, current management is still only partially effective, and highly-prevalent psychiatric disorders of the brain continue to represent a huge personal and socio-economic burden. The lack of success in discovering more effective pharmacotherapy has contributed, together with many other factors, to a relative disengagement by pharmaceutical firms from neuropsychiatry. Nonetheless, interest remains high, and partnerships are proliferating with academic centres which are increasingly integrating drug discovery and translational research into their traditional activities. This is, then, a time of transition and an opportune moment to thoroughly survey the field. Accordingly, the present paper, first, chronicles the discovery and development of psychotropic agents, focusing in particular on their mechanisms of action and therapeutic utility, and how problems faced were eventually overcome. Second, it discusses the lessons learned from past successes and failures, and how they are being applied to promote future progress. Third, it comprehensively surveys emerging strategies that are (1), improving our understanding of the diagnosis and classification of psychiatric disorders; (2), deepening knowledge of their underlying risk factors and pathophysiological substrates; (3), refining cellular and animal models for discovery and validation of novel therapeutic agents; (4), improving the design and outcome of clinical trials; (5), moving towards reliable biomarkers of patient subpopulations and medication efficacy and (6), promoting collaborative approaches to innovation by uniting key partners from the regulators, industry and academia to patients. Notwithstanding the challenges ahead, the many changes and ideas articulated herein provide new hope and something of a framework for progress towards the improved prevention and relief of psychiatric and other CNS disorders, an urgent mission for our Century.
Collapse
Affiliation(s)
- Mark J Millan
- Pole for Innovation in Neurosciences, IDR Servier, 125 chemin de ronde, 78290 Croissy sur Seine, France.
| | - Guy M Goodwin
- University Department of Psychiatry, Oxford University, Warneford Hospital, Oxford OX3 7JX, England, UK
| | - Andreas Meyer-Lindenberg
- Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, J5, D-68159 Mannheim, Germany
| | - Sven Ove Ögren
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, S-17177 Stockholm, Sweden
| |
Collapse
|
43
|
The genetic and epigenetic landscape for CNS drug discovery targeting cross-diagnostic behavioral domains. Eur J Pharmacol 2015; 753:135-9. [DOI: 10.1016/j.ejphar.2014.07.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 05/28/2014] [Accepted: 07/24/2014] [Indexed: 12/23/2022]
|
44
|
Cattaneo A, Macchi F, Plazzotta G, Veronica B, Bocchio-Chiavetto L, Riva MA, Pariante CM. Inflammation and neuronal plasticity: a link between childhood trauma and depression pathogenesis. Front Cell Neurosci 2015; 9:40. [PMID: 25873859 PMCID: PMC4379909 DOI: 10.3389/fncel.2015.00040] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 01/27/2015] [Indexed: 12/13/2022] Open
Abstract
During the past two decades, there has been increasing interest in understanding and characterizing the role of inflammation in major depressive disorder (MDD). Indeed, several are the evidences linking alterations in the inflammatory system to Major Depression, including the presence of elevated levels of pro-inflammatory cytokines, together with other mediators of inflammation. However, it is still not clear whether inflammation represents a cause or whether other factors related to depression result in these immunological effects. Regardless, exposure to early life stressful events, which represent a vulnerability factor for the development of psychiatric disorders, act through the modulation of inflammatory responses, but also of neuroplastic mechanisms over the entire life span. Indeed, early life stressful events can cause, possibly through epigenetic changes that persist over time, up to adulthood. Such alterations may concur to increase the vulnerability to develop psychopathologies. In this review we will discuss the role of inflammation and neuronal plasticity as relevant processes underlying depression development. Moreover, we will discuss the role of epigenetics in inducing alterations in inflammation-immune systems as well as dysfunction in neuronal plasticity, thus contributing to the long-lasting negative effects of stressful life events early in life and the consequent enhanced risk for depression. Finally we will provide an overview on the potential role of inflammatory system to aid diagnosis, predict treatment response, enhance treatment matching, and prevent the onset or relapse of Major Depression.
Collapse
Affiliation(s)
- Annamaria Cattaneo
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, King's College London London, UK ; IRCCS Centro S Giovanni di Dio, Fatebenefratelli Brescia, Italy
| | - Flavia Macchi
- Department of Pharmacological and Biomolecular Sciences, University of Milan Milan, Italy
| | - Giona Plazzotta
- IRCCS Centro S Giovanni di Dio, Fatebenefratelli Brescia, Italy
| | - Begni Veronica
- Department of Pharmacological and Biomolecular Sciences, University of Milan Milan, Italy
| | - Luisella Bocchio-Chiavetto
- IRCCS Centro S Giovanni di Dio, Fatebenefratelli Brescia, Italy ; Faculty of Psychology, eCampus University Novedrate (Como), Italy
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan Milan, Italy
| | - Carmine Maria Pariante
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, King's College London London, UK
| |
Collapse
|
45
|
Multifactorial Origin of Neurodevelopmental Disorders: Approaches to Understanding Complex Etiologies. TOXICS 2015; 3:89-129. [PMID: 29056653 PMCID: PMC5634696 DOI: 10.3390/toxics3010089] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 03/06/2015] [Accepted: 03/18/2015] [Indexed: 12/12/2022]
Abstract
A significant body of evidence supports the multifactorial etiology of neurodevelopmental disorders (NDDs) affecting children. The present review focuses on early exposure to environmental chemicals as a risk factor for neurodevelopment, and presents the major lines of evidence derived from epidemiological studies, underlying key uncertainties and research needs in this field. We introduce the exposome concept that, encompassing the totality of human environmental exposures to multiple risk factors, aims at explaining individual vulnerability and resilience to early chemical exposure. In this framework, we synthetically review the role of variable gene backgrounds, the involvement of epigenetic mechanisms as well as the function played by potential effect modifiers such as socioeconomic status. We describe laboratory rodent studies where the neurodevelopmental effects of environmental chemicals are assessed in the presence of either a “vulnerable” gene background or adverse pregnancy conditions (i.e., maternal stress). Finally, we discuss the need for more descriptive and “lifelike” experimental models of NDDs, to identify candidate biomarkers and pinpoint susceptible groups or life stages to be translated to large prospective studies within the exposome framework.
Collapse
|
46
|
Blum K, Febo M, Thanos PK, Baron D, Fratantonio J, Gold M. Clinically Combating Reward Deficiency Syndrome (RDS) with Dopamine Agonist Therapy as a Paradigm Shift: Dopamine for Dinner? Mol Neurobiol 2015; 52:1862-1869. [PMID: 25750061 PMCID: PMC4586005 DOI: 10.1007/s12035-015-9110-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/21/2015] [Indexed: 01/23/2023]
Abstract
Everyday, there are several millions of people that are increasingly unable to combat their frustrating and even fatal romance with getting high and/or experiencing “normal” feelings of well-being. In the USA, the FDA has approved pharmaceuticals for drug and alcohol abuse: tobacco and nicotine replacement therapy. The National Institute on Drug Abuse (NIDA) and the National Institute on Alcohol Abuse and Alcoholism (NIAAA) remarkably continue to provide an increasing understanding of the intricate functions of brain reward circuitry through sophisticated neuroimaging and molecular genetic applied technology. Similar work is intensely investigated on a worldwide basis with enhanced clarity and increased interaction between not only individual scientists but across many disciplines. However, while it is universally agreed that dopamine is a major neurotransmitter in terms of reward dependence, there remains controversy regarding how to modulate its role clinically to treat and prevent relapse for both substance and non-substance-related addictive behaviors. While the existing FDA-approved medications promote blocking dopamine, we argue that a more prudent paradigm shift should be biphasic—short-term blockade and long-term upregulation, enhancing functional connectivity of brain reward circuits.
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Psychiatry and McKnight Brain Institute, College of Medicine, University of Florida, P. O. Box 100256, Gainesville, FL 32610-0256 USA
- Human Integrated Services Unit, Center for Clinical and Translational Science, Department of Psychiatry, College of Medicine, University of Vermont, Burlington, VT USA
- Division of Applied Clinical Research, Dominion Diagnostics, LLC, North Kingstown, RI USA
- Department of Addiction Research and Therapy, Malibu Beach Recovery Center, Malibu, CA USA
| | - Marcelo Febo
- Department of Psychiatry and McKnight Brain Institute, College of Medicine, University of Florida, P. O. Box 100256, Gainesville, FL 32610-0256 USA
| | - Panayotis K. Thanos
- Behavior Neuropharmacology and Neuroimaging Laboratory, Department of Psychology, SUNY at Stony Brook, Stony Brook, NY USA
| | - David Baron
- Department of Psychiatry, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - James Fratantonio
- Division of Applied Clinical Research, Dominion Diagnostics, LLC, North Kingstown, RI USA
| | - Mark Gold
- Department of Psychiatry and McKnight Brain Institute, College of Medicine, University of Florida, P. O. Box 100256, Gainesville, FL 32610-0256 USA
- Department of Research, Rivermernd Health, Atlanta, GA USA
| |
Collapse
|
47
|
Lui CC, Hsu MH, Kuo HC, Chen CC, Sheen JM, Yu HR, Tiao MM, Tain YL, Chang KA, Huang LT. Effects of melatonin on prenatal dexamethasone-induced epigenetic alterations in hippocampal morphology and reelin and glutamic acid decarboxylase 67 levels. Dev Neurosci 2015; 37:105-14. [PMID: 25720733 DOI: 10.1159/000368768] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 10/01/2014] [Indexed: 11/19/2022] Open
Abstract
Prenatal glucocorticoid exposure causes brain damage in adult offspring; however, the underlying mechanisms remain unclear. Melatonin has been shown to have beneficial effects in compromised pregnancies. Pregnant Sprague-Dawley rats were administered vehicle (VEH) or dexamethasone between gestation days 14 and 21. The programming effects of prenatal dexamethasone exposure on the brain were assessed at postnatal days (PND) 7, 42, and ∼120. Melatonin was administered from PND21 to the rats exposed to dexamethasone, and the outcome was assessed at ∼PND120. In total, there were four groups: VEH, vehicle plus melatonin (VEHM), prenatal dexamethasone-exposure (DEX), and prenatal dexamethasone exposure plus melatonin (DEXM). Spatial memory, gross hippocampal morphology, and hippocampal biochemistry were examined. Spatial memory assessed by the Morris water maze showed no significant differences among the four groups. Brain magnetic resonance imaging showed that all rats with prenatal dexamethasone exposure (DEX + DEXM) exhibited increased T2-weighted signals in the hippocampus. There were no significant differences in the levels of mRNA expression of hippocampal reln, which encodes reelin, and GAD1, which encodes glutamic acid decarboxylase 67, at PND7. At both PND42 and ∼PND120, reln and GAD1 mRNA expression levels were decreased. At ∼PND120, melatonin restored the reduced levels of hippocampal reln and GAD1 mRNA expression in the DEXM group. In addition, melatonin restored the reln mRNA expression levels by (1) reducing DNA methyltransferase 1 (DNMT1) mRNA expression and (2) reducing the binding of DNMT1 and the methyl-CpG binding protein 2 (MeCP2) to the reln promoter. The present study showed that prenatal dexamethasone exposure induced gross alterations in hippocampal morphology and reduced the levels of hippocampal mRNA expression of reln and GAD1. Spatial memory was unimpaired. Thus, melatonin had a beneficial effect in restoring hippocampal reln mRNA expression by reducing DNMT1 and MeCP2 binding to the reln promoter.
Collapse
Affiliation(s)
- Chun-Chung Lui
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Chandra A, Ray A, Senapati S, Chatterjee R. Genetic and epigenetic basis of psoriasis pathogenesis. Mol Immunol 2015; 64:313-23. [PMID: 25594889 DOI: 10.1016/j.molimm.2014.12.014] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 12/20/2014] [Accepted: 12/26/2014] [Indexed: 01/06/2023]
Abstract
Psoriasis is a chronic inflammatory skin disease whose prevalence varies among different populations worldwide. It is a complex multi-factorial disease and the exact etiology is largely unknown. Family based studies have indicated a genetic predisposition; however they cannot fully explain the disease pathogenesis. In addition to genetic susceptibility, environmental as well as gender and age related factors were also been found to be associated. Recently, imbalances in epigenetic networks are indicated to be causative elements in psoriasis. The present knowledge of epigenetic involvement, mainly the DNA methylation, chromatin modifications and miRNA deregulation is surveyed here. An integrated approach considering genetic and epigenetic anomalies in the light of immunological network may explore the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Aditi Chandra
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Aditi Ray
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | | | - Raghunath Chatterjee
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India.
| |
Collapse
|
49
|
Kuban KCK, O’Shea TM, Allred EN, Fichorova RN, Heeren T, Paneth N, Hirtz D, Dammann O, Leviton A. The breadth and type of systemic inflammation and the risk of adverse neurological outcomes in extremely low gestation newborns. Pediatr Neurol 2015; 52:42-8. [PMID: 25459361 PMCID: PMC4276530 DOI: 10.1016/j.pediatrneurol.2014.10.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/07/2014] [Accepted: 10/08/2014] [Indexed: 12/23/2022]
Abstract
BACKGROUND We hypothesized that the risk of brain damage in extremely preterm neonates increases with the breadth and type of systemic inflammation, indexed by the number of elevated inflammation-related proteins and the number of functional categories of inflammation-related proteins exhibiting an elevated concentration. METHODS In blood from 881 infants born before 28 weeks gestation, we measured the concentrations of 25 inflammation-related proteins, representing six functional categories (cytokines, chemokines, growth factors, adhesion molecules, metalloproteinases, and liver-produced acute phase reactant proteins) on postnatal days 1, 7, and 14. We evaluated associations between the number and type of proteins whose concentrations were elevated on two separate occasions a week apart and the diagnoses of ventriculomegaly as a neonate, and at 2 years, microcephaly, impaired early cognitive functioning, cerebral palsy, and autism risk as assessed with the Modified Checklist for Autism in Toddlers screen, and in a subset of these children from 12 of 14 sites (n = 826), an attention problem identified with the Child Behavior Checklist. RESULTS The risk of abnormal brain structure and function overall was increased among children who had recurrent and/or persistent elevations of the 25 proteins. The risk for most outcomes did not rise until at least four proteins in at least two functional categories were elevated. When we focused our analysis on 10 proteins previously found to be associated consistently with neurological outcomes, we found the risk of low Mental Development Index on the Bayley Scales of Infant Development-II, microcephaly, and a Child Behavior Checklist-defined attention problem increased with higher numbers of these recurrently and/or persistently elevated proteins. INTERPRETATION Increasing breadth of early neonatal inflammation, indexed by the number of protein elevations or the number of protein functional classes elevated, is associated with increasing risk of disorders of brain structure and function among infants born extremely preterm.
Collapse
Affiliation(s)
- Karl C. K. Kuban
- Department of Pediatrics, Boston Medical Center, Boston, MA, USA
| | | | - Elizabeth N. Allred
- Harvard Medical School, Boston, MA, USA,Boston Children’s Hospital, Boston, MA, USA,Harvard School of Public Health, Boston, MA, USA
| | - Raina N. Fichorova
- Harvard Medical School, Boston, MA, USA,Department of Obstetrics, Gynecology & Reproductive Biology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Tim Heeren
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Nigel Paneth
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
| | - Deborah Hirtz
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Olaf Dammann
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston MA, USA
| | - Alan Leviton
- Harvard Medical School, Boston, MA, USA,Boston Children’s Hospital, Boston, MA, USA
| | | |
Collapse
|
50
|
Dammann O, Gray P, Gressens P, Wolkenhauer O, Leviton A. Systems Epidemiology: What's in a Name? Online J Public Health Inform 2014; 6:e198. [PMID: 25598870 PMCID: PMC4292535 DOI: 10.5210/ojphi.v6i3.5571] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Systems biology is an interdisciplinary effort to integrate molecular, cellular, tissue, organ, and organism levels of function into computational models that facilitate the identification of general principles. Systems medicine adds a disease focus. Systems epidemiology adds yet another level consisting of antecedents that might contribute to the disease process in populations. In etiologic and prevention research, systems-type thinking about multiple levels of causation will allow epidemiologists to identify contributors to disease at multiple levels as well as their interactions. In public health, systems epidemiology will contribute to the improvement of syndromic surveillance methods. We encourage the creation of computational simulation models that integrate information about disease etiology, pathogenetic data, and the expertise of investigators from different disciplines.
Collapse
Affiliation(s)
- O. Dammann
- Dept of Public Health and Community Medicine, Tufts
University School of Medicine, Boston, MA
- Perinatal Epidemiology Unit, Dept. of Gynecology and
Obstetrics, Hannover Medical School, Hannover, Germany
| | - P. Gray
- Dept of Public Health and Community Medicine, Tufts
University School of Medicine, Boston, MA
| | - P. Gressens
- Inserm, U676, Paris, France
- Department of Perinatal Imaging and Health,
Department of Division of Imaging Sciences and Biomedical Engineering,
King’s College London, King’s Health Partners, St. Thomas’
Hospital, London, United Kingdom
| | - O. Wolkenhauer
- Department of Systems Biology and Bioinformatics,
University of Rostock, Rostock, Germany
- Stellenbosch Institute for Advanced Study (STIAS),
Stellenbosch, South Africa
| | - A. Leviton
- Neuroepidemiology Unit, Children’s Hospital,
Boston, MA
| |
Collapse
|