1
|
Bajpai A, Bharathi V, Patel BK. Therapeutic targeting of the oxidative stress generated by pathological molecular pathways in the neurodegenerative diseases, ALS and Huntington's. Eur J Pharmacol 2025; 987:177187. [PMID: 39645221 DOI: 10.1016/j.ejphar.2024.177187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/02/2024] [Accepted: 12/05/2024] [Indexed: 12/09/2024]
Abstract
Neurodegenerative disorders are characterized by a progressive decline of specific neuronal populations in the brain and spinal cord, typically containing aggregates of one or more proteins. They can result in behavioral alterations, memory loss and a decline in cognitive and motor abilities. Various pathways and mechanisms have been outlined for the potential treatment of these diseases, where redox regulation is considered as one of the most common druggable targets. For example, in amyotrophic lateral sclerosis (ALS) with superoxide dismutase-1 (SOD1) pathology, there is a downregulation of the antioxidant response nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. TDP-43 proteinopathy in ALS is associated with elevated levels of reactive oxygen species and mitochondrial dyshomeostasis. In ALS with mutant FUS, poly ADP ribose polymerase-dependent X ray repair cross complementing 1/DNA-ligase recruitment to the sites of oxidative DNA damage is affected, thereby causing defects in DNA damage repair. Oxidative stress in Huntington's disease (HD) with mutant huntingtin accumulation manifests as protein oxidation, metabolic energetics dysfunction, metal ion dyshomeostasis, DNA damage and mitochondrial dysfunction. The impact of oxidative stress in the progression of these diseases further warrants studies into the role of antioxidants in their treatment. While an antioxidant, edaravone, has been approved for therapeutics of ALS, numerous antioxidant molecules failed to pass the clinical trials despite promising initial studies. In this review, we summarize the oxidative stress pathways and redox modulators that are investigated in ALS and HD using various models.
Collapse
Affiliation(s)
- Akarsh Bajpai
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502284, India
| | - Vidhya Bharathi
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502284, India.
| | - Basant K Patel
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502284, India.
| |
Collapse
|
2
|
Tyagi S, Thakur AK. Effect of Capsaicin on 3-NP-Induced Neurotoxicity: A Pre-Clinical Study. Neurochem Res 2024; 49:2038-2059. [PMID: 38814358 DOI: 10.1007/s11064-024-04158-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
The study objectives are to investigate the ability of capsaicin to revert the toxic effects in glutamate and lipopolysaccharide (LPS)-induced neurotoxicity in Neuro2a (N2a) cells as well as thwarting cognitive impairments, mitochondrial deficits, and oxidative insults induced by 3-nitropropanoic acid (3-NP) in a rodent model of Huntington's disease. In-vitro study with N2a cells was performed through MTT and LDH assay and their biochemical examinations were also performed. 3-NP-administered mice (n = 6) were treated with capsaicin (5, 10, and 20 mg/kg) through the per-oral (p.o.) route for 7 consecutive days. Physiological and behavioral studies were performed in drug-treated mice. After behavioral studies, biochemical parameters were performed for cytokines levels, various oxidative stress parameters, and mitochondrial enzyme complex activities with mitochondrial permeability. N2a cells treated with capsaicin demonstrated neuroprotective effects and reduced neurotoxicity. Based on experimental observation, in an in-vitro study, the effective dose of CAP was 50 µM. Moreover, a 100 µM dose of capsaicin had toxic effects on neuronal cells (N2a cells). On the other hand, the effective dose of 3-NP was 20 mg/kg, (p.o.) in animals (in-vivo). All tested doses of capsaicin upturned the cognitive impairment and motor in-coordination effects induced by 3-NP. 3-NP-injected mice demonstrated substantially increased pro-inflammatory cytokine concentrations, defective mitochondrial complex activity, and augmented oxidative insult. However, capsaicin at different doses reduced oxidative damage and cytokines levels and improved mitochondrial complex activity along with mitochondrial permeability. Furthermore, capsaicin (10 and 20 mg/kg) improved the TNF-α concentration. These findings suggested because of the anti-inflammatory and antioxidant effect, capsaicin can be considered a novel treatment for the management of neurodegenerative disorders by reverting the antioxidant enzyme activity, pro-inflammatory cytokines concentration, and mitochondrial functions.
Collapse
Affiliation(s)
- Sakshi Tyagi
- Neuropharmacology Research Laboratory, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110 017, India
| | - Ajit Kumar Thakur
- Neuropharmacology Research Laboratory, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110 017, India.
| |
Collapse
|
3
|
Katariya R, Mishra K, Sammeta S, Umekar M, Kotagale N, Taksande B. Agmatine mitigates behavioral abnormalities and neurochemical dysregulation associated with 3-Nitropropionic acid-induced Huntington's disease in rats. Neurotoxicology 2024; 102:12-28. [PMID: 38453033 DOI: 10.1016/j.neuro.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 01/15/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative condition characterized by a severe motor incoordination, cognitive decline, and psychiatric complications. However, a definitive cure for this devastating disorder remains elusive. Agmatine, a biogenic amine, has gain attention for its reported neuromodulatory and neuroprotective properties. The present study was designed to examine the influence of agmatine on the behavioral, biochemical, and molecular aspects of HD in an animal model. A mitochondrial toxin, 3-nitro propionic acid (3-NP), was used to induce HD phenotype and similar symptoms such as motor incoordination, memory impairment, neuro-inflammation, and depressive-like behavior in rats. Rats were pre-treated with 3-NP (10 mg/kg, i.p.) on days 1, 3, 5, 7, and 9 and then continued on agmatine treatment (5 - 20 µg/rat, i.c.v.) from day-8 to day-27 of the treatment protocol. 3-NP-induced cognitive impairment was associated with declined in agmatine levels within prefrontal cortex, striatum, and hippocampus. Further, the 3-NP-treated rats showed an increase in IL-6 and TNF-α and a reduction in BDNF immunocontent within these brain areas. Agmatine treatment not only improved the 3-NP-induced motor incoordination, depression-like behavior, rota-rod performance, and learning and memory impairment but also normalized the GABA/glutamate, BDNF, IL-6, and TNF-α levels in discrete brain areas. Similarly, various agmatine modulators, which increase the endogenous agmatine levels in the brain, such as L-arginine (biosynthetic precursor), aminoguanidine (diamine oxidase inhibitor), and arcaine (agmatinase inhibitor) also demonstrated similar effects exhibiting the importance of endogenous agmatinergic pathway in the pathogenesis of 3-NP-induced HD like symptoms. The present study proposed the possible role of agmatine in the pathogenesis and treatment of HD associated motor incoordination, and psychiatric and cognitive complications.
Collapse
Affiliation(s)
- Raj Katariya
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S. 441 002, India
| | - Kartikey Mishra
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S. 441 002, India
| | - Shivkumar Sammeta
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S. 441 002, India
| | - Milind Umekar
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S. 441 002, India
| | - Nandkishor Kotagale
- Government College of Pharmacy, Kathora Naka, VMV Road, Amravati, M.S. 444604, India
| | - Brijesh Taksande
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S. 441 002, India.
| |
Collapse
|
4
|
Yao MF, Dang T, Wang HJ, Zhu XZ, Qiao C. Mitochondrial homeostasis regulation: A promising therapeutic target for Parkinson's disease. Behav Brain Res 2024; 459:114811. [PMID: 38103871 DOI: 10.1016/j.bbr.2023.114811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/10/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc) and the presence of Lewy bodies (LBs) or Lewy neurites (LNs) which consist of α-synuclein (α-syn) and a complex mix of other biomolecules. Mitochondrial dysfunction is widely believed to play an essential role in the pathogenesis of PD and other related neurodegenerative diseases. But mitochondrial dysfunction is subject to complex genetic regulation. There is increasing evidence that PD-related genes directly or indirectly affect mitochondrial integrity. Therefore, targeted regulation of mitochondrial function has great clinical application prospects in the treatment of PD. However, lots of PD drugs targeting mitochondria have been developed but their clinical therapeutic effects are not ideal. This review aims to reveal the role of mitochondrial dysfunction in the pathogenesis of neurodegenerative diseases based on the mitochondrial structure and function, which may highlight potential interventions and therapeutic targets for the development of PD drugs to recover mitochondrial dysfunction in neurodegenerative diseases.
Collapse
Affiliation(s)
- Meng-Fan Yao
- Department of Clinical Pharmabcy, the Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, China; College of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Tao Dang
- Department of Clinical Pharmabcy, the Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, China; College of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Hua-Jun Wang
- Department of Clinical Pharmabcy, the Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Xiao-Zhong Zhu
- Department of Cardiothoracic Surgery, the Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Chen Qiao
- Department of Clinical Pharmabcy, the Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, China; College of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
5
|
El-Emam MA, Sheta E, El-Abhar HS, Abdallah DM, El Kerdawy AM, Eldehna WM, Gowayed MA. Morin suppresses mTORc1/IRE-1α/JNK and IP3R-VDAC-1 pathways: Crucial mechanisms in apoptosis and mitophagy inhibition in experimental Huntington's disease, supported by in silico molecular docking simulations. Life Sci 2024; 338:122362. [PMID: 38141855 DOI: 10.1016/j.lfs.2023.122362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/12/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
AIMS Endoplasmic reticulum stress (ERS) with aberrant mitochondrial-ER contact (MERC), mitophagy, and apoptosis are interconnected determinants in neurodegenerative diseases. Previously, we proved the potential of Morin hydrate (MH), a potent antioxidant flavonoid, to mitigate Huntington's disease (HD)-3-nitropropionic acid (3-NP) model by modulating glutamate/calpain/Kidins220/BDNF trajectory. Extending our work, we aimed to evaluate its impact on combating the ERS/MERC, mitophagy, and apoptosis. METHODS Rats were subjected to 3-NP for 14 days and post-treated with MH and/or the ERS inducer WAG-4S for 7 days. Disease progression was assessed by gross inspection and striatal biochemical, histopathological, immunohistochemical, and transmission electron microscopical (TEM) examinations. A molecular docking study was attained to explore MH binding to mTOR, JNK, the kinase domain of IRE1-α, and IP3R. KEY FINDINGS MH decreased weight loss and motor dysfunction using open field and rotarod tests. It halted HD degenerative striatal neurons and nucleus/mitochondria ultra-microscopic alterations reflecting neuroprotection. Mechanistically, MH deactivated striatal mTOR/IRE1-α/XBP1s&JNK/IP3R, PINK1/Ubiquitin/Mfn2, and cytochrome c/caspase-3 signaling pathways, besides enhancing p-PGC-1α and p-VDAC1. WAG-4S was able to ameliorate all effects initiated by MH to different extents. Molecular docking simulations revealed promising binding patterns of MH and hence its potential inhibition of the studied proteins, especially mTOR, IP3R, and JNK. SIGNIFICANCE MH alleviated HD-associated ERS, MERC, mitophagy, and apoptosis. This is mainly achieved by combating the mTOR/IRE1-α signaling, IP3R/VDAC hub, PINK1/Ubiquitin/Mfn2, and cytochrome c/caspase 3 axis to be worsened by WAG-4S. Molecular docking simulations showed the promising binding of MH to mTOR and JNK as novel identified targets.
Collapse
Affiliation(s)
- Mohamed A El-Emam
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Eman Sheta
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Hanan S El-Abhar
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Dalaal M Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Ahmed M El Kerdawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt; School of Pharmacy, College of Health and Science, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, United Kingdom
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt; School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Mennatallah A Gowayed
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
6
|
Abir MH, Mahamud AGMSU, Tonny SH, Anu MS, Hossain KHS, Protic IA, Khan MSU, Baroi A, Moni A, Uddin MJ. Pharmacological potentials of lycopene against aging and aging-related disorders: A review. Food Sci Nutr 2023; 11:5701-5735. [PMID: 37823149 PMCID: PMC10563689 DOI: 10.1002/fsn3.3523] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/25/2023] [Accepted: 06/13/2023] [Indexed: 10/13/2023] Open
Abstract
Aging and aging-related chronic disorders are one of the principal causes of death worldwide. The prevalence of these disorders is increasing gradually and globally. Considering this unwavering acceleration of the global burden, seeking alternatives to traditional medication to prevent the risk of aging disorders is needed. Among them, lycopene, a carotenoid, is abundant in many fruits and vegetables, including tomatoes, grapefruits, and watermelons, and it has a unique chemical structure to be a potent antioxidant compound. This nutraceutical also possesses several anti-aging actions, including combating aging biomarkers and ameliorating several chronic disorders. However, no systematic evaluation has yet been carried out that can comprehensively elucidate the effectiveness of lycopene in halting the course of aging and the emergence of chronic diseases linked to aging. This review, therefore, incorporates previous pre-clinical, clinical, and epidemiological studies on lycopene to understand its potency in treating aging disorders and its role as a mimic of caloric restriction. Lycopene-rich foods are found to prevent or attenuate aging disorders in various research. Based on the evidence, this review suggests the clinical application of lycopene to improve human health and alleviate the prevalence of aging and aging disorders.
Collapse
Affiliation(s)
- Mehedy Hasan Abir
- ABEx Bio‐Research CenterDhakaBangladesh
- Faculty of Food Science and TechnologyChattogram Veterinary and Animal Sciences UniversityChattogramBangladesh
| | - A. G. M. Sofi Uddin Mahamud
- ABEx Bio‐Research CenterDhakaBangladesh
- Department of Food Safety and Regulatory ScienceChung‐Ang UniversityAnseong‐siGyeonggi‐doRepublic of Korea
| | - Sadia Haque Tonny
- Faculty of AgricultureBangladesh Agricultural UniversityMymensinghBangladesh
| | - Mithila Saha Anu
- Department of Fisheries Biology and GeneticsFaculty of Fisheries, Bangladesh Agricultural UniversityMymensinghBangladesh
| | | | - Ismam Ahmed Protic
- Department of Plant PathologyFaculty of Agriculture, Bangladesh Agricultural UniversityMymensinghBangladesh
| | - Md Shihab Uddine Khan
- ABEx Bio‐Research CenterDhakaBangladesh
- Department of Crop BotanyFaculty of Agriculture, Bangladesh Agricultural UniversityMymensinghBangladesh
| | - Artho Baroi
- ABEx Bio‐Research CenterDhakaBangladesh
- Department of Crop BotanyFaculty of Agriculture, Bangladesh Agricultural UniversityMymensinghBangladesh
| | - Akhi Moni
- ABEx Bio‐Research CenterDhakaBangladesh
| | | |
Collapse
|
7
|
Lum PT, Sekar M, Seow LJ, Shaikh MF, Arulsamy A, Retinasamy T, Gan SH, Gnanaraj C, Esa NM, Ramachawolran G, Subramaniyan V, Chinni SV, Wu YS. Neuroprotective potency of mangiferin against 3-nitropropionic acid induced Huntington's disease-like symptoms in rats: possible antioxidant and anti-inflammatory mechanisms. Front Pharmacol 2023; 14:1189957. [PMID: 37521470 PMCID: PMC10372348 DOI: 10.3389/fphar.2023.1189957] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023] Open
Abstract
Huntington's disease (HD), a neurodegenerative disease, normally starts in the prime of adult life, followed by a gradual occurrence of psychiatric disturbances, cognitive and motor dysfunction. The daily performances and life quality of HD patients have been severely interfered by these clinical signs and symptoms until the last stage of neuronal cell death. To the best of our knowledge, no treatment is available to completely mitigate the progression of HD. Mangiferin, a naturally occurring potent glucoxilxanthone, is mainly isolated from the Mangifera indica plant. Considerable studies have confirmed the medicinal benefits of mangiferin against memory and cognitive impairment in neurodegenerative experimental models such as Alzheimer's and Parkinson's diseases. Therefore, this study aims to evaluate the neuroprotective effect of mangiferin against 3-nitropropionic acid (3-NP) induced HD in rat models. Adult Wistar rats (n = 32) were randomly allocated equally into four groups of eight rats each: normal control (Group I), disease control (Group II) and two treatment groups (Group III and Group IV). Treatment with mangiferin (10 and 20 mg/kg, p. o.) was given for 14 days, whereas 3-NP (15 mg/kg, i. p.) was given for 7 days to induce HD-like symptoms in rats. Rats were assessed for cognitive functions and motor coordination using open field test (OFT), novel object recognition (NOR) test, neurological assessment, rotarod and grip strength tests. Biochemical parameters such as oxidative stress markers and pro-inflammatory markers in brain hippocampus, striatum and cortex regions were evaluated. Histopathological study on brain tissue was also conducted using hematoxylin and eosin (H&E) staining. 3-NP triggered anxiety, decreased recognition memory, reduced locomotor activity, lower neurological scoring, declined rotarod performance and grip strength were alleviated by mangiferin treatment. Further, a significant depletion in brain malondialdehyde (MDA) level, an increase in reduced glutathione (GSH) level, succinate dehydrogenase (SDH), superoxide dismutase (SOD) and catalase (CAT) activities, and a decrease in tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and interleukin-6 (IL-6) levels were observed in mangiferin treated groups. Mangiferin also mitigated 3-NP induced histopathological alteration in the brain hippocampus, striatum and cortex sections. It could be inferred that mangiferin protects the brain against oxidative damage and neuroinflammation, notably via antioxidant and anti-inflammatory activities. Mangiferin, which has a good safety profile, may be an alternate treatment option for treating HD and other neurodegenerative disorders. The results of the current research of mangiferin will open up new avenues for the development of safe and effective therapeutic agents in diminishing HD.
Collapse
Affiliation(s)
- Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Malaysia
| | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| | - Lay Jing Seow
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Malaysia
| | - Mohd Farooq Shaikh
- School of Dentistry and Medical Sciences, Charles Sturt University, Orange, NSW, Australia
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| | - Alina Arulsamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| | - Thaarvena Retinasamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| | - Charles Gnanaraj
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Perak, Malaysia
| | - Norhaizan Mohd Esa
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | - Vetriselvan Subramaniyan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Suresh V. Chinni
- Department of Biochemistry, Faculty of Medicine, Bioscience, and Nursing, MAHSA University, Jenjarom, Selangor, Malaysia
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Yuan Seng Wu
- School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
8
|
Antioxidant and Anti-Inflammatory Effects of Carotenoids in Mood Disorders: An Overview. Antioxidants (Basel) 2023; 12:antiox12030676. [PMID: 36978923 PMCID: PMC10045512 DOI: 10.3390/antiox12030676] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/25/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Depression has a multifactorial etiology comprising family history and unemployment. This review aims to summarize the evidence available for the antioxidant and anti-inflammatory effects of carotenoids in mood disorders. This review article’s methodologies were based on a search of the PubMed database for all linked published papers. Epidemiological studies indicate that a diet rich in vegetables, fruits, nuts, fish, and olive oil may prevent the development of depression. Antioxidant supplementation has been found to combat various stress-induced psychiatric disorders, including depression and anxiety. A growing body of evidence indicates that carotenoids have both antioxidant and anti-inflammatory. Studies also suggest that poor dietary intake, particularly low intakes of fruit and vegetables and high intakes of fast food and other convenience foods, may increase the risk of developing depression. Thus, dietary interventions have the potential to help mitigate the risk of mental health decline in both the general population and those with mood disorders. Considering that carotenoids have both antioxidant and anti-inflammatory effects, it is expected that they might exert a promising antidepressant effect. Nevertheless, further studies (including interventional and mechanistic studies) assessing the effect of carotenoids on preventing and alleviating depression symptoms are needed.
Collapse
|
9
|
Bhat SA, Ahamad S, Dar NJ, Siddique YH, Nazir A. The Emerging Landscape of Natural Small-molecule Therapeutics for Huntington's Disease. Curr Neuropharmacol 2023; 21:867-889. [PMID: 36797612 PMCID: PMC10227909 DOI: 10.2174/1570159x21666230216104621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/12/2022] [Accepted: 11/18/2022] [Indexed: 02/18/2023] Open
Abstract
Huntington's disease (HD) is a rare and fatal neurodegenerative disorder with no diseasemodifying therapeutics. HD is characterized by extensive neuronal loss and is caused by the inherited expansion of the huntingtin (HTT) gene that encodes a toxic mutant HTT (mHTT) protein having expanded polyglutamine (polyQ) residues. Current HD therapeutics only offer symptomatic relief. In fact, Food and Drug Administration (FDA) approved two synthetic small-molecule VMAT2 inhibitors, tetrabenazine (1) and deutetrabenazine (2), for managing HD chorea and various other diseases in clinical trials. Therefore, the landscape of drug discovery programs for HD is evolving to discover disease- modifying HD therapeutics. Likewise, numerous natural products are being evaluated at different stages of clinical development and have shown the potential to ameliorate HD pathology. The inherent anti-inflammatory and antioxidant properties of natural products mitigate the mHTT-induced oxidative stress and neuroinflammation, improve mitochondrial functions, and augment the anti-apoptotic and pro-autophagic mechanisms for increased survival of neurons in HD. In this review, we have discussed HD pathogenesis and summarized the anti-HD clinical and pre-clinical natural products, focusing on their therapeutic effects and neuroprotective mechanism/s.
Collapse
Affiliation(s)
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh, U.P., India
| | - Nawab John Dar
- School of Medicine, UT Health San Antonio, Texas, TX, USA
| | | | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, U.P., India
- Academy of Scientific and Innovative Research, New Delhi, India
| |
Collapse
|
10
|
Ahamad S, Bhat SA. The Emerging Landscape of Small-Molecule Therapeutics for the Treatment of Huntington's Disease. J Med Chem 2022; 65:15993-16032. [PMID: 36490325 DOI: 10.1021/acs.jmedchem.2c00799] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene (HTT). The new insights into HD's cellular and molecular pathways have led to the identification of numerous potent small-molecule therapeutics for HD therapy. The field of HD-targeting small-molecule therapeutics is accelerating, and the approval of these therapeutics to combat HD may be expected in the near future. For instance, preclinical candidates such as naphthyridine-azaquinolone, AN1, AN2, CHDI-00484077, PRE084, EVP4593, and LOC14 have shown promise for further optimization to enter into HD clinical trials. This perspective aims to summarize the advent of small-molecule therapeutics at various stages of clinical development for HD therapy, emphasizing their structure and design, therapeutic effects, and specific mechanisms of action. Further, we have highlighted the key drivers involved in HD pathogenesis to provide insights into the basic principle for designing promising anti-HD therapeutic leads.
Collapse
Affiliation(s)
- Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh202002, India
| | - Shahnawaz A Bhat
- Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh202002, India
| |
Collapse
|
11
|
Tripathi R, Gupta R, Sahu M, Srivastava D, Das A, Ambasta RK, Kumar P. Free radical biology in neurological manifestations: mechanisms to therapeutics interventions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62160-62207. [PMID: 34617231 DOI: 10.1007/s11356-021-16693-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Recent advancements and growing attention about free radicals (ROS) and redox signaling enable the scientific fraternity to consider their involvement in the pathophysiology of inflammatory diseases, metabolic disorders, and neurological defects. Free radicals increase the concentration of reactive oxygen and nitrogen species in the biological system through different endogenous sources and thus increased the overall oxidative stress. An increase in oxidative stress causes cell death through different signaling mechanisms such as mitochondrial impairment, cell-cycle arrest, DNA damage response, inflammation, negative regulation of protein, and lipid peroxidation. Thus, an appropriate balance between free radicals and antioxidants becomes crucial to maintain physiological function. Since the 1brain requires high oxygen for its functioning, it is highly vulnerable to free radical generation and enhanced ROS in the brain adversely affects axonal regeneration and synaptic plasticity, which results in neuronal cell death. In addition, increased ROS in the brain alters various signaling pathways such as apoptosis, autophagy, inflammation and microglial activation, DNA damage response, and cell-cycle arrest, leading to memory and learning defects. Mounting evidence suggests the potential involvement of micro-RNAs, circular-RNAs, natural and dietary compounds, synthetic inhibitors, and heat-shock proteins as therapeutic agents to combat neurological diseases. Herein, we explain the mechanism of free radical generation and its role in mitochondrial, protein, and lipid peroxidation biology. Further, we discuss the negative role of free radicals in synaptic plasticity and axonal regeneration through the modulation of various signaling molecules and also in the involvement of free radicals in various neurological diseases and their potential therapeutic approaches. The primary cause of free radical generation is drug overdosing, industrial air pollution, toxic heavy metals, ionizing radiation, smoking, alcohol, pesticides, and ultraviolet radiation. Excessive generation of free radicals inside the cell R1Q1 increases reactive oxygen and nitrogen species, which causes oxidative damage. An increase in oxidative damage alters different cellular pathways and processes such as mitochondrial impairment, DNA damage response, cell cycle arrest, and inflammatory response, leading to pathogenesis and progression of neurodegenerative disease other neurological defects.
Collapse
Affiliation(s)
- Rahul Tripathi
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Mehar Sahu
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Devesh Srivastava
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Ankita Das
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India.
- , Delhi, India.
- Molecular Neuroscience and Functional Genomics Laboratory, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
| |
Collapse
|
12
|
Wu Q, Wang M, Chen W, Wang K, Wang Y. Coronarin D Attenuates MPTP-Induced Parkinson’s Disease in Mice by Inhibition of Oxidative Stress and Apoptosis. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
13
|
Afzal M, Sayyed N, Alharbi KS, Alzarea SI, Alshammari MS, Alomar FA, Alenezi SK, Quazi AM, Alzarea AI, Kazmi I. Anti-Huntington's Effect of Rosiridin via Oxidative Stress/AchE Inhibition and Modulation of Succinate Dehydrogenase, Nitrite, and BDNF Levels against 3-Nitropropionic Acid in Rodents. Biomolecules 2022; 12:1023. [PMID: 35892333 PMCID: PMC9329716 DOI: 10.3390/biom12081023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 12/10/2022] Open
Abstract
Background: Rosiridin is a compound extracted from Rhodiola sachalinensis; water extracts of Rhodiola root elicit positive effects on the human central nervous system and improve brain function. They are also thought to be beneficial to one's health, in addition to being antioxidants. The present study aims to evaluate the anti-Huntington's effect of rosiridin against 3-nitropropionic acid (3-NPA)-induced Huntington's disease (HD)-like effects in rats. Materials and Methods: The acute toxicity in rats was elucidated to track the conceivable toxicities in the rats. The effectiveness of rosiridin at a dosage of 10 mg/kg was evaluated against several dose administrations of 3-NPA-induced HD-like symptoms in the rats for 22 days. At the end of the study, behavioral parameters were assessed as a hallmark for the cognitive and motor functions in the rats. Similarly, after the behavioral assessment, the animals were sacrificed to obtain a brain tissue homogenate. The prepared homogenate was utilized for the estimation of several biochemical parameters, including oxidative stress (glutathione, catalase, and malondialdehyde), brain-derived neurotrophic factor and succinate dehydrogenase activity, and the glutamate and acetylcholinesterase levels in the brain. Furthermore, inflammatory mediators linked to the occurrence of neuroinflammation in rats were evaluated in the perfused brain tissues. Results: The rosiridin-treated group exhibited a significant restoration of behavioral parameters, including in the beam-walk test, latency in falling during the hanging wire test, and percentage of memory retention during the elevated plus-maze test. Further, rosiridin modulated several biochemical parameters, including oxidative stress, pro-inflammatory activity, brain-derived neurotrophic factor, nitrite, and acetylcholinesterase as compared to disease control group that was treated with 3-NPA. Conclusions: The current study exhibits the anti-Huntington's effects of rosiridin in experimental animal models.
Collapse
Affiliation(s)
- Muhammad Afzal
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (K.S.A.); (S.I.A.); (A.M.Q.)
| | - Nadeem Sayyed
- School of Pharmacy, Glocal University, Saharanpur 247121, India;
| | - Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (K.S.A.); (S.I.A.); (A.M.Q.)
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (K.S.A.); (S.I.A.); (A.M.Q.)
| | - Mohammed Salem Alshammari
- Department of Pharmacy Practice, Unaizah College of Pharmacy, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Fadhel A. Alomar
- Department of Pharmacology and Toxicology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Sattam Khulaif Alenezi
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Anwarulabedin Mohsin Quazi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (K.S.A.); (S.I.A.); (A.M.Q.)
| | - Abdulaziz I. Alzarea
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
14
|
Bartolome F, Carro E, Alquezar C. Oxidative Stress in Tauopathies: From Cause to Therapy. Antioxidants (Basel) 2022; 11:antiox11081421. [PMID: 35892623 PMCID: PMC9332496 DOI: 10.3390/antiox11081421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023] Open
Abstract
Oxidative stress (OS) is the result of an imbalance between the production of reactive oxygen species (ROS) and the antioxidant capacity of cells. Due to its high oxygen demand, the human brain is highly susceptible to OS and, thus, it is not a surprise that OS has emerged as an essential component of the pathophysiology of several neurodegenerative diseases, including tauopathies. Tauopathies are a heterogeneous group of age-related neurodegenerative disorders characterized by the deposition of abnormal tau protein in the affected neurons. With the worldwide population aging, the prevalence of tauopathies is increasing, but effective therapies have not yet been developed. Since OS seems to play a key role in tauopathies, it has been proposed that the use of antioxidants might be beneficial for tau-related neurodegenerative diseases. Although antioxidant therapies looked promising in preclinical studies performed in cellular and animal models, the antioxidant clinical trials performed in tauopathy patients have been disappointing. To develop effective antioxidant therapies, the molecular mechanisms underlying OS in tauopathies should be completely understood. Here, we review the link between OS and tauopathies, emphasizing the causes of OS in these diseases and the role of OS in tau pathogenesis. We also summarize the antioxidant therapies proposed as a potential treatment for tauopathies and discuss why they have not been completely translated to clinical trials. This review aims to provide an integrated perspective of the role of OS and antioxidant therapies in tauopathies. In doing so, we hope to enable a more comprehensive understanding of OS in tauopathies that will positively impact future studies.
Collapse
Affiliation(s)
- Fernando Bartolome
- Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), 28041 Madrid, Spain;
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Spain;
| | - Eva Carro
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Spain;
- Neurobiology of Alzheimer’s Disease Unit, Chronic Disease Program, Instituto de Salud Carlos III, 28222 Madrid, Spain
| | - Carolina Alquezar
- Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), 28041 Madrid, Spain;
- Correspondence:
| |
Collapse
|
15
|
Burtscher J, Romani M, Bernardo G, Popa T, Ziviani E, Hummel FC, Sorrentino V, Millet GP. Boosting mitochondrial health to counteract neurodegeneration. Prog Neurobiol 2022; 215:102289. [DOI: 10.1016/j.pneurobio.2022.102289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/23/2022] [Accepted: 05/25/2022] [Indexed: 12/22/2022]
|
16
|
Mechanistic Insight into Diosmin-Induced Neuroprotection and Memory Improvement in Intracerebroventricular-Quinolinic Acid Rat Model: Resurrection of Mitochondrial Functions and Antioxidants. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8584558. [PMID: 35300069 PMCID: PMC8923790 DOI: 10.1155/2022/8584558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/14/2022] [Indexed: 11/17/2022]
Abstract
Neurodegeneration is the final event after a cascade of pathogenic mechanisms in several brain disorders that lead to cognitive and neurological loss. Quinolinic acid (QA) is an excitotoxin derived from the tryptophan metabolism pathway and is implicated in several ailments, such as Alzheimer's, Parkinson's, Huntington's, and psychosis disease. Diosmin (DSM) is a natural flavonoid possessing such properties that may halt the course of neurodegenerative progression. In past studies, free radical scavenging, along with properties, such as antihyperglycemic, anti-inflammatory, and vasoactive properties, of DSM were pragmatic. Hence, in the current experimentations, the neuroprotective activity of DSM was investigated in the QA rat prototype. QA was administered through the intracerebroventricular route (QA-ICV) in rats on day one, and DSM (50 and 100 mg/kg, intraperitoneal route) was given from day 1 to 21. Memory, gait, sensorimotor functions, and biomarkers of oxidative mutilation and mitochondrial functions were evaluated in the whole brain. Results showed significant deterioration of sensorimotor performance, gait, and working- and long-term memory in rats by QA-ICV. These behavioral anomalies were significantly attenuated by DSM (50 and 100 mg/kg) and donepezil (standard drug). QA-ICV-induced decrease in body mass (g), diet, and water ingestion were also attenuated by DSM or donepezil treatments. QA-ICV inhibited mitochondrial complex I and II activities that caused an increase in oxidative and nitrosative stress along with a reduction in endogenous antioxidants in the brain. DSM dose-dependently ameliorated mitochondrial functions and decreased oxidative stress in QA-ICV-treated rats. DSM can be a possible alternative in treating neurodegenerative disorders with underlying mitochondrial dysfunction pathology.
Collapse
|
17
|
Recombinant human erythropoietin and interferon-β-1b protect against 3-nitropropionic acid-induced neurotoxicity in rats: possible role of JAK/STAT signaling pathway. Inflammopharmacology 2022; 30:667-681. [PMID: 35249177 PMCID: PMC8948152 DOI: 10.1007/s10787-022-00935-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/05/2022] [Indexed: 11/26/2022]
Abstract
3-Nitropropionic acid (3-NP) model serves as a beneficial tool to evaluate the effect of novel treatments for Huntington’s disease (HD). The aim of the present study was to demonstrate the neuroprotective effect of recombinant human erythropoietin (rhEPO) and interferon-beta-1b (IFN-β-1b) in 3-NP-induced neurotoxicity in rats. Rats were injected with 3-NP (10 mg/kg/day, i.p) for 2 weeks and were divided into five subgroups; the first served as the HD group, the second received rhEPO (5000 IU/kg/every other day, i.p.) for 2 weeks, the third received rhEPO starting from the 5th day of 3-NP injection, the fourth received IFN-β-1b (300,000 units, every day other day, s.c) for 2 weeks, and the last received IFN-β-1b starting from the 5th day of 3-NP injection. All treatments significantly improved motor and behavior performance of rats. Moreover, all treatments markedly restored mitochondrial function as well as brain-derived neurotrophic factor level, and reduced oxidative stress biomarkers, pro-inflammatory mediators, nuclear factor kappa B expression, caspase-3, and Bax/Bcl2 ratio in the striatum. In conclusion, the present study demonstrates the neuroprotective potential of rhEPO or IFN-β-1b on 3-NP-induced neurotoxicity in rats. Furthermore, our study suggests that activation of JAK2/STAT3 or JAK1/STAT3 may contribute to the neuroprotective activity of rhEPO or IFN-β-1b, respectively. We also found that early treatment with rhEPO did not confer any benefits compared with late rhEPO treatment, while early IFN-β-1b showed a marked significant benefit compared with late IFN-β-1b.
Collapse
|
18
|
Wang Y, Wang D, Yin K, Liu Y, Lu H, Zhao H, Xing M. Lycopene attenuates oxidative stress, inflammation, and apoptosis by modulating Nrf2/NF-κB balance in sulfamethoxazole-induced neurotoxicity in grass carp (Ctenopharyngodon Idella). FISH & SHELLFISH IMMUNOLOGY 2022; 121:322-331. [PMID: 35032680 DOI: 10.1016/j.fsi.2022.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
All drugs that can penetrate the blood-brain barrier (BBB) may lead to mental state changes, including the widely used anti-infective drug sulfamethoxazole (SMZ). Herein, we investigated whether lycopene (LYC) could ameliorate SMZ-induced brain injury and the postulated mechanisms involved. A total of 120 grass carps were exposed under SMZ (0.3 μg/L, waterborne) or LYC (10 mg/kg fish weight, diet) or their combination for 30 days. Firstly, brain injury induced by SMZ exposure was suggested by the damage of BBB (decreases of Claudins, Occludin and Zonula Occludens), and the decrease of neurotransmitter activity (AChE). Through inducing oxidative stress (elevations of malondialdehyde and 8-hydroxy-2 deoxyguanosine, inhibition of glutathione), SMZ increased the intra-nuclear level of NF-κB and its target genes (TNF-α and interleukins), creating an inflammatory microenvironment. As a positive feed-back mechanism, apoptosis begins with activation of pro-death proteins (Bax/Bcl-2) and activation of caspases (caspase-9 and caspase-3). Meanwhile, a compensatory upregulation of constitutive Nrf2 and its downstream antioxidative gene expression (NAD(P)H Quinone Dehydrogenase 1 and Heme oxygenase 1) and accelerated autophagy (increases of autophagy-related genes and p62 inhibition) were activated as a defense mechanism. Intriguingly, under SMZ stress, LYC co-administration decreased NF-κB/apoptosis cascades and restored Nrf2/autophagy levels. The neuroprotective roles of LYC make this natural compound a valuable agent for prevention SMZ stress in environment. This study suggests that LYC might be developed as a potential candidate for alleviating environmental SMZ stress in aquaculture.
Collapse
Affiliation(s)
- Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Dongxu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Kai Yin
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Yachen Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Hongmin Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| |
Collapse
|
19
|
Kabir MT, Rahman MH, Shah M, Jamiruddin MR, Basak D, Al-Harrasi A, Bhatia S, Ashraf GM, Najda A, El-Kott AF, Mohamed HRH, Al-Malky HS, Germoush MO, Altyar AE, Alwafai EB, Ghaboura N, Abdel-Daim MM. Therapeutic promise of carotenoids as antioxidants and anti-inflammatory agents in neurodegenerative disorders. Biomed Pharmacother 2022; 146:112610. [PMID: 35062074 DOI: 10.1016/j.biopha.2021.112610] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/26/2021] [Accepted: 12/26/2021] [Indexed: 11/17/2022] Open
Abstract
Neurodegenerative disorders (NDs) including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and multiple sclerosis have various disease-specific causal factors and pathological features. A very common characteristic of NDs is oxidative stress (OS), which takes place due to the elevated generation of reactive oxygen species during the progression of NDs. Furthermore, the pathological condition of NDs including an increased level of protein aggregates can further lead to chronic inflammation because of the microglial activation. Carotenoids (CTs) are naturally occurring pigments that play a significant role in averting brain disorders. More than 750 CTs are present in nature, and they are widely available in plants, microorganisms, and animals. CTs are accountable for the red, yellow, and orange pigments in several animals and plants, and these colors usually indicate various types of CTs. CTs exert various bioactive properties because of its characteristic structure, including anti-inflammatory and antioxidant properties. Due to the protective properties of CTs, levels of CTs in the human body have been markedly linked with the prevention and treatment of multiple diseases including NDs. In this review, we have summarized the relationship between OS, neuroinflammation, and NDs. In addition, we have also particularly focused on the antioxidants and anti-inflammatory properties of CTs in the management of NDs.
Collapse
Affiliation(s)
- Md Tanvir Kabir
- Department of Pharmacy, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh; Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, South Korea.
| | - Muddaser Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | | | - Debasish Basak
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, United States
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616 Birkat Al Mauz, Nizwa, Oman
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616 Birkat Al Mauz, Nizwa, Oman; School of Health Science, University of Petroleum and Energy Studies, Prem Nagar, Dehradun, Uttarakhand, 248007, India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland.
| | - Attalla F El-Kott
- Biology Department, Faculty of Science, King Khalid University, Abha 61421, Saudi Arabia; Zoology Department, College of Science, Damanhour University, Damanhour 22511, Egypt
| | - Hanan R H Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Hamdan S Al-Malky
- Regional Drug Information Center, Ministry of Health, Jeddah, Saudi Arabia
| | - Mousa O Germoush
- Biology Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| | - Ahmed E Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia
| | - Esraa B Alwafai
- Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Nehmat Ghaboura
- Department of Pharmacy Practice, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| |
Collapse
|
20
|
Lycopene: A Natural Arsenal in the War against Oxidative Stress and Cardiovascular Diseases. Antioxidants (Basel) 2022; 11:antiox11020232. [PMID: 35204115 PMCID: PMC8868303 DOI: 10.3390/antiox11020232] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 12/17/2022] Open
Abstract
Lycopene is a bioactive red pigment found in plants, especially in red fruits and vegetables, including tomato, pink guava, papaya, pink grapefruit, and watermelon. Several research reports have advocated its positive impact on human health and physiology. For humans, lycopene is an essential substance obtained from dietary sources to fulfil the body requirements. The production of reactive oxygen species (ROS) causing oxidative stress and downstream complications include one of the major health concerns worldwide. In recent years, oxidative stress and its counter strategies have attracted biomedical research in order to manage the emerging health issues. Lycopene has been reported to directly interact with ROS, which can help to prevent chronic diseases, including diabetes and neurodegenerative and cardiovascular diseases. In this context, the present review article was written to provide an accumulative account of protective and ameliorative effects of lycopene on coronary artery disease (CAD) and hypertension, which are the leading causes of death worldwide. Lycopene is a potent antioxidant that fights ROS and, subsequently, complications. It reduces blood pressure via inhibiting the angiotensin-converting enzyme and regulating nitrous oxide bioavailability. It plays an important role in lowering of LDL (low-density lipoproteins) and improving HDL (high-density lipoproteins) levels to minimize atherosclerosis, which protects the onset of coronary artery disease and hypertension. Various studies have advocated that lycopene exhibited a combating competence in the treatment of these diseases. Owing to all the antioxidant, anti-diabetic, and anti-hypertensive properties, lycopene provides a potential nutraceutical with a protective and curing ability against coronary artery disease and hypertension.
Collapse
|
21
|
Manochkumar J, Doss CGP, El-Seedi HR, Efferth T, Ramamoorthy S. The neuroprotective potential of carotenoids in vitro and in vivo. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153676. [PMID: 34339943 DOI: 10.1016/j.phymed.2021.153676] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/26/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Despite advances in research on neurodegenerative diseases, the pathogenesis and treatment response of neurodegenerative diseases remain unclear. Recent studies revealed a significant role of carotenoids to treat neurodegenerative diseases. The aim of this study was to systematically review the neuroprotective potential of carotenoids in vivo and in vitro and the molecular mechanisms and pathological factors contributing to major neurodegenerative diseases (Alzheimer's disease, Huntington's disease, Parkinson's disease, amyotrophic lateral sclerosis, and stroke). HYPOTHESIS Carotenoids as therapeutic molecules to target neurodegenerative diseases. RESULTS Aggregation of toxic proteins, mitochondrial dysfunction, oxidative stress, the excitotoxic pathway, and neuroinflammation were the major pathological factors contributing to the progression of neurodegenerative diseases. Furthermore, in vitro and in vivo studies supported the beneficiary role of carotenoids, namely lycopene, β-carotene, crocin, crocetin, lutein, fucoxanthin and astaxanthin in alleviating disease progression. These carotenoids provide neuroprotection by inhibition of neuro-inflammation, microglial activation, excitotoxic pathway, modulation of autophagy, attenuation of oxidative damage and activation of defensive antioxidant enzymes. Additionally, studies conducted on humans also demonstrated that dietary intake of carotenoids lowers the risk of neurodegenerative diseases. CONCLUSION Carotenoids may be used as drugs to prevent and treat neurodegenerative diseases. Although, the in vitro and in vivo results are encouraging, further well conducted clinical studies on humans are required to conclude about the full potential of neurodegenerative diseases.
Collapse
Affiliation(s)
- Janani Manochkumar
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - C George Priya Doss
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Hesham R El-Seedi
- Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Box 574, SE-75 123 Uppsala, Sweden; Department of Chemistry, Faculty of Science, Menoufia University, 32512 Shebin El-Koom, Egypt
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Germany
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
22
|
Wan XL, Li N, Chen YJ, Chen XS, Yang Z, Xu L, Yang HM, Wang ZY. Protective effects of lycopene on mitochondrial oxidative injury and dysfunction in the liver of aflatoxin B 1-exposed broilers. Poult Sci 2021; 100:101441. [PMID: 34547623 PMCID: PMC8456063 DOI: 10.1016/j.psj.2021.101441] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/10/2021] [Accepted: 08/15/2021] [Indexed: 11/23/2022] Open
Abstract
This study was conducted to investigate the effects of lycopene (LYC) on mitochondrial oxidative injury and dysfunction in the liver of aflatoxin B1 (AFB1)-exposed broilers. A total of 192 healthy 1-day-old male broilers were randomly divided into 3 groups with 8 replicates of 8 birds each. Birds in the 3 groups were fed basal diet (control), basal diet with 100 µg/kg AFB1, and basal diet with 100 µg/kg AFB1 and 200 mg/kg LYC, respectively. The experiment lasted 42 d. The results showed that AFB1 decreased average daily body weight gain (ADG), average daily feed intake, and gain to feed ratio (G :F) compared to the control group, the LYC supplementation increased ADG and G/F compared to AFB1 group (P < 0.05). Broilers in the AFB1 group had lower mitochondrial glutathione (mGSH) concentration and glutathione peroxidase (GSH-Px), manganese superoxide dismutase (MnSOD), and thioredoxin reductase activities, and higher hydrogen peroxide (H2O2) and reactive oxygen species (ROS) concentrations than the control group (P < 0.05). The LYC increased mGSH concentration and GSH-Px and MnSOD activities, and decreased H2O2 and ROS concentrations compared to AFB1 group (P < 0.05). Broilers fed the AFB1 diet showed increased mitochondrial swelling and decreased adenosine triphosphate concentration than the control group, and LYC had opposite effects (P < 0.05). The AFB1 decreased the activities of mitochondrial electron transfer chain (ETC) complexes I, II, III, and V, downregulated the mRNA expression levels of hepatic MnSOD, thioredoxin 2, thioredoxin reductase, peroxiredoxin-3, peroxisome proliferator-activated receptor γ coactivator 1α, nuclear respiratory factor 1, and mitochondrial transcription factor A compared with the control group (P < 0.05), and LYC increased activities of mitochondrial ETC complexes III and V, and upregulated mRNA expression levels of these genes in comparison to AFB1 group (P < 0.05). In conclusion, the LYC protected broilers from AFB1-induced liver mitochondrial oxidative injury and dysfunction by stimulating mitochondrial antioxidant capacity and maintaining mitochondrial biogenesis.
Collapse
Affiliation(s)
- X L Wan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China
| | - N Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China
| | - Y J Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China
| | - X S Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China
| | - Z Yang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China
| | - L Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China
| | - H M Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China
| | - Z Y Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China.
| |
Collapse
|
23
|
Ellagic acid prevents 3-nitropropionic acid induced symptoms of Huntington's disease. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1917-1928. [PMID: 34061228 DOI: 10.1007/s00210-021-02106-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/23/2021] [Indexed: 12/16/2022]
Abstract
Mitochondrial abnormalities and redox imbalance are major pathogenic factors in progression of Huntington's disease (HD), manifested clinically by affective, motor, cognitive, and psychiatric incompetence. Antioxidants behold much promise in mitigation of several pathological facets in HD. Ellagic acid (EA) is a naturally derived polyphenol acknowledged for potent neuroprotective abilities that enabled its significance amongst popular brain tonics. The present study is aimed to examine the outcome of EA pre-treatment in 3-nitropropionic acid (3-NP) rat prototype of HD. Separate rat groups were pre-treated with EA (25, 50, and 100 mg/kg, p.o.) for 21 days and 3-NP (10 mg/kg, i.p.) was given for 14 days alongside to induce symptoms of HD. The physical/motor functions (narrow beam paradigm, footprint study, hanging-wire assessment) and cognitive abilities using elevated plus maze and novel object recognition task were evaluated. Entire brain was isolated and succinate dehydrogenase activity and parameters of oxido-nitrosative stress were assessed in mitochondrial fraction. 3-NP accrued oxido-nitrosative stress and significant decrease in succinate dehydrogenase activity caused motor and cognitive deficits in rats. EA pre-treatment resurrected succinate dehydrogenase activity in 3-NP treated rats that indicated preservation of mitochondrial function. A significant decrease in thiobarbituric acid reactive substances and nitrite levels and increase in glutathione and catalase activity by EA in 3-NP treated rats was noted. EA protected the rats against 3-NP triggered cognitive insufficiency and motor disturbances. It can be inferred that ellagic acid protects against 3-NP induced mitochondrial dysfunction and oxido-nitrosative stress in the brain. EA supplements or nutraceuticals might possess protective potential against symptoms of HD.
Collapse
|
24
|
Lycopene Inhibits Toll-Like Receptor 4-Mediated Expression of Inflammatory Cytokines in House Dust Mite-Stimulated Respiratory Epithelial Cells. Molecules 2021; 26:molecules26113127. [PMID: 34073777 PMCID: PMC8197212 DOI: 10.3390/molecules26113127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 01/31/2023] Open
Abstract
House dust mites (HDM) are critical factors in airway inflammation. They activate respiratory epithelial cells to produce reactive oxygen species (ROS) and activate Toll-like receptor 4 (TLR4). ROS induce the expression of inflammatory cytokines in respiratory epithelial cells. Lycopene is a potent antioxidant nutrient with anti-inflammatory activity. The present study aimed to investigate whether HDM induce intracellular and mitochondrial ROS production, TLR4 activation, and pro-inflammatory cytokine expression (IL-6 and IL-8) in respiratory epithelial A549 cells. Additionally, we examined whether lycopene inhibits HDM-induced alterations in A549 cells. The treatment of A549 cells with HDM activated TLR4, induced the expression of IL-6 and IL-8, and increased intracellular and mitochondrial ROS levels. TAK242, a TLR4 inhibitor, suppressed both HDM-induced ROS production and cytokine expression. Furthermore, lycopene inhibited the HDM-induced TLR4 activation and cytokine expression, along with reducing the intracellular and mitochondrial ROS levels in HDM-treated cells. These results collectively indicated that the HDM induced TLR4 activation and increased intracellular and mitochondrial ROS levels, thus resulting in the induction of cytokine expression in respiratory epithelial cells. The antioxidant lycopene could inhibit HDM-induced cytokine expression, possibly by suppressing TLR4 activation and reducing the intracellular and mitochondrial ROS levels in respiratory epithelial cells.
Collapse
|
25
|
Gonchar OO, Maznychenko AV, Klyuchko OM, Mankovska IM, Butowska K, Borowik A, Piosik J, Sokolowska I. C 60 Fullerene Reduces 3-Nitropropionic Acid-Induced Oxidative Stress Disorders and Mitochondrial Dysfunction in Rats by Modulation of p53, Bcl-2 and Nrf2 Targeted Proteins. Int J Mol Sci 2021; 22:ijms22115444. [PMID: 34064070 PMCID: PMC8196695 DOI: 10.3390/ijms22115444] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 01/23/2023] Open
Abstract
C60 fullerene as a potent free radical scavenger and antioxidant could be a beneficial means for neurodegenerative disease prevention or cure. The aim of the study was to define the effects of C60 administration on mitochondrial dysfunction and oxidative stress disorders in a 3-nitropropionic acid (3-NPA)-induced rat model of Huntington’s disease. Animals received 3-NPA (30 mg/kg i.p.) once a day for 3 consecutive days. C60 was applied at a dose of 0.5 mg/kg of body weight, i.p. daily over 5 days before (C60 pre-treatment) and after 3-NPA exposure (C60 post-treatment). Oxidative stress biomarkers, the activity of respiratory chain enzymes, the level of antioxidant defense, and pro- and antiapoptotic markers were analyzed in the brain and skeletal muscle mitochondria. The nuclear and cytosol Nrf2 protein expression, protein level of MnSOD, γ-glutamate-cysteine ligase (γ-GCLC), and glutathione-S-transferase (GSTP) as Nrf2 targets were evaluated. Our results indicated that C60 can prevent 3-NPA-induced mitochondrial dysfunction through the restoring of mitochondrial complexes’ enzyme activity, ROS scavenging, modulating of pro/antioxidant balance and GSH/GSSG ratio, as well as inhibition of mitochondria-dependent apoptosis through the limitation of p53 mitochondrial translocation and increase in Bcl-2 protein expression. C60 improved mitochondrial protection by strengthening the endogenous glutathione system via glutathione biosynthesis by up-regulating Nrf2 nuclear accumulation as well as GCLC and GSTP protein level.
Collapse
Affiliation(s)
- Olga O. Gonchar
- Department of Hypoxic States and Department of Movements Physiology, Bogomoletz Institute of Physiology, Bogomoletz Str. 4, 01024 Kyiv, Ukraine; (O.O.G.); (I.M.M.)
| | - Andriy V. Maznychenko
- Department of Hypoxic States and Department of Movements Physiology, Bogomoletz Institute of Physiology, Bogomoletz Str. 4, 01024 Kyiv, Ukraine; (O.O.G.); (I.M.M.)
- Department of Physical Education, Gdansk University of Physical Education and Sport, Kazimierza Gorskiego Str. 1, 80-336 Gdansk, Poland;
- Correspondence:
| | - Olena M. Klyuchko
- Department of Electronics, National Aviation University, L. Huzar Ave. 1, 03058 Kyiv, Ukraine;
| | - Iryna M. Mankovska
- Department of Hypoxic States and Department of Movements Physiology, Bogomoletz Institute of Physiology, Bogomoletz Str. 4, 01024 Kyiv, Ukraine; (O.O.G.); (I.M.M.)
| | - Kamila Butowska
- Laboratory of Biophysics, Intercollegiate Faculty of Biotechnology UG-MUG, Abrahama 58, 80-307 Gdansk, Poland; (K.B.); (A.B.); (J.P.)
| | - Agnieszka Borowik
- Laboratory of Biophysics, Intercollegiate Faculty of Biotechnology UG-MUG, Abrahama 58, 80-307 Gdansk, Poland; (K.B.); (A.B.); (J.P.)
| | - Jacek Piosik
- Laboratory of Biophysics, Intercollegiate Faculty of Biotechnology UG-MUG, Abrahama 58, 80-307 Gdansk, Poland; (K.B.); (A.B.); (J.P.)
| | - Inna Sokolowska
- Department of Physical Education, Gdansk University of Physical Education and Sport, Kazimierza Gorskiego Str. 1, 80-336 Gdansk, Poland;
| |
Collapse
|
26
|
Abstract
Significance: The molecular processes that determine Huntington's disease (HD) pathogenesis are not yet fully understood, and until now no effective neuroprotective therapeutic strategies have been developed. Mitochondria are one of most important organelles required for neuronal homeostasis, by providing metabolic pathways relevant for energy production, regulating calcium homeostasis, or controlling free radical generation and cell death. Because augmented reactive oxygen species (ROS) accompanied by mitochondrial dysfunction are relevant early HD mechanisms, targeting these cellular mechanisms may constitute relevant therapeutic approaches. Recent Advances: Previous findings point toward a close relationship between mitochondrial dysfunction and redox changes in HD. Mutant huntingtin (mHTT) can directly interact with mitochondrial proteins, as translocase of the inner membrane 23 (TIM23), disrupting mitochondrial proteostasis and favoring ROS production and HD progression. Furthermore, abnormal brain and muscle redox signaling contributes to altered proteostasis and motor impairment in HD, which can be improved with the mitochondria-targeted antioxidant mitoquinone or resveratrol, an SIRT1 activator that ameliorates mitochondrial biogenesis and function. Critical Issues: Various antioxidants and metabolic enhancers have been studied in HD; however, the real outcome of these molecules is still debatable. New compounds have proven to ameliorate mitochondrial and redox-based signaling pathways in early stages of HD, potentially precluding selective neurodegeneration. Future Directions: Unraveling the molecular etiology of deregulated mitochondrial function and dynamics, and oxidative stress opens new prospects for HD therapeutics. In this review, we explore the role of redox unbalance and mitochondrial dysfunction in HD progression, and further describe advances on clinical trials in HD based on mitochondrial and redox-based therapeutic strategies.
Collapse
Affiliation(s)
- Lígia Fão
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Ana Cristina Rego
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
27
|
Kirmizi DA, Baser E, Okan A, Kara M, Yalvac ES, Doganyigit Z. The effect of a natural molecule in ovary ischemia reperfusion damage: does lycopene protect ovary? Exp Anim 2021; 70:37-44. [PMID: 32921696 PMCID: PMC7887625 DOI: 10.1538/expanim.20-0080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022] Open
Abstract
Ovarian ischemia is a gynecological emergency case that occurs as a result of ovarian torsion. Oxidative stress plays a central role in the development of ischemia/reperfusion (IR) injuries. Lycopene (LYC) is a lipophilic, natural carotenoid well known for its antioxidant properties. This study provides information on the potential applications of lycopene. The Wistar Albino rats were distributed into six groups: Sham group (only a laparotomy was performed), Control group [laparotomy and intraperitoneal dissolvent (olive oil)], IR group, IR+olive oil group, IR+LYC 2.5 mg/kg/dose, intraperitoneal group, IR+LYC 5 mg/kg/dose intraperitoneal group. Evaluated in terms of histopathological changes, tissue malondialdehyde levels (MDA), ovarian expressions of phosphorylated nuclear factor-kappa B (p-NF-κB) and the TUNEL method was utilized to show apoptosis of ovarian tissue. There was a significant decrease in MDA, p-NF-κB values and the proportion of apoptotic cells assessed by TUNEL compared to the group that did not receive intraperitoneal LYC in rat injury with IR damage (P<0.05). In histopathological damage scoring, it was observed that the cell damage was significantly reduced in LYC-administered groups. LYC showed significant ameliorative effects on ovary injury caused by IR through acting as an antioxidant, antiinflammatory, and antiapoptotic agent.
Collapse
Affiliation(s)
- Demet Aydogan Kirmizi
- Yozgat Bozok University, Faculty of Medicine, Department of Obstetrics and Gynecology, Adnan Menderes Boulevard No:44, 66100, Yozgat, Turkey
| | - Emre Baser
- Yozgat Bozok University, Faculty of Medicine, Department of Obstetrics and Gynecology, Adnan Menderes Boulevard No:44, 66100, Yozgat, Turkey
| | - Aslı Okan
- Yozgat Bozok University, Faculty of Medicine, Department of Histology and Embryology, Adnan Menderes Boulevard No:44, 66100, Yozgat, Turkey
| | - Mustafa Kara
- Ahi Evran University Training and Research Hospital, Department of Obstetrics and Gynecology, Bagbasi District Sahir Kurutluoğlu Street No: 100, 40100, Kırsehir, Turkey
| | - Ethem Serdar Yalvac
- Yozgat Bozok University, Faculty of Medicine, Department of Obstetrics and Gynecology, Adnan Menderes Boulevard No:44, 66100, Yozgat, Turkey
| | - Zuleyha Doganyigit
- Yozgat Bozok University, Faculty of Medicine, Department of Histology and Embryology, Adnan Menderes Boulevard No:44, 66100, Yozgat, Turkey
| |
Collapse
|
28
|
Lum PT, Sekar M, Gan SH, Bonam SR, Shaikh MF. Protective Effect of Natural Products against Huntington's Disease: An Overview of Scientific Evidence and Understanding Their Mechanism of Action. ACS Chem Neurosci 2021; 12:391-418. [PMID: 33475334 DOI: 10.1021/acschemneuro.0c00824] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Huntington's disease (HD), a neurodegenerative disease, normally starts in the prime of adult life, followed by a gradual occurrence of characteristic psychiatric disturbances and cognitive and motor dysfunction. To the best of our knowledge, there is no treatment available to completely mitigate the progression of HD. Among various therapeutic approaches, exhaustive literature reports have confirmed the medicinal benefits of natural products in HD experimental models. Building on this information, this review presents a brief overview of the neuroprotective mechanism(s) of natural products against in vitro/in vivo models of HD. Relevant studies were identified from several scientific databases, including PubMed, ScienceDirect, Scopus, and Google Scholar. After screening through literature from 2005 to the present, a total of 14 medicinal plant species and 30 naturally isolated compounds investigated against HD based on either in vitro or in vivo models were included in the present review. Behavioral outcomes in the HD in vivo model showed that natural compounds significantly attenuated 3-nitropropionic acid (3-NP) induced memory loss and motor incoordination. The biochemical alteration has been markedly alleviated with reduced lipid peroxidation, increased endogenous enzymatic antioxidants, reduced acetylcholinesterase activity, and increased mitochondrial energy production. Interestingly, following treatment with certain natural products, 3-NP-induced damage in the striatum was ameliorated, as seen histologically. Overall, natural products afforded varying degrees of neuroprotection in preclinical studies of HD via antioxidant and anti-inflammatory properties, preservation of mitochondrial function, inhibition of apoptosis, and induction of autophagy.
Collapse
Affiliation(s)
- Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, 30450 Perak, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, 30450 Perak, Malaysia
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia
| | - Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, Paris 75006, France
| | - Mohd. Farooq Shaikh
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, 47500 Selangor, Malaysia
| |
Collapse
|
29
|
Lycopene - A pleiotropic neuroprotective nutraceutical: Deciphering its therapeutic potentials in broad spectrum neurological disorders. Neurochem Int 2020; 140:104823. [DOI: 10.1016/j.neuint.2020.104823] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/09/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023]
|
30
|
Qu M, Ni Y, Guo B, Feng X, Jiang Z. Lycopene antagonizes lead toxicity by reducing mitochondrial oxidative damage and mitochondria-mediated apoptosis in cultured hippocampal neurons. MedComm (Beijing) 2020; 1:228-239. [PMID: 34766121 PMCID: PMC8491193 DOI: 10.1002/mco2.17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 01/03/2023] Open
Abstract
Lead (Pb) exhibits serious adverse effects on the central nervous system, and the major pathogenic mechanism of Pb toxicity is oxidative stress. As one of the carotenoid family members with potent antioxidant properties, lycopene has shown its protections by inhibiting oxidative stress damage in numerous models of neurotoxicity. The current study was designed to explore the possible protective property in primary cultured rat hippocampal neurons challenged with Pb. We observed that 5 μM lycopene pretreatment for 4 h efficiently ameliorated Pb‐caused damage in cell viability, accumulation of reactive oxygen species (ROS), and apoptosis in a dose‐dependent manner. Moreover, lycopene (5 μM) attenuated the 50 μM Pb‐induced mitochondrial ROS production, improved the activities of mitochondrial respiratory chain enzymes and ATP production, and ameliorated the 50 μM Pb‐induced depolarization of mitochondrial membrane potential as well as opening of mitochondrial permeability transition pores. In addition, 5 μM lycopene restored the imbalance of Bax/Bcl‐2, inhibited translocation of cytochrome c, and reduced caspase‐3 activation. Taken together, these findings indicate that lycopene antagonizes against Pb‐induced neurotoxicity and the underlying mechanism probably involves reduction of mitochondrial oxidative damage and mitochondria‐mediated apoptosis.
Collapse
Affiliation(s)
- Mingyue Qu
- The PLA Rocket Force Characteristic Medical Center Beijing China
| | - Yanli Ni
- The PLA Rocket Force Characteristic Medical Center Beijing China
| | - Baoshi Guo
- The PLA Rocket Force Characteristic Medical Center Beijing China
| | - Xin Feng
- The PLA Rocket Force Characteristic Medical Center Beijing China
| | - Zheng Jiang
- The PLA Rocket Force Characteristic Medical Center Beijing China
| |
Collapse
|
31
|
El Morsy EM, Ahmed M. Protective effects of lycopene on hippocampal neurotoxicity and memory impairment induced by bisphenol A in rats. Hum Exp Toxicol 2020; 39:1066-1078. [PMID: 32153214 DOI: 10.1177/0960327120909882] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bisphenol A (BPA) is used to produce polycarbonate plastic and epoxy resins which are used in many consumer products. Most people encounter BPA in their daily routines. However, it has been heavily reported that BPA has a neurotoxic effect. The present study aimed to investigate the effect of lycopene on cognitive deficits induced by a high dose of BPA focusing on mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway, oxidative stress, apoptosis, and memory retrieval in adult male rats. Therefore, 72 rats were divided into four groups: control group, BPA group (50 mg/kg body weight (bw)) 3 days a week for 42 days, lycopene group (10 mg/kg bw) daily for 42 days, and lycopene + BPA group. Concurrent treatment of lycopene with BPA improved the learning and cognition memory in Morris water maze and novel object recognition tests along with an increase in acetylcholine esterase activity as well as inhibition of oxidative stress by restoring reduced glutathione and suppressing malondialdehyde hippocampal level to their normal levels. Mechanistically, lycopene upregulated the protein expression of tyrosine receptor kinase B, which resulted in an upsurge in its downstream cascades MAPK/ERK1/2/cAMP response element-binding protein (CREB)/brain-derived neurotrophic factor (BDNF) signaling pathway in the hippocampus of BPA-intoxicated rats. Furthermore, concurrent treatment of lycopene with BPA prevented apoptosis by marked decrease in Bcl-2 associated X protein (Bax) gene expression and caspase 3 activity while restoring B-cell leukemia/lymphoma-2 (Bcl-2) gene expression. In conclusion, the present study provided evidence that lycopene exerted a neuroprotective effect against BPA intoxication in hippocampi of rats via its antioxidant properties, activation of MAPK/ERK pathway, and inhibiting a neuronal apoptosis which reflected on improving the learning and cognition memory.
Collapse
Affiliation(s)
- E M El Morsy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Helwan, Cairo, Egypt
| | - Mae Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr University for Science and Technology (MUST), 6th of October City, Giza, Egypt
| |
Collapse
|
32
|
Dapagliflozin improves behavioral dysfunction of Huntington's disease in rats via inhibiting apoptosis-related glycolysis. Life Sci 2020; 257:118076. [PMID: 32659371 DOI: 10.1016/j.lfs.2020.118076] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/24/2020] [Accepted: 07/07/2020] [Indexed: 12/31/2022]
Abstract
AIMS Huntington's disease is a rare neurodegenerative disorder which is associated with defected glucose metabolism with consequent behavioral disturbance including memory and locomotion. 3-nitropropionic acid (3-NP) can cause, in high single dose, an acute striatal injury/Huntington's disease. Dapagliflozin, which is one of the longest duration of action of SGLTIs family, may be able to diminish that injury and its resultant behavioral disturbances. MATERIAL AND METHODS Forty rats were divided into four groups (n = 10 in each group): normal control group (CTRL), dapagliflozin (CTRL + DAPA) group, 3-nitropropionic acid (3-NP) group, and dapagliflozin plus 3-nitropropionic acid (DAPA + 3-NP) group. Behavioral tests (beam walking test, hanging wire test, limb withdrawal test, Y-maze spontaneous alteration, elevated plus maze) were performed with evaluating neurological scoring. In striatum, neurotransmitters (glutamate, aspartate, GABA, ACh and AChE activity) were measured. In addition, apoptosis and glycolysis markers (NF-κB, Cyt-c, lactate, HK-II activity, P53, calpain, PEA15 and TIGAR) were determined. Inflammation (IL-1β, IL-6, IL-8 and TNF-α) and autophagy (beclin-1, LC3 and DRAM) indicators were measured. Additionally, histopathological screening was conducted. KEY FINDINGS 3-Nitropropionic acid had the ability to perturb the neurotransmission which was reflected in impaired behavioral outcome. All of glycolysis, apoptosis and inflammation markers were elevated after 3-NP acute intoxication but autophagy parameters, except DRAM, were reduced. However, DAPA markedly reversed the abovementioned parameters. SIGNIFICANCE Dapagliflozin demonstrated anti-glycolytic, anti-apoptotic, anti-inflammatory and autophagic effects on 3-NP-damaged striatal cells and promoted the behavioral outcome.
Collapse
|
33
|
Reactive Species in Huntington Disease: Are They Really the Radicals You Want to Catch? Antioxidants (Basel) 2020; 9:antiox9070577. [PMID: 32630706 PMCID: PMC7401865 DOI: 10.3390/antiox9070577] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023] Open
Abstract
Huntington disease (HD) is a neurodegenerative condition and one of the so-called rare or minority diseases, due to its low prevalence (affecting 1–10 of every 100,000 people in western countries). The causative gene, HTT, encodes huntingtin, a protein with a yet unknown function. Mutant huntingtin causes a range of phenotypes, including oxidative stress and the activation of microglia and astrocytes, which leads to chronic inflammation of the brain. Although substantial efforts have been made to find a cure for HD, there is currently no medical intervention able to stop or even delay progression of the disease. Among the many targets of therapeutic intervention, oxidative stress and inflammation have been extensively studied and some clinical trials have been promoted to target them. In the present work, we review the basic research on oxidative stress in HD and the strategies used to fight it. Many of the strategies to reduce the phenotypes associated with oxidative stress have produced positive results, yet no substantial functional recovery has been observed in animal models or patients with the disease. We discuss possible explanations for this and suggest potential ways to overcome it.
Collapse
|
34
|
Zhang W, Hua H, Guo Y, Cheng Y, Pi F, Yao W, Xie Y, Qian H. Torularhodin from Sporidiobolus pararoseus Attenuates d-galactose/AlCl 3-Induced Cognitive Impairment, Oxidative Stress, and Neuroinflammation via the Nrf2/NF-κB Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6604-6614. [PMID: 32476418 DOI: 10.1021/acs.jafc.0c01892] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Oxidative stress and neuroinflammation are considered as crucial culprits in Alzheimer's disease (AD). Torularhodin, a carotenoid pigment, possesses powerful antioxidant activity. This study aimed to elucidate the protective effects of torularhodin in the AD-like mouse model and investigated the underlying mechanisms. Behavioral and histopathological results suggested that torularhodin relieved cognitive impairments, attenuated Aβ accumulation, and inhibited glial overactivation in d-gal/AlCl3-induced ICR mice. Simultaneously, torularhodin also markedly increased antioxidant enzyme capacities, lowered the contents of RAGE, and reduced levels of inflammatory cytokines. Western blot results showed that torularhodin ameliorated neuronal oxidative damage via activation of Nrf2 translocation, upregulation of HO-1, and inactivation of NF-κB in vivo and in vitro. Thus, torularhodin effectively ameliorated cognitive impairment, oxidative stress, and neuroinflammation, possibly through the Nrf2/NF-κB signaling pathways, suggesting torularhodin might offer a promising prevention strategy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Wenyi Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
| | - Hanyi Hua
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
| | - Fuwei Pi
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
| | - Weirong Yao
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
| | - Yunfei Xie
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
| |
Collapse
|
35
|
Montesano D, Juan-García A, Mañes J, Juan C. Chemoprotective effect of carotenoids from Lycium barbarum L. on SH-SY5Y neuroblastoma cells treated with beauvericin. Food Chem Toxicol 2020; 141:111414. [PMID: 32387444 DOI: 10.1016/j.fct.2020.111414] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/25/2020] [Accepted: 05/04/2020] [Indexed: 12/19/2022]
Abstract
Goji berry has recently been introduced in Mediterranean diet and its consumption is increasing. This study aims to determine cytoprotection of lutein (LUT), zeaxanthin (ZEAX) and goji berry extract (GBE) rich in carotenoids against Beauvericin (BEA)-induced cytotoxicity on SH-SY5Y neuroblastoma cells. Both carotenoids and GBE showed cytoprotective effects. Cytoprotection was evaluated by simultaneous combination of the two xanthophylls LUT and ZEAX with BEA, as well as using pre-treatment assays. The highest protective effect occurred in 16%, 24% and 12% respectively for LUT, ZEAX and LUT + ZEAX incubating simultaneously with BEA, while by pre-treatment assay LUT showed a cytoprotection effect over 30% and ZEAX alone or LUT + ZEAX promoted only a slight cytoprotection (<10%). Pre-treatment assays with GBE, showed a cytoprotection, between 3 and 20%, for BEA concentrations ranging from 0.1 to 6.25 μM, whereas no protective effect was observed when the cells were simultaneously incubated with GBE and BEA. Finally, by means of CI-isobologram method, the interaction between LUT, ZEAX and BEA were evaluated, and the results showed an synergism effect for almost all combinations tested. The data presented shows a option of using goji berries to potentially mitigate the toxicity of beauvericin eventually present in foods.
Collapse
Affiliation(s)
- Domenico Montesano
- Department of Pharmaceutical Sciences, Section of Food Science and Nutrition, University of Perugia, Via San Costanzo 1, 06126, Perugia, Italy.
| | - Ana Juan-García
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Jordi Mañes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Cristina Juan
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain.
| |
Collapse
|
36
|
Babazadeh A, Mohammadi Vahed F, Jafari SM. Nanocarrier-mediated brain delivery of bioactives for treatment/prevention of neurodegenerative diseases. J Control Release 2020; 321:211-221. [DOI: 10.1016/j.jconrel.2020.02.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/31/2022]
|
37
|
|
38
|
Calabrese EJ, Bhatia TN, Calabrese V, Dhawan G, Giordano J, Hanekamp YN, Kapoor R, Kozumbo WJ, Leak RK. Cytotoxicity models of Huntington’s disease and relevance of hormetic mechanisms: A critical assessment of experimental approaches and strategies. Pharmacol Res 2019; 150:104371. [DOI: 10.1016/j.phrs.2019.104371] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/17/2022]
|
39
|
Kumar M, Chail M. Sucrose and saccharin differentially modulate depression and anxiety-like behavior in diabetic mice: exposures and withdrawal effects. Psychopharmacology (Berl) 2019; 236:3095-3110. [PMID: 31073738 DOI: 10.1007/s00213-019-05259-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/26/2019] [Indexed: 01/08/2023]
Abstract
RATIONALE Sugar has addictive potential owing to increase in monoaminergic-transmission at pleasure and reward centers of brain. Insulin dysfunction triggered synaptic monoamine deficit is associated with sugar overeating and craving-related psychological changes in diabetic patients. Sugar-substitute (saccharin) is non-caloric artificial sweetener that may alleviate brain disorders in diabetes. OBJECTIVES In present study, effects of sucrose and sugar-substitute (saccharin) exposures and withdrawal on depression and anxiety-like behavior in type 2 diabetic mice were assessed. METHODS Swiss albino mice were injected with streptozotocin (135 mg/kg). After induction of diabetes, mice were exposed to a two-bottle water-water, 10% sucrose-water, or 10% saccharin-water choice paradigm for 28 days. Separate groups were employed to assess withdrawal effect of sucrose or saccharin in diabetic mice. Monoamine oxidase (MAO), corticosterone, thiobarbituric acid reactive substances (TBARS), and reduced glutathione (GSH) were quantified after behavioral tests. RESULTS Diabetic mice manifested preference towards 10% sucrose or saccharin over water. Sucrose-overeating by diabetic mice amplified symptoms of depression and anxiety; however, withdrawal further exaggerated these behavioral abnormalities. Substitution of sucrose by 10% saccharin attenuated the depressive and anxiety-like behavior in comparison to diabetic mice that were exposed separately to water-water or sucrose-water alone, and with respect to normal mice. Although withdrawal from saccharin resurfaced behavioral anomalies in diabetic mice, however, these were significantly low in comparison with withdrawal from sucrose or normal group. Reinstatement of exposure to saccharin mitigated symptoms of depression and anxiety in diabetic mice. CONCLUSION Preference of sucrose overeating augments while saccharin mitigates depressive and anxiety behavior during diabetes.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Pharmacology, Swift School of Pharmacy, Ghaggar Sarai, Rajpura, Punjab, 140401, India.
| | - Monica Chail
- Department of Pharmacology, Swift School of Pharmacy, Ghaggar Sarai, Rajpura, Punjab, 140401, India
| |
Collapse
|
40
|
Wang J, Zou Q, Suo Y, Tan X, Yuan T, Liu Z, Liu X. Lycopene ameliorates systemic inflammation-induced synaptic dysfunction via improving insulin resistance and mitochondrial dysfunction in the liver-brain axis. Food Funct 2019; 10:2125-2137. [PMID: 30924473 DOI: 10.1039/c8fo02460j] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Systemic inflammation is an important determinant of synaptic dysfunction, but the underlying molecular mechanisms remain elusive. Lycopene (LYC), a major carotenoid present in tomato, is regarded as a nutraceutical that has significant antioxidant and anti-obesity bioactivities. In the current study, we randomly divided 3-month-old C57BL/6J mice into 3 groups: the control, LPS and LPS + LYC groups (LYC, 0.03% w/w, mixed with normal chow) for 5 weeks, and then mice were intraperitoneally injected with LPS (0.25 mg kg-1) for 9 days. Our results demonstrated that LYC supplementation effectively attenuated LPS-elicited neuronal damage and synaptic dysfunction through increasing the expressions of neurotrophic factors and the synaptic proteins SNAP-25 and PSD-95. LYC ameliorated LPS-induced insulin resistance and mitochondrial dysfunction in the mouse brain and liver. LYC alleviated the neuroinflammation and hepatic inflammation. Furthermore, LYC decreased the circulating levels of insulin and proinflammatory mediators LPS, TNF-α, IL-1β and IL-6. In conclusion, these results indicated that the supplementation of LYC might be a nutritional preventive strategy in systemic inflammation-induced synaptic dysfunction.
Collapse
Affiliation(s)
- Jia Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| | | | | | | | | | | | | |
Collapse
|
41
|
Ciulla M, Marinelli L, Cacciatore I, Stefano AD. Role of Dietary Supplements in the Management of Parkinson's Disease. Biomolecules 2019; 9:biom9070271. [PMID: 31295842 PMCID: PMC6681233 DOI: 10.3390/biom9070271] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/22/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022] Open
Abstract
The use of food supplements or functional food has significantly increased in the past decades, especially to compensate both the modern lifestyle and the food shortages of the industrialized countries. Despite food supplements are habitually intended to correct nutritional deficiencies or to support specific physiological functions, they are often combined with common drug therapies to improve the patient's health and/or mitigate the symptoms of many chronic diseases such as cardiovascular diseases, cystic fibrosis, cancer, liver and gastrointestinal diseases. In recent years, increased attentions are given to the patient's diet, and the use of food supplements and functional food rich in vitamins and antioxidants plays a very important role in the treatment and prevention of neurodegenerative diseases such as Parkinson's disease (PD). Natural compounds, phytochemicals, vitamins, and minerals can prevent, delay, or alleviate the clinical symptoms of PD in contrast to some of the main physiopathological mechanisms involved in the development of the disease, like oxidative stress, free radical formation, and neuroinflammation. The purpose of this review is to collect scientific evidences which support the use of specific biomolecules and biogenic elements commonly found in food supplements or functional food to improve the clinical framework of patients with PD.
Collapse
Affiliation(s)
- Michele Ciulla
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, via dei Vestini 31, 66100 Chieti Scalo (CH), Italy
| | - Lisa Marinelli
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, via dei Vestini 31, 66100 Chieti Scalo (CH), Italy
| | - Ivana Cacciatore
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, via dei Vestini 31, 66100 Chieti Scalo (CH), Italy
| | - Antonio Di Stefano
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, via dei Vestini 31, 66100 Chieti Scalo (CH), Italy.
| |
Collapse
|
42
|
Huang C, Wen C, Yang M, Gan D, Fan C, Li A, Li Q, Zhao J, Zhu L, Lu D. Lycopene protects against t-BHP-induced neuronal oxidative damage and apoptosis via activation of the PI3K/Akt pathway. Mol Biol Rep 2019; 46:3387-3397. [PMID: 31006097 DOI: 10.1007/s11033-019-04801-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/05/2019] [Indexed: 12/18/2022]
Abstract
Oxidative stress is a key factor of and closely implicated in the pathogenesis of Alzheimer's disease (AD). We herein used tert-butyl hydroperoxide (t-BHP) to induce oxidative stress and mimic oxidative neurotoxicity in vitro. Lycopene is a natural antioxidant that has a strong ability to eliminate free radicals and shows effective protection in some neurodegenerative disease models. However, the effect of lycopene on t-BHP-induced neuronal damage in primary mouse neurons is unknown. This study aimed to investigate the effects of lycopene on t-BHP-induced neuronal damage and the related mechanisms. We found that lycopene pretreatment effectively enhanced the cell viability, improved the neuron morphology, increased the GSH/GSSG level, restored the mitochondrial membrane potential (ΔΨm) and decreased reactive oxygen species generation. Furthermore, lycopene reduced the ratios of Bax:Bcl-2 and cleaved caspase-3:caspase-3 and the level of cytochrome C, increased the levels of synaptophysin (SYP) and postsynaptic density 95 (PSD95) and activated the PI3K/Akt pathway. In conclusion, lycopene attenuated oxidative stress and reduced t-BHP-induced cell apoptosis, and the mechanism is likely related to activation of the PI3K/Akt pathway. Therefore, lycopene is a potential agent for preventing oxidative stress-mediated AD.
Collapse
Affiliation(s)
- Cuiqin Huang
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Caiyan Wen
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Mei Yang
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Danhui Gan
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
- Department of Pathology, Guangzhou Overseas Chinese Hospital, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, China
| | - Chongzhu Fan
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - An Li
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Qin Li
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Jiayi Zhao
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Lihong Zhu
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Daxiang Lu
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
43
|
Jeong Y, Lim JW, Kim H. Lycopene Inhibits Reactive Oxygen Species-Mediated NF-κB Signaling and Induces Apoptosis in Pancreatic Cancer Cells. Nutrients 2019; 11:nu11040762. [PMID: 30939781 PMCID: PMC6521322 DOI: 10.3390/nu11040762] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 12/21/2022] Open
Abstract
Generation of excess quantities of reactive oxygen species (ROS) caused by mitochondrial dysfunction facilitates rapid growth of pancreatic cancer cells. Elevated ROS levels in cancer cells cause an anti-apoptotic effect by activating survival signaling pathways, such as NF-κB and its target gene expression. Lycopene, a carotenoid found in tomatoes and a potent antioxidant, displays a protective effect against pancreatic cancer. The present study was designed to determine if lycopene induces apoptosis of pancreatic cancer PANC-1 cells by decreasing intracellular and mitochondrial ROS levels, and consequently suppressing NF-κB activation and expression of NF-κB target genes including cIAP1, cIAP2, and survivin. The results show that the lycopene decreased intracellular and mitochondrial ROS levels, mitochondrial function (determined by the mitochondrial membrane potential and oxygen consumption rate), NF-κB activity, and expression of NF-κB-dependent survival genes in PANC-1 cells. Lycopene reduced cell viability with increases in active caspase-3 and the Bax to Bcl-2 ratio in PANC-1 cells. These findings suggest that supplementation of lycopene could potentially reduce the incidence of pancreatic cancer.
Collapse
Affiliation(s)
- Yoonseon Jeong
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| | - Joo Weon Lim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| | - Hyeyoung Kim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
44
|
Paul BD, Snyder SH. Impaired Redox Signaling in Huntington's Disease: Therapeutic Implications. Front Mol Neurosci 2019; 12:68. [PMID: 30941013 PMCID: PMC6433839 DOI: 10.3389/fnmol.2019.00068] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/04/2019] [Indexed: 12/22/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disease triggered by expansion of polyglutamine repeats in the protein huntingtin. Mutant huntingtin (mHtt) aggregates and elicits toxicity by multiple mechanisms which range from dysregulated transcription to disturbances in several metabolic pathways in both the brain and peripheral tissues. Hallmarks of HD include elevated oxidative stress and imbalanced redox signaling. Disruption of antioxidant defense mechanisms, involving antioxidant molecules and enzymes involved in scavenging or reversing oxidative damage, have been linked to the pathophysiology of HD. In addition, mitochondrial function is compromised in HD leading to impaired bioenergetics and elevated production of free radicals in cells. However, the exact mechanisms linking redox imbalance to neurodegeneration are still elusive. This review will focus on the current understanding of aberrant redox homeostasis in HD and potential therapeutic interventions.
Collapse
Affiliation(s)
- Bindu D. Paul
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Solomon H. Snyder
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
45
|
Chen D, Huang C, Chen Z. A review for the pharmacological effect of lycopene in central nervous system disorders. Biomed Pharmacother 2019; 111:791-801. [DOI: 10.1016/j.biopha.2018.12.151] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/31/2018] [Accepted: 12/31/2018] [Indexed: 12/13/2022] Open
|
46
|
Zeng J, Zhao J, Dong B, Cai X, Jiang J, Xue R, Yao F, Dong Y, Liu C. Lycopene protects against pressure overload-induced cardiac hypertrophy by attenuating oxidative stress. J Nutr Biochem 2019; 66:70-78. [PMID: 30772766 DOI: 10.1016/j.jnutbio.2019.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/02/2018] [Accepted: 01/02/2019] [Indexed: 12/19/2022]
Abstract
Oxidative stress is considered an important pathogenic process of cardiac hypertrophy. Lycopene is a kind of carotenoid antioxidant that protects the cardiovascular system, so we hypothesized that lycopene might inhibit cardiac hypertrophy by attenuating oxidative stress. Phenylephrine and pressure overload were used to set up the hypertrophic models in vitro and in vivo respectively. Our data revealed that treatment with lycopene can significantly block pressure overload-induced cardiac hypertrophy in in vitro and in vivo studies. Further studies demonstrated that lycopene can reverse the increase in reactive oxygen species (ROS) generation during the process of hypertrophy and can retard the activation of ROS-dependent pro-hypertrophic MAPK and Akt signaling pathways. In addition, protective effects of lycopene on the permeability transition pore opening in neonatal cardiomyocytes were observed. Moreover, we demonstrated that lycopene restored impaired antioxidant response element (ARE) activity and activated ARE-driven expression of antioxidant genes. Consequently, our findings indicated that lycopene inhibited cardiac hypertrophy by suppressing ROS-dependent mechanisms.
Collapse
Affiliation(s)
- Junyi Zeng
- Department of Cardiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China; NHC Key Laboratory on Assisted Circulation (Sun Yat-Sen University), Guangzhou, China.; Graceland Medical Center, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jingjing Zhao
- Department of Cardiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China; NHC Key Laboratory on Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
| | - Bin Dong
- Department of Cardiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China; NHC Key Laboratory on Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
| | - Xingming Cai
- Department of Cardiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China; NHC Key Laboratory on Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
| | - Jingzhou Jiang
- Department of Cardiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China; NHC Key Laboratory on Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
| | - Ruicong Xue
- Department of Cardiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China; NHC Key Laboratory on Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
| | - Fengjuan Yao
- NHC Key Laboratory on Assisted Circulation (Sun Yat-Sen University), Guangzhou, China.; Division of Ultrasound, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yugang Dong
- Department of Cardiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China; NHC Key Laboratory on Assisted Circulation (Sun Yat-Sen University), Guangzhou, China..
| | - Chen Liu
- Department of Cardiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China; NHC Key Laboratory on Assisted Circulation (Sun Yat-Sen University), Guangzhou, China..
| |
Collapse
|
47
|
Quinolinic Acid-Induced Huntington Disease-Like Symptoms Mitigated by Potent Free Radical Scavenger Edaravone-a Pilot Study on Neurobehavioral, Biochemical, and Histological Approach in Male Wistar Rats. J Mol Neurosci 2018; 66:322-341. [PMID: 30284227 DOI: 10.1007/s12031-018-1168-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/28/2018] [Indexed: 12/14/2022]
Abstract
In this study, we demonstrated for the first time the neuroprotective role of edaravone (Eda) (5 and 10 mg/kg b.w.), a potent free radical scavenger against the unilateral stereotaxic induction of quinolinic acid (QA) (300 nm/4 μl saline)-induced Huntington disease (HD)-like symptoms in behavioral, biochemical, and histological features in male Wistar rats striatum. QA induction, which mimics the early stage of HD, commonly causes oxidative stress to the cell and decreases the antioxidant defense mechanism by altering the level of lipid peroxidation (LPO), protein carbonyls, and nitrate concentration (NO) and the activities of glutathione family enzymes (GPx, GST, GR) and acetyl choline esterase concentration (AChE) which was found to be ameliorated by Eda treatment in both the tested doses 5 and 10 mg/kg b.w. in the significance of P < 0.05 and P < 0.01, respectively. Finally histopathological analysis by hematoxylin and eosin stain concluded the promising neurodefensive role of Eda in rat striatum at the dosage of 10 mg/kg b.w., with the decreased tissue damage and the number of damaged granular cells when compared to QA-induced groups.
Collapse
|
48
|
Guo W, Bi S, Kang J, Zhang Y, Long R, Huang X, Shan MN, Anderson RC. Bacterial communities related to 3-nitro-1-propionic acid degradation in the rumen of grazing ruminants in the Qinghai-Tibetan Plateau. Anaerobe 2018; 54:42-54. [PMID: 30081086 DOI: 10.1016/j.anaerobe.2018.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 07/23/2018] [Accepted: 07/31/2018] [Indexed: 12/25/2022]
Abstract
The objectives of this current study were to characterize the overall rumen bacterial community in grazing yak and two sheep species (Tibetan and Small Tail Han sheep) reared in the unique environmental conditions of the Qinghai-Tibetan Plateau, as well as the bacterial community associated with the detoxification of a phytotoxin, 3-nitro-1-propionic acid (NPA), during in vitro culture with 4.2 mM NPA. Using 16S rRNA gene high-throughput sequencing, it was found that the yak rumen harbored populations showing a higher bacterial diversity compared to Tibetan sheep. The rumen bacterial community in the three ruminant species differed from each other. PICRUSt analysis identified that the pathway involved in nitrogen metabolism was enriched in Tibetan sheep while that related to fatty acid biosynthesis was over-represented in the yak. The methane metabolism pathway was dominant in bacterial populations from the Small Tail Han sheep. Comparisons between freshly collected rumen fluid and populations subjected to consecutive 72 h batch cultures revealed substantial decreases in alpha diversity in populations cultured with NPA. Moreover, the relative abundances of some bacterial taxa changed significantly, with increased abundance of Proteobacteria and Actinobacteria. In addition, the overall community structure of the bacterial population in the freshly collected ruminal fluid was clearly different than that within populations observed in the 72 h batch cultures likely due to the impact of NPA treatments and the more restrictive growth conditions of the culture medium. In regard to PICRUSt analysis, the methane metabolism pathway became scarce in Tibetan and Small Tail Han sheep, whereas the energy and carbohydrate metabolic pathways such as nitrogen metabolism, ABC transporters and glycolysis/gluconeogenesis were found to be maintained across all populations. Results from the present study provide new information on the bacterial and functional composition within ruminal populations adapted to three economically important grazing ruminant species prominent on the Qinghai-Tibetan Plateau. The results further reveal that effects of NPA treatment on community structure can have an impact not only the metabolism of NPA but on other digestive functions as well.
Collapse
Affiliation(s)
- Wei Guo
- College of Pastoral Agriculture Science and Technology, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou City 730020, China
| | - Sisi Bi
- School of Life Sciences, Lanzhou University, Lanzhou City 730020, China
| | - Jingpeng Kang
- College of Pastoral Agriculture Science and Technology, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou City 730020, China
| | - Ying Zhang
- School of Public Health, Lanzhou University, Lanzhou City 730020, China.
| | - Ruijun Long
- College of Pastoral Agriculture Science and Technology, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou City 730020, China; School of Life Sciences, Lanzhou University, Lanzhou City 730020, China
| | - Xiaodan Huang
- School of Public Health, Lanzhou University, Lanzhou City 730020, China; Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Qinghai Plateau Yak Research Center, Xining City 810000, China
| | - M N Shan
- School of Life Sciences, Lanzhou University, Lanzhou City 730020, China
| | - Robin C Anderson
- USDA/ARS, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, 2881 F&B Road, College Station, TX 77845, USA
| |
Collapse
|
49
|
Jiang X, Ganesan P, Rengarajan T, Choi DK, Arulselvan P. Cellular phenotypes as inflammatory mediators in Parkinson's disease: Interventional targets and role of natural products. Biomed Pharmacother 2018; 106:1052-1062. [PMID: 30119171 DOI: 10.1016/j.biopha.2018.06.162] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 12/15/2022] Open
Abstract
Pathogenesis of Parkinson's disease (PD) is undoubtedly a multifactorial phenomenon, with diverse etiological agents. Pro-inflammatory mediators act as a skew that directs disease progression during neurodegenerative diseases. Understanding the dynamics of inflammation and inflammatory mediators in preventing or reducing disease progression has recently gained much attention. Inflammatory neuro-degeneration is regulated via cytokines, chemokines, lipid mediators and immune cell subsets; however, individual cellular phenotypes in the Central Nervous System (CNS) acts in diverse ways whose persistent activation leads to unresolving inflammation often causing unfavorable outcomes in neurodegenerative disease like PD. Specifically, activation of cellular phenotypes like astrocytes, microglia, activation of peripheral immune cells requires different activation signals and agents like (cytokines, misfolded protein aggregates, infectious agents, pesticides like organophosphates, etc.,). However, what is unknown is how the different cellular phenotypes respond uniquely and the role of the factors they secrete alters the signal cascades in the complex neuron-microglial connections in the CNS. Hence, understanding the role of cellular phenotypes and the inflammatory mediators, the cross talk among the signals and their receptors can help us to identify the potential therapeutic target using natural products. In this review we have tried to put together the role of cellular phenotypes as a skew that favors PD progression and we have also discussed how the lack of experimental approaches and challenges that affects understanding the cellular targets that can be used against natural derivatives in alleviating PD pathophysiology. Together, this review will provide the better insights into the role of cellular phenotypes of neuroinflammation, inflammatory mediators and the orchestrating factors of inflammation and how they can be targeted in a more specific way that can be used in the clinical management of PD.
Collapse
Affiliation(s)
- Xu Jiang
- Department of Neurology, Shenzhen Shajing Affiliated Hospital of Guangzhou Medical University, 3 Shajing St, Baoan Qu, Shenzhen Shi, Guangdong Sheng, 518104, China.
| | - Palanivel Ganesan
- Nanotechnology Research Center and Department of Applied Life Science, College of Biomedical and Health Science, Konkuk University, Chungju, 380-701, Republic of Korea; Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, 380-701, Republic of Korea.
| | - Thamaraiselvan Rengarajan
- Scigen Research and Innovation Pvt. Ltd., Periyar Technology Business Incubator, Periyar Nagar, Thanjavur, 613403, India.
| | - Dong-Kug Choi
- Nanotechnology Research Center and Department of Applied Life Science, College of Biomedical and Health Science, Konkuk University, Chungju, 380-701, Republic of Korea; Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, 380-701, Republic of Korea.
| | - Palanisamy Arulselvan
- Scigen Research and Innovation Pvt. Ltd., Periyar Technology Business Incubator, Periyar Nagar, Thanjavur, 613403, India; Muthayammal Centre for Advanced Research, Muthayammal College of Arts and Science, Rasipuram, Namakkal, Tamilnadu, 637408, India.
| |
Collapse
|
50
|
Danduga RCSR, Dondapati SR, Kola PK, Grace L, Tadigiri RVB, Kanakaraju VK. Neuroprotective activity of tetramethylpyrazine against 3-nitropropionic acid induced Huntington's disease-like symptoms in rats. Biomed Pharmacother 2018; 105:1254-1268. [PMID: 30021362 DOI: 10.1016/j.biopha.2018.06.079] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 02/06/2023] Open
Abstract
Huntington's disease (HD) is an autosomal neurodegenerative disease characterized by chorea, dystonia, motor ataxia, cognitive decline and psychiatric disorders with gradual loss of nerve cells and has no existing cure for the disease. In the present study, a mitochondrial toxin, 3-nitropropionic acid (3-NP) is used to induce HD like symptoms in rats. Tetramethylpyrazine is one of the active ingredients of Chuan Xiong which was reported to have neurotrophic and neuroprotective activities. The present study was designed to evaluate the role of TMP on 3-NP induced behavioral, biochemical, neurochemical, and histological alterations in the different regions of the brain. Animals were pretreated with normal saline/TMP for 7 days. From 8th day, the treatment groups were co-administered with 3-NP (10 mg/kg, i.p) and continued to the 21st day of the treatment protocol. At the end of the study, we found that the TMP improved all the behavioral performances of 3-NP induced neurotoxic rats, significantly. Further, oxidative stress parameters (lipid peroxidation, reduced glutathione, catalase, and superoxide dismutase), succinate dehydrogenase enzyme, and neurochemical (GABA and glutamate) estimations were done in the brain homogenate. In our study, the treatment with TMP ameliorated the 3-NP induced alterations, in the biochemical and neurochemical parameter in the brain homogenate, dose-dependently. The protective role of TMP further confirmed by measuring the lesion area with the 2,3,5-triphenyltetrazolium chloride staining of the brain slices and histopathological alteration in the hippocampus (CA1 and CA3) and striatal regions of the brain. Hence, the present findings suggest that the protective role of TMP against 3-NP induced behavioral, biochemical, neurochemical, and histological alterations in rats.
Collapse
Affiliation(s)
| | - Subba Reddy Dondapati
- Department of Pharmacology, Nirmala College of Pharmacy, Atmakur, Andhra Pradesh, India
| | - Phani Kumar Kola
- Department of Pharmacology, University College of Pharmaceutical Sciences, Acharya Nagarjuna University, India
| | - Lilly Grace
- Department of Pharmacology, University College of Pharmaceutical Sciences, Acharya Nagarjuna University, India
| | | | - Vijaya Kishore Kanakaraju
- Department of Pharmaceutical Chemistry, University College of Pharmaceutical Sciences, Acharya Nagarjuna University, India
| |
Collapse
|