1
|
Ji L, Menu I, Majbri A, Bhatia T, Trentacosta CJ, Thomason ME. Trajectories of human brain functional connectome maturation across the birth transition. PLoS Biol 2024; 22:e3002909. [PMID: 39561110 PMCID: PMC11575827 DOI: 10.1371/journal.pbio.3002909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024] Open
Abstract
Understanding the sequence and timing of brain functional network development at the beginning of human life is critically important from both normative and clinical perspectives. Yet, we presently lack rigorous examination of the longitudinal emergence of human brain functional networks over the birth transition. Leveraging a large, longitudinal perinatal functional magnetic resonance imaging (fMRI) data set, this study models developmental trajectories of brain functional networks spanning 25 to 55 weeks of post-conceptual gestational age (GA). The final sample includes 126 fetal scans (GA = 31.36 ± 3.83 weeks) and 58 infant scans (GA = 48.17 ± 3.73 weeks) from 140 unique subjects. In this study, we document the developmental changes of resting-state functional connectivity (RSFC) over the birth transition, evident at both network and graph levels. We observe that growth patterns are regionally specific, with some areas showing minimal RSFC changes, while others exhibit a dramatic increase at birth. Examples with birth-triggered dramatic change include RSFC within the subcortical network, within the superior frontal network, within the occipital-cerebellum joint network, as well as the cross-hemisphere RSFC between the bilateral sensorimotor networks and between the bilateral temporal network. Our graph analysis further emphasized the subcortical network as the only region of the brain exhibiting a significant increase in local efficiency around birth, while a concomitant gradual increase was found in global efficiency in sensorimotor and parietal-frontal regions throughout the fetal to neonatal period. This work unveils fundamental aspects of early brain development and lays the foundation for future work on the influence of environmental factors on this process.
Collapse
Affiliation(s)
- Lanxin Ji
- Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, New York State, United States of America
| | - Iris Menu
- Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, New York State, United States of America
| | - Amyn Majbri
- Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, New York State, United States of America
| | - Tanya Bhatia
- Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, New York State, United States of America
| | | | - Moriah E Thomason
- Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, New York State, United States of America
- Department of Population Health, New York University School of Medicine, New York, New York State, United States of America
- Neuroscience Institute, New York University School of Medicine, New York, New York State, United States of America
| |
Collapse
|
2
|
Argyropoulou MI, Xydis VG, Astrakas LG. Functional connectivity of the pediatric brain. Neuroradiology 2024; 66:2071-2082. [PMID: 39230715 DOI: 10.1007/s00234-024-03453-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/14/2024] [Indexed: 09/05/2024]
Abstract
PURPOSE This review highlights the importance of functional connectivity in pediatric neuroscience, focusing on its role in understanding neurodevelopment and potential applications in clinical practice. It discusses various techniques for analyzing brain connectivity and their implications for clinical interventions in neurodevelopmental disorders. METHODS The principles and applications of independent component analysis and seed-based connectivity analysis in pediatric brain studies are outlined. Additionally, the use of graph analysis to enhance understanding of network organization and topology is reviewed, providing a comprehensive overview of connectivity methods across developmental stages, from fetuses to adolescents. RESULTS Findings from the reviewed studies reveal that functional connectivity research has uncovered significant insights into the early formation of brain circuits in fetuses and neonates, particularly the prenatal origins of cognitive and sensory systems. Longitudinal research across childhood and adolescence demonstrates dynamic changes in brain connectivity, identifying critical periods of development and maturation that are essential for understanding neurodevelopmental trajectories and disorders. CONCLUSION Functional connectivity methods are crucial for advancing pediatric neuroscience. Techniques such as independent component analysis, seed-based connectivity analysis, and graph analysis offer valuable perspectives on brain development, creating new opportunities for early diagnosis and targeted interventions in neurodevelopmental disorders, thereby paving the way for personalized therapeutic strategies.
Collapse
Affiliation(s)
- Maria I Argyropoulou
- Department of Radiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, P.O. Box 1186, Ioannina, 45110, Greece.
| | - Vasileios G Xydis
- Department of Radiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, P.O. Box 1186, Ioannina, 45110, Greece
| | - Loukas G Astrakas
- Medical Physics Laboratory, Faculty of Medicine, School of Health Sciences, University of Ioannina, P.O. Box 1186, Ioannina, 45110, Greece
| |
Collapse
|
3
|
Lautarescu A, Bonthrone AF, Bos B, Barratt B, Counsell SJ. Advances in fetal and neonatal neuroimaging and everyday exposures. Pediatr Res 2024; 96:1404-1416. [PMID: 38877283 PMCID: PMC11624138 DOI: 10.1038/s41390-024-03294-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 06/16/2024]
Abstract
The complex, tightly regulated process of prenatal brain development may be adversely affected by "everyday exposures" such as stress and environmental pollutants. Researchers are only just beginning to understand the neural sequelae of such exposures, with advances in fetal and neonatal neuroimaging elucidating structural, microstructural, and functional correlates in the developing brain. This narrative review discusses the wide-ranging literature investigating the influence of parental stress on fetal and neonatal brain development as well as emerging literature assessing the impact of exposure to environmental toxicants such as lead and air pollution. These 'everyday exposures' can co-occur with other stressors such as social and financial deprivation, and therefore we include a brief discussion of neuroimaging studies assessing the effect of social disadvantage. Increased exposure to prenatal stressors is associated with alterations in the brain structure, microstructure and function, with some evidence these associations are moderated by factors such as infant sex. However, most studies examine only single exposures and the literature on the relationship between in utero exposure to pollutants and fetal or neonatal brain development is sparse. Large cohort studies are required that include evaluation of multiple co-occurring exposures in order to fully characterize their impact on early brain development. IMPACT: Increased prenatal exposure to parental stress and is associated with altered functional, macro and microstructural fetal and neonatal brain development. Exposure to air pollution and lead may also alter brain development in the fetal and neonatal period. Further research is needed to investigate the effect of multiple co-occurring exposures, including stress, environmental toxicants, and socioeconomic deprivation on early brain development.
Collapse
Affiliation(s)
- Alexandra Lautarescu
- Department of Perinatal Imaging and Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alexandra F Bonthrone
- Department of Perinatal Imaging and Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Brendan Bos
- MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Ben Barratt
- MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Serena J Counsell
- Department of Perinatal Imaging and Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
| |
Collapse
|
4
|
Cook KM, De Asis-Cruz J, Sitrin C, Barnett SD, Krishnamurthy D, Limperopoulos C. Greater Neighborhood Disadvantage Is Associated with Alterations in Fetal Functional Brain Network Structure. J Pediatr 2024; 274:114201. [PMID: 39032768 PMCID: PMC11499008 DOI: 10.1016/j.jpeds.2024.114201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
OBJECTIVE To determine the association between neighborhood disadvantage (ND) and functional brain development of in utero fetuses. STUDY DESIGN We conducted an observational study using Social Vulnerability Index (SVI) scores to assess the impact of ND on a prospectively recruited sample of healthy pregnant women from Washington, DC. Using 79 functional magnetic resonance imaging scans from 68 healthy pregnancies at a mean gestational age of 33.12 weeks, we characterized the overall functional brain network structure using a graph metric approach. We used linear mixed effects models to assess the relationship between SVI and gestational age on 5 graph metrics, adjusting for multiple scans. RESULTS Exposure to greater ND was associated with less well integrated functional brain networks, as observed by longer characteristic path lengths and diminished global efficiency (GE), as well as diminished small world propensity (SWP). Across gestational ages, however, the association between SVI and network integration diminished to a negligible relationship in the third trimester. Conversely, SWP was significant across pregnancy, but the relationship changed such that there was a negative association with SWP earlier in the second trimester that inverted around the transition to the third trimester to a positive association. CONCLUSIONS These data directly connect ND and altered functional brain maturation in fetuses. Our results suggest that, even before birth, proximity to environmental stressors in the wider neighborhood environment are associated with altered brain development.
Collapse
Affiliation(s)
- Kevin Michael Cook
- Developing Brain Institute, Children's National Hospital, Washington, DC
| | | | - Chloe Sitrin
- Department of Psychology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI
| | - Scott D Barnett
- Developing Brain Institute, Children's National Hospital, Washington, DC
| | | | | |
Collapse
|
5
|
Qiu Y, Liu Y, Gan M, Wang W, Jiang T, Jiang Y, Lv H, Lu Q, Qin R, Tao S, Huang L, Xu X, Liu C, Dou Y, Ke K, Sun T, Jiang Y, Xu B, Jin G, Ma H, Shen H, Hu Z, Lin Y, Du J. Association of prenatal multiple metal exposures with child neurodevelopment at 3 years of age: A prospective birth cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173812. [PMID: 38857795 DOI: 10.1016/j.scitotenv.2024.173812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/13/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Prenatal exposures to toxic metals and trace elements have been linked to childhood neurodevelopment. However, existing evidence remains inconclusive, and further research is needed to investigate the mixture effects of multiple metal exposures on childhood neurodevelopment. We aimed to examine the associations between prenatal exposure to specific metals and metal mixtures and neurodevelopment in children. In this prospective cohort study, we used the multivariable linear regressions and the robust modified Poisson regressions to explore the associations of prenatal exposure to 25 specific metals with neurodevelopment among children at 3 years of age in 854 mother-child pairs from the Jiangsu Birth Cohort (JBC) Study. The Bayesian kernel machine regression (BKMR) was employed to assess the joint effects of multiple metals on neurodevelopment. Prenatal manganese (Mn) exposure was negatively associated with the risk of non-optimal cognition development of children, while vanadium (V), copper (Cu), zinc (Zn), antimony (Sb), cerium (Ce) and uranium (U) exposures were positively associated with the risk of non-optimal gross motor development. BKMR identified an interaction effect between Sb and Ce on non-optimal gross motor development. Additionally, an element risk score (ERS), representing the mixture effect of multiple metal exposures including V, Cu, Zn, Sb, Ce and U was constructed based on weights from a Poisson regression model. Children with ERS in the highest tertile had higher probability of non-optimal gross motor development (RR = 2.37, 95 % CI: 1.15, 4.86) versus those at the lowest tertile. Notably, Sb [conditional-posterior inclusion probabilities (cPIP) = 0.511] and U (cPIP = 0.386) mainly contributed to the increased risk of non-optimal gross motor development. The findings highlight the importance of paying attention to the joint effects of multiple metals on children's neurodevelopment. The ERS score may serve as an indicator of comprehensive metal exposure risk for children's neurodevelopment.
Collapse
Affiliation(s)
- Yun Qiu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, Jiangsu, China
| | - Yuxin Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Ming Gan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Weiting Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Tao Jiang
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yangqian Jiang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Hong Lv
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, Jiangsu, China
| | - Qun Lu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Rui Qin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Shiyao Tao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Lei Huang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Xin Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Cong Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yuanyan Dou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Kang Ke
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Tianyu Sun
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yue Jiang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Bo Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Guangfu Jin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, Jiangsu, China
| | - Hongxia Ma
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, Jiangsu, China
| | - Hongbing Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, Jiangsu, China
| | - Yuan Lin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, Jiangsu, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China.
| | - Jiangbo Du
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, Jiangsu, China.
| |
Collapse
|
6
|
Cajachagua-Torres KN, Quezada-Pinedo HG, Wu T, Trasande L, Ghassabian A. Exposure to Endocrine Disruptors in Early life and Neuroimaging Findings in Childhood and Adolescence: a Scoping Review. Curr Environ Health Rep 2024; 11:416-442. [PMID: 39078539 PMCID: PMC11324673 DOI: 10.1007/s40572-024-00457-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2024] [Indexed: 07/31/2024]
Abstract
PURPOSE OF REVIEW: Evidence suggests neurotoxicity of endocrine disrupting chemicals (EDCs) during sensitive periods of development. We present an overview of pediatric population neuroimaging studies that examined brain influences of EDC exposure during prenatal period and childhood. RECENT FINDINGS: We found 46 studies that used magnetic resonance imaging (MRI) to examine brain influences of EDCs. These studies showed associations of prenatal exposure to phthalates, organophosphate pesticides (OPs), polyaromatic hydrocarbons and persistent organic pollutants with global and regional brain structural alterations. Few studies suggested alteration in functional MRI associated with prenatal OP exposure. However, studies on other groups of EDCs, such as bisphenols, and those that examined childhood exposure were less conclusive. These findings underscore the potential profound and lasting effects of prenatal EDC exposure on brain development, emphasizing the need for better regulation and strategies to reduce exposure and mitigate impacts. More studies are needed to examine the influence of postnatal exposure to EDC on brain imaging.
Collapse
Affiliation(s)
- Kim N Cajachagua-Torres
- Department of Pediatrics, NYU Grossman School of Medicine, 555 First Avenue, New York, NY, 10016, USA.
- Department of Pediatrics, Erasmus MC, Erasmus University Rotterdam, Rotterdam, The Netherlands.
| | - Hugo G Quezada-Pinedo
- Department of Pediatrics, Erasmus MC, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Tong Wu
- Department of Radiology and Nuclear Medicine, Erasmus MC, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Leonardo Trasande
- Department of Pediatrics, NYU Grossman School of Medicine, 555 First Avenue, New York, NY, 10016, USA
- Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Akhgar Ghassabian
- Department of Pediatrics, NYU Grossman School of Medicine, 555 First Avenue, New York, NY, 10016, USA
- Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
7
|
Jocson C, Nayak B. Newborn with In Utero Lead Toxicity. Neoreviews 2024; 25:e515-e518. [PMID: 39085175 DOI: 10.1542/neo.25-8-e515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/13/2024] [Accepted: 04/15/2024] [Indexed: 08/02/2024]
Affiliation(s)
- Cyndee Jocson
- Department of Pediatrics, Harlem Hospital Center, New York, NY
| | - Babina Nayak
- Division of Neonatology, Department of Pediatrics, Harlem Hospital Center, New York, NY
| |
Collapse
|
8
|
Calixto C, Taymourtash A, Karimi D, Snoussi H, Velasco-Annis C, Jaimes C, Gholipour A. Advances in Fetal Brain Imaging. Magn Reson Imaging Clin N Am 2024; 32:459-478. [PMID: 38944434 PMCID: PMC11216711 DOI: 10.1016/j.mric.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Over the last 20 years, there have been remarkable developments in fetal brain MR imaging analysis methods. This article delves into the specifics of structural imaging, diffusion imaging, functional MR imaging, and spectroscopy, highlighting the latest advancements in motion correction, fetal brain development atlases, and the challenges and innovations. Furthermore, this article explores the clinical applications of these advanced imaging techniques in comprehending and diagnosing fetal brain development and abnormalities.
Collapse
Affiliation(s)
- Camilo Calixto
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, 401 Park Dr, 7th Floor West, Boston, MA 02215, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA.
| | - Athena Taymourtash
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Spitalgasse 23, Wien 1090, Austria
| | - Davood Karimi
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, 401 Park Dr, 7th Floor West, Boston, MA 02215, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Haykel Snoussi
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, 401 Park Dr, 7th Floor West, Boston, MA 02215, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Clemente Velasco-Annis
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, 401 Park Dr, 7th Floor West, Boston, MA 02215, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Camilo Jaimes
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA; Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02215, USA
| | - Ali Gholipour
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, 401 Park Dr, 7th Floor West, Boston, MA 02215, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| |
Collapse
|
9
|
Dow C, Kadawathagedara M, Ghozal M, Charles MA, Adel-Patient K, Dereumeaux C, de Lauzon-Guillain B. Maternal diet quality during pregnancy and biomarkers of potentially toxic trace element exposure: Data from the ELFE cohort. Food Chem Toxicol 2024; 190:114793. [PMID: 38852759 DOI: 10.1016/j.fct.2024.114793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/18/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
The contribution of the diet to potentially toxic trace element exposure in pregnancy has been rarely addressed. The objective of the present study was to determine the association between the maternal diet during pregnancy and biomarkers of exposure for arsenic (As), mercury (Hg) and lead (Pb) at delivery. As was assessed in maternal urine, Hg in maternal hair, and Pb in cord blood, as a proxy for in utero exposure. Based on 2995 women from the ELFE nationwide birth cohort, higher scores for dietary patterns considered healthy were associated with higher concentrations of As and Hg in maternal matrices. Levels of cord blood Pb were inconsistently associated with dietary patterns considered healthy, and lower with a dietary pattern driven by milk and breakfast cereals. Lower levels of Hg were associated with higher Western dietary pattern scores. In conclusion, higher levels of maternal urinary As and hair Hg are associated with diets considered as "Healthy", while cord blood Pb was not strongly correlated with dietary exposure.
Collapse
Affiliation(s)
- Courtney Dow
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, CRESS, Paris, France.
| | - Manik Kadawathagedara
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, CRESS, Paris, France
| | - Manel Ghozal
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, CRESS, Paris, France
| | - Marie-Aline Charles
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, CRESS, Paris, France
| | - Karine Adel-Patient
- Universié Paris Saclay, CEA, INRAE, MTS/Laboratoire d'Immuno-Allergie Alimentaire, Gif-sur-Yvette, France
| | | | | |
Collapse
|
10
|
Ouisselsat M, El Maouaki A, Maidoumi S, François Y, Pineau A, Sedki A. Assessment of Essential and Toxic Element Levels in the Toenails of Children with Autism Spectrum Disorder. Biol Trace Elem Res 2024:10.1007/s12011-024-04319-w. [PMID: 39042314 DOI: 10.1007/s12011-024-04319-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Autism spectrum disorder (ASD) has become a global public health concern, impacting the quality of life. The question of gene-environment interaction in the emergence of ASD remains a subject of ongoing debate, and exploring its pathophysiology is thoroughly related to metals as a risk factor. Therefore, this study aims to assess the levels of toxic (Al, Cd, Hg, and Pb) and essential (Cr, Mn, Fe, Ni, Cu, Zn, and Se) elements in toenail samples collected in children with ASD and neurotypical children, by ICP-MS. Parallelly, we will discuss the use of toenails as an exposure indicator. The study involved 208 children aged 3 to 14 from Marrakech, Morocco. One hundred two were diagnosed with ASD and 106 were neurotypical children. Significant statistical differences in the concentration of Cr, Mn, and Fe were documented between the two groups. Higher levels of Pb in toenails compared to reference values have been reported. No association was established between concentrations of elements and age. Spearman correlation coefficients revealed a significantly different pattern of mutual dependence for toxic and essential elements between the two groups. The strongest positive correlations were found in the neurotypical group (Fe-Mn (ρ = 0.750), and Se-Zn (ρ = 0.800)). These results provide additional, although inconclusive, evidence on the probable role of element disturbance in the pathogenesis of ASD. Further studies should be performed to explore other nutritional, cultural, sociodemographic, environmental, and methodological factors that may impact the levels of these elements in the nails and their possible correlation with the incidence of ASD.
Collapse
Affiliation(s)
- Mariam Ouisselsat
- Laboratory of Water, Biodiversity and Climate Change, Department of Biology, Faculty of Sciences - Semlalia, Cadi Ayyad University, Bd Moulay Abdellah BP, 2390-40001, Marrakech, Morocco.
| | - Amal El Maouaki
- Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, 274, 40000, Marrakech, Morocco
| | - Sana Maidoumi
- Laboratory of Water, Biodiversity and Climate Change, Department of Biology, Faculty of Sciences - Semlalia, Cadi Ayyad University, Bd Moulay Abdellah BP, 2390-40001, Marrakech, Morocco
- Higher Institute of Nursing Professions and Health Techniques, Rue Abdelouahab Derraq, 40000, Marrakech, Morocco
| | - Yannick François
- Mineral Element Dosing Centre, UFR of Pharmaceutical and Biological Sciences, University of Nantes, 9, Rue Bias, 44035 - 44000, Nantes Cedex 1, France
| | - Alain Pineau
- Mineral Element Dosing Centre, UFR of Pharmaceutical and Biological Sciences, University of Nantes, 9, Rue Bias, 44035 - 44000, Nantes Cedex 1, France
| | - Azeddine Sedki
- Laboratory of Water, Biodiversity and Climate Change, Department of Biology, Faculty of Sciences - Semlalia, Cadi Ayyad University, Bd Moulay Abdellah BP, 2390-40001, Marrakech, Morocco
| |
Collapse
|
11
|
Arichi T. Characterizing Large-Scale Human Circuit Development with In Vivo Neuroimaging. Cold Spring Harb Perspect Biol 2024; 16:a041496. [PMID: 38438187 PMCID: PMC11146311 DOI: 10.1101/cshperspect.a041496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Large-scale coordinated patterns of neural activity are crucial for the integration of information in the human brain and to enable complex and flexible human behavior across the life span. Through recent advances in noninvasive functional magnetic resonance imaging (fMRI) methods, it is now possible to study this activity and how it emerges in the living fetal brain across the second half of human gestation. This work has demonstrated that functional activity in the fetal brain has several features in keeping with highly organized networks of activity, which are undergoing a highly programmed and rapid sequence of development before birth, in which long-range connections emerge and core features of the mature functional connectome (such as hub regions and a gradient organization) are established. In this review, the findings of these studies are summarized, their relationship to the known changes in developmental neurobiology is considered, and considerations for future work in the context of limitations to the fMRI approach are presented.
Collapse
Affiliation(s)
- Tomoki Arichi
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, United Kingdom
- Children's Neurosciences, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, United Kingdom
| |
Collapse
|
12
|
Morgan RK, Wang K, Svoboda LK, Rygiel CA, Lalancette C, Cavalcante R, Bartolomei MS, Prasasya R, Neier K, Perera BP, Jones TR, Colacino JA, Sartor MA, Dolinoy DC. Effects of Developmental Lead and Phthalate Exposures on DNA Methylation in Adult Mouse Blood, Brain, and Liver: A Focus on Genomic Imprinting by Tissue and Sex. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:67003. [PMID: 38833407 PMCID: PMC11166413 DOI: 10.1289/ehp14074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 05/02/2024] [Accepted: 05/16/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Maternal exposure to environmental chemicals can cause adverse health effects in offspring. Mounting evidence supports that these effects are influenced, at least in part, by epigenetic modifications. It is unknown whether epigenetic changes in surrogate tissues such as the blood are reflective of similar changes in target tissues such as cortex or liver. OBJECTIVE We examined tissue- and sex-specific changes in DNA methylation (DNAm) associated with human-relevant lead (Pb) and di(2-ethylhexyl) phthalate (DEHP) exposure during perinatal development in cerebral cortex, blood, and liver. METHODS Female mice were exposed to human relevant doses of either Pb (32 ppm ) via drinking water or DEHP (5 mg / kg-day ) via chow for 2 weeks prior to mating through offspring weaning. Whole genome bisulfite sequencing (WGBS) was utilized to examine DNAm changes in offspring cortex, blood, and liver at 5 months of age. Metilene and methylSig were used to identify differentially methylated regions (DMRs). Annotatr and ChIP-enrich were used for genomic annotations and gene set enrichment tests of DMRs, respectively. RESULTS The cortex contained the majority of DMRs associated with Pb (66%) and DEHP (57%) exposure. The cortex also contained the greatest degree of overlap in DMR signatures between sexes (n = 13 and 8 DMRs with Pb and DEHP exposure, respectively) and exposure types (n = 55 and 39 DMRs in males and females, respectively). In all tissues, detected DMRs were preferentially found at genomic regions associated with gene expression regulation (e.g., CpG islands and shores, 5' UTRs, promoters, and exons). An analysis of GO terms associated with DMR-containing genes identified imprinted genes to be impacted by both Pb and DEHP exposure. Of these, Gnas and Grb10 contained DMRs across tissues, sexes, and exposures, with some signatures replicated between target and surrogate tissues. DMRs were enriched in the imprinting control regions (ICRs) of Gnas and Grb10, and we again observed a replication of DMR signatures between blood and target tissues. Specifically, we observed hypermethylation of the Grb10 ICR in both blood and liver of Pb-exposed male animals. CONCLUSIONS These data provide preliminary evidence that imprinted genes may be viable candidates in the search for epigenetic biomarkers of toxicant exposure in target tissues. Additional research is needed on allele- and developmental stage-specific effects, as well as whether other imprinted genes provide additional examples of this relationship. https://doi.org/10.1289/EHP14074.
Collapse
Affiliation(s)
- Rachel K. Morgan
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Kai Wang
- Department of Computational Medicine and Bioinformatics, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Laurie K. Svoboda
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Christine A. Rygiel
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Claudia Lalancette
- Epigenomics Core, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Raymond Cavalcante
- Epigenomics Core, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Marisa S. Bartolomei
- Department of Cell and Developmental Biology, Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rexxi Prasasya
- Department of Cell and Developmental Biology, Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kari Neier
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Bambarendage P.U. Perera
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Tamara R. Jones
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Justin A. Colacino
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Maureen A. Sartor
- Department of Computational Medicine and Bioinformatics, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Dana C. Dolinoy
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
13
|
Alegría-Torres JA, Rocha-Amador DO, Pérez-Rodríguez RY, Rodríguez-Felipe VM, Cauich-Díaz M, Ponce-Noyola P, Carrizales-Yáñez L. Pilot Monitoring of Lead in Umbilical Cord Blood of Newborns Associated With the Use of Glazed Ceramics from Guanajuato, Mexico. Biol Trace Elem Res 2024; 202:2403-2409. [PMID: 37702961 DOI: 10.1007/s12011-023-03843-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/01/2023] [Indexed: 09/14/2023]
Abstract
The use of lead-glazed pottery for cooking and storing food, a widespread practice in Mexico, represents a risk of exposure to lead from the human intrauterine stage. Therefore, a pilot study was carried out by means of the measurement of lead in umbilical cord blood by inductively coupled plasma mass spectrometry (ICP-MS) including 69 newborns from the Mexican state capital of Guanajuato, Guanajuato City, where the use of glazed clay is still widespread. Lifestyle and sociodemographic data were collected by interviewing the participating mothers. Hematological parameters and the anthropometry of the newborns and their mothers were analyzed; likewise, the G177C polymorphism in the ALAD gene was genotyped by PCR-RFLP as a marker of genetic vulnerability to lead. The geometric mean of lead in umbilical cord blood was 0.7 µg/dL (< limit of detection = 0.01-28.22). Boys presented higher values than girls (p = 0.03). Only 5.8% of these were above the safety value of the US Centers for Disease Control and Prevention (CDC) of 3.5 µg/dL. Correlations among lead concentrations, maternal age, weeks of gestation, newborn anthropometry, and hematological parameters were not found; however, the participating mothers who reported using glazed ceramics for cooking or storing food had the highest cord-blood lead concentrations (p = 0.04). Regarding genotyping, 97% had ALAD 1, while 3% had ALAD 1, 2; unfortunately, the sample size did not allow analysis of genetic vulnerability to lead. The preparation and conservation of food in handcrafted clay pottery increased the risk of having cord-blood lead values higher than those recommended by the CDC of 3.5 µg/dL (OR = 5; 95% CI:1.3-23; p = 0.01). Our preliminary results suggest that there continues to be intrauterine exposure to lead in Guanajuato.
Collapse
Affiliation(s)
- Jorge Alejandro Alegría-Torres
- Departamento de Farmacia, División de Ciencias Naturales Y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta S/N, Edificio I, C.P. 36050, Guanajuato, Guanajuato, Mexico.
| | - Diana Olivia Rocha-Amador
- Departamento de Farmacia, División de Ciencias Naturales Y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta S/N, Edificio I, C.P. 36050, Guanajuato, Guanajuato, Mexico
| | - Rebeca Yazmín Pérez-Rodríguez
- Departamento de Química, División de Ciencias Naturales Y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta S/N, C.P. 36050, Guanajuato, Mexico
| | - Valeria Monserrat Rodríguez-Felipe
- Departamento de Farmacia, División de Ciencias Naturales Y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta S/N, Edificio I, C.P. 36050, Guanajuato, Guanajuato, Mexico
| | - Mayra Cauich-Díaz
- Departamento de Biología, División de Ciencias Naturales Y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta S/N, C.P. 36050, Guanajuato, Mexico
| | - Patricia Ponce-Noyola
- Departamento de Biología, División de Ciencias Naturales Y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta S/N, C.P. 36050, Guanajuato, Mexico
| | - Leticia Carrizales-Yáñez
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona #550, Lomas de San Luis, C.P. 78210, San Luis Potosí, Mexico
| |
Collapse
|
14
|
Wylie AC, Short SJ, Fry RC, Mills-Koonce WR, Propper CB. Maternal prenatal lead levels and neonatal brain volumes: Testing moderations by maternal depressive symptoms and family income. Neurotoxicol Teratol 2024; 102:107322. [PMID: 38244816 PMCID: PMC10990786 DOI: 10.1016/j.ntt.2024.107322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
There is considerable evidence that prenatal lead exposure is detrimental to child cognitive and socio-emotional development. Further evidence suggests that the effects of prenatal lead on developmental outcomes may be conditional upon exposure to social stressors, such as maternal depression and low socioeconomic status. However, no studies have examined associations between these co-occurring stressors during pregnancy and neonatal brain volumes. Leveraging a sample of 101 mother-infant dyads followed beginning in mid-pregnancy, we examined the main effects of prenatal urinary lead levels on neonatal lateralized brain volumes (left and right hippocampus, amygdala, cerebellum, frontal lobes) and total gray matter. We additionally tested for moderations between lead and depressive symptoms and between lead and family income relative to the federal poverty level (FPL) on the same neurodevelopmental outcomes. Analyses of main effects indicated that prenatal lead was significantly (ps < 0.05) associated with reduced right and left amygdala volumes (βs = -0.23- -0.20). The testing and probing of cross-product interaction terms using simple slopes indicated that the negative effect of lead on the left amygdala was conditional upon mothers having low depressive symptoms or high income relative to the FPL. We interpret the results in the context of trajectories of prenatal and postnatal brain development and susceptibility to low levels of prenatal lead in the context of other social stressors.
Collapse
Affiliation(s)
- Amanda C Wylie
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, United States; Frank Porter Graham Child Development Institute, University of North Carolina at Chapel Hill, United States.
| | - Sarah J Short
- Department of Educational Psychology, University of Wisconsin-Madison, United States; Center for Healthy Minds, University of Wisconsin-Madison, United States
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, United States; Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, United States
| | - W Roger Mills-Koonce
- School of Education, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Cathi B Propper
- Frank Porter Graham Child Development Institute, University of North Carolina at Chapel Hill, United States; School of Nursing, University of North Carolina at Chapel Hill, United States
| |
Collapse
|
15
|
Invernizzi A, Renzetti S, Rechtman E, Ambrosi C, Mascaro L, Corbo D, Gasparotti R, Tang CY, Smith DR, Lucchini RG, Wright RO, Placidi D, Horton MK, Curtin P. Neuro-environmental interactions: a time sensitive matter. Front Comput Neurosci 2024; 17:1302010. [PMID: 38260714 PMCID: PMC10800942 DOI: 10.3389/fncom.2023.1302010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction The assessment of resting state (rs) neurophysiological dynamics relies on the control of sensory, perceptual, and behavioral environments to minimize variability and rule-out confounding sources of activation during testing conditions. Here, we investigated how temporally-distal environmental inputs, specifically metal exposures experienced up to several months prior to scanning, affect functional dynamics measured using rs functional magnetic resonance imaging (rs-fMRI). Methods We implemented an interpretable XGBoost-shapley additive explanation (SHAP) model that integrated information from multiple exposure biomarkers to predict rs dynamics in typically developing adolescents. In 124 participants (53% females, ages, 13-25 years) enrolled in the public health impact of metals exposure (PHIME) study, we measured concentrations of six metals (manganese, lead, chromium, copper, nickel, and zinc) in biological matrices (saliva, hair, fingernails, toenails, blood, and urine) and acquired rs-fMRI scans. Using graph theory metrics, we computed global efficiency (GE) in 111 brain areas (Harvard Oxford atlas). We used a predictive model based on ensemble gradient boosting to predict GE from metal biomarkers, adjusting for age and biological sex. Results Model performance was evaluated by comparing predicted versus measured GE. SHAP scores were used to evaluate feature importance. Measured versus predicted rs dynamics from our model utilizing chemical exposures as inputs were significantly correlated (p < 0.001, r = 0.36). Lead, chromium, and copper contributed most to the prediction of GE metrics. Discussion Our results indicate that a significant component of rs dynamics, comprising approximately 13% of observed variability in GE, is driven by recent metal exposures. These findings emphasize the need to estimate and control for the influence of past and current chemical exposures in the assessment and analysis of rs functional connectivity.
Collapse
Affiliation(s)
- Azzurra Invernizzi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Stefano Renzetti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Elza Rechtman
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Claudia Ambrosi
- Department of Neuroscience, Neuroradiology Unit, ASST Cremona, Cremona, Italy
| | | | - Daniele Corbo
- Department of Medical Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Roberto Gasparotti
- Department of Medical Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Cheuk Y. Tang
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Donald R. Smith
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Roberto G. Lucchini
- Department of Neuroscience, Neuroradiology Unit, ASST Cremona, Cremona, Italy
- Department of Environmental Health Sciences, Robert Stempel School of Public Health, Florida International University, Miami, FL, United States
| | - Robert O. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Donatella Placidi
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Megan K. Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | |
Collapse
|
16
|
Ghassabian A, van den Dries M, Trasande L, Lamballais S, Spaan S, Martinez-Moral MP, Kannan K, Jaddoe VWV, Engel SM, Pronk A, White T, Tiemeier H, Guxens M. Prenatal exposure to common plasticizers: a longitudinal study on phthalates, brain volumetric measures, and IQ in youth. Mol Psychiatry 2023; 28:4814-4822. [PMID: 37644173 PMCID: PMC11062447 DOI: 10.1038/s41380-023-02225-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/31/2023]
Abstract
Exposure to phthalates, used as plasticizers and solvents in consumer products, is ubiquitous. Despite growing concerns regarding their neurotoxicity, brain differences associated with gestational exposure to phthalates are understudied. We included 775 mother-child pairs from Generation R, a population-based pediatric neuroimaging study with prenatal recruitment, who had data on maternal gestational phthalate levels and T1-weighted magnetic resonance imaging in children at age 10 years. Maternal urinary concentrations of phthalate metabolites were measured at early, mid-, and late pregnancy. Child IQ was assessed at age 14 years. We investigated the extent to which prenatal exposure to phthalates is associated with brain volumetric measures and whether brain structural measures mediate the association of prenatal phthalate exposure with IQ. We found that higher maternal concentrations of monoethyl phthalate (mEP, averaged across pregnancy) were associated with smaller total gray matter volumes in offspring at age 10 years (β per log10 increase in creatinine adjusted mEP = -10.7, 95%CI: -18.12, -3.28). Total gray matter volumes partially mediated the association between higher maternal mEP and lower child IQ (β for mediated path =-0.31, 95%CI: -0.62, 0.01, p = 0.05, proportion mediated = 18%). An association of higher monoisobutyl phthalate (mIBP) and smaller cerebral white matter volumes was present only in girls, with cerebral white matter volumes mediating the association between higher maternal mIBP and lower IQ in girls. Our findings suggest the global impact of prenatal phthalate exposure on brain volumetric measures that extends into adolescence and underlies less optimal cognitive development.
Collapse
Affiliation(s)
- Akhgar Ghassabian
- Department of Pediatrics, New York University School of Medicine, New York, NY, USA
- Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Michiel van den Dries
- Department of Child and Adolescent Psychiatry, Erasmus University Medical Center, Rotterdam, the Netherlands
- The Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands
- ISGlobal, Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Leonardo Trasande
- Department of Pediatrics, New York University School of Medicine, New York, NY, USA
- Department of Population Health, New York University School of Medicine, New York, NY, USA
- New York University College of Global Public Health, New York City, NY, USA
- New York University Wagner School of Public Service, New York City, NY, USA
| | - Sander Lamballais
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Suzanne Spaan
- Department of Risk Analysis for Products in Development, TNO, Utrecht, the Netherlands
| | | | | | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Stephanie M Engel
- Department of Epidemiology, Gilling School of Global Public Health, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| | - Anjoeka Pronk
- Department of Risk Analysis for Products in Development, TNO, Utrecht, the Netherlands
| | - Tonya White
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health Bethesda, Bethesda, MD, USA
| | - Henning Tiemeier
- The Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands.
- Department of Social and Behavioral Sciences, Harvard TH Chan School of Public Health, Boston, MA, USA.
| | - Mònica Guxens
- Department of Child and Adolescent Psychiatry, Erasmus University Medical Center, Rotterdam, the Netherlands
- ISGlobal, Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health, Instituto de Salud Carlos III, 28029, Madrid, Spain
| |
Collapse
|
17
|
Doroszkiewicz J, Farhan JA, Mroczko J, Winkel I, Perkowski M, Mroczko B. Common and Trace Metals in Alzheimer's and Parkinson's Diseases. Int J Mol Sci 2023; 24:15721. [PMID: 37958705 PMCID: PMC10649239 DOI: 10.3390/ijms242115721] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Trace elements and metals play critical roles in the normal functioning of the central nervous system (CNS), and their dysregulation has been implicated in neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). In a healthy CNS, zinc, copper, iron, and manganese play vital roles as enzyme cofactors, supporting neurotransmission, cellular metabolism, and antioxidant defense. Imbalances in these trace elements can lead to oxidative stress, protein aggregation, and mitochondrial dysfunction, thereby contributing to neurodegeneration. In AD, copper and zinc imbalances are associated with amyloid-beta and tau pathology, impacting cognitive function. PD involves the disruption of iron and manganese levels, leading to oxidative damage and neuronal loss. Toxic metals, like lead and cadmium, impair synaptic transmission and exacerbate neuroinflammation, impacting CNS health. The role of aluminum in AD neurofibrillary tangle formation has also been noted. Understanding the roles of these elements in CNS health and disease might offer potential therapeutic targets for neurodegenerative disorders. The Codex Alimentarius standards concerning the mentioned metals in foods may be one of the key legal contributions to safeguarding public health. Further research is needed to fully comprehend these complex mechanisms and develop effective interventions.
Collapse
Affiliation(s)
- Julia Doroszkiewicz
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Jakub Ali Farhan
- Department of Public International Law and European Law, Faculty of Law, University of Bialystok, 15-089 Bialystok, Poland
| | - Jan Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Izabela Winkel
- Dementia Disorders Centre, Medical University of Wroclaw, 50-425 Scinawa, Poland
| | - Maciej Perkowski
- Department of Public International Law and European Law, Faculty of Law, University of Bialystok, 15-089 Bialystok, Poland
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
18
|
Morgan RK, Wang K, Svoboda LK, Rygiel CA, Lalancette C, Cavalcante R, Bartolomei MS, Prasasya R, Neier K, Perera BP, Jones TR, Colacino JA, Sartor MA, Dolinoy DC. Effects of Developmental Lead and Phthalate Exposures on DNA Methylation in Adult Mouse Blood, Brain, and Liver Identifies Tissue- and Sex-Specific Changes with Implications for Genomic Imprinting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560131. [PMID: 37873115 PMCID: PMC10592650 DOI: 10.1101/2023.09.29.560131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Background Maternal exposure to environmental chemicals can cause adverse health effects in offspring. Mounting evidence supports that these effects are influenced, at least in part, by epigenetic modifications. Objective We examined tissue- and sex-specific changes in DNA methylation (DNAm) associated with human-relevant lead (Pb) and di(2-ethylhexyl) phthalate (DEHP) exposure during perinatal development in cerebral cortex, blood, and liver. Methods Female mice were exposed to human relevant doses of either Pb (32ppm) via drinking water or DEHP (5 mg/kg-day) via chow for two weeks prior to mating through offspring weaning. Whole genome bisulfite sequencing (WGBS) was utilized to examine DNAm changes in offspring cortex, blood, and liver at 5 months of age. Metilene and methylSig were used to identify differentially methylated regions (DMRs). Annotatr and Chipenrich were used for genomic annotations and geneset enrichment tests of DMRs, respectively. Results The cortex contained the majority of DMRs associated with Pb (69%) and DEHP (58%) exposure. The cortex also contained the greatest degree of overlap in DMR signatures between sexes (n = 17 and 14 DMRs with Pb and DEHP exposure, respectively) and exposure types (n = 79 and 47 DMRs in males and females, respectively). In all tissues, detected DMRs were preferentially found at genomic regions associated with gene expression regulation (e.g., CpG islands and shores, 5' UTRs, promoters, and exons). An analysis of GO terms associated with DMR-containing genes identified imprinted genes to be impacted by both Pb and DEHP exposure. Of these, Gnas and Grb10 contained DMRs across tissues, sexes, and exposures. DMRs were enriched in the imprinting control regions (ICRs) of Gnas and Grb10, with 15 and 17 ICR-located DMRs across cortex, blood, and liver in each gene, respectively. The ICRs were also the location of DMRs replicated across target and surrogate tissues, suggesting epigenetic changes these regions may be potentially viable biomarkers. Conclusions We observed Pb- and DEHP-specific DNAm changes in cortex, blood, and liver, and the greatest degree of overlap in DMR signatures was seen between exposures followed by sex and tissue type. DNAm at imprinted control regions was altered by both Pb and DEHP, highlighting the susceptibility of genomic imprinting to these exposures during the perinatal window of development.
Collapse
Affiliation(s)
- Rachel K. Morgan
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kai Wang
- Department of Computational Medicine and Bioinformatics, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Laurie K. Svoboda
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Christine A. Rygiel
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Claudia Lalancette
- Epigenomics Core, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Raymond Cavalcante
- Epigenomics Core, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marisa S. Bartolomei
- Department of Cell and Developmental Biology, Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rexxi Prasasya
- Department of Cell and Developmental Biology, Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kari Neier
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bambarendage P.U. Perera
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tamara R Jones
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Justin A. Colacino
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Maureen A. Sartor
- Department of Computational Medicine and Bioinformatics, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dana C. Dolinoy
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
19
|
Ali Daoud Y, Tebby C, Beaudouin R, Brochot C. Development of a physiologically based toxicokinetic model for lead in pregnant women: The role of bone tissue in the maternal and fetal internal exposure. Toxicol Appl Pharmacol 2023; 476:116651. [PMID: 37549741 DOI: 10.1016/j.taap.2023.116651] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Epidemiological studies have shown associations between prenatal exposure to lead (Pb) and neurodevelopmental effects in young children. Prenatal exposure is generally characterized by measuring the concentration in the umbilical cord at delivery or in the maternal blood during pregnancy. To assess internal Pb exposure during prenatal life, we developed a pregnancy physiologically based pharmacokinetic (p-PBPK) model that to simulates Pb levels in blood and target tissues in the fetus, especially during critical periods for brain development. An existing Pb PBPK model was adapted to pregnant women and fetuses. Using data from literature, both the additional maternal bone remodeling, that causes Pb release into the blood, and the Pb placental transfers were estimated by Bayesian inference. Additional maternal bone remodeling was estimated to start at 21.6 weeks. Placental transfers were estimated between 4.6 and 283 L.day-1 at delivery with high interindividual variability. Once calibrated, the p-PBPK model was used to simulate fetal exposure to Pb. Internal fetal exposure greatly varies over the pregnancy with two peaks of Pb levels in blood and brain at the end of the 1st and 3rd trimesters. Sensitivity analysis shows that the fetal blood lead levels are affected by the maternal burden of bone Pb via maternal bone remodeling and by fetal bone formation at different pregnancy stages. Coupling the p-PBPK model with an effect model such as an adverse outcome pathway could help to predict the effects on children's neurodevelopment.
Collapse
Affiliation(s)
- Yourdasmine Ali Daoud
- Experimental toxicology and modeling unit (MIV/TEAM), Institut National de l'Environnement Industriel et des Risques, 60550 Verneuil-en-Halatte, France; Péritox, UMR-I 01, University of Picardie Jules Verne, 80025 Amiens, France
| | - Cleo Tebby
- Experimental toxicology and modeling unit (MIV/TEAM), Institut National de l'Environnement Industriel et des Risques, 60550 Verneuil-en-Halatte, France.
| | - Rémy Beaudouin
- Experimental toxicology and modeling unit (MIV/TEAM), Institut National de l'Environnement Industriel et des Risques, 60550 Verneuil-en-Halatte, France; Sebio, UMR-I 02, Institut National de l'Environnement Industriel et des Risques, 60550 Verneuil-en-Halatte, France
| | - Céline Brochot
- Experimental toxicology and modeling unit (MIV/TEAM), Institut National de l'Environnement Industriel et des Risques, 60550 Verneuil-en-Halatte, France; Certara UK Ltd, Simcyp Division, Sheffield, UK
| |
Collapse
|
20
|
Shi Y, Yang Y, Li W, Zhao Z, Yan L, Wang W, Aschner M, Zhang J, Zheng G, Shen X. High blood lead level correlates with selective hippocampal subfield atrophy and neuropsychological impairments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114945. [PMID: 37105093 DOI: 10.1016/j.ecoenv.2023.114945] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/28/2023] [Accepted: 04/19/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Lead contamination is a major public health concern. Previous studies have demonstrated that lead exposure could affect the hippocampus, which is a complex and heterogeneous structure composed of 12 subregions. Here, we explored volumetric and functional changes in hippocampal subfields and neuropsychological alterations after lead exposure. METHODS We performed a cross-sectional study at a smelting company between September 2020 and December 2021. Blood lead level was recorded, and neuropsychological functions were assessed by Montreal Cognitive Assessment (MoCA), Mini-Mental State Examination (MMSE), Self-rating Anxiety Scale (SAS), and Self-rating Depression Scale (SDS). The hippocampus was segmented into 12 subfields in each hemisphere in magnetic resonance images (MRIs). Then, the effect of altered hippocampal subfield volumes on brain functions were studied by seed-based functional connectivity (FC) analysis. Finally, the relationships between the lead level with hippocampal subfield volumes and neuropsychological functions were investigated. Baseline characteristics, hippocampal subfield volumes, and FC analysis were compared between lead-exposed (≥ 300 μg/L) and the control group (≤ 100 μg/L). RESULTS In 76 participants, lead level positively correlated with SDS(r = 0.422) and negatively correlated with MoCA(r = -0.414), MMSE(r = -0.251), Concentration(r = -0.331), Recall(r = -0.319), Orientation(r = -0.298) and Executive Function/Visuospatial abilities(r = -0.231). Lead group (26 participants) had lower MoCA and MMSE and higher SDS than control group (23 participants). A significantly decreased volume in the left CA4 and GC-ML-DG subfields was found in the lead group compared with the control group. The left GC-ML-DG of the lead group showed a decreased FC with the bilateral postcentral gyrus. The left CA4(r = -0.409) and left GC-ML-DG (r = -0.383) volumes negatively correlated with lead level. The FC between left GC-ML-DG and left postcentral gyrus positively correlated with MoCA(r = 0.318), MMSE(r = 0.379) and Recall(r = 0.311). The FC between left GC-ML-DG and right postcentral gyrus positively correlated with MoCA(r = 0.326), Executive Function/Visuospatial abilities(r = 0.307) and Concentration(r = 0.297). CONCLUSION High blood lead level was associated with neuropsychological alterations, hippocampal structural and functional changes. The left GC-ML-DG and CA4 atrophy might serve as predictive imaging markers for neurological damage associated with high lead exposure.
Collapse
Affiliation(s)
- Yi Shi
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No. 169 of West Changle Road, Xi'an, Shaanxi 710032, China
| | - Yang Yang
- Department of Radiology, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, China
| | - Wenhao Li
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No. 169 of West Changle Road, Xi'an, Shaanxi 710032, China
| | - Zaihua Zhao
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No. 169 of West Changle Road, Xi'an, Shaanxi 710032, China
| | - Linfeng Yan
- Department of Radiology, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, China
| | - Wen Wang
- Department of Radiology, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, United States
| | - Jianbin Zhang
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No. 169 of West Changle Road, Xi'an, Shaanxi 710032, China
| | - Gang Zheng
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No. 169 of West Changle Road, Xi'an, Shaanxi 710032, China
| | - Xuefeng Shen
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No. 169 of West Changle Road, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
21
|
Hwang YH, Wu HC, Shyu MK, Lee CN, Lin SY, Chen PC, Chuang HY, Lin PW, Wu TH, Chen YT. Temporal transition trends of cord blood lead levels in various human development index countries and in the Taipei metropolitan area. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121900. [PMID: 37244535 DOI: 10.1016/j.envpol.2023.121900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/21/2023] [Accepted: 05/25/2023] [Indexed: 05/29/2023]
Abstract
Since low-level lead exposure is still of concern for neonates, it is worth further characterizing the temporal transition trends of cord blood lead levels (CBLLs) globally and locally in Taipei, Taiwan, after the cessation of leaded gasoline use. A literature review on CBLLs around the world was performed by searching three databanks, i.e., PubMed, Google Scholar and Web of Science, with the search keywords "cord blood" combined with "lead" or "Pb" for studies published from 1975 to May 2021. In total, 66 articles were included. Linear regressions for the reciprocal of sample size weighed CBLLs against calendar year presented a high r2 value (0.722) for the very high Human Development Index (HDI) countries and a moderate r2 value (0.308) for the combined high and medium HDI countries. The predicted CBLLs in 2030 and 2040 were 6.92 (95% CI: 6.02-7.81) μg/L and 5.85 (95% CI: 5.04-6.66) μg/L, respectively, for the very high HDI countries and 13.10 (95% CI: 7.12-19.09) μg/L and 10.63 (95% CI: 5.37-15.89) μg/L, respectively, for the combined high and medium HDI countries. To characterize the CBLL transitions in the Great Taipei metropolitan area, data from five studies conducted from 1985 to 2018 were employed. Although the results of the early four studies indicated that the Great Taipei metropolitan area did not reach the pace in CBLL reduction among the very high HDI countries, the CBLLs of the latest study during 2016-2018 were pretty low (8.1 ± 4.5 μg/L), approximately 3 years in advance of the very high HDI countries as one group to reach this low CBLL. In conclusion, further effective reduction in environmental lead exposure is challenging and must be based on the efforts from the aspects reflected by the HDI index compositions, i.e., economics, education and health, mostly implying health disparity and inequality.
Collapse
Affiliation(s)
- Yaw-Huei Hwang
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan, ROC; Master of Public Health Program, College of Public Health, National Taiwan University, Taipei, Taiwan, ROC.
| | - Hui-Chu Wu
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan, ROC
| | - Ming-Kwang Shyu
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Chien-Nan Lee
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Shin-Yu Lin
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Pau-Chung Chen
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan, ROC; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan, ROC; Department of Environmental and Occupational Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taiwan, ROC; National Institute of Environmental Health Sciences, National Health Research Institutes, Taiwan, ROC
| | - Hung-Yi Chuang
- Department of Public Health and Environmental Medicine, Kaohsiung Medical University, Taiwan, ROC; Department of Occupational and Environmental Medicine, Kaohsiung Medical University Hospital, Taiwan, ROC
| | - Pei-Wen Lin
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan, ROC
| | - Tso-Hsien Wu
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan, ROC
| | - Yen-Tzu Chen
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan, ROC
| |
Collapse
|
22
|
Spann MN, Rogers C. The Infant Brain: A Critical Antecedent of Psychiatric Risk. Biol Psychiatry 2023; 93:854-857. [PMID: 37121613 DOI: 10.1016/j.biopsych.2023.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 05/02/2023]
Affiliation(s)
- Marisa N Spann
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York; New York State Psychiatric Institute, New York, New York.
| | - Cynthia Rogers
- Departments of Psychiatry and Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, Missouri.
| |
Collapse
|
23
|
Invernizzi A, Renzetti S, Rechtman E, Ambrosi C, Mascaro L, Corbo D, Gasparotti R, Tang CY, Smith DR, Lucchini RG, Wright RO, Placidi D, Horton MK, Curtin P. Neuro-Environmental Interactions: a time sensitive matter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.04.539456. [PMID: 37205412 PMCID: PMC10187306 DOI: 10.1101/2023.05.04.539456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The assessment of resting state (rs) neurophysiological dynamics relies on the control of sensory, perceptual, and behavioral environments to minimize variability and rule-out confounding sources of activation during testing conditions. Here, we investigated how temporally-distal environmental inputs, specifically metal exposures experienced up to several months prior to scanning, affect functional dynamics measured using rs functional magnetic resonance imaging (rs-fMRI). We implemented an interpretable XGBoost-Shapley Additive Explanation (SHAP) model that integrated information from multiple exposure biomarkers to predict rs dynamics in typically developing adolescents. In 124 participants (53% females, ages: 13-25 years) enrolled in the Public Health Impact of Metals Exposure (PHIME) study, we measured concentrations of six metals (manganese, lead, chromium, cupper, nickel and zinc) in biological matrices (saliva, hair, fingernails, toenails, blood and urine) and acquired rs-fMRI scans. Using graph theory metrics, we computed global efficiency (GE) in 111 brain areas (Harvard Oxford Atlas). We used a predictive model based on ensemble gradient boosting to predict GE from metal biomarkers, adjusting for age and biological sex. Model performance was evaluated by comparing predicted versus measured GE. SHAP scores were used to evaluate feature importance. Measured versus predicted rs dynamics from our model utilizing chemical exposures as inputs were significantly correlated ( p < 0.001, r = 0.36). Lead, chromium, and copper contributed most to the prediction of GE metrics. Our results indicate that a significant component of rs dynamics, comprising approximately 13% of observed variability in GE, is driven by recent metal exposures. These findings emphasize the need to estimate and control for the influence of past and current chemical exposures in the assessment and analysis of rs functional connectivity.
Collapse
|
24
|
Cook KM, De Asis-Cruz J, Lopez C, Quistorff J, Kapse K, Andersen N, Vezina G, Limperopoulos C. Robust sex differences in functional brain connectivity are present in utero. Cereb Cortex 2023; 33:2441-2454. [PMID: 35641152 PMCID: PMC10016060 DOI: 10.1093/cercor/bhac218] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 11/14/2022] Open
Abstract
Sex-based differences in brain structure and function are observable throughout development and are thought to contribute to differences in behavior, cognition, and the presentation of neurodevelopmental disorders. Using multiple support vector machine (SVM) models as a data-driven approach to assess sex differences, we sought to identify regions exhibiting sex-dependent differences in functional connectivity and determine whether they were robust and sufficiently reliable to classify sex even prior to birth. To accomplish this, we used a sample of 110 human fetal resting state fMRI scans from 95 fetuses, performed between 19 and 40 gestational weeks. Functional brain connectivity patterns classified fetal sex with 73% accuracy. Across SVM models, we identified features (functional connections) that reliably differentiated fetal sex. Highly consistent predictors included connections in the somatomotor and frontal areas alongside the hippocampus, cerebellum, and basal ganglia. Moreover, high consistency features also implicated a greater magnitude of cross-region connections in females, while male weighted features were predominately within anatomically bounded regions. Our findings indicate that these differences, which have been observed later in childhood, are present and reliably detectable even before birth. These results show that sex differences arise before birth in a manner that is consistent and reliable enough to be highly identifiable.
Collapse
Affiliation(s)
- Kevin M Cook
- Developing Brain Institute, Children’s National, 111 Michigan Ave NW, Washington DC 20010, USA
| | - Josepheen De Asis-Cruz
- Developing Brain Institute, Children’s National, 111 Michigan Ave NW, Washington DC 20010, USA
| | - Catherine Lopez
- Developing Brain Institute, Children’s National, 111 Michigan Ave NW, Washington DC 20010, USA
| | - Jessica Quistorff
- Developing Brain Institute, Children’s National, 111 Michigan Ave NW, Washington DC 20010, USA
| | - Kushal Kapse
- Developing Brain Institute, Children’s National, 111 Michigan Ave NW, Washington DC 20010, USA
| | - Nicole Andersen
- Developing Brain Institute, Children’s National, 111 Michigan Ave NW, Washington DC 20010, USA
| | - Gilbert Vezina
- Division of Diagnostic Imaging and Radiology, Children’s National, 111 Michigan Ave NW, Washington DC 20010, USA
| | - Catherine Limperopoulos
- Developing Brain Institute, Children’s National, 111 Michigan Ave NW, Washington DC 20010, USA
| |
Collapse
|
25
|
Invernizzi A, Rechtman E, Oluyemi K, Renzetti S, Curtin P, Colicino E, Ambrosi C, Mascaro L, Patrono A, Corbo D, Cagna G, Gasparotti R, Reichenberg A, Tang CY, Smith DR, Placidi D, Lucchini RG, Wright RO, Horton MK. Topological network properties of resting-state functional connectivity patterns are associated with metal mixture exposure in adolescents. Front Neurosci 2023; 17:1098441. [PMID: 36814793 PMCID: PMC9939635 DOI: 10.3389/fnins.2023.1098441] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/17/2023] [Indexed: 02/08/2023] Open
Abstract
Introduction Adolescent exposure to neurotoxic metals adversely impacts cognitive, motor, and behavioral development. Few studies have addressed the underlying brain mechanisms of these metal-associated developmental outcomes. Furthermore, metal exposure occurs as a mixture, yet previous studies most often consider impacts of each metal individually. In this cross-sectional study, we investigated the relationship between exposure to neurotoxic metals and topological brain metrics in adolescents. Methods In 193 participants (53% females, ages: 15-25 years) enrolled in the Public Health Impact of Metals Exposure (PHIME) study, we measured concentrations of four metals (manganese, lead, copper, and chromium) in multiple biological media (blood, urine, hair, and saliva) and acquired resting-state functional magnetic resonance imaging scans. Using graph theory metrics, we computed global and local efficiency (global:GE; local:LE) in 111 brain areas (Harvard Oxford Atlas). We used weighted quantile sum (WQS) regression models to examine association between metal mixtures and each graph metric (GE or LE), adjusted for sex and age. Results We observed significant negative associations between the metal mixture and GE and LE [βGE = -0.076, 95% CI (-0.122, -0.031); βLE= -0.051, 95% CI (-0.095, -0.006)]. Lead and chromium measured in blood contributed most to this association for GE, while chromium measured in hair contributed the most for LE. Discussion Our results suggest that exposure to this metal mixture during adolescence reduces the efficiency of integrating information in brain networks at both local and global levels, informing potential neural mechanisms underlying the developmental toxicity of metals. Results further suggest these associations are due to combined joint effects to different metals, rather than to a single metal.
Collapse
Affiliation(s)
- Azzurra Invernizzi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Elza Rechtman
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kristie Oluyemi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Stefano Renzetti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Paul Curtin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | | | - Alessandra Patrono
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Daniele Corbo
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Giuseppa Cagna
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Roberto Gasparotti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Abraham Reichenberg
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Cheuk Y. Tang
- Department of Medical Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Donald R. Smith
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Donatella Placidi
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Roberto G. Lucchini
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
- Department of Environmental Health Sciences, Robert Stempel School of Public Health, Florida International University, Miami, FL, United States
| | - Robert O. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Megan K. Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
26
|
Associations between Elemental Metabolic Dynamics and Default Mode Network Functional Connectivity Are Altered in Autism. J Clin Med 2023; 12:jcm12031022. [PMID: 36769671 PMCID: PMC9917994 DOI: 10.3390/jcm12031022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Autism is a neurodevelopmental condition associated with atypical social communication, cognitive, and sensory faculties. Recent advances in exposure biology suggest that biomarkers of elemental uptake and metabolism measured in hair samples can yield an effective signal predictive of autism diagnosis. Here, we investigated if elemental biomarkers in hair were associated with functional connectivity in regions of the default mode network (DMN) previously linked to autism. In a study sample which included twin pairs with concordant and discordant diagnoses for autism, our analysis of hair samples and neuroimaging data supported two general findings. First, independent of autism diagnosis, we found a broad pattern of association between elemental biomarkers and functional connectivity in the DMN, which primarily involved dynamics in zinc metabolism. Second, we found that associations between the DMN and elemental biomarkers, particularly involving phosphorus, calcium, manganese, and magnesium, differed significantly in autistic participants from control participants. In sum, these findings suggest that functional dynamics in elemental metabolism relate broadly to persistent patterns of functional connectivity in the DMN, and that these associations are altered in the emergence of autism.
Collapse
|
27
|
Błażewicz A, Grabrucker AM. Metal Profiles in Autism Spectrum Disorders: A Crosstalk between Toxic and Essential Metals. Int J Mol Sci 2022; 24:ijms24010308. [PMID: 36613749 PMCID: PMC9820494 DOI: 10.3390/ijms24010308] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Since hundreds of years ago, metals have been recognized as impacting our body's physiology. As a result, they have been studied as a potential cure for many ailments as well as a cause of acute or chronic poisoning. However, the link between aberrant metal levels and neuropsychiatric illnesses such as schizophrenia and neurodevelopmental disorders, such as autism spectrum disorders (ASDs), is a relatively new finding, despite some evident ASD-related consequences of shortage or excess of specific metals. In this review, we will summarize past and current results explaining the pathomechanisms of toxic metals at the cellular and molecular levels that are still not fully understood. While toxic metals may interfere with dozens of physiological processes concurrently, we will focus on ASD-relevant activity such as inflammation/immune activation, mitochondrial malfunction, increased oxidative stress, impairment of axonal myelination, and synapse formation and function. In particular, we will highlight the competition with essential metals that may explain why both the presence of certain toxic metals and the absence of certain essential metals have emerged as risk factors for ASD. Although often investigated separately, through the agonistic and antagonistic effects of metals, a common metal imbalance may result in relation to ASD.
Collapse
Affiliation(s)
- Anna Błażewicz
- Department of Pathobiochemistry and Interdisciplinary Applications of Ion Chromatography, Medical University of Lublin, 20-093 Lublin, Poland
| | - Andreas M. Grabrucker
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland
- Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
- Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland
- Correspondence: ; Tel.: +353-61-237756
| |
Collapse
|
28
|
De Asis-Cruz J, Limperopoulos C. Harnessing the Power of Advanced Fetal Neuroimaging to Understand In Utero Footprints for Later Neuropsychiatric Disorders. Biol Psychiatry 2022; 93:867-879. [PMID: 36804195 DOI: 10.1016/j.biopsych.2022.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/03/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
Adverse intrauterine events may profoundly impact fetal risk for future adult diseases. The mechanisms underlying this increased vulnerability are complex and remain poorly understood. Contemporary advances in fetal magnetic resonance imaging (MRI) have provided clinicians and scientists with unprecedented access to in vivo human fetal brain development to begin to identify emerging endophenotypes of neuropsychiatric disorders such as autism spectrum disorder, attention-deficit/hyperactivity disorder, and schizophrenia. In this review, we discuss salient findings of normal fetal neurodevelopment from studies using advanced, multimodal MRI that have provided unparalleled characterization of in utero prenatal brain morphology, metabolism, microstructure, and functional connectivity. We appraise the clinical utility of these normative data in identifying high-risk fetuses before birth. We highlight available studies that have investigated the predictive validity of advanced prenatal brain MRI findings and long-term neurodevelopmental outcomes. We then discuss how ex utero quantitative MRI findings can inform in utero investigations toward the pursuit of early biomarkers of risk. Lastly, we explore future opportunities to advance our understanding of the prenatal origins of neuropsychiatric disorders using precision fetal imaging.
Collapse
|
29
|
Zheng J, Reynolds JE, Long M, Ostertag C, Pollock T, Hamilton M, Dunn JF, Liu J, Martin J, Grohs M, Landman B, Huo Y, Dewey D, Kurrasch D, Lebel C. The effects of prenatal bisphenol A exposure on brain volume of children and young mice. ENVIRONMENTAL RESEARCH 2022; 214:114040. [PMID: 35952745 DOI: 10.1016/j.envres.2022.114040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol A (BPA) is a synthetic chemical used for the manufacturing of plastics, epoxy resin, and many personal care products. This ubiquitous endocrine disruptor is detectable in the urine of over 80% of North Americans. Although adverse neurodevelopmental outcomes have been observed in children with high gestational exposure to BPA, the effects of prenatal BPA on brain structure remain unclear. Here, using magnetic resonance imaging (MRI), we studied the associations of maternal BPA exposure with children's brain structure, as well as the impact of comparable BPA levels in a mouse model. Our human data showed that most maternal BPA exposure effects on brain volumes were small, with the largest effects observed in the opercular region of the inferior frontal gyrus (ρ = -0.2754), superior occipital gyrus (ρ = -0.2556), and postcentral gyrus (ρ = 0.2384). In mice, gestational exposure to an equivalent level of BPA (2.25 μg BPA/kg bw/day) induced structural alterations in brain regions including the superior olivary complex (SOC) and bed nucleus of stria terminalis (BNST) with larger effect sizes (1.07≤ Cohens d ≤ 1.53). Human (n = 87) and rodent (n = 8 each group) sample sizes, while small, are considered adequate to perform the primary endpoint analysis. Combined, these human and mouse data suggest that gestational exposure to low levels of BPA may have some impacts on the developing brain at the resolution of MRI.
Collapse
Affiliation(s)
- Jing Zheng
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Jess E Reynolds
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Madison Long
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Curtis Ostertag
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Tyler Pollock
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Max Hamilton
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Jeff F Dunn
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Jiaying Liu
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Jonathan Martin
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Melody Grohs
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Bennett Landman
- Department of Electrical Engineering & Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Yuankai Huo
- Department of Electrical Engineering & Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Deborah Dewey
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Deborah Kurrasch
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Catherine Lebel
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
30
|
Wei L, Huang H, Chen X, Wang X, Zhang R, Su L, Duan W, Rahman M, Golam Mostofa M, Qamruzzaman Q, Shen H, Hu Z, Wei Y, Christiani DC, Chen F. Umbilical cord serum elementomics of 52 trace elements and early childhood neurodevelopment: Evidence from a prospective birth cohort in rural Bangladesh. ENVIRONMENT INTERNATIONAL 2022; 166:107370. [PMID: 35772314 PMCID: PMC9926395 DOI: 10.1016/j.envint.2022.107370] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Prenatal exposures to neurotoxic metals and trace elements are associated with early childhood neurodevelopmental outcomes. However, consequences of simultaneous exposure to mixtures of elements remain unclear. OBJECTIVE To examine individual and joint effects of prenatal trace element exposure on early childhood neurodevelopment. METHODS Using a well-established Bangladesh prospective birth cohort (2008-2011), we measured concentrations of 52 trace elements in umbilical cord serum of 569 mother-infant pairs using inductively coupled plasma mass spectrometry. Neurodevelopment was evaluated at 20-40 months of age using Bayley Scales of Infant and Toddler Development, Third Edition. Stability elastic net (ENET) was used to screen elements individually associated with the outcome; candidate exposures were combined by weighted linear combination to form a risk score representing their mixture effect on early childhood neurodevelopment. RESULTS Stability ENET identified 15 trace elements associated with cognitive composite score and 14 associated with motor composite score, which were linearly combined to form the element risk score (ERS). Children with higher ERScognitive had lower probability of cognitive developmental delay (ORhighest vs lowest: 0.21; 95 %CI: 0.10, 0.40; P < 0.001; Ptrend < 0.001). Children with ERSmotor in the top quintile had a significantly lower risk of motor developmental delay (OR: 0.16; 95 %CI: 0.09, 0.31; P < 0.001; Ptrend < 0.001) versus the lowest quintile. In Bayesian kernel machine regression analyses, lithium [conditional posterior inclusion probability (cPIP) = 0.68], aluminum (cPIP = 0.83) and iron (cPIP = 1.00) contributed most to the lower cognitive composite score; zinc (cPIP = 1.00), silver (cPIP = 0.81), and antimony (cPIP = 0.65) mainly contributed to the change of motor composite score. CONCLUSION Co-exposure to lithium/aluminum/iron or zinc/silver/antimony appears to impact children's neurodevelopment. ERS score reflecting maternal exposure could indicate children's risk of neurodevelopmental delay, warranting further studies to explore the underlying mechanism.
Collapse
Affiliation(s)
- Liangmin Wei
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Hui Huang
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xin Chen
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiang Wang
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ruyang Zhang
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Li Su
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Weiwei Duan
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | | | | | | | - Hongbing Shen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China; Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; China International Cooperation Center for Environment and Human Health, Center of Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China; Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; China International Cooperation Center for Environment and Human Health, Center of Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Yongyue Wei
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China; China International Cooperation Center for Environment and Human Health, Center of Global Health, Nanjing Medical University, Nanjing 211166, China.
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; China International Cooperation Center for Environment and Human Health, Center of Global Health, Nanjing Medical University, Nanjing 211166, China.
| | - Feng Chen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China; Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China; China International Cooperation Center for Environment and Human Health, Center of Global Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
31
|
Ji L, Hendrix CL, Thomason ME. Empirical evaluation of human fetal fMRI preprocessing steps. Netw Neurosci 2022; 6:702-721. [PMID: 36204420 PMCID: PMC9531599 DOI: 10.1162/netn_a_00254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/09/2022] [Indexed: 11/04/2022] Open
Abstract
Increased study and methodological innovation have led to growth in the field of fetal brain fMRI. An important gap yet to be addressed is optimization of fetal fMRI preprocessing. Rapid developmental changes, imaged within the maternal compartment using an abdominal coil, introduce novel constraints that challenge established methods used in adult fMRI. This study evaluates the impact of (1) normalization to a group mean-age template versus normalization to an age-matched template; (2) independent components analysis (ICA) denoising at two criterion thresholds; and (3) smoothing using three kernel sizes. Data were collected from 121 fetuses (25-39 weeks, 43.8% female). Results indicate that the mean age template is superior in older fetuses, but less optimal in younger fetuses. ICA denoising at a more stringent threshold is superior to less stringent denoising. A larger smoothing kernel can enhance cross-hemisphere functional connectivity. Overall, this study provides improved understanding of the impact of specific steps on fetal image quality. Findings can be used to inform a common set of best practices for fetal fMRI preprocessing.
Collapse
Affiliation(s)
- Lanxin Ji
- Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Cassandra L. Hendrix
- Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Moriah E. Thomason
- Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
- Department of Population Health, New York University School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
32
|
Cardenas-Iniguez C, Burnor E, Herting MM. Neurotoxicants, the Developing Brain, and Mental Health. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022; 2:223-232. [PMID: 35911498 PMCID: PMC9337627 DOI: 10.1016/j.bpsgos.2022.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 12/31/2022] Open
Abstract
While life in urban environments may confer a number of benefits, it may also result in a variety of exposures, with toxic consequences for neurodevelopment and neuropsychological health. Neurotoxicants are any of a large number of chemicals or substances that interfere with normal function and/or compromise adaptation in the central and/or peripheral nervous system. Evidence suggests that neurotoxicant effects have a greater effect when occurring in utero and during early childhood. Recent findings exploring neural-level mechanisms provide a crucial opportunity to explore the ways in which environmental conditions may get "under the skin" to impact a number of psychological behaviors and cognitive processes, ultimately allowing for greater synergy between macro- and microlevel efforts to improve mental health in the presence of neurotoxicant exposures. In this review, we provide an overview of 3 types of neurotoxicants related to the built environment and relevant to brain development during childhood and adolescence: lead exposure, outdoor particulate matter pollution, and endocrine-disrupting chemicals. We also discuss mechanisms through which these neurotoxicants affect central nervous system function, including recent evidence from neuroimaging literature. Furthermore, we discuss neurotoxicants and mental health during development in the context of social determinants and how differences in the spatial distribution of neurotoxicant exposures result in health disparities that disproportionately affect low-income and minority populations. Multifaceted approaches incorporating social systems and their effect on neurotoxicant exposures and downstream mental health will be key to reduce societal costs and improve quality of life for children, adolescents, and adults.
Collapse
Affiliation(s)
- Carlos Cardenas-Iniguez
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Elisabeth Burnor
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Megan M. Herting
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, California
- Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, California
| |
Collapse
|
33
|
De Asis-Cruz J, Andescavage N, Limperopoulos C. Adverse Prenatal Exposures and Fetal Brain Development: Insights From Advanced Fetal Magnetic Resonance Imaging. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:480-490. [PMID: 34848383 DOI: 10.1016/j.bpsc.2021.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/26/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
Converging evidence from clinical and preclinical studies suggests that fetal vulnerability to adverse prenatal exposures increases the risk for neuropsychiatric diseases such as autism spectrum disorder, schizophrenia, and depression. Recent advances in fetal magnetic resonance imaging have allowed us to characterize typical fetal brain growth trajectories in vivo and to interrogate structural and functional alterations associated with intrauterine exposures, such as maternal stress, environmental toxins, drugs, and obesity. Here, we review proposed mechanisms for how prenatal influences disrupt neurodevelopment, including the role played by maternal and fetal inflammatory responses. We summarize insights from magnetic resonance imaging research in fetuses, highlight recent discoveries in normative fetal development using quantitative magnetic resonance imaging techniques (i.e., three-dimensional volumetry, proton magnetic resonance spectroscopy, placental diffusion imaging, and functional imaging), and discuss how baseline trajectories are shaped by prenatal exposures.
Collapse
Affiliation(s)
- Josepheen De Asis-Cruz
- Developing Brain Institute, Department of Radiology, Children's National Hospital, Washington, DC
| | - Nickie Andescavage
- Developing Brain Institute, Department of Radiology, Children's National Hospital, Washington, DC; Department of Neonatology, Children's National Hospital, Washington, DC
| | - Catherine Limperopoulos
- Developing Brain Institute, Department of Radiology, Children's National Hospital, Washington, DC.
| |
Collapse
|
34
|
Sobotka D, Ebner M, Schwartz E, Nenning KH, Taymourtash A, Vercauteren T, Ourselin S, Kasprian G, Prayer D, Langs G, Licandro R. Motion correction and volumetric reconstruction for fetal functional magnetic resonance imaging data. Neuroimage 2022; 255:119213. [PMID: 35430359 DOI: 10.1016/j.neuroimage.2022.119213] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/21/2022] [Accepted: 04/13/2022] [Indexed: 10/18/2022] Open
Abstract
Motion correction is an essential preprocessing step in functional Magnetic Resonance Imaging (fMRI) of the fetal brain with the aim to remove artifacts caused by fetal movement and maternal breathing and consequently to suppress erroneous signal correlations. Current motion correction approaches for fetal fMRI choose a single 3D volume from a specific acquisition timepoint with least motion artefacts as reference volume, and perform interpolation for the reconstruction of the motion corrected time series. The results can suffer, if no low-motion frame is available, and if reconstruction does not exploit any assumptions about the continuity of the fMRI signal. Here, we propose a novel framework, which estimates a high-resolution reference volume by using outlier-robust motion correction, and by utilizing Huber L2 regularization for intra-stack volumetric reconstruction of the motion-corrected fetal brain fMRI. We performed an extensive parameter study to investigate the effectiveness of motion estimation and present in this work benchmark metrics to quantify the effect of motion correction and regularised volumetric reconstruction approaches on functional connectivity computations. We demonstrate the proposed framework's ability to improve functional connectivity estimates, reproducibility and signal interpretability, which is clinically highly desirable for the establishment of prognostic noninvasive imaging biomarkers. The motion correction and volumetric reconstruction framework is made available as an open-source package of NiftyMIC.
Collapse
Affiliation(s)
- Daniel Sobotka
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Michael Ebner
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Ernst Schwartz
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Karl-Heinz Nenning
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY, USA
| | - Athena Taymourtash
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Tom Vercauteren
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Sebastien Ourselin
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Gregor Kasprian
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Daniela Prayer
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Georg Langs
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.
| | - Roxane Licandro
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Laboratory for Computational Neuroimaging, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
35
|
Hendrix CL, Thomason ME. A survey of protocols from 54 infant and toddler neuroimaging research labs. Dev Cogn Neurosci 2022; 54:101060. [PMID: 35033971 PMCID: PMC8762357 DOI: 10.1016/j.dcn.2022.101060] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/20/2021] [Accepted: 01/09/2022] [Indexed: 01/13/2023] Open
Abstract
Infant and toddler MRI enables unprecedented insight into the developing brain. However, consensus about optimal data collection practices is lacking, which slows growth of the field and impedes replication efforts. The goal of this study was to collect systematic data across a large number of infant/toddler research laboratories to better understand preferred practices. Survey data addressed MRI acquisition strategies, scan success rates, visit preparations, scanning protocols, accommodations for families, study design, and policies regarding incidental findings. Respondents had on average 8 years' experience in early life neuroimaging and represented more than fifty research laboratories. Areas of consensus across labs included higher success rates among newborns compared to older infants or toddlers, high rates of data loss across age groups, endorsement of multiple layers of hearing protection, and age-specific scan preparation and participant accommodation. Researchers remain divided on decisions in longitudinal study design and practices regarding incidental findings. This study summarizes practices honed over years of work by a large collection of scientists, which may serve as an important resource for those new to the field. The ability to reference data about best practices facilitates future harmonization, data sharing, and reproducibility, all of which advance this important frontier in developmental science.
Collapse
Affiliation(s)
- Cassandra L Hendrix
- Department of Child and Adolescent Psychiatry, New York University Medical Center, New York, NY, USA.
| | - Moriah E Thomason
- Department of Child and Adolescent Psychiatry, New York University Medical Center, New York, NY, USA; Department of Population Health, New York University Medical Center, New York, NY, USA; Neuroscience Institute, New York University Medical Center, New York, NY, USA
| |
Collapse
|
36
|
Boots A, Thomason ME, Espinoza-Heredia C, Pruitt PJ, Damoiseaux JS, Roseboom TJ, de Rooij SR. Sex-specific effects of prenatal undernutrition on resting-state functional connectivity in the human brain at age 68. Neurobiol Aging 2022; 112:129-138. [PMID: 35151035 PMCID: PMC9459445 DOI: 10.1016/j.neurobiolaging.2022.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/23/2021] [Accepted: 01/17/2022] [Indexed: 12/17/2022]
Abstract
Prenatal nutrition may significantly impact brain aging. Results from the Dutch Famine Birth Cohort indicated that prenatal undernutrition is negatively associated with cognition, brain volumes, perfusion and structural brain aging in late life, predominantly in men. This study investigates the association between prenatal undernutrition and late-life functional brain network connectivity. In an exploratory resting-state functional magnetic resonance imaging study of 112 participants from the Dutch Famine Birth Cohort, we investigated whether the within- and between-network functional connectivity of the default mode network, salience network and central executive network differ at age 68 in men (N = 49) and women (N = 63) either exposed or unexposed to undernutrition in early gestation. Additionally, we explored sex-specific effects. Compared to unexposed participants, exposed participants revealed multiple clusters of different functional connectivity within and between the three networks studied. Sex-specific analyses suggested a pattern of network desegregation fitting with brain aging in men and a more diffuse pattern of group differences in women. This study demonstrates that associations between prenatal undernutrition and brain network functional connectivity extend late into life.
Collapse
Affiliation(s)
- Amber Boots
- Department of Epidemiology and Data Science, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Public Health Research Institute, Amsterdam, The Netherlands.
| | - Moriah E Thomason
- Department of Child and Adolescent Psychiatry, New York University Langone Health, New York, NY, USA; Department of Population Health, New York University Langone Health, New York, NY, USA; Neuroscience Institute, New York University Langone Health, New York, NY, USA
| | - Claudia Espinoza-Heredia
- Department of Child and Adolescent Psychiatry, New York University Langone Health, New York, NY, USA
| | - Patrick J Pruitt
- Institute of Gerontology, Wayne State University, Detroit, MI, USA
| | - Jessica S Damoiseaux
- Institute of Gerontology, Wayne State University, Detroit, MI, USA; Department of Psychology, Wayne State University, Detroit, MI, USA
| | - Tessa J Roseboom
- Department of Epidemiology and Data Science, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Public Health Research Institute, Amsterdam, The Netherlands; Department of Obstetrics and Gynaecology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Susanne R de Rooij
- Department of Epidemiology and Data Science, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| |
Collapse
|
37
|
Cecil KM. Pediatric Exposures to Neurotoxicants: A Review of Magnetic Resonance Imaging and Spectroscopy Findings. Diagnostics (Basel) 2022; 12:diagnostics12030641. [PMID: 35328193 PMCID: PMC8947432 DOI: 10.3390/diagnostics12030641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/04/2022] Open
Abstract
Heavy metals, including lead and manganese, air pollution, pesticides, environmental tobacco smoke, and flame retardants are among the known and suspected environmental neurotoxicant exposures examined with magnetic resonance imaging (MRI)-based studies of pediatric populations. Many studies feature morphological changes associated with the exposures while others employ magnetic resonance spectroscopy, diffusion imaging, task-based, and resting state functional magnetic resonance imaging to reveal abnormal metabolic concentrations, white matter disorganization, and atypical patterns of activation. Some studies follow pregnant women and their offspring throughout the lifespan with collection of individual specimens as exposure biomarkers. Others innovatively make use of public databases to obtain relevant exposure biomarkers while taking advantage of these studies in their efforts to monitor developmental features in large, population-based, imaging cohorts. As exposures to neurotoxicants in the womb and throughout childhood have life-long impacts on health and well-being, the importance of these innovative neuroimaging investigations is ever increasing.
Collapse
Affiliation(s)
- Kim M Cecil
- Departments of Radiology and Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
38
|
Abstract
During evolution, the cerebral cortex advances by increasing in surface and the introduction of new cytoarchitectonic areas among which the prefrontal cortex (PFC) is considered to be the substrate of highest cognitive functions. Although neurons of the PFC are generated before birth, the differentiation of its neurons and development of synaptic connections in humans extend to the 3rd decade of life. During this period, synapses as well as neurotransmitter systems including their receptors and transporters, are initially overproduced followed by selective elimination. Advanced methods applied to human and animal models, enable investigation of the cellular mechanisms and role of specific genes, non-coding regulatory elements and signaling molecules in control of prefrontal neuronal production and phenotypic fate, as well as neuronal migration to establish layering of the PFC. Likewise, various genetic approaches in combination with functional assays and immunohistochemical and imaging methods reveal roles of neurotransmitter systems during maturation of the PFC. Disruption, or even a slight slowing of the rate of neuronal production, migration and synaptogenesis by genetic or environmental factors, can induce gross as well as subtle changes that eventually can lead to cognitive impairment. An understanding of the development and evolution of the PFC provide insight into the pathogenesis and treatment of congenital neuropsychiatric diseases as well as idiopathic developmental disorders that cause intellectual disabilities.
Collapse
Affiliation(s)
- Sharon M Kolk
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, The Netherlands.
| | - Pasko Rakic
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University, New Haven, Connecticut, USA.
| |
Collapse
|
39
|
Cruz GB, Vasquez MA, Cabañas E, Joseph JN, Skeen JC, Lynch KP, Ahmed I, Khairi EB, Bonitto JR, Clarke EG, Rubi S, Hameed N, Kaur S, Mathew N, Dacius TF, Jose TJ, Handford G, Wolfe S, Feher A, Tidwell K, Tobin J, Ugalde E, Fee S, Choe A, Gillenwater K, Hindi B, Pilout S, Natale NR, Domahoski N, Kent MH, Jacob JC, Lambert KG, Neuwirth LS. Developmental Lead Exposure in Rats Causes Sex-Dependent Changes in Neurobiological and Anxiety-Like Behaviors that Are Improved by Taurine Co-treatment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1370:461-479. [DOI: 10.1007/978-3-030-93337-1_43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
40
|
Dufford AJ, Spann M, Scheinost D. How prenatal exposures shape the infant brain: Insights from infant neuroimaging studies. Neurosci Biobehav Rev 2021; 131:47-58. [PMID: 34536461 DOI: 10.1016/j.neubiorev.2021.09.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/30/2021] [Accepted: 09/12/2021] [Indexed: 10/20/2022]
Abstract
Brain development during the prenatal period is rapid and unparalleled by any other time during development. Biological systems undergoing rapid development are at higher risk for disorganizing influences. Therefore, certain prenatal exposures impact brain development, increasing risk for negative neurodevelopmental outcome. While prenatal exposures have been associated with cognitive and behavioral outcomes later in life, the underlying macroscopic brain pathways remain unclear. Here, we review magnetic resonance imaging (MRI) studies investigating the association between prenatal exposures and infant brain development focusing on prenatal exposures via maternal physical health factors, maternal mental health factors, and maternal drug and medication use. Further, we discuss the need for studies to consider multiple prenatal exposures in parallel and suggest future directions for this body of research.
Collapse
Affiliation(s)
| | - Marisa Spann
- Columbia University Irving Medical Center, 622 West 168th Street, New York, NY, 10032, USA
| | - Dustin Scheinost
- Child Study Center, Yale School of Medicine, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, USA; Department of Statistics and Data Science, Yale University, New Haven, CT, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| |
Collapse
|
41
|
Thomason ME, Palopoli AC, Jariwala NN, Werchan DM, Chen A, Adhikari S, Espinoza-Heredia C, Brito NH, Trentacosta CJ. Miswiring the brain: Human prenatal Δ9-tetrahydrocannabinol use associated with altered fetal hippocampal brain network connectivity. Dev Cogn Neurosci 2021; 51:101000. [PMID: 34388638 PMCID: PMC8363827 DOI: 10.1016/j.dcn.2021.101000] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 01/16/2023] Open
Abstract
Increasing evidence supports a link between maternal prenatal cannabis use and altered neural and physiological development of the child. However, whether cannabis use relates to altered human brain development prior to birth, and specifically, whether maternal prenatal cannabis use relates to connectivity of fetal functional brain systems, remains an open question. The major objective of this study was to identify whether maternal prenatal cannabis exposure (PCE) is associated with variation in human brain hippocampal functional connectivity prior to birth. Prenatal drug toxicology and fetal fMRI data were available in a sample of 115 fetuses [43 % female; mean age 32.2 weeks (SD = 4.3)]. Voxelwise hippocampal connectivity analysis in a subset of age and sex-matched fetuses revealed that PCE was associated with alterations in fetal dorsolateral, medial and superior frontal, insula, anterior temporal, and posterior cingulate connectivity. Classification of group differences by age 5 outcomes suggest that compared to the non-PCE group, the PCE group is more likely to have increased connectivity to regions associated with less favorable outcomes and to have decreased connectivity to regions associated with more favorable outcomes. This is preliminary evidence that altered fetal neural connectome may contribute to neurobehavioral vulnerability observed in children exposed to cannabis in utero.
Collapse
Affiliation(s)
- Moriah E Thomason
- Department of Child and Adolescent Psychiatry, New York University Medical Center, New York, NY, USA; Department of Population Health, New York University Medical Center, New York, NY, USA; Neuroscience Institute, New York University Medical Center, New York, NY, USA.
| | - Ava C Palopoli
- Department of Psychology, Wayne State University, Detroit, MI, USA
| | - Nicki N Jariwala
- Department of Child and Adolescent Psychiatry, New York University Medical Center, New York, NY, USA
| | - Denise M Werchan
- Department of Child and Adolescent Psychiatry, New York University Medical Center, New York, NY, USA
| | - Alan Chen
- Department of Population Health, New York University Medical Center, New York, NY, USA
| | - Samrachana Adhikari
- Department of Population Health, New York University Medical Center, New York, NY, USA
| | - Claudia Espinoza-Heredia
- Department of Child and Adolescent Psychiatry, New York University Medical Center, New York, NY, USA
| | - Natalie H Brito
- Department of Applied Psychology, New York University, New York, NY, USA
| | | |
Collapse
|
42
|
Perino MT, Myers MJ, Wheelock MD, Yu Q, Harper JC, Manhart MF, Gordon EM, Eggebrecht AT, Pine DS, Barch DM, Luby JL, Sylvester CM. Whole-Brain Resting-State Functional Connectivity Patterns Associated With Pediatric Anxiety and Involuntary Attention Capture. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 1:229-238. [PMID: 36033105 PMCID: PMC9417088 DOI: 10.1016/j.bpsgos.2021.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/22/2021] [Accepted: 05/24/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Pediatric anxiety disorders are linked to dysfunction in multiple functional brain networks, as well as to alterations in the allocation of spatial attention. We used network-level analyses to characterize resting-state functional connectivity (rs-fc) alterations associated with 1) symptoms of anxiety and 2) alterations in stimulus-driven attention associated with pediatric anxiety disorders. We hypothesized that anxiety was related to altered connectivity of the frontoparietal, default mode, cingulo-opercular, and ventral attention networks and that anxiety-related connectivity alterations that include the ventral attention network would simultaneously be related to deviations in stimulus-driven attention. METHODS A sample of children (n = 61; mean = 10.6 years of age), approximately half of whom met criteria for a current anxiety disorder, completed a clinical assay, an attention task, and rs-fc magnetic resonance imaging scans. Network-level analyses examined whole-brain rs-fc patterns associated with clinician-rated anxiety and with involuntary capture of attention. Post hoc analyses controlled for comorbid symptoms. RESULTS Elevated clinician-rated anxiety was associated with altered connectivity within the cingulo-opercular network, as well as between the cingulo-opercular network and the ventral attention, default mode, and visual networks. Connectivity between the ventral attention and cingulo-opercular networks was associated with variation in both anxiety and stimulus-driven attention. CONCLUSIONS Pediatric anxiety is related to aberrant connectivity patterns among several networks, most of which include the cingulo-opercular network. These results help clarify the within- and between-network interactions associated with pediatric anxiety and its association with altered attention, suggesting that specific network connections could be targeted to improve specific altered processes associated with anxiety.
Collapse
Affiliation(s)
- Michael T. Perino
- School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Michael J. Myers
- School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Muriah D. Wheelock
- School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Qiongru Yu
- Department of Psychology, San Diego State University, San Diego, California
- Department of Psychiatry, University of California San Diego, San Diego, California
| | - Jennifer C. Harper
- School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Megan F. Manhart
- School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Evan M. Gordon
- School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Adam T. Eggebrecht
- School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Daniel S. Pine
- Development & Emotion Branch, National Institute of Mental Health, Bethesda, Maryland
| | - Deanna M. Barch
- School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Joan L. Luby
- School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Chad M. Sylvester
- School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
43
|
Thomason ME, Hect JL, Waller R, Curtin P. Interactive relations between maternal prenatal stress, fetal brain connectivity, and gestational age at delivery. Neuropsychopharmacology 2021; 46:1839-1847. [PMID: 34188185 PMCID: PMC8357800 DOI: 10.1038/s41386-021-01066-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 12/15/2022]
Abstract
Studies reporting significant associations between maternal prenatal stress and child outcomes are frequently confounded by correlates of prenatal stress that influence the postnatal rearing environment. The major objective of this study is to identify whether maternal prenatal stress is associated with variation in human brain functional connectivity prior to birth. We utilized fetal fMRI in 118 fetuses [48 female; mean age 32.9 weeks (SD = 3.87)] to evaluate this association and further addressed whether fetal neural differences were related to maternal health behaviors, social support, or birth outcomes. Community detection was used to empirically define networks and enrichment was used to isolate differential within- or between-network connectivity effects. Significance for χ2 enrichment was determined by randomly permuting the subject pairing of fetal brain connectivity and maternal stress values 10,000 times. Mixtures modelling was used to test whether fetal neural differences were related to maternal health behaviors, social support, or birth outcomes. Increased maternal prenatal negative affect/stress was associated with alterations in fetal frontoparietal, striatal, and temporoparietal connectivity (β = 0.82, p < 0.001). Follow-up analysis demonstrated that these associations were stronger in women with better health behaviors, more positive interpersonal support, and lower overall stress (β = 0.16, p = 0.02). Additionally, magnitude of stress-related differences in neural connectivity was marginally correlated with younger gestational age at delivery (β = -0.18, p = 0.05). This is the first evidence that negative affect/stress during pregnancy is reflected in functional network differences in the human brain in utero, and also provides information about how positive interpersonal and health behaviors could mitigate prenatal brain programming.
Collapse
Affiliation(s)
- Moriah E Thomason
- Department of Child and Adolescent Psychiatry, New York University Medical Center, New York, NY, USA.
- Department of Population Health, New York University Medical Center, New York, NY, USA.
- Neuroscience Institute, NYU Langone Health, New York, NY, USA.
| | - Jasmine L Hect
- Medical Scientist Training Program, University of Pittsburgh & Carnegie Mellon University, Pittsburgh, PA, USA
| | - Rebecca Waller
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul Curtin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
44
|
Kelsey CM, Farris K, Grossmann T. Variability in Infants' Functional Brain Network Connectivity Is Associated With Differences in Affect and Behavior. Front Psychiatry 2021; 12:685754. [PMID: 34177669 PMCID: PMC8220897 DOI: 10.3389/fpsyt.2021.685754] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/14/2021] [Indexed: 11/13/2022] Open
Abstract
Variability in functional brain network connectivity has been linked to individual differences in cognitive, affective, and behavioral traits in adults. However, little is known about the developmental origins of such brain-behavior correlations. The current study examined functional brain network connectivity and its link to behavioral temperament in typically developing newborn and 1-month-old infants (M [age] = 25 days; N = 75) using functional near-infrared spectroscopy (fNIRS). Specifically, we measured long-range connectivity between cortical regions approximating fronto-parietal, default mode, and homologous-interhemispheric networks. Our results show that connectivity in these functional brain networks varies across infants and maps onto individual differences in behavioral temperament. Specifically, connectivity in the fronto-parietal network was positively associated with regulation and orienting behaviors, whereas connectivity in the default mode network showed the opposite effect on these behaviors. Our analysis also revealed a significant positive association between the homologous-interhemispheric network and infants' negative affect. The current results suggest that variability in long-range intra-hemispheric and cross-hemispheric functional connectivity between frontal, parietal, and temporal cortex is associated with individual differences in affect and behavior. These findings shed new light on the brain origins of individual differences in early-emerging behavioral traits and thus represent a viable novel approach for investigating developmental trajectories in typical and atypical neurodevelopment.
Collapse
Affiliation(s)
- Caroline M. Kelsey
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States
- Department of Psychology, University of Virginia, Charlottesville, VA, United States
| | - Katrina Farris
- Department of Psychology, University of Virginia, Charlottesville, VA, United States
- Department of Psychology, Georgia State University, Atlanta, GA, United States
| | - Tobias Grossmann
- Department of Psychology, University of Virginia, Charlottesville, VA, United States
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
45
|
Almerud P, Zamaratskaia G, Lindroos AK, Bjermo H, Andersson EM, Lundh T, Ankarberg EH, Lignell S. Cadmium, total mercury, and lead in blood and associations with diet, sociodemographic factors, and smoking in Swedish adolescents. ENVIRONMENTAL RESEARCH 2021; 197:110991. [PMID: 33705767 DOI: 10.1016/j.envres.2021.110991] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/10/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Despite their vulnerability to the toxic effects of certain metals, biomonitoring data on adolescents are limited. In the present study, we assessed blood concentrations of toxic metals (cadmium [Cd], total mercury [Hg], and lead [Pb] in a national representative sample of Swedish adolescents. We also examined the associations of Cd, total Hg and Pb with habitual intakes of major energy-providing food groups and other possible determinants such as age, sex, household education, Nordic or non-Nordic origin, and smoking. METHODS We analysed blood concentrations of Cd, total Hg, and Pb in a sample of 1099 adolescents from the Riksmaten Adolescents 2016-17 study in three age groups (mean age of 12, 15, and 18 years) using inductively coupled plasma mass spectrometry. The participants completed web-based questionnaires on food consumption frequency, sociodemographic factors and health status. Dietary data from two web-based 24-h dietary recalls were used to estimate the habitual intake of 10 major food groups. RESULTS Almost all participants had detectable concentrations of Cd, total Hg, and Pb in whole blood. The median blood concentrations were 0.12 μg/L for Cd, 0.72 μg/L for total Hg, and 7.1 μg/L for Pb. Higher blood concentrations of Cd were observed in girls than in boys, whereas concentrations of total Hg and Pb were higher in boys. We observed an inverse association between Cd and meat intake. Total Hg concentrations were positively associated with intakes of fish, eggs, meat, and vegetables, and Pb concentrations were inversely associated with intakes of dairy products. Furthermore, smokers had higher concentrations of Cd and Pb. CONCLUSIONS We found that fish was a potentially important source of exposure to total Hg in Swedish adolescents. No other food group was identified to have a strong impact on the blood levels of Cd, total Hg and Pb. Thirteen per cent of the adolescents had blood Pb concentrations above 12 μg/L, the reference point used in the risk assessment of Pb by the European Food Safety Authority (EFSA).
Collapse
Affiliation(s)
- Pernilla Almerud
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden; Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Galia Zamaratskaia
- Department of Risk and Benefit Assessment, Swedish Food Agency, Uppsala, Sweden
| | - Anna Karin Lindroos
- Department of Risk and Benefit Assessment, Swedish Food Agency, Uppsala, Sweden; Department of Internal Medicine and Clinical Nutrition, The Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Helena Bjermo
- Department of Risk and Benefit Assessment, Swedish Food Agency, Uppsala, Sweden
| | - Eva M Andersson
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden; Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Thomas Lundh
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | | | - Sanna Lignell
- Department of Risk and Benefit Assessment, Swedish Food Agency, Uppsala, Sweden.
| |
Collapse
|
46
|
Norr ME, Hect JL, Lenniger CJ, Van den Heuvel M, Thomason ME. An examination of maternal prenatal BMI and human fetal brain development. J Child Psychol Psychiatry 2021; 62:458-469. [PMID: 32779186 PMCID: PMC7875456 DOI: 10.1111/jcpp.13301] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 01/27/2023]
Abstract
BACKGROUND Prenatal development is a time when the brain is acutely vulnerable to insult and alteration by environmental factors (e.g., toxins, maternal health). One important risk factor is maternal obesity (Body Mass Index > 30). Recent research indicates that high maternal BMI during pregnancy is associated with increased risk for numerous physical health, cognitive, and mental health problems in offspring across the lifespan. It is possible that heightened maternal prenatal BMI influences the developing brain even before birth. METHODS The present study examines this possibility at the level of macrocircuitry in the human fetal brain. Using a data-driven strategy for parcellating the brain into subnetworks, we test whether MRI functional connectivity within or between fetal neural subnetworks varies with maternal prenatal BMI in 109 fetuses between the ages of 26 and 39weeks. RESULTS We discovered that strength of connectivity between two subnetworks, left anterior insula/inferior frontal gyrus (aIN/IFG) and bilateral prefrontal cortex (PFC), varied with maternal BMI. At the level of individual aIN/IFG-PFC connections, we observed both increased and decreased between-network connectivity with a tendency for increased within-hemisphere connectivity and reduced cross-hemisphere connectivity in higher BMI pregnancies. Maternal BMI was not associated with global differences in network topography based on network-based statistical analyses. CONCLUSIONS Overall effects were localized in regions that will later support behavioral regulation and integrative processes, regions commonly associated with obesity-related deficits. By establishing onset in neural differences prior to birth, this study supports a model in which maternal BMI-related risk is associated with fetal connectome-level brain organization with implications for offspring long-term cognitive development and mental health.
Collapse
Affiliation(s)
- Megan E. Norr
- Department of Psychology, University of California Berkeley, Berkeley, CA, USA
| | - Jasmine L. Hect
- Department of Psychology, Wayne State University, Detroit, MI, USA
| | - Carly J. Lenniger
- Department of Child and Adolescent Psychiatry, New York University Medical Center, New York, NY, USA
| | - Martijn Van den Heuvel
- Dutch Connectome Lab, Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Genetics, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - Moriah E. Thomason
- Department of Child and Adolescent Psychiatry, New York University Medical Center, New York, NY, USA
- Department of Population Health, New York Medical Center, New York University, New York, NY, USA
- Neuroscience Institute, New York Medical Center, New York University, New York, NY, USA
| |
Collapse
|
47
|
The Relationship between Occupationally Exposed Arsenic, Cadmium and Lead and Brain Bioelectrical Activity-A Visual and Brainstem Auditory Evoked Potentials Study. Brain Sci 2021; 11:brainsci11030350. [PMID: 33801787 PMCID: PMC7998874 DOI: 10.3390/brainsci11030350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to evaluate the parameters of visual and brainstem auditory evoked potentials in patients occupationally exposed to arsenic, cadmium and lead. The study group comprised 41 copper smelter and refinery workers (average age: 51.27) with occupational exposure to arsenic, cadmium and lead. The control group consisted of 36 healthy volunteers (35 men and 1 woman, aged 27-66, average age: 51.08). Neurological examination, brain imaging, and visual and brainstem auditory evoked potentials were performed, and the relationship between blood Cd, Pb concentration (Cd-B, Pb-B), blood zinc protoporphyrin (ZnPP), and urine As concentration (As-U) were assessed. In the workers, exceedances of allowable biological concentrations were observed, with the urinary concentration of arsenic being 5.2%, the cadmium and lead in blood being 1.3%, while the case of ZnPP was 2.6%. The mean P100, relative P100, and N145 visual evoked potential (VEP) latencies were significantly longer in exposed workers than in the controls. The mean wave III and V brainstem auditory evoked potential (BAEP) latency and the mean wave III-V and I-V interpeak latencies were longer, and the I and V amplitude was lower in the workers than the controls. In summary, occupational exposure to As, Cd, and Pb is associated with prolonged latency and reduced evoked potential amplitude, but As-U, Pb-B, Cd-B, and ZnPP concentrations are not linearly related to potential components. The analysis of evoked potentials may be a useful method of assessment of the central nervous system in patients with occupational exposure to heavy metals.
Collapse
|
48
|
De Asis-Cruz J, Andersen N, Kapse K, Khrisnamurthy D, Quistorff J, Lopez C, Vezina G, Limperopoulos C. Global Network Organization of the Fetal Functional Connectome. Cereb Cortex 2021; 31:3034-3046. [PMID: 33558873 DOI: 10.1093/cercor/bhaa410] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/21/2022] Open
Abstract
Recent advances in brain imaging have enabled non-invasive in vivo assessment of the fetal brain. Characterizing brain development in healthy fetuses provides baseline measures for identifying deviations in brain function in high-risk clinical groups. We examined 110 resting state MRI data sets from fetuses at 19 to 40 weeks' gestation. Using graph-theoretic techniques, we characterized global organizational features of the fetal functional connectome and their prenatal trajectories. Topological features related to network integration (i.e., global efficiency) and segregation (i.e., clustering) were assessed. Fetal networks exhibited small-world topology, showing high clustering and short average path length relative to reference networks. Likewise, fetal networks' quantitative small world indices met criteria for small-worldness (σ > 1, ω = [-0.5 0.5]). Along with this, fetal networks demonstrated global and local efficiency, economy, and modularity. A right-tailed degree distribution, suggesting the presence of central areas that are more highly connected to other regions, was also observed. Metrics, however, were not static during gestation; measures associated with segregation-local efficiency and modularity-decreased with advancing gestational age. Altogether, these suggest that the neural circuitry underpinning the brain's ability to segregate and integrate information exists as early as the late 2nd trimester of pregnancy and reorganizes during the prenatal period. Significance statement. Mounting evidence for the fetal origins of some neurodevelopmental disorders underscores the importance of identifying features of healthy fetal brain functional development. Alterations in prenatal brain connectomics may serve as early markers for identifying fetal-onset neurodevelopmental disorders, which in turn provide improved surveillance of at-risk fetuses and support the initiation of early interventions.
Collapse
Affiliation(s)
- Josepheen De Asis-Cruz
- Developing Brain Institute, Children's National, 111 Michigan Ave NW, Washington DC 20010
| | - Nicole Andersen
- Developing Brain Institute, Children's National, 111 Michigan Ave NW, Washington DC 20010
| | - Kushal Kapse
- Developing Brain Institute, Children's National, 111 Michigan Ave NW, Washington DC 20010
| | | | - Jessica Quistorff
- Developing Brain Institute, Children's National, 111 Michigan Ave NW, Washington DC 20010
| | - Catherine Lopez
- Developing Brain Institute, Children's National, 111 Michigan Ave NW, Washington DC 20010
| | - Gilbert Vezina
- Division of Diagnostic Imaging and Radiology, 111 Michigan Ave NW, Washington DC 20010
| | | |
Collapse
|
49
|
Gleason KM, Valeri L, Shankar AH, Obrycki JF, Ibne Hasan MOS, Mostofa G, Quamruzzaman Q, Wright RO, Christiani DC, Bellinger DC, Mazumdar M. Stunting and lead: using causal mediation analysis to better understand how environmental lead exposure affects cognitive outcomes in children. J Neurodev Disord 2020; 12:39. [PMID: 33327931 PMCID: PMC7745460 DOI: 10.1186/s11689-020-09346-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 11/18/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Many children in Bangladesh experience poor nutritional status and environmental lead exposure, both of which are associated with lower scores on neurodevelopmental assessments. Recent studies have suggested that part of lead's adverse effects on neurodevelopment are caused in part by lead's effect on growth. New statistical methods are now available to evaluate potential causal pathways in observational studies. This study used a novel statistical method to test the hypothesis that stunting, a measure of linear growth related to poor nutrition, is a mediator and/or an effect modifier of the lead exposure's adverse effect on cognitive development. METHODS Participants were 734 children from a longitudinal birth cohort established in rural Bangladesh to study the health effects of prenatal and early childhood environmental metal exposures. Lead exposure was estimated using umbilical cord blood samples obtained at birth and blood obtained via venipuncture at age 20-40 months. Stunting was determined using the World Health Organization's standards. Neurodevelopment was assessed at age 20-40 months years using the Bayley Scales of Infant and Toddler Development, Third Edition (BSID-III). We evaluated the effect of lead on stunting and whether the effect of lead on cognitive scores is modified by stunting status in multivariable regression analyses. We then conducted a novel 4-way mediation analysis that allows for exposure-mediator interaction to assess how much of the effect of lead on cognitive scores is explained by the pathway through stunting (mediation) and how much is explained by the interaction between lead and stunt (effect modification). RESULTS Stunting was not a mediator of the effect of lead in our analyses. Results suggested effect modification by stunting. In an area of Bangladesh with lower lead exposures (median umbilical cord blood lead concentration, 1.7 μg/dL), stunting modified the relationship between prenatal blood lead concentrations and cognitive score at age 2-3 years. A 1-unit increase in natural log cord blood lead concentration in the presence of stunting was associated with a 2.1-unit decrease in cognitive scores (β = - 2.10, SE = 0.71, P = 0.003). This interaction was not found in a second study site where lead exposures were higher (median umbilical cord blood lead concentration, 6.1 μg/dL, β = - 0.45, SE = 0.49, P = 0.360). CONCLUSIONS We used a novel method of mediation analysis to test whether stunting mediated the adverse effect of prenatal lead exposure on cognitive outcomes in Bangladesh. While we did not find that stunting acted as mediator of lead's effect on cognitive development, we found significant effect modification by stunting. Our results suggest that children with stunting are more vulnerable to the adverse effects of low-level lead exposure.
Collapse
Affiliation(s)
- Kelsey M Gleason
- Department of Medicine, Robert Larner M.D. College of Medicine, Burlington, VT, USA
| | - Linda Valeri
- Department of Biostatistics, Columbia Mailman School of Public Health, New York, NY, USA
| | - Anuraj H Shankar
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - John F Obrycki
- Department of Neurology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | | | | | | | - Robert O Wright
- Department of Preventive Medicine, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - David C Bellinger
- Department of Neurology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Maitreyi Mazumdar
- Department of Neurology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
50
|
De Asis-Cruz J, Krishnamurthy D, Zhao L, Kapse K, Vezina G, Andescavage N, Quistorff J, Lopez C, Limperopoulos C. Association of Prenatal Maternal Anxiety With Fetal Regional Brain Connectivity. JAMA Netw Open 2020; 3:e2022349. [PMID: 33284334 DOI: 10.1001/jamanetworkopen.2020.22349] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
IMPORTANCE Maternal psychological distress during pregnancy is associated with adverse obstetric outcomes and neuropsychiatric deficits in children. Currently unavailable in vivo interrogation of fetal brain function could provide critical insights into the onset and timing of altered neurodevelopmental trajectories. OBJECTIVE To investigate the association between prenatal maternal stress, anxiety, and depression and in vivo fetal brain resting state functional connectivity. DESIGN, SETTING, AND PARTICIPANTS This cohort study included pregnant women scanned between January 2016 and April 2019. A total of 50 pregnant women with healthy pregnancies were prospectively recruited from low-risk obstetric clinics in the Washington DC area and were scanned at Children's National in Washington DC. EXPOSURES Maternal stress, anxiety, and depression. MAIN OUTCOMES AND MEASURES The association of prenatal maternal stress, anxiety, and depression with whole-brain connectivity was analyzed using multivariate distance matrix regression. Prenatal maternal stress, anxiety, and depression were assessed using the Perceived Stress Scale, Spielberger State Anxiety Inventory and Spielberger Trait Anxiety Inventory, and the Edinburgh Postnatal Depression Scale, respectively. Whole-brain connectivity was measured from 100 functionally defined regions of interest. RESULTS This study analyzed 59 resting-state functional connectivity magnetic resonance image data sets from the fetuses (mean [SD] gestational age, 33.52 [4 weeks]) of 50 healthy pregnant women (mean [SD] age, 33.77 [5.51]). Mean (SD) scores for the questionnaires were as follows: Spielberger State Anxiety Inventory, 26.66 (6.72) (range, 20-48); Spielberger Trait Anxiety Inventory, 28.09 (6.62) (range, 20-50); Perceived Stress Scale, 9.27 (5.13) (range, 1-25); and Edinburgh Postnatal Depression Scale 3.24 (2.84) (range, 0-14). Prenatal maternal anxiety scores measured using the Spielberger Trait and State Anxiety Inventories were associated with differences in fetal connectivity (Spielberger State Anxiety Inventory: pseudo-R2 = 0.019, P = .04; Spielberger Trait Anxiety Inventory: pseudo-R2 = 0.021, P = .007). Interhemispheric connections, such as those involving the parietofrontal and occipital association cortices, were associated with reduced maternal prenatal anxiety, and those between the brainstem and sensorimotor areas were associated with higher anxiety scores. CONCLUSIONS AND RELEVANCE In this cohort study, an association was found between prenatal maternal anxiety and disturbances in fetal brain functional connectivity, suggesting altered fetal programming. Early onset of functional deviations suggests the need for more widespread screening of pregnant women for symptoms of anxiety.
Collapse
Affiliation(s)
| | | | - Li Zhao
- Division of Diagnostic Imaging and Radiology, Children's National, Washington DC
| | - Kushal Kapse
- Division of Diagnostic Imaging and Radiology, Children's National, Washington DC
| | - Gilbert Vezina
- Division of Diagnostic Imaging and Radiology, Children's National, Washington DC
| | | | - Jessica Quistorff
- Division of Diagnostic Imaging and Radiology, Children's National, Washington DC
| | - Catherine Lopez
- Division of Diagnostic Imaging and Radiology, Children's National, Washington DC
| | - Catherine Limperopoulos
- Division of Diagnostic Imaging and Radiology, Children's National, Washington DC
- Department of Pediatrics, The George Washington University School of Medicine, Washington DC
| |
Collapse
|