1
|
Olivetti PR, Torres-Herraez A, Gallo ME, Raudales R, Sumerau M, Moyles S, Balsam PD, Kellendonk C. Inhibition of striatal indirect pathway during second postnatal week leads to long-lasting deficits in motivated behavior. Neuropsychopharmacology 2025; 50:651-661. [PMID: 39327472 PMCID: PMC11845773 DOI: 10.1038/s41386-024-01997-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/15/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
Schizophrenia is a neuropsychiatric disorder with postulated neurodevelopmental etiology. Genetic and imaging studies have shown enhanced dopamine and D2 receptor occupancy in the striatum of patients with schizophrenia. However, whether alterations in postnatal striatal dopamine can lead to long-lasting changes in brain function and behavior is still unclear. Here, we approximated striatal D2R hyperfunction in mice via designer receptor-mediated activation of inhibitory Gi-protein signaling during a defined postnatal time window. We found that Gi-mediated inhibition of the indirect pathway (IP) during postnatal days 8-15 led to long-lasting decreases in locomotor activity and motivated behavior measured in the adult animal. In vivo photometry further showed that the motivational deficit was associated with an attenuated adaptation of outcome-evoked dopamine levels to changes in effort requirements. These data establish a sensitive time window of D2R-regulated striatal development with long-lasting impacts on neuronal function and behavior.
Collapse
Affiliation(s)
- Pedro R Olivetti
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Arturo Torres-Herraez
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Meghan E Gallo
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Ricardo Raudales
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - MaryElena Sumerau
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Barnard College Undergraduate Program, Barnard College 3009 Broadway, New York, NY, USA
| | - Sinead Moyles
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Barnard College Undergraduate Program, Barnard College 3009 Broadway, New York, NY, USA
| | - Peter D Balsam
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Department of Neuroscience and Behavior, Barnard College 3009 Broadway, New York, NY, USA
| | - Christoph Kellendonk
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA.
- Department of Molecular Pharmacology & Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
2
|
Câmara AB, Brandão IA. The neuroinflammatory effects of Nociceptin/Orphanin FQ receptor activation can be related to depressive-like behavior. J Psychiatr Res 2025; 183:174-188. [PMID: 39978292 DOI: 10.1016/j.jpsychires.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/08/2024] [Accepted: 02/07/2025] [Indexed: 02/22/2025]
Abstract
There is limited information on the role of the Nociceptin/Orphanin FQ receptor (NOPR) in neuroinflammation, and there is growing interest in the participation of the NOPR in depression etiology. This study aims to evaluate the neuroinflammatory effects of the NOPR activation in mice submitted to social defeat protocol (SDP). Firstly, male Swiss mice were submitted to the social defeat protocol during 10 or 20 days and treated with the NOPR agonist Ro 65-6570 (1.5 or 2 mg/kg; ip). Subsequently, behavioral tests were applied to evaluate depressive-like behaviors. Finally, inflammatory cytokines were measured in the animals' brains and blood. A meta-analysis, including 11 experiments, was also conducted to evaluate if the NOPR activation contributes to inflammation. The studies' weights, odds ratios, and confidence intervals were used to calculate the average effect size as the main outcome measure. The software SPSS v.29 and R programming language were used to analyze the data. The SDP and/or NOP agonist reduced distance traveled and exploration rate in the open field test. The SDP and/or the NOP agonist also increased immobility time in the tail suspension test, as well as reduced social interaction. Additionally, the NOP agonist increased the concentration of IL-6 and TNF alpha in the hippocampus, as well as reduced the IL-10 concentration in the hippocampus, but not in prefrontal cortex and serum. The SDP increased the concentration of IL-6 and TNF alpha in animals' serum and prefrontal cortex, but not in the hippocampus. The role of NOPR in neuroinflammation was regardless of the social defeat stress in the hippocampus. Meta-analysis also demonstrated the participation of NOPR activation in inducing inflammation in mice models. We suggest that upregulation of NOPR can activate signaling pathways involved in neuroinflammation, contributing to depression etiology.
Collapse
Affiliation(s)
| | - Igor Augusto Brandão
- Bioinformatics Multidisciplinary Environment, Federal University of Rio Grande do Norte, Brazil
| |
Collapse
|
3
|
Ijomone OK, Oria RS, Ijomone OM, Aschner M, Bornhorst J. Dopaminergic Perturbation in the Aetiology of Neurodevelopmental Disorders. Mol Neurobiol 2025; 62:2420-2434. [PMID: 39110391 PMCID: PMC11772124 DOI: 10.1007/s12035-024-04418-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 08/01/2024] [Indexed: 01/28/2025]
Abstract
Brain development may be influenced by both genetic and environmental factors, with potential consequences that may last through the lifespan. Alterations during neurogenesis are linked to neurodevelopmental cognitive disorders. Many neurotransmitters and their systems play a vital role in brain development, as most are present prior to synaptogenesis, and they are involved in the aetiology of many neurodevelopmental disorders. For instance, dopamine (DA) receptor expression begins at the early stages of development and matures at adolescence. The long maturation period suggests how important it is for the stabilisation and integration of neural circuits. DA and dopaminergic (DAergic) system perturbations have been implicated in the pathogenesis of several neurological and neuropsychiatric disorders. The DAergic system controls key cognitive and behavioural skills including emotional and motivated behaviour through DA as a neurotransmitter and through the DA neuron projections to major parts of the brain. In this review, we summarise the current understanding of the DAergic system's influence on neurodevelopment and its involvement in the aetiology and progression of major disorders of the developing brain including autism, schizophrenia, attention deficit hyperactivity disorder, down syndrome, and fragile X syndrome.
Collapse
Affiliation(s)
- Olayemi K Ijomone
- Food Chemistry, Faculty of Mathematics and Natural Science, University of Wuppertal, Wuppertal, Germany.
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Laje Road, Ondo, Ondo State, Nigeria.
- Department of Anatomy, University of Medical Sciences, Laje Road, Ondo, Ondo State, Nigeria.
| | - Rademene Sunday Oria
- Department of Anatomy, University of Cross River State, Okuku Campus, Cross River, Nigeria
| | - Omamuyovwi M Ijomone
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Laje Road, Ondo, Ondo State, Nigeria.
- Department of Anatomy, University of Medical Sciences, Laje Road, Ondo, Ondo State, Nigeria.
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Science, University of Wuppertal, Wuppertal, Germany
| |
Collapse
|
4
|
Chen H, Li J, Huang Z, Fan X, Wang X, Chen X, Guo H, Liu H, Li S, Yu S, Li H, Huang X, Ma X, Deng X, Wang C, Liu Y. Dopaminergic system and neurons: Role in multiple neurological diseases. Neuropharmacology 2024; 260:110133. [PMID: 39197818 DOI: 10.1016/j.neuropharm.2024.110133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/24/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
The dopaminergic system is a complex and powerful neurotransmitter system in the brain. It plays an important regulatory role in motivation, reward, cognition, and motor control. In recent decades, research in the field of the dopaminergic system and neurons has increased exponentially and is gradually becoming a point of intervention in the study and understanding of a wide range of neurological diseases related to human health. Studies have shown that the dopaminergic system and neurons are involved in the development of many neurological diseases (including, but not limited to Parkinson's disease, schizophrenia, depression, attention deficit hyperactivity disorder, etc.) and that dopaminergic neurons either have too much stress or too weak function in the dopaminergic system can lead to disease. Therefore, targeting dopaminergic neurons is considered key to treating these diseases. This article provides a comprehensive review of the dopaminergic system and neurons in terms of brain region distribution, physiological function and subtypes of dopaminergic neurons, as well as the role of the dopaminergic system and neurons in a variety of diseases.
Collapse
Affiliation(s)
- Heng Chen
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jieshu Li
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhixing Huang
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xiaoxiao Fan
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xiaofei Wang
- Beijing Normal University, Beijing, 100875, China
| | - Xing Chen
- University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Haitao Guo
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Hao Liu
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shuqi Li
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shaojun Yu
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Honghong Li
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xinyu Huang
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xuehua Ma
- Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Xinqi Deng
- Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Chunguo Wang
- Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Yonggang Liu
- Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
5
|
Ma JC, Che XH, Zhu XN, Ren AX, Hu Y, Yang CL, Xu ZT, Li YT, Wu CF, Yang JY. Single-dose methamphetamine administration impairs ORM retrieval in mice via excessive DA-mediated inhibition of PrL Glu activity. Acta Pharmacol Sin 2024; 45:2253-2266. [PMID: 38914676 PMCID: PMC11489666 DOI: 10.1038/s41401-024-01321-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/20/2024] [Indexed: 06/26/2024] Open
Abstract
Methamphetamine (METH), an abused psychostimulant, impairs cognition through prolonged or even single-dose exposure, but animal experiments have shown contradictory effects on memory deficits. In this study we investigated the effects and underlying mechanisms of single-dose METH administration on the retrieval of object recognition memory (ORM) in mice. We showed that single-dose METH administration (2 mg/kg, i.p.) significantly impaired ORM retrieval in mice. Fiber photometry recording in METH-treated mice revealed that the activity of prelimbic cortex glutamatergic neurons (PrLGlu) was significantly reduced during ORM retrieval. Chemogenetic activation of PrLGlu or glutamatergic projections from ventral CA1 to PrL (vCA1Glu-PrL) rescued ORM retrieval impairment. Fiber photometry recording revealed that dopamine (DA) levels in PrL of METH-treated mice were significantly increased, and micro-infusion of the D2 receptor (D2R) antagonist sulpiride (0.25 μg/side) into PrL rescued ORM retrieval impairment. Whole-cell recordings in brain slices containing the PrL revealed that PrLGlu intrinsic excitability and basal glutamatergic synaptic transmission were significantly reduced in METH-treated mice, and the decrease in intrinsic excitability was reversed by micro-infusion of Sulpiride into PrL in METH-treated mice. Thus, the impaired ORM retrieval caused by single-dose METH administration may be attributed to reduced PrLGlu activity, possibly due to excessive DA activity on D2R. Selective activation of PrLGlu or vCA1Glu-PrL may serve as a potential therapeutic strategy for METH-induced cognitive dysfunction.
Collapse
Affiliation(s)
- Jian-Chi Ma
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiao-Hang Che
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiao-Na Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ao-Xin Ren
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yue Hu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Cheng-Li Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhong-Tian Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yu-Ting Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Chun-Fu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Jing-Yu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
6
|
Yang Q, Zhang X, Zhang L, Cheng C, Zhao J. Exploring the influence of the DRD2 gene on mathematical ability: perspectives of gene association and gene-environment interaction. BMC Psychol 2024; 12:572. [PMID: 39425204 PMCID: PMC11488083 DOI: 10.1186/s40359-024-01997-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/11/2024] [Indexed: 10/21/2024] Open
Abstract
Mathematical ability is influenced by genes and environment. This study focused on the effect of DRD2, a candidate gene for working memory, on mathematical ability. The results in child participants revealed associations between the DRD2 gene and mathematical ability. It was found that individual's mathematical ability was influenced by Single Nucleotide Polymorphisms (SNPs) in DRD2, both in the form of haplotypes and in the way of interaction with parental education. These findings suggest that dopaminergic genes are linked to mathematical ability. This study provides evidence for the genetic basis of mathematical ability and offers guidance for personalized intervention in mathematical education.
Collapse
Affiliation(s)
- Qing Yang
- School of Psychology, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, China
| | - Ximiao Zhang
- School of Psychology, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, China
| | - Liming Zhang
- School of Psychology, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, China
| | - Chen Cheng
- School of Psychology, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, China
| | - Jingjing Zhao
- Department of Psychology, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
7
|
Menezes EC, Geiger H, Abreu FF, Rachmany L, Wilson DA, Alldred MJ, Castellanos FX, Fu R, Sargin D, Corvelo A, Teixeira CM. Early-life prefrontal cortex inhibition and early-life stress lead to long-lasting behavioral, transcriptional, and physiological impairments. Mol Psychiatry 2024; 29:2359-2371. [PMID: 38486048 PMCID: PMC11399324 DOI: 10.1038/s41380-024-02499-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 09/01/2024]
Abstract
Early-life stress has been linked to multiple neurodevelopmental and neuropsychiatric deficits. Our previous studies have linked maternal presence/absence from the nest in developing rat pups to changes in prefrontal cortex (PFC) activity. Furthermore, we have shown that these changes are modulated by serotonergic signaling. Here we test whether changes in PFC activity during early life affect the developing cortex leading to behavioral alterations in the adult. We show that inhibiting the PFC of mouse pups leads to cognitive deficits in the adult comparable to those seen following maternal separation. Moreover, we show that activating the PFC during maternal separation can prevent these behavioral deficits. To test how maternal separation affects the transcriptional profile of the PFC we performed single-nucleus RNA-sequencing. Maternal separation led to differential gene expression almost exclusively in inhibitory neurons. Among others, we found changes in GABAergic and serotonergic pathways in these interneurons. Interestingly, both maternal separation and early-life PFC inhibition led to changes in physiological responses in prefrontal activity to GABAergic and serotonergic antagonists that were similar to the responses of more immature brains. Prefrontal activation during maternal separation prevented these changes. These data point to a crucial role of PFC activity during early life in behavioral expression in adulthood.
Collapse
Affiliation(s)
- Edênia C Menezes
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
- Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | | | - Fabiula F Abreu
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
- Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Lital Rachmany
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
- Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Donald A Wilson
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
- Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Melissa J Alldred
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Francisco X Castellanos
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
- Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Rui Fu
- New York Genome Center, New York, NY, 10013, USA
| | - Derya Sargin
- Department of Psychology, Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | | | - Cátia M Teixeira
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA.
- Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
8
|
Cheung F, Calakos KC, Gueorguieva R, Hillmer AT, Cosgrove KP, Zakiniaeiz Y. Lower Dorsal Putamen D2/3 Receptor Availability and Amphetamine-Induced Dopamine Release are Related to Poorer Cognitive Function in Recently Abstinent People Who Smoke and Healthy Controls. Nicotine Tob Res 2024; 26:1038-1044. [PMID: 38367211 PMCID: PMC11260895 DOI: 10.1093/ntr/ntae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
INTRODUCTION In the dopamine system, the mesolimbic pathway, including the dorsal striatum, underlies the reinforcing properties of tobacco smoking, and the mesocortical pathway, including the dorsolateral prefrontal cortex (dlPFC), is critical for cognitive functioning. Dysregulated dopamine signaling has been linked to drug-seeking behaviors and cognitive deficits. The dorsal striatum and dlPFC are structurally and functionally connected and are key regions for cognitive functioning. We recently showed that people who smoke have lower dlPFC dopamine (D2/3R) receptor availability than people who do not, which is related to poorer cognitive function. AIMS AND METHODS The goal of this study was to examine the same brain-behavior relationship in the dorsal striatum. Twenty-nine (18 males) recently abstinent people who smoke and 29 sex-matched healthy controls participated in 2 same-day [11C]-(+)-PHNO positron emission tomography scans before and after amphetamine administration to provoke dopamine release. D2/3R availability (binding potential; BPND) and amphetamine-induced dopamine release (%ΔBPND) were calculated. Cognition (verbal learning and memory) was assessed with the CogState computerized battery. RESULTS There were no group differences in baseline BPND. People who smoke have a smaller magnitude %ΔBPND in dorsal putamen than healthy controls (p = .022). People who smoke perform worse on immediate (p = .035) and delayed (p = .011) recall than healthy controls. In all people, lower dorsal putamen BPND was associated with worse immediate (p = .006) and delayed recall (p = .049), and lower %ΔBPND was related to worse delayed recall (p = .022). CONCLUSIONS Lower dorsal putamen D2/3R availability and function are associated with disruptions in cognitive function that may underlie difficulty with resisting smoking. IMPLICATIONS This study directly relates dopamine imaging outcomes in the dorsal striatum to cognitive function in recently abstinent people who smoke cigarettes and healthy controls. The current work included a well-characterized subject sample in terms of demographics, smoking characteristics, and a validated neurocognitive test of verbal learning and memory. The findings of this study extend previous literature relating dopamine imaging outcomes to cognition in recently abstinent people who smoke and people who do not smoke, expanding our understanding of brain-behavior relationships.
Collapse
Affiliation(s)
| | - Katina C Calakos
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, USA
| | - Ralitza Gueorguieva
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, USA
- Department of Biostatistics, School of Public Health, Yale University, New Haven, CT, USA
| | - Ansel T Hillmer
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, USA
- Yale Positron Emission Tomography (PET) Center, School of Medicine, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, CT, USA
| | - Kelly P Cosgrove
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, USA
- Yale Positron Emission Tomography (PET) Center, School of Medicine, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, CT, USA
| | - Yasmin Zakiniaeiz
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
9
|
Péczely L, Dusa D, Lénárd L, Ollmann T, Kertes E, Gálosi R, Berta B, Szabó Á, László K, Zagoracz O, Karádi Z, Kállai V. The antipsychotic agent sulpiride microinjected into the ventral pallidum restores positive symptom-like habituation disturbance in MAM-E17 schizophrenia model rats. Sci Rep 2024; 14:12305. [PMID: 38811614 PMCID: PMC11136981 DOI: 10.1038/s41598-024-63059-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024] Open
Abstract
Dysfunction of subcortical D2-like dopamine receptors (D2Rs) can lead to positive symptoms of schizophrenia, and their analog, the increased locomotor activity in schizophrenia model MAM-E17 rats. The ventral pallidum (VP) is a limbic structure containing D2Rs. The D2R antagonist sulpiride is a widespread antipsychotic drug, which can alleviate positive symptoms in human patients. However, it is still not known how sulpiride can influence positive symptoms via VP D2Rs. We hypothesize that the microinjection of sulpiride into the VP can normalize hyperactivity in MAM-E17 rats. In addition, recently, we showed that the microinjection of sulpirid into the VP induces place preference in neurotypical rats. Thus, we aimed to test whether intra-VP sulpiride can also have a rewarding effect in MAM-E17 rats. Therefore, open field-based conditioned place preference (CPP) test was applied in neurotypical (SAL-E17) and MAM-E17 schizophrenia model rats to test locomotor activity and the potential locomotor-reducing and rewarding effects of sulpiride. Sulpiride was microinjected bilaterally in three different doses into the VP, and the controls received only vehicle. The results of the present study demonstrated that the increased locomotor activity of the MAM-E17 rats was caused by habituation disturbance. Accordingly, larger doses of sulpiride in the VP reduce the positive symptom-analog habituation disturbance of the MAM-E17 animals. Furthermore, we showed that the largest dose of sulpiride administered into the VP induced CPP in the SAL-E17 animals but not in the MAM-E17 animals. These findings revealed that VP D2Rs play an important role in the formation of positive symptom-like habituation disturbances in MAM-E17 rats.
Collapse
Affiliation(s)
- László Péczely
- Learning in Biological and Artificial Systems Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary.
- Institute of Physiology, Medical School, University of Pécs, Szigeti Str. 12, P.O. Box: 99, 7602, Pécs, Hungary.
- Centre for Neuroscience, University of Pécs, Pécs, Hungary.
| | - Daniella Dusa
- Learning in Biological and Artificial Systems Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Institute of Physiology, Medical School, University of Pécs, Szigeti Str. 12, P.O. Box: 99, 7602, Pécs, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - László Lénárd
- Institute of Physiology, Medical School, University of Pécs, Szigeti Str. 12, P.O. Box: 99, 7602, Pécs, Hungary
- Molecular Neuroendocrinology and Neurophysiology Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Tamás Ollmann
- Learning in Biological and Artificial Systems Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Institute of Physiology, Medical School, University of Pécs, Szigeti Str. 12, P.O. Box: 99, 7602, Pécs, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Erika Kertes
- Learning in Biological and Artificial Systems Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Institute of Physiology, Medical School, University of Pécs, Szigeti Str. 12, P.O. Box: 99, 7602, Pécs, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Rita Gálosi
- Learning in Biological and Artificial Systems Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Reinforcement Learning Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Institute of Physiology, Medical School, University of Pécs, Szigeti Str. 12, P.O. Box: 99, 7602, Pécs, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Beáta Berta
- Learning in Biological and Artificial Systems Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Institute of Physiology, Medical School, University of Pécs, Szigeti Str. 12, P.O. Box: 99, 7602, Pécs, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Ádám Szabó
- Learning in Biological and Artificial Systems Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Institute of Physiology, Medical School, University of Pécs, Szigeti Str. 12, P.O. Box: 99, 7602, Pécs, Hungary
| | - Kristóf László
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Institute of Physiology, Medical School, University of Pécs, Szigeti Str. 12, P.O. Box: 99, 7602, Pécs, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Olga Zagoracz
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Institute of Physiology, Medical School, University of Pécs, Szigeti Str. 12, P.O. Box: 99, 7602, Pécs, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Zoltán Karádi
- Institute of Physiology, Medical School, University of Pécs, Szigeti Str. 12, P.O. Box: 99, 7602, Pécs, Hungary
- Molecular Neuroendocrinology and Neurophysiology Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Veronika Kállai
- Learning in Biological and Artificial Systems Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Institute of Physiology, Medical School, University of Pécs, Szigeti Str. 12, P.O. Box: 99, 7602, Pécs, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, Hungary
| |
Collapse
|
10
|
Guo X, Wang Y, Kan Y, Wu M, Ball LJ, Duan H. The HPA and SAM axis mediate the impairment of creativity under stress. Psychophysiology 2024; 61:e14472. [PMID: 37968552 DOI: 10.1111/psyp.14472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 11/17/2023]
Abstract
With the ever-changing social environment, individual creativity is facing a severe challenge induced by stress. However, little is known regarding the underlying mechanisms by which acute stress affects creative cognitive processing. The current research explored the impacts of the neuroendocrine response on creativity under stress and its underlying cognitive flexibility mechanisms. The enzyme-linked immuno sorbent assay was employed to assess salivary cortisol, which acted as a marker of stress-induced activation of the hypothalamic-pituitary-adrenal (HPA) axis. Eye blink rate (EBR) and pupil diameter were measured as respective indicators of dopamine and noradrenaline released by the activation of the sympathetic-adrenal-medullary (SAM) axis. The Wisconsin card task (WCST) measured cognitive flexibility, while the alternative uses task (AUT) and the remote association task (RAT) measured separately divergent and convergent thinking in creativity. Results showed higher cortisol increments following acute stress induction in the stress group than control group. Ocular results showed that the stress manipulation significantly increased EBR and pupil diameter compared to controls, reflecting increased SAM activity. Further analysis revealed that stress-released cortisol impaired the originality component of the AUT, reducing cognitive flexibility as measured by perseverative errors on the WCST task. Serial mediation analyses showed that both EBR and pupil diameter were also associated with increased perseverative errors leading to poor originality on the AUT. These findings confirm that physiological arousal under stress can impair divergent thinking through the regulation of different neuroendocrine pathways, in which the deterioration of flexible switching plays an important mediating role.
Collapse
Affiliation(s)
- Xiaoyu Guo
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi'an, China
- Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan, China
| | - Yifan Wang
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi'an, China
| | - Yuecui Kan
- Department of Medical Psychology, Psychological Science and Health Management Center, Harbin Medical University, Harbin, China
| | - Meilin Wu
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi'an, China
| | - Linden J Ball
- School of Psychology & Computer Science, University of Central Lancashire, Preston, UK
| | - Haijun Duan
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
11
|
Sohal VS. Neurobiology of schizophrenia. Curr Opin Neurobiol 2024; 84:102820. [PMID: 38091860 DOI: 10.1016/j.conb.2023.102820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/23/2023] [Accepted: 11/19/2023] [Indexed: 02/18/2024]
Affiliation(s)
- Vikaas S Sohal
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94143-0444, USA.
| |
Collapse
|
12
|
Schinz D, Schmitz‐Koep B, Zimmermann J, Brandes E, Tahedl M, Menegaux A, Dukart J, Zimmer C, Wolke D, Daamen M, Boecker H, Bartmann P, Sorg C, Hedderich DM. Indirect evidence for altered dopaminergic neurotransmission in very premature-born adults. Hum Brain Mapp 2023; 44:5125-5138. [PMID: 37608591 PMCID: PMC10502650 DOI: 10.1002/hbm.26451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/23/2023] [Accepted: 07/28/2023] [Indexed: 08/24/2023] Open
Abstract
While animal models indicate altered brain dopaminergic neurotransmission after premature birth, corresponding evidence in humans is scarce due to missing molecular imaging studies. To overcome this limitation, we studied dopaminergic neurotransmission changes in human prematurity indirectly by evaluating the spatial co-localization of regional alterations in blood oxygenation fluctuations with the distribution of adult dopaminergic neurotransmission. The study cohort comprised 99 very premature-born (<32 weeks of gestation and/or birth weight below 1500 g) and 107 full-term born young adults, being assessed by resting-state functional MRI (rs-fMRI) and IQ testing. Normative molecular imaging dopamine neurotransmission maps were derived from independent healthy control groups. We computed the co-localization of local (rs-fMRI) activity alterations in premature-born adults with respect to term-born individuals to different measures of dopaminergic neurotransmission. We performed selectivity analyses regarding other neuromodulatory systems and MRI measures. In addition, we tested if the strength of the co-localization is related to perinatal measures and IQ. We found selectively altered co-localization of rs-fMRI activity in the premature-born cohort with dopamine-2/3-receptor availability in premature-born adults. Alterations were specific for the dopaminergic system but not for the used MRI measure. The strength of the co-localization was negatively correlated with IQ. In line with animal studies, our findings support the notion of altered dopaminergic neurotransmission in prematurity which is associated with cognitive performance.
Collapse
Affiliation(s)
- David Schinz
- Department of Neuroradiology, School of MedicineTechnical University of MunichMunichGermany
- TUM‐NIC Neuroimaging Center, School of MedicineTechnical University of MunichMunichGermany
| | - Benita Schmitz‐Koep
- Department of Neuroradiology, School of MedicineTechnical University of MunichMunichGermany
- TUM‐NIC Neuroimaging Center, School of MedicineTechnical University of MunichMunichGermany
| | - Juliana Zimmermann
- Department of Neuroradiology, School of MedicineTechnical University of MunichMunichGermany
- TUM‐NIC Neuroimaging Center, School of MedicineTechnical University of MunichMunichGermany
| | - Elin Brandes
- Department of Neuroradiology, School of MedicineTechnical University of MunichMunichGermany
- TUM‐NIC Neuroimaging Center, School of MedicineTechnical University of MunichMunichGermany
| | - Marlene Tahedl
- Department of Neuroradiology, School of MedicineTechnical University of MunichMunichGermany
- TUM‐NIC Neuroimaging Center, School of MedicineTechnical University of MunichMunichGermany
| | - Aurore Menegaux
- Department of Neuroradiology, School of MedicineTechnical University of MunichMunichGermany
- TUM‐NIC Neuroimaging Center, School of MedicineTechnical University of MunichMunichGermany
| | - Juergen Dukart
- Institute of Neuroscience and MedicineBrain & Behaviour (INM‐7), Research Centre JülichJülichGermany
- Institute of Systems Neuroscience, Medical FacultyHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Claus Zimmer
- Department of Neuroradiology, School of MedicineTechnical University of MunichMunichGermany
- TUM‐NIC Neuroimaging Center, School of MedicineTechnical University of MunichMunichGermany
| | - Dieter Wolke
- Department of PsychologyUniversity of WarwickCoventryUK
- Warwick Medical SchoolUniversity of WarwickCoventryUK
| | - Marcel Daamen
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional RadiologyUniversity Hospital BonnBonnGermany
- Department of NeonatologyUniversity Hospital BonnBonnGermany
| | - Henning Boecker
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional RadiologyUniversity Hospital BonnBonnGermany
| | - Peter Bartmann
- Department of NeonatologyUniversity Hospital BonnBonnGermany
| | - Christian Sorg
- Department of Neuroradiology, School of MedicineTechnical University of MunichMunichGermany
- TUM‐NIC Neuroimaging Center, School of MedicineTechnical University of MunichMunichGermany
- Department of Psychiatry, School of MedicineTechnical University of MunichMunichGermany
| | - Dennis M. Hedderich
- Department of Neuroradiology, School of MedicineTechnical University of MunichMunichGermany
- TUM‐NIC Neuroimaging Center, School of MedicineTechnical University of MunichMunichGermany
| |
Collapse
|
13
|
Srivastav S, Cui X, Varela RB, Kesby JP, Eyles D. Increasing dopamine synthesis in nigrostriatal circuits increases phasic dopamine release and alters dorsal striatal connectivity: implications for schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:69. [PMID: 37798312 PMCID: PMC10556015 DOI: 10.1038/s41537-023-00397-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023]
Abstract
One of the most robust neurochemical abnormalities reported in patients with schizophrenia is an increase in dopamine (DA) synthesis and release, restricted to the dorsal striatum (DS). This hyper functionality is strongly associated with psychotic symptoms and progresses in those who later transition to schizophrenia. To understand the implications of this progressive neurobiology on brain function, we have developed a model in rats which we refer to as EDiPs (Enhanced Dopamine in Prodromal schizophrenia). The EDiPs model features a virally mediated increase in dorsal striatal (DS) DA synthesis capacity across puberty and into adulthood. This protocol leads to progressive changes in behaviour and neurochemistry. Our aim in this study was to explore if increased DA synthesis capacity alters the physiology of DA release and DS connectivity. Using fast scan cyclic voltammetry to assess DA release we show that evoked/phasic DA release is increased in the DS of EDiPs rats, whereas tonic/background levels of DA remain unaffected. Using quantitative immunohistochemistry methods to quantify DS synaptic architecture we show a presynaptic marker for DA release sites (Bassoon) was elevated within TH axons specifically within the DS, consistent with the increased phasic DA release in this region. Alongside changes in DA systems, we also show increased density of vesicular glutamate transporter 1 (VGluT1) synapses in the EDiPs DS suggesting changes in cortical connectivity. Our data may prove relevant in understanding the long-term implications for DS function in response to the robust and prolonged increases in DA synthesis uptake and release reported in schizophrenia.
Collapse
Affiliation(s)
- Sunil Srivastav
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Xiaoying Cui
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Queensland Centre for Mental Health Research, Brisbane, QLD, Australia
| | | | - James P Kesby
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Queensland Centre for Mental Health Research, Brisbane, QLD, Australia
| | - Darryl Eyles
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
- Queensland Centre for Mental Health Research, Brisbane, QLD, Australia.
| |
Collapse
|
14
|
Hanganu-Opatz IL, Klausberger T, Sigurdsson T, Nieder A, Jacob SN, Bartos M, Sauer JF, Durstewitz D, Leibold C, Diester I. Resolving the prefrontal mechanisms of adaptive cognitive behaviors: A cross-species perspective. Neuron 2023; 111:1020-1036. [PMID: 37023708 DOI: 10.1016/j.neuron.2023.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/15/2023] [Accepted: 03/10/2023] [Indexed: 04/08/2023]
Abstract
The prefrontal cortex (PFC) enables a staggering variety of complex behaviors, such as planning actions, solving problems, and adapting to new situations according to external information and internal states. These higher-order abilities, collectively defined as adaptive cognitive behavior, require cellular ensembles that coordinate the tradeoff between the stability and flexibility of neural representations. While the mechanisms underlying the function of cellular ensembles are still unclear, recent experimental and theoretical studies suggest that temporal coordination dynamically binds prefrontal neurons into functional ensembles. A so far largely separate stream of research has investigated the prefrontal efferent and afferent connectivity. These two research streams have recently converged on the hypothesis that prefrontal connectivity patterns influence ensemble formation and the function of neurons within ensembles. Here, we propose a unitary concept that, leveraging a cross-species definition of prefrontal regions, explains how prefrontal ensembles adaptively regulate and efficiently coordinate multiple processes in distinct cognitive behaviors.
Collapse
Affiliation(s)
- Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Thomas Klausberger
- Center for Brain Research, Division of Cognitive Neurobiology, Medical University of Vienna, Vienna, Austria
| | - Torfi Sigurdsson
- Institute of Neurophysiology, Goethe University, Frankfurt, Germany
| | - Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| | - Simon N Jacob
- Translational Neurotechnology Laboratory, Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Marlene Bartos
- Institute for Physiology I, Medical Faculty, University of Freiburg, Freiburg im Breisgau, Germany
| | - Jonas-Frederic Sauer
- Institute for Physiology I, Medical Faculty, University of Freiburg, Freiburg im Breisgau, Germany
| | - Daniel Durstewitz
- Department of Theoretical Neuroscience, Central Institute of Mental Health & Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Christian Leibold
- Faculty of Biology, Bernstein Center Freiburg, BrainLinks-BrainTools, University of Freiburg, Freiburg im Breisgau, Germany
| | - Ilka Diester
- Optophysiology - Optogenetics and Neurophysiology, IMBIT // BrainLinks-BrainTools, University of Freiburg, Freiburg im Breisgau, Germany.
| |
Collapse
|
15
|
Dopamine Dynamics and Neurobiology of Non-Response to Antipsychotics, Relevance for Treatment Resistant Schizophrenia: A Systematic Review and Critical Appraisal. Biomedicines 2023; 11:biomedicines11030895. [PMID: 36979877 PMCID: PMC10046109 DOI: 10.3390/biomedicines11030895] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/08/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
Treatment resistant schizophrenia (TRS) is characterized by a lack of, or suboptimal response to, antipsychotic agents. The biological underpinnings of this clinical condition are still scarcely understood. Since all antipsychotics block dopamine D2 receptors (D2R), dopamine-related mechanisms should be considered the main candidates in the neurobiology of antipsychotic non-response, although other neurotransmitter systems play a role. The aims of this review are: (i) to recapitulate and critically appraise the relevant literature on dopamine-related mechanisms of TRS; (ii) to discuss the methodological limitations of the studies so far conducted and delineate a theoretical framework on dopamine mechanisms of TRS; and (iii) to highlight future perspectives of research and unmet needs. Dopamine-related neurobiological mechanisms of TRS may be multiple and putatively subdivided into three biological points: (1) D2R-related, including increased D2R levels; increased density of D2Rs in the high-affinity state; aberrant D2R dimer or heteromer formation; imbalance between D2R short and long variants; extrastriatal D2Rs; (2) presynaptic dopamine, including low or normal dopamine synthesis and/or release compared to responder patients; and (3) exaggerated postsynaptic D2R-mediated neurotransmission. Future points to be addressed are: (i) a more neurobiologically-oriented phenotypic categorization of TRS; (ii) implementation of neurobiological studies by directly comparing treatment resistant vs. treatment responder patients; (iii) development of a reliable animal model of non-response to antipsychotics.
Collapse
|
16
|
Moya NA, Yun S, Fleps SW, Martin MM, Nadel JA, Beutler LR, Zweifel LS, Parker JG. The effect of selective nigrostriatal dopamine excess on behaviors linked to the cognitive and negative symptoms of schizophrenia. Neuropsychopharmacology 2023; 48:690-699. [PMID: 36380221 PMCID: PMC9938164 DOI: 10.1038/s41386-022-01492-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/16/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022]
Abstract
Excess dopamine release in the dorsal striatum (DS) is linked to psychosis. Antipsychotics are thought to work by blocking striatal D2 dopamine receptors, but they lack efficacy for the negative and cognitive symptoms of schizophrenia. These observations and the fact that increasing brain-wide dopamine improves cognition have fueled the dogma that excess dopamine is not involved in negative and cognitive symptoms. However, this idea has never been explicitly tested with DS-pathway specificity. To determine if excess DS dopamine is involved in cognitive and negative symptoms, we selectively re-expressed excitatory TRPV1 receptors in DS-projecting dopamine neurons of Trpv1 knockout mice. We treated these mice with capsaicin (TRPV1 agonist) to selectively activate these neurons, validated this approach with fiber photometry, and assessed its effects on social interaction and working memory, behavioral constructs related to negative and cognitive symptoms. We combined this manipulation with antipsychotic treatment (haloperidol) and compared it to brain-wide dopamine release via amphetamine treatment. We found that selectively activating DS-projecting dopamine neurons increased DS (but not cortical) dopamine release and increased locomotor activity. Surprisingly, this manipulation also impaired social interaction and working memory. Haloperidol normalized locomotion, but only partially rescued working memory and had no effect on social interaction. By contrast, amphetamine increased locomotion but did not impair social interaction or working memory. These results suggest that excess dopamine release, when restricted to the DS, causes behavioral deficits linked to negative and cognitive symptoms. Future therapies should address this disregarded role for excess striatal dopamine in the treatment-resistant symptoms of psychosis.
Collapse
Affiliation(s)
- Nicolette A Moya
- Departments of Neuroscience and Pharmacology, Northwestern University, Chicago, IL, USA
| | - Seongsik Yun
- Departments of Neuroscience and Pharmacology, Northwestern University, Chicago, IL, USA
| | - Stefan W Fleps
- Departments of Neuroscience and Pharmacology, Northwestern University, Chicago, IL, USA
| | - Madison M Martin
- Departments of Neuroscience and Pharmacology, Northwestern University, Chicago, IL, USA
| | - Jacob A Nadel
- Departments of Neuroscience and Pharmacology, Northwestern University, Chicago, IL, USA
| | - Lisa R Beutler
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University, Chicago, IL, USA
| | - Larry S Zweifel
- Departments of Psychiatry and Behavioral Sciences and Pharmacology, University of Washington, Seattle, WA, USA
| | - Jones G Parker
- Departments of Neuroscience and Pharmacology, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
17
|
Sabaroedin K, Tiego J, Fornito A. Circuit-Based Approaches to Understanding Corticostriatothalamic Dysfunction Across the Psychosis Continuum. Biol Psychiatry 2023; 93:113-124. [PMID: 36253195 DOI: 10.1016/j.biopsych.2022.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 06/14/2022] [Accepted: 07/17/2022] [Indexed: 11/28/2022]
Abstract
Dopamine is known to play a role in the pathogenesis of psychotic symptoms, but the mechanisms driving dopaminergic dysfunction in psychosis remain unclear. Considerable attention has focused on the role of corticostriatothalamic (CST) circuits, given that they regulate and are modulated by the activity of dopaminergic cells in the midbrain. Preclinical studies have proposed multiple models of CST dysfunction in psychosis, each prioritizing different brain regions and pathophysiological mechanisms. A particular challenge is that CST circuits have undergone considerable evolutionary modification across mammals, complicating comparisons across species. Here, we consider preclinical models of CST dysfunction in psychosis and evaluate the degree to which they are supported by evidence from human resting-state functional magnetic resonance imaging studies conducted across the psychosis continuum, ranging from subclinical schizotypy to established schizophrenia. In partial support of some preclinical models, human studies indicate that dorsal CST and hippocampal-striatal functional dysconnectivity are apparent across the psychosis spectrum and may represent a vulnerability marker for psychosis. In contrast, midbrain dysfunction may emerge when symptoms warrant clinical assistance and may thus be a trigger for illness onset. The major difference between clinical and preclinical findings is the strong involvement of the dorsal CST in the former, consistent with an increasing prominence of this circuitry in the primate brain. We close by underscoring the need for high-resolution characterization of phenotypic heterogeneity in psychosis to develop a refined understanding of how the dysfunction of specific circuit elements gives rise to distinct symptom profiles.
Collapse
Affiliation(s)
- Kristina Sabaroedin
- Departments of Radiology and Paediatrics, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.
| | - Jeggan Tiego
- Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
18
|
Petty A, Howes O, Eyles D. Animal Models of Relevance to the Schizophrenia Prodrome. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:22-32. [PMID: 36712558 PMCID: PMC9874082 DOI: 10.1016/j.bpsgos.2021.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 02/01/2023] Open
Abstract
Patients with schizophrenia often undergo a prodromal phase prior to diagnosis. Given the absence of significant therapeutic improvements, attention has recently shifted to the possibility of intervention during this early stage to delay or diminish symptom severity or even prevent onset. Unfortunately, the 20 or so trials of intervention to date have not been successful in either preventing onset or improving long-term outcomes in subjects who are at risk of developing schizophrenia. One reason may be that the biological pathways an effective intervention must target are not static. The prodromal phase typically occurs during late adolescence, a period during which a number of brain circuits and structures are still maturing. We propose that developing a deeper understanding of which circuits/processes and brain structures are still maturing at this time and which processes drive the transition to schizophrenia will take us a step closer to developing better prophylactic interventions. Fortunately, such knowledge is now emerging from clinical studies, complemented by work in animal models. Our task here is to describe what would constitute an appropriate animal model to study and to potentially intervene in such processes. Such a model would allow invasive analysis of the cellular and molecular substrates of the progressive neurobiology that defines the schizophrenia prodrome and hopefully offer valuable insights into potential prophylactic targets.
Collapse
Affiliation(s)
- Alice Petty
- Neuroscience Research Australia, Sydney, New South Wales, Australia.,Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | | | - Darryl Eyles
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia.,Queensland Centre for Mental Health Research, Wacol, Queensland, Australia
| |
Collapse
|
19
|
Edemann-Callesen H, Glienke M, Akinola EO, Lieser MK, Habelt B, Hadar R, Bernhardt N, Winter C. Former Training Relieves the Later Development of Behavioral Inflexibility in an Animal Model Overexpressing the Dopamine Transporter. Mol Neurobiol 2022; 59:7182-7193. [PMID: 36125729 PMCID: PMC9616742 DOI: 10.1007/s12035-022-03029-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/09/2022] [Indexed: 11/28/2022]
Abstract
A range of dopamine-dominating neuropsychiatric disorders present with cognitive deficits. In accordance, the dopamine transporter overexpressing rat model (DAT-tg rat) displays cognitive deficits by means of behavioral inflexibility and learning disabilities. It remains to be investigated when cognitive deficits emerge, due to the inherent DA irregularities, during the life course of the DAT-tg rat and what may relieve symptoms. The Morris water maze (MWM) was used to assess cognitive abilities in three cohorts of DAT-tg rats. In the first cohort, the development of cognitive deficits was assessed by repeatedly testing animals in the MWM at postnatal day (PND) 35, 60, and 90. In the second and third cohort, pharmacological interventions and transcranial direct current stimulation (tDCS) were tested in adult animals to understand what drives, and thus relieves, the deficits. Minor differences were observed between DAT-tg rats and control rats at PND 35 and 60, whereas cognitive deficits fully emerged at PND 90. A high dosage of methylphenidate diminished both behavioral inflexibility and improved learning abilities in adult rats. Interestingly, rats subjected early in life to the MWM also displayed improved behavioral flexibility as compared to rats naïve to the paradigm. Cognitive deficits gradually develop over time and fully emerge in adulthood. Pharmacological modulation of the ubiquitous DAT overexpression overall improves deficits in adult rats, whereas early training decreases later development of behavioral inflexibility. Thus, former training may constitute a preventive avenue that alters some aspects of cognitive deficits resulting from inherent DA abnormalities.
Collapse
Affiliation(s)
- Henriette Edemann-Callesen
- Department of Psychiatry and Psychotherapy, Charité University Medicine Berlin, Campus Mitte, Charitéplatz 1, 10117, Berlin, Germany
| | - Maximilian Glienke
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Esther Olubukola Akinola
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Maike Kristin Lieser
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Bettina Habelt
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Ravit Hadar
- Department of Psychiatry and Psychotherapy, Charité University Medicine Berlin, Campus Mitte, Charitéplatz 1, 10117, Berlin, Germany
| | - Nadine Bernhardt
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Christine Winter
- Department of Psychiatry and Psychotherapy, Charité University Medicine Berlin, Campus Mitte, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
20
|
Frankle WG, Himes M, Mason NS, Mathis CA, Narendran R. Prefrontal and Striatal Dopamine Release Are Inversely Correlated in Schizophrenia. Biol Psychiatry 2022; 92:791-799. [PMID: 35791965 DOI: 10.1016/j.biopsych.2022.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/19/2022] [Accepted: 05/02/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND The dopamine (DA) hypothesis postulates hyperactivity of subcortical DA transmission and hypoactivity of cortical DA in schizophrenia (SCH). Positron emission tomography provides the ability to assess this hypothesis in humans. However, no studies have examined the relationship between cortical DA and striatal DA in this illness. METHODS D2/3 receptor radiotracer [11C]FLB457 BPND (binding potential relative to nondisplaceable uptake) was measured in 14 off-medication subjects with SCH and 14 healthy control (HC) subjects at baseline and after the administration of 0.5 mg/kg oral d-amphetamine. The amphetamine-induced change in BPND (ΔBPND) was calculated as the difference between BPND in the postamphetamine condition and BPND in the baseline condition and expressed as a percentage of BPND at baseline. DA release in the striatum using the radiotracer [11C]NPA was also measured in these subjects. RESULTS [11C]FLB457 ΔBPND was greater in the HC group compared with the SCH group (F1,26 = 5.7; p = .02) with significant differences in [11C]FLB457 ΔBPND seen across cortical brain regions. Only in the SCH group was a significant negative correlation observed between [11C]FLB457 ΔBPND in the dorsolateral prefrontal cortex and [11C]NPA ΔBPND in the dorsal caudate (r = -0.71, p = .005). CONCLUSIONS Subjects with SCH demonstrated deficits of DA release in cortical brain regions relative to HC subjects. Examining both cortical and striatal DA release in the same subjects demonstrated an inverse relationship between cortical DA release and striatal DA release in SCH not present in HC subjects, providing support for the current DA hypothesis of SCH.
Collapse
Affiliation(s)
- W Gordon Frankle
- Department of Psychiatry, NYU Langone Medical Center, New York, New York.
| | - Michael Himes
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - N Scott Mason
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Chester A Mathis
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rajesh Narendran
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
21
|
|
22
|
Dai KZ, Choi IB, Levitt R, Blegen MB, Kaplan AR, Matsui A, Shin JH, Bocarsly ME, Simpson EH, Kellendonk C, Alvarez VA, Dobbs LK. Dopamine D2 receptors bidirectionally regulate striatal enkephalin expression: Implications for cocaine reward. Cell Rep 2022; 40:111440. [PMID: 36170833 PMCID: PMC9620395 DOI: 10.1016/j.celrep.2022.111440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 08/04/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022] Open
Abstract
Low dopamine D2 receptor (D2R) availability in the striatum can predispose for cocaine abuse; though how low striatal D2Rs facilitate cocaine reward is unclear. Overexpression of D2Rs in striatal neurons or activation of D2Rs by acute cocaine suppresses striatal Penk mRNA. Conversely, low D2Rs in D2-striatal neurons increases striatal Penk mRNA and enkephalin peptide tone, an endogenous mu-opioid agonist. In brain slices, met-enkephalin and inhibition of enkephalin catabolism suppresses intra-striatal GABA transmission. Pairing cocaine with intra-accumbens met-enkephalin during place conditioning facilitates acquisition of preference, while mu-opioid receptor antagonist blocks preference in wild-type mice. We propose that heightened striatal enkephalin potentiates cocaine reward by suppressing intra-striatal GABA to enhance striatal output. Surprisingly, a mu-opioid receptor antagonist does not block cocaine preference in mice with low striatal D2Rs, implicating other opioid receptors. The bidirectional regulation of enkephalin by D2R activity and cocaine offers insights into mechanisms underlying the vulnerability for cocaine abuse. Low striatal D2 receptor levels are associated with cocaine abuse. Dai et al. bidirectionally alter striatal D2 receptor levels to probe the downstream mechanisms underlying this abuse liability. They provide evidence that enhanced enkephalin tone resulting from low D2 receptors is associated with suppressed intra-striatal GABA and potentiated cocaine reward.
Collapse
Affiliation(s)
- Kathy Z Dai
- Laboratory on Neurobiology of Compulsive Behaviors, NIAAA, IRP, NIH, Bethesda, MD, USA
| | - In Bae Choi
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Ryan Levitt
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Mariah B Blegen
- Laboratory on Neurobiology of Compulsive Behaviors, NIAAA, IRP, NIH, Bethesda, MD, USA
| | - Alanna R Kaplan
- Laboratory on Neurobiology of Compulsive Behaviors, NIAAA, IRP, NIH, Bethesda, MD, USA
| | - Aya Matsui
- Laboratory on Neurobiology of Compulsive Behaviors, NIAAA, IRP, NIH, Bethesda, MD, USA
| | - J Hoon Shin
- Laboratory on Neurobiology of Compulsive Behaviors, NIAAA, IRP, NIH, Bethesda, MD, USA
| | - Miriam E Bocarsly
- Laboratory on Neurobiology of Compulsive Behaviors, NIAAA, IRP, NIH, Bethesda, MD, USA; Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Rutgers Brain Health Institute, Newark, NJ, USA
| | - Eleanor H Simpson
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA; Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, USA
| | - Christoph Kellendonk
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA; Department of Molecular Pharmacology and Therapeutics, Columbia University Medical Center, New York, NY, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Veronica A Alvarez
- Laboratory on Neurobiology of Compulsive Behaviors, NIAAA, IRP, NIH, Bethesda, MD, USA; Center on Compulsive Behaviors, IRP, NIH, Bethesda, MD, USA
| | - Lauren K Dobbs
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA; Department of Neuroscience, Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
23
|
Defining Specific Cell States of MPTP-Induced Parkinson's Disease by Single-Nucleus RNA Sequencing. Int J Mol Sci 2022; 23:ijms231810774. [PMID: 36142685 PMCID: PMC9504791 DOI: 10.3390/ijms231810774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 01/11/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease with an impairment of movement execution that is related to age and genetic and environmental factors. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a neurotoxin widely used to induce PD models, but the effect of MPTP on the cells and genes of PD has not been fully elucidated. By single-nucleus RNA sequencing, we uncovered the PD-specific cells and revealed the changes in their cellular states, including astrocytosis and endothelial cells' absence, as well as a cluster of medium spiny neuron cells unique to PD. Furthermore, trajectory analysis of astrocyte and endothelial cell populations predicted candidate target gene sets that might be associated with PD. Notably, the detailed regulatory roles of astrocyte-specific transcription factors Dbx2 and Sox13 in PD were revealed in our work. Finally, we characterized the cell-cell communications of PD-specific cells and found that the overall communication strength was enhanced in PD compared with a matched control, especially the signaling pathways of NRXN and NEGR. Our work provides an overview of the changes in cellular states of the MPTP-induced mouse brain.
Collapse
|
24
|
Garrick JM, Dao K, Costa LG, Marsillach J, Furlong CE. Examining the role of paraoxonase 2 in the dopaminergic system of the mouse brain. BMC Neurosci 2022; 23:52. [PMID: 36056313 PMCID: PMC9438175 DOI: 10.1186/s12868-022-00738-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Paraoxonase 2 (PON2) is an intracellular antioxidant enzyme located at the inner mitochondrial membrane. Previous studies have found PON2 to be an important antioxidant in a variety of cellular systems, such as the cardiovascular and renal system. Recent work has also suggested that PON2 plays an important role in the central nervous system (CNS), as decreased PON2 expression in the CNS leads to higher oxidative stress and subsequent cell toxicity. However, the precise role of PON2 in the CNS is still largely unknown, and what role it may play in specific regions of the brain remains unexamined. Dopamine metabolism generates considerable oxidative stress and antioxidant function is critical to the survival of dopaminergic neurons, providing a potential mechanism for PON2 in the dopaminergic system. METHODS In this study, we investigated the role of PON2 in the dopaminergic system of the mouse brain by comparing transcript and protein expression of dopaminergic-related genes in wildtype (WT) and PON2 deficient (PON2-def) mouse striatum, and exposing WT cultured primary neurons to dopamine receptor agonists. RESULTS We found alterations in multiple key dopaminergic genes at the transcript level, however many of these changes were not observed at the protein level. In cultured neurons, PON2 mRNA and protein were increased upon exposure to quinpirole, a dopamine receptor 2/3 (DRD2/3) agonist, but not fenoldopam, a dopamine receptor 1/5 (DRD1/5) agonist, suggesting a receptor-specific role in dopamine signaling. CONCLUSIONS Our findings suggest PON2 deficiency significantly impacts the dopaminergic system at the transcript level and may play a role in mitigating oxidative stress in this system further downstream through dopamine receptor signaling.
Collapse
Affiliation(s)
- Jacqueline M Garrick
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA.
| | - Khoi Dao
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Lucio G Costa
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Judit Marsillach
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Clement E Furlong
- Departments of Medicine (Div. Medical Genetics) and of Genome Sciences, University of Washington, Seattle, USA
| |
Collapse
|
25
|
Buck SA, Quincy Erickson-Oberg M, Logan RW, Freyberg Z. Relevance of interactions between dopamine and glutamate neurotransmission in schizophrenia. Mol Psychiatry 2022; 27:3583-3591. [PMID: 35681081 PMCID: PMC9712151 DOI: 10.1038/s41380-022-01649-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 02/08/2023]
Abstract
Dopamine (DA) and glutamate neurotransmission are strongly implicated in schizophrenia pathophysiology. While most studies focus on contributions of neurons that release only DA or glutamate, neither DA nor glutamate models alone recapitulate the full spectrum of schizophrenia pathophysiology. Similarly, therapeutic strategies limited to either system cannot effectively treat all three major symptom domains of schizophrenia: positive, negative, and cognitive symptoms. Increasing evidence suggests extensive interactions between the DA and glutamate systems and more effective treatments may therefore require the targeting of both DA and glutamate signaling. This offers the possibility that disrupting DA-glutamate circuitry between these two systems, particularly in the striatum and forebrain, culminate in schizophrenia pathophysiology. Yet, the mechanisms behind these interactions and their contributions to schizophrenia remain unclear. In addition to circuit- or system-level interactions between neurons that solely release either DA or glutamate, here we posit that functional alterations involving a subpopulation of neurons that co-release both DA and glutamate provide a novel point of integration between DA and glutamate systems, offering a key missing link in our understanding of schizophrenia pathophysiology. Better understanding of mechanisms underlying DA/glutamate co-release from these neurons may therefore shed new light on schizophrenia pathophysiology and lead to more effective therapeutics.
Collapse
Affiliation(s)
- Silas A Buck
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - M Quincy Erickson-Oberg
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Ryan W Logan
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, 02118, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
26
|
Chronic N-Acetylcysteine Treatment Prevents Amphetamine-Induced Hyperactivity in Heterozygous Disc1 Mutant Mice, a Putative Prodromal Schizophrenia Animal Model. Int J Mol Sci 2022; 23:ijms23169419. [PMID: 36012679 PMCID: PMC9408838 DOI: 10.3390/ijms23169419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Symptoms of schizophrenia (SZ) typically emerge during adolescence to young adulthood, which gives a window before full-blown psychosis for early intervention. Strategies for preventing the conversion from the prodromal phase to the psychotic phase are warranted. Heterozygous (Het) Disc1 mutant mice are considered a prodromal model of SZ, suitable for studying psychotic conversion. We evaluated the preventive effect of chronic N-acetylcysteine (NAC) administration, covering the prenatal era to adulthood, on the reaction following the Amph challenge, which mimics the outbreak or conversion of psychosis, in adult Het Disc1 mice. Biochemical and morphological features were examined in the striatum of NAC-treated mice. Chronic NAC treatment normalized the Amph-induced activity in the Het Disc1 mice. Furthermore, the striatal phenotypes of Het Disc1 mice were rescued by NAC including dopamine receptors, the expression of GSK3s, MSN dendritic impairments, and striatal PV density. The current study demonstrated a potent preventive effect of chronic NAC treatment in Disc1 Het mice on the acute Amph test, which mimics the outbreak of psychosis. Our findings not only support the benefit of NAC as a dietary supplement for SZ prodromes, but also advance our knowledge of striatal dopamine receptors, PV neurons, and GSK3 signaling pathways as therapeutic targets for treating or preventing the pathogenesis of mental disorders.
Collapse
|
27
|
Canonica T, Zalachoras I. Motivational disturbances in rodent models of neuropsychiatric disorders. Front Behav Neurosci 2022; 16:940672. [PMID: 36051635 PMCID: PMC9426724 DOI: 10.3389/fnbeh.2022.940672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Motivated behavior is integral to the survival of individuals, continuously directing actions toward rewards or away from punishments. The orchestration of motivated behavior depends on interactions among different brain circuits, primarily within the dopaminergic system, that subserve the analysis of factors such as the effort necessary for obtaining the reward and the desirability of the reward. Impairments in motivated behavior accompany a wide range of neuropsychiatric disorders, decreasing the patients’ quality of life. Despite its importance, motivation is often overlooked as a parameter in neuropsychiatric disorders. Here, we review motivational impairments in rodent models of schizophrenia, depression, and Parkinson’s disease, focusing on studies investigating effort-related behavior in operant conditioning tasks and on pharmacological interventions targeting the dopaminergic system. Similar motivational disturbances accompany these conditions, suggesting that treatments aimed at ameliorating motivation levels may be beneficial for various neuropsychiatric disorders.
Collapse
|
28
|
Lamontagne SJ, Wash SIJ, Irwin SH, Zucconi KE, Olmstead MC. Effects of dopamine modulation on chronic stress-induced deficits in reward learning. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2022; 22:736-753. [PMID: 35396630 DOI: 10.3758/s13415-022-01001-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Anhedonia is characteristically preceded by chronic stress, likely involving downstream effects of glucocorticoid alterations on dopamine (DA) function. To elucidate the neural underpinnings of this interaction, we examined whether acute pharmacological modulation of DA alters reward learning after chronic mild stress (CMS). Forty-eight male Wistar rats were exposed to a 21-day CMS regime (n = 48 no stress controls) before completing the probabilistic reward task (PRT), a well-validated cross-species test of reward learning. We first examined whether stress-induced reward dysfunction could be restored by systemic injections of low-dose amisulpride (AMI), which increases DA transmission via D2-like autoreceptor blockade. Then, we investigated region-specific effects through bilateral infusions of quinpirole (QUIN), a D2-like receptor agonist, into either the nucleus accumbens core (NAcc) or medial prefrontal cortex (mPFC). Blunted reward learning in CMS animals was reversed by acute AMI administration, but this treatment did not alter reward learning in the no stress group. Elevated adrenal gland weight, a proxy for stress reactivity, predicted lower reward learning in the untreated CMS group. This effect was extinguished following AMI treatment. These findings might be attributed to significantly higher D2 receptor density in the NAcc of high stress reactive animals. To this end, NAcc QUIN infusions potentiated reward learning relative to mPFC QUIN infusions in CMS rats, but there was no effect in no stress control rats. Collectively, these findings suggest that DA modulation reverses stress-induced reward dysfunction, even among the most stress-reactive animals. The effect might depend on D2-like receptor activation in the mesolimbic system.
Collapse
Affiliation(s)
- Steven J Lamontagne
- Department of Psychology, Queen's University, 62 Arch Street, Kingston, ON, K7L 3N6, USA.
| | - Sarah I J Wash
- Department of Psychology, Queen's University, 62 Arch Street, Kingston, ON, K7L 3N6, USA
| | - Samantha H Irwin
- Department of Psychology, Queen's University, 62 Arch Street, Kingston, ON, K7L 3N6, USA
| | - Kate E Zucconi
- Department of Psychology, Queen's University, 62 Arch Street, Kingston, ON, K7L 3N6, USA
| | - Mary C Olmstead
- Department of Psychology, Queen's University, 62 Arch Street, Kingston, ON, K7L 3N6, USA
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| |
Collapse
|
29
|
Ponzi A, Wickens J. Ramping activity in the striatum. Front Comput Neurosci 2022; 16:902741. [PMID: 35978564 PMCID: PMC9376361 DOI: 10.3389/fncom.2022.902741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Control of the timing of behavior is thought to require the basal ganglia (BG) and BG pathologies impair performance in timing tasks. Temporal interval discrimination depends on the ramping activity of medium spiny neurons (MSN) in the main BG input structure, the striatum, but the underlying mechanisms driving this activity are unclear. Here, we combine an MSN dynamical network model with an action selection system applied to an interval discrimination task. We find that when network parameters are appropriate for the striatum so that slowly fluctuating marginally stable dynamics are intrinsically generated, up and down ramping populations naturally emerge which enable significantly above chance task performance. We show that emergent population activity is in very good agreement with empirical studies and discuss how MSN network dysfunction in disease may alter temporal perception.
Collapse
Affiliation(s)
- Adam Ponzi
- Institute of Biophysics, Italian National Research Council, Palermo, Italy
- *Correspondence: Adam Ponzi
| | - Jeff Wickens
- Neurobiology Research Unit, Okinawa Institute of Science and Technology (OIST), Okinawa, Japan
| |
Collapse
|
30
|
Zheng N, Li M, Wu Y, Kaewborisuth C, Li Z, Gui Z, Wu J, Cai A, Lin K, Su KP, Xiang H, Tian X, Manyande A, Xu F, Wang J. A novel technology for in vivo detection of cell type-specific neural connection with AQP1-encoding rAAV2-retro vector and metal-free MRI. Neuroimage 2022; 258:119402. [PMID: 35732245 DOI: 10.1016/j.neuroimage.2022.119402] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 06/18/2022] [Accepted: 06/18/2022] [Indexed: 01/10/2023] Open
Abstract
A mammalian brain contains numerous neurons with distinct cell types for complex neural circuits. Virus-based circuit tracing tools are powerful in tracking the interaction among the different brain regions. However, detecting brain-wide neural networks in vivo remains challenging since most viral tracing systems rely on postmortem optical imaging. We developed a novel approach that enables in vivo detection of brain-wide neural connections based on metal-free magnetic resonance imaging (MRI). The recombinant adeno-associated virus (rAAV) with retrograde ability, the rAAV2-retro, encoding the human water channel aquaporin 1 (AQP1) MRI reporter gene was generated to label neural connections. The mouse was micro-injected with the virus at the Caudate Putamen (CPU) region and subjected to detection with Diffusion-weighted MRI (DWI). The prominent structure of the CPU-connected network was clearly defined. In combination with a Cre-loxP system, rAAV2-retro expressing Cre-dependent AQP1 provides a CPU-connected network of specific type neurons. Here, we established a sensitive, metal-free MRI-based strategy for in vivo detection of cell type-specific neural connections in the whole brain, which could visualize the dynamic changes of neural networks in rodents and potentially in non-human primates.
Collapse
Affiliation(s)
- Ning Zheng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Wuhan 430071, China
| | - Mei Li
- The Brain Cognition and Brain Disease Institute (BCBDI), NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen Institute of Advanced Technology, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yang Wu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Challika Kaewborisuth
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
| | - Zhen Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhu Gui
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinfeng Wu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Wuhan 430071, China
| | - Aoling Cai
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Wuhan 430071, China
| | - Kangguang Lin
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kuan-Pin Su
- Department of Psychiatry, China Medical University Hospital, Taichung City, Taiwan, China
| | - Hongbing Xiang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuebi Tian
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, Middlesex, TW8 9GA, UK
| | - Fuqiang Xu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Wuhan 430071, China; The Brain Cognition and Brain Disease Institute (BCBDI), NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen Institute of Advanced Technology, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jie Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Wuhan 430071, China; Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China.
| |
Collapse
|
31
|
Prefrontal pyramidal neurons are critical for all phases of working memory. Cell Rep 2022; 39:110659. [PMID: 35417688 DOI: 10.1016/j.celrep.2022.110659] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/03/2021] [Accepted: 03/21/2022] [Indexed: 11/23/2022] Open
Abstract
The prefrontal cortex (PFC) is essential for working memory (WM) and has primarily been viewed as being responsible for maintaining information over a delay, but it is unclear whether it also plays a more general role during WM. Using task phase-specific optogenetic silencing of pyramidal neurons in the medial PFC (mPFC) of mice performing a spatial WM task, we find that the mPFC is required not only during the delay phase of the task but also during other phases requiring the encoding and retrieval of spatial information. Imaging of mPFC pyramidal neurons reveals that they are most strongly influenced by the animals' position and running direction, indicating a fundamental role in spatial navigation. Pyramidal neuron ensembles also represent to-be-remembered goal locations in a dynamic manner. Taken together, these results delineate the functional contribution of mPFC pyramidal neurons to WM, extending their role beyond the maintenance of information.
Collapse
|
32
|
Tamura H, Nishio R, Saeki N, Katahira M, Morioka H, Tamano H, Takeda A. Paraquat-induced intracellular Zn 2+ dysregulation causes dopaminergic degeneration in the substantia nigra, but not in the striatum. Neurotoxicology 2022; 90:136-144. [PMID: 35339517 DOI: 10.1016/j.neuro.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/08/2022] [Accepted: 03/19/2022] [Indexed: 11/15/2022]
Abstract
Parkinson's disease is characterized by a selective death of nigrostriatal dopaminergic neurons, while the difference in the vulnerability to the death between the substantia nigra pars compacta (SNpc) and the striatum is poorly understood. Here we tested the difference focused on paraquat (PQ)-induced intracellular Zn2+ toxicity via extracellular glutamate accumulation. When PQ was locally injected into the SNpc and the striatum, dopaminergic degeneration was observed in the SNpc, but not in the striatum. Intracellular hydrogen peroxide (H2O2) produced by PQ was increased in both the SNpc and the striatum. In contrast, extracellular glutamate accumulation was observed only in the SNpc and rescued in the presence of N-(p-amylcinnamoyl)anthranilic acid (ACA), a blocker of the transient receptor potential melastatin 2 (TRPM2) cation channels. PQ increased intracellular Zn2+ level in the SNpc, but not in the striatum. The increase was rescued by 1-naphthyl acetyl spermine (NASPM), a selective blocker of Ca2+- and Zn2+-permeable GluR2-lacking AMPA receptors. PQ-induced dopaminergic degeneration in the SNpc was rescued by ACA, NASPM, and GBR, a dopamine reuptake inhibitor. The present study indicates intracellular H2O2 produced by PQ, which is taken up through dopamine transporters, is retrogradely transported to presynaptic glutamatergic terminals, activates TRPM2 channels, accumulates glutamate in the extracellular compartment, and induces intracellular Zn2+ dysregulation via Ca2+- and Zn2+-permeable GluR2-lacking AMPA receptor activation, resulting in dopaminergic degeneration in the SNpc. However, H2O2 signaling is not the case in the striatum. Paraquat-induced Zn2+ dysregulation plays a key role for neurodegeneration in the SNpc, but not in the striatum.
Collapse
Affiliation(s)
- Haruna Tamura
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Ryusuke Nishio
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Nana Saeki
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Misa Katahira
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hiroki Morioka
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Haruna Tamano
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Atsushi Takeda
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| |
Collapse
|
33
|
Lee GS, Graham DL, Noble BL, Trammell TS, McCarthy DM, Anderson LR, Rubinstein M, Bhide PG, Stanwood GD. Behavioral and Neuroanatomical Consequences of Cell-Type Specific Loss of Dopamine D2 Receptors in the Mouse Cerebral Cortex. Front Behav Neurosci 2022; 15:815713. [PMID: 35095443 PMCID: PMC8793809 DOI: 10.3389/fnbeh.2021.815713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Developmental dysregulation of dopamine D2 receptors (D2Rs) alters neuronal migration, differentiation, and behavior and contributes to the psychopathology of neurological and psychiatric disorders. The current study is aimed at identifying how cell-specific loss of D2Rs in the cerebral cortex may impact neurobehavioral and cellular development, in order to better understand the roles of this receptor in cortical circuit formation and brain disorders. We deleted D2R from developing cortical GABAergic interneurons (Nkx2.1-Cre) or from developing telencephalic glutamatergic neurons (Emx1-Cre). Conditional knockouts (cKO) from both lines, Drd2fl/fl, Nkx2.1-Cre+ (referred to as GABA-D2R-cKO mice) or Drd2fl/fl, Emx1-Cre+ (referred to as Glu-D2R-cKO mice), exhibited no differences in simple tests of anxiety-related or depression-related behaviors, or spatial or nonspatial working memory. Both GABA-D2R-cKO and Glu-D2R-cKO mice also had normal basal locomotor activity, but GABA-D2R-cKO mice expressed blunted locomotor responses to the psychotomimetic drug MK-801. GABA-D2R-cKO mice exhibited improved motor coordination on a rotarod whereas Glu-D2R-cKO mice were normal. GABA-D2R-cKO mice also exhibited spatial learning deficits without changes in reversal learning on a Barnes maze. At the cellular level, we observed an increase in PV+ cells in the frontal cortex of GABA-D2R-cKO mice and no noticeable changes in Glu-D2R-cKO mice. These data point toward unique and distinct roles for D2Rs within excitatory and inhibitory neurons in the regulation of behavior and interneuron development, and suggest that location-biased D2R pharmacology may be clinically advantageous to achieve higher efficacy and help avoid unwanted effects.
Collapse
Affiliation(s)
- Gloria S. Lee
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Devon L. Graham
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Brenda L. Noble
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Taylor S. Trammell
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Deirdre M. McCarthy
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Lisa R. Anderson
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Marcelo Rubinstein
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas and Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pradeep G. Bhide
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Gregg D. Stanwood
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, United States
- *Correspondence: Gregg D. Stanwood
| |
Collapse
|
34
|
What Can We Learn from Animal Models to Study Schizophrenia? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1400:15-33. [DOI: 10.1007/978-3-030-97182-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Restrepo-Lozano JM, Pokhvisneva I, Wang Z, Patel S, Meaney MJ, Silveira PP, Flores C. Corticolimbic DCC gene co-expression networks as predictors of impulsivity in children. Mol Psychiatry 2022; 27:2742-2750. [PMID: 35388180 PMCID: PMC9156406 DOI: 10.1038/s41380-022-01533-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 03/04/2022] [Accepted: 03/16/2022] [Indexed: 12/16/2022]
Abstract
Inhibitory control deficits are prevalent in multiple neuropsychiatric conditions. The communication- as well as the connectivity- between corticolimbic regions of the brain are fundamental for eliciting inhibitory control behaviors, but early markers of vulnerability to this behavioral trait are yet to be discovered. The gradual maturation of the prefrontal cortex (PFC), in particular of the mesocortical dopamine innervation, mirrors the protracted development of inhibitory control; both are present early in life, but reach full maturation by early adulthood. Evidence suggests the involvement of the Netrin-1/DCC signaling pathway and its associated gene networks in corticolimbic development. Here we investigated whether an expression-based polygenic score (ePRS) based on corticolimbic-specific DCC gene co-expression networks associates with impulsivity-related phenotypes in community samples of children. We found that lower ePRS scores associate with higher measurements of impulsive choice in 6-year-old children tested in the Information Sampling Task and with impulsive action in 6- and 10-year-old children tested in the Stop Signal Task. We also found the ePRS to be a better overall predictor of impulsivity when compared to a conventional PRS score comparable in size to the ePRS (4515 SNPs in our discovery cohort) and derived from the latest GWAS for ADHD. We propose that the corticolimbic DCC-ePRS can serve as a novel type of marker for impulsivity-related phenotypes in children. By adopting a systems biology approach based on gene co-expression networks and genotype-gene expression (rather than genotype-disease) associations, these results further validate our methodology to construct polygenic scores linked to the overall biological function of tissue-specific gene networks.
Collapse
Affiliation(s)
- Jose M. Restrepo-Lozano
- grid.14709.3b0000 0004 1936 8649Integrated Program in Neuroscience, McGill University, Montreal, QC Canada ,grid.412078.80000 0001 2353 5268Douglas Mental Health University Institute, Montreal, QC Canada
| | - Irina Pokhvisneva
- grid.412078.80000 0001 2353 5268Douglas Mental Health University Institute, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montreal, QC Canada
| | - Zihan Wang
- grid.412078.80000 0001 2353 5268Douglas Mental Health University Institute, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montreal, QC Canada
| | - Sachin Patel
- grid.412078.80000 0001 2353 5268Douglas Mental Health University Institute, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montreal, QC Canada
| | - Michael J. Meaney
- grid.412078.80000 0001 2353 5268Douglas Mental Health University Institute, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC Canada ,grid.452264.30000 0004 0530 269XSingapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Brenner Centre for Molecular Medicine, Singapore, Singapore
| | - Patricia P. Silveira
- grid.412078.80000 0001 2353 5268Douglas Mental Health University Institute, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC Canada
| | - Cecilia Flores
- Douglas Mental Health University Institute, Montreal, QC, Canada. .,Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada. .,Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
36
|
Aberrant maturation and connectivity of prefrontal cortex in schizophrenia-contribution of NMDA receptor development and hypofunction. Mol Psychiatry 2022; 27:731-743. [PMID: 34163013 PMCID: PMC8695640 DOI: 10.1038/s41380-021-01196-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 06/02/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023]
Abstract
The neurobiology of schizophrenia involves multiple facets of pathophysiology, ranging from its genetic basis over changes in neurochemistry and neurophysiology, to the systemic level of neural circuits. Although the precise mechanisms associated with the neuropathophysiology remain elusive, one essential aspect is the aberrant maturation and connectivity of the prefrontal cortex that leads to complex symptoms in various stages of the disease. Here, we focus on how early developmental dysfunction, especially N-methyl-D-aspartate receptor (NMDAR) development and hypofunction, may lead to the dysfunction of both local circuitry within the prefrontal cortex and its long-range connectivity. More specifically, we will focus on an "all roads lead to Rome" hypothesis, i.e., how NMDAR hypofunction during development acts as a convergence point and leads to local gamma-aminobutyric acid (GABA) deficits and input-output dysconnectivity in the prefrontal cortex, which eventually induce cognitive and social deficits. Many outstanding questions and hypothetical mechanisms are listed for future investigations of this intriguing hypothesis that may lead to a better understanding of the aberrant maturation and connectivity associated with the prefrontal cortex.
Collapse
|
37
|
Simpson EH, Gallo EF, Balsam PD, Javitch JA, Kellendonk C. How changes in dopamine D2 receptor levels alter striatal circuit function and motivation. Mol Psychiatry 2022; 27:436-444. [PMID: 34385603 PMCID: PMC8837728 DOI: 10.1038/s41380-021-01253-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023]
Abstract
It was first posited, more than five decades ago, that the etiology of schizophrenia involves overstimulation of dopamine receptors. Since then, advanced clinical research methods, including brain imaging, have refined our understanding of the relationship between striatal dopamine and clinical phenotypes as well as disease trajectory. These studies point to striatal dopamine D2 receptors, the main target for all current antipsychotic medications, as being involved in both positive and negative symptoms. Simultaneously, animal models have been central to investigating causal relationships between striatal dopamine D2 receptors and behavioral phenotypes relevant to schizophrenia. We begin this article by reviewing the circuit, cell-type and subcellular locations of dopamine D2 receptors and their downstream signaling pathways. We then summarize results from several mouse models in which D2 receptor levels were altered in various brain regions, cell-types and developmental periods. Behavioral, electrophysiological and anatomical consequences of these D2 receptor perturbations are reviewed with a selective focus on striatal circuit function and alterations in motivated behavior, a core negative symptom of schizophrenia. These studies show that D2 receptors serve distinct physiological roles in different cell types and at different developmental time points, regulating motivated behaviors in sometimes opposing ways. We conclude by considering the clinical implications of this complex regulation of striatal circuit function by D2 receptors.
Collapse
Affiliation(s)
- Eleanor H. Simpson
- Division of Developmental Neuroscience, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, United States,Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, United States
| | - Eduardo F. Gallo
- Department of Biological Sciences, Fordham University, 441 East Fordham Road, Bronx, NY 10458
| | - Peter D. Balsam
- Division of Developmental Neuroscience, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, United States,Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, United States,Department of Psychology, Barnard College, 3009 Broadway, New York, NY 10027,Department of Psychology, Columbia University, 1190 Amsterdam Ave, New York, NY 10027
| | - Jonathan A. Javitch
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, United States,Division of Molecular Therapeutics, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032,Department of Molecular Pharmacology and Therapeutics, Columbia University, 1051 Riverside Drive, New York, NY 10032
| | - Christoph Kellendonk
- Department of Psychiatry, Columbia University, New York, NY, USA. .,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA. .,Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, USA.
| |
Collapse
|
38
|
Elevated endogenous GDNF induces altered dopamine signalling in mice and correlates with clinical severity in schizophrenia. Mol Psychiatry 2022; 27:3247-3261. [PMID: 35618883 PMCID: PMC9708553 DOI: 10.1038/s41380-022-01554-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 11/08/2022]
Abstract
Presynaptic increase in striatal dopamine is the primary dopaminergic abnormality in schizophrenia, but the underlying mechanisms are not understood. Here, we hypothesized that increased expression of endogenous GDNF could induce dopaminergic abnormalities that resemble those seen in schizophrenia. To test the impact of GDNF elevation, without inducing adverse effects caused by ectopic overexpression, we developed a novel in vivo approach to conditionally increase endogenous GDNF expression. We found that a 2-3-fold increase in endogenous GDNF in the brain was sufficient to induce molecular, cellular, and functional changes in dopamine signalling in the striatum and prefrontal cortex, including increased striatal presynaptic dopamine levels and reduction of dopamine in prefrontal cortex. Mechanistically, we identified adenosine A2a receptor (A2AR), a G-protein coupled receptor that modulates dopaminergic signalling, as a possible mediator of GDNF-driven dopaminergic abnormalities. We further showed that pharmacological inhibition of A2AR with istradefylline partially normalised striatal GDNF and striatal and cortical dopamine levels in mice. Lastly, we found that GDNF levels are increased in the cerebrospinal fluid of first episode psychosis patients, and in post-mortem striatum of schizophrenia patients. Our results reveal a possible contributor for increased striatal dopamine signalling in a subgroup of schizophrenia patients and suggest that GDNF-A2AR crosstalk may regulate dopamine function in a therapeutically targetable manner.
Collapse
|
39
|
Dopamine signaling impairs ROS modulation by mitochondrial hexokinase in human neural progenitor cells. Biosci Rep 2021; 41:230295. [PMID: 34821365 PMCID: PMC8661505 DOI: 10.1042/bsr20211191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/20/2021] [Accepted: 11/09/2021] [Indexed: 12/17/2022] Open
Abstract
Dopamine signaling has numerous roles during brain development. In addition, alterations in dopamine signaling may be also involved in the pathophysiology of psychiatric disorders. Neurodevelopment is modulated in multiple steps by reactive oxygen species (ROS), byproducts of oxidative metabolism that are signaling factors involved in proliferation, differentiation, and migration. Hexokinase (HK), when associated with the mitochondria (mt-HK), is a potent modulator of the generation of mitochondrial ROS in the brain. In the present study, we investigated whether dopamine could affect both the activity and redox function of mt-HK in human neural progenitor cells (NPCs). We found that dopamine signaling via D1R decreases mt-HK activity and impairs ROS modulation, which is followed by an expressive release of H2O2 and impairment in calcium handling by the mitochondria. Nevertheless, mitochondrial respiration is not affected, suggesting specificity for dopamine on mt-HK function. In neural stem cells (NSCs) derived from induced-pluripotent stem cells (iPSCs) of schizophrenia patients, mt-HK is unable to decrease mitochondrial ROS, in contrast with NSCs derived from healthy individuals. Our data point to mitochondrial hexokinase as a novel target of dopaminergic signaling, as well as a redox modulator in human neural progenitor cells, which may be relevant to the pathophysiology of neurodevelopmental disorders such as schizophrenia.
Collapse
|
40
|
Kesby JP, Murray GK, Knolle F. Neural Circuitry of Salience and Reward Processing in Psychosis. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 3:33-46. [PMID: 36712572 PMCID: PMC9874126 DOI: 10.1016/j.bpsgos.2021.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 02/01/2023] Open
Abstract
The processing of salient and rewarding stimuli is integral to engaging our attention, stimulating anticipation for future events, and driving goal-directed behaviors. Widespread impairments in these processes are observed in psychosis, which may be associated with worse functional outcomes or mechanistically linked to the development of symptoms. Here, we summarize the current knowledge of behavioral and functional neuroimaging in salience, prediction error, and reward. Although each is a specific process, they are situated in multiple feedback and feedforward systems integral to decision making and cognition more generally. We argue that the origin of salience and reward processing dysfunctions may be centered in the subcortex during the earliest stages of psychosis, with cortical abnormalities being initially more spared but becoming more prominent in established psychotic illness/schizophrenia. The neural circuits underpinning salience and reward processing may provide targets for delaying or preventing progressive behavioral and neurobiological decline.
Collapse
Affiliation(s)
- James P. Kesby
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia,QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia,Address correspondence to James Kesby, Ph.D.
| | - Graham K. Murray
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia,Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom,Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, United Kingdom
| | - Franziska Knolle
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom,Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany,Franziska Knolle, Ph.D.
| |
Collapse
|
41
|
Zmigrod L, Robbins TW. Dopamine, Cognitive Flexibility, and IQ: Epistatic Catechol-O-MethylTransferase:DRD2 Gene-Gene Interactions Modulate Mental Rigidity. J Cogn Neurosci 2021; 34:153-179. [PMID: 34818409 DOI: 10.1162/jocn_a_01784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Cognitive flexibility has been hypothesized to be neurochemically rooted in dopamine neurotransmission. Nonetheless, underpowered sample sizes and contradictory meta-analytic findings have obscured the role of dopamine genes in cognitive flexibility and neglected potential gene-gene interactions. In this largest neurocognitive-genetic study to date (n = 1400), single nucleotide polymorphisms associated with elevated prefrontal dopamine levels (catechol-O-methyltransferase; rs4680) and diminished striatal dopamine (C957T; rs6277) were both implicated in Wisconsin Card Sorting Test performance. Crucially, however, these genetic effects were only evident in low-IQ participants, suggesting high intelligence compensates for, and eliminates, the effect of dispositional dopamine functioning on flexibility. This interaction between cognitive systems may explain and resolve previous empirical inconsistencies in highly educated participant samples. Moreover, compensatory gene-gene interactions were discovered between catechol-O-methyltransferase and DRD2, such that genotypes conferring either elevated prefrontal dopamine or diminished striatal dopamine-via heightened striatally concentrated D2 dopamine receptor availability-are sufficient for cognitive flexibility, but neither is necessary. The study has therefore revealed a form of epistatic redundancy or substitutability among dopamine systems in shaping adaptable thought and action, thus defining boundary conditions for dopaminergic effects on flexible behavior. These results inform theories of clinical disorders and psychopharmacological interventions and uncover complex fronto-striatal synergies in human flexible cognition.
Collapse
|
42
|
Millgate E, Kravariti E, Egerton A, Howes OD, Murray RM, Kassoumeri L, Donocik J, Lewis S, Drake R, Lawrie S, Murphy A, Collier T, Lees J, Stockton-Powdrell C, Walters J, Deakin B, MacCabe J. Cross-sectional study comparing cognitive function in treatment responsive versus treatment non-responsive schizophrenia: evidence from the STRATA study. BMJ Open 2021; 11:e054160. [PMID: 34824121 PMCID: PMC8627394 DOI: 10.1136/bmjopen-2021-054160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/04/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND 70%-84% of individuals with antipsychotic treatment resistance show non-response from the first episode. Emerging cross-sectional evidence comparing cognitive profiles in treatment resistant schizophrenia to treatment-responsive schizophrenia has indicated that verbal memory and language functions may be more impaired in treatment resistance. We sought to confirm this finding by comparing cognitive performance between antipsychotic non-responders (NR) and responders (R) using a brief cognitive battery for schizophrenia, with a primary focus on verbal tasks compared against other measures of cognition. DESIGN Cross-sectional. SETTING This cross-sectional study recruited antipsychotic treatment R and antipsychotic NR across four UK sites. Cognitive performance was assessed using the Brief Assessment of Cognition in Schizophrenia (BACS). PARTICIPANTS One hundred and six participants aged 18-65 years with a diagnosis of schizophrenia or schizophreniform disorder were recruited according to their treatment response, with 52 NR and 54 R cases. OUTCOMES Composite and subscale scores of cognitive performance on the BACS. Group (R vs NR) differences in cognitive scores were investigated using univariable and multivariable linear regressions adjusted for age, gender and illness duration. RESULTS Univariable regression models observed no significant differences between R and NR groups on any measure of the BACS, including verbal memory (ß=-1.99, 95% CI -6.63 to 2.66, p=0.398) and verbal fluency (ß=1.23, 95% CI -2.46 to 4.91, p=0.510). This pattern of findings was consistent in multivariable models. CONCLUSIONS The lack of group difference in cognition in our sample is likely due to a lack of clinical distinction between our groups. Future investigations should aim to use machine learning methods using longitudinal first episode samples to identify responder subtypes within schizophrenia, and how cognitive factors may interact within this. TRAIL REGISTRATION NUMBER REC: 15/LO/0038.
Collapse
Affiliation(s)
- Edward Millgate
- Department of Psychosis Studies, King's College London Institute of Psychiatry Psychology and Neuroscience, London, UK
| | - Eugenia Kravariti
- Department of Psychosis Studies, King's College London Institute of Psychiatry Psychology and Neuroscience, London, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Alice Egerton
- Department of Psychosis Studies, King's College London Institute of Psychiatry Psychology and Neuroscience, London, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Oliver D Howes
- Department of Psychosis Studies, King's College London Institute of Psychiatry Psychology and Neuroscience, London, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Robin M Murray
- Department of Psychosis Studies, King's College London Institute of Psychiatry Psychology and Neuroscience, London, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Laura Kassoumeri
- Department of Psychosis Studies, King's College London Institute of Psychiatry Psychology and Neuroscience, London, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Jacek Donocik
- Department of Psychosis Studies, King's College London Institute of Psychiatry Psychology and Neuroscience, London, UK
| | - Shôn Lewis
- Division of Psychology and Mental Health, The University of Manchester, Manchester, UK
- Greater Manchester Mental Health NHS Foundation Trust, Manchester, UK
| | - Richard Drake
- Division of Psychology and Mental Health, The University of Manchester, Manchester, UK
- Greater Manchester Mental Health NHS Foundation Trust, Manchester, UK
| | - Stephen Lawrie
- Psychiatry, The University of Edinburgh Division of Psychiatry, Edinburgh, UK
| | - Anna Murphy
- Division of Psychology and Mental Health, The University of Manchester, Manchester, UK
- Greater Manchester Mental Health NHS Foundation Trust, Manchester, UK
| | - Tracy Collier
- Department of Psychosis Studies, King's College London Institute of Psychiatry Psychology and Neuroscience, London, UK
| | - Jane Lees
- Division of Psychology and Mental Health, The University of Manchester, Manchester, UK
- Greater Manchester Mental Health NHS Foundation Trust, Manchester, UK
| | | | - James Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Bill Deakin
- Division of Psychology and Mental Health, The University of Manchester, Manchester, UK
| | - James MacCabe
- Department of Psychosis Studies, King's College London Institute of Psychiatry Psychology and Neuroscience, London, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| |
Collapse
|
43
|
Urakubo H, Yagishita S, Kasai H, Kubota Y, Ishii S. The critical balance between dopamine D2 receptor and RGS for the sensitive detection of a transient decay in dopamine signal. PLoS Comput Biol 2021; 17:e1009364. [PMID: 34591840 PMCID: PMC8483376 DOI: 10.1371/journal.pcbi.1009364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 08/18/2021] [Indexed: 12/19/2022] Open
Abstract
In behavioral learning, reward-related events are encoded into phasic dopamine (DA) signals in the brain. In particular, unexpected reward omission leads to a phasic decrease in DA (DA dip) in the striatum, which triggers long-term potentiation (LTP) in DA D2 receptor (D2R)-expressing spiny-projection neurons (D2 SPNs). While this LTP is required for reward discrimination, it is unclear how such a short DA-dip signal (0.5-2 s) is transferred through intracellular signaling to the coincidence detector, adenylate cyclase (AC). In the present study, we built a computational model of D2 signaling to determine conditions for the DA-dip detection. The DA dip can be detected only if the basal DA signal sufficiently inhibits AC, and the DA-dip signal sufficiently disinhibits AC. We found that those two requirements were simultaneously satisfied only if two key molecules, D2R and regulators of G protein signaling (RGS) were balanced within a certain range; this balance has indeed been observed in experimental studies. We also found that high level of RGS was required for the detection of a 0.5-s short DA dip, and the analytical solutions for these requirements confirmed their universality. The imbalance between D2R and RGS is associated with schizophrenia and DYT1 dystonia, both of which are accompanied by abnormal striatal LTP. Our simulations suggest that D2 SPNs in patients with schizophrenia and DYT1 dystonia cannot detect short DA dips. We finally discussed that such psychiatric and movement disorders can be understood in terms of the imbalance between D2R and RGS.
Collapse
Affiliation(s)
- Hidetoshi Urakubo
- Integrated Systems Biology Laboratory, Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto, Japan
- Section of Electron Microscopy, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Sho Yagishita
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan
| | - Haruo Kasai
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan
| | - Yoshiyuki Kubota
- Section of Electron Microscopy, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
- Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
| | - Shin Ishii
- Integrated Systems Biology Laboratory, Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto, Japan
- International Research Center for Neurointelligence (WPI-IRCN), University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan
| |
Collapse
|
44
|
Ionescu TM, Amend M, Hafiz R, Biswal BB, Maurer A, Pichler BJ, Wehrl HF, Herfert K. Striatal and prefrontal D2R and SERT distributions contrastingly correlate with default-mode connectivity. Neuroimage 2021; 243:118501. [PMID: 34428573 DOI: 10.1016/j.neuroimage.2021.118501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/23/2021] [Accepted: 08/20/2021] [Indexed: 11/28/2022] Open
Abstract
Although brain research has taken important strides in recent decades, the interaction and coupling of its different physiological levels is still not elucidated. Specifically, the molecular substrates of resting-state functional connectivity (rs-FC) remain poorly understood. The aim of this study was elucidating interactions between dopamine D2 receptors (D2R) and serotonin transporter (SERT) availabilities in the striatum (CPu) and medial prefrontal cortex (mPFC), two of the main dopaminergic and serotonergic projection areas, and the default-mode network. Additionally, we delineated its interaction with two other prominent resting-state networks (RSNs), the salience network (SN) and the sensorimotor network (SMN). To this extent, we performed simultaneous PET/fMRI scans in a total of 59 healthy rats using [11C]raclopride and [11C]DASB, two tracers used to image quantify D2R and SERT respectively. Edge, node and network-level rs-FC metrics were calculated for each subject and potential correlations with binding potentials (BPND) in the CPu and mPFC were evaluated. We found widespread negative associations between CPu D2R availability and all the RSNs investigated, consistent with the postulated role of the indirect basal ganglia pathway. Correlations between D2Rs in the mPFC were weaker and largely restricted to DMN connectivity. Strikingly, medial prefrontal SERT correlated both positively with anterior DMN rs-FC and negatively with rs-FC between and within the SN, SMN and the posterior DMN, underlining the complex role of serotonergic neurotransmission in this region. Here we show direct relationships between rs-FC and molecular properties of the brain as assessed by simultaneous PET/fMRI in healthy rodents. The findings in the present study contribute to the basic understanding of rs-FC by revealing associations between inter-subject variances of rs-FC and receptor and transporter availabilities. Additionally, since current therapeutic strategies typically target neurotransmitter systems with the aim of normalizing brain function, delineating associations between molecular and network-level brain properties is essential and may enhance the understanding of neuropathologies and support future drug development.
Collapse
Affiliation(s)
- Tudor M Ionescu
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Mario Amend
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Rakibul Hafiz
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ, USA
| | - Bharat B Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ, USA
| | - Andreas Maurer
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Bernd J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Hans F Wehrl
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Kristina Herfert
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany.
| |
Collapse
|
45
|
D’Ambrosio E, Jauhar S, Kim S, Veronese M, Rogdaki M, Pepper F, Bonoldi I, Kotoula V, Kempton MJ, Turkheimer F, Kwon JS, Kim E, Howes OD. The relationship between grey matter volume and striatal dopamine function in psychosis: a multimodal 18F-DOPA PET and voxel-based morphometry study. Mol Psychiatry 2021; 26:1332-1345. [PMID: 31690805 PMCID: PMC7610423 DOI: 10.1038/s41380-019-0570-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 09/23/2019] [Accepted: 10/23/2019] [Indexed: 01/26/2023]
Abstract
A leading hypothesis for schizophrenia and related psychotic disorders proposes that cortical brain disruption leads to subcortical dopaminergic dysfunction, which underlies psychosis in the majority of patients who respond to treatment. Although supported by preclinical findings that prefrontal cortical lesions lead to striatal dopamine dysregulation, the relationship between prefrontal structural volume and striatal dopamine function has not been tested in people with psychosis. We therefore investigated the in vivo relationship between striatal dopamine synthesis capacity and prefrontal grey matter volume in treatment-responsive patients with psychosis, and compared them to treatment non-responsive patients, where dopaminergic mechanisms are not thought to be central. Forty patients with psychosis across two independent cohorts underwent 18F-DOPA PET scans to measure dopamine synthesis capacity (indexed as the influx rate constant Kicer) and structural 3T MRI. The PET, but not MR, data have been reported previously. Structural images were processed using DARTEL-VBM. GLM analyses were performed in SPM12 to test the relationship between prefrontal grey matter volume and striatal Kicer. Treatment responders showed a negative correlation between prefrontal grey matter and striatal dopamine synthesis capacity, but this was not evident in treatment non-responders. Specifically, we found an interaction between treatment response, whole striatal dopamine synthesis capacity and grey matter volume in left (pFWE corr. = 0.017) and right (pFWE corr. = 0.042) prefrontal cortex. We replicated the finding in right prefrontal cortex in the independent sample (pFWE corr. = 0.031). The summary effect size was 0.82. Our findings are consistent with the long-standing hypothesis of dysregulation of the striatal dopaminergic system being related to prefrontal cortex pathology in schizophrenia, but critically also extend the hypothesis to indicate it can be applied to treatment-responsive schizophrenia only. This suggests that different mechanisms underlie the pathophysiology of treatment-responsive and treatment-resistant schizophrenia.
Collapse
Affiliation(s)
- Enrico D’Ambrosio
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK,Psychiatric Neuroscience Group, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Sameer Jauhar
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK,Early Intervention Psychosis Clinical Academic Group, South London & Maudsley NHS Trust, London
| | - Seoyoung Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
| | - Mattia Veronese
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Maria Rogdaki
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK,Psychiatric Imaging Group MRC London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK
| | - Fiona Pepper
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Ilaria Bonoldi
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Vasileia Kotoula
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Matthew J Kempton
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Federico Turkheimer
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Jun Soo Kwon
- Department of Brain & Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Euitae Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea. .,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Oliver D Howes
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK. .,Psychiatric Imaging Group MRC London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK.
| |
Collapse
|
46
|
The epistatic interaction between the dopamine D3 receptor and dysbindin-1 modulates higher-order cognitive functions in mice and humans. Mol Psychiatry 2021; 26:1272-1285. [PMID: 31492942 DOI: 10.1038/s41380-019-0511-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/15/2019] [Accepted: 07/26/2019] [Indexed: 11/08/2022]
Abstract
The dopamine D2 and D3 receptors are implicated in schizophrenia and its pharmacological treatments. These receptors undergo intracellular trafficking processes that are modulated by dysbindin-1 (Dys). Indeed, Dys variants alter cognitive responses to antipsychotic drugs through D2-mediated mechanisms. However, the mechanism by which Dys might selectively interfere with the D3 receptor subtype is unknown. Here, we revealed an interaction between functional genetic variants altering Dys and D3. Specifically, both in patients with schizophrenia and in genetically modified mice, concomitant reduction in D3 and Dys functionality was associated with improved executive and working memory abilities. This D3/Dys interaction produced a D2/D3 imbalance favoring increased D2 signaling in the prefrontal cortex (PFC) but not in the striatum. No epistatic effects on the clinical positive and negative syndrome scale (PANSS) scores were evident, while only marginal effects on sensorimotor gating, locomotor functions, and social behavior were observed in mice. This genetic interaction between D3 and Dys suggests the D2/D3 imbalance in the PFC as a target for patient stratification and procognitive treatments in schizophrenia.
Collapse
|
47
|
Valle-León M, Callado LF, Aso E, Cajiao-Manrique MM, Sahlholm K, López-Cano M, Soler C, Altafaj X, Watanabe M, Ferré S, Fernández-Dueñas V, Menchón JM, Ciruela F. Decreased striatal adenosine A 2A-dopamine D 2 receptor heteromerization in schizophrenia. Neuropsychopharmacology 2021; 46:665-672. [PMID: 33010795 PMCID: PMC8027896 DOI: 10.1038/s41386-020-00872-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/04/2020] [Accepted: 08/26/2020] [Indexed: 02/04/2023]
Abstract
According to the adenosine hypothesis of schizophrenia, the classically associated hyperdopaminergic state may be secondary to a loss of function of the adenosinergic system. Such a hypoadenosinergic state might either be due to a reduction of the extracellular levels of adenosine or alterations in the density of adenosine A2A receptors (A2ARs) or their degree of functional heteromerization with dopamine D2 receptors (D2R). In the present study, we provide preclinical and clinical evidences for this latter mechanism. Two animal models for the study of schizophrenia endophenotypes, namely the phencyclidine (PCP) mouse model and the A2AR knockout mice, were used to establish correlations between behavioural and molecular studies. In addition, a new AlphaLISA-based method was implemented to detect native A2AR-D2R heteromers in mouse and human brain. First, we observed a reduction of prepulse inhibition in A2AR knockout mice, similar to that observed in the PCP animal model of sensory gating impairment of schizophrenia, as well as a significant upregulation of striatal D2R without changes in A2AR expression in PCP-treated animals. In addition, PCP-treated animals showed a significant reduction of striatal A2AR-D2R heteromers, as demonstrated by the AlphaLISA-based method. A significant and pronounced reduction of A2AR-D2R heteromers was next demonstrated in postmortem caudate nucleus from schizophrenic subjects, even though both D2R and A2AR were upregulated. Finally, in PCP-treated animals, sub-chronic administration of haloperidol or clozapine counteracted the reduction of striatal A2AR-D2R heteromers. The degree of A2AR-D2R heteromer formation in schizophrenia might constitute a hallmark of the illness, which indeed should be further studied to establish possible correlations with chronic antipsychotic treatments.
Collapse
Affiliation(s)
- Marta Valle-León
- grid.5841.80000 0004 1937 0247Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, UB, L’Hospitalet de Llobregat, Barcelona, Spain ,grid.418284.30000 0004 0427 2257Neuropharmacology and Pain Group, Neuroscience Program, Institut d’Investigació Biomèdica de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Luis F. Callado
- grid.11480.3c0000000121671098Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Spain ,grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Instituto Salud Carlos III, Madrid, Spain ,Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Ester Aso
- grid.5841.80000 0004 1937 0247Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, UB, L’Hospitalet de Llobregat, Barcelona, Spain ,grid.418284.30000 0004 0427 2257Neuropharmacology and Pain Group, Neuroscience Program, Institut d’Investigació Biomèdica de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
| | - María M. Cajiao-Manrique
- grid.5841.80000 0004 1937 0247Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, UB, L’Hospitalet de Llobregat, Barcelona, Spain ,grid.418284.30000 0004 0427 2257Neuropharmacology and Pain Group, Neuroscience Program, Institut d’Investigació Biomèdica de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain ,grid.412041.20000 0001 2106 639XBordeaux International Neuroscience Master, University of Bordeaux, Bordeaux, France
| | - Kristoffer Sahlholm
- grid.5841.80000 0004 1937 0247Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, UB, L’Hospitalet de Llobregat, Barcelona, Spain ,grid.418284.30000 0004 0427 2257Neuropharmacology and Pain Group, Neuroscience Program, Institut d’Investigació Biomèdica de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain ,grid.4714.60000 0004 1937 0626Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden ,grid.12650.300000 0001 1034 3451Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Marc López-Cano
- grid.5841.80000 0004 1937 0247Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, UB, L’Hospitalet de Llobregat, Barcelona, Spain ,grid.418284.30000 0004 0427 2257Neuropharmacology and Pain Group, Neuroscience Program, Institut d’Investigació Biomèdica de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Concepció Soler
- grid.418284.30000 0004 0427 2257Neuropharmacology and Pain Group, Neuroscience Program, Institut d’Investigació Biomèdica de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain ,grid.5841.80000 0004 1937 0247Immunology Unit, Faculty of Medicine and Health Sciences, Department of Pathology and Experimental Therapeutics, University of Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Xavier Altafaj
- grid.5841.80000 0004 1937 0247Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, UB, L’Hospitalet de Llobregat, Barcelona, Spain ,grid.418284.30000 0004 0427 2257Neuropharmacology and Pain Group, Neuroscience Program, Institut d’Investigació Biomèdica de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Masahiko Watanabe
- grid.39158.360000 0001 2173 7691Department of Anatomy, Hokkaido University School of Medicine, Sapporo, 060-0818 Japan
| | - Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA.
| | - Víctor Fernández-Dueñas
- grid.5841.80000 0004 1937 0247Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, UB, L’Hospitalet de Llobregat, Barcelona, Spain ,grid.418284.30000 0004 0427 2257Neuropharmacology and Pain Group, Neuroscience Program, Institut d’Investigació Biomèdica de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
| | - José M. Menchón
- grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Instituto Salud Carlos III, Madrid, Spain ,grid.411129.e0000 0000 8836 0780Department of Psychiatry, University Hospital of Bellvitge, L’Hospitalet de Llobregat, Barcelona, Spain ,grid.418284.30000 0004 0427 2257Psychiatry and Mental Health Group, Neuroscience Program, Institut d’Investigació Biomèdica de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain ,grid.5841.80000 0004 1937 0247Department of Clinical Sciences, School of Medicine, University of Barcelona, UB, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, UB, L'Hospitalet de Llobregat, Barcelona, Spain. .,Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
48
|
Klaus K, Vaht M, Pennington K, Harro J. Interactive effects of DRD2 rs6277 polymorphism, environment and sex on impulsivity in a population-representative study. Behav Brain Res 2021; 403:113131. [PMID: 33444693 DOI: 10.1016/j.bbr.2021.113131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 12/31/2020] [Accepted: 01/07/2021] [Indexed: 11/17/2022]
Abstract
Previous research has shown that dopaminergic dysregulation and early life stress interact to impact on aspects of impulse control. This study aimed to explore the potentially interactive effects of the rs6277 polymorphism of the dopamine D2 receptor gene (DRD2), stressful or supportive environment and sex on behavioural and self-reported measures of impulsivity, as well as alcohol use - a condition characterised by a deficit in impulse control. The sample consisted of the younger cohort (n = 583) of the longitudinal Estonian Children Personality, Behaviour and Health Study. The results showed that the CC homozygotes (suggested to have decreased striatal D2 receptor availability) who had experienced stressful life events (SLE) or maltreatment in the family prior to age 15 showed higher self-reported maladaptive impulsivity at age 15. The genotype-SLE interaction and further association with sex was also evident in the frequency of alcohol use at age 15. Lack of warmth in the family contributed to significantly higher levels of thoughtlessness and more frequent alcohol use in CC carriers at age 25, whereas family support was associated with lower thoughtlessness scores in CC males, which may suggest a protective effect of supportive family environment in this group. Together the findings suggest that DRD2 rs6277 polymorphism, in interaction with environmental factors experienced in childhood and youth may affect facets of impulsivity. Future work should aim to further clarify the sex and age-specific effects of stressful and supportive environment on the development of neuronal systems that are compromised in disorders characterised by deficits in impulse control.
Collapse
Affiliation(s)
- K Klaus
- School of Psychology, University of Lincoln, Brayford Wharf, Lincoln, LN5 7AT, England, UK; MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB3 0HH, England, UK.
| | - M Vaht
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Estonia
| | - K Pennington
- School of Psychology, University of Lincoln, Brayford Wharf, Lincoln, LN5 7AT, England, UK
| | - J Harro
- Faculty of Science and Technology, Institute of Chemistry, University of Tartu, Ravila 14A, 50411, Tartu, Estonia
| |
Collapse
|
49
|
Timing behavior in genetic murine models of neurological and psychiatric diseases. Exp Brain Res 2021; 239:699-717. [PMID: 33404792 DOI: 10.1007/s00221-020-06021-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/16/2020] [Indexed: 01/17/2023]
Abstract
How timing behavior is altered in different neurodevelopmental and neurodegenerative disorders is a contemporary research question. Genetic murine models (GMM) that offer high construct validity also serve as useful tools to investigate this question. But the literature on timing behavior of different GMMs largely remains to be consolidated. The current paper addresses this gap by reviewing studies that have been conducted with GMMs of neurodevelopmental (e.g. ADHD, schizophrenia, autism spectrum disorder), neurodegenerative disorders (e.g., Alzheimer's disease, Huntington's disease) as well as circadian and other mutant lines. The review focuses on those studies that specifically utilized the peak interval procedure to improve the comparability of findings both within and between different disease models. The reviewed studies revealed timing deficits that are characteristic of different disorders. Specifically, Huntington's disease models had weaker temporal control over the termination of their anticipatory responses, Alzheimer's disease models had earlier timed responses, schizophrenia models had weaker temporal control, circadian mutants had shifted timed responses consistent with shifts in the circadian periods. The differences in timing behavior were less consistent for other conditions such as attention deficit and hyperactivity disorder and mutations related to intellectual disability. We discuss the implications of these findings for the neural basis of an internal stopwatch. Finally, we make methodological recommendations for future research for improving the comparability of the timing behavior across different murine models.
Collapse
|
50
|
Wysokiński A, Kozłowska E, Szczepocka E, Łucka A, Agier J, Brzezińska-Błaszczyk E, Sobierajska K. Expression of Dopamine D 1-4 and Serotonin 5-HT 1A-3A Receptors in Blood Mononuclear Cells in Schizophrenia. Front Psychiatry 2021; 12:645081. [PMID: 33776821 PMCID: PMC7988204 DOI: 10.3389/fpsyt.2021.645081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/17/2021] [Indexed: 11/14/2022] Open
Abstract
Introduction: The aim of this study was to determine the mRNA expression profile of dopamine D1, D2, D3, D4 and serotonin 5-HT1A, 5-HT2A, and 5-HT3A receptors in peripheral blood mononuclear cells (PBMCs) in schizophrenia and the in vitro effect of antipsychotics on the expression of these receptors in PBMCs of healthy subjects. Materials and Methods: Twenty-seven patients with schizophrenia and 29 healthy controls were recruited for the study. All study subjects underwent thorough clinical assessment, including anthropometric and body composition measurements. The expression of mRNA for dopamine D1-4 and serotonin 5-HT1A-3A receptors was measured using quantitative RT-PCR in peripheral blood mononuclear cells. In vitro mRNA and protein expression of these receptors was measured using quantitative RT-PCR and Western Blotting in PBMCs cultured with quetiapine, haloperidol, aripiprazole, risperidone, olanzapine or clozapine at IC50, half of IC50, and one-quarter of IC50 concentrations. Results: The key finding was that the schizophrenia group demonstrated significantly higher mRNA expression of D1, D2 and D4 receptors (p < 0.001), and significantly lower mRNA expression of 5-HT3A receptors (p < 0.01). After adjusting for smoking, the mRNA expression of D1 lost its significance, while that of D3, 5-HT1A, 5-HT2A became significant (all three were lower in the schizophrenia group). These receptors also demonstrated different ratios of mRNA expression in the schizophrenia group. The in vitro experiments showed that high concentrations of antipsychotics influenced the mRNA and protein expression of all studied receptors. Conclusion: Schizophrenia patients display a distinctive pattern of dopamine and serotonin receptor mRNA expression in blood mononuclear cells. This expression is little affected by antipsychotic treatment and it may therefore serve as a useful diagnostic biomarker for schizophrenia.
Collapse
Affiliation(s)
- Adam Wysokiński
- Department of Old Age Psychiatry and Psychotic Disorders, Medical University of Lodz, Lodz, Poland
| | - Elżbieta Kozłowska
- Department of Experimental Immunology, Medical University of Lodz, Lodz, Poland
| | - Ewa Szczepocka
- Department of Old Age Psychiatry and Psychotic Disorders, Medical University of Lodz, Lodz, Poland
| | - Anna Łucka
- Department of Old Age Psychiatry and Psychotic Disorders, Medical University of Lodz, Lodz, Poland
| | - Justyna Agier
- Department of Experimental Immunology, Medical University of Lodz, Lodz, Poland
| | | | | |
Collapse
|