1
|
Park S, Heu J, Hoener MC, Kilduff TS. Wakefulness Induced by TAAR1 Partial Agonism is Mediated Through Dopaminergic Neurotransmission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612122. [PMID: 39314371 PMCID: PMC11419104 DOI: 10.1101/2024.09.09.612122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Trace amine-associated receptor 1 (TAAR1) is known to negatively regulate dopamine (DA) release. The partial TAAR1 agonist RO5263397 promotes wakefulness and suppresses NREM and REM sleep in mice, rats, and non-human primates. We tested the hypothesis that the TAAR1-mediated effects on sleep/wake were due, at least in part, to DA release. Male C57BL6/J mice (n=8) were intraperitoneally administered the D1R antagonist SCH23390, the D2R antagonist eticlopride, a combination of D1R+D2R antagonists or saline at ZT5.5, followed 30 min later by RO5263397 or vehicle (10% DMSO in DI water) at ZT6 per os. EEG, EMG, subcutaneous temperature, and activity were recorded in each mouse across the 8 treatment conditions and sleep architecture was analyzed for 6 hours post-dosing. Consistent with our previous reports, RO5263397 increased wakefulness as well as the latency to NREM and REM sleep. D1, D2, and D1+D2 pretreatment reduced RO5263397-induced wakefulness during the first 1-2 hours after dosing, but only the D1+D2 combination attenuated the wake-promoting effect of RO5263397 from ZT6-8, mostly by increasing NREM sleep. Although D1+D2 antagonism blocked the wake-promoting effect of RO5263397, only the D1 antagonist significantly reduced the TAAR1-mediated increase in NREM latency. Neither the D1 nor the D2 antagonist affected TAAR1-mediated suppression of REM sleep. These results suggest that, whereas TAAR1 effects on wakefulness are mediated in part through the D2R, D1R activation plays a role in reversing the TAAR1-mediated increase in NREM sleep latency. By contrast, TAAR1-mediated suppression of REM sleep appears not to involve D1R or D2R mechanisms.
Collapse
Affiliation(s)
- Sunmee Park
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA
| | - Jasmine Heu
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA
| | - Marius C Hoener
- Neuroscience, Ophthalmology and Rare Diseases DTA, pRED, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Thomas S Kilduff
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA
| |
Collapse
|
2
|
Dudzik P, Lustyk K, Pytka K. Beyond dopamine: Novel strategies for schizophrenia treatment. Med Res Rev 2024; 44:2307-2330. [PMID: 38653551 DOI: 10.1002/med.22042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Despite extensive research efforts aimed at discovering novel antipsychotic compounds, a satisfactory pharmacological strategy for schizophrenia treatment remains elusive. All the currently available drugs act by modulating dopaminergic neurotransmission, leading to insufficient management of the negative and cognitive symptoms of the disorder. Due to these challenges, several attempts have been made to design agents with innovative, non-dopaminergic mechanisms of action. Consequently, a number of promising compounds are currently progressing through phases 2 and 3 of clinical trials. This review aims to examine the rationale behind the most promising of these strategies while simultaneously providing a comprehensive survey of study results. We describe the versatility behind the cholinergic neurotransmission modulation through the activation of M1 and M4 receptors, exemplified by the prospective drug candidate KarXT. Our discussion extends to the innovative approach of activating TAAR1 receptors via ulotaront, along with the promising outcomes of iclepertin, a GlyT-1 inhibitor with the potential to become the first treatment option for cognitive impairment associated with schizophrenia. Finally, we evaluate the 5-HT2A antagonist paradigm, assessing two recently developed serotonergic agents, pimavanserin and roluperidone. We present the latest advancements in developing novel solutions to the complex challenges posed by schizophrenia, offering an additional perspective on the diverse investigated drug candidates.
Collapse
Affiliation(s)
- Paulina Dudzik
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Klaudia Lustyk
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
3
|
Scarano N, Espinoza S, Brullo C, Cichero E. Computational Methods for the Discovery and Optimization of TAAR1 and TAAR5 Ligands. Int J Mol Sci 2024; 25:8226. [PMID: 39125796 PMCID: PMC11312273 DOI: 10.3390/ijms25158226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
G-protein-coupled receptors (GPCRs) represent a family of druggable targets when treating several diseases and continue to be a leading part of the drug discovery process. Trace amine-associated receptors (TAARs) are GPCRs involved in many physiological functions with TAAR1 having important roles within the central nervous system (CNS). By using homology modeling methods, the responsiveness of TAAR1 to endogenous and synthetic ligands has been explored. In addition, the discovery of different chemo-types as selective murine and/or human TAAR1 ligands has helped in the understanding of the species-specificity preferences. The availability of TAAR1-ligand complexes sheds light on how different ligands bind TAAR1. TAAR5 is considered an olfactory receptor but has specific involvement in some brain functions. In this case, the drug discovery effort has been limited. Here, we review the successful computational efforts developed in the search for novel TAAR1 and TAAR5 ligands. A specific focus on applying structure-based and/or ligand-based methods has been done. We also give a perspective of the experimental data available to guide the future drug design of new ligands, probing species-specificity preferences towards more selective ligands. Hints for applying repositioning approaches are also discussed.
Collapse
Affiliation(s)
- Naomi Scarano
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (C.B.)
| | - Stefano Espinoza
- Department of Health Sciences and Research Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), 28100 Novara, Italy;
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), 16152 Genova, Italy
| | - Chiara Brullo
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (C.B.)
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (C.B.)
| |
Collapse
|
4
|
Liu J, Wu R, Li JX. TAAR1 as an emerging target for the treatment of psychiatric disorders. Pharmacol Ther 2024; 253:108580. [PMID: 38142862 DOI: 10.1016/j.pharmthera.2023.108580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Trace amines, a group of amines expressed at the nanomolar level in the mammalian brain, can modulate monoamine transmission. The discovery of and the functional research on the trace amine-associated receptors (TAARs), especially the most well-characterized TAAR1, have largely facilitated our understanding of the function of the trace amine system in the brain. TAAR1 is expressed in the mammalian brain at a low level and widely distributed in the monoaminergic system, including the ventral tegmental area and substantial nigra, where the dopamine neurons reside in the mammalian brain. Growing in vitro and in vivo evidence has demonstrated that TAAR1 could negatively modulate monoamine transmission and play a crucial role in many psychiatric disorders, including schizophrenia, substance use disorders, sleep disorders, depression, and anxiety. Notably, in the last two decades, many studies have repeatedly confirmed the pharmacological effects of the selective TAAR1 ligands in various preclinical models of psychiatric disorders. Recent clinical trials of the dual TAAR1 and serotonin receptor agonist ulotaront also revealed a potential efficacy for treating schizophrenia. Here, we review the current understanding of the TAAR1 system and the recent advances in the elucidation of behavioral and physiological properties of TAAR1 agonists evaluated both in preclinical animal models and clinical trials. We also discuss the potential TAAR1-dependent signaling pathways and the cellular mechanisms underlying the inhibitory effects of TAAR1 activation on drug addiction. We conclude that TAAR1 is an emerging target for the treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Jianfeng Liu
- School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China; School of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China.
| | - Ruyan Wu
- Department of in vivo pharmacology, Discovery Biology, WuXi Biology, WuXi AppTec Co., Ltd., Shanghai 200120, PR China
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, The State University of New York, 955 Main Street, Buffalo, NY 14203, USA.
| |
Collapse
|
5
|
Vaganova AN, Shemyakova TS, Lenskaia KV, Rodionov RN, Steenblock C, Gainetdinov RR. Trace Amine-Associated Receptors and Monoamine-Mediated Regulation of Insulin Secretion in Pancreatic Islets. Biomolecules 2023; 13:1618. [PMID: 38002300 PMCID: PMC10669413 DOI: 10.3390/biom13111618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Currently, metabolic syndrome treatment includes predominantly pharmacological symptom relief and complex lifestyle changes. Trace amines and their receptor systems modulate signaling pathways of dopamine, norepinephrine, and serotonin, which are involved in the pathogenesis of this disorder. Trace amine-associated receptor 1 (TAAR1) is expressed in endocrine organs, and it was revealed that TAAR1 may regulate insulin secretion in pancreatic islet β-cells. For instance, accumulating data demonstrate the positive effect of TAAR1 agonists on the dynamics of metabolic syndrome progression and MetS-associated disease development. The role of other TAARs (TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9) in the islet's function is much less studied. In this review, we summarize the evidence of TAARs' contribution to the metabolic syndrome pathogenesis and regulation of insulin secretion in pancreatic islets. Additionally, by the analysis of public transcriptomic data, we demonstrate that TAAR1 and other TAAR receptors are expressed in the pancreatic islets. We also explore associations between the expression of TAARs mRNA and other genes in studied samples and demonstrate the deregulation of TAARs' functional associations in patients with metabolic diseases compared to healthy donors.
Collapse
Affiliation(s)
- Anastasia N. Vaganova
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.N.V.); (T.S.S.)
- St. Petersburg State University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Taisiia S. Shemyakova
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.N.V.); (T.S.S.)
| | - Karina V. Lenskaia
- Department of Medicine, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia;
| | - Roman N. Rodionov
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (R.N.R.); (C.S.)
| | - Charlotte Steenblock
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (R.N.R.); (C.S.)
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.N.V.); (T.S.S.)
- St. Petersburg State University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
6
|
Kuvarzin SR, Sukhanov I, Onokhin K, Zakharov K, Gainetdinov RR. Unlocking the Therapeutic Potential of Ulotaront as a Trace Amine-Associated Receptor 1 Agonist for Neuropsychiatric Disorders. Biomedicines 2023; 11:1977. [PMID: 37509616 PMCID: PMC10377193 DOI: 10.3390/biomedicines11071977] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
All antipsychotics currently used in clinic block D2 dopamine receptors. Trace amine-associated receptor 1 is emerging as a new therapeutic target for schizophrenia and several other neuropsychiatric disorders. SEP-363856 (International Nonproprietary Name: Ulotaront) is an investigational antipsychotic drug with a novel mechanism of action that does not involve antagonism of dopamine D2 receptors. Ulotaront is an agonist of trace amine-associated receptor 1 and serotonin 5-HT1A receptors, but can modulate dopamine neurotransmission indirectly. In 2019, the United States Food and Drug Administration granted Breakthrough Therapy Designation for ulotaront for the treatment of schizophrenia. Phase 2 clinical studies indicated that ulotaront can reduce both positive and negative symptoms of schizophrenia without causing the extrapyramidal or metabolic side effects that are inherent to most currently used antipsychotics. At present, it is in phase 3 clinical development for the treatment of schizophrenia and is expected to be introduced into clinical practice in 2023-2024. Clinical studies evaluating the potential efficacy of ulotaront in Parkinson's disease psychosis, generalized anxiety disorder, and major depressive disorder have also been started. The aim of this scoping review is to summarize all currently available preclinical and clinical evidence on the utility of ulotaront in the treatment of schizophrenia. Here, we show the main characteristics and distinctive features of this drug. Perspectives and limitations on the potential use of ulotaront in the pharmacotherapy of several other neuropsychiatric disorders are also discussed.
Collapse
Affiliation(s)
- Savelii R Kuvarzin
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Ilya Sukhanov
- Valdman Institute of Pharmacology, Pavlov Medical University, 197022 Saint Petersburg, Russia
| | - Kirill Onokhin
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia
- Accellena Research and Development Inc., 199106 Saint Petersburg, Russia
| | | | - Raul R Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia
- Saint Petersburg University Hospital, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| |
Collapse
|
7
|
Sakanoue W, Yokoyama T, Hirakawa M, Maesawa S, Sato K, Saino T. 3-Iodothyronamine, a trace amine-associated receptor agonist, regulates intracellular Ca2+ increases via CaMK II through Epac2 in rat cerebral arterioles. Biomed Res 2023; 44:219-232. [PMID: 37779034 DOI: 10.2220/biomedres.44.219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Trace amines (TAs) in the nervous system bind to TA-associated receptors (TAARs) and are involved in the regulation of monoaminergic functions. Among TAAR subtypes, TAAR1 has been implicated in the development of neurological disorders, such as schizophrenia. The present study investigated the effects of the TAAR1 agonist, 3-iodothyronamine (T1AM) on cerebral arterioles using fluctuations in the intracellular concentration of Ca2+ ([Ca2+]i) as an index of contractile responses. In cerebral arterioles, most of the TAAR agonists did not increase [Ca2+]i, while only T1AM elevated [Ca2+]i in vascular smooth muscle cells. This increase involved extracellular Ca2+ influx through T-type Ca2+ channels and inositol trisphosphate- and ryanodine-receptor-mediated Ca2+ release from intracellular stores. The inhibition of the cAMP sensor, exchange protein directly activated by cAMP (Epac) 2, and calmodulin kinase (CaMK) II strongly inhibited Ca2+ elevations. The present study revealed that T1AM acted not only on the TAAR1 receptor as previously suggested, but also on other G-protein coupled receptors and/or signal transduction systems to increase intracellular Ca2+ in cerebral arteriole smooth muscle cells. These results suggest that when using T1AM in clinical practice, attention should be paid to the early rise in blood pressure.
Collapse
Affiliation(s)
- Wakana Sakanoue
- Division of Dental Anesthesiology, Department of Reconstructive Oral and Maxillofacial Surgery, School of Dentistry, Iwate Medical University, Yahaba, Japan
| | - Takuya Yokoyama
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Masato Hirakawa
- Department of Anatomy (Cell Biology), Iwate Medical University, Yahaba, Japan
| | - Satsuki Maesawa
- Division of Dental Anesthesiology, Department of Reconstructive Oral and Maxillofacial Surgery, School of Dentistry, Iwate Medical University, Yahaba, Japan
| | - Kenichi Sato
- Division of Dental Anesthesiology, Department of Reconstructive Oral and Maxillofacial Surgery, School of Dentistry, Iwate Medical University, Yahaba, Japan
| | - Tomoyuki Saino
- Department of Anatomy (Cell Biology), Iwate Medical University, Yahaba, Japan
| |
Collapse
|
8
|
Trace amine-associated receptor 1 (TAAR1) agonism as a new treatment strategy for schizophrenia and related disorders. Trends Neurosci 2023; 46:60-74. [PMID: 36369028 DOI: 10.1016/j.tins.2022.10.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/08/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022]
Abstract
Schizophrenia remains a major health burden, highlighting the need for new treatment approaches. We consider the potential for targeting the trace amine (TA) system. We first review genetic, preclinical, and clinical evidence for the role of TAs in the aetiopathology of schizophrenia. We then consider how the localisation and function of the trace amine-associated receptor 1 (TAAR1) position it to modulate key brain circuits for the disorder. Studies in rodents using Taar1 knockout (TAAR1-KO) and overexpression models show that TAAR1 agonism inhibits midbrain dopaminergic and serotonergic activity, and enhances prefrontal glutamatergic function. TAAR1 agonists also reduce hyperactivity, attenuate prepulse inhibition (PPI) deficits and social withdrawal, and improve cognitive measures in animal models. Finally, we consider findings from clinical trials of TAAR1 agonists and how this approach may address psychotic and negative symptoms, tolerability issues, and other unmet needs in the treatment of schizophrenia.
Collapse
|
9
|
Gut Microbiota Alterations in Trace Amine-Associated Receptor 9 (TAAR9) Knockout Rats. Biomolecules 2022; 12:biom12121823. [PMID: 36551251 PMCID: PMC9775382 DOI: 10.3390/biom12121823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Trace amine-associated receptors (TAAR1-TAAR9) are a family of G-protein-coupled monoaminergic receptors which might have great pharmacological potential. It has now been well established that TAAR1 plays an important role in the central nervous system. Interestingly, deletion of TAAR9 in rats leads to alterations in the periphery. Previously, we found that knockout of TAAR9 in rats (TAAR9-KO rats) decreased low-density lipoprotein cholesterol levels in the blood. TAAR9 was also identified in intestinal tissues, and it is known that it responds to polyamines. To elucidate the role of TAAR9 in the intestinal epithelium, we analyzed TAAR9-co-expressed gene clusters in public data for cecum samples. As identified by gene ontology enrichment analysis, in the intestine, TAAR9 is co-expressed with genes involved in intestinal mucosa homeostasis and function, including cell organization, differentiation, and death. Additionally, TAAR9 was co-expressed with genes implicated in dopamine signaling, which may suggest a role for this receptor in the regulation of peripheral dopaminergic transmission. To further investigate how TAAR9 might be involved in colonic mucosal homeostasis, we analyzed the fecal microbiome composition in TAAR9-KO rats and their wild-type littermates. We identified a significant difference in the number of observed taxa between the microbiome of TAAR9-KO and wild-type rats. In TAAR9-KO rats, the gut microbial community became more variable compared with the wild-type rats. Furthermore, it was found that the family Saccharimonadaceae, which is one of the top 10 most abundant families in TAAR9-KO rat feces, is almost completely absent in wild-type animal fecal samples. Taken together, these data indicate a role of TAAR9 in intestinal function.
Collapse
|
10
|
Grinchii D, Hoener MC, Khoury T, Dekhtiarenko R, Nejati Bervanlou R, Jezova D, Dremencov E. Effects of acute and chronic administration of trace amine-associated receptor 1 (TAAR1) ligands on in vivo excitability of central monoamine-secreting neurons in rats. Mol Psychiatry 2022; 27:4861-4868. [PMID: 36045279 PMCID: PMC9763099 DOI: 10.1038/s41380-022-01739-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 01/19/2023]
Abstract
Trace amine-associated receptor 1 (TAAR1) has been recently identified as a target for the future antidepressant, antipsychotic, and anti-addiction drugs. Full (e.g. RO5256390) and partial (e.g. RO5263397) TAAR1 agonists showed antidepressant-, antipsychotic- and anti-addiction-like behavioral effects in rodents and primates. Acute RO5256390 suppressed, and RO5263397 stimulated serotonin (5-HT) neurons of the dorsal raphe nucleus (DRN) and dopamine neurons of the ventral tegmental area (VTA) in brain slices, suggesting that the behavioral effects of TAAR1 ligands involve 5-HT and dopamine. For more comprehensive testing of this hypothesis, we examined acute and chronic effects of RO5256390 and RO5263397 on monoamine neurons in in vivo conditions. Excitability of 5-HT neurons of the DRN, noradrenaline neurons of the locus coeruleus (LC), and dopamine neurons of the VTA was assessed using single-unit electrophysiology in anesthetized rats. For acute experiments, RO5256390 and RO5263397 were administered intravenously; neuronal excitability after RO5256390 and RO5263397 administration was compared to the basal activity of the same neuron. For chronic experiments, RO5256390 was administered orally for fourteen days prior to electrophysiological assessments. The neuronal excitability in RO5256390-treated rats was compared to vehicle-treated controls. We found that acute RO5256390 inhibited 5-HT and dopamine neurons. This effect of RO5256390 was reversed by the subsequent and prevented by the earlier administration of RO5263397. Acute RO5256390 and RO5263397 did not alter the excitability of LC noradrenaline neurons in a statistically significant way. Chronic RO5256390 increased excitability of 5-HT neurons of the DRN and dopamine neurons of the VTA. In conclusion, the putative antidepressant and antipsychotic effects of TAAR1 ligands might be mediated, at least in part, via the modulation of excitability of central 5-HT and dopamine neurons.
Collapse
Affiliation(s)
- Daniil Grinchii
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marius C Hoener
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Talah Khoury
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Roman Dekhtiarenko
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Reyhaneh Nejati Bervanlou
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Daniela Jezova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Eliyahu Dremencov
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
11
|
Zhukov IS, Karpova IV, Krotova NA, Tissen IY, Demin KA, Shabanov PD, Budygin EA, Kalueff AV, Gainetdinov RR. Enhanced Aggression, Reduced Self-Grooming Behavior and Altered 5-HT Regulation in the Frontal Cortex in Mice Lacking Trace Amine-Associated Receptor 1 (TAAR1). Int J Mol Sci 2022; 23:ijms232214066. [PMID: 36430544 PMCID: PMC9695497 DOI: 10.3390/ijms232214066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
The Trace Amine-Associated Receptor 1 (TAAR1) is one of the six functional receptors belonging to the family of monoamine-related G protein-coupled receptors (TAAR1-TAAR9) found in humans. However, the exact biological mechanisms of TAAR1 central and peripheral action remain to be fully understood. TAAR1 is widely expressed in the prefrontal cortex and several limbic regions, interplaying with the dopamine system to modulate the reward circuitry. Recent clinical trials suggest the efficacy of TAAR1 agonists as potential novel antipsychotic agents. Here, we characterize behavioral and neurochemical phenotypes of TAAR1 knockout mice, focusing on aggression and self-grooming behavior that both strongly depend on the monoaminergic signaling and cortico-striatal and cortico-limbic circuits. Overall, we report increased aggression in these knockout mice in the resident-intruder test, accompanied by reduced self-grooming behavior in the novelty-induced grooming test, and by higher cortical serotonin (5-HT) tissue levels. Further studies are necessary to explore whether TAAR1-based therapies can become potential novel treatments for a wide range of neuropsychiatric disorders associated with aggression.
Collapse
Affiliation(s)
- Ilya S. Zhukov
- Institute of Translational Biomedicine, St. Petersburg State University, University nab. 7/9, 199034 St. Petersburg, Russia
- Institute of Experimental Medicine, Acad. Pavlov str. 12, 197376 St. Petersburg, Russia
| | - Inessa V. Karpova
- Institute of Experimental Medicine, Acad. Pavlov str. 12, 197376 St. Petersburg, Russia
| | - Nataliya A. Krotova
- Institute of Translational Biomedicine, St. Petersburg State University, University nab. 7/9, 199034 St. Petersburg, Russia
- Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, 197341 St. Petersburg, Russia
| | - Ilya Y. Tissen
- Institute of Experimental Medicine, Acad. Pavlov str. 12, 197376 St. Petersburg, Russia
| | - Konstantin A. Demin
- Institute of Translational Biomedicine, St. Petersburg State University, University nab. 7/9, 199034 St. Petersburg, Russia
- Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, 197341 St. Petersburg, Russia
| | - Petr D. Shabanov
- Institute of Experimental Medicine, Acad. Pavlov str. 12, 197376 St. Petersburg, Russia
| | - Evgeny A. Budygin
- Neurobiology Program, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Allan V. Kalueff
- Institute of Translational Biomedicine, St. Petersburg State University, University nab. 7/9, 199034 St. Petersburg, Russia
- Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, 197341 St. Petersburg, Russia
- Neurobiology Program, Sirius University of Science and Technology, 354340 Sochi, Russia
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, 197758 St. Petersburg, Russia
- Neurobiology Laboratory, Ural Federal University, 620002 Yekaterinburg, Russia
- Laboratory of Cell and Molecular Biology and Neurobiology, School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Moscow, Russia
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, University nab. 7/9, 199034 St. Petersburg, Russia
- St. Petersburg University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
12
|
Caniceiro AB, Bueschbell B, Schiedel AC, Moreira IS. Class A and C GPCR Dimers in Neurodegenerative Diseases. Curr Neuropharmacol 2022; 20:2081-2141. [PMID: 35339177 PMCID: PMC9886835 DOI: 10.2174/1570159x20666220327221830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/21/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative diseases affect over 30 million people worldwide with an ascending trend. Most individuals suffering from these irreversible brain damages belong to the elderly population, with onset between 50 and 60 years. Although the pathophysiology of such diseases is partially known, it remains unclear upon which point a disease turns degenerative. Moreover, current therapeutics can treat some of the symptoms but often have severe side effects and become less effective in long-term treatment. For many neurodegenerative diseases, the involvement of G proteincoupled receptors (GPCRs), which are key players of neuronal transmission and plasticity, has become clearer and holds great promise in elucidating their biological mechanism. With this review, we introduce and summarize class A and class C GPCRs, known to form heterodimers or oligomers to increase their signalling repertoire. Additionally, the examples discussed here were shown to display relevant alterations in brain signalling and had already been associated with the pathophysiology of certain neurodegenerative diseases. Lastly, we classified the heterodimers into two categories of crosstalk, positive or negative, for which there is known evidence.
Collapse
Affiliation(s)
- Ana B. Caniceiro
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Beatriz Bueschbell
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Anke C. Schiedel
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany;
| | - Irina S. Moreira
- University of Coimbra, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; ,Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal,Address correspondence to this author at the Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal; E-mail:
| |
Collapse
|
13
|
Decker AM, Brackeen MF, Mohammadkhani A, Kormos CM, Hesk D, Borgland SL, Blough BE. Identification of a Potent Human Trace Amine-Associated Receptor 1 Antagonist. ACS Chem Neurosci 2022; 13:1082-1095. [PMID: 35325532 DOI: 10.1021/acschemneuro.2c00086] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human trace amine-associated receptor subtype 1 (hTAAR1) is a G protein-coupled receptor that has therapeutic potential for multiple diseases, including schizophrenia, drug addiction, and Parkinson's disease (PD). Although several potent agonists have been identified and have shown positive results in various clinical trials for schizophrenia, the discovery of potent hTAAR1 antagonists remains elusive. Herein, we report the results of structure-activity relationship studies that have led to the discovery of a potent hTAAR1 antagonist (RTI-7470-44, 34). RTI-7470-44 exhibited an IC50 of 8.4 nM in an in vitro cAMP functional assay, a Ki of 0.3 nM in a radioligand binding assay, and showed species selectivity for hTAAR1 over the rat and mouse orthologues. RTI-7470-44 displayed good blood-brain barrier permeability, moderate metabolic stability, and a favorable preliminary off-target profile. Finally, RTI-7470-44 increased the spontaneous firing rate of mouse VTA dopaminergic neurons and blocked the effects of the known TAAR1 agonist RO5166017. Collectively, this work provides a promising hTAAR1 antagonist probe that can be used to study TAAR1 pharmacology and the potential therapeutic role in hypodopaminergic diseases such as PD.
Collapse
Affiliation(s)
- Ann M. Decker
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709, United States
| | - Marcus F. Brackeen
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709, United States
| | - Aida Mohammadkhani
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N4N1, Canada
| | - Chad M. Kormos
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709, United States
| | - David Hesk
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709, United States
| | - Stephanie L. Borgland
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N4N1, Canada
| | - Bruce E. Blough
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709, United States
| |
Collapse
|
14
|
Bon C, Chern TR, Cichero E, O’Brien TE, Gustincich S, Gainetdinov RR, Espinoza S. Discovery of Novel Trace Amine-Associated Receptor 5 (TAAR5) Antagonists Using a Deep Convolutional Neural Network. Int J Mol Sci 2022; 23:3127. [PMID: 35328548 PMCID: PMC8954676 DOI: 10.3390/ijms23063127] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/06/2022] [Accepted: 03/10/2022] [Indexed: 12/10/2022] Open
Abstract
Trace amine-associated receptor 5 (TAAR5) is a G protein-coupled receptor that belongs to the TAARs family (TAAR1-TAAR9). TAAR5 is expressed in the olfactory epithelium and is responsible for sensing 3-methylamine (TMA). However, recent studies showed that TAAR5 is also expressed in the limbic brain regions and is involved in the regulation of emotional behaviour and adult neurogenesis, suggesting that TAAR5 antagonism may represent a novel therapeutic strategy for anxiety and depression. We used the AtomNet® model, the first deep learning neural network for structure-based drug discovery, to identify putative TAAR5 ligands and tested them in an in vitro BRET assay. We found two mTAAR5 antagonists with low to submicromolar activity that are able to inhibit the cAMP production induced by TMA. Moreover, these two compounds also inhibited the mTAAR5 downstream signalling, such as the phosphorylation of CREB and ERK. These two hits exhibit drug-like properties and could be used to further develop more potent TAAR5 ligands with putative anxiolytic and antidepressant activity.
Collapse
Affiliation(s)
- Carlotta Bon
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), 16132 Genova, Italy; (C.B.); (S.G.)
| | - Ting-Rong Chern
- Atomwise Inc., San Francisco, CA 94103, USA; (T.-R.C.); (T.E.O.)
| | - Elena Cichero
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 16132 Genoa, Italy;
| | | | - Stefano Gustincich
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), 16132 Genova, Italy; (C.B.); (S.G.)
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, Saint-Petersburg State University, 199034 St. Petersburg, Russia;
- Saint-Petersburg University Hospital, Saint-Petersburg State University, 199034 St. Petersburg, Russia
| | - Stefano Espinoza
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), 16132 Genova, Italy; (C.B.); (S.G.)
- Department of Health Sciences and Research, Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), 28100 Novara, Italy
| |
Collapse
|
15
|
Heffernan MLR, Herman LW, Brown S, Jones PG, Shao L, Hewitt MC, Campbell JE, Dedic N, Hopkins SC, Koblan KS, Xie L. Ulotaront: A TAAR1 Agonist for the Treatment of Schizophrenia. ACS Med Chem Lett 2022; 13:92-98. [PMID: 35047111 PMCID: PMC8762745 DOI: 10.1021/acsmedchemlett.1c00527] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
![]()
Ulotaront (SEP-363856)
is a trace-amine associated receptor 1 (TAAR1)
agonist with 5-HT1A receptor agonist activity in Phase 3 clinical
development, with FDA Breakthrough Therapy Designation, for the treatment
of schizophrenia. TAAR1 is a G-protein-coupled receptor (GPCR) that
is expressed in cortical, limbic, and midbrain monoaminergic regions.
It is activated by endogenous trace amines, and is believed to play
an important role in modulating dopaminergic, serotonergic, and glutamatergic
circuitry. TAAR1 agonism data are reported herein for ulotaront and
its analogues in comparison to endogenous TAAR1 agonists. In addition,
a human TAAR1 homology model was built around ulotaront to identify
key interactions and attempt to better understand the scaffold-specific
TAAR1 agonism structure–activity relationships.
Collapse
Affiliation(s)
| | - Lee W. Herman
- Sunovion Pharmaceuticals Inc, Marlborough, Massachusetts 01752, United States
| | - Scott Brown
- Sunovion Pharmaceuticals Inc, Marlborough, Massachusetts 01752, United States
| | - Philip G. Jones
- Sunovion Pharmaceuticals Inc, Marlborough, Massachusetts 01752, United States
| | - Liming Shao
- Sunovion Pharmaceuticals Inc, Marlborough, Massachusetts 01752, United States
| | - Michael C. Hewitt
- Sunovion Pharmaceuticals Inc, Marlborough, Massachusetts 01752, United States
| | - John E. Campbell
- Sunovion Pharmaceuticals Inc, Marlborough, Massachusetts 01752, United States
| | - Nina Dedic
- Sunovion Pharmaceuticals Inc, Marlborough, Massachusetts 01752, United States
| | - Seth C. Hopkins
- Sunovion Pharmaceuticals Inc, Marlborough, Massachusetts 01752, United States
| | - Kenneth S. Koblan
- Sunovion Pharmaceuticals Inc, Marlborough, Massachusetts 01752, United States
| | - Linghong Xie
- Sunovion Pharmaceuticals Inc, Marlborough, Massachusetts 01752, United States
| |
Collapse
|
16
|
Wu R, Liu J, Li JX. Trace amine-associated receptor 1 and drug abuse. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 93:373-401. [PMID: 35341572 PMCID: PMC9826737 DOI: 10.1016/bs.apha.2021.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Trace amine-associated receptor 1 (TAAR1) is the best characterized receptor selectively activated by trace amines. It is broadly expressed in the monoaminergic system in the brain including ventral tegmental area (VTA), nucleus accumbens (NAc), dorsal raphe (DR) and substantial nigra (SN). Extensive studies have suggested that TAAR1 plays an important role in the modulation of monoaminergic system, especially dopamine (DA) transmission which may underlie the mechanisms by which TAAR1 interventions affect drug abuse-like behaviors. TAAR1 activation inhibits the rewarding and reinforcing effects of drugs from different classes including psychostimulants, opioid and alcohol as well as drug-induced increase in DA accumulation. The mechanisms of TAAR1's function in mediating drug abuse-like behaviors are not clear. However, it is hypothesized that TAAR1 interaction with DA transporter (DAT) and dopamine D2 receptor (D2) and the subsequent modulation of cellular cascades may contribute to the effects of TAAR1 in regulating drug abuse. Further studies are needed to investigate the role of TAAR1 in other drugs of abuse-related behaviors and its safety and efficacy for prolonged medications. Together, TAAR1 inhibits drug-induced DA transmission and drug abuse-related behaviors. Therefore, TAAR1 may be a promising therapeutic target for the treatment of drug addiction.
Collapse
Affiliation(s)
- Ruyan Wu
- Medical College of Yangzhou University, Yangzhou, China,Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Jianfeng Liu
- Department of Psychological and Brain Sciences, College of Liberal Arts, Texas A&M University, College Station, TX, USA
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA,Corresponding authors: Dr. Jun-Xu Li, , Department of Pharmacology and Toxicology, University at Buffalo, The State University of New York, 955 Main Street, Buffalo, NY 14214. Tel: +1 716 829 2482; Fax: +1 716 829 2801
| |
Collapse
|
17
|
Dedic N, Dworak H, Zeni C, Rutigliano G, Howes OD. Therapeutic Potential of TAAR1 Agonists in Schizophrenia: Evidence from Preclinical Models and Clinical Studies. Int J Mol Sci 2021; 22:ijms222413185. [PMID: 34947997 PMCID: PMC8704992 DOI: 10.3390/ijms222413185] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 12/14/2022] Open
Abstract
Trace amine-associated receptor 1 (TAAR1) has emerged as a promising therapeutic target for neuropsychiatric disorders due to its ability to modulate monoaminergic and glutamatergic neurotransmission. In particular, agonist compounds have generated interest as potential treatments for schizophrenia and other psychoses due to TAAR1-mediated regulation of dopaminergic tone. Here, we review unmet needs in schizophrenia, the current state of knowledge in TAAR1 circuit biology and neuropharmacology, including preclinical behavioral, imaging, and cellular evidence in glutamatergic, dopaminergic and genetic models linked to the pathophysiology of psychotic, negative and cognitive symptoms. Clinical trial data for TAAR1 drug candidates are reviewed and contrasted with antipsychotics. The identification of endogenous TAAR1 ligands and subsequent development of small-molecule agonists has revealed antipsychotic-, anxiolytic-, and antidepressant-like properties, as well as pro-cognitive and REM-sleep suppressing effects of TAAR1 activation in rodents and non-human primates. Ulotaront, the first TAAR1 agonist to progress to randomized controlled clinical trials, has demonstrated efficacy in the treatment of schizophrenia, while another, ralmitaront, is currently being evaluated in clinical trials in schizophrenia. Coupled with the preclinical findings, this provides a rationale for further investigation and development of this new pharmacological class for the treatment of schizophrenia and other psychiatric disorders.
Collapse
Affiliation(s)
- Nina Dedic
- Sunovion Pharmaceuticals, Marlborough, MA 01752, USA; (H.D.); (C.Z.)
- Correspondence:
| | - Heather Dworak
- Sunovion Pharmaceuticals, Marlborough, MA 01752, USA; (H.D.); (C.Z.)
| | - Courtney Zeni
- Sunovion Pharmaceuticals, Marlborough, MA 01752, USA; (H.D.); (C.Z.)
| | - Grazia Rutigliano
- Department of Pathology, University of Pisa, via Savi 10, 56126 Pisa, Italy;
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK;
| | - Oliver D. Howes
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK;
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London SE5 8AF, UK
- Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London W12 0NN, UK
| |
Collapse
|
18
|
Trace Amine-Associated Receptor 1 as a Target for the Development of New Antipsychotics: Current Status of Research and Future Directions. CNS Drugs 2021; 35:1153-1161. [PMID: 34655036 DOI: 10.1007/s40263-021-00864-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
Schizophrenia is a mental illness associated with an array of symptoms that often result in disability. The primary treatments for schizophrenia are termed antipsychotics. Although antipsychotics modulate a number of different receptor types and subtypes, all currently regulatory agency-approved antipsychotics share in common direct or functional antagonism at the dopamine type 2 receptor (D2R). The majority of people with schizophrenia do not achieve full resolution of their symptoms with antipsychotics, suggesting the need for alternative or complementary approaches. The primary focus of this review is to assess the evidence for the role of the trace amine-associated receptor 1 (TAAR-1) in schizophrenia and the role of TAAR-1 modulators as novel-mechanism antipsychotics. Topics include an overview of TAAR-1 physiology and pathophysiology in schizophrenia, interaction with other neurotransmitter systems, including the dopaminergic, glutamatergic and serotonergic system, and finally, a review of investigational TAAR-1 compounds that have reached Phase II clinical studies in schizophrenia: SEP-363856 (ulotaront) and RO6889450 (ralmitaront). Thus far, results are publicly available only for ulotaront in a relatively young (18-40 years) and acutely exacerbated cohort. These results showed positive effects for overall schizophrenia symptoms without significant tolerability concerns. An ongoing study of ralmitaront will assess specific efficacy in patients with persistent negative symptoms. If trials of TAAR-1 modulators, and other novel-mechanism targets for schizophrenia that are under active study, continue to show positive results, the definition of an antipsychotic may need to be expanded beyond the D2R target in the near future.
Collapse
|
19
|
Trace amine-associated receptor 1 (TAAR1): Potential application in mood disorders: A systematic review. Neurosci Biobehav Rev 2021; 131:192-210. [PMID: 34537265 DOI: 10.1016/j.neubiorev.2021.09.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/07/2021] [Accepted: 09/12/2021] [Indexed: 12/29/2022]
Abstract
There is a need for innovation with respect to therapeutics in psychiatry. Available evidence indicates that the trace amine-associated receptor 1 (TAAR1) agonist SEP-363856 is promising, as it improves measures of cognitive and reward function in schizophrenia. Hedonic and cognitive impairments are transdiagnostic and constitute major burdens in mood disorders. Herein, we systematically review the behavioural and genetic literature documenting the role of TAAR1 in reward and cognitive function, and propose a mechanistic model of TAAR1's functions in the brain. Notably, TAAR1 activity confers antidepressant-like effects, enhances attention and response inhibition, and reduces compulsive reward seeking without impairing normal function. Further characterization of the responsible mechanisms suggests ion-homeostatic, metabolic, neurotrophic, and anti-inflammatory enhancements in the limbic system. Multiple lines of evidence establish the viability of TAAR1 as a biological target for the treatment of mood disorders. Furthermore, the evidence suggests a role for TAAR1 in reward and cognitive function, which is attributed to a cascade of events that are relevant to the cellular integrity and function of the central nervous system.
Collapse
|
20
|
Kong Q, Zhang H, Wang M, Zhang J, Zhang Y. The TAAR1 inhibitor EPPTB suppresses neuronal excitability and seizure activity in mice. Brain Res Bull 2021; 171:142-149. [PMID: 33811954 DOI: 10.1016/j.brainresbull.2021.03.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/18/2021] [Accepted: 03/25/2021] [Indexed: 10/21/2022]
Abstract
Epilepsy is a common neurological disease. G protein-coupled receptors (GPCRs) are extensively distributed and play an important role in human health by serving as therapeutic targets for various diseases. As one of the GPCRs, trace amine-associated receptor 1 (TAAR1) has recently aroused increasing interest as a potential therapeutic target for psychiatric disorders. However, the effect of TAAR1 on epileptic seizures remains unclear. We hypothesized that TAAR1 plays an important role in epilepsy and might represent a potential therapeutic target. In this study, we analyzed a mouse epilepsy model and patients with temporal lobe epilepsy (TLE) and observed substantially increased TAAR1 expression compared with the control group. In recordings of hippocampal slices, the TAAR1-specific inhibitor N-(3-ethoxyphenyl)-4-(pyrrolidin-1-yl)-3-(trifluoromethyl) benzamide (EPPTB) suppressed the excitability of hippocampal pyramidal neurons. EPPTB also reduced seizure-like events (SLEs) and seizure activity. Our results suggest that EPPTB attenuates seizure activity and that TAAR1 might be a potential drug target for individuals with epilepsy.
Collapse
Affiliation(s)
- Qingxia Kong
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong, PR China; Central Laboratory, Affiliated Hospital of Jining Medical University, Jining, Shandong, PR China
| | - Hao Zhang
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, PR China
| | - Min Wang
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong, PR China; Central Laboratory, Affiliated Hospital of Jining Medical University, Jining, Shandong, PR China
| | - Junchen Zhang
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, PR China.
| | - Yanke Zhang
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong, PR China; Central Laboratory, Affiliated Hospital of Jining Medical University, Jining, Shandong, PR China.
| |
Collapse
|
21
|
Liu J, Seaman R, Johnson B, Wu R, Vu J, Tian J, Zhang Y, Li JX. Activation of trace amine-associated receptor 1 selectively attenuates the reinforcing effects of morphine. Br J Pharmacol 2021; 178:933-945. [PMID: 33247948 DOI: 10.1111/bph.15335] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 11/10/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Trace amine-associated TA1 receptors play critical roles in regulating dopamine transmission. Previous studies showed that pharmacologically or genetically manipulating the activity of TA1 receptors modulates addiction-like behaviours associated with psychostimulants. However, little is known about whether TA1 receptor modulation would regulate the behavioural effects of opioids. EXPERIMENTAL APPROACH Effects of the selective TA1 receptor partial agonist RO5263397 on the addiction-related and antinociceptive effects of morphine were systematically assessed in male rats and mice. KEY RESULTS RO5263397 attenuated the expression of morphine-induced behavioural sensitization in wildtype but not TA1 receptor knockout mice. RO5263397 shifted the dose-effect curve of morphine self-administration downward and reduced the breakpoint in a progressive ratio schedule of reinforcement but did not affect food self-administration in rats. RO5263397 decreased the cue- and drug-induced reinstatement of morphine-seeking behaviour in rats. RO5263397 alone did not trigger reinstatement of morphine-seeking behaviour or change locomotor activity in rats with a history of morphine self-administration. However, RO5263397 did not affect the expression of morphine-induced conditioned place preference in mice or rats. RO5263397 did not affect naltrexone-precipitated jumping behaviour or naltrexone-induced conditioned place aversion in morphine-dependent mice. Furthermore, RO5263397 did not affect the analgesic effects of morphine in an acute nociception model in mice and a chronic pain model in rats. CONCLUSION AND IMPLICATIONS These results indicated that TA1 receptor activation selectively attenuated the reinforcing, but not withdrawal or antinociceptive effects of morphine, suggesting that selective TA1 receptor agonists might be useful to combat opioid addiction, while sparing the analgesic effects.
Collapse
Affiliation(s)
- Jianfeng Liu
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
| | - Robert Seaman
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
| | - Bernard Johnson
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
| | - Ruyan Wu
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
| | - Jimmy Vu
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
| | - Jingwei Tian
- School of Pharmacy, Yantai University, Yantai, China
| | - Yanan Zhang
- Research Triangle Institute, Research Triangle Park, North Carolina, USA
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
22
|
Zhukov DA, Vinogradova EP. Trace Amines and Behavior. NEUROCHEM J+ 2020. [DOI: 10.1134/s1819712420040108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Novel 1-Amidino-4-Phenylpiperazines as Potent Agonists at Human TAAR1 Receptor: Rational Design, Synthesis, Biological Evaluation and Molecular Docking Studies. Pharmaceuticals (Basel) 2020; 13:ph13110391. [PMID: 33202687 PMCID: PMC7697893 DOI: 10.3390/ph13110391] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 11/19/2022] Open
Abstract
Targeting trace amine-associated receptor 1 (TAAR1) receptor continues to offer an intriguing opportunity to develop innovative therapies in different pharmacological settings. Pursuing our endeavors in the search for effective and safe human TAAR1 (hTAAR1) ligands, we synthesized a new series of 1-amidino-4-phenylpiperazine derivatives (1–16) based on the application of a combined pharmacophore model/scaffold simplification strategy for an in-house series of biguanide-based TAAR1 agonists. Most of the novel compounds proved to be more effective than their prototypes, showing nanomolar EC50 values in functional activity at hTAAR1 and low general cytotoxicity (CC50 > 80 µM) when tested on the Vero-76 cell line. In this new series, the main determinant for TAAR1 agonism ability appears to result from the appropriate combination between the steric size and position of the substituents on the phenyl ring rather than from their different electronic nature, since both electron-withdrawing and electron donor groups are permitted. In particular, the ortho-substitution seems to impose a more appropriate spatial geometry to the molecule that entails an enhanced TAAR1 potency profile, as experienced, in the following order, by compounds 15 (2,3-diCl, EC50 = 20 nM), 2 (2-CH3, EC50 = 30 nM), 6 (2-OCH3, EC50 = 93 nM) and 3 (2-Cl, EC50 = 160 nM). Apart from the interest in them as valuable leads for the development of promising hTAAR1 agonists, these simple small molecules have further allowed us to identify the minimal structural requirements for producing an efficient hTAAR1 targeting ability.
Collapse
|
24
|
Cadaverine and Spermine Elicit Ca 2+ Uptake in Human CP Cells via a Trace Amine-Associated Receptor 1 Dependent Pathway. J Mol Neurosci 2020; 71:625-637. [PMID: 32816235 DOI: 10.1007/s12031-020-01684-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/11/2020] [Indexed: 12/24/2022]
Abstract
The choroid plexus (CP) constitutes a barrier between the blood and the cerebrospinal fluid (CSF) which regulates the exchange of substances between these two fluids through mechanisms that are not completely understood. Polyamines as spermine, spermidine and putrescine are produced by all cells and are present in the CSF. Interestingly, their levels are altered in some neuronal disorders as Alzheimer's and Parkinson's diseases, thus increasing the interest in their signalling in the central nervous system (CNS). Cadaverine, on the other hand, is synthetized by the intestinal microbiome, suggesting that the presence of this bacterial metabolite in the CSF requires that it is up taken to the CNS across brain barriers. We knew that polyamines are detected by the olfactory signalling cascade operating at the CP, but the receptor involved had not been identified. The zebrafish TAAR13c was the only receptor known to bind a polyamine-cadaverine. Thus, we searched for a human receptor with homology to TAAR13c and found that some human TAARs including TAAR1 showed great homology. Then, we confirmed the expression of TAAR1 mRNA and protein in a human cell line of the CP, and in human CP samples. Calcium imaging assays after TAAR1 knockdown in these cells with a specific siRNA against TAAR1 showed a consistent reduction in the responses of these cells to cadaverine and spermidine, but not to spermine, suggesting that TAAR1 is activated by cadaverine and spermidine, but not spermine.
Collapse
|
25
|
Decker AM, Mathews KM, Blough BE, Gilmour BP. Validation of a High-Throughput Calcium Mobilization Assay for the Human Trace Amine-Associated Receptor 1. SLAS DISCOVERY 2020; 26:140-150. [PMID: 32734809 DOI: 10.1177/2472555220945279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The human trace amine-associated receptor 1 (hTAAR1) is a G protein-coupled receptor (GPCR) that is widely expressed in monoaminergic nuclei in the central nervous system and has therapeutic potential for multiple diseases, including drug addiction and schizophrenia. Thus, identification of novel hTAAR1 ligands is critical to advancing our knowledge of hTAAR1 function and to the development of therapeutics for a wide range of diseases. Herein we describe the development of a robust, 3-addition high-throughput screening (HTS) calcium mobilization assay using stable CHO-Gαq16-hTAAR1 cells, which functionally couple hTAAR1 to the promiscuous Gαq16 protein and thus allow signal transduction to occur through mobilization of internal calcium. Our previously established 96-well hTAAR1 assay was first miniaturized to the 384-well format and optimized to provide an assay with a Z' factor of 0.84, which is indicative of a robust HTS assay. Using the 3-addition protocol, 22,000 compounds were screened and yielded a ~1% agonist hit rate and a ~0.2% antagonist hit rate. Of the antagonist hits, two confirmed hits are the most potent hTAAR1 antagonists identified to date (IC50 = 206 and 281 nM). While scientists have been studying hTAAR1 for years, the lack of suitable hTAAR1 antagonists has been a major roadblock for studying the basic pharmacology of hTAAR1. Thus, these new ligands will serve as valuable tools to study hTAAR1-mediated signaling mechanisms, therapeutic potential, and in vivo functions.
Collapse
Affiliation(s)
- Ann M Decker
- Center for Drug Discovery, RTI International, Research Triangle Park, NC, USA
| | - Kelly M Mathews
- Center for Drug Discovery, RTI International, Research Triangle Park, NC, USA
| | - Bruce E Blough
- Center for Drug Discovery, RTI International, Research Triangle Park, NC, USA
| | - Brian P Gilmour
- Center for Drug Discovery, RTI International, Research Triangle Park, NC, USA
| |
Collapse
|
26
|
Involvement of Organic Cation Transporter 2 and a Na +-dependent active transporter in p-tyramine transport across Caco-2 intestinal cells. Life Sci 2020; 253:117696. [PMID: 32334013 DOI: 10.1016/j.lfs.2020.117696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 11/22/2022]
Abstract
AIMS We have previously demonstrated that p-tyramine (TYR), an endogenous trace amine-associated receptor 1 agonist, passage across neuronal membranes involves a transporter exhibiting the pharmacological profile of Organic Cation Transporter 2 (OCT2). Since TYR is also a constituent of foodstuffs and produced by the intestinal microbiota, here we have investigated whether similar processes are involved in the passage of 100 nM TYR across apical and basolateral membranes of the Caco-2 human intestinal epithelial cell line. MATERIALS AND METHODS [3H]TYR transport across apical and basolateral membranes of Caco-2 cell monolayers was measured in the presence of inhibitors of TYR metabolizing enzymes. Cellular, apical, and basolateral compartments were collected at various timepoints, TYR concentrations calculated, and transport properties pharmacologically characterized. KEY FINDINGS Apical transport resulted in equimolar accumulation of TYR within cells. Pentamidine (OCT1/OCT2 inhibitor) decreased apical transport (P = 0.001) while atropine (OCT1 inhibitor) had no effect, suggesting apical transport involved OCT2. In contrast, basolateral transport resulted in 500-1000 nM cellular concentrations (P < 0.0001) indicating the presence of an active transporter. Replacement of Na+ on an equimolar basis with choline resulted in loss of TYR transport (P = 0.017). Unexpectedly, this active transport was also atropine-sensitive (P = 0.020). Kinetic analysis of the active transporter revealed Vmax = 43.0 nM/s with a Kt = 33.1 nM. SIGNIFICANCE We have demonstrated for the first time that TYR is transported across Caco-2 apical membranes via facilitated diffusion by OCT2, whereas transport across basolateral membranes is by a Na+-dependent, atropine-sensitive, active transporter.
Collapse
|
27
|
Madison CA, Wellman PJ, Eitan S. Pre-exposure of adolescent mice to morphine results in stronger sensitization and reinstatement of conditioned place preference than pre-exposure to hydrocodone. J Psychopharmacol 2020; 34:771-777. [PMID: 32489137 DOI: 10.1177/0269881120926675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Opioids are commonly prescribed to treat moderate-to-severe pain. However, their use can trigger the development of opioid use disorder. A major problem in treating opioid use disorder remains the high rate of relapse. AIM The purpose of this study was to determine whether there are differences among opioids in their ability to trigger relapse after pre-exposure during adolescence. METHODS On postnatal day 33, mice were examined for the acute locomotor response to saline, morphine, or hydrocodone (5 mg/kg). They were administered with the corresponding opioid or saline during postnatal days 34-38 (20 mg/kg) and 40-44 (40 mg/kg). On postnatal day 45, they were recorded for the development of locomotor sensitization (5 mg/kg). Starting on postnatal day 55, mice were examined for the acquisition (1, 5, 10, 20, and 40 mg/kg), extinction, and drug-induced reinstatement (1, 2.5, and 5 mg/kg) of conditioned place preference. RESULTS There were no significant differences in the acute locomotor response to morphine and hydrocodone. Morphine induced significantly stronger locomotor sensitization as compared to hydrocodone. Pre-exposure to morphine, but not hydrocodone, sensitized the acquisition of conditioned place preference. There were no significant differences in extinction rates. Mice pre-exposed to morphine reinstate conditioned place preference after priming with a 1 mg/kg dose. In contrast, higher priming doses were required for reinstatement in all other experimental groups. CONCLUSIONS Adolescent mice administered with morphine develop greater sensitization to its effects and subsequently reinstate conditioned place preference more readily than mice administered with hydrocodone. This suggests higher risk for relapse after pre-exposure to morphine during adolescence as compared to hydrocodone.
Collapse
Affiliation(s)
- Caitlin A Madison
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, USA
| | - Paul J Wellman
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, USA
| | - Shoshana Eitan
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, USA
| |
Collapse
|
28
|
Liu J, Johnson B, Wu R, Seaman R, Vu J, Zhu Q, Zhang Y, Li JX. TAAR1 agonists attenuate extended-access cocaine self-administration and yohimbine-induced reinstatement of cocaine-seeking. Br J Pharmacol 2020; 177:3403-3414. [PMID: 32246467 DOI: 10.1111/bph.15061] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 03/06/2020] [Accepted: 03/21/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE The trace amine-associated receptor 1 (TAAR1) negatively modulates dopamine transmission. Our previous studies demonstrated that TAAR1 agonists attenuated cue- and drug-induced cocaine-seeking and increased the elasticity of the cocaine demand curve, in the short-access cocaine self-administration model. Compulsive use of cocaine, which is an essential criterion of cocaine use disorder, can be induced by extended access to cocaine self-administration. EXPERIMENTAL APPROACH To characterize the role of TAAR1 in compulsive cocaine use, we evaluated the effects of activation of TAAR1 on cocaine intake, cocaine binge and cue-induced cocaine-seeking using the extended-access cocaine self-administration model in adult male Sprague-Dawley rats. We also investigated the role of TAAR1 in stress-triggered cocaine relapse by using the α2 -adrenoceptor antagonist yohimbine-induced reinstatement of cocaine-seeking. KEY RESULTS The selective TAAR1 partial agonist RO5263397 attenuated cocaine intake and did not develop tolerance during the 10-day extended-access cocaine self-administration. RO5263397 reduced a 12-h binge intake of cocaine after forced abstinence. RO5263397 also decreased cue-induced cocaine-seeking after prolonged abstinence from extended-access cocaine self-administration. Furthermore, RO5263397 and the selective TAAR1 full agonist RO5166017 reduced yohimbine-induced reinstatement of cocaine-seeking behaviour. CONCLUSION AND IMPLICATIONS Activation of TAAR1 attenuated extended-access cocaine self-administration and stress-induced cocaine reinstatement. These results suggest that TAAR1 agonists are promising pharmacological interventions to treat cocaine use disorder and relapse.
Collapse
Affiliation(s)
- Jianfeng Liu
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
| | - Bernard Johnson
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
| | - Ruyan Wu
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA.,School of Medicine, Yangzhou University, Yangzhou, China
| | - Robert Seaman
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
| | - Jimmy Vu
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
| | - Qing Zhu
- School of Pharmacy, Nantong University, Nantong, China
| | - Yanan Zhang
- Research Triangle Institute, Research Triangle Park, North Carolina, USA
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
29
|
Dorotenko A, Tur M, Dolgorukova A, Bortnikov N, Belozertseva IV, Zvartau EE, Gainetdinov RR, Sukhanov I. The Action of TAAR1 Agonist RO5263397 on Executive Functions in Rats. Cell Mol Neurobiol 2020; 40:215-228. [PMID: 31734895 DOI: 10.1007/s10571-019-00757-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/31/2019] [Indexed: 12/26/2022]
Abstract
Trace amine-associated receptor 1 (TAAR1) is a widely recognized new perspective target for the neuropsychiatric pharmacological treatment. Despite a growing number of studies investigating TAAR1 role in the animal models of different pathologies, information of TAAR1 agonists impact on executive cognitive functions is limited. The goal of the present study was to evaluate the activity of highly selective partial TAAR1 agonist RO5263397 on various executive cognitive functions. The results of the present study demonstrated that the pretreatment with RO5263397 was able to increase attention and decrease cognitive flexibility in rats. The analysis of the RO5263397 action on impulsivity demonstrated that the TAAR1 activation failed to affect premature responding but was able to slightly modify impulsive choice. Problem solving was resistant to the pharmacological intervention.
Collapse
Affiliation(s)
- Artem Dorotenko
- Valdman Institute of Pharmacology, Pavlov First St. Petersburg State Medical University, Lev Tolstoy str. 6-8, St. Petersburg, Russia, 197022
| | - Margarita Tur
- Valdman Institute of Pharmacology, Pavlov First St. Petersburg State Medical University, Lev Tolstoy str. 6-8, St. Petersburg, Russia, 197022
| | - Antonina Dolgorukova
- Valdman Institute of Pharmacology, Pavlov First St. Petersburg State Medical University, Lev Tolstoy str. 6-8, St. Petersburg, Russia, 197022
| | - Nikita Bortnikov
- Valdman Institute of Pharmacology, Pavlov First St. Petersburg State Medical University, Lev Tolstoy str. 6-8, St. Petersburg, Russia, 197022
| | - Irina V Belozertseva
- Valdman Institute of Pharmacology, Pavlov First St. Petersburg State Medical University, Lev Tolstoy str. 6-8, St. Petersburg, Russia, 197022
| | - Edwin E Zvartau
- Valdman Institute of Pharmacology, Pavlov First St. Petersburg State Medical University, Lev Tolstoy str. 6-8, St. Petersburg, Russia, 197022
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, Universitetskaya Emb. 7-9, St. Petersburg, Russia, 199034
- St. Petersburg University Hospital, St. Petersburg State University, Universitetskaya Emb. 7-9, St. Petersburg, Russia, 199034
| | - Ilya Sukhanov
- Valdman Institute of Pharmacology, Pavlov First St. Petersburg State Medical University, Lev Tolstoy str. 6-8, St. Petersburg, Russia, 197022.
| |
Collapse
|
30
|
Belov DR, Efimova EV, Fesenko ZS, Antonova KA, Kolodyazhny SF, Lakstygal AM, Gainetdinov RR. Putative Trace-Amine Associated Receptor 5 (TAAR5) Agonist α-NETA Increases Electrocorticogram Gamma-Rhythm in Freely Moving Rats. Cell Mol Neurobiol 2020; 40:203-213. [PMID: 31385135 DOI: 10.1007/s10571-019-00716-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/30/2019] [Indexed: 11/28/2022]
Abstract
Cortical gamma rhythm is involved in transmission of information (communication) between brain areas that are believed to be involved in the pathogenesis of cognitive dysfunctions. Trace amines represent a group of endogenous biogenic amines that are known to be involved in modulation of function of classical monoamines, such as dopamine. To evaluate potential modulatory influence of a specific receptor for trace amines Trace Amine-Associated Receptor 5 (TAAR5) on the dopamine system, we used HPLC measurements of dopamine and its metabolites in the mouse striatum following administration of the putative TAAR5 agonist α-NETA. Administration of α-NETA caused significant modulation of dopaminergic system as evidenced by an altered dopamine turnover rate in the striatum. Then, to evaluate potential modulatory influence of TAAR5 on the rat brain gamma rhythm, we investigated the changes of electrocorticogram (ECoG) spectral power in the gamma-frequency range (40-50 Hz) following administration of the putative TAAR5 agonist α-NETA. In addition, we analyzed the changes of spatial synchronization of gamma oscillations of rat ECoG by multichannel recording. Significant complex changes were observed in the ECoG spectrum, including an increase in the spectral power in the ranges of delta (1 Hz), theta (7 Hz), and gamma rhythms (40-50 Hz) after the introduction of α-NETA. Furthermore, a decrease in the spatial synchronization of gamma oscillations of 40-50 Hz and its increase for theta oscillations of 7 Hz were detected after the introduction of α-NETA. In conclusion, putative TAAR5 agonist α-NETA can modulate striatal dopamine transmission and cause significant alterations of gamma rhythm of brain activity in a manner consistent with schizophrenia-related deficits described in humans and experimental animals. These observations suggest a role of TAAR5 in the modulation of cognitive functions affected in brain pathologies.
Collapse
Affiliation(s)
- D R Belov
- Department of Higher Nervous Activity and Psychophysiology, Saint Petersburg State University, Universitetskaya nab., 7-9, Saint Petersburg, 199034, Russia.
| | - E V Efimova
- Institute of Translational Biomedicine and Saint Petersburg University Hospital, Saint Petersburg State University, Universitetskaya nab., 7-9, Saint Petersburg, 199034, Russia
| | - Z S Fesenko
- Institute of Translational Biomedicine and Saint Petersburg University Hospital, Saint Petersburg State University, Universitetskaya nab., 7-9, Saint Petersburg, 199034, Russia
| | - K A Antonova
- Institute of Translational Biomedicine and Saint Petersburg University Hospital, Saint Petersburg State University, Universitetskaya nab., 7-9, Saint Petersburg, 199034, Russia
| | - S F Kolodyazhny
- Department of Higher Nervous Activity and Psychophysiology, Saint Petersburg State University, Universitetskaya nab., 7-9, Saint Petersburg, 199034, Russia
| | - A M Lakstygal
- Department of Higher Nervous Activity and Psychophysiology, Saint Petersburg State University, Universitetskaya nab., 7-9, Saint Petersburg, 199034, Russia
| | - R R Gainetdinov
- Institute of Translational Biomedicine and Saint Petersburg University Hospital, Saint Petersburg State University, Universitetskaya nab., 7-9, Saint Petersburg, 199034, Russia
| |
Collapse
|
31
|
Bugda Gwilt K, González DP, Olliffe N, Oller H, Hoffing R, Puzan M, El Aidy S, Miller GM. Actions of Trace Amines in the Brain-Gut-Microbiome Axis via Trace Amine-Associated Receptor-1 (TAAR1). Cell Mol Neurobiol 2020; 40:191-201. [PMID: 31836967 DOI: 10.1007/s10571-019-00772-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022]
Abstract
Trace amines and their primary receptor, Trace Amine-Associated Receptor-1 (TAAR1) are widely studied for their involvement in the pathogenesis of neuropsychiatric disorders despite being found in the gastrointestinal tract at physiological levels. With the emergence of the "brain-gut-microbiome axis," we take the opportunity to review what is known about trace amines in the brain, the defined sources of trace amines in the gut, and emerging understandings on the levels of trace amines in various gastrointestinal disorders. Similarly, we discuss localization of TAAR1 expression in the gut, novel findings that TAAR1 may be implicated in inflammatory bowel diseases, and the reported comorbidities of neuropsychiatric disorders and gastrointestinal disorders. With the emergence of TAAR1 specific compounds as next-generation therapeutics for schizophrenia (Roche) and Parkinson's related psychoses (Sunovion), we hypothesize a therapeutic benefit of these compounds in clinical trials in the brain-gut-microbiome axis, as well as a potential for thoughtful manipulation of the brain-gut-microbiome axis to modulate symptoms of neuropsychiatric disease.
Collapse
Affiliation(s)
- Katlynn Bugda Gwilt
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA.
- Center for Drug Discovery, Northeastern University, Boston, MA, USA.
- Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, USA.
| | - Dulce Pamela González
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Neva Olliffe
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
- Department of Biology, College of Science, Northeastern University, Boston, MA, USA
| | - Haley Oller
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
| | - Rachel Hoffing
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
- Department of Biology, College of Science, Northeastern University, Boston, MA, USA
| | - Marissa Puzan
- Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, USA
| | - Sahar El Aidy
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Gregory M Miller
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
- Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
32
|
Abstract
Trace amine-associated receptor 1 is one of the best-characterized receptors of trace amines. Growing evidence shows that TAAR1 negatively regulates the monoaminergic activity, including dopamine transmission in the mesocorticolimbic system. Neurochemical assays demonstrated that selective TAAR1 full and partial agonists were effective to prevent psychostimulants-induced dopamine transmission in vitro and in vivo. In the last decade, many preclinical models of psychostimulant addiction such as drug-induced behavioral sensitization, drug-induced conditioned place preference, drug self-administration, drug discrimination, and relapse models were used to assess the effects of TAAR1 agonists on psychostimulants' behavioral effects. In general, activation of TAAR1 attenuated while knockout of TAAR1 potentiated psychostimulant abuse-related behaviors. Here, we review the advances in TAAR1 and its agonists in modulating psychostimulant addiction. We discuss the similarities and differences between the neurochemical and behavioral effects of TAAR1 full and partial agonists. We also discuss several concerns including the abuse liability, sleep reduction, and species-dependent effects that might affect the successful translation of TAAR1 agonists from preclinical studies to clinical application. In conclusion, although further investigations are in need to address certain concerns and the underlying neural mechanisms, TAAR1 agonists appear to be a promising pharmacotherapy to treat psychostimulant addiction and prevent relapse.
Collapse
|
33
|
Tonelli M, Cichero E. Trace amine associated receptor 1 (TAAR1) modulators: a patent review (2010-present). Expert Opin Ther Pat 2019; 30:137-145. [DOI: 10.1080/13543776.2020.1708900] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Michele Tonelli
- Dipartimento di Farmacia, Università di Genova, Viale Benedetto XV 3, Genova, Italy
| | - Elena Cichero
- Dipartimento di Farmacia, Università di Genova, Viale Benedetto XV 3, Genova, Italy
| |
Collapse
|
34
|
Adu TS, Mabandla MV. Effects of bromelain on motor responses following intra-medial forebrain bundle 6-OHDA injection in rat model of parkinsonism. Metab Brain Dis 2019; 34:1557-1564. [PMID: 31332728 DOI: 10.1007/s11011-019-00462-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/08/2019] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta. The conventional therapeutic measures which include the widely used L-DOPA therapy, are inefficient especially when dopamine loss is severe, and the physical symptoms are full blown. Since neuroinflammation is a core feature of PD, this raised the question of whether early treatment with an anti-inflammatory agent may provide a more efficient intervention for PD. In this study, we investigated the effect of bromelain (an anti-inflammatory drug) on motor responses and dopamine levels in a parkinsonian rat model. Male Sprague-Dawley rats were lesioned stereotaxically with the neurotoxin 6-OHDA. The anti-inflammatory agent, bromelain (40 mg/kg i.p) was used to treat a subset of the rats prior to or 24 h post 6-OHDA lesion. Locomotor activity was assessed after 6-OHDA injection, using the cylinder and step tests. The cortical and striatal concentrations of dopamine were also measured. 6-OHDA injection resulted in marked motor impairment which was prevented by pretreatment with bromelain prior to the lesion. Also, the injection of 6-OHDA into the medial forebrain bundle resulted in a significant reduction in dopamine concentration in the striatum and PFC. Bromelain treatment did not alter the suppression of cortical and striatal dopamine levels. Pre-treatment with bromelain reduced the motor dysfunction in the parkinsonian rat model of PD. The efficacy of treatment with bromelain does not appear to be via preservation of the dopaminergic system. The efficacy of bromelain in 6-OHDA injected rats still remains unclear.
Collapse
Affiliation(s)
- Temitope Samson Adu
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa.
| | - Musa Vuyisile Mabandla
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| |
Collapse
|
35
|
Biebermann H, Kleinau G. 3-Iodothyronamine Induces Diverse Signaling Effects at Different Aminergic and Non-Aminergic G-Protein Coupled Receptors. Exp Clin Endocrinol Diabetes 2019; 128:395-400. [PMID: 31698479 DOI: 10.1055/a-1022-1554] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The thyroid hormone metabolite 3-iodothyronamine (3-T1AM) exerts diverse physiological reactions such as a decrease of body temperature, and negative inotropic and chronotropic effects. This observed pleomorphic effect in physiology can be barely explained by interaction with only one target protein such as the trace-amine receptor 1 (TAAR1), a class A G-protein coupled receptor (GPCR). Moreover, Taar1 knock-out mice still react to 3-T1AM through physiological responses with a rapid decrease in body temperature. These facts propelled our group and others to search for further targets for this molecule.The group of TAARs evolved early in evolution and, according to sequence similarities, they are closely related to adrenoceptors and other aminergic receptors. Therefore, several of these receptors were characterized by their potential to interplay with 3-T1AM. Indeed, 3-T1AM acts as a positive allosteric modulator on the beta2-adrenoceptor (ADRB2) and as a biased agonist on the serotonin receptor 1B (5HT1b) and the alpha2-adrenoceptor (ADRA2A). In addition, 3-T1AM was reported to be a weak antagonist at a non-aminergic muscarinic receptor (M3).These findings impressively reflect that such trace amines can unselectively and simultaneously function at different receptors expressed by one cell or at different tissues. In conclusion, the role of 3-T1AM is hypothesized to concert the fine-tuning of specific cell reactions by the accentuation of certain pathways dependent on distinct receptors. 3-T1AM acts as a regulator of signals by blocking, modulating, or inducing simultaneously distinct intracellular signaling cascades via different GPCRs.
Collapse
Affiliation(s)
- Heike Biebermann
- Institute of Experimental Pediatric Endocrinology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Gunnar Kleinau
- Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
36
|
Shi X, Swanson TL, Miner NB, Eshleman AJ, Janowsky A. Activation of Trace Amine-Associated Receptor 1 Stimulates an Antiapoptotic Signal Cascade via Extracellular Signal-Regulated Kinase 1/2. Mol Pharmacol 2019; 96:493-504. [PMID: 31409621 DOI: 10.1124/mol.119.116798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/02/2019] [Indexed: 12/30/2022] Open
Abstract
Methamphetamine (MA) is highly addictive and neurotoxic, causing cell death in humans and in rodent models. MA, along with many of its analogs, is an agonist at the G protein-coupled trace amine-associated receptor 1 (TAAR1). TAAR1 activation protects against MA-induced degeneration of dopaminergic neurons, suggesting that TAAR1 plays a role in regulating MA-induced neurotoxicity. However, the mechanisms involved in TAAR1's role in neurotoxicity and cell death have not been described in detail. In this study, we investigated the apoptosis pathway in Taar1 wild-type (WT) and knockout (KO) mice and in cells expressing the recombinant receptor. Bcl-2, an antiapoptotic protein, was upregulated ∼3-fold in the midbrain area (substantial nigra and ventral tegmental area) in Taar1 KO compared with WT mice, and MA significantly increased Bcl-2 expression in WT mice but decreased Bcl-2 expression in KO mice. The proapoptotic protein Bax did not differ across genotype or in response to MA. Bcl-2 expression was significantly upregulated by the TAAR1 agonist RO5166017 ((S)-4-[(ethyl-phenyl-amino)-methyl]-4,5-dihydro-oxazol-2-ylamine) in cells expressing the recombinant mouse TAAR1. Additionally, activation of TAAR1 by RO5166017 increased phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, and protein kinase B (AKT), but only inhibition of ERK1/2 phosphorylation prevented TAAR1-induced increases in Bcl-2 levels, indicating that TAAR1 activation increases Bcl-2 through an ERK1/2-dependent pathway. All changes to ERK1/2 pathway intermediates were blocked by the TAAR1 antagonist, N-(3-ethoxyphenyl)-4-(1-pyrrolidinyl)-3-(trifluoromethyl) benzamide. These findings suggest that TAAR1 activation protects against MA-induced cell apoptosis and TAAR1 may play a role in cell death in neurodegenerative diseases. SIGNIFICANCE STATEMENT: Methamphetamine stimulates TAAR1, a G protein-coupled receptor. The role and mechanisms for TAAR1 in methamphetamine-induced neurotoxicity are not known. Here, we report that, in genetic mouse models and cells expressing the recombinant receptor, TAAR1 activates the ERK1/2 pathway but not the AKT pathway to upregulate the antiapoptotic protein Bcl-2, which protects cells from drug-induced toxicity.
Collapse
Affiliation(s)
- Xiao Shi
- Research Service, Veterans Affairs Portland Health Care System, Portland, Oregon (X.S., T.L.S., N.B.M., A.J.E., A.J.); and The Methamphetamine Abuse Research Center (X.S., A.J.) and Departments of Psychiatry (X.S., T.L.S., A.J.E., A.J.) and Behavioral Neuroscience (N.B.M., A.J.E., A.J.), Oregon Health and Science University, Portland, Oregon
| | - Tracy L Swanson
- Research Service, Veterans Affairs Portland Health Care System, Portland, Oregon (X.S., T.L.S., N.B.M., A.J.E., A.J.); and The Methamphetamine Abuse Research Center (X.S., A.J.) and Departments of Psychiatry (X.S., T.L.S., A.J.E., A.J.) and Behavioral Neuroscience (N.B.M., A.J.E., A.J.), Oregon Health and Science University, Portland, Oregon
| | - Nicholas B Miner
- Research Service, Veterans Affairs Portland Health Care System, Portland, Oregon (X.S., T.L.S., N.B.M., A.J.E., A.J.); and The Methamphetamine Abuse Research Center (X.S., A.J.) and Departments of Psychiatry (X.S., T.L.S., A.J.E., A.J.) and Behavioral Neuroscience (N.B.M., A.J.E., A.J.), Oregon Health and Science University, Portland, Oregon
| | - Amy J Eshleman
- Research Service, Veterans Affairs Portland Health Care System, Portland, Oregon (X.S., T.L.S., N.B.M., A.J.E., A.J.); and The Methamphetamine Abuse Research Center (X.S., A.J.) and Departments of Psychiatry (X.S., T.L.S., A.J.E., A.J.) and Behavioral Neuroscience (N.B.M., A.J.E., A.J.), Oregon Health and Science University, Portland, Oregon
| | - Aaron Janowsky
- Research Service, Veterans Affairs Portland Health Care System, Portland, Oregon (X.S., T.L.S., N.B.M., A.J.E., A.J.); and The Methamphetamine Abuse Research Center (X.S., A.J.) and Departments of Psychiatry (X.S., T.L.S., A.J.E., A.J.) and Behavioral Neuroscience (N.B.M., A.J.E., A.J.), Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
37
|
Miner NB, Phillips TJ, Janowsky A. The Role of Biogenic Amine Transporters in Trace Amine-Associated Receptor 1 Regulation of Methamphetamine-Induced Neurotoxicity. J Pharmacol Exp Ther 2019; 371:36-44. [PMID: 31320495 DOI: 10.1124/jpet.119.258970] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/10/2019] [Indexed: 11/22/2022] Open
Abstract
Methamphetamine (MA) impairs vesicular monoamine transporter 2 (VMAT2) and dopamine transporter (DAT) function and expression, increasing intracellular DA levels that lead to neurotoxicity. The trace amine-associated receptor 1 (TAAR1) is activated by MA, but when the receptor is not activated, MA-induced neurotoxicity is increased. To investigate interactions among TAAR1, VMAT2, and DAT, transporter function and expression were measured in transgenic Taar1 knockout (KO) and wild-type (WT) mice 24 hours following a binge-like regimen (four intraperitoneal injections, 2 hours apart) of MA (5 mg/kg) or the same schedule of saline treatment. Striatal synaptosomes were separated by fractionation to examine the function and expression of VMAT2 localized to cytosolic and membrane-associated vesicles. DAT was measured in whole synaptosomes. VMAT2-mediated [3H]DA uptake inhibition was increased in Taar1 KO mice in synaptosomal and vesicular fractions, but not the membrane-associated fraction, compared with Taar1 WT mice. There was no difference in [3H]dihydrotetrabenazine binding to the VMAT2 or [125I]RTI-55 binding to the DAT between genotypes, indicating activation of TAAR1 does not affect VMAT2 or DAT expression. There was also no difference between Taar1 WT and KO mice in DAT-mediated [3H]DA uptake inhibition following in vitro treatment with MA. These findings provide the first evidence of a TAAR1-VMAT2 interaction, as activation of TAAR1 mitigated MA-induced impairment of VMAT2 function, independently of change in VMAT2 expression. Additionally, the interaction is localized to intracellular VMAT2 on cytosolic vesicles and did not affect expression or function of DAT in synaptosomes or VMAT2 at the plasmalemmal surface, i.e., on membrane-associated vesicles. SIGNIFICANCE STATEMENT: Methamphetamine stimulates the G protein-coupled receptor TAAR1 to affect dopaminergic function and neurotoxicity. Here we demonstrate that a functional TAAR1 protects a specific subcellular fraction of VMAT2, but not the dopamine transporter, from methamphetamine-induced effects, suggesting new directions in pharmacotherapeutic development for neurodegenerative disorders.
Collapse
Affiliation(s)
- Nicholas B Miner
- Research Service, VA Portland Health Care System, Portland, Oregon (N.B.M., T.J.P., A.J.); and Departments of Behavioral Neuroscience (N.B.M., T.J.P., A.J.) and Psychiatry (A.J.), and The Methamphetamine Abuse Research Center (T.J.P., A.J.), Oregon Health & Science University, Portland, Oregon
| | - Tamara J Phillips
- Research Service, VA Portland Health Care System, Portland, Oregon (N.B.M., T.J.P., A.J.); and Departments of Behavioral Neuroscience (N.B.M., T.J.P., A.J.) and Psychiatry (A.J.), and The Methamphetamine Abuse Research Center (T.J.P., A.J.), Oregon Health & Science University, Portland, Oregon
| | - Aaron Janowsky
- Research Service, VA Portland Health Care System, Portland, Oregon (N.B.M., T.J.P., A.J.); and Departments of Behavioral Neuroscience (N.B.M., T.J.P., A.J.) and Psychiatry (A.J.), and The Methamphetamine Abuse Research Center (T.J.P., A.J.), Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
38
|
Stafford AM, Reed C, Baba H, Walter NAR, Mootz JRK, Williams RW, Neve KA, Fedorov LM, Janowsky AJ, Phillips TJ. Taar1 gene variants have a causal role in methamphetamine intake and response and interact with Oprm1. eLife 2019; 8:e46472. [PMID: 31274109 PMCID: PMC6682400 DOI: 10.7554/elife.46472] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/04/2019] [Indexed: 12/17/2022] Open
Abstract
We identified a locus on mouse chromosome 10 that accounts for 60% of the genetic variance in methamphetamine intake in mice selectively bred for high versus low methamphetamine consumption. We nominated the trace amine-associated receptor 1 gene, Taar1, as the strongest candidate and identified regulation of the mu-opioid receptor 1 gene, Oprm1, as another contributor. This study exploited CRISPR-Cas9 to test the causal role of Taar1 in methamphetamine intake and a genetically-associated thermal response to methamphetamine. The methamphetamine-related traits were rescued, converting them to levels found in methamphetamine-avoiding animals. We used a family of recombinant inbred mouse strains for interval mapping and to examine independent and epistatic effects of Taar1 and Oprm1. Both methamphetamine intake and the thermal response mapped to Taar1 and the independent effect of Taar1 was dependent on genotype at Oprm1. Our findings encourage investigation of the contribution of Taar1 and Oprm1 variants to human methamphetamine addiction.
Collapse
Affiliation(s)
- Alexandra M Stafford
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research CenterOregon Health & Science UniversityPortlandUnited States
| | - Cheryl Reed
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research CenterOregon Health & Science UniversityPortlandUnited States
| | - Harue Baba
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research CenterOregon Health & Science UniversityPortlandUnited States
| | - Nicole AR Walter
- Division of NeuroscienceOregon National Primate Research CenterPortlandUnited States
| | - John RK Mootz
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research CenterOregon Health & Science UniversityPortlandUnited States
| | - Robert W Williams
- Department of Genetics, Genomics and InformaticsUniversity of Tennessee Health Sciences CenterMemphisUnited States
| | - Kim A Neve
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research CenterOregon Health & Science UniversityPortlandUnited States
- Veterans Affairs Portland Health Care SystemPortlandUnited States
| | - Lev M Fedorov
- Transgenic Mouse Models Shared Resource, Knight Cancer InstituteOregon Health & Science UniversityPortlandUnited States
| | - Aaron J Janowsky
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research CenterOregon Health & Science UniversityPortlandUnited States
- Veterans Affairs Portland Health Care SystemPortlandUnited States
- Department of PsychiatryOregon Health & Science UniversityPortlandUnited States
| | - Tamara J Phillips
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research CenterOregon Health & Science UniversityPortlandUnited States
- Veterans Affairs Portland Health Care SystemPortlandUnited States
| |
Collapse
|
39
|
TAAR1 levels and sub-cellular distribution are cell line but not breast cancer subtype specific. Histochem Cell Biol 2019; 152:155-166. [PMID: 31111198 DOI: 10.1007/s00418-019-01791-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2019] [Indexed: 12/23/2022]
Abstract
Trace amine-associated receptors are G protein-coupled receptors of which TAAR1 is the most well-studied. Recently, Vattai et al. (J Cancer Res Clin Oncol 143:1637-1647 https://doi.org/10.1007/s00432-017-2420-8 , 2017) reported that expression of TAAR1 may be a marker of breast cancer (BC) survival, with a positive correlation also suggested between TAAR1 expression and HER2 positivity. Neither a role for TAAR1 in breast tissue, nor in cancer, had previously been suspected. We, therefore, sought to provide independent validation and to further examine these putative relationships. First, a bioinformatic analysis on 58 total samples including normal breast tissue, BC-related cell lines, and tumour samples representing different BC sub-types found no clear correlation between TAAR1 mRNA levels and any BC subtype, including HER2 + . We next confirmed the bioinformatics data correlated to protein expression using a well validated anti-human TAAR1 antibody. TAAR1 mRNA levels correlated with the relative intensity of immunofluorescence staining in six BC cell lines (MCF-7, T47D, MDA-MB-231, SKBR3, MDA-MB-468, BT-474), but not in the MCF-10A immortalized mammary gland line, which had high mRNA but low protein levels. As expected, TAAR1 protein was intracellular in all cell lines. Surprisingly MCF-7, SKBR3, and MDA-MB-468 showed pronounced nuclear localization. The relative protein expression in MCF-7, MDA-MB-231, and MCF-10A lines was further confirmed by semi-quantitative flow cytometry. Finally, we demonstrate that the commercially available anti-TAAR1 antibody has poor selectivity, which likely explains the lack of correlation with the previous study. Therefore, while we clearly demonstrate variable expression and sub-cellular localization of TAAR1 across BC cell lines, we find no evidence for association with BC subtype.
Collapse
|
40
|
Köhrle J, Biebermann H. 3-Iodothyronamine-A Thyroid Hormone Metabolite With Distinct Target Profiles and Mode of Action. Endocr Rev 2019; 40:602-630. [PMID: 30649231 DOI: 10.1210/er.2018-00182] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/20/2018] [Indexed: 12/14/2022]
Abstract
The rediscovery of the group of thyronamines (TAMs), especially the first detailed description of their most prominent congener 3-iodothyronamine (3T1AM) 14 years ago, boosted research on this thyroid hormone metabolite tremendously. TAMs exert actions partly opposite to and distinct from known functions of thyroid hormones. These fascinating metabolic, anapyrexic, cytoprotective, and brain effects quickly evoked the hope to use hormone-derived TAMs as a therapeutic option. The G protein-coupled receptor (GPCR) TAAR1, a member of the trace amine-associated receptor (TAAR) family, was identified as the first target and effector of TAM action. The initial enthusiasm on pharmacological actions of exogenous TAMs elicited many questions, such as sites of biosynthesis, analytics, modes of action, inactivation, and role of TAMs in (patho)physiology. Meanwhile, it became clear that TAMs not only interact with TAAR1 or other TAAR family members but also with several aminergic receptors and non-GPCR targets such as transient receptor potential channels, mitochondrial proteins, and the serum TAM-binding protein apolipoprotein B100, thus classifying 3T1AM as a multitarget ligand. The physiological mode of action of TAMs is still controversial because regulation of endogenous TAM production and the sites of its biosynthesis are not fully elucidated. Methods for 3T1AM analytics need further validation, as they revealed different blood and tissue concentrations depending on detection principles used such as monoclonal antibody-based immunoassay vs liquid chromatography- matrix-assisted laser desorption/ionization mass spectrometry or time-of-flight mass spectrometry. In this review, we comprehensively summarize and critically evaluate current basic, translational, and clinical knowledge on 3T1AM and its main metabolite 3-iodothyroacetic acid, focusing on endocrine-relevant aspects and open but highly challenging issues.
Collapse
Affiliation(s)
- Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Heike Biebermann
- Institut für Experimentelle Pädiatrische Endokrinologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
41
|
Activation of trace amine-associated receptor 1 attenuates schedule-induced polydipsia in rats. Neuropharmacology 2019; 144:184-192. [DOI: 10.1016/j.neuropharm.2018.10.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 10/20/2018] [Accepted: 10/22/2018] [Indexed: 11/23/2022]
|
42
|
Abstract
Trace amines are endogenous compounds classically regarded as comprising β-phenylethyalmine, p-tyramine, tryptamine, p-octopamine, and some of their metabolites. They are also abundant in common foodstuffs and can be produced and degraded by the constitutive microbiota. The ability to use trace amines has arisen at least twice during evolution, with distinct receptor families present in invertebrates and vertebrates. The term "trace amine" was coined to reflect the low tissue levels in mammals; however, invertebrates have relatively high levels where they function like mammalian adrenergic systems, involved in "fight-or-flight" responses. Vertebrates express a family of receptors termed trace amine-associated receptors (TAARs). Humans possess six functional isoforms (TAAR1, TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9), whereas some fish species express over 100. With the exception of TAAR1, TAARs are expressed in olfactory epithelium neurons, where they detect diverse ethological signals including predators, spoiled food, migratory cues, and pheromones. Outside the olfactory system, TAAR1 is the most thoroughly studied and has both central and peripheral roles. In the brain, TAAR1 acts as a rheostat of dopaminergic, glutamatergic, and serotonergic neurotransmission and has been identified as a novel therapeutic target for schizophrenia, depression, and addiction. In the periphery, TAAR1 regulates nutrient-induced hormone secretion, suggesting its potential as a novel therapeutic target for diabetes and obesity. TAAR1 may also regulate immune responses by regulating leukocyte differentiation and activation. This article provides a comprehensive review of the current state of knowledge of the evolution, physiologic functions, pharmacology, molecular mechanisms, and therapeutic potential of trace amines and their receptors in vertebrates and invertebrates.
Collapse
Affiliation(s)
- Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| | - Marius C Hoener
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| | - Mark D Berry
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| |
Collapse
|
43
|
Liu JF, Seaman R, Siemian JN, Bhimani R, Johnson B, Zhang Y, Zhu Q, Hoener MC, Park J, Dietz DM, Li JX. Role of trace amine-associated receptor 1 in nicotine's behavioral and neurochemical effects. Neuropsychopharmacology 2018; 43:2435-2444. [PMID: 29472642 PMCID: PMC6180004 DOI: 10.1038/s41386-018-0017-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 01/18/2018] [Accepted: 01/20/2018] [Indexed: 12/21/2022]
Abstract
Nicotine addiction and abuse remains a global health issue. To date, the fundamental neurobiological mechanism of nicotine addiction remains incompletely understood. Trace amine-associated receptor 1 (TAAR1) is thought to directly modulate dopaminergic system and are thought to be a neural substrate underlying addictive-like behaviors. We aimed to investigate the role of TAAR1 in nicotine addictive-like behaviors. TAAR1 expression after nicotine treatment was evaluated by western blotting. c-Fos immunofluorescence and in vivo fast-scan cyclic voltammetry were used to examine the activation of brain regions and dopamine release, respectively. We then thoroughly and systematically examined the role of TAAR1 in mediating nicotine-induced sensitization, nicotine discrimination, nicotine self-administration, nicotine demand curve, and the reinstatement of nicotine-seeking. Local pharmacological manipulation was conducted to determine the role of TAAR1 in the nucleus accumbens (NAcs) in the reinstatement of nicotine-seeking. We found that the expression of TAAR1 protein was selectively downregulated in the NAc, with no change in either dorsal striatum or prefrontal cortex. TAAR1 activation was sufficient to block nicotine-induced c-Fos expression in the NAc, while also reducing nicotine-induced dopamine release in the NAc. Systemic administration of TAAR1 agonists attenuated the expression and development of nicotine-induced sensitization, nicotine self-administration, the reinstatement of nicotine-seeking, and increased the elasticity of nicotine demand curve, while intra-NAc infusions of a TAAR1 agonist was sufficient to attenuate nicotine reinstatement. Moreover, TAAR1-knockout rats showed augmented cue-induced and drug-induced reinstatement of nicotine-seeking. These results indicated that modulation of TAAR1 activity regulates nicotine addictive-like behaviors and TAAR1 represents a novel target towards the treatment of nicotine addiction.
Collapse
Affiliation(s)
- Jian-Feng Liu
- 0000 0004 1936 9887grid.273335.3Department of Pharmacology and Toxicology; Program in Neuroscience, University at Buffalo, Buffalo, NY 14214 USA ,0000 0000 9530 8833grid.260483.bSchool of Pharmacy, Nantong University, 226001 Nantong, China
| | - Robert Seaman
- 0000 0004 1936 9887grid.273335.3Department of Pharmacology and Toxicology; Program in Neuroscience, University at Buffalo, Buffalo, NY 14214 USA
| | - Justin N. Siemian
- 0000 0004 1936 9887grid.273335.3Department of Pharmacology and Toxicology; Program in Neuroscience, University at Buffalo, Buffalo, NY 14214 USA
| | - Rohan Bhimani
- 0000 0004 1936 9887grid.273335.3Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, Buffalo, NY 14214 USA
| | - Bernard Johnson
- 0000 0004 1936 9887grid.273335.3Department of Pharmacology and Toxicology; Program in Neuroscience, University at Buffalo, Buffalo, NY 14214 USA
| | - Yanan Zhang
- 0000000100301493grid.62562.35Research Triangle Institute, Research Triangle Park, NC 27709 USA
| | - Qing Zhu
- 0000 0004 1936 9887grid.273335.3Department of Pharmacology and Toxicology; Program in Neuroscience, University at Buffalo, Buffalo, NY 14214 USA ,0000 0000 9530 8833grid.260483.bSchool of Pharmacy, Nantong University, 226001 Nantong, China
| | - Marius C. Hoener
- 0000 0004 0374 1269grid.417570.0Neuroscience, Ophthalmology and Rare Disease DTA, pRED, Roche Innovation Center Basel, F Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Jinwoo Park
- 0000 0004 1936 9887grid.273335.3Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, Buffalo, NY 14214 USA
| | - David M. Dietz
- 0000 0004 1936 9887grid.273335.3Department of Pharmacology and Toxicology; Program in Neuroscience, University at Buffalo, Buffalo, NY 14214 USA
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology; Program in Neuroscience, University at Buffalo, Buffalo, NY, 14214, USA.
| |
Collapse
|
44
|
Lam VM, Mielnik CA, Baimel C, Beerepoot P, Espinoza S, Sukhanov I, Horsfall W, Gainetdinov RR, Borgland SL, Ramsey AJ, Salahpour A. Behavioral Effects of a Potential Novel TAAR1 Antagonist. Front Pharmacol 2018; 9:953. [PMID: 30233365 PMCID: PMC6131539 DOI: 10.3389/fphar.2018.00953] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 08/03/2018] [Indexed: 12/17/2022] Open
Abstract
The trace amine associated receptor 1 (TAAR1) is a G-protein coupled receptor expressed in the monoaminergic regions of the brain, and represents a potential novel therapeutic target for the treatment of neurological disorders. While selective agonists for TAAR1 have been successfully identified, only one high affinity TAAR1 antagonist has been described thus far. We previously identified four potential low potency TAAR1 antagonists through an in silico screen on a TAAR1 homology model. One of the identified antagonists (compound 22) was predicted to have favorable physicochemical properties, which would allow the drug to cross the blood brain barrier. In vivo studies were therefore carried out and showed that compound 22 potentiates amphetamine- and cocaine-mediated locomotor activity. Furthermore, electrophysiology experiments demonstrated that compound 22 increased firing of dopamine neurons similar to EPPTB, the only known TAAR1 antagonist. In order to assess whether the effects of compound 22 were mediated through TAAR1, experiments were carried out on TAAR1-KO mice. The results showed that compound 22 is able to enhance amphetamine- and cocaine-mediated locomotor activity, even in TAAR1-KO mice, suggesting that the in vivo effects of this compound are not mediated by TAAR1. In collaboration with Psychoactive Drug Screening Program, we attempted to determine the targets for compound 22. Psychoactive Drug Screening Program (PDSP) results suggested several potential targets for compound 22 including, the dopamine, norepinephrine and serotonin transporters; as well as sigma 1 and 2 receptors. Our follow-up studies using heterologous cell systems showed that the dopamine transporter is not a target of compound 22. Therefore, the biological target of compound 22 mediating its psychoactive effects still remains unknown.
Collapse
Affiliation(s)
- Vincent M Lam
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Catharine A Mielnik
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Corey Baimel
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Pieter Beerepoot
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Boston Children's Hospital, F.M. Kirby Center for Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Stefano Espinoza
- Department of Neuroscience and Brain Technologies, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Ilya Sukhanov
- Department of Neuroscience and Brain Technologies, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy.,Pavlov First Saint Petersburg State Medical University, Valdman Institute of Pharmacology, Saint Petersburg, Russia
| | - Wendy Horsfall
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia
| | - Stephanie L Borgland
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Amy J Ramsey
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Ali Salahpour
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
45
|
Christian SL, Berry MD. Trace Amine-Associated Receptors as Novel Therapeutic Targets for Immunomodulatory Disorders. Front Pharmacol 2018; 9:680. [PMID: 30013475 PMCID: PMC6036138 DOI: 10.3389/fphar.2018.00680] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/05/2018] [Indexed: 12/14/2022] Open
Abstract
Trace amines and their receptors (trace amine-associated receptors; TAARs) are an emerging pharmacological target for the treatment of human disorders. While most studies have focused on their therapeutic potential for neurologic and psychiatric disorders, TAARs are also expressed throughout the periphery, including prominent expression in human leukocytes. Furthermore, recent independent, unbiased metabolomic studies have consistently identified one or more TAAR ligands as potential etiologic factors in inflammatory bowel disease (IBD). The putative role of TAARs in diseases such as IBD that are associated with hyperactive immune responses has not, however, previously been systematically addressed. Here, we review the current state of the knowledge of the effects of TAARs on leukocyte function, in particular in the context of mucosal epithelial cells that interface with the environment; developing a model whereby TAARs may be considered as a novel therapeutic target for disorders associated with dysregulated immune responses to environmental factors. In this model, we hypothesize that altered trace amine homeostasis results in hyperactivity of the immune system. Such loss of homeostasis can occur through many different mechanisms including TAAR polymorphisms and altered trace amine load due to changes in host synthesis and/or degradative enzymes, diet, or microbial dysbiosis. The resulting alterations in TAAR functioning can then lead to a loss of homeostasis of leukocyte chemotaxis, differentiation, and activation, as well as an altered ability of members of the microbiota to adhere to and penetrate the epithelial cell layers. Such changes would generate a pro-inflammatory state at mucosal epithelial barrier layers that can manifest as clinical symptomatology such as that seen in IBD. These alterations may also have the potential to induce systemic effects, which could possibly contribute to immunomodulatory disorders in other systems, including neurological diseases.
Collapse
|
46
|
Espinoza S, Leo D, Sotnikova TD, Shahid M, Kääriäinen TM, Gainetdinov RR. Biochemical and Functional Characterization of the Trace Amine-Associated Receptor 1 (TAAR1) Agonist RO5263397. Front Pharmacol 2018; 9:645. [PMID: 29977204 PMCID: PMC6022153 DOI: 10.3389/fphar.2018.00645] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/30/2018] [Indexed: 12/13/2022] Open
Abstract
Trace amine-associated receptor 1 (TAAR1) is a G protein-coupled receptor, which signals through elevating intracellular cAMP levels, and expressed in most vertebrates, including rodents and humans. In recent years, several lines of evidence indicated the role of TAAR1 in the regulation of dopaminergic system and its importance in physiological processes such as locomotion, control of emotional states and cognition. In our study, we used RO5263397, a selective TAAR1 agonist, as a tool and characterized its pharmacology in vitro in HEK293 cells and its effects in vivo in tests assessing potential antidepressant and antipsychotic actions. We found that RO5263397 not only increases cAMP levels at very low concentrations but also can induce the phosphorylation of ERK and CREB in a concentration- and time-dependent manner. Like other TAAR1 agonists, RO5263397 potently suppressed high dopamine-dependent hyperactivity in mice lacking the dopamine transporter. Moreover, RO5263397 produced a strong antidepressant-like effect in the forced swim test comparable to fluoxetine. Furthermore, the antidepressant-like activity was blocked by pretreatment with SCH23390 (dopamine D1 receptor antagonist) or NBQX (glutamate AMPA receptor antagonist) but only in part by WAY100635 (serotonin 5HT1A receptor antagonist). In conclusion, our study confirms some previous in vitro and in vivo findings in relation to the pharmacological effects of RO5263397 but more importantly provides new insight on intracellular signaling pathway and other neurotransmitter receptors modulated by TAAR1 receptor activation.
Collapse
Affiliation(s)
- Stefano Espinoza
- Fondazione Istituto Italiano di Tecnologia, Department of Neuroscience and Brain Technologies, Genoa, Italy
| | - Damiana Leo
- Fondazione Istituto Italiano di Tecnologia, Department of Neuroscience and Brain Technologies, Genoa, Italy.,Department of Neurosciences, University of Mons, Mons, Belgium
| | - Tatyana D Sotnikova
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia
| | | | | | - Raul R Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia.,Skolkovo Institute of Science and Technology, Moscow, Russia
| |
Collapse
|
47
|
Kostrzewa RM, Wydra K, Filip M, Crawford CA, McDougall SA, Brown RW, Borroto-Escuela DO, Fuxe K, Gainetdinov RR. Dopamine D 2 Receptor Supersensitivity as a Spectrum of Neurotoxicity and Status in Psychiatric Disorders. J Pharmacol Exp Ther 2018; 366:519-526. [PMID: 29921706 DOI: 10.1124/jpet.118.247981] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/23/2018] [Indexed: 12/13/2022] Open
Abstract
Abnormality of dopamine D2 receptor (D2R) function, often observed as D2R supersensitivity (D2RSS), is a commonality of schizophrenia and related psychiatric disorders in humans. Moreover, virtually all psychotherapeutic agents for schizophrenia target D2R in brain. Permanent D2RSS as a feature of a new animal model of schizophrenia was first reported in 1991, and then behaviorally and biochemically characterized over the next 15-20 years. In this model of schizophrenia characterized by production of D2RSS in ontogeny, there are demonstrated alterations of signaling processes, as well as functional links between the biologic template of the animal model and ability of pharmacotherapeutics to modulate or reverse biologic and behavioral modalities toward normality. Another such animal model, featuring knockout of trace amine-associated receptor 1 (TAAR1), demonstrates D2RSS with an increase in the proportion of D2R in the high-affinity state. Currently, TAAR1 agonists are being explored as a therapeutic option for schizophrenia. There is likewise an overlay of D2RSS with substance use disorder. The aspect of adenosine A2A-D2 heteroreceptor complexes in substance use disorder is highlighted, and the association of adenosine A2A receptor antagonists in discriminative and rewarding effects of psychostimulants is outlined. In summary, these new animal models of schizophrenia have face, construct, and predictive validity, and distinct advantages over earlier models. While the review summarizes elements of D2RSS in schizophrenia per se, and its interplay with substance use disorder, a major focus is on presumed new molecular targets attending D2RSS in schizophrenia and related clinical entities.
Collapse
Affiliation(s)
- Richard M Kostrzewa
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee (R.M.K., R.W.B.); Institute of Pharmacology, Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Krakow, Poland (K.W., M.F.); Department of Psychology, California State University, San Bernardino, California (C.A.C., S.A.M.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (D.O.B.-E., K.F.); Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); and Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia (R.R.G.)
| | - Karolina Wydra
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee (R.M.K., R.W.B.); Institute of Pharmacology, Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Krakow, Poland (K.W., M.F.); Department of Psychology, California State University, San Bernardino, California (C.A.C., S.A.M.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (D.O.B.-E., K.F.); Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); and Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia (R.R.G.)
| | - Malgorzata Filip
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee (R.M.K., R.W.B.); Institute of Pharmacology, Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Krakow, Poland (K.W., M.F.); Department of Psychology, California State University, San Bernardino, California (C.A.C., S.A.M.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (D.O.B.-E., K.F.); Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); and Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia (R.R.G.)
| | - Cynthia A Crawford
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee (R.M.K., R.W.B.); Institute of Pharmacology, Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Krakow, Poland (K.W., M.F.); Department of Psychology, California State University, San Bernardino, California (C.A.C., S.A.M.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (D.O.B.-E., K.F.); Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); and Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia (R.R.G.)
| | - Sanders A McDougall
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee (R.M.K., R.W.B.); Institute of Pharmacology, Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Krakow, Poland (K.W., M.F.); Department of Psychology, California State University, San Bernardino, California (C.A.C., S.A.M.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (D.O.B.-E., K.F.); Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); and Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia (R.R.G.)
| | - Russell W Brown
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee (R.M.K., R.W.B.); Institute of Pharmacology, Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Krakow, Poland (K.W., M.F.); Department of Psychology, California State University, San Bernardino, California (C.A.C., S.A.M.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (D.O.B.-E., K.F.); Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); and Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia (R.R.G.)
| | - Dasiel O Borroto-Escuela
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee (R.M.K., R.W.B.); Institute of Pharmacology, Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Krakow, Poland (K.W., M.F.); Department of Psychology, California State University, San Bernardino, California (C.A.C., S.A.M.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (D.O.B.-E., K.F.); Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); and Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia (R.R.G.)
| | - Kjell Fuxe
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee (R.M.K., R.W.B.); Institute of Pharmacology, Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Krakow, Poland (K.W., M.F.); Department of Psychology, California State University, San Bernardino, California (C.A.C., S.A.M.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (D.O.B.-E., K.F.); Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); and Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia (R.R.G.)
| | - Raul R Gainetdinov
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee (R.M.K., R.W.B.); Institute of Pharmacology, Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Krakow, Poland (K.W., M.F.); Department of Psychology, California State University, San Bernardino, California (C.A.C., S.A.M.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (D.O.B.-E., K.F.); Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); and Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia (R.R.G.)
| |
Collapse
|
48
|
Schwartz MD, Canales JJ, Zucchi R, Espinoza S, Sukhanov I, Gainetdinov RR. Trace amine-associated receptor 1: a multimodal therapeutic target for neuropsychiatric diseases. Expert Opin Ther Targets 2018; 22:513-526. [DOI: 10.1080/14728222.2018.1480723] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Juan J. Canales
- Division of Psychology, School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | | | - Stefano Espinoza
- Fondazione Istituto Italiano di Tecnologia, Neuroscience and Brain Technologies Dept., Genoa, Italy
| | - Ilya Sukhanov
- Institute of Pharmacology, Pavlov Medical University, St. Petersburg, Russia
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Center for Translational Biomedicine, Skolkovo Institute of Science and Technology, Moscow, Russia
| |
Collapse
|
49
|
Trace amine-associated receptor 1 agonists RO5263397 and RO5166017 attenuate quinpirole-induced yawning but not hypothermia in rats. Behav Pharmacol 2018; 28:590-593. [PMID: 28704278 DOI: 10.1097/fbp.0000000000000330] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Increasing evidence suggests that trace amine-associated receptor 1 (TAAR1) is an important modulator of the dopaminergic system. Existing molecular evidence indicates that TAAR1 regulates dopamine levels through interactions with dopamine transporters and D2 receptors. However, investigations to date have not been exhaustive and other pathways may be involved. In this study, we used a well-described set of behaviors, quinpirole-induced yawning and hypothermia, to explore the potential interaction of TAAR1 and D3 receptors, which are members of the 'D2-like' dopamine receptor subfamily. Previous studies have shown that for D2/D3 receptor agonists, the induction of yawning is a D3 receptor-mediated effect, whereas the inhibition of yawning and induction of hypothermia are D2 receptor-mediated effects. Quinpirole produced an inverted U-shaped dose-effect curve for yawning, which was shifted downward dose-dependently by each of the TAAR1 agonists RO5263397 and RO5166017. Quinpirole also produced dose-dependent hypothermia, which was not affected by either TAAR1 agonist. These results suggest that TAAR1 agonists may interact with D3 receptors and/or its downstream pathways, as opposed to D2 receptors. These findings may shed light on a previously unexplored possibility for the mechanism of TAAR1-mediated effects.
Collapse
|
50
|
Sukhanov I, Dorofeikova M, Dolgorukova A, Dorotenko A, Gainetdinov RR. Trace Amine-Associated Receptor 1 Modulates the Locomotor and Sensitization Effects of Nicotine. Front Pharmacol 2018; 9:329. [PMID: 29681856 PMCID: PMC5898227 DOI: 10.3389/fphar.2018.00329] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/21/2018] [Indexed: 11/23/2022] Open
Abstract
Trace amine-associated receptor 1 (TAAR1) has emerged as a promising target for addiction treatments because it affects dopamine transmission in the mesolimbic pathway. TAAR1 is involved in the effects of addictive drugs, such as amphetamines, cocaine and ethanol, but the impact of TAAR1 on the effects of nicotine, the psychoactive drug responsible for the development and maintenance of tobacco smoking, has not yet been studied. This study was performed to investigate the possible modulatory action of TAAR1 on the effects of nicotine on locomotor behaviors in rats and mice. Pretreatment with the TAAR1 agonist RO5263397 dose-dependently decreased nicotine-induced hyperlocomotion in rats habituated to locomotor boxes, prevented the development of nicotine sensitization and blocked hypermotility in nicotine-sensitized rats at the highest tested dose (10 mg/kg). The lack of TAAR1 failed to affect the effects of nicotine on the locomotion of mutant mice. Based on the results of the present study, TAAR1 activation attenuates the locomotion-stimulating effects of nicotine on rats. These results further support the previously proposed hypothesis that TAAR1 is a promising target for the prevention and treatment of drug addiction. Further studies aimed at analyzing the effects of TAAR1 agonists on animal models of nicotine addiction are warranted.
Collapse
Affiliation(s)
- Ilya Sukhanov
- Laboratory of Behavioral Pharmacology, Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia.,Laboratory of Neurochemical Pharmacology, Neuroscience and Brain Technologies, Fondazione Istituto Italiano di Technologia, Genoa, Italy.,Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia
| | - Mariia Dorofeikova
- Laboratory of Behavioral Pharmacology, Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Antonina Dolgorukova
- Laboratory of Behavioral Pharmacology, Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Artem Dorotenko
- Laboratory of Behavioral Pharmacology, Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia.,Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow, Russia
| |
Collapse
|