1
|
Kciuk M, Kruczkowska W, Gałęziewska J, Wanke K, Kałuzińska-Kołat Ż, Aleksandrowicz M, Kontek R. Alzheimer's Disease as Type 3 Diabetes: Understanding the Link and Implications. Int J Mol Sci 2024; 25:11955. [PMID: 39596023 PMCID: PMC11593477 DOI: 10.3390/ijms252211955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) are two prevalent conditions that present considerable public health issue in aging populations worldwide. Recent research has proposed a novel conceptualization of AD as "type 3 diabetes", highlighting the critical roles of insulin resistance and impaired glucose metabolism in the pathogenesis of the disease. This article examines the implications of this association, exploring potential new avenues for treatment and preventive strategies for AD. Key evidence linking diabetes to AD emphasizes critical metabolic processes that contribute to neurodegeneration, including inflammation, oxidative stress, and alterations in insulin signaling pathways. By framing AD within this metabolic context, we can enhance our understanding of its etiology, which in turn may influence early diagnosis, treatment plans, and preventive measures. Understanding AD as a manifestation of diabetes opens up the possibility of employing novel therapeutic strategies that incorporate lifestyle modifications and the use of antidiabetic medications to mitigate cognitive decline. This integrated approach has the potential to improve patient outcomes and deepen our comprehension of the intricate relationship between neurodegenerative diseases and metabolic disorders.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland; (K.W.); (R.K.)
| | - Weronika Kruczkowska
- Department of Functional Genomics, Medical University of Lodz, 90-752 Lodz, Poland; (W.K.); (J.G.); (Ż.K.-K.)
| | - Julia Gałęziewska
- Department of Functional Genomics, Medical University of Lodz, 90-752 Lodz, Poland; (W.K.); (J.G.); (Ż.K.-K.)
| | - Katarzyna Wanke
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland; (K.W.); (R.K.)
| | - Żaneta Kałuzińska-Kołat
- Department of Functional Genomics, Medical University of Lodz, 90-752 Lodz, Poland; (W.K.); (J.G.); (Ż.K.-K.)
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, 90-136 Lodz, Poland
| | - Marta Aleksandrowicz
- Laboratory of Preclinical Research and Environmental Agents, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland; (K.W.); (R.K.)
| |
Collapse
|
2
|
Krupa AJ, Chrobak AA, Sołtys Z, Dudek D, Szewczyk B, Siwek M. Insulin resistance, clinical presentation and resistance to selective serotonin and noradrenaline reuptake inhibitors in major depressive disorder. Pharmacol Rep 2024; 76:1100-1113. [PMID: 38980569 PMCID: PMC11387451 DOI: 10.1007/s43440-024-00621-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/15/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND The understanding of mechanisms underlying non-response to antidepressants is limited. The latest data highlights the role of insulin resistance (IR) in major depressive disorder (MDD) pathophysiology, presentation, and treatment efficacy. This work aimed to assess IR in MDD and explore the relationships between IR, MDD presentation and non-response to selective serotonin and noradrenaline reuptake inhibitors (SNRI). METHODS 67 MDD individuals: 36 responsive (MDD T[+]), 31 non-responsive (MDD T[-]) to SNRI and 30 healthy controls were recruited. The treatment response criteria were: Clinical Global Impression Scale-Improvement score of 1 or 2 after ≥ 8 weeks of treatment. Participants were assessed by physician and self-report tools measuring depression, anhedonia, anxiety, bipolarity, sleep quality. Blood samples were collected to assess fasting glucose and insulin levels and calculate HOMA-IR (homeostasis model assessment of insulin resistance). RESULTS MDD T[-] vs. MDD T[+] had significantly higher body mass index, insulin levels, and HOMA-IR. MDD T[-] presented higher levels of depressed mood, appetite/weight changes, loss of interest, energy, overall depressive symptoms, and sleep impairment; some evaluations suggested higher anhedonia and anxiety in MDD T[-] vs. MDD T[+]. Insulin and IR were weakly but significantly correlated with the severity of psychomotor symptoms, energy level, thoughts of death/suicide, self-criticism, appetite/weight, depressed mood symptoms, sleep problems. IR was weakly but significantly correlated with anhedonia. CONCLUSION IR appears to be linked to depressive symptoms characteristic of the "metabolic" MDD subtype, such as psychomotor changes, energy level, anhedonia, sleep problems, appetite/weight changes, state and trait anxiety, sleep quality, and non-response to SNRI.
Collapse
Affiliation(s)
- Anna J Krupa
- Department of Affective Disorders, Jagiellonian University Medical College, ul. Kopernika 21a, Krakow, 31-501, Poland
| | - Adrian A Chrobak
- Department of Adult Psychiatry, Jagiellonian University Medical College, Kopernika 21a, Krakow, 31-501, Poland
| | - Zbigniew Sołtys
- Institute of Zoology and Biomedical Research, Laboratory of Experimental Neuropathology, Jagiellonian University, Gronostajowa 9, Krakow, 30-387, Poland
| | - Dominika Dudek
- Department of Adult Psychiatry, Jagiellonian University Medical College, Kopernika 21a, Krakow, 31-501, Poland
| | - Bernadeta Szewczyk
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Krakow, 31-343, Poland
| | - Marcin Siwek
- Department of Affective Disorders, Jagiellonian University Medical College, ul. Kopernika 21a, Krakow, 31-501, Poland.
| |
Collapse
|
3
|
Łapińska L, Szum-Jakubowska A, Krentowska A, Pawlak M, Hładuński M, Waszkiewicz N, Karczewska-Kupczewska M, Kamiński K, Kowalska I. The relationship between brain structure volumes, depressive symptoms and body composition in obese/overweight and normal-/underweight women. Sci Rep 2024; 14:21021. [PMID: 39251805 PMCID: PMC11384777 DOI: 10.1038/s41598-024-71924-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
Depressive symptoms are highly prevalent and heterogeneous in women. Different brain structures might be associated with depressive symptoms and body composition in women with obesity/overweight and normal-/underweight, although the data is limited. The analysis included 265 women from Bialystok PLUS population study, untreated with antidepressive or antipsychotic medications. The subjects underwent brain magnetic resonance imaging and body composition analysis. Beck Depression Inventory (BDI) score was inversely associated with nucleus accumbens volume (β = -0.217, p = 0.008) in women with BMI ≥ 25 kg/m2, but with insula volume (β = -0.147, p = 0.027) in women with BMI < 25 kg/m2 after adjustment for age and estimated intracranial volume (eTIV). In women with BMI ≥ 25 kg/m2, nucleus accumbens volume was inversely associated with the percentage of visceral fat and BDI score (β = -0.236, p = 0.012, β = -0.192, p = 0.017) after adjustment for age and eTIV. In women with BMI < 25 kg/m2, insula volume was positively associated with total fat-free mass and negatively with the BDI score (β = 0.142, p = 0.030, β = -0.137, p = 0.037) after adjustment for age and eTIV. Depressive symptoms might be associated with nucleus accumbens volume in overweight/obese women, while in normal-/ underweight women-with alterations in insula volume.
Collapse
Affiliation(s)
- Lidia Łapińska
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276, Bialystok, Poland.
| | - Aleksandra Szum-Jakubowska
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Bialystok, Poland
| | - Anna Krentowska
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276, Bialystok, Poland
| | - Mikołaj Pawlak
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marcin Hładuński
- Independent Laboratory of Molecular Imaging, Medical University of Bialystok, Bialystok, Poland
| | | | - Monika Karczewska-Kupczewska
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276, Bialystok, Poland
| | - Karol Kamiński
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Bialystok, Poland
| | - Irina Kowalska
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276, Bialystok, Poland
| |
Collapse
|
4
|
Foda AM, Ibrahim SS, Ibrahim SM, Elbaz EM. Pterostilbene Ameliorates Cognitive Impairment in Polycystic Ovary Syndrome Rat Model through Improving Insulin Resistance via the IRS-1/PI3K/Akt/GSK-3β Pathway: A Comparative Study with Metformin. ACS Chem Neurosci 2024; 15:3064-3077. [PMID: 39119909 DOI: 10.1021/acschemneuro.4c00352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is an intricate endocrine disorder that targets millions of women globally. Recent research has drawn attention to its association with cognitive impairment and Alzheimer's disease (AD) risk, yet the exact mechanism remains elusive. This study aimed to explore the potential role of PCOS-associated insulin resistance (IR) and inflammation in linking PCOS to AD pathogenesis. It additionally investigated the therapeutic merits of pterostilbene (PTS) in ameliorating PCOS and associated cognitive deficits in comparison to metformin (MET). Rats were divided into five groups; vehicle group, PTS group [30 mg/kg, per os (p.o.) for 13 days], and the remaining three groups received letrozole (1 mg/kg, p.o. for 21 days) to represent the PCOS, PCOS + MET (300 mg/kg, p.o. for 13 days), and PCOS + PTS groups, respectively. Behavioral tests were conducted, along with a histopathological investigation of brains and ovaries. Assessment of serum hormonal profile and hippocampal IRS-1/PI3K/AKT/GSK-3β insulin signaling pathway components were performed. PTS rats exhibited improved insulin sensitivity and hormonal profile, besides enhanced neurobehavioral tests performance and histopathological findings. These effects may be attributed to modulation of the IRS-1/PI3K/AKT/GSK-3β pathway, reducing GSK-3β activity, and mitigating Tau hyperphosphorylation and Aβ accumulation in the brain. Likewise, PTS attenuated nuclear factor kappa B-mediated inflammation and reversed AChE elevation, suggesting multifaceted neuroprotective effects. Comparatively, PTS showed outcomes similar to those of MET in most parameters. The obtained findings validated that dysregulated insulin signaling in PCOS rats detrimentally affects cognitive function, which is halted by PTS, unveiling the potential of PTS as a novel therapy for PCOS and related cognitive deficits.
Collapse
Affiliation(s)
- Aliaa M Foda
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Safinaz S Ibrahim
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Sherehan M Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 11571, Egypt
| | - Eman M Elbaz
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
5
|
Xu ZQ, Liu TT, Qin QR, Yuan H, Li XM, Qiu CY, Hu WP. Insulin enhances acid-sensing ion channel currents in rat primary sensory neurons. Sci Rep 2024; 14:18077. [PMID: 39103432 PMCID: PMC11300854 DOI: 10.1038/s41598-024-69139-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024] Open
Abstract
Insulin has been shown to modulate neuronal processes through insulin receptors. The ion channels located on neurons may be important targets for insulin/insulin receptor signaling. Both insulin receptors and acid-sensing ion channels (ASICs) are expressed in dorsal root ganglia (DRG) neurons. However, it is still unclear whether there is an interaction between them. Therefore, the purpose of this investigation was to determine the effects of insulin on the functional activity of ASICs. A 5 min application of insulin rapidly enhanced acid-evoked ASIC currents in rat DRG neurons in a concentration-dependent manner. Insulin shifted the concentration-response plot for ASIC currents upward, with an increase of 46.2 ± 7.6% in the maximal current response. The insulin-induced increase in ASIC currents was eliminated by the insulin receptor antagonist GSK1838705, the tyrosine kinase inhibitor lavendustin A, and the phosphatidylinositol-3 kinase antagonist wortmannin. Moreover, insulin increased the number of acid-triggered action potentials by activating insulin receptors. Finally, local administration of insulin exacerbated the spontaneous nociceptive behaviors induced by intraplantar acid injection and the mechanical hyperalgesia induced by intramuscular acid injections through peripheral insulin receptors. These results suggested that insulin/insulin receptor signaling enhanced the functional activity of ASICs via tyrosine kinase and phosphatidylinositol-3 kinase pathways. Our findings revealed that ASICs were targets in primary sensory neurons for insulin receptor signaling, which may underlie insulin modulation of pain.
Collapse
Affiliation(s)
- Zhong-Qing Xu
- School of Pharmacy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China
| | - Ting-Ting Liu
- School of Pharmacy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China
| | - Qing-Rui Qin
- School of Pharmacy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China
| | - Huan Yuan
- School of Pharmacy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China
| | - Xue-Mei Li
- School of Pharmacy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China
| | - Chun-Yu Qiu
- School of Pharmacy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China
| | - Wang-Ping Hu
- School of Pharmacy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China.
- Department of Physiology, Hubei College of Chinese Medicine, 87 Xueyuan Road, Jingzhou, 434020, Hubei, People's Republic of China.
| |
Collapse
|
6
|
Rhea EM, Leclerc M, Yassine HN, Capuano AW, Tong H, Petyuk VA, Macauley SL, Fioramonti X, Carmichael O, Calon F, Arvanitakis Z. State of the Science on Brain Insulin Resistance and Cognitive Decline Due to Alzheimer's Disease. Aging Dis 2024; 15:1688-1725. [PMID: 37611907 PMCID: PMC11272209 DOI: 10.14336/ad.2023.0814] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is common and increasing in prevalence worldwide, with devastating public health consequences. While peripheral insulin resistance is a key feature of most forms of T2DM and has been investigated for over a century, research on brain insulin resistance (BIR) has more recently been developed, including in the context of T2DM and non-diabetes states. Recent data support the presence of BIR in the aging brain, even in non-diabetes states, and found that BIR may be a feature in Alzheimer's disease (AD) and contributes to cognitive impairment. Further, therapies used to treat T2DM are now being investigated in the context of AD treatment and prevention, including insulin. In this review, we offer a definition of BIR, and present evidence for BIR in AD; we discuss the expression, function, and activation of the insulin receptor (INSR) in the brain; how BIR could develop; tools to study BIR; how BIR correlates with current AD hallmarks; and regional/cellular involvement of BIR. We close with a discussion on resilience to both BIR and AD, how current tools can be improved to better understand BIR, and future avenues for research. Overall, this review and position paper highlights BIR as a plausible therapeutic target for the prevention of cognitive decline and dementia due to AD.
Collapse
Affiliation(s)
- Elizabeth M Rhea
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA.
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA 98195, USA.
| | - Manon Leclerc
- Faculty of Pharmacy, Laval University, Quebec, Quebec, Canada.
- Neuroscience Axis, CHU de Québec Research Center - Laval University, Quebec, Quebec, Canada.
| | - Hussein N Yassine
- Departments of Neurology and Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Ana W Capuano
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Han Tong
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| | - Shannon L Macauley
- Department of Physiology, University of Kentucky, Lexington, KY 40508, USA.
| | - Xavier Fioramonti
- International Associated Laboratory OptiNutriBrain, Bordeaux, France and Quebec, Canada.
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France.
| | - Owen Carmichael
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.
| | - Frederic Calon
- Faculty of Pharmacy, Laval University, Quebec, Quebec, Canada.
- Neuroscience Axis, CHU de Québec Research Center - Laval University, Quebec, Quebec, Canada.
- International Associated Laboratory OptiNutriBrain, Bordeaux, France and Quebec, Canada.
| | - Zoe Arvanitakis
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
7
|
Ferrario CR, Münzberg-Gruening H, Rinaman L, Betley JN, Borgland SL, Dus M, Fadool DA, Medler KF, Morton GJ, Sandoval DA, de La Serre CB, Stanley SA, Townsend KL, Watts AG, Maruvada P, Cummings D, Cooke BM. Obesity- and diet-induced plasticity in systems that control eating and energy balance. Obesity (Silver Spring) 2024; 32:1425-1440. [PMID: 39010249 PMCID: PMC11269035 DOI: 10.1002/oby.24060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 07/17/2024]
Abstract
In April 2023, the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), in partnership with the National Institute of Child Health and Human Development, the National Institute on Aging, and the Office of Behavioral and Social Sciences Research, hosted a 2-day online workshop to discuss neural plasticity in energy homeostasis and obesity. The goal was to provide a broad view of current knowledge while identifying research questions and challenges regarding neural systems that control food intake and energy balance. This review includes highlights from the meeting and is intended both to introduce unfamiliar audiences with concepts central to energy homeostasis, feeding, and obesity and to highlight up-and-coming research in these areas that may be of special interest to those with a background in these fields. The overarching theme of this review addresses plasticity within the central and peripheral nervous systems that regulates and influences eating, emphasizing distinctions between healthy and disease states. This is by no means a comprehensive review because this is a broad and rapidly developing area. However, we have pointed out relevant reviews and primary articles throughout, as well as gaps in current understanding and opportunities for developments in the field.
Collapse
Grants
- P30 DK048520 NIDDK NIH HHS
- NSF1949989 National Science Foundation
- T32 DC000044 NIDCD NIH HHS
- R01 DK133464 NIDDK NIH HHS
- R01 DK089056 NIDDK NIH HHS
- R01 DK130246 NIDDK NIH HHS
- R01 DK124801 NIDDK NIH HHS
- R01 DK100685 NIDDK NIH HHS
- R01 DK124238 NIDDK NIH HHS
- R01 DK130875 NIDDK NIH HHS
- R01 DK125890 NIDDK NIH HHS
- Z99 DK999999 Intramural NIH HHS
- R01 DK124461 NIDDK NIH HHS
- K26 DK138368 NIDDK NIH HHS
- R01 DK121995 NIDDK NIH HHS
- R01 DK121531 NIDDK NIH HHS
- P30 DK089503 NIDDK NIH HHS
- P01 DK119130 NIDDK NIH HHS
- R01 DK118910 NIDDK NIH HHS
- R01 AT011683 NCCIH NIH HHS
- Reported research was supported by DK130246, DK092587, AT011683, MH059911, DK100685, DK119130, DK124801, DK133399, AG079877, DK133464, T32DC000044, F31DC016817, NSF1949989, DK089056, DK124238, DK138368, DK121995, DK125890, DK118910, DK121531, DK124461, DK130875; Canada Research Chair: 950-232211, CIHRFDN148473, CIHRPJT185886; USDA Predoctoral Fellowship; Endowment from the Robinson Family and Tallahassee Memorial Hospital; Department of Defense W81XWH-20-1-0345 and HT9425-23-1-0244; American Diabetes Association #1-17-ACE-31; W.M. Keck Foundation Award; National Science Foundation CAREER 1941822
- R01 DK133399 NIDDK NIH HHS
- HT9425-23-1-0244 Department of Defense
- R01 DK092587 NIDDK NIH HHS
- W81XWH-20-1-0345 Department of Defense
- 1941822 National Science Foundation
- R01 MH059911 NIMH NIH HHS
- F31 DC016817 NIDCD NIH HHS
- R01 AG079877 NIA NIH HHS
- P30 DK017047 NIDDK NIH HHS
Collapse
Affiliation(s)
- Carrie R Ferrario
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
| | - Heike Münzberg-Gruening
- Laboratory of Central Leptin Signaling, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Linda Rinaman
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - J Nicholas Betley
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stephanie L Borgland
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Monica Dus
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Debra A Fadool
- Department of Biological Science, Program in Neuroscience, Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, USA
| | - Kathryn F Medler
- School of Animal Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Gregory J Morton
- Department of Medicine, University of Washington Medicine Diabetes Institute at South Lake Union, Seattle, Washington, USA
| | - Darleen A Sandoval
- Department of Pediatrics, Section of Nutrition, University of Colorado-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Claire B de La Serre
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Sarah A Stanley
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kristy L Townsend
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Alan G Watts
- Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Padma Maruvada
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - Diana Cummings
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - Bradley M Cooke
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Peng Y, Yao SY, Chen Q, Jin H, Du MQ, Xue YH, Liu S. True or false? Alzheimer's disease is type 3 diabetes: Evidences from bench to bedside. Ageing Res Rev 2024; 99:102383. [PMID: 38955264 DOI: 10.1016/j.arr.2024.102383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
Globally, Alzheimer's disease (AD) is the most widespread chronic neurodegenerative disorder, leading to cognitive impairment, such as aphasia and agnosia, as well as mental symptoms, like behavioral abnormalities, that place a heavy psychological and financial burden on the families of the afflicted. Unfortunately, no particular medications exist to treat AD, as the current treatments only impede its progression.The link between AD and type 2 diabetes (T2D) has been increasingly revealed by research; the danger of developing both AD and T2D rises exponentially with age, with T2D being especially prone to AD. This has propelled researchers to investigate the mechanism(s) underlying this connection. A critical review of the relationship between insulin resistance, Aβ, oxidative stress, mitochondrial hypothesis, abnormal phosphorylation of Tau protein, inflammatory response, high blood glucose levels, neurotransmitters and signaling pathways, vascular issues in AD and diabetes, and the similarities between the two diseases, is presented in this review. Grasping the essential mechanisms behind this detrimental interaction may offer chances to devise successful therapeutic strategies.
Collapse
Affiliation(s)
- Yong Peng
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China.
| | - Shun-Yu Yao
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Quan Chen
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Hong Jin
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Miao-Qiao Du
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Ya-Hui Xue
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Shu Liu
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| |
Collapse
|
9
|
Gendron WH, Fertan E, Roddick KM, Wong AA, Maliougina M, Hiani YE, Anini Y, Brown RE. Intranasal insulin treatment ameliorates spatial memory, muscular strength, and frailty deficits in 5xFAD mice. Physiol Behav 2024; 281:114583. [PMID: 38750806 DOI: 10.1016/j.physbeh.2024.114583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
The 5xFAD mouse model shows age-related weight loss as well as cognitive and motor deficits. Metabolic dysregulation, especially impaired insulin signaling, is also present in AD. This study examined whether intranasal delivery of insulin (INI) at low (0.875 U) or high (1.750 U) doses would ameliorate these deficits compared to saline in 10-month-old female 5xFAD and B6SJL wildtype (WT) mice. INI increased forelimb grip strength in the wire hang test in 5xFAD mice in a dose-dependent manner but did not improve the performance of 5xFAD mice on the balance beam. High INI doses reduced frailty scores in 5xFAD mice and improved spatial memory in both acquisition and reversal probe trials in the Morris water maze. INI increased swim speed in 5xFAD mice but had no effect on object recognition memory or working memory in the spontaneous alternation task, nor did it improve memory in the contextual or cued fear memory tasks. High doses of insulin increased the liver, spleen, and kidney weights and reduced brown adipose tissue weights. P-Akt signaling in the hippocampus was increased by insulin in a dose-dependent manner. Altogether, INI increased strength, reduced frailty scores, and improved visual spatial memory. Hypoglycemia was not present after INI, however alterations in tissue and organ weights were present. These results are novel and important as they indicate that intra-nasal insulin can reverse cognitive, motor and frailty deficits found in this mouse model of AD.
Collapse
Affiliation(s)
- William H Gendron
- Departments of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Emre Fertan
- Departments of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Kyle M Roddick
- Departments of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Aimée A Wong
- Departments of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Maria Maliougina
- Departments of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Yassine El Hiani
- Departments of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Younes Anini
- Departments of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Departments of Obstetrics and Gynecology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Richard E Brown
- Departments of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Departments of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
10
|
Ghamri KA. Mutual effects of gestational diabetes and schizophrenia: how can one promote the other?: A review. Medicine (Baltimore) 2024; 103:e38677. [PMID: 38905391 PMCID: PMC11191934 DOI: 10.1097/md.0000000000038677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/31/2024] [Indexed: 06/23/2024] Open
Abstract
Although the physical complications of gestational diabetes mellitus (GDM) are well known, emerging evidence suggests a significant link with psychiatric conditions such as schizophrenia (SCZ). This review aimed to explore the extent, nature, and implications of the association between GDM and SCZ, exploring how the 2 conditions may reciprocally influence each other. We conducted a comprehensive literature review and, analyzed clinical and mechanistic evidence supporting the mutual effects of GDM and SCZ. This review examined factors such as neurodevelopment and the impact of antipsychotics. The study found that Maternal GDM increases the risk of SCZ in offspring. Conversely, women with SCZ were more prone to hyperglycemic pregnancies. The research highlights significant regional variations in GDM prevalence, with the highest rate in the Middle East, North Africa, and South-East Asia regions. These regional variations may have an impact on the epidemiology of SCZ. Furthermore, this review identifies the potential biological and environmental mechanisms underlying these associations. There is a bidirectional relationship between GDM and SCZ, with each disorder potentially exacerbating the others. This relationship has significant implications for maternal and offspring health, particularly in regions with high GDM prevalence. These findings underline the need for integrated care approaches for women with SCZ during pregnancy and the importance of monitoring and managing GDM to mitigate the risk of SCZ in the offspring. Notably, this study recognizes the need for further research to fully understand these complex interactions and their implications for healthcare.
Collapse
Affiliation(s)
- Kholoud A. Ghamri
- Department of Internal Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
11
|
Sadri I, Nikookheslat SD, Karimi P, Khani M, Nadimi S. Aerobic exercise training improves memory function through modulation of brain-derived neurotrophic factor and synaptic proteins in the hippocampus and prefrontal cortex of type 2 diabetic rats. J Diabetes Metab Disord 2024; 23:849-858. [PMID: 38932906 PMCID: PMC11196465 DOI: 10.1007/s40200-023-01360-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/23/2023] [Indexed: 06/28/2024]
Abstract
Aims/Introduction Defective insulin signaling in the brain may disrupt hippocampal neuroplasticity resulting in learning and memory impairments. Thus, this study investigated the effect of aerobic exercise training on cognitive function and synaptic protein markers in diabetic rats. Materials and methods Twenty male Wistar rats (200-250 g), were fed on high-fat diet and received a low dose of streptozotocin (35 mg/kg, i.p) to induce type 2 diabetes. Then diabetic animals were randomly divided into sedentary and training groups. The exercise training program was treadmill running at 27 m/min for 60 min/day for 8 weeks. One day after the last training session, Morris Water Maze (MWM) task was performed to evaluate spatial learning and memory. Then, the hippocamp and prefrontal cortex tissues were instantly dissected for immunoblotting assay of BDNF, GSK-3β, p-GSK-3β, P38, p-P38, ERK1/2, p-ERK1/2, heat shock protein-27 (HSP27), SNAP-25, synaptophysin, and PSD-95. Independent t-test analysis and two-way ANOVA was used to determine the differences under significance level of 0.05 using the 26th version of IBM SPSS statistical software. Results The results showed that aerobic exercise improved memory as assessed in the MWM task. Moreover, aerobic exercise up-regulated HSP27 and BDNF protein levels in the prefrontal cortex, and hippocampus coincided with robust elevations in SNAP25 and PSD-95 levels. Moreover, exercise reduced phosphorylated P38, while increased p-ERK1/2 and p-GSK-3β (p). Conclusion Our findings suggest that aerobic exercise may debilitate the harmful effects of diabetes on the cognitive function possibly through enhancing synaptic protein markers.
Collapse
Affiliation(s)
- Iraj Sadri
- Department of Physical Education and Sports Sciences, Islamic Azad University, Shabestar Branch, Shabestar, 5381637181 Iran
| | - Saeid Dabbagh Nikookheslat
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tabriz, 29 Bahman Blvd, Tabriz, 5166616471 Iran
| | - Pouran Karimi
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Khani
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tabriz, 29 Bahman Blvd, Tabriz, 5166616471 Iran
| | - Sanaz Nadimi
- Department of Chemistry and Biochemistry, Faculty of Science, University of Windsor, Windsor, ON Canada
| |
Collapse
|
12
|
Ghaderi S, Gholipour P, Komaki A, Shahidi S, Seif F, Bahrami-Tapehebur M, Salehi I, Zarei M, Sarihi A, Rashno M. Underlying mechanisms behind the neuroprotective effect of vanillic acid against diabetes-associated cognitive decline: An in vivo study in a rat model. Phytother Res 2024; 38:1262-1277. [PMID: 38185917 DOI: 10.1002/ptr.8111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/01/2023] [Accepted: 12/16/2023] [Indexed: 01/09/2024]
Abstract
Hippocampal synaptic dysfunction, oxidative stress, neuroinflammation, and neuronal loss play critical roles in the pathophysiology of diabetes-associated cognitive decline (DACD). The study aimed to investigate the effects of vanillic acid (VA), a phenolic compound, against DACD and explore the potential underlying mechanisms. Following confirmation of diabetes, rats were treated with VA (50 mg/kg/day; P.O.) or insulin (6 IU/rat/day; S.C.) for 8 consecutive weeks. The cognitive performance of the rats was evaluated using passive-avoidance and water-maze tasks. Long-term potentiation (LTP) was induced at hippocampal dentate gyrus (DG) synapses in response to high-frequency stimulation (HFS) applied to the perforant pathway (PP) to evaluate synaptic plasticity. Oxidative stress factors, inflammatory markers, and histological changes were evaluated in the rat hippocampus. This study showed that streptozotocin (STZ)-induced diabetes caused cognitive decline that was associated with inhibition of LTP induction, suppression of enzymatic antioxidant activities, enhanced lipid peroxidation, elevated levels of inflammatory proteins, and neuronal loss. Interestingly, chronic treatment with VA alleviated blood glucose levels, improved cognitive decline, ameliorated LTP impairment, modulated oxidative-antioxidative status, inhibited inflammatory response, and prevented neuronal loss in diabetic rats at a level comparable to insulin therapy. The results suggest that the antihyperglycemic, antioxidative, anti-inflammatory, and neuroplastic properties of VA may be the mechanisms behind its neuroprotective effect against DACD.
Collapse
Affiliation(s)
- Shahab Ghaderi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Parsa Gholipour
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Siamak Shahidi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Faezeh Seif
- Department of Basic Sciences, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| | - Mohammad Bahrami-Tapehebur
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Iraj Salehi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Zarei
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolrahman Sarihi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | | |
Collapse
|
13
|
Mohamed-Mohamed H, García-Morales V, Sánchez Lara EM, González-Acedo A, Pardo-Moreno T, Tovar-Gálvez MI, Melguizo-Rodríguez L, Ramos-Rodríguez JJ. Physiological Mechanisms Inherent to Diabetes Involved in the Development of Dementia: Alzheimer's Disease. Neurol Int 2023; 15:1253-1272. [PMID: 37873836 PMCID: PMC10594452 DOI: 10.3390/neurolint15040079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 10/25/2023] Open
Abstract
Type 2 diabetes mellitus (T2D) is a metabolic disease reaching pandemic levels worldwide. In parallel, Alzheimer's disease (AD) and vascular dementia (VaD) are the two leading causes of dementia in an increasingly long-living Western society. Numerous epidemiological studies support the role of T2D as a risk factor for the development of dementia. However, few basic science studies have focused on the possible mechanisms involved in this relationship. On the other hand, this review of the literature also aims to explore the relationship between T2D, AD and VaD. The data found show that there are several alterations in the central nervous system that may be promoting the development of T2D. In addition, there are some mechanisms by which T2D may contribute to the development of neurodegenerative diseases such as AD or VaD.
Collapse
Affiliation(s)
- Himan Mohamed-Mohamed
- Department of Physiology, Faculty of Health Sciences of Ceuta, University of Granada, 51001 Ceuta, Spain
| | - Victoria García-Morales
- Physiology Area, Department of Biomedicine, Biotechnology and Public Health, Faculty of Medicine, University of Cádiz, Pl. Falla, 9, 11003 Cádiz, Spain
| | - Encarnación María Sánchez Lara
- Department of Personalidad, Evaluación y Tratamiento Psicológico, Faculty of Health Sciences (Ceuta), University of Granada, 51001 Ceuta, Spain;
| | - Anabel González-Acedo
- Department of Nursing, Faculty of Health Sciences of Ceuta, University of Granada, 51001 Ceuta, Spain
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, 18016 Granada, Spain
| | - Teresa Pardo-Moreno
- Department of Nursing, Faculty of Health Sciences of Ceuta, University of Granada, 51001 Ceuta, Spain
| | - María Isabel Tovar-Gálvez
- Department of Nursing, Faculty of Health Sciences of Ceuta, University of Granada, 51001 Ceuta, Spain
| | - Lucía Melguizo-Rodríguez
- Department of Nursing, Faculty of Health Sciences of Ceuta, University of Granada, 51001 Ceuta, Spain
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, 18016 Granada, Spain
| | - Juan José Ramos-Rodríguez
- Department of Physiology, Faculty of Health Sciences of Ceuta, University of Granada, 51001 Ceuta, Spain
| |
Collapse
|
14
|
Tang LTH, Lee GA, Cook SJ, Ho J, Potter CC, Bülow HE. Anatomical restructuring of a lateralized neural circuit during associative learning by asymmetric insulin signaling. Curr Biol 2023; 33:3835-3850.e6. [PMID: 37591249 PMCID: PMC10639090 DOI: 10.1016/j.cub.2023.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023]
Abstract
Studies of neuronal connectivity in model organisms, i.e., of their connectomes, have been instrumental in dissecting the structure-function relationship of nervous systems. However, the limited sample size of these studies has impeded analyses into how variation of connectivity across populations may influence circuit architecture and behavior. Moreover, little is known about how experiences induce changes in circuit architecture. Here, we show that an asymmetric salt-sensing circuit in the nematode Caenorhabditis elegans exhibits variation that predicts the animals' salt preferences and undergoes restructuring during salt associative learning. Naive worms memorize and prefer the salt concentration they experience in the presence of food through a left-biased neural network architecture. However, animals conditioned at elevated salt concentrations change this left-biased network to a right-biased network. This change in circuit architecture occurs through the addition of new synapses in response to asymmetric, paracrine insulin signaling. Therefore, experience-dependent changes in an animal's neural connectome are induced by insulin signaling and are fundamental to learning and behavior.
Collapse
Affiliation(s)
- Leo T H Tang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Garrett A Lee
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Steven J Cook
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jacquelin Ho
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Cassandra C Potter
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Hannes E Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
15
|
Monney M, Jornayvaz FR, Gariani K. GLP-1 receptor agonists effect on cognitive function in patients with and without type 2 diabetes. DIABETES & METABOLISM 2023; 49:101470. [PMID: 37657738 DOI: 10.1016/j.diabet.2023.101470] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 09/03/2023]
Abstract
Glucagon-like peptide 1 (GLP-1) is a hormone of the incretin family, secreted in response to nutrient ingestion, and plays a role in metabolic homeostasis. GLP-1 receptor agonist has a peripheral and a central action, including stimulation of glucose-dependent insulin secretion and insulin biosynthesis, inhibition of glucagon secretion and gastric emptying, and inhibition of food intake. Through their mechanism, their use in the treatment of type 2 diabetes has been extended to the management of obesity, and numerous trials are being conducted to assess their cardiovascular effect. Type 2 diabetes appears to share common pathophysiological mechanisms with the development of cognitive disorders, such as Alzheimer's and Parkinson's disease, related to insulin resistance. In this review, we aim to examine the pathological features between type 2 diabetes and dementia, GLP-1 central effects, and analyze the relevant literature about the effect of GLP-1 analogs on cognitive function of patients with type 2 diabetes but also without. Results tends to show an improvement in some brain markers (e.g. hippocampal connections, cerebral glucose metabolism, hippocampal activation on functional magnetic resonance imaging), but without being able to demonstrate a strong correlation to cognitive scores. Some epidemiological studies suggest that GLP-1 receptor agonists may offer a protective effect, by delaying progression to dementia when diabetic patients are treated with GLP-1 receptor agonists. Ongoing trials are in progress and may provide disease-modifying care for Alzheimer's disease and Parkinson's disease patients in the future.
Collapse
Affiliation(s)
- Marine Monney
- Division of General Internal Medicine, Department of Medicine, Geneva University Hospitals, Geneva 1211, Switzerland.
| | - François R Jornayvaz
- Division of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Department of Medical Specialties, Geneva University Hospitals, Geneva 1211, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland; Department of Cell Physiology and Metabolism, Centre Medical Universitaire (CMU), Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Karim Gariani
- Division of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Department of Medical Specialties, Geneva University Hospitals, Geneva 1211, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland
| |
Collapse
|
16
|
Bigio B, Sagi Y, Barnhill O, Dobbin J, El Shahawy O, de Angelis P, Nasca C. Epigenetic embedding of childhood adversity: mitochondrial metabolism and neurobiology of stress-related CNS diseases. Front Mol Neurosci 2023; 16:1183184. [PMID: 37564785 PMCID: PMC10411541 DOI: 10.3389/fnmol.2023.1183184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/21/2023] [Indexed: 08/12/2023] Open
Abstract
This invited article ad memoriam of Bruce McEwen discusses emerging epigenetic mechanisms underlying the long and winding road from adverse childhood experiences to adult physiology and brain functions. The conceptual framework that we pursue suggest multidimensional biological pathways for the rapid regulation of neuroplasticity that utilize rapid non-genomic mechanisms of epigenetic programming of gene expression and modulation of metabolic function via mitochondrial metabolism. The current article also highlights how applying computational tools can foster the translation of basic neuroscience discoveries for the development of novel treatment models for mental illnesses, such as depression to slow the clinical manifestation of Alzheimer's disease. Citing an expression that many of us heard from Bruce, while "It is not possible to roll back the clock," deeper understanding of the biological pathways and mechanisms through which stress produces a lifelong vulnerability to altered mitochondrial metabolism can provide a path for compensatory neuroplasticity. The newest findings emerging from this mechanistic framework are among the latest topics we had the good fortune to discuss with Bruce the day before his sudden illness when walking to a restaurant in a surprisingly warm evening that preluded the snowstorm on December 18th, 2019. With this article, we wish to celebrate Bruce's untouched love for Neuroscience.
Collapse
Affiliation(s)
- Benedetta Bigio
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
| | - Yotam Sagi
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Olivia Barnhill
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, New York, NY, United States
| | - Josh Dobbin
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, New York, NY, United States
| | - Omar El Shahawy
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, United States
| | - Paolo de Angelis
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, New York, NY, United States
| | - Carla Nasca
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, New York, NY, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
17
|
Leung A, Rangamani P. Computational modeling of AMPK and mTOR crosstalk in glutamatergic synapse calcium signaling. NPJ Syst Biol Appl 2023; 9:34. [PMID: 37460570 DOI: 10.1038/s41540-023-00295-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/29/2023] [Indexed: 07/20/2023] Open
Abstract
Neuronal energy consumption is vital for information processing and memory formation in synapses. The brain consists of just 2% of the human body's mass, but consumes almost 20% of the body's energy budget. Most of this energy is attributed to active transport in ion signaling, with calcium being the canonical second messenger of synaptic transmission. Here, we develop a computational model of synaptic signaling resulting in the activation of two protein kinases critical in metabolic regulation and cell fate, AMP-Activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) and investigate the effect of glutamate stimulus frequency on their dynamics. Our model predicts that frequencies of glutamate stimulus over 10 Hz perturb AMPK and mTOR oscillations at higher magnitudes by up to 36% and change the area under curve (AUC) by 5%. This dynamic difference in AMPK and mTOR activation trajectories potentially differentiates high frequency stimulus bursts from basal neuronal signaling leading to a downstream change in synaptic plasticity. Further, we also investigate the crosstalk between insulin receptor and calcium signaling on AMPK and mTOR activation and predict that the pathways demonstrate multistability dependent on strength of insulin signaling and metabolic consumption rate. Our predictions have implications for improving our understanding of neuronal metabolism, synaptic pruning, and synaptic plasticity.
Collapse
Affiliation(s)
- A Leung
- Chemical Engineering Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - P Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
18
|
Gladding JM, Lingawi NW, Leung BK, Kendig MD, Chieng BC, Laurent V. High fat diet allows food-predictive stimuli to energize action performance in the absence of hunger, without distorting insulin signaling on accumbal cholinergic interneurons. Appetite 2023:106769. [PMID: 37399905 DOI: 10.1016/j.appet.2023.106769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Obesity can disrupt how food-predictive stimuli control action performance and selection. These two forms of control recruit cholinergic interneurons (CIN) located in the nucleus accumbens core (NAcC) and shell (NAcS), respectively. Given that obesity is associated with insulin resistance in this region, we examined whether interfering with CIN insulin signaling disrupts how food-predictive stimuli control actions. To interfere with insulin signaling we used a high-fat diet (HFD) or genetic excision of insulin receptor (InsR) from cholinergic cells. HFD left intact the capacity of food-predictive stimuli to energize performance of an action earning food when mice were tested hungry. However, it allowed this energizing effect to persist when the mice were tested sated. This persistence was linked to NAcC CIN activity but was not associated with distorted CIN insulin signaling. Accordingly, InsR excision had no effect on how food-predicting stimuli control action performance. Next, we found that neither HFD nor InsR excision altered the capacity of food-predictive stimuli to guide action selection. Yet, this capacity was associated with changes in NAcS CIN activity. These results indicate that insulin signaling on accumbal CIN does not modulate how food-predictive stimuli control action performance and selection. However, they show that HFD allows food-predictive stimuli to energize performance of an action earning food in the absence of hunger.
Collapse
Affiliation(s)
- Joanne M Gladding
- Decision Neuroscience Laboratory, School of Psychology, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Nura W Lingawi
- Decision Neuroscience Laboratory, School of Psychology, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Beatrice K Leung
- Decision Neuroscience Laboratory, School of Psychology, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Michael D Kendig
- Brain & Behaviour Group, School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Billy C Chieng
- Decision Neuroscience Laboratory, School of Psychology, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Vincent Laurent
- Decision Neuroscience Laboratory, School of Psychology, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
19
|
Wu S, Stogios N, Hahn M, Navagnanavel J, Emami Z, Chintoh A, Gerretsen P, Graff-Guerrero A, Rajji TK, Remington G, Agarwal SM. Outcomes and clinical implications of intranasal insulin on cognition in humans: A systematic review and meta-analysis. PLoS One 2023; 18:e0286887. [PMID: 37379265 DOI: 10.1371/journal.pone.0286887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Aberrant brain insulin signaling has been posited to lie at the crossroads of several metabolic and cognitive disorders. Intranasal insulin (INI) is a non-invasive approach that allows investigation and modulation of insulin signaling in the brain while limiting peripheral side effects. OBJECTIVES The objective of this systematic review and meta-analysis is to evaluate the effects of INI on cognition in diverse patient populations and healthy individuals. METHODS MEDLINE, EMBASE, PsycINFO, and Cochrane CENTRAL were systematically searched from 2000 to July 2021. Eligible studies were randomized controlled trials that studied the effects of INI on cognition. Two independent reviewers determined study eligibility and extracted relevant descriptive and outcome data. RESULTS Twenty-nine studies (pooled N = 1,726) in healthy individuals as well as those with Alzheimer's disease (AD)/mild cognitive impairment (MCI), mental health disorders, metabolic disorders, among others, were included in the quantitative meta-analysis. Patients with AD/MCI treated with INI were more likely to show an improvement in global cognition (SMD = 0.22, 95% CI: 0.05-0.38 p = <0.00001, N = 12 studies). Among studies with healthy individuals and other patient populations, no significant effects of INI were found for global cognition. CONCLUSIONS This review demonstrates that INI may be associated with pro-cognitive benefits for global cognition, specifically for individuals with AD/MCI. Further studies are required to better understand the neurobiological mechanisms and differences in etiology to dissect the intrinsic and extrinsic factors contributing to the treatment response of INI.
Collapse
Affiliation(s)
- Sally Wu
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Nicolette Stogios
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Margaret Hahn
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Canada
| | | | - Zahra Emami
- Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Araba Chintoh
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Philip Gerretsen
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
| | - Ariel Graff-Guerrero
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
| | - Tarek K Rajji
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Toronto Dementia Research Alliance, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Gary Remington
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Sri Mahavir Agarwal
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Canada
| |
Collapse
|
20
|
Gulyaeva NV. Glucocorticoids Orchestrate Adult Hippocampal Plasticity: Growth Points and Translational Aspects. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:565-589. [PMID: 37331704 DOI: 10.1134/s0006297923050012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/10/2023] [Accepted: 04/10/2023] [Indexed: 06/20/2023]
Abstract
The review analyzes modern concepts about the control of various mechanisms of the hippocampal neuroplasticity in adult mammals and humans by glucocorticoids. Glucocorticoid hormones ensure the coordinated functioning of key components and mechanisms of hippocampal plasticity: neurogenesis, glutamatergic neurotransmission, microglia and astrocytes, systems of neurotrophic factors, neuroinflammation, proteases, metabolic hormones, neurosteroids. Regulatory mechanisms are diverse; along with the direct action of glucocorticoids through their receptors, there are conciliated glucocorticoid-dependent effects, as well as numerous interactions between various systems and components. Despite the fact that many connections in this complex regulatory scheme have not yet been established, the study of the factors and mechanisms considered in the work forms growth points in the field of glucocorticoid-regulated processes in the brain and primarily in the hippocampus. These studies are fundamentally important for the translation into the clinic and the potential treatment/prevention of common diseases of the emotional and cognitive spheres and respective comorbid conditions.
Collapse
Affiliation(s)
- Natalia V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia.
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, Moscow, 115419, Russia
| |
Collapse
|
21
|
From Determining Brain Insulin Resistance in a Sporadic Alzheimer's Disease Model to Exploring the Region-Dependent Effect of Intranasal Insulin. Mol Neurobiol 2023; 60:2005-2023. [PMID: 36596966 DOI: 10.1007/s12035-022-03188-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 12/25/2022] [Indexed: 01/05/2023]
Abstract
Impaired response to insulin has been linked to many neurodegenerative disorders like Alzheimer's disease (AD). Animal model of sporadic AD has been developed by intracerebroventricular (icv) administration of streptozotocin (STZ), which given peripherally causes insulin resistance. Difficulty in demonstrating insulin resistance in this model led to our aim: to determine brain regional and peripheral response after intranasal (IN) administration of insulin in control and STZ-icv rats, by exploring peripheral and central metabolic parameters. One month after STZ-icv or vehicle-icv administration to 3-month-old male Wistar rats, cognitive status was determined after which rats received 2 IU of fast-acting insulin aspart intranasally (CTR + INS; STZ + INS) or saline only (CTR and STZ). Rats were sacrificed 2 h after administration and metabolic and glutamatergic parameters were measured in plasma, CSF, and the brain. Insulin and STZ increased amyloid-β concentration in plasma (CTR + INS and STZ vs CTR), while there was no effect on glucose and insulin plasma and CSF levels. INS normalized the levels of c-fos in temporal cortex of STZ + INS vs STZ (co-localized with neurons), while hypothalamic c-fos was found co-localized with the microglial marker. STZ and insulin brain region specifically altered the levels and activity of proteins involved in cell metabolism and glutamate signaling. Central changes found after INS in STZ-icv rats suggest hippocampal and cortical insulin sensitivity. Altered hypothalamic metabolic parameters of STZ-icv rats were not normalized by INS, indicating possible hypothalamic insulin insensitivity. Brain insulin sensitivity depends on the affected brain region and presence of metabolic dysfunction induced by STZ-icv administration.
Collapse
|
22
|
Noguera Hurtado H, Gresch A, Düfer M. NMDA receptors - regulatory function and pathophysiological significance for pancreatic beta cells. Biol Chem 2023; 404:311-324. [PMID: 36626848 DOI: 10.1515/hsz-2022-0236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/29/2022] [Indexed: 01/11/2023]
Abstract
Due to its unique features amongst ionotropic glutamate receptors, the NMDA receptor is of special interest in the physiological context but even more as a drug target. In the pathophysiology of metabolic disorders, particularly type 2 diabetes mellitus, there is evidence that NMDA receptor activation contributes to disease progression by impairing beta cell function. Consequently, channel inhibitors are suggested for treatment, but up to now there are many unanswered questions about the signaling pathways NMDA receptors are interfering with in the islets of Langerhans. In this review we give an overview about channel structure and function with special regard to the pancreatic beta cells and the regulation of insulin secretion. We sum up which signaling pathways from brain research have already been transferred to the beta cell, and what still needs to be proven. The main focus is on the relationship between an over-stimulated NMDA receptor and the production of reactive oxygen species, the amount of which is crucial for beta cell function. Finally, pilot studies using NMDA receptor blockers to protect the islet from dysfunction are reviewed and future perspectives for the use of such compounds in the context of impaired glucose homeostasis are discussed.
Collapse
Affiliation(s)
- Héctor Noguera Hurtado
- Institute of Pharmaceutical and Medicinal Chemistry, Department of Pharmacology, University of Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Anne Gresch
- Institute of Pharmaceutical and Medicinal Chemistry, Department of Pharmacology, University of Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Martina Düfer
- Institute of Pharmaceutical and Medicinal Chemistry, Department of Pharmacology, University of Münster, Corrensstraße 48, D-48149 Münster, Germany
| |
Collapse
|
23
|
Actions and Consequences of Insulin in the Striatum. Biomolecules 2023; 13:biom13030518. [PMID: 36979453 PMCID: PMC10046598 DOI: 10.3390/biom13030518] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/14/2023] Open
Abstract
Insulin crosses the blood–brain barrier to enter the brain from the periphery. In the brain, insulin has well-established actions in the hypothalamus, as well as at the level of mesolimbic dopamine neurons in the midbrain. Notably, insulin also acts in the striatum, which shows abundant expression of insulin receptors (InsRs) throughout. These receptors are found on interneurons and striatal projections neurons, as well as on glial cells and dopamine axons. A striking functional consequence of insulin elevation in the striatum is promoting an increase in stimulated dopamine release. This boosting of dopamine release involves InsRs on cholinergic interneurons, and requires activation of nicotinic acetylcholine receptors on dopamine axons. Opposing this dopamine-enhancing effect, insulin also increases dopamine uptake through the action of insulin at InsRs on dopamine axons. Insulin acts on other striatal cells as well, including striatal projection neurons and astrocytes that also influence dopaminergic transmission and striatal function. Linking these cellular findings to behavior, striatal insulin signaling is required for the development of flavor–nutrient learning, implicating insulin as a reward signal in the brain. In this review, we discuss these and other actions of insulin in the striatum, including how they are influenced by diet and other physio-logical states.
Collapse
|
24
|
Knezovic A, Piknjac M, Osmanovic Barilar J, Babic Perhoc A, Virag D, Homolak J, Salkovic-Petrisic M. Association of Cognitive Deficit with Glutamate and Insulin Signaling in a Rat Model of Parkinson's Disease. Biomedicines 2023; 11:683. [PMID: 36979662 PMCID: PMC10045263 DOI: 10.3390/biomedicines11030683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/09/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
Cognitive deficit is a frequent non-motor symptom in Parkinson's disease (PD) with an unclear pathogenesis. Recent research indicates possible involvement of insulin resistance and glutamate excitotoxicity in PD development. We investigated cognitive performance and the brain glutamate and insulin signaling in a rat model of PD induced by bilateral intrastriatal injection of 6-hydroxydopamine (6-OHDA). Cognitive functions were assessed with Passive Avoidance (PA) and Morris Water Maze (MWM) tests. The expression of tyrosine hydroxylase (TH) and proteins involved in insulin (insulin receptor - IR, phosphoinositide 3 kinase - pI3K, extracellular signal-regulated kinases-ERK) and glutamate receptor (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptos-AMPAR, N-methyl-D-aspartate receptor - NMDAR) signaling was assessed in the hippocampus (HPC), hypothalamus (HPT) and striatum (S) by immunofluorescence, Western blot and enzyme-linked immunosorbent assay (ELISA). Three months after 6-OHDA treatment, cognitive deficit was accompanied by decreased AMPAR activity and TH levels (HPC, S), while levels of the proteins involved in insulin signaling remained largely unchanged. Spearman's rank correlation revealed a strong positive correlation for pAMPAR-PA (S), pNMDAR-pI3K (HPC) and pNMDAR-IR (all regions). Additionally, a positive correlation was found for TH-ERK and TH-pI3K, and a negative one for TH-MWM/errors and pI3K-MWM/time (S). These results suggest a possible association between brain glutamate (but not insulin) signaling dysfunction and cognitive deficit in a rat PD model, detected three months after 6-OHDA treatment.
Collapse
Affiliation(s)
- Ana Knezovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Marija Piknjac
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Jelena Osmanovic Barilar
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ana Babic Perhoc
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Davor Virag
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Jan Homolak
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Melita Salkovic-Petrisic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
25
|
Bao H, Shen Y. Unmasking BACE1 in aging and age-related diseases. Trends Mol Med 2023; 29:99-111. [PMID: 36509631 DOI: 10.1016/j.molmed.2022.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/14/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022]
Abstract
The beta-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) has long been considered a conventional target for Alzheimer's disease (AD). Unfortunately, AD clinical trials of most BACE1 inhibitors were discontinued due to ineffective cognitive improvement or safety challenges. Recent studies investigating the involvement of BACE1 in metabolic, vascular, and immune functions have indicated a role in aging, diabetes, hypertension, and cancer. These novel BACE1 functions have helped to identify new 'druggable' targets for BACE1 against aging comorbidities. In this review, we discuss BACE1 regulation during aging, and then provide recent insights into its enzymatic and nonenzymatic involvement in aging and age-related diseases. Our study not only proposes the perspective of BACE1's actions in various systems, but also provides new directions for using BACE1 inhibitors and modulators to delay aging and to treat age-related diseases.
Collapse
Affiliation(s)
- Hong Bao
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yong Shen
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Provincial Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, 230026, China; CAS Key Laboratory of Brain Function and Disease, Division of Biological and Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
26
|
Lin S, Chen C, Ouyang P, Cai Z, Liu X, Abdurahman A, Peng J, Li Y, Zhang Z, Song GL. SELENOM Knockout Induces Synaptic Deficits and Cognitive Dysfunction by Influencing Brain Glucose Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1607-1619. [PMID: 36635091 DOI: 10.1021/acs.jafc.2c07491] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Selenium, a trace element associated with memory impairment and glucose metabolism, mainly exerts its function through selenoproteins. SELENOM is a selenoprotein located in the endoplasmic reticulum (ER) lumen. Our study demonstrates for the first time that SELENOM knockout decreases synaptic plasticity and causes memory impairment in 10-month-old mice. In addition, SELENOM knockout causes hyperglycaemia and disturbs glucose metabolism, which is essential for synapse formation and transmission in the brain. Further research reveals that SELENOM knockout leads to inhibition of the brain insulin signaling pathway [phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR/p70 S6 kinase pathway], which may impair synaptic plasticity in mice. High-fat diet (HFD) feeding suppresses the brain insulin signaling pathway in SELENOM knockout mice and leads to earlier onset of cognitive impairment at 5 months of age. In general, our study demonstrates that SELENOM knockout induces synaptic deficits via the brain insulin signaling pathway, thus leading to cognitive dysfunction in mice. These data strongly suggest that SELENOM plays a vital role in brain glucose metabolism and contributes substantially to synaptic plasticity.
Collapse
Affiliation(s)
- Shujing Lin
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong518060, People's Republic of China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong518000, People's Republic of China
| | - Chen Chen
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong518060, People's Republic of China
| | - Pei Ouyang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong518060, People's Republic of China
| | - Zhiyu Cai
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong518060, People's Republic of China
| | - Xibei Liu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong518060, People's Republic of China
| | - Anwar Abdurahman
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong518060, People's Republic of China
| | - Jiaying Peng
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong518060, People's Republic of China
| | - Yu Li
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong518060, People's Republic of China
| | - Zhonghao Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong518060, People's Republic of China
| | - Guo-Li Song
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong518060, People's Republic of China
- Shenzhen Bay Laboratory, Shenzhen, Guangdong518000, People's Republic of China
| |
Collapse
|
27
|
Huang XY, Xue LL, Chen TB, Huangfu LR, Wang TH, Xiong LL, Yu CY. Miracle fruit seed as a potential supplement for the treatment of learning and memory disorders in Alzheimer's disease. Front Pharmacol 2023; 13:1080753. [PMID: 36712676 PMCID: PMC9873977 DOI: 10.3389/fphar.2022.1080753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Currently, the treatment of Alzheimer's disease (AD) is still at the stage of symptomatic treatment due to lack of effective drugs. The research on miracle fruit seeds (MFSs) has focused on lipid-lowering and antidiabetic effects, but no therapeutic effects have been reported in AD. The purpose of this study was to provide data resources and a potential drug for treatment of AD. An AD mouse model was established and treated with MFSs for 1 month. The Morris water maze test was used to assess learning memory function in mice. Nissl staining was used to demonstrate histopathological changes. MFSs were found to have therapeutic implications in the AD mouse model, as evidenced by improved learning memory function and an increase in surviving neurons. To explore the mechanism of MFSs in treating AD, network pharmacological approaches, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and molecular docking studies were carried out. Based on the network pharmacology strategy, 74 components from MFS corresponded to 293 targets related to the AD pathology. Among these targets, AKT1, MAPK3, ESR1, PPARG, PTGS2, EGFR, PPARA, CNR1, ABCB1, and MAPT were identified as the core targets. According to the relevant number of core targets, cis-8-octadecenoic acid, cis-10-octadecenoic acid, 2-dodecenal, and tetradecane are likely to be highly correlated with MFS for AD. Enrichment analysis indicated the common targets mainly enriched in AD and the neurodegeneration-multiple disease signaling pathway. The molecular docking predictions showed that MFSs were stably bound to core targets, specifically AKT1, EGFR, ESR1, PPARA, and PPARG. MFSs may play a therapeutic role in AD by affecting the insulin signaling pathway and the Wnt pathway. The findings of this study provide potential possibilities and drug candidates for the treatment of AD.
Collapse
Affiliation(s)
- Xue-Yan Huang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Lu-Lu Xue
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Ting-Bao Chen
- Laboratory Animal Department, Kunming Medical University, Kunming, Yunnan, China
| | - Li-Ren Huangfu
- Laboratory Animal Department, Kunming Medical University, Kunming, Yunnan, China
| | - Ting-Hua Wang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
- Laboratory Animal Department, Kunming Medical University, Kunming, Yunnan, China
| | - Liu-Lin Xiong
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Chang-Yin Yu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
28
|
Cornuti S, Chen S, Lupori L, Finamore F, Carli F, Samad M, Fenizia S, Caldarelli M, Damiani F, Raimondi F, Mazziotti R, Magnan C, Rocchiccioli S, Gastaldelli A, Baldi P, Tognini P. Brain histone beta-hydroxybutyrylation couples metabolism with gene expression. Cell Mol Life Sci 2023; 80:28. [PMID: 36607453 PMCID: PMC11072080 DOI: 10.1007/s00018-022-04673-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023]
Abstract
Little is known about the impact of metabolic stimuli on brain tissue at a molecular level. The ketone body beta-hydroxybutyrate (BHB) can be a signaling molecule regulating gene transcription. Thus, we assessed lysine beta-hydroxybutyrylation (K-bhb) levels in proteins extracted from the cerebral cortex of mice undergoing a ketogenic metabolic challenge (48 h fasting). We found that fasting enhanced K-bhb in a variety of proteins including histone H3. ChIP-seq experiments showed that K9 beta-hydroxybutyrylation of H3 (H3K9-bhb) was significantly enriched by fasting on more than 8000 DNA loci. Transcriptomic analysis showed that H3K9-bhb on enhancers and promoters correlated with active gene expression. One of the most enriched functional annotations both at the epigenetic and transcriptional level was "circadian rhythms''. Indeed, we found that the diurnal oscillation of specific transcripts was modulated by fasting at distinct zeitgeber times both in the cortex and suprachiasmatic nucleus. Moreover, specific changes in locomotor activity daily features were observed during re-feeding after 48-h fasting. Thus, our results suggest that fasting remarkably impinges on the cerebral cortex transcriptional and epigenetic landscape, and BHB acts as a powerful epigenetic molecule in the brain through direct and specific histone marks remodeling in neural tissue cells.
Collapse
Affiliation(s)
- Sara Cornuti
- Bio@SNS Lab, Scuola Normale Superiore, Pisa, Italy
| | - Siwei Chen
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, CA, USA
| | | | - Francesco Finamore
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Fabrizia Carli
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Muntaha Samad
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, CA, USA
| | - Simona Fenizia
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Matteo Caldarelli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | | | - Raffaele Mazziotti
- Institute of Neuroscience, National Research Council, Pisa, Italy
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| | - Christophe Magnan
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, CA, USA
| | | | - Amalia Gastaldelli
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Pierre Baldi
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, CA, USA
| | - Paola Tognini
- Bio@SNS Lab, Scuola Normale Superiore, Pisa, Italy.
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.
| |
Collapse
|
29
|
Intranasal Administration of KYCCSRK Peptide Rescues Brain Insulin Signaling Activation and Reduces Alzheimer's Disease-like Neuropathology in a Mouse Model for Down Syndrome. Antioxidants (Basel) 2023; 12:antiox12010111. [PMID: 36670973 PMCID: PMC9854894 DOI: 10.3390/antiox12010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023] Open
Abstract
Down syndrome (DS) is the most frequent genetic cause of intellectual disability and is strongly associated with Alzheimer's disease (AD). Brain insulin resistance greatly contributes to AD development in the general population and previous studies from our group showed an early accumulation of insulin resistance markers in DS brain, already in childhood, and even before AD onset. Here we tested the effects promoted in Ts2Cje mice by the intranasal administration of the KYCCSRK peptide known to foster insulin signaling activation by directly interacting and activating the insulin receptor (IR) and the AKT protein. Therefore, the KYCCSRK peptide might represent a promising molecule to overcome insulin resistance. Our results show that KYCCSRK rescued insulin signaling activation, increased mitochondrial complexes levels (OXPHOS) and reduced oxidative stress levels in the brain of Ts2Cje mice. Moreover, we uncovered novel characteristics of the KYCCSRK peptide, including its efficacy in reducing DYRK1A (triplicated in DS) and BACE1 protein levels, which resulted in reduced AD-like neuropathology in Ts2Cje mice. Finally, the peptide elicited neuroprotective effects by ameliorating synaptic plasticity mechanisms that are altered in DS due to the imbalance between inhibitory vs. excitatory currents. Overall, our results represent a step forward in searching for new molecules useful to reduce intellectual disability and counteract AD development in DS.
Collapse
|
30
|
Yaribeygi H, Maleki M, Butler AE, Jamialahmadi T, Sahebkar A. Brain insulin signaling and cognition: Possible links. EXCLI JOURNAL 2023; 22:237-249. [PMID: 36998706 PMCID: PMC10043452 DOI: 10.17179/excli2023-5841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/09/2023] [Indexed: 04/01/2023]
Abstract
Poor cognitive ability is a consequence of a wide variety of neurobehavioral disorders and is a growing health problem, especially among the elderly and patients with diabetes. The precise underlying cause of this complication is not well-defined. However, recent studies have highlighted the possible role of insulin hormone signaling in brain tissue. Insulin is a metabolic peptide integral to whole body energy homeostasis; it does, however, have extrametabolic impacts, such as upon neuronal circuits. Therefore, it has been suggested that insulin signaling may modify cognitive ability by yet unknown pathways. In the current review, we discuss the cognitive role of brain insulin signaling and consider the possible links between brain insulin signaling and cognitive ability.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
- *To whom correspondence should be addressed: Habib Yaribeygi, Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran, E-mail:
| | - Mina Maleki
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alexandra E. Butler
- Research Department, Royal College of Surgeons in Ireland, Bahrain, PO Box 15503, Adliya, Bahrain
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
31
|
Jia R, Yuan X, Zhang X, Song P, Han S, Wang S, Li Y, Zhang S, Zhao X, Zhang Y, Cheng J, Song X. Oxidative stress impairs cognitive function by affecting hippocampal fimbria volume in drug-naïve, first-episode schizophrenia. Front Neurosci 2023; 17:1153439. [PMID: 37139526 PMCID: PMC10149877 DOI: 10.3389/fnins.2023.1153439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
Objective The aim of the present study was to explore influencing factors of cognitive impairments and their interrelationships in drug-naïve, first-episode schizophrenia (SCZ). Methods Patients with drug naïve, first episode SCZ and healthy controls (HCs) were enrolled. Cognitive function was assessed by the MATRICS Consensus Cognitive Battery (MCCB). Serum levels of oxidative stress indices, including folate, superoxide dismutase (SOD), uric acid (UA) and homocysteine (Hcy), were determined after an overnight fast. Hippocampal subfield volumes were measured using FreeSurfer. Mediation models were conducted using the SPSS PROCESS v3.4 macro. A false discovery rate (FDR) correction was applied for multiple comparisons. Results Sixty-seven patients with SCZ and 65 HCs were enrolled in our study. The patient group had significantly lower serum levels of folate and SOD and higher serum levels of HCY compared with the HCs (all p < 0.05). The patient group had a significantly smaller volume of the whole hippocampus than the HC group (p < 0.05). We also found significant volume differences between the two groups in the following subfields: CA1, molecular layer, GC-ML-DG and fimbria (all p < 0.05, uncorrected). The partial correlation analysis controlling for age and sex showed that the fimbria volume in the patient group was significantly positively associated with NAB scores (r = 0.382, pFDR = 0.024); serum levels of SOD in the patient group showed a significantly positive correlation with fimbria volume (r = 0.360, pFDR = 0.036). Mediation analyses controlling for age and sex showed that the serum levels of SOD in patients with SCZ had significant indirect effects on the NAB scores which were mediated by the fimbria volume [indirect effect = 0.0565, 95% CI from the bootstrap test excluding zero (0.0066 to 0.0891)]. Conclusion Oxidative stress, a reduction in hippocampal subfield volumes and cognitive impairments occur in early SCZ. Oxidative stress impairs cognitive function by affecting hippocampal subfield volumes.
Collapse
Affiliation(s)
- Rufei Jia
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Xiuxia Yuan
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Xiaoyun Zhang
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Peilun Song
- School of Information Engineering, Zhengzhou University, Zhengzhou, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuying Wang
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Yajun Li
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Siwei Zhang
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Xinyi Zhao
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Yu Zhang
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jingliang Cheng, ;10
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
- *Correspondence: Xueqin Song,
| |
Collapse
|
32
|
Ferrario CR, Finnell JE. Beyond the hypothalamus: roles for insulin as a regulator of neurotransmission, motivation, and feeding. Neuropsychopharmacology 2023; 48:232-233. [PMID: 35933517 PMCID: PMC9700669 DOI: 10.1038/s41386-022-01398-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Carrie R Ferrario
- Department of Pharmacology, Ann Arbor, MI, 48109, USA.
- Psychology Department (Biopsychology), University of Michigan, Ann Arbor, MI, 48109, USA.
| | | |
Collapse
|
33
|
Vratarić M, Šenk V, Bursać B, Gligorovska L, Ignjatović D, Kovačević S, Veličković N, Djordjevic A. Fructose diet ameliorate effects of macrophage migration inhibitory factor deficiency on prefrontal cortex inflammation, neural plasticity, and behavior in male mice. Biofactors 2023; 49:90-107. [PMID: 34767656 DOI: 10.1002/biof.1802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/26/2021] [Indexed: 12/11/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine that represents a link between diet-induced inflammation and insulin resistance. Our aim was to examine whether fructose diet affects inflammation and insulin signaling in the prefrontal cortex (PFC) of Mif knockout mice (MIF-KO), and their possible link to neural plasticity and behavior. We analyzed nuclear factor κB (NF-κB) and glucocorticoid signaling, expression of F4/80, IL-1β, TNF-α, TLR-4, MyD88, arginase 1 (Arg-1), mannose receptor (Mrc-1), and leukemia inhibitory factor (Lif) to assess inflammation in the PFC of C57/BL6J and MIF-KO mice consuming 20% fructose solution for 9 weeks. Insulin receptor (IR), IRS-1 serine phosphorylations (307 and 1101) and activity of PKCα, Akt, GSK-3β and AMPKα were used to analyze insulin signaling. Brain-derived neurotrophic factor (BDNF) and insulin-like growth factor 1 (IGF-1) mRNA levels, together with synapthophysin and PSD-95 protein level and calcium calmodulin-dependent kinase 2 (CaMKII) activity, were used as plasticity markers. Behavior was examined in elevated plus maze, light dark box and novel object recognition test. The results showed concomitant increase of Tnf-α, Tlr-4, MyD88 and M2 microglia markers (Arg-1, Mrc-1, Lif) in the PFC of MIF-KO, paralleled with unchanged glucocorticoid and insulin signaling. Increase of BDNF and IGF-1 was paralleled with increased CaMKII activity, decreased PSD-95 protein level, anxiogenic behavior, and impaired memory in MIF-KO mice. Fructose feeding restored these parameters in the PFC to the control level and mitigated behavioral changes, suggesting that ameliorating effects of fructose on neuroinflammation and behavior depend on the presence of MIF.
Collapse
Affiliation(s)
- Miloš Vratarić
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Vladimir Šenk
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Biljana Bursać
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ljupka Gligorovska
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Djurdjica Ignjatović
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Sanja Kovačević
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Nataša Veličković
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ana Djordjevic
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
34
|
de Almeida Faria ACR, Dall'Agnol JF, Gouveia AM, De Paiva CI, Segalla VC, Ogata FE, Baena CP. Cognitive Performance and Diabetic Retinopathy: What Your Eyes Can Reveal About Your Brain. Curr Diabetes Rev 2023; 19:e050822207323. [PMID: 35929625 PMCID: PMC10617788 DOI: 10.2174/1573399819666220805154638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/19/2022] [Accepted: 06/02/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Diabetic retinopathy (DR) is a chronic diabetes complication. People with Type 2 Diabetes Mellitus (T2DM) have two times the risk for dementia, suggesting it is a new chronic diabetes complication. OBJECTIVE Evaluate the association of DR with cognitive performance in a T2DM population. METHODS Cross-sectional study with 400 T2DM adults from whom socio-demographic, clinical, laboratory data were collected, and screening test for depression symptoms (Patient Health Questionaire- 9 (PHQ-9)), Mini-Mental State Examination (MMSE), Semantic Verbal Fluency Test, Trail Making Test A and B, Word Memory test were performed. All cognitive test scores were converted into Global Cognition z-Score (GCS(z)). The association between GCS(z) < 0 with DR was performed using a multivariate binary logistic regression model adjusted for age ≥ 65 years, school years ≤ 6 years, DM duration ≥ 10 years, depression symptoms score > 9 at PHQ-9, arterial hypertension, physical activity, diabetic retinopathy, macular edema, and cardiovascular disease. RESULTS After exclusions, the 251 eligible patients were 56.6% female, with a mean age of 61.1 (±9.8) years, DM duration of 12.6 (±8.9) years, and 7.6 (±4.2) years of school education. DR prevalence was 46.5%. Multivariate Logistic Regression Model showed an association between DR and GCS(z) < 0, with odds ratio (CI95%) of 2.50 (1.18-5.34), adjusted for age, low education level, arterial hypertension and depression symptoms (OD and CI95% respectively: 5.46(2.42-12.34); 12.19 (5.62-26.46); 2.55 (0.88-7.39); 3.53 (1.55-8.07)). CONCLUSION In this T2DM population, having DR increased the chance for worse cognitive performance even when adjusted for age, low education level, presence of arterial hypertension, and depression symptoms.
Collapse
Affiliation(s)
- Ana Cristina Ravazzani de Almeida Faria
- Postgraduate Program in Health Sciences, Pontifical Catholic University of Paraná, (PUCPR), Curitiba, Paraná, Brazil
- Department of Medicine, Pontifical Catholic University of Paraná (PUCPR), Curitiba, Paraná, Brazil
| | - Joceline Franco Dall'Agnol
- Postgraduate Program in Health Sciences, Pontifical Catholic University of Paraná, (PUCPR), Curitiba, Paraná, Brazil
| | - Aline Maciel Gouveia
- Department of Medicine, Pontifical Catholic University of Paraná (PUCPR), Curitiba, Paraná, Brazil
| | - Clara Inácio De Paiva
- Department of Medicine, Pontifical Catholic University of Paraná (PUCPR), Curitiba, Paraná, Brazil
| | | | | | - Cristina Pellegrino Baena
- Postgraduate Program in Health Sciences, Pontifical Catholic University of Paraná, (PUCPR), Curitiba, Paraná, Brazil
| |
Collapse
|
35
|
Shypshyna M, Kolesnyk O, Fedulova S, Veselovsky N. Insulin modulates the paired-pulse plasticity at glutamatergic synapses of hippocampal neurons under hypoinsulinemia. Front Cell Neurosci 2023; 17:1132325. [PMID: 37025701 PMCID: PMC10072261 DOI: 10.3389/fncel.2023.1132325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
Hypoinsulinemia is a pathological consequence of diabetes mellitus that can cause a number of complications of the central and peripheral nervous system. Dysfunction of signaling cascades of insulin receptors under insulin deficiency can contribute to the development of cognitive disorders associated with impaired synaptic plasticity properties. Earlier we have shown that hypoinsulinemia causes a shift of short-term plasticity in glutamatergic hippocampal synapses from facilitation to depression and apparently involves mechanisms of glutamate release probability reduction. Here we used the whole cell patch-clamp recording of evoked glutamatergic excitatory postsynaptic currents (eEPSCs) and the method of local extracellular electrical stimulation of a single presynaptic axon to investigate the effect of insulin (100 nM) on the paired-pulse plasticity at glutamatergic synapses of cultured hippocampal neurons under hypoinsulinemia. Our data indicate that under normoinsulinemia additional insulin enhances the paired-pulse facilitation (PPF) of eEPSCs in hippocampal neurons by stimulating the glutamate release in their synapses. Under hypoinsulinemia, insulin did not have a significant effect on the parameters of paired-pulse plasticity on neurons of PPF subgroup, which may indicate the development of insulin resistance, while the effect of insulin on PPD neurons indicates its ability to recover the form normoinsulinemia, including the increasing probability of plasticity to the control level in of glutamate release in their synapses.
Collapse
|
36
|
Bakker W, Imbernon M, Salinas CG, Moro Chao DH, Hassouna R, Morel C, Martin C, Leger C, Denis RG, Castel J, Peter A, Heni M, Maetzler W, Nielsen HS, Duquenne M, Schwaninger M, Lundh S, Johan Hogendorf WF, Gangarossa G, Secher A, Hecksher-Sørensen J, Pedersen TÅ, Prevot V, Luquet S. Acute changes in systemic glycemia gate access and action of GLP-1R agonist on brain structures controlling energy homeostasis. Cell Rep 2022; 41:111698. [PMID: 36417883 PMCID: PMC9715912 DOI: 10.1016/j.celrep.2022.111698] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 08/19/2022] [Accepted: 10/20/2022] [Indexed: 11/23/2022] Open
Abstract
Therapies based on glucagon-like peptide-1 (GLP-1) long-acting analogs and insulin are often used in the treatment of metabolic diseases. Both insulin and GLP-1 receptors are expressed in metabolically relevant brain regions, suggesting a cooperative action. However, the mechanisms underlying the synergistic actions of insulin and GLP-1R agonists remain elusive. In this study, we show that insulin-induced hypoglycemia enhances GLP-1R agonists entry in hypothalamic and area, leading to enhanced whole-body fat oxidation. Mechanistically, this phenomenon relies on the release of tanycyctic vascular endothelial growth factor A, which is selectively impaired after calorie-rich diet exposure. In humans, low blood glucose also correlates with enhanced blood-to-brain passage of insulin, suggesting that blood glucose gates the passage other energy-related signals in the brain. This study implies that the preventing hyperglycemia is important to harnessing the full benefit of GLP-1R agonist entry in the brain and action onto lipid mobilization and body weight loss.
Collapse
Affiliation(s)
- Wineke Bakker
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, 75013 Paris, France,Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark,Corresponding author
| | - Monica Imbernon
- University Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, EGID, UMR-S 1172, 59000 Lille, France
| | - Casper Gravesen Salinas
- Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark,Image Analysis & Computer Graphics, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark,Gubra ApS, Hørsholm Kongevej 11B, 2970 Hørsholm, Denmark
| | | | - Rim Hassouna
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, 75013 Paris, France
| | - Chloe Morel
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, 75013 Paris, France
| | - Claire Martin
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, 75013 Paris, France
| | - Caroline Leger
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, 75013 Paris, France
| | - Raphael G.P. Denis
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, 75013 Paris, France,Institut Cochin, Université Paris Cité, INSERM U1016, CNRS UMR 8104, 75014 Paris, France
| | - Julien Castel
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, 75013 Paris, France
| | - Andreas Peter
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany,German Center for Diabetes Research (DZD), Tübingen, Germany,Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Martin Heni
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University of Tübingen, Tübingen, Germany,Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany,German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Walter Maetzler
- Department of Neurodegenerative Diseases, Center of Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany,German Center for Neurodegenerative Diseases, Tübingen, Germany,Department of Neurology, University of Kiel, Kiel, Germany
| | | | - Manon Duquenne
- University Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, EGID, UMR-S 1172, 59000 Lille, France
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Sofia Lundh
- Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | | | - Giuseppe Gangarossa
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, 75013 Paris, France
| | - Anna Secher
- Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | - Jacob Hecksher-Sørensen
- Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark,Gubra ApS, Hørsholm Kongevej 11B, 2970 Hørsholm, Denmark
| | | | - Vincent Prevot
- University Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, EGID, UMR-S 1172, 59000 Lille, France
| | - Serge Luquet
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, 75013 Paris, France,Corresponding author
| |
Collapse
|
37
|
Cheng D, Lee JS, Brown M, Ebert MS, McGrath PT, Tomioka M, Iino Y, Bargmann CI. Insulin/IGF signaling regulates presynaptic glutamate release in aversive olfactory learning. Cell Rep 2022; 41:111685. [DOI: 10.1016/j.celrep.2022.111685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/06/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022] Open
|
38
|
van der Linden RJ, Gerritsen JS, Liao M, Widomska J, Pearse RV, White FM, Franke B, Young-Pearse TL, Poelmans G. RNA-binding protein ELAVL4/HuD ameliorates Alzheimer's disease-related molecular changes in human iPSC-derived neurons. Prog Neurobiol 2022; 217:102316. [PMID: 35843356 PMCID: PMC9912016 DOI: 10.1016/j.pneurobio.2022.102316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/18/2022] [Accepted: 07/12/2022] [Indexed: 11/26/2022]
Abstract
The RNA binding protein ELAVL4/HuD regulates the translation and splicing of multiple Alzheimer's disease (AD) candidate genes. We generated ELAVL4 knockout (KO) human induced pluripotent stem cell-derived neurons to study the effect that ELAVL4 has on AD-related cellular phenotypes. ELAVL4 KO significantly increased the levels of specific APP isoforms and intracellular phosphorylated tau, molecular changes that are related to the pathological hallmarks of AD. Overexpression of ELAVL4 in wild-type neurons and rescue experiments in ELAVL4 KO cells showed opposite effects and also led to a reduction of the extracellular amyloid-beta (Aβ)42/40 ratio. All these observations were made in familial AD (fAD) and fAD-corrected neurons. To gain insight into the molecular cascades involved in neuronal ELAVL4 signaling, we conducted pathway and upstream regulator analyses of transcriptomic and proteomic data from the generated neurons. These analyses revealed that ELAVL4 affects multiple biological pathways linked to AD, including those involved in synaptic function, as well as gene expression downstream of APP and tau signaling. The analyses also suggest that ELAVL4 expression is regulated by insulin receptor-FOXO1 signaling in neurons. Taken together, ELAVL4 expression ameliorates AD-related molecular changes in neurons and affects multiple synaptic pathways, making it a promising target for novel drug development.
Collapse
Affiliation(s)
- Robert J van der Linden
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jacqueline S Gerritsen
- Koch Institute for Integrative Cancer Research; Center for Precision Cancer Medicine; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Meichen Liao
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Joanna Widomska
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Richard V Pearse
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Forest M White
- Koch Institute for Integrative Cancer Research; Center for Precision Cancer Medicine; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Barbara Franke
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands; Department of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tracy L Young-Pearse
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Geert Poelmans
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
39
|
Finnell JE, Ferrario CR. Intra-NAc insulin reduces the motivation for food and food intake without altering cue-triggered food-seeking. Physiol Behav 2022; 254:113892. [PMID: 35753434 PMCID: PMC10583176 DOI: 10.1016/j.physbeh.2022.113892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/24/2022]
Abstract
Insulin receptors are expressed throughout the adult brain, and insulin from the periphery reaches the central nervous system. In humans and rodents, actions of insulin in the brain decrease food intake. Furthermore, insulin receptor activation alters dopamine and glutamate transmission within mesolimbic regions that influence food-seeking and feeding including the nucleus accumbens (NAc). Here we determined how intra-NAc insulin affects conditioned approach (a measure of cue-triggered food-seeking), free food intake, and the motivation to obtain food in hungry rats using Pavlovian and instrumental approaches. Intra-NAc insulin did not affect conditioned approach but did reduce home cage chow intake immediately following conditioned approach testing. Consistent with reduced chow intake, intra-NAc insulin also reduced the motivation to work for flavored food pellets (assessed by a progressive ratio procedure). This effect was partially reversed by insulin receptor blockade and was not driven by insulin-induced sickness or malaise. Taken together, these data show that insulin within the NAc does not alter behavioral responses to a food cue, but instead reduces the motivation to work for and consume food in hungry animals. These data are discussed in light of insulin's role in the regulation of feeding, and its dysregulation by obesity.
Collapse
Affiliation(s)
- Julie E Finnell
- Department of Pharmacology, University of Michigan, United States
| | - Carrie R Ferrario
- Department of Pharmacology, University of Michigan, United States; Psychology Department (Biopsychology), University of Michigan, Ann Arbor MI 48109, United States.
| |
Collapse
|
40
|
Jones MA, Jadeja RN, Flandrin O, Abdelrahman AA, Thounojam MC, Thomas S, Dai C, Xiao H, Chen JK, Smith SB, Bartoli M, Martin PM, Powell FL. Autonomous regulation of retinal insulin biosynthesis in diabetes. Neuropeptides 2022; 94:102258. [PMID: 35660758 PMCID: PMC10440820 DOI: 10.1016/j.npep.2022.102258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/08/2022] [Accepted: 05/15/2022] [Indexed: 10/18/2022]
Abstract
Diabetic retinopathy (DR) is a neurodegenerative disease that results as a complication of dysregulated glucose metabolism, or diabetes. The signaling of insulin is lost or dampened in diabetes, but this hormone has also been shown to be an important neurotrophic factor which supports neurons of the brain. The role of local insulin synthesis and secretion in the retina, however, is unclear. We have investigated whether changes in local insulin synthesis occur in the diabetic retina and in response to stressors known to initiate retinal neurodegenerative processes. The expression of insulin and its cleavage product, c-peptide, were examined in retinas of a Type I diabetes animal model and human postmortem donors with DR. We detected mRNAs for insulin I (Ins1), insulin II (Ins2) and human insulin (Ins) by quantitative real-time polymerase chain reaction (qRT-PCR) and in situ hybridization. Using an ex-vivo system, isolated neuroretinas and retinal pigmented epithelium (RPE) layers were exposed to glycemic, oxidative and inflammatory environments to measure insulin gene transcripts produced de novo in the retina under disease-relevant conditions. The expression of insulin in the retina was altered with the progression of diabetes in STZ mice and donors with DR. Transcription factors for insulin, were simultaneously expressed in a pattern matching insulin genes. Furthermore, de novo insulin mRNA in isolated retinas was induced by acute stress. RPE explants displayed the most pronounced changes in Ins1 and Ins2. This data reveals that the retina, like the brain, is an organ capable of producing local insulin and this synthesis is altered in diabetes.
Collapse
Affiliation(s)
- Malita A Jones
- Department of Biochemistry and Molecular Biology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Ravirajsinh N Jadeja
- Department of Biochemistry and Molecular Biology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Orneika Flandrin
- UC Berkeley School of Optometry, University of California, Berkeley, CA, USA
| | - Ammar A Abdelrahman
- Department of Pharmacology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; Department of Clinical Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Menaka C Thounojam
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Shakera Thomas
- Department of Biochemistry and Molecular Biology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Caihong Dai
- Department of Cell Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Haiyan Xiao
- Department of Cell Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Jian-Kang Chen
- Department of Cell Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Sylvia B Smith
- Department of Cell Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Manuela Bartoli
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Pamela M Martin
- Department of Biochemistry and Molecular Biology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; Department of Cell Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; Georgia Cancer Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Folami L Powell
- Department of Biochemistry and Molecular Biology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
41
|
de Almeida Faria ACR, Dall'Agnol JF, Gouveia AM, de Paiva CI, Segalla VC, Baena CP. Risk factors for cognitive decline in type 2 diabetes mellitus patients in Brazil: a prospective observational study. Diabetol Metab Syndr 2022; 14:105. [PMID: 35897033 PMCID: PMC9327152 DOI: 10.1186/s13098-022-00872-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Type 2 Diabetes Mellitus (T2DM) patients are twice as likely to develop dementia. The study's goal was to evaluate cognitive performance and risk factors for cognitive decline in this population. METHODS Prospective observational study was conducted with 400 T2DM adults, of whom, during routine baseline and follow-up appointments, had socio-demographic, clinical, and laboratory data collected, and underwent physical examination, screening for depression symptoms (Patient Health Questionaire-9-PHQ-9), and cognitive tests: Mini-Mental State Examination (MMSE), Semantic Verbal Fluency Test, Trail Making Test A/B, and Word Memory Tests. Each cognitive test score was converted to a z-score and its average resulted in a new variable called Global Cognitive z-Score [GCS(z)]. Averages of the cognitive test scores and GCS(z) at both moments were compared by the Student's T-Test for paired samples. Multivariate binary logistic regression models were built to assess the association of GCS(z) < zero with risk factors for cognitive decline at the baseline and follow-up. RESULTS After exclusions, 251 patients were eligible, being 56.6% female, mean age of 61.1 (± 9.8) years, 12.6 (± 8.9) years of DM duration, and 7.6 (± 4.2) years of school education. Follow-up had 134 patients reevaluated and took place after a mean of 18.4(± 5.0) months. Eleven (14%) patients with a GCS(z) ≥ 0 at baseline turned into a GCS(z) < 0 at follow-up. There were no significant differences between the means of cognitive test scores and GCS(z) at the two evaluation moments. At the baseline, the multivariate logistic regression model identified five risk factors associated with GCS(z) < zero: age ≥ 65 years, schooling ≤ 6 years, arterial hypertension, depression symptoms, and diabetic retinopathy (DR), with odds ratio (OR) and 95% confidence interval (CI95%) respectively: 5.46 (2.42-12.34); 12.19 (5.62-26.46); 2.55 (0.88-7.39); 3.53 (1.55-8.07) e 2.50 (1.18-5.34). At follow-up, the risk factors for GCS(z) < zero were: schooling ≤ 6 years, DM duration ≥ 10 years, depression symptoms, arterial hypertension, and cardiovascular disease (CVD), OR and CI95% respectively: 10.15 (3.68-28.01); 2.68 (0.96-7.48); 4.92 (1.77-13.70); 7.21 (1.38-35.71) e 5.76 (1.93-17.18). CONCLUSIONS Based on our results, cognitive evaluation and follow-up should be incorporated on the routine of T2DM patients, especially for those with advanced age, low education level, prolonged DM duration, arterial hypertension, depression symptoms, CVD, and DR.
Collapse
Affiliation(s)
- Ana Cristina Ravazzani de Almeida Faria
- Postgraduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Rua Imaculada Conceição, 1155, Curitiba, 80215-901, Brazil
- School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, Brazil
| | - Joceline Franco Dall'Agnol
- Postgraduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Rua Imaculada Conceição, 1155, Curitiba, 80215-901, Brazil
| | - Aline Maciel Gouveia
- School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, Brazil
| | - Clara Inácio de Paiva
- School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, Brazil
| | | | - Cristina Pellegrino Baena
- Postgraduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Rua Imaculada Conceição, 1155, Curitiba, 80215-901, Brazil.
| |
Collapse
|
42
|
Carr KD, Weiner SP. Effects of nucleus accumbens insulin inactivation on microstructure of licking for glucose and saccharin in male and female rats. Physiol Behav 2022; 249:113769. [PMID: 35247443 PMCID: PMC8969111 DOI: 10.1016/j.physbeh.2022.113769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 11/21/2022]
Abstract
Insulin of pancreatic origin enters the brain where several regions express a high density of insulin receptors. Functional studies of brain insulin signaling have focused predominantly on hypothalamic regulation of appetite and hippocampal regulation of learning. Recent studies point to involvement of nucleus accumbens (NAc) insulin signaling in a diet-sensitive response to glucose intake and reinforcement of flavor-nutrient learning. The present study used NAc shell microinjection of an insulin inactivating antibody (InsAb) to evaluate effects on the microstructure of licking for flavored 6.1% glucose. In both male and female rats, InsAb had no effect on the number of lick bursts emitted (a measure of motivation and/or satiety), but decreased the size of lick bursts (a measure of reward magnitude) in a series of five 30 min test sessions. This effect persisted beyond microinjection test sessions and was shown to depend on previous flavored glucose consumption under InsAb treatment rather than InsAb treatment alone. This suggests learning of diminished reward value and aligns with the previous finding that InsAb blocks flavor-nutrient learning. Specificity of the InsAb effect for nutrient reward was indicated by failure to affect any parameter of licking for flavored 0.25% saccharin solution. Finally, maintenance of rats on a 'Western' diet for twelve weeks produced a decrease in lick burst size for glucose in male rats, but an increase in lick burst size in females. Possible implications of these results for flavor-nutrient learning, maladaptive consequences of NAc insulin receptor subsensitivity, and the plausible involvement of distinct insulin-regulated mechanisms in NAc are discussed.
Collapse
Affiliation(s)
- Kenneth D Carr
- Department of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States; Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States.
| | - Sydney P Weiner
- Department of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| |
Collapse
|
43
|
Dysmetabolism and Neurodegeneration: Trick or Treat? Nutrients 2022; 14:nu14071425. [PMID: 35406040 PMCID: PMC9003269 DOI: 10.3390/nu14071425] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence suggests the existence of a strong link between metabolic syndrome and neurodegeneration. Indeed, epidemiologic studies have described solid associations between metabolic syndrome and neurodegeneration, whereas animal models contributed for the clarification of the mechanistic underlying the complex relationships between these conditions, having the development of an insulin resistance state a pivotal role in this relationship. Herein, we review in a concise manner the association between metabolic syndrome and neurodegeneration. We start by providing concepts regarding the role of insulin and insulin signaling pathways as well as the pathophysiological mechanisms that are in the genesis of metabolic diseases. Then, we focus on the role of insulin in the brain, with special attention to its function in the regulation of brain glucose metabolism, feeding, and cognition. Moreover, we extensively report on the association between neurodegeneration and metabolic diseases, with a particular emphasis on the evidence observed in animal models of dysmetabolism induced by hypercaloric diets. We also debate on strategies to prevent and/or delay neurodegeneration through the normalization of whole-body glucose homeostasis, particularly via the modulation of the carotid bodies, organs known to be key in connecting the periphery with the brain.
Collapse
|
44
|
Niyasti P, Saberi A, Hatamyain H, Ajamian F, Shirkouhi SG, Mirzanejad L, Andalib S. Association of Insulin Receptor Substrate-1 Gene Polymorphism (rs1801278) with Alzheimer’s Disease. J Alzheimers Dis Rep 2022. [DOI: 10.3233/adr-210060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background: Alzheimer’s disease (AD) is the most common form of dementia. AD is also the leading cause of morbidity and mortality due to dementia worldwide. It has been shown that AD is associated with type 2 diabetes mellitus (T2DM) and brain insulin resistance. Rs1801278 is a polymorphism in insulin receptor substrate-1 (IRS-1) gene which changes the amino acid Arg972. This polymorphism has been found to be associated with susceptibility to AD in some populations. Objective: In the present study, our aim was to investigate the association of Arg972 IRS-1 (rs1801278) gene polymorphism and late-onset Alzheimer’s disease (LOAD) in an Iranian population. Methods: In this case-control study, 150 patients with LOAD and 150 unrelated healthy controls were recruited. Polymerase chain reaction (PCR) was performed to amplify a DNA segment of 263 base-pair (bp) length containing the single nucleotide polymorphism (SNP). The PCR product was then incubated with MvaI restriction enzyme to undergo enzymatic cleavage. Electrophoresis was thereafter carried out using agarose gel and DNA safe stain. The gel was ultimately visualized under a UV trans-illuminator. Allelic and genotypic frequencies were then compared. Results: A allele (mutant) of the gene was significantly associated with the risk of AD after adjustment for sex and age (p = 0.04, adjusted OR:1.77, 95% CI:1.00–3.11). Only AA genotype (mutant homozygote) was significantly associated with the risk of AD after adjustment for sex and age (p = 0.01, adjusted OR:2.39, 95% CI:1.22–4.66). Conclusion: SNP rs1801278 is significantly associated with the risk of developing AD in the studied Iranian population.
Collapse
Affiliation(s)
- Parham Niyasti
- School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Alia Saberi
- Neuroscience Research Center, Department of Neurology, Poursina Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Hamidreza Hatamyain
- Neuroscience Research Center, Department of Neurology, Poursina Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Farzam Ajamian
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Samaneh Ghorbani Shirkouhi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Neuroscience Research Center, Poursina Hospital, Guilan University of MedicalSciences, Rasht, Iran
| | - Laleh Mirzanejad
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Sasan Andalib
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Research Unit of Clinical Physiology and Nuclear Medicine, Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
- Neuroscience Research Center, Poursina Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
45
|
Erichsen JM, Fadel JR, Reagan LP. Peripheral versus central insulin and leptin resistance: Role in metabolic disorders, cognition, and neuropsychiatric diseases. Neuropharmacology 2022; 203:108877. [PMID: 34762922 PMCID: PMC8642294 DOI: 10.1016/j.neuropharm.2021.108877] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/14/2021] [Accepted: 11/04/2021] [Indexed: 02/06/2023]
Abstract
Insulin and leptin are classically regarded as peptide hormones that play key roles in metabolism. In actuality, they serve several functions in both the periphery and central nervous system (CNS). Likewise, insulin and leptin resistance can occur both peripherally and centrally. Metabolic disorders such as diabetes and obesity share several key features including insulin and leptin resistance. While the peripheral effects of these disorders are well-known (i.e. cardiovascular disease, hypertension, stroke, dyslipidemia, etc.), the CNS complications of leptin and insulin resistance have come into sharper focus. Both preclinical and clinical findings have indicated that insulin and leptin resistance are associated with cognitive deficits and neuropsychiatric diseases such as depression. Importantly, these studies also suggest that these deficits in neuroplasticity can be reversed by restoration of insulin and leptin sensitivity. In view of these observations, this review will describe, in detail, the peripheral and central functions of insulin and leptin and explain the role of insulin and leptin resistance in various metabolic disorders, cognition, and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Jennifer M Erichsen
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29208, USA.
| | - Jim R Fadel
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29208, USA
| | - Lawrence P Reagan
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29208, USA; Columbia VA Health Care System, Columbia, SC, 29208, USA
| |
Collapse
|
46
|
Fulton S, Décarie-Spain L, Fioramonti X, Guiard B, Nakajima S. The menace of obesity to depression and anxiety prevalence. Trends Endocrinol Metab 2022; 33:18-35. [PMID: 34750064 DOI: 10.1016/j.tem.2021.10.005] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 02/07/2023]
Abstract
The incidence of depression and anxiety is amplified by obesity. Mounting evidence reveals that the psychiatric consequences of obesity stem from poor diet, inactivity, and visceral adipose accumulation. Resulting metabolic and vascular dysfunction, including inflammation, insulin and leptin resistance, and hypertension, have emerged as key risks to depression and anxiety development. Recent research advancements are exposing the important contribution of these different corollaries of obesity and their impact on neuroimmune status and the neural circuits controlling mood and emotional states. Along these lines, this review connects the clinical manifestations of depression and anxiety in obesity to our current understanding of the origins and biology of immunometabolic threats to central nervous system function and behavior.
Collapse
Affiliation(s)
- Stephanie Fulton
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Department of Nutrition, Université de Montréal, Montréal, QC H3T1J4, Canada.
| | - Léa Décarie-Spain
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Department of Neuroscience, Université de Montréal, Montréal, QC H3T1J4, Canada
| | - Xavier Fioramonti
- NutriNeuro, UMR 1286 INRAE, Bordeaux INP, Bordeaux University, Bordeaux, France
| | - Bruno Guiard
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), CNRS UMR5169, UPS, Université de Toulouse, Toulouse, France
| | - Shingo Nakajima
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Department of Nutrition, Université de Montréal, Montréal, QC H3T1J4, Canada
| |
Collapse
|
47
|
Shen S, Liao Q, Wong YK, Chen X, Yang C, Xu C, Sun J, Wang J. The role of melatonin in the treatment of type 2 diabetes mellitus and Alzheimer's disease. Int J Biol Sci 2022; 18:983-994. [PMID: 35173531 PMCID: PMC8771831 DOI: 10.7150/ijbs.66871] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/21/2021] [Indexed: 12/03/2022] Open
Abstract
In type 2 diabetes mellitus (T2DM) and its related disorders like obesity, the abnormal protein processing, oxidative stress and proinflammatory cytokines will drive the activation of inflammatory pathways, leading to low-grade chronic inflammation and insulin resistance (IR) in the periphery and impaired neuronal insulin signaling in the brain. Studies have shown that such inflammation and impaired insulin signaling contribute to the development of Alzheimer's disease (AD). Therefore, new therapeutic strategies are needed for the treatment of T2DM and T2DM-linked AD. Melatonin is primarily known for its circadian role which conveys message of darkness and induces night-state physiological functions. Besides rhythm-related effects, melatonin has anti-inflammatory and antioxidant properties. Melatonin levels are downregulated in metabolic disorders with IR, and activation of melatonin signaling delays disease progression. The aim of this Review is to highlight the therapeutic potentials of melatonin in preventing the acceleration of AD in T2DM individuals through its therapeutic mechanisms, including antioxidative effects, anti-inflammatory effects, restoring mitochondrial function and insulin sensitivity.
Collapse
Affiliation(s)
- Shengnan Shen
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medcal Sciences, University of Macau, Taipa, Macau, China
| | - Qiwen Liao
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Yin Kwan Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Xiao Chen
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Chuanbin Yang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Chengchao Xu
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jichao Sun
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- Shenzhen Mental Health Centre, Shenzhen Kangning Hospital, Shenzhen, China
| | - Jigang Wang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
- Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China
| |
Collapse
|
48
|
Parent MB, Higgs S, Cheke LG, Kanoski SE. Memory and eating: A bidirectional relationship implicated in obesity. Neurosci Biobehav Rev 2022; 132:110-129. [PMID: 34813827 PMCID: PMC8816841 DOI: 10.1016/j.neubiorev.2021.10.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/17/2021] [Accepted: 10/28/2021] [Indexed: 01/03/2023]
Abstract
This paper reviews evidence demonstrating a bidirectional relationship between memory and eating in humans and rodents. In humans, amnesia is associated with impaired processing of hunger and satiety cues, disrupted memory of recent meals, and overconsumption. In healthy participants, meal-related memory limits subsequent ingestive behavior and obesity is associated with impaired memory and disturbances in the hippocampus. Evidence from rodents suggests that dorsal hippocampal neural activity contributes to the ability of meal-related memory to control future intake, that endocrine and neuropeptide systems act in the ventral hippocampus to provide cues regarding energy status and regulate learned aspects of eating, and that consumption of hypercaloric diets and obesity disrupt these processes. Collectively, this evidence indicates that diet-induced obesity may be caused and/or maintained, at least in part, by a vicious cycle wherein excess intake disrupts hippocampal functioning, which further increases intake. This perspective may advance our understanding of how the brain controls eating, the neural mechanisms that contribute to eating-related disorders, and identify how to treat diet-induced obesity.
Collapse
Affiliation(s)
- Marise B Parent
- Neuroscience Institute & Department of Psychology, Georgia State University, Box 5030, Atlanta, GA 30303-5030, United States.
| | - Suzanne Higgs
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, BI5 2TT, United Kingdom.
| | - Lucy G Cheke
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, United Kingdom.
| | - Scott E Kanoski
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, 90089-0371, United States.
| |
Collapse
|
49
|
Frangou S, Abbasi F, Watson K, Haas SS, Antoniades M, Modabbernia A, Myoraku A, Robakis T, Rasgon N. Hippocampal volume reduction is associated with direct measure of insulin resistance in adults. Neurosci Res 2022; 174:19-24. [PMID: 34352294 PMCID: PMC9164143 DOI: 10.1016/j.neures.2021.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/16/2021] [Accepted: 07/28/2021] [Indexed: 01/03/2023]
Abstract
Hippocampal integrity is highly susceptible to metabolic dysfunction, yet its mechanisms are not well defined. We studied 126 healthy individuals aged 23-61 years. Insulin resistance (IR) was quantified by measuring steady-state plasma glucose (SSPG) concentration during the insulin suppression test. Body mass index (BMI), adiposity, fasting insulin, glucose, leptin as well as structural neuroimaing with automatic hippocampal subfield segmentation were performed. Data analysis using unsupervised machine learning (k-means clustering) identified two subgroups reflecting a pattern of more pronounced hippocampal volume reduction being concurrently associated with greater adiposity and insulin resistance; the hippocampal volume reductions were uniform across subfields. Individuals in the most deviant subgroup were predominantly women (79 versus 42 %) with higher BMI [27.9 (2.5) versus 30.5 (4.6) kg/m2], IR (SSPG concentration, [156 (61) versus 123 (70) mg/dL] and leptinemia [21.7 (17.0) versus 44.5 (30.4) μg/L]. The use of person-based modeling in healthy individuals suggests that adiposity, insulin resistance and compromised structural hippocampal integrity behave as a composite phenotype; female sex emerged as risk factor for this phenotype.
Collapse
Affiliation(s)
- Sophia Frangou
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada,Corresponding author at: Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA., (S. Frangou), (N. Rasgon)
| | - Fahim Abbasi
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Katie Watson
- Department of Psychiatry, Stanford University School of Medicine, USA
| | - Shalaila S. Haas
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mathilde Antoniades
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Alison Myoraku
- Department of Psychiatry, Stanford University School of Medicine, USA
| | - Thalia Robakis
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Natalie Rasgon
- Department of Psychiatry, Stanford University School of Medicine, USA,Corresponding author at: 401 Quarry Road, MC 5723, Palo Alto, CA 94304, USA
| |
Collapse
|
50
|
Hassanpour R, Chizari A, Bayat AH, Azizbeigi R, Mahmoudi M, Mousavi Z, Haghparast A. Insulin replacement prevents the acquisition but not the expression of morphine-induced conditioned place preference in streptozotocin-induced diabetic rats. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e201215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|