1
|
Gil-Martins E, Barbosa DJ, Borges F, Remião F, Silva R. Toxicodynamic insights of 2C and NBOMe drugs - Is there abuse potential? Toxicol Rep 2025; 14:101890. [PMID: 39867514 PMCID: PMC11762925 DOI: 10.1016/j.toxrep.2025.101890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/31/2024] [Accepted: 01/02/2025] [Indexed: 01/28/2025] Open
Abstract
Drug use represents a prevalent and multifaceted societal problem, with profound implications for public health, social welfare, and economic stability. To circumvent strict international drug control regulations, there is a growing trend in the development and market introduction of novel psychoactive substances (NPS), encompassing a wide range of compounds with psychoactive properties. This includes, among other classes of drugs, the phenethylamines. Originally derived from natural sources, these drugs have garnered particular attention due to their psychedelic effects. They comprise a broad spectrum of compounds, including 2,5-dimethoxyphenylethylamine (2C) drugs and their corresponding N-(2,5-dimethoxybenzyl)phenethylamine (NBOMe). Psychedelics are conventionally perceived as having low addiction potential, although recent reports have raised concerns regarding this topic. These substances primarily interact with serotonin receptors, particularly the 5-HT2A subtype, resulting in alterations in sensory perception, mood, and introspective experiences. In addition to their psychedelic properties, 2C and NBOMe drugs have been associated with a multitude of adverse effects, such as cardiovascular complications and neurotoxicity. This manuscript provides a comprehensive review of the psychedelic pathways underlying 2C and NBOMe designer drugs, focusing on their interactions with serotonergic and other neurotransmitter systems, shedding light on their potential for abuse.
Collapse
Affiliation(s)
- Eva Gil-Martins
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Daniel José Barbosa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, Gandra, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Fernanda Borges
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Fernando Remião
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Renata Silva
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
2
|
Farinha-Ferreira M, Miranda-Lourenço C, Galipeau C, Lenkei Z, Sebastião AM. Concurrent stress modulates the acute and post-acute effects of psilocybin in a sex-dependent manner. Neuropharmacology 2025; 266:110280. [PMID: 39725123 DOI: 10.1016/j.neuropharm.2024.110280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/05/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
There is renewed interest in psychedelics, such as psilocybin, as therapies for multiple difficult-to-treat psychiatric disorders. Even though psychedelics can induce highly pleasant or aversive experiences, depending on multiple personal and environmental factors, there is little research into how such experiences impact post-acute mood-altering actions. Here we aimed at offsetting this gap. First, we tested whether acute psilocybin effects differed between sexes. Adult male and female C57BL/6J mice received saline or psilocybin (5 mg/kg; i.p.), and head-twitch response (HTR) frequency was quantified. Notably, while psilocybin increased HTR frequency in both sexes, the effect was greater in females. We then tested if stress exposure during acute drug effects impacted post-acute psilocybin actions. Following drug treatment, mice were returned to their homecage or restrained for 1 h. Anxiety- and depression-like behaviors were assessed starting 24 h following drug administration, using the marble burying, novelty-suppressed feeding, and splash tests. Psilocybin induced anxiolytic-, but not antidepressant-like, which were fully blocked by stress in males, but only partially so in females. Lastly, we assessed the acute stress-psilocybin interaction on plasma corticosterone levels in a separate cohort of mice, treated as above. Both stress and psilocybin independently increased corticosterone levels, without additive or interactive effects being observed for either sex. Our data reveals the role of sex and peri-acute negative experiences in the acute and post-acute actions of psilocybin. These findings underline the importance of non-pharmacological factors, such as the quality of the psychedelic experience, in the mood-altering effects of psychedelics, holding significant for both their therapeutic and recreational use.
Collapse
Affiliation(s)
- Miguel Farinha-Ferreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Edifício Egas Moniz, 1649-028, Lisboa, Portugal; Gulbenkian Institute for Molecular Medicine, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal; Centro Cardiovascular da Universidade de Lisboa, CCUL (CCUL@RISE), Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Edifício Egas Moniz, 1649-028, Lisboa, Portugal; Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Laboratory of Dynamics of Neuronal Structure in Health and Disease, 102 rue de la Santé, 75014, Paris, France
| | - Catarina Miranda-Lourenço
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Edifício Egas Moniz, 1649-028, Lisboa, Portugal; Gulbenkian Institute for Molecular Medicine, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal; Centro Cardiovascular da Universidade de Lisboa, CCUL (CCUL@RISE), Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Edifício Egas Moniz, 1649-028, Lisboa, Portugal
| | - Chloé Galipeau
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Edifício Egas Moniz, 1649-028, Lisboa, Portugal; Gulbenkian Institute for Molecular Medicine, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal; Centro Cardiovascular da Universidade de Lisboa, CCUL (CCUL@RISE), Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Edifício Egas Moniz, 1649-028, Lisboa, Portugal
| | - Zsolt Lenkei
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Laboratory of Dynamics of Neuronal Structure in Health and Disease, 102 rue de la Santé, 75014, Paris, France
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Edifício Egas Moniz, 1649-028, Lisboa, Portugal; Gulbenkian Institute for Molecular Medicine, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal; Centro Cardiovascular da Universidade de Lisboa, CCUL (CCUL@RISE), Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Edifício Egas Moniz, 1649-028, Lisboa, Portugal.
| |
Collapse
|
3
|
Gu SM, Jin YB, Kim JM, Kim YH, Yun J, Cha HJ. Assessment of liability to substance use disorder induced by two emerging stimulants, 4,4'-dimethylaminorex and escaline, in mice. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2025:1-11. [PMID: 39927702 DOI: 10.1080/00952990.2024.2439365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 11/26/2024] [Accepted: 12/04/2024] [Indexed: 02/11/2025]
Abstract
Background: The emergence of new psychoactive substances (NPSs) poses a serious global health threat. Although various groups of psychostimulants exist, this study specifically investigated two lesser-studied substances, 4,4'-dimethylaminorex (4,4'-DMAR) and escaline.Objective: To assess liability to substance use disorder (SUD), as evidenced via preclinical models, of the two psychostimulants.Methods: 4,4'-DMAR and escaline were evaluated, in mice, for their potential to exhibit rewarding and reinforcing effects, and for causing central dopaminergic activity. The climbing behavior test investigated whether the substances acted as dopaminergic agents and to determine the dose range for further evaluation. The rewarding and reinforcing effects of these substances were evaluated via the conditioned place preference (CPP) and self-administration (SA) tests.Results: The results showed that both test substances significantly increased climbing behavior at 1 mg/kg (p < .01). Mice treated with 0.1 and 1 mg/kg 4,4'-DMAR (p < .05) and with 1 mg/kg escaline (p < .01) exhibited increased duration of time spent in the substance-paired compartment in the CPP test compared to those treated with vehicle. Further, the frequency of infusions from the 5th to 7th sessions was significantly increased at 1 mg/kg/infusion of 4,4'-DMAR (p < .001) and at 0.01 and 0.1 mg/kg/infusion of escaline (p < .01) compared to controls.Conclusion: The findings suggest that 4,4'-DMAR and escaline have dopaminergic activity, exert reinforcing and rewarding effects, and may cause SUD. The findings can inform relevant authorities about the need to regulate these two new compounds.
Collapse
Affiliation(s)
- Sun Mi Gu
- College of Pharmacy, Chungbuk National University, Cheongju-shi, Republic of Korea
| | - Yeung Bae Jin
- College of Veterinary Medicine, Gyeongsang National University, Jinju-shi, Republic of Korea
| | - Jin Mook Kim
- Pharmacological Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Chungju-shi, Republic of Korea
| | - Young-Hoon Kim
- Pharmacological Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Chungju-shi, Republic of Korea
| | - Jaesuk Yun
- College of Pharmacy, Chungbuk National University, Cheongju-shi, Republic of Korea
| | - Hye Jin Cha
- College of Veterinary Medicine, Gyeongsang National University, Jinju-shi, Republic of Korea
| |
Collapse
|
4
|
Clark EA, Wang L, Hanania T, Kretschmannova K, Bianchi M, Jagger E, Hu T, Li F, Gallero-Salas Y, Koblan KS, Dedic N, Bristow LJ. 5-HT 1B receptor activation produces rapid antidepressant-like effects in rodents. Pharmacol Biochem Behav 2025; 247:173917. [PMID: 39608648 DOI: 10.1016/j.pbb.2024.173917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/04/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024]
Abstract
Ketamine is noted for its rapid onset antidepressant response and effectiveness in patients with treatment resistant depression. While most research has focused on glutamatergic mechanisms, recent studies show that antidepressant-like effects in rodents are dependent upon the serotonergic (5-HT) system and suggest a potential contribution of the 5-HT1B receptor. In this study we utilized CP-94253 to examine whether 5-HT1B receptor agonism produces rapid and sustained antidepressant-like effects, focusing on rodent models and treatment approaches commonly used to demonstrate the differentiated response to ketamine. We first confirmed that CP-94253 is a potent 5-HT1B agonist in vitro and that CP-94253 occupies brain 5-HT1B receptors at the doses tested. CP-94253 reduced immobility in the mouse forced swim test (FST) and exhibited a prominent antidepressant signature in the mouse-behavior phenotyping platform SmartCube®. When examined 24 h after acute treatment, CP-94253 reduced FST immobility in both naïve rats and in rats receiving chronic interferon alpha treatment. Ex vivo hippocampal long-term potentiation was also enhanced in naïve rats receiving acute CP-94253 treatment, 24 h prior to the recordings. In mice exposed to chronic social defeat stress, antidepressant-like effects in the tail suspension and sucrose preference tests were seen 1 h and 24 h after acute treatment, respectively. Finally, whole brain c-fos imaging in mice showed that CP-94253 modulates neuronal activity in discrete brain regions including the lateral habenula circuit implicated in depression and the ketamine treatment response. Collectively these results support the further investigation of 5-HT1B agonism as a novel treatment approach for major depressive disorder.
Collapse
Affiliation(s)
- Erin A Clark
- Sumitomo Pharma America, Inc., 84 Waterford Drive, Marlborough, MA 01752, USA.
| | - Lien Wang
- Sumitomo Pharma America, Inc., 84 Waterford Drive, Marlborough, MA 01752, USA
| | - Taleen Hanania
- Psychogenics Inc., 215 College Road, Paramus, NJ 07652, USA
| | | | - Massimiliano Bianchi
- Ulysses Neuroscience Ltd., Trinity College Institute of Neuroscience, Lloyd Institute, Trinity College Dublin, Ireland
| | - Elizabeth Jagger
- Sygnature Discovery, BioCity, Pennyfoot Street, Nottingham NG1 1GR, UK
| | - Tingting Hu
- HD Biosciences Company Ltd., 590 Ruiqing Road, Pudong, Shanghai 201201, China
| | - Fugang Li
- HD Biosciences Company Ltd., 590 Ruiqing Road, Pudong, Shanghai 201201, China
| | | | - Kenneth S Koblan
- Sumitomo Pharma America, Inc., 84 Waterford Drive, Marlborough, MA 01752, USA
| | - Nina Dedic
- Sumitomo Pharma America, Inc., 84 Waterford Drive, Marlborough, MA 01752, USA
| | - Linda J Bristow
- Sumitomo Pharma America, Inc., 84 Waterford Drive, Marlborough, MA 01752, USA
| |
Collapse
|
5
|
Noback M, Kenton JA, Klein AK, Hughes ZA, Kruegel AC, Schmid Y, Halberstadt AL, Young JW. Low (micro)doses of 2,5-dimethoxy-4-propylamphetamine (DOPR) increase effortful motivation in low-performing mice. Neuropharmacology 2025; 268:110334. [PMID: 39900138 DOI: 10.1016/j.neuropharm.2025.110334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/15/2025] [Accepted: 01/27/2025] [Indexed: 02/05/2025]
Abstract
Treating amotivated states remains difficult. Classical psychedelic drugs (5-HT2A receptor agonists) such as LSD and psilocybin have shown therapeutic potential in treating such symptoms, but their development has been hindered by their undesirable hallucinogenic effects. There is increasing evidence that administration of psychedelics at dose levels too low to evoke a hallucinogenic effect ("microdoses") may have therapeutic value in contexts of mood and cognition. 2,5-Dimethoxy-4-propylamphetamine (DOPR) is a psychedelic phenethylamine compound acting as a 5-HT2A receptor agonist. We used a combination of behavioral assays to determine the motivational and hallucinogenic-like effects of DOPR and identify the dose ranges at which each of these effects were observed. In mice, the motivational effects of psychedelic compounds were assessed using the progressive ratio breakpoint task (PRBT, n = 80), a translational assay sensitive to changes in motivation. Psychedelic-like effects were gauged using the mouse head-twitch response (HTR, n = 72) assay, a preclinical readout of psychedelic potential. Significant improvements in PRBT performance were seen at doses as low as 0.0106 mg/kg in animals with low baseline PRBT scores while high-performing PRBT mice were unaffected. DOPR only induced significant HTR at doses ≥0.1 mg/kg. Together, these results indicate that the psychedelic DOPR may increase motivation in those with a low motivated state. Importantly, these effects may be attainable at low doses below the threshold required to induce psychedelic subjective effects. Hence, the ability of low doses of DOPR and other psychedelic drugs to alleviate amotivated states in rodents manipulated to induce disease-relevant states should be investigated.
Collapse
Affiliation(s)
- Michael Noback
- Department of Psychiatry, University of California, 9500 Gilman Drive, La Jolla, San Diego, CA, 92093, United States
| | - Johnny A Kenton
- Department of Psychiatry, University of California, 9500 Gilman Drive, La Jolla, San Diego, CA, 92093, United States
| | - Adam K Klein
- Gilgamesh Pharmaceuticals, 113 University Place, Suite 1019, New York City, NY, 10003, United States
| | - Zoë A Hughes
- Gilgamesh Pharmaceuticals, 113 University Place, Suite 1019, New York City, NY, 10003, United States
| | - Andrew C Kruegel
- Gilgamesh Pharmaceuticals, 113 University Place, Suite 1019, New York City, NY, 10003, United States
| | - Yasmin Schmid
- Department of Psychiatry, University of California, 9500 Gilman Drive, La Jolla, San Diego, CA, 92093, United States
| | - Adam L Halberstadt
- Department of Psychiatry, University of California, 9500 Gilman Drive, La Jolla, San Diego, CA, 92093, United States
| | - Jared W Young
- Department of Psychiatry, University of California, 9500 Gilman Drive, La Jolla, San Diego, CA, 92093, United States.
| |
Collapse
|
6
|
Cyrano E, Popik P. Assessing the effects of 5-HT 2A and 5-HT 5A receptor antagonists on DOI-induced head-twitch response in male rats using marker-less deep learning algorithms. Pharmacol Rep 2025; 77:135-144. [PMID: 39602080 PMCID: PMC11743402 DOI: 10.1007/s43440-024-00679-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Serotonergic psychedelics, which display a high affinity and specificity for 5-HT2A receptors like 2,5-dimethoxy-4-iodoamphetamine (DOI), reliably induce a head-twitch response in rodents characterized by paroxysmal, high-frequency head rotations. Traditionally, this behavior is manually counted by a trained observer. Although automation could simplify and facilitate data collection, current techniques require the surgical implantation of magnetic markers into the rodent's skull or ear. METHODS This study aimed to assess the feasibility of a marker-less workflow for detecting head-twitch responses using deep learning algorithms. High-speed videos were analyzed using the DeepLabCut neural network to track head movements, and the Simple Behavioral Analysis (SimBA) toolkit was employed to build models identifying specific head-twitch responses. RESULTS In studying DOI (0.3125-2.5 mg/kg) effects, the deep learning algorithm workflow demonstrated a significant correlation with human observations. As expected, the preferential 5-HT2A receptor antagonist ketanserin (0.625 mg/kg) attenuated DOI (1.25 mg/kg)-induced head-twitch responses. In contrast, the 5-HT5A receptor antagonists SB 699,551 (3 and 10 mg/kg), and ASP 5736 (0.01 and 0.03 mg/kg) failed to do so. CONCLUSIONS Previous drug discrimination studies demonstrated that the 5-HT5A receptor antagonists attenuated the interoceptive cue of a potent hallucinogen LSD, suggesting their anti-hallucinatory effects. Nonetheless, the present results were not surprising and support the head-twitch response as selective for 5-HT2A and not 5-HT5A receptor activation. We conclude that the DeepLabCut and SimBA toolkits offer a high level of objectivity and can accurately and efficiently identify compounds that induce or inhibit head-twitch responses, making them valuable tools for high-throughput research.
Collapse
Affiliation(s)
- Ewelina Cyrano
- Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland
| | - Piotr Popik
- Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland.
| |
Collapse
|
7
|
Melani A, Bonaso M, Biso L, Zucchini B, Conversano C, Scarselli M. Uncovering Psychedelics: From Neural Circuits to Therapeutic Applications. Pharmaceuticals (Basel) 2025; 18:130. [PMID: 39861191 PMCID: PMC11769142 DOI: 10.3390/ph18010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
Psychedelics, historically celebrated for their cultural and spiritual significance, have emerged as potential breakthrough therapeutic agents due to their profound effects on consciousness, emotional processing, mood, and neural plasticity. This review explores the mechanisms underlying psychedelics' effects, focusing on their ability to modulate brain connectivity and neural circuit activity, including the default mode network (DMN), cortico-striatal thalamo-cortical (CSTC) loops, and the relaxed beliefs under psychedelics (REBUS) model. Advanced neuroimaging techniques reveal psychedelics' capacity to enhance functional connectivity between sensory cerebral areas while reducing the connections between associative brain areas, decreasing the rigidity and rendering the brain more plastic and susceptible to external changings, offering insights into their therapeutic outcome. The most relevant clinical trials of 3,4-methylenedioxymethamphetamine (MDMA), psilocybin, and lysergic acid diethylamide (LSD) demonstrate significant efficacy in treating treatment-resistant psychiatric conditions such as post-traumatic stress disorder (PTSD), depression, and anxiety, with favorable safety profiles. Despite these advancements, critical gaps remain in linking psychedelics' molecular actions to their clinical efficacy. This review highlights the need for further research to integrate mechanistic insights and optimize psychedelics as tools for both therapy and understanding human cognition.
Collapse
Affiliation(s)
- Alice Melani
- Department of Biology, University of Pisa, 56126 Pisa, Italy;
- BIO@SNS Lab, Scuola Normale Superiore, 56126 Pisa, Italy
| | - Marco Bonaso
- Department of Translational Research and New Surgical and Medical Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (M.B.); (L.B.); (B.Z.)
| | - Letizia Biso
- Department of Translational Research and New Surgical and Medical Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (M.B.); (L.B.); (B.Z.)
| | - Benedetta Zucchini
- Department of Translational Research and New Surgical and Medical Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (M.B.); (L.B.); (B.Z.)
| | - Ciro Conversano
- Department of Surgical, Medical and Molecular Pathology, and Critical Care Medicine, University of Pisa, 56126 Pisa, Italy;
| | - Marco Scarselli
- Department of Translational Research and New Surgical and Medical Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (M.B.); (L.B.); (B.Z.)
| |
Collapse
|
8
|
Zhang M, Yang Y, Yang Z, Wen X, Zhang C, Xiao P, Wang Y, Sun J, Wang H, Wang X. Structural insights into tryptamine psychedelics: The role of hydroxyl indole ring site in 5-HT 2A receptor activation and psychedelic-like activity. Eur J Med Chem 2025; 281:117049. [PMID: 39541872 DOI: 10.1016/j.ejmech.2024.117049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024]
Abstract
Recent advancements in the study of mushroom-derived tryptamines, particularly psilocybin and its metabolite psilocin, highlight their unique psychedelic properties and potential therapeutic applications, especially for mental health conditions like depression. This study examines how the position of the hydroxyl group on the indole ring affects the 5-HT2A receptor activity and psychedelic-like effects of psilocin analogs. Chemically synthesized psilocin (1) and its analogs bufotenine (2), 6-OH-DMT (3), and 7-OH-DMT (4) were assessed for 5-HT2A receptor agonistic activity using the Gαq-Gγ dissociation bioluminescence resonance energy transfer (BRET) assay and for psychedelic-like effects through the head-twitch response assay. Results show that compounds with hydroxyl group at the 4th and 5th positions exhibit significantly higher 5-HT2A agonistic and psychedelic-like activities than those with hydroxyl group at the 6th and 7th positions. Funnel metadynamics simulations revealed that psilocin (1) and bufotenine (2) have lower binding free energies, correlating with experimental data. Analysis of the simulation trajectories reveals that the formation of a hydrogen bond with residue L229 is crucial for guiding psilocin (1) and bufotenine (2) into the 5-HT2AR binding site. In contrast, analogs 3 and 4, which lack this interaction, fail to be directed into the orthosteric site. Furthermore, psilocin (1) and bufotenine (2) establish a stable salt bridge and hydrogen bond with residue D155. These interactions are more stable compared to those formed by ligands 3 and 4, contributing to the latter's poor 5-HT2AR activities. These findings underscore the critical role of the hydroxyl group position on the indole ring in modulating 5-HT2A receptor activity and the corresponding psychedelic-like effects, offering valuable insights for the development of targeted therapeutics.
Collapse
Affiliation(s)
- Miyuan Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yuefeng Yang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhishuai Yang
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xin Wen
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Cong Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Peng Xiao
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yibo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Jinpeng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Hongshuang Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
9
|
Miller CE, Zoladz PR. Evaluating the potential for psilocybin as a treatment for post-traumatic stress disorder. J Pharmacol Exp Ther 2025; 392:100026. [PMID: 39893004 DOI: 10.1124/jpet.124.002237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 01/22/2025] Open
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating psychiatric condition that develops following exposure to a traumatic event. Individuals with this condition experience numerous physiological and behavioral alterations, including intrusive memories, avoidance of trauma-related stimuli, heightened anxiety, hypervigilance, impaired cognition, elevated resting heart rate and blood pressure, and altered neuroendocrine function, to name a few. In most patients, currently available pharmacological and psychological treatments are insufficient to alleviate the array of symptoms associated with the disorder. Thus, novel treatment options that can more effectively target the core etiology of PTSD are desperately needed. Recent work demonstrating the psychoplastogenic effects of psychedelics has reinvigorated research to examine their therapeutic potential in psychiatric conditions. Psilocybin, a psychedelic found in the Psilocybe genus of mushrooms, has exhibited promising antidepressant and anxiolytic effects in preclinical and clinical studies. The purpose of this review is to summarize the existing research that has examined the behavioral effects of psilocybin and link it to potential efficacy in treating PTSD-related symptoms. The proposed mechanisms for psilocybin's effects are then explored, as are the benefits and drawbacks for the agent's therapeutic use. Finally, the challenges faced by investigators aiming to study psilocybin as a therapeutic aid in future studies are discussed in order to shed light on this budding area of research. SIGNIFICANCE STATEMENT: Current pharmacotherapy for post-traumatic stress disorder is insufficient. Traditional antidepressants and anxiolytics help reduce symptom severity, but nonresponse rates often reach levels greater than 50%, emphasizing the need for more effective treatment options. The goal of this review is to summarize the existing evidence for and the potential mechanisms of the antidepressant and anxiolytic effects of psilocybin, a psychedelic compound found in the Psilocybe genus of mushrooms. The observed effects are then related to psilocybin's potential use as a treatment for PTSD.
Collapse
Affiliation(s)
- Claire E Miller
- Department of Psychology and Education, The School of Health, Life Sciences, and Education, Ohio Northern University, Ada, Ohio
| | - Phillip R Zoladz
- Department of Psychology and Education, The School of Health, Life Sciences, and Education, Ohio Northern University, Ada, Ohio.
| |
Collapse
|
10
|
Gattuso JJ, Wilson C, Hannan AJ, Renoir T. Psilocybin reduces grooming in the SAPAP3 knockout mouse model of compulsive behaviour. Neuropharmacology 2025; 262:110202. [PMID: 39489287 DOI: 10.1016/j.neuropharm.2024.110202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Psilocybin is a serotonergic psychedelic compound which shows promise for treating compulsive behaviours. This is particularly pertinent as compulsive disorders require research into new pharmacological treatment options as the current frontline treatments such as selective serotonin reuptake inhibitors, require chronic administration, have significant side effects, and leave almost half of the clinical population refractory to treatment. In this study, we investigated psilocybin administration in male and female SAPAP3 knockout (KO) mice, a well-validated mouse model of obsessive compulsive and related disorders. We assessed the effects of acute psilocybin (1 mg/kg, intraperitoneal) administration on head twitch and locomotor behaviour as well as anxiety- and compulsive-like behaviours at multiple time-points (1, 3 and 8 days post-injection). While psilocybin did not have any effect on anxiety-like behaviours, we revealed that acute psilocybin administration led to enduring reductions in compulsive behaviour in male SAPAP3 KO mice and reduced grooming behaviour in female wild-type (WT) and SAPAP3 KO mice. We also found that psilocybin increased locomotion in WT littermates but not in SAPAP3 KO mice, suggesting in vivo serotonergic dysfunctions in KO animals. On the other hand, the typical head-twitch response following acute psilocybin (confirming its hallucinogenic-like effect at this dose) was observed in both genotypes. Our novel findings suggest that acute psilocybin may have potential to reduce compulsive-like behaviours (up to 1 week after a single injection). Our study can inform future research directions as well as supporting the utility of psilocybin as a novel treatment option for compulsive disorders.
Collapse
Affiliation(s)
- James J Gattuso
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia
| | - Carey Wilson
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| | - Thibault Renoir
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia.
| |
Collapse
|
11
|
Miranda L. Antidepressant and anxiolytic effects of activating 5HT2A receptors in the anterior cingulate cortex and the theoretical mechanisms underlying them - A scoping review of available literature. Brain Res 2025; 1846:149226. [PMID: 39251056 DOI: 10.1016/j.brainres.2024.149226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
Psychedelic drugs that activate the 5HT2A receptor have long been the target of extensive clinical research, particularly in models of psychiatric illness. The aim of this literature review was to investigate the therapeutic effects of 5HT2A receptor activation in the anterior cingulate cortex (ACC) and the respective mechanisms that underlie them. Based on the available research, I suggest that 5HT2A receptors in the ACC exert profound changes in excitatory neurotransmission and brain network connectivity in a way that reduces anxious preoccupation and obsessional thoughts, as well as promoting cognitive flexibility and long-lasting mood improvements in anhedonia. This is possibly due to a complex interplay with glutamate and gamma-butyric acid neurotransmission, particularly 5HT2A activation enhances α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor signalling, thus altering the ratio of AMPA to N-methyl-D-Aspartate (NMDA) activity in the ACC, which can dismantle previously established neuronal connections and aid the formation of new ones, an effect that may be beneficial for fear extinction and reversal learning. Psychedelics potentially change intra- and internetwork connectivity, strengthening connectivity from the dorsal ACC / Salience Network to the Default Mode Network (DMN) and Central Executive Network (CEN), which correlates with improvements in attentional shifting and anti-anhedonic effects. Additionally, they may decrease inhibitory influence of the DMN over the CEN which may reduce overevaluation of internal states and ameliorate cognitive deficits. Activation of ACC 5HT2A receptors also has important downstream effects on subcortical areas, including reducing amygdala reactivity to threatening stimuli and enhancing mesolimbic dopamine, respectively improving anxiety and the experience of natural rewards.
Collapse
|
12
|
Kavanagh PV, Westphal F, Pulver B, Elliott SP, Stratford A, Halberstadt AL, Brandt SD. Analytical and behavioral characterization of 1-dodecanoyl-LSD (1DD-LSD). Drug Test Anal 2025; 17:101-109. [PMID: 38569566 PMCID: PMC11730435 DOI: 10.1002/dta.3691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
1-Acetyl-N,N-diethyllysergamide (1A-LSD, ALD-52) was first synthesized in the 1950s and found to produce psychedelic effects similar to those of LSD. Evidence suggests that ALD-52 serves as a prodrug in vivo and hydrolysis to LSD is likely responsible for its activity. Extension of the N1-alkylcarbonyl chain gives rise to novel lysergamides, which spurred further investigations into their structure-activity relationships. At the same time, ALD-52 and numerous homologues have emerged as recreational drugs ("research chemicals") that are available from online vendors. In the present study, 1-dodecanoyl-LSD (1DD-LSD), a novel N1-acylated LSD derivative, was subjected to analytical characterization and was also tested in the mouse head-twitch response (HTR) assay to assess whether it produces LSD-like effects in vivo. When tested in C57BL/6J mice, 1DD-LSD induced the HTR with a median effective dose (ED50) of 2.17 mg/kg, which was equivalent to 3.60 μmol/kg. Under similar experimental conditions, LSD has 27-fold higher potency than 1DD-LSD in the HTR assay. Previous work has shown that other homologues such as ALD-52 and 1-propanoyl-LSD also have considerably higher potency than 1DD-LSD in mice, which suggests that hydrolysis of the 1-dodecanoyl moiety may be comparatively less efficient in vivo. Further investigations are warranted to determine whether the increased lipophilicity of 1DD-LSD causes it to be sequestered in fat, thereby reducing its exposure to enzymatic hydrolysis in plasma and tissues. Further clinical studies are also required to assess its activity in humans and to test the prediction that it could potentially serve as a long-acting prodrug for LSD.
Collapse
Affiliation(s)
- Pierce V. Kavanagh
- Department of Pharmacology and Therapeutics, School of Medicine, Trinity Centre for Health SciencesSt. James HospitalDublinIreland
| | - Folker Westphal
- State Bureau of Criminal Investigation Schleswig‐HolsteinSection Narcotics/ToxicologyKielGermany
| | - Benedikt Pulver
- State Bureau of Criminal Investigation Schleswig‐HolsteinSection Narcotics/ToxicologyKielGermany
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Simon P. Elliott
- Elliott Forensic ConsultingBirminghamUK
- Department of Analytical, Environmental and Forensic SciencesKing's College LondonLondonUK
| | | | - Adam L. Halberstadt
- Department of PsychiatryUniversity of California San DiegoLa JollaCaliforniaUSA
- Research ServiceVA San Diego Healthcare SystemSan DiegoCaliforniaUSA
| | - Simon D. Brandt
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityLiverpoolUK
| |
Collapse
|
13
|
Glatfelter GC, Clark AA, Cavalco NG, Landavazo A, Partilla JS, Naeem M, Golen JA, Chadeayne AR, Manke DR, Blough BE, McCorvy JD, Baumann MH. Serotonin 1A Receptors Modulate Serotonin 2A Receptor-Mediated Behavioral Effects of 5-Methoxy- N, N-dimethyltryptamine Analogs in Mice. ACS Chem Neurosci 2024; 15:4458-4477. [PMID: 39636099 DOI: 10.1021/acschemneuro.4c00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
5-methoxy-N,N-dimethyltrytpamine (5-MeO-DMT) analogs are used as recreational drugs, but they are also being developed as potential medicines, warranting further investigation into their pharmacology. Here, we investigated the neuropharmacology of 5-MeO-DMT and several of its N-alkyl, N-allyl, and 2-methyl analogs, with three major aims: 1) to determine in vitro receptor profiles for the compounds, 2) to characterize in vitro functional activities at serotonin (5-HT) 2A receptors (5-HT2A) and 1A receptors (5-HT1A), and 3) to examine the influence of 5-HT1A on 5-HT2A-mediated psychedelic-like effects in the mouse head twitch response (HTR) model. In vitro receptor binding and functional assays showed that all 5-MeO-DMT analogs bind with high affinity and activate multiple targets (e.g., 5-HT receptor subtypes, alpha adrenergic receptors), including potent effects at 5-HT2A and 5-HT1A. In C57Bl/6J mice, subcutaneous injection of the analogs induced HTRs with varying potencies (ED50 range = 0.2-1.8 mg/kg) and maximal effects (Emax range = 20-60 HTRs/30 min), while inducing hypothermia and hypolocomotion at higher doses (ED50 range = 3.2-20.6 mg/kg). 5-HT2A antagonist pretreatment blocked drug-induced HTRs, whereas 5-HT1A antagonist pretreatment enhanced HTRs. In general, N,N-dialkyl and N-isopropyl derivatives displayed HTR activity, while the N-methyl, N-ethyl, and 2-methyl analogs did not. Importantly, blockade of 5-HT1A unmasked latent HTR activity for the N-ethyl analog and markedly increased maximal responses for other HTR-active compounds (40-90 HTRs/30 min), supporting the notion that 5-HT1A agonist activity can dampen 5-HT2A-mediated HTRs. Suppression of 5-HT2A-mediated HTRs by 5-HT1A only occurred after high 5-MeO-DMT doses, suggesting involvement of other receptors in modulating psychedelic-like effects. Overall, our findings provide key information about the receptor target profiles for 5-MeO-DMT analogs, the structure-activity relationships for inducing psychedelic-like effects, and the critical role of 5-HT1A agonism in modulating acute psychoactive effects of 5-HT2A agonists.
Collapse
MESH Headings
- Animals
- Receptor, Serotonin, 5-HT1A/drug effects
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptor, Serotonin, 5-HT2A/metabolism
- Receptor, Serotonin, 5-HT2A/drug effects
- Mice
- Male
- Mice, Inbred C57BL
- Methoxydimethyltryptamines/pharmacology
- Behavior, Animal/drug effects
- Hallucinogens/pharmacology
- Head Movements/drug effects
- Humans
Collapse
Affiliation(s)
- Grant C Glatfelter
- Designer Drug Research Unit, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224, United States
| | - Allison A Clark
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Natalie G Cavalco
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Antonio Landavazo
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - John S Partilla
- Designer Drug Research Unit, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224, United States
| | - Marilyn Naeem
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, United States
| | - James A Golen
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, United States
| | - Andrew R Chadeayne
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, United States
- CaaMTech, Inc., Issaquah, Washington 98027, United States
| | - David R Manke
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, United States
| | - Bruce E Blough
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - John D McCorvy
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
- Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Michael H Baumann
- Designer Drug Research Unit, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224, United States
| |
Collapse
|
14
|
Padawer-Curry JA, Krentzman OJ, Kuo CC, Wang X, Bice AR, Nicol GE, Snyder AZ, Siegel JS, McCall JG, Bauer AQ. Psychedelic 5-HT2A receptor agonism: neuronal signatures and altered neurovascular coupling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.23.559145. [PMID: 39605498 PMCID: PMC11601243 DOI: 10.1101/2023.09.23.559145] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Psychedelics hold therapeutic promise for mood disorders due to rapid, sustained results. Human neuroimaging studies have reported dramatic serotonin-2A receptor-(5-HT2AR)-dependent changes in functional brain reorganization that presumably reflect neuromodulation. However, the potent vasoactive effects of serotonin have been overlooked. We found psilocybin-mediated alterations to fMRI-HRFs in humans, suggesting potentially altered NVC. To assess the neuronal, hemodynamic, and neurovascular coupling (NVC) effects of the psychedelic 5-HT2AR agonist, 2,5-Dimethoxy-4-iodoamphetamine (DOI), wide-field optical imaging (WFOI) was used in awake Thy1-jRGECO1a mice during stimulus-evoked and resting-state conditions. While DOI partially altered tasked-based NVC, more pronounced NVC alterations occurred under resting-state conditions and were strongest in association regions. Further, calcium and hemodynamic activity reported different accounts of RSFC changes under DOI. Co-administration of DOI and the 5-HT2AR antagonist, MDL100907, reversed many of these effects. Dissociation between neuronal and hemodynamic signals emphasizes a need to consider neurovascular effects of psychedelics when interpreting blood-oxygenation-dependent neuroimaging measures.
Collapse
|
15
|
Shao LX, Liao C, Davoudian PA, Savalia NK, Jiang Q, Wojtasiewicz C, Tan D, Nothnagel JD, Liu RJ, Woodburn SC, Bilash OM, Kim H, Che A, Kwan AC. Pyramidal cell types and 5-HT 2A receptors are essential for psilocybin's lasting drug action. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.02.621692. [PMID: 39554087 PMCID: PMC11566025 DOI: 10.1101/2024.11.02.621692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Psilocybin is a serotonergic psychedelic with therapeutic potential for treating mental illnesses 1-4 . At the cellular level, psychedelics induce structural neural plasticity 5,6 , exemplified by the drug-evoked growth and remodeling of dendritic spines in cortical pyramidal cells 7-9 . A key question is how these cellular modifications map onto cell type-specific circuits to produce psychedelics' behavioral actions 10 . Here, we use in vivo optical imaging, chemogenetic perturbation, and cell type-specific electrophysiology to investigate the impact of psilocybin on the two main types of pyramidal cells in the mouse medial frontal cortex. We find that a single dose of psilocybin increased the density of dendritic spines in both the subcortical-projecting, pyramidal tract (PT) and intratelencephalic (IT) cell types. Behaviorally, silencing the PT neurons eliminates psilocybin's ability to ameliorate stress-related phenotypes, whereas silencing IT neurons has no detectable effect. In PT neurons only, psilocybin boosts synaptic calcium transients and elevates firing rates acutely after administration. Targeted knockout of 5-HT 2A receptors abolishes psilocybin's effects on stress-related behavior and structural plasticity. Collectively these results identify a pyramidal cell type and the 5-HT 2A receptor in the medial frontal cortex as playing essential roles for psilocybin's long-term drug action.
Collapse
|
16
|
Zhu H, Wang L, Wang X, Yao Y, Zhou P, Su R. 5-hydroxytryptamine 2C/1A receptors modulate the biphasic dose response of the head twitch response and locomotor activity induced by DOM in mice. Psychopharmacology (Berl) 2024; 241:2315-2330. [PMID: 38916640 DOI: 10.1007/s00213-024-06635-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 05/24/2024] [Indexed: 06/26/2024]
Abstract
RATIONALE The phenylalkylamine hallucinogen (-)-2,5-dimethoxy-4-methylamphetamine (DOM) exhibits an inverted U-shaped dose-response curve for both head twitch response (HTR) and locomotor activity in mice. Accumulated studies suggest that HTR and locomotor hyperactivity induced by DOM are mainly caused by the activation of serotonin 5-hydroxytryptamine 2 A receptor (5-HT2A receptor). However, the mechanisms underlying the biphasic dose response of HTR and locomotor activity induced by DOM, particularly at high doses, remain unclear. OBJECTIVES The primary objective of this study is to investigate the modulation of 5-HT2A/2C/1A receptors in HTR and locomotor activity, while also exploring the potential receptor mechanisms underlying the biphasic dose response of DOM. METHODS In this study, we employed pharmacological methods to identify the specific 5-HT receptor subtypes responsible for mediating the biphasic dose-response effects of DOM on HTR and locomotor activity in C57BL/6J mice. RESULTS The 5-HT2A receptor selective antagonist (R)-[2,3-di(methoxy)phenyl]-[1-[2-(4-fluorophenyl)ethyl]piperidin-4-yl]methanol (M100907) (500 µg/kg, i.p.) fully blocked the HTR at every dose of DOM (0.615-10 mg/kg, i.p.) in C57BL/6J mice. M100907 (50 µg/kg, i.p.) decreased the locomotor hyperactivity induced by a low dose of DOM (0.625, 1.25 mg/kg, i.p.), but had no effect on the locomotor hypoactivity induced by a high dose of DOM (10 mg/kg) in C57BL/6J mice. The 5-HT2C antagonist 6-chloro-5-methyl-1-[(2-[2-methylpyrid-3yloxy]pyrid-5yl)carbamoyl]indoline (SB242084) (0.3, 1 mg/kg, i.p.) reduced the HTR induced by a dose of 2.5 mg/kg DOM, but did not affect the response to other doses. SB242084 (1 mg/kg, i.p.) significantly increased the locomotor activity induced by DOM (0.615-10 mg/kg, i.p.) in mice. The 5-HT1A antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]N-(2-pyridinyl) cyclohexane carboxamide maleate (WAY100635) (1 mg/kg, i.p.) increased both HTR and locomotor activity induced by DOM in mice. The 5-HT1A agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) (1 mg/kg, i.p.) significantly reduced both the HTR and locomotor activity induced by DOM in mice. Additionally, pretreatment with the Gαi/o inhibitor PTX (0.25 µg/mouse, i.c.v.) enhanced the HTR induced by DOM and attenuated the effect of DOM on locomotor activity in mice. CONCLUSIONS Receptor subtypes 5-HT2C and 5-HT1A are implicated in the inverted U-shaped dose-response curves of HTR and locomotor activity induced by DOM in mice. The biphasic dose-response function of HTR and locomotor activity induced by DOM has different mechanisms in mice.
Collapse
MESH Headings
- Animals
- Mice
- Dose-Response Relationship, Drug
- Male
- Receptor, Serotonin, 5-HT2C/drug effects
- Receptor, Serotonin, 5-HT2C/metabolism
- DOM 2,5-Dimethoxy-4-Methylamphetamine/pharmacology
- Piperidines/pharmacology
- Piperidines/administration & dosage
- Receptor, Serotonin, 5-HT2A/drug effects
- Receptor, Serotonin, 5-HT2A/metabolism
- Locomotion/drug effects
- Locomotion/physiology
- Motor Activity/drug effects
- Motor Activity/physiology
- Receptor, Serotonin, 5-HT1A/drug effects
- Receptor, Serotonin, 5-HT1A/metabolism
- Hallucinogens/pharmacology
- Hallucinogens/administration & dosage
- Mice, Inbred C57BL
- Head Movements/drug effects
- Aminopyridines/pharmacology
- Aminopyridines/administration & dosage
- Serotonin 5-HT2 Receptor Antagonists/pharmacology
- Serotonin 5-HT2 Receptor Antagonists/administration & dosage
- Fluorobenzenes/pharmacology
- Serotonin 5-HT2 Receptor Agonists/pharmacology
- Serotonin 5-HT2 Receptor Agonists/administration & dosage
- Indoles
Collapse
Affiliation(s)
- Huili Zhu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
- School of Pharmacy, Yantai University, Yantai, 264005, China
| | - Longyu Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
- Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Xiaoxuan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Yishan Yao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Peilan Zhou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China.
| | - Ruibin Su
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China.
| |
Collapse
|
17
|
Alexander L, Anderson D, Baxter L, Claydon M, Rucker J, Robinson ESJ. Preclinical models for evaluating psychedelics in the treatment of major depressive disorder. Br J Pharmacol 2024. [PMID: 39467003 DOI: 10.1111/bph.17370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 10/30/2024] Open
Abstract
Psychedelic drugs have seen a resurgence in interest as a next generation of psychiatric medicines with potential as rapid-acting antidepressants (RAADs). Despite promising early clinical trials, the mechanisms which underlie the effects of psychedelics are poorly understood. For example, key questions such as whether antidepressant and psychedelic effects involve related or independent mechanisms are unresolved. Preclinical studies in relevant animal models are key to understanding the pharmacology of psychedelics and translating these findings to explain efficacy and safety in patients. Understanding the mechanisms of action associated with the behavioural effects of psychedelic drugs can also support the identification of novel drug targets and more effective treatments. Here we review the behavioural approaches currently used to quantify the psychedelic and antidepressant effects of psychedelic drugs. We discuss conceptual and methodological issues, the importance of using clinically relevant doses and the need to consider possible sex differences in preclinical psychedelic studies.
Collapse
Affiliation(s)
- Laith Alexander
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- South London and the Maudsley NHS Foundation Trust, London, UK
| | - Dasha Anderson
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| | - Luke Baxter
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- South London and the Maudsley NHS Foundation Trust, London, UK
| | - Matthew Claydon
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| | - James Rucker
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- South London and the Maudsley NHS Foundation Trust, London, UK
| | - Emma S J Robinson
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
18
|
de la Fuente Revenga M, González-Maeso J. Snapshot of 5-HT 2A receptor activation in the mouse brain via IP 1 detection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617861. [PMID: 39416073 PMCID: PMC11482960 DOI: 10.1101/2024.10.11.617861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The distinct subjective effects that define psychedelics such as LSD, psilocybin or DOI as drug class are causally linked to activation of the serotonin 2A receptor (5-HT 2A R). However, some aspects of 5-HT 2A R pharmacology remain elusive, such as what molecular drivers differentiate psychedelic from non-psychedelic 5-HT 2A R agonists. We developed an ex vivo platform to obtain snapshots of drug-mediated 5-HT 2A R engagement of the canonical G q/11 pathway in native tissue. This non-radioactive methodology captures the pharmacokinetic and pharmacodynamic events leading up to changes in inositol monophosphate (IP 1 ) in the mouse brain. The specificity of this method was assessed by comparing IP 1 levels in homogenates from the frontal cortex in DOI-treated wild-type and 5-HT 2A R-KO animals compared to other brain regions, namely striatum and cerebellum. Furthermore, we encountered that head-twitch response (HTR) counts and IP 1 in the frontal cortex were correlated. We observed that IP 1 levels in frontal cortex homogenates from mice treated with LSD and lisuride vary in magnitude, consistent with LSD's 5-HT 2A R agonism and psychedelic nature, and lisuride's lack thereof. MDMA evoked an increase of IP 1 signal in the frontal cortex that were not matched by the serotonin precursor 5-HTP or the serotonin reuptake inhibitor fluoxetine. We attribute differences in the readout primarily to the indirect stimulation of 5-HT 2A R by MDMA via serotonin release from its presynaptic terminals. This methodology enables capturing a snapshot of IP 1 turnover in the mouse brain that can provide mechanistic insights in the study of psychedelics and other serotonergic agents pharmacodynamics.
Collapse
|
19
|
Maguire DR. Evaluation of potential punishing effects of 2,5-dimethoxy-4-methylamphetamine (DOM) in rhesus monkeys responding under a choice procedure. Behav Pharmacol 2024; 35:378-385. [PMID: 39052019 PMCID: PMC11398979 DOI: 10.1097/fbp.0000000000000787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
OBJECTIVES There has been substantial and growing interest in the therapeutic utility of drugs acting at serotonin 2A subtype (5-HT 2A ) receptors, increasing the need for characterization of potential beneficial and adverse effects of such compounds. Although numerous studies have evaluated the possible rewarding and reinforcing effects of 5-HT 2A receptor agonists, there have been relatively few studies on potential aversive effects. METHODS The current study investigated punishing effects of 2,5-dimethoxy-4-methylamphetamine (DOM) in four rhesus monkeys responding under a choice procedure in which responding on one lever delivered a sucrose pellet alone and responding on the other lever delivered a sucrose pellet plus an intravenous infusion of a range of doses of fentanyl (0.1-3.2 µg/kg/infusion), histamine (3.2-100 µg/kg/infusion), or DOM (3.2-100 µg/kg/infusion). RESULTS When fentanyl was available, responding for a pellet plus an infusion increased dose dependently in all subjects, indicating a positive reinforcing effect of fentanyl. When histamine was available, responding for a pellet plus an infusion decreased in three of four subjects, indicating a punishing effect of histamine. Whether available before or after histamine, DOM did not systematically alter choice across the range of doses tested. CONCLUSION These results suggest that the 5-HT 2A receptor agonist DOM has neither positive reinforcing nor punishing effects under a choice procedure that is sensitive to both processes.
Collapse
Affiliation(s)
- David R Maguire
- Department of Pharmacology and Addiction Research, Treatment & Training Center of Excellence, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
20
|
Vu MO, Butters BM, Canal CE, Figueroa XA. Defined radio wave frequencies attenuate the head-twitch response in mice elicited by (±)-2,5-dimethoxy-4-iodoamphetamine. Electromagn Biol Med 2024; 43:328-336. [PMID: 39435614 DOI: 10.1080/15368378.2024.2418552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 10/14/2024] [Indexed: 10/23/2024]
Abstract
Results from clinical trials show that serotonergic psychedelics have efficacy in treating psychiatric disorders, where currently approved pharmacotherapies are inadequate. Developing psychedelic medicines, however, comes with unique challenges, such as tempering heightened anxiety associated with the psychedelic experience. We conceived a new strategy to potentially mitigate psychedelic effects with defined electromagnetic signals (ES). We recorded the electromagnetic fields emitted by the serotonin 2 receptor (5-HT2R) agonist (±)-2,5-dimethoxy-4-iodoamphetamine (DOI) and converted them to a playable WAV file. We then exposed the DOI WAV ES to mice to assess its effects on the DOI-elicited, 5-HT2AR dependent head-twitch response (HTR). The DOI WAV signal significantly attenuated the HTR in mice elicited by 0.1 and 0.3 mg/kg subcutaneous DOI (p < 0.05 and p < 0.01, respectively). A scrambled WAV signal did not affect the DOI-elicited HTR, suggesting specificity of the DOI WAV signal. These results provide evidence that defined ES could modulate the psychoactive effects of serotonergic psychedelics. We discuss putative explanations for the distinct effects of the DOI WAV signal in the context of previous studies that demonstrate ES's efficacy for treating other conditions, including pain and cancer.
Collapse
Affiliation(s)
- Mary O Vu
- College of Pharmacy, Department of Pharmaceutical Sciences, Mercer University, Atlanta, GA, USA
| | - B Michael Butters
- Pre-clinical Development, EMulate Therapeutics Inc ., Bellevue, WA, USA
| | - Clinton E Canal
- College of Pharmacy, Department of Pharmaceutical Sciences, Mercer University, Atlanta, GA, USA
| | - Xavier A Figueroa
- Pre-clinical Development, EMulate Therapeutics Inc ., Bellevue, WA, USA
| |
Collapse
|
21
|
Sun Y, Chebolu S, Darmani NA. Ultra-low doses of methamphetamine suppress 5-hydroxytryptophan-induced head-twitch response in mice during aging. Behav Pharmacol 2024; 35:367-377. [PMID: 39206775 DOI: 10.1097/fbp.0000000000000789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The head-twitch response (HTR) in mice is considered a behavioral assay for activation of 5-HT 2A receptors in rodents. It can be evoked by direct-acting 5-HT 2A receptor agonists such as (±)-2,5-dimethoxy-4-iodoamphetamine, 5-hydroxytryptamine precursors [e.g. 5-hydroxytryptophan (5-HTP)], and selective 5-hydroxytryptamine releasers (e.g. d -fenfluramine). The nonselective monoamine releaser methamphetamine by itself does not produce the HTR but can suppress both (±)-2,5-dimethoxy-4-iodoamphetamine- and d -fenfluramine-evoked HTRs across ages via concomitant activation of the inhibitory serotonergic 5-HT 1A or adrenergic α 2 receptors. Currently, we investigated: (1) the ontogenic development of 5-HTP-induced HTR in 20-, 30-, and 60-day-old mice; (2) whether pretreatment with ultra-low doses of methamphetamine (0.1, 0.25, and 0.5 mg/kg, intraperitoneally) can suppress the frequency of 5-HTP-induced HTR at different ages; and (3) whether the inhibitory serotonergic 5-HT 1A or adrenergic α 2 receptors may account for the potential inhibitory effect of methamphetamine on 5-HTP-induced HTR. In the presence of a peripheral decarboxylase inhibitor (carbidopa), 5-HTP produced maximal frequency of HTRs in 20-day-old mice which rapidly subsided during aging. Methamphetamine dose-dependently suppressed 5-HTP-evoked HTR in 20- and 30-day-old mice. The selective 5-HT 1A -receptor antagonist WAY 100635 reversed the inhibitory effect of methamphetamine on 5-HTP-induced HTR in 30-day-old mice, whereas the selective adrenergic α 2 -receptor antagonist RS 79948 failed to reverse methamphetamine's inhibition at any tested age. These findings suggest an ontogenic rationale for methamphetamine's inhibitory 5-HT 1A receptor component of action in its suppressive effect on 5-HTP-induced HTR during development which is not maximally active at a very early age.
Collapse
MESH Headings
- Animals
- Methamphetamine/pharmacology
- Mice
- Aging/drug effects
- 5-Hydroxytryptophan/pharmacology
- Male
- Dose-Response Relationship, Drug
- Head Movements/drug effects
- Mice, Inbred C57BL
- Receptors, Adrenergic, alpha-2/metabolism
- Receptors, Adrenergic, alpha-2/drug effects
- Central Nervous System Stimulants/pharmacology
- Receptor, Serotonin, 5-HT1A/drug effects
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptor, Serotonin, 5-HT2A/drug effects
- Receptor, Serotonin, 5-HT2A/metabolism
Collapse
Affiliation(s)
- Yina Sun
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | | | | |
Collapse
|
22
|
Jacobs DS, Bogachuk AP, Le Moing CL, Moghaddam B. Effects of psilocybin on uncertain punishment learning. Neurobiol Learn Mem 2024; 213:107954. [PMID: 38909970 DOI: 10.1016/j.nlm.2024.107954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/06/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Psilocybin may provide a useful treatment for mood disorders including anxiety and depression but its mechanisms of action for these effects are not well understood. While recent preclinical work has begun to assess psilocybin's role in affective behaviors through innate anxiety or fear conditioning, there is scant evidence for its role in conflict between reward and punishment. The current study was designed to determine the impact of psilocybin on the learning of reward-punishment conflict associations, as well as its effects after learning, in male and female rats. We utilized a chained schedule of reinforcement that involved execution of safe and risky reward-guided actions under uncertain punishment. Different patterns of behavioral suppression by psilocybin emerged during learning versus after learning of risky action-reward associations. Psilocybin increased behavioral suppression in female rats as punishment associations were learned. After learning, psilocybin decreased behavioral suppression in both sexes. Thus, psilocybin produces divergent effects on action suppression during approach-avoidance conflict depending on when the conflict is experienced. This observation may have implications for its therapeutic mechanism of action.
Collapse
Affiliation(s)
- David S Jacobs
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Alina P Bogachuk
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Chloé L Le Moing
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Bita Moghaddam
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA; Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
23
|
Gattuso JJ, Wilson C, Hannan AJ, Renoir T. Psilocybin as a lead candidate molecule in preclinical therapeutic studies of psychiatric disorders: A systematic review. J Neurochem 2024; 168:1687-1720. [PMID: 38019032 DOI: 10.1111/jnc.16017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/30/2023]
Abstract
Psilocybin is the main psychoactive compound found in hallucinogenic/magic mushrooms and can bind to both serotonergic and tropomyosin receptor kinase b (TrkB) receptors. Psilocybin has begun to show efficacy for a range of neuropsychiatric conditions, including treatment-resistant depression and anxiety disorders; however, neurobiological mechanisms are still being elucidated. Clinical research has found that psilocybin can alter functional connectivity patterns in human brains, which is often associated with therapeutic outcomes. However, preclinical research affords the opportunity to assess the potential cellular mechanisms by which psilocybin may exert its therapeutic effects. Preclinical rodent models can also facilitate a more tightly controlled experimental context and minimise placebo effects. Furthermore, where there is a rationale, preclinical researchers can investigate psilocybin administration in neuropsychiatric conditions that have not yet been researched clinically. As a result, we have systematically reviewed the knowledge base, identifying 82 preclinical studies which were screened based on specific criteria. This resulted in the exclusion of 44 articles, with 34 articles being included in the main review and another 2 articles included as Supporting Information materials. We found that psilocybin shows promise as a lead candidate molecule for treating a variety of neuropsychiatric conditions, albeit showing the most efficacy for depression. We discuss the experimental findings, and identify possible mechanisms whereby psilocybin could invoke therapeutic changes. Furthermore, we critically evaluate the between-study heterogeneity and possible future research avenues. Our review suggests that preclinical rodent models can provide valid and translatable tools for researching novel psilocybin-induced molecular and cellular mechanisms, and therapeutic outcomes.
Collapse
Affiliation(s)
- James J Gattuso
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Carey Wilson
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Thibault Renoir
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
24
|
Ornelas IM, Carrilho BDS, Ventura MAVDC, Domith I, de V Silveira CM, Dos Santos VF, Delou JM, Moll F, Pereira HMG, Junqueira M, Aguilaniu H, Rehen S. Lysergic acid diethylamide induces behavioral changes in Caenorhabditis elegans. Neurosci Lett 2024; 837:137903. [PMID: 39025433 DOI: 10.1016/j.neulet.2024.137903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/28/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Lysergic acid diethylamide (LSD) is a synthetic psychedelic compound with potential therapeutic value for psychiatric disorders. This study aims to establish Caenorhabditis elegans as an in vivo model for examining LSD's effects on locomotor behavior. Our results demonstrate that LSD is absorbed by C. elegans and that the acute treatment reduces animal speed, similar to the role of endogenous serotonin. This response is mediated in part by the serotonergic receptors SER-1 and SER-4. Our findings highlight the potential of this nematode as a new experimental model in psychedelic research.
Collapse
Affiliation(s)
- Isis M Ornelas
- Instituto D'Or de Pesquisa e Ensino (IDOR), Rio de Janeiro 22281-100, Brazil
| | - Beatriz de S Carrilho
- Programa de Pós-graduação em Ciências Morfológicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Matheus Antonio V de C Ventura
- Programa de Pós-graduação em Ciências Morfológicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Ivan Domith
- Instituto D'Or de Pesquisa e Ensino (IDOR), Rio de Janeiro 22281-100, Brazil; IDOR/Pioneer Science Initiative, Rio de Janeiro, RJ 22281-010, Brazil
| | | | - Vanessa F Dos Santos
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - João M Delou
- Instituto D'Or de Pesquisa e Ensino (IDOR), Rio de Janeiro 22281-100, Brazil
| | - Francisco Moll
- Instituto D'Or de Pesquisa e Ensino (IDOR), Rio de Janeiro 22281-100, Brazil
| | | | - Magno Junqueira
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Hugo Aguilaniu
- Instituto Serrapilheira, Rio de Janeiro, Rio de Janeiro, 22431-050, Brazil
| | - Stevens Rehen
- Instituto D'Or de Pesquisa e Ensino (IDOR), Rio de Janeiro 22281-100, Brazil; Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2141-902, Brazil.
| |
Collapse
|
25
|
Puigseslloses P, Nadal-Gratacós N, Ketsela G, Weiss N, Berzosa X, Estrada-Tejedor R, Islam MN, Holy M, Niello M, Pubill D, Camarasa J, Escubedo E, Sitte HH, López-Arnau R. Structure-activity relationships of serotonergic 5-MeO-DMT derivatives: insights into psychoactive and thermoregulatory properties. Mol Psychiatry 2024; 29:2346-2358. [PMID: 38486047 PMCID: PMC11412900 DOI: 10.1038/s41380-024-02506-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 09/21/2024]
Abstract
Recent studies have sparked renewed interest in the therapeutic potential of psychedelics for treating depression and other mental health conditions. Simultaneously, the novel psychoactive substances (NPS) phenomenon, with a huge number of NPS emerging constantly, has changed remarkably the illicit drug market, being their scientific evaluation an urgent need. Thus, this study aims to elucidate the impact of amino-terminal modifications to the 5-MeO-DMT molecule on its interactions with serotonin receptors and transporters, as well as its psychoactive and thermoregulatory properties. Our findings demonstrated, using radioligand binding methodologies, that all examined 5-MeO-tryptamines exhibited selectivity for 5-HT1AR over 5-HT2AR. In fact, computational docking analyses predicted a better interaction in the 5-HT1AR binding pocket compared to 5-HT2AR. Our investigation also proved the interaction of these compounds with SERT, revealing that the molecular size of the amino group significantly influenced their affinity. Subsequent experiments involving serotonin uptake, electrophysiology, and superfusion release assays confirmed 5-MeO-pyr-T as the most potent partial 5-HT releaser tested. All tested tryptamines elicited, to some degree, the head twitch response (HTR) in mice, indicative of a potential hallucinogenic effect and mainly mediated by 5-HT2AR activation. However, 5-HT1AR was also shown to be implicated in the hallucinogenic effect, and its activation attenuated the HTR. In fact, tryptamines that produced a higher hypothermic response, mediated by 5-HT1AR, tended to exhibit a lower hallucinogenic effect, highlighting the opposite role of both 5-HT receptors. Moreover, although some 5-MeO-tryptamines elicited very low HTR, they still act as potent 5-HT2AR agonists. In summary, this research offers a comprehensive understanding of the psychopharmacological profile of various amino-substituted 5-MeO-tryptamines, keeping structural aspects in focus and accumulating valuable data in the frame of NPS. Moreover, the unique characteristics of some 5-MeO-tryptamines render them intriguing molecules as mixed-action drugs and provide insight within the search of non-hallucinogenic but 5-HT2AR ligands as therapeutical agents.
Collapse
MESH Headings
- Animals
- Receptor, Serotonin, 5-HT2A/metabolism
- Receptor, Serotonin, 5-HT2A/drug effects
- Structure-Activity Relationship
- Mice
- Humans
- Molecular Docking Simulation/methods
- Serotonin/metabolism
- Male
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptor, Serotonin, 5-HT1A/drug effects
- Hallucinogens/pharmacology
- Psychotropic Drugs/pharmacology
- Body Temperature Regulation/drug effects
- Serotonin Plasma Membrane Transport Proteins/metabolism
- Serotonin Plasma Membrane Transport Proteins/drug effects
- Methoxydimethyltryptamines/pharmacology
- Methoxydimethyltryptamines/metabolism
- HEK293 Cells
- Receptors, Serotonin/metabolism
- Receptors, Serotonin/drug effects
Collapse
Affiliation(s)
- Pol Puigseslloses
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028, Barcelona, Spain
- Pharmaceutical Chemistry Group (GQF), IQS School of Engineering, Universitat Ramon Llull, 08017, Barcelona, Spain
| | - Núria Nadal-Gratacós
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028, Barcelona, Spain
- Pharmaceutical Chemistry Group (GQF), IQS School of Engineering, Universitat Ramon Llull, 08017, Barcelona, Spain
| | - Gabriel Ketsela
- Pharmaceutical Chemistry Group (GQF), IQS School of Engineering, Universitat Ramon Llull, 08017, Barcelona, Spain
| | - Nicola Weiss
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028, Barcelona, Spain
| | - Xavier Berzosa
- Pharmaceutical Chemistry Group (GQF), IQS School of Engineering, Universitat Ramon Llull, 08017, Barcelona, Spain
| | - Roger Estrada-Tejedor
- Pharmaceutical Chemistry Group (GQF), IQS School of Engineering, Universitat Ramon Llull, 08017, Barcelona, Spain
| | - Mohammad Nazmul Islam
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Wäehringerstrasse 13A, 1090, Vienna, Austria
| | - Marion Holy
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Wäehringerstrasse 13A, 1090, Vienna, Austria
| | - Marco Niello
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Wäehringerstrasse 13A, 1090, Vienna, Austria
- Genetics of Cognition Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - David Pubill
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028, Barcelona, Spain
| | - Jordi Camarasa
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028, Barcelona, Spain
| | - Elena Escubedo
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028, Barcelona, Spain
| | - Harald H Sitte
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Wäehringerstrasse 13A, 1090, Vienna, Austria
- Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman, Jordan
- Center for Addiction Research and Science, Medical University Vienna, Waehringer Strasse 13A, 1090, Vienna, Austria
| | - Raúl López-Arnau
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028, Barcelona, Spain.
| |
Collapse
|
26
|
Brandt SD, Kavanagh PV, Gare S, Stratford A, Halberstadt AL. Analytical and behavioral characterization of 1-hexanoyl-LSD (1H-LSD). Drug Test Anal 2024. [PMID: 38965834 DOI: 10.1002/dta.3767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
The development of lysergic acid diethylamide (LSD) derivatives and analogs continues to inform the design of novel receptor probes and potentially new medicines. On the other hand, a number of newly developed LSD derivatives have also emerged as recreational drugs, leading to reports of their detection in some countries. One position in the ergoline scaffold of LSD that is frequently targeted is the N1-position; numerous N1-alkylcarbonyl LSD derivatives have been reported where the acyl chain is attached to the indole nitrogen, for example, in the form of linear n-alkane substituents, which represent higher homologs of the prototypical 1-acetyl-N,N-diethyllysergamide (1A-LSD, ALD-52). In this study, 1-hexanoyl-LSD (1H-LSD, SYN-L-027), a novel N1-acyl LSD derivative, was characterized analytically using standard techniques, followed by evaluation of its in vivo behavioral effects using the mouse head-twitch response (HTR) assay in C57BL/6J mice. 1H-LSD induced the HTR, with a median effective dose (ED50) of 192.4 μg/kg (equivalent to 387 nmol/kg), making it roughly equipotent to ALD-52 when tested previously under similar conditions. Similar to other N1-acylated analogs, 1H-LSD is anticipated to by hydrolyzed to LSD in vivo and acts as a prodrug. It is currently unknown whether 1H-LSD has appeared as on the research chemical market or is being used recreationally.
Collapse
Affiliation(s)
- Simon D Brandt
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Pierce V Kavanagh
- Department of Pharmacology and Therapeutics, School of Medicine, Trinity Centre for Health Sciences, St. James Hospital, Dublin, Ireland
| | - Sarah Gare
- Department of Chemistry, School of Physical Sciences, University of Liverpool, Liverpool, UK
| | | | - Adam L Halberstadt
- Department of Psychiatry, University of California San Diego, San Diego, Southern California, USA
- Center for Psychedelic Research, University of California San Diego, San Diego, Southern California, USA
- Research Service, VA San Diego Healthcare System, San Diego, Southern California, USA
| |
Collapse
|
27
|
Krupp KT, Yaeger JDW, Ledesma LJ, Withanage MHH, Gale JJ, Howe CB, Allen TJ, Sathyanesan M, Newton SS, Summers CH. Single administration of a psychedelic [(R)-DOI] influences coping strategies to an escapable social stress. Neuropharmacology 2024; 252:109949. [PMID: 38636726 PMCID: PMC11073902 DOI: 10.1016/j.neuropharm.2024.109949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/08/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
Psychedelic compounds have potentially rapid, long-lasting anxiolytic, antidepressive and anti-inflammatory effects. We investigated whether the psychedelic compound (R)-2,5-dimethoxy-4-iodoamphetamine [(R)-DOI], a selective 5-HT2A receptor partial agonist, decreases stress-related behavior in male mice exposed to repeated social aggression. Additionally, we explored the likelihood that these behavioral changes are related to anti-inflammatory properties of [(R)-DOI]. Animals were subjected to the Stress Alternatives Model (SAM), an escapable social stress paradigm in which animals develop reactive coping strategies - remaining in the SAM arena (Stay) with a social aggressor, or dynamically initiated stress coping strategies that involve utilizing the escape holes (Escape) to avoid aggression. Mice expressing these behavioral phenotypes display behaviors like those in other social aggression models that separate animals into stress-vulnerable (as for Stay) or stress-resilient (as for Escape) groups, which have been shown to have distinct inflammatory responses to social stress. These results show that Stay animals have heightened cytokine gene expression, and both Stay and Escape mice exhibit plasma and neural concentrations of the inflammatory cytokine tumor necrosis factor-α (TNFα) compared to unstressed control mice. Additionally, these results suggest that a single administration of (R)-DOI to Stay animals in low doses, can increase stress coping strategies such as increasing attention to the escape route, promoting escape behavior, and reducing freezing during socially aggressive interaction in the SAM. Lower single doses of (R)-DOI, in addition to shifting behavior to suggest anxiolytic effects, also concomitantly reduce plasma and limbic brain levels of the inflammatory cytokine TNFα.
Collapse
Affiliation(s)
- Kevin T Krupp
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Jazmine D W Yaeger
- Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, 57105, USA; Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, 57104, USA
| | - Leighton J Ledesma
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, 57105, USA
| | | | - J J Gale
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Chase B Howe
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA
| | - Trevor J Allen
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA
| | - Monica Sathyanesan
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Samuel S Newton
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Cliff H Summers
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, 57105, USA.
| |
Collapse
|
28
|
Effinger DP, Hoffman JL, Mott SE, Magee SN, Quadir SG, Rollison CS, Toedt D, Echeveste Sanchez M, High MW, Hodge CW, Herman MA. Increased reactivity of the paraventricular nucleus of the hypothalamus and decreased threat responding in male rats following psilocin administration. Nat Commun 2024; 15:5321. [PMID: 38909051 PMCID: PMC11193716 DOI: 10.1038/s41467-024-49741-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/17/2024] [Indexed: 06/24/2024] Open
Abstract
Psychedelics have experienced renewed interest following positive clinical effects, however the neurobiological mechanisms underlying effects remain unclear. The paraventricular nucleus of the hypothalamus (PVN) plays an integral role in stress response, autonomic function, social behavior, and other affective processes. We investigated the effect of psilocin, the psychoactive metabolite of psilocybin, on PVN reactivity in Sprague Dawley rats. Psilocin increased stimulus-independent PVN activity as measured by c-Fos expression in male and female rats. Psilocin increased PVN reactivity to an aversive air-puff stimulus in males but not females. Reactivity was restored at 2- and 7-days post-injection with no group differences. Additionally, prior psilocin injection did not affect PVN reactivity following acute restraint stress. Experimental groups sub-classified by baseline threat responding indicate that increased male PVN reactivity is driven by active threat responders. These findings identify the PVN as a significant site of psychedelic drug action with implications for threat responding behavior.
Collapse
Affiliation(s)
- Devin P Effinger
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jessica L Hoffman
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah E Mott
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah N Magee
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sema G Quadir
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christian S Rollison
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Daniel Toedt
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Maria Echeveste Sanchez
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Margaret W High
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Clyde W Hodge
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Melissa A Herman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
29
|
Glennon RA, Dukat M. 1-(2,5-Dimethoxy-4-iodophenyl)-2-aminopropane (DOI): From an Obscure to Pivotal Member of the DOX Family of Serotonergic Psychedelic Agents - A Review. ACS Pharmacol Transl Sci 2024; 7:1722-1745. [PMID: 38898956 PMCID: PMC11184610 DOI: 10.1021/acsptsci.4c00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 06/21/2024]
Abstract
1-(2,5-Dimethoxy-4-iodophenyl)-2-aminopropane (DOI, or DOX where X = -I) was first synthesized in 1973 in a structure-activity study to explore the effect of various aryl substituents on the then newly identified, and subsequently controlled, hallucinogenic agent 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane (DOM, or DOX where X = -CH3). Over time, DOI was found to be a serotonin (5-HT) receptor agonist using various peripheral 5-HT receptor tissue assays and later, following the identification of multiple families of central 5-HT receptors, an agonist at 5-HT2 serotonin receptors in rat and, then, human brain. Today, classical hallucinogens, currently referred to as serotonergic psychedelic agents, are receiving considerable attention for their potential therapeutic application in various neuropsychiatric disorders including treatment-resistant depression. Here, we review, for the first time, the historical and current developments that led to DOI becoming a unique, perhaps a landmark, agent in 5-HT2 receptor research.
Collapse
Affiliation(s)
- Richard A. Glennon
- Department of Medicinal Chemistry
School of Pharmacy, Virginia Commonwealth
University, Richmond, Virginia 23298, United States
| | - Małgorzata Dukat
- Department of Medicinal Chemistry
School of Pharmacy, Virginia Commonwealth
University, Richmond, Virginia 23298, United States
| |
Collapse
|
30
|
Souza AC, Souza BC, França A, Moradi M, Souza NC, Leão KE, Tort ABL, Leão RN, Lopes-Dos-Santos V, Ribeiro S. 5-MeO-DMT induces sleep-like LFP spectral signatures in the hippocampus and prefrontal cortex of awake rats. Sci Rep 2024; 14:11281. [PMID: 38760450 PMCID: PMC11101617 DOI: 10.1038/s41598-024-61474-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 05/06/2024] [Indexed: 05/19/2024] Open
Abstract
5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) is a potent classical psychedelic known to induce changes in locomotion, behaviour, and sleep in rodents. However, there is limited knowledge regarding its acute neurophysiological effects. Local field potentials (LFPs) are commonly used as a proxy for neural activity, but previous studies investigating psychedelics have been hindered by confounding effects of behavioural changes and anaesthesia, which alter these signals. To address this gap, we investigated acute LFP changes in the hippocampus (HP) and medial prefrontal cortex (mPFC) of freely behaving rats, following 5-MeO-DMT administration. 5-MeO-DMT led to an increase of delta power and a decrease of theta power in the HP LFPs, which could not be accounted for by changes in locomotion. Furthermore, we observed a dose-dependent reduction in slow (20-50 Hz) and mid (50-100 Hz) gamma power, as well as in theta phase modulation, even after controlling for the effects of speed and theta power. State map analysis of the spectral profile of waking behaviour induced by 5-MeO-DMT revealed similarities to electrophysiological states observed during slow-wave sleep (SWS) and rapid-eye-movement (REM) sleep. Our findings suggest that the psychoactive effects of classical psychedelics are associated with the integration of waking behaviours with sleep-like spectral patterns in LFPs.
Collapse
Affiliation(s)
- Annie C Souza
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
- Department of Psychology, Florida State University, Tallahassee, USA
| | - Bryan C Souza
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Arthur França
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Marzieh Moradi
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
- Department of Neuroscience and Behavioural Sciences, School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Nicholy C Souza
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Katarina E Leão
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Adriano B L Tort
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Richardson N Leão
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Vítor Lopes-Dos-Santos
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil.
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| | - Sidarta Ribeiro
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil.
- Center for Strategic Studies, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil.
| |
Collapse
|
31
|
Atiq MA, Baker MR, Voort JLV, Vargas MV, Choi DS. Disentangling the acute subjective effects of classic psychedelics from their enduring therapeutic properties. Psychopharmacology (Berl) 2024:10.1007/s00213-024-06599-5. [PMID: 38743110 DOI: 10.1007/s00213-024-06599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 04/24/2024] [Indexed: 05/16/2024]
Abstract
Recent research with classic psychedelics suggests significant therapeutic potential, particularly for neuropsychiatric disorders. A mediating influence behind symptom resolution is thought to be the personal insight - at times, bordering on the mystical - one acquires during the acute phase of a psychedelic session. Indeed, current clinical trials have found strong correlations between the acute subjective effects (ASE) under the influence of psychedelics and their enduring therapeutic properties. However, with potential barriers to widespread clinical implementation, including the healthcare resource-intensive nature of psychedelic sessions and the exclusion of certain at-risk patient groups, there is an active search to determine whether ASE elimination can be accompanied by the retention of persisting therapeutic benefits of these class of compounds. Recognizing the aberrant underlying neural circuitry that characterizes a range of neuropsychiatric disorders, and that classic psychedelics promote neuroplastic changes that may correct abnormal circuitry, investigators are rushing to design and discover compounds with psychoplastogenic, but not hallucinogenic (i.e., ASE), therapeutic potential. These efforts have paved the discovery of 'non-psychedelic/subjective psychedelics', or compounds that lack hallucinogenic activity but with therapeutic efficacy in preclinical models. This review aims to distill the current evidence - both clinical and preclinical - surrounding the question: can the ASE of classic psychedelics be dissociated from their sustained therapeutic properties? Several plausible clinical scenarios are then proposed to offer clarity on and potentially answer this question.
Collapse
Affiliation(s)
- Mazen A Atiq
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street, SW, Rochester, MN, 55905, USA.
| | - Matthew R Baker
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street, SW, Rochester, MN, 55905, USA
| | - Jennifer L Vande Voort
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street, SW, Rochester, MN, 55905, USA
| | - Maxemiliano V Vargas
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA, USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street, SW, Rochester, MN, 55905, USA.
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street, SW, Rochester, MN, 55905, USA.
| |
Collapse
|
32
|
Varty GB, Canal CE, Mueller TA, Hartsel JA, Tyagi R, Avery K, Morgan ME, Reichelt AC, Pathare P, Stang E, Palfreyman MG, Nivorozhkin A. Synthesis and Structure-Activity Relationships of 2,5-Dimethoxy-4-Substituted Phenethylamines and the Discovery of CYB210010: A Potent, Orally Bioavailable and Long-Acting Serotonin 5-HT 2 Receptor Agonist. J Med Chem 2024; 67:6144-6188. [PMID: 38593423 DOI: 10.1021/acs.jmedchem.3c01961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Structure-activity studies of 4-substituted-2,5-dimethoxyphenethylamines led to the discovery of 2,5-dimethoxy-4-thiotrifluoromethylphenethylamines, including CYB210010, a potent and long-acting serotonin 5-HT2 receptor agonist. CYB210010 exhibited high agonist potency at 5-HT2A and 5-HT2C receptors, modest selectivity over 5-HT2B, 5-HT1A, 5-HT6, and adrenergic α2A receptors, and lacked activity at monoamine transporters and over 70 other proteins. CYB210010 (0.1-3 mg/kg) elicited a head-twitch response (HTR) and could be administered subchronically at threshold doses without behavioral tolerance. CYB210010 was orally bioavailable in three species, readily and preferentially crossed into the CNS, engaged frontal cortex 5-HT2A receptors, and increased the expression of genes involved in neuroplasticity in the frontal cortex. CYB210010 represents a new tool molecule for investigating the therapeutic potential of 5-HT2 receptor activation. In addition, several other compounds with high 5-HT2A receptor potency, yet with little or no HTR activity, were discovered, providing the groundwork for the development of nonpsychedelic 5-HT2A receptor ligands.
Collapse
Affiliation(s)
- Geoffrey B Varty
- Cybin IRL Limited, North Wall Quay, 1 Spencer Dock, Dublin 1 DO1 X9R7, Ireland
| | - Clinton E Canal
- Cybin IRL Limited, North Wall Quay, 1 Spencer Dock, Dublin 1 DO1 X9R7, Ireland
- College of Pharmacy, Department of Pharmaceutical Sciences, Mercer University, 3001 Mercer University Drive, Atlanta, Georgia 30341, United States
| | - Tina A Mueller
- Cybin IRL Limited, North Wall Quay, 1 Spencer Dock, Dublin 1 DO1 X9R7, Ireland
- BioIVT, Hicksville, New York 11803, United States
| | - Joshua A Hartsel
- Cybin IRL Limited, North Wall Quay, 1 Spencer Dock, Dublin 1 DO1 X9R7, Ireland
- Consultant, UPS PO Box #105-650, 25422 Trabuco Road, Lake Forest, California 92630, United States
| | - Richa Tyagi
- College of Pharmacy, Department of Pharmaceutical Sciences, Mercer University, 3001 Mercer University Drive, Atlanta, Georgia 30341, United States
| | - Ken Avery
- Cybin IRL Limited, North Wall Quay, 1 Spencer Dock, Dublin 1 DO1 X9R7, Ireland
| | - Michael E Morgan
- Cybin IRL Limited, North Wall Quay, 1 Spencer Dock, Dublin 1 DO1 X9R7, Ireland
| | - Amy C Reichelt
- Cybin IRL Limited, North Wall Quay, 1 Spencer Dock, Dublin 1 DO1 X9R7, Ireland
- Faculty of Biomedicine, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Pradip Pathare
- Cybin IRL Limited, North Wall Quay, 1 Spencer Dock, Dublin 1 DO1 X9R7, Ireland
| | - Erik Stang
- Cybin IRL Limited, North Wall Quay, 1 Spencer Dock, Dublin 1 DO1 X9R7, Ireland
| | | | - Alex Nivorozhkin
- Cybin IRL Limited, North Wall Quay, 1 Spencer Dock, Dublin 1 DO1 X9R7, Ireland
| |
Collapse
|
33
|
Chen Z, Yu J, Wang H, Xu P, Fan L, Sun F, Huang S, Zhang P, Huang H, Gu S, Zhang B, Zhou Y, Wan X, Pei G, Xu HE, Cheng J, Wang S. Flexible scaffold-based cheminformatics approach for polypharmacological drug design. Cell 2024; 187:2194-2208.e22. [PMID: 38552625 DOI: 10.1016/j.cell.2024.02.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 02/04/2024] [Accepted: 02/27/2024] [Indexed: 04/28/2024]
Abstract
Effective treatments for complex central nervous system (CNS) disorders require drugs with polypharmacology and multifunctionality, yet designing such drugs remains a challenge. Here, we present a flexible scaffold-based cheminformatics approach (FSCA) for the rational design of polypharmacological drugs. FSCA involves fitting a flexible scaffold to different receptors using different binding poses, as exemplified by IHCH-7179, which adopted a "bending-down" binding pose at 5-HT2AR to act as an antagonist and a "stretching-up" binding pose at 5-HT1AR to function as an agonist. IHCH-7179 demonstrated promising results in alleviating cognitive deficits and psychoactive symptoms in mice by blocking 5-HT2AR for psychoactive symptoms and activating 5-HT1AR to alleviate cognitive deficits. By analyzing aminergic receptor structures, we identified two featured motifs, the "agonist filter" and "conformation shaper," which determine ligand binding pose and predict activity at aminergic receptors. With these motifs, FSCA can be applied to the design of polypharmacological ligands at other receptors.
Collapse
Affiliation(s)
- Zhangcheng Chen
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing Yu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Huan Wang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Peiyu Xu
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Luyu Fan
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Fengxiu Sun
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Sijie Huang
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Pei Zhang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Shuo Gu
- ComMedX, Beijing 100094, China
| | | | - Yue Zhou
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Gang Pei
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - H Eric Xu
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Jianjun Cheng
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Sheng Wang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
34
|
Glynos NG, Huels ER, Nelson A, Kim Y, Kennedy RT, Mashour GA, Pal D. Neurochemical and Neurophysiological Effects of Intravenous Administration of N,N-dimethyltryptamine in Rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.589047. [PMID: 38712161 PMCID: PMC11071436 DOI: 10.1101/2024.04.19.589047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
N,N-dimethyltryptamine (DMT) is a serotonergic psychedelic that is being investigated clinically for the treatment of psychiatric disorders. Although the neurophysiological effects of DMT in humans are well-characterized, similar studies in animal models as well as data on the neurochemical effects of DMT are generally lacking, which are critical for mechanistic understanding. In the current study, we combined behavioral analysis, high-density (32-channel) electroencephalography, and ultra-high-performance liquid chromatography-tandem mass spectrometry to simultaneously quantify changes in behavior, cortical neural dynamics, and levels of 17 neurochemicals in medial prefrontal and somatosensory cortices before, during, and after intravenous administration of three different doses of DMT (0.75 mg/kg, 3.75 mg/kg, 7.5 mg/kg) in male and female adult rats. All three doses of DMT produced head twitch response with most twitches observed after the low dose. DMT caused dose-dependent increases in serotonin and dopamine levels in both cortical sites along with a reduction in EEG spectral power in theta (4-10 Hz) and low gamma (25-55 Hz), and increase in power in delta (1-4 Hz), medium gamma (65-115), and high gamma (125-155 Hz) bands. Functional connectivity decreased in the delta band and increased across the gamma bands. In addition, we provide the first measurements of endogenous DMT in these cortical sites at levels comparable to serotonin and dopamine, which together with a previous study in occipital cortex, suggests a physiological role for endogenous DMT. This study represents one of the most comprehensive characterizations of psychedelic drug action in rats and the first to be conducted with DMT.
Collapse
Affiliation(s)
- Nicolas G. Glynos
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Anesthesiology, University of Michigan, Ann Abor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Consciousness Science, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emma R. Huels
- Department of Anesthesiology, University of Michigan, Ann Abor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Consciousness Science, University of Michigan, Ann Arbor, MI 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amanda Nelson
- Department of Anesthesiology, University of Michigan, Ann Abor, MI 48109, USA
| | - Youngsoo Kim
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robert T. Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - George A. Mashour
- Department of Anesthesiology, University of Michigan, Ann Abor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Consciousness Science, University of Michigan, Ann Arbor, MI 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dinesh Pal
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Anesthesiology, University of Michigan, Ann Abor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Consciousness Science, University of Michigan, Ann Arbor, MI 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
35
|
Lerer E, Botvinnik A, Shahar O, Grad M, Blakolmer K, Shomron N, Lotan A, Lerer B, Lifschytz T. Effects of psilocybin, psychedelic mushroom extract and 5-hydroxytryptophan on brain immediate early gene expression: Interaction with serotonergic receptor modulators. Front Pharmacol 2024; 15:1391412. [PMID: 38698823 PMCID: PMC11063716 DOI: 10.3389/fphar.2024.1391412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 03/22/2024] [Indexed: 05/05/2024] Open
Abstract
Background: Immediate early genes (IEGs) are rapidly activated and initiate diverse cellular processes including neuroplasticity. We report the effect of psilocybin (PSIL), PSIL-containing psychedelic mushroom extract (PME) and 5-hydroxytryptophan (5-HTP) on expression of the IEGs, cfos, egr1, and egr2 in mouse somatosensory cortex (SSC). Methods: In our initial experiment, male C57Bl/6j mice were injected with PSIL 4.4 mg/kg or 5-HTP 200 mg/kg, alone or immediately preceded by serotonergic receptor modulators. IEG mRNA expression 1 hour later was determined by real time qPCR. In a replication study a group of mice treated with PME was added. Results: In our initial experiment, PSIL but not 5-HTP significantly increased expression of all three IEGs. No correlation was observed between the head twitch response (HTR) induced by PSIL and its effect on the IEGs. The serotonergic receptor modulators did not significantly alter PSIL-induced IEG expression, with the exception of the 5-HT2C antagonist (RS102221), which significantly enhanced PSIL-induced egr2 expression. 5-HTP did not affect IEG expression. In our replication experiment, PSIL and PME upregulated levels of egr1 and cfos while the upregulation of egr2 was not significant. Conclusions: We have shown that PSIL and PME but not 5-HTP (at a dose sufficient to induce HTR), induced a significant increase in cfos and egr1 expression in mouse SSC. Our findings suggest that egr1 and cfos expression may be associated with psychedelic effects.
Collapse
Affiliation(s)
- Elad Lerer
- Biological Psychiatry Laboratory and Hadassah BrainLabs Center for Psychedelic Research, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Alexander Botvinnik
- Biological Psychiatry Laboratory and Hadassah BrainLabs Center for Psychedelic Research, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Orr Shahar
- Biological Psychiatry Laboratory and Hadassah BrainLabs Center for Psychedelic Research, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Meitar Grad
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Karin Blakolmer
- Parow Entheobiosciences (ParowBio), Chicago, IL, United States
| | - Noam Shomron
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Amit Lotan
- Biological Psychiatry Laboratory and Hadassah BrainLabs Center for Psychedelic Research, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Bernard Lerer
- Biological Psychiatry Laboratory and Hadassah BrainLabs Center for Psychedelic Research, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Tzuri Lifschytz
- Biological Psychiatry Laboratory and Hadassah BrainLabs Center for Psychedelic Research, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| |
Collapse
|
36
|
Barksdale BR, Doss MK, Fonzo GA, Nemeroff CB. The mechanistic divide in psychedelic neuroscience: An unbridgeable gap? Neurotherapeutics 2024; 21:e00322. [PMID: 38278658 DOI: 10.1016/j.neurot.2024.e00322] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/28/2024] Open
Abstract
In recent years, psychedelics have generated considerable excitement and interest as potential novel therapeutics for an array of conditions, with the most advanced evidence base in the treatment of certain severe and/or treatment-resistant psychiatric disorders. An array of clinical and pre-clinical evidence has informed our current understanding of how psychedelics produce profound alterations in consciousness. Mechanisms of psychedelic action include receptor binding and downstream cellular and transcriptional pathways, with long-term impacts on brain structure and function-from the level of single neurons to large-scale circuits. In this perspective, we first briefly review and synthesize separate lines of research on potential mechanistic processes underlying the acute and long-term effects of psychedelic compounds, with a particular emphasis on highlighting current theoretical models of psychedelic drug action and their relationships to therapeutic benefits for psychiatric and brain-based disorders. We then highlight an existing area of ongoing controversy we argue is directly informed by theoretical models originating from disparate levels of inquiry, and we ultimately converge on the notion that bridging the current chasm in explanatory models of psychedelic drug action across levels of inquiry (molecular, cellular, circuit, and psychological/behavioral) through innovative methods and collaborative efforts will ultimately yield the comprehensive understanding needed to fully capitalize on the potential therapeutic properties of these compounds.
Collapse
Affiliation(s)
- Bryan R Barksdale
- Center for Psychedelic Research and Therapy, Department of Psychiatry and Behavioral Sciences, The University of Texas at Austin Dell Medical School, Austin, TX, USA
| | - Manoj K Doss
- Center for Psychedelic Research and Therapy, Department of Psychiatry and Behavioral Sciences, The University of Texas at Austin Dell Medical School, Austin, TX, USA
| | - Gregory A Fonzo
- Center for Psychedelic Research and Therapy, Department of Psychiatry and Behavioral Sciences, The University of Texas at Austin Dell Medical School, Austin, TX, USA
| | - Charles B Nemeroff
- Center for Psychedelic Research and Therapy, Department of Psychiatry and Behavioral Sciences, The University of Texas at Austin Dell Medical School, Austin, TX, USA.
| |
Collapse
|
37
|
Sekssaoui M, Bockaert J, Marin P, Bécamel C. Antidepressant-like effects of psychedelics in a chronic despair mouse model: is the 5-HT 2A receptor the unique player? Neuropsychopharmacology 2024; 49:747-756. [PMID: 38212441 PMCID: PMC10876623 DOI: 10.1038/s41386-024-01794-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/13/2024]
Abstract
Major depressive disorder (MDD) is one of the most disabling psychiatric disorders in the world. First-line treatments such as selective serotonin reuptake inhibitors (SSRIs) still have many limitations, including a resistance to treatment in 30% of patients and a delayed clinical benefit that is observed only after several weeks of treatment. Increasing clinical evidence indicates that the acute administration of psychedelic agonists of the serotonin 5-HT2A receptor (5-HT2AR), such as psilocybin, to patients with MDD induce fast antidepressant effects, which persist up to five weeks after the treatment. However, the involvement of the 5-HT2AR in these antidepressant effects remains controversial. Furthermore, whether the hallucinogenic properties of 5-HT2AR agonists are mandatory to their antidepressant activity is still an open question. Here, we addressed these issues by investigating the effect of two psychedelics of different chemical families, DOI and psilocybin, and a non-hallucinogenic 5-HT2AR agonist, lisuride, in a chronic despair mouse model exhibiting a robust depressive-like phenotype. We show that a single injection of each drug to wild type mice induces anxiolytic- and antidepressant-like effects in the novelty-suppressed feeding, sucrose preference and forced swim tests, which last up to 15 days. DOI and lisuride administration did not produce antidepressant-like effects in 5-HT2A-/- mice, whereas psilocybin was still effective. Moreover, neither 5-HT1AR blockade nor dopamine D1 or D2 receptor blockade affected the antidepressant-like effects of psilocybin in 5-HT2A-/- mice. Collectively, these findings indicate that 5-HT2AR agonists can produce antidepressant-like effects independently of hallucinogenic properties through mechanisms involving or not involving the receptor.
Collapse
Affiliation(s)
- Mehdi Sekssaoui
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, F-34094, Montpellier, France
| | - Joël Bockaert
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, F-34094, Montpellier, France
| | - Philippe Marin
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, F-34094, Montpellier, France
| | - Carine Bécamel
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, F-34094, Montpellier, France.
| |
Collapse
|
38
|
Flanagan T, Foster TP, Galbato TE, Lum PY, Louie B, Song G, Halberstadt AL, Billac GB, Nichols CD. Serotonin-2 Receptor Agonists Produce Anti-inflammatory Effects through Functionally Selective Mechanisms That Involve the Suppression of Disease-Induced Arginase 1 Expression. ACS Pharmacol Transl Sci 2024; 7:478-492. [PMID: 38357283 PMCID: PMC10863441 DOI: 10.1021/acsptsci.3c00297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
Functional selectivity in the context of serotonin 2A (5-HT2A) receptor agonists is often described as differences psychedelic compounds have in the activation of Gq vs β-arrestin signaling in the brain and how that may relate to inducing psychoactive and hallucinatory properties with respect to each other. However, the presence of 5-HT2A receptors throughout the body in several cell types, including endothelial, endocrine, and immune-related tissues, suggests that functional selectivity may exist in the periphery as well. Here, we examine functional selectivity between two 5-HT2A receptor agonists of the phenylalkylamine class: (R)-2,5-dimethoxy-4-iodoamphetamine [(R)-DOI] and (R)-2,5-dimethoxy-4-trifluoromethylamphetamine [(R)-DOTFM]. Despite comparable in vitro activity at the 5-HT2A receptor as well as similar behavioral potency, (R)-DOTFM does not exhibit an ability to prevent inflammation or elevated airway hyperresponsiveness (AHR) in an acute murine ovalbumin-induced asthma model as does (R)-DOI. Furthermore, there are distinct differences between protein expression and inflammatory-related gene expression in pulmonary tissues between the two compounds. Using (R)-DOI and (R)-DOTFM as tools, we further elucidated the anti-inflammatory mechanisms underlying the powerful anti-inflammatory effects of certain psychedelics and identified key mechanistic components of the anti-inflammatory effects of psychedelics, including suppression of arginase 1 expression.
Collapse
Affiliation(s)
- Thomas
W. Flanagan
- Department
of Pharmacology and Experimental TherapeuticsLouisiana State University Health Sciences CenterNew Orleans, Louisiana70112, United States
| | - Timothy P. Foster
- Department
of Microbiology, Immunology, and ParasitologyLouisiana State University Health Sciences CenterNew Orleans, Louisiana70112, United States
| | - Thomas E. Galbato
- Department
of Microbiology, Immunology, and ParasitologyLouisiana State University Health Sciences CenterNew Orleans, Louisiana70112, United States
| | - Pek Yee Lum
- Auransa
Inc.Palo Alto, California94301, United States
| | - Brent Louie
- Auransa
Inc.Palo Alto, California94301, United States
| | - Gavin Song
- Auransa
Inc.Palo Alto, California94301, United States
| | - Adam L. Halberstadt
- Department
of PsychiatryUniversity of San Diego, California, San Diego, California92093, United States
| | - Gerald B. Billac
- Department
of Pharmacology and Experimental TherapeuticsLouisiana State University Health Sciences CenterNew Orleans, Louisiana70112, United States
| | - Charles D. Nichols
- Department
of Pharmacology and Experimental TherapeuticsLouisiana State University Health Sciences CenterNew Orleans, Louisiana70112, United States
| |
Collapse
|
39
|
De Filippo R, Schmitz D. Synthetic surprise as the foundation of the psychedelic experience. Neurosci Biobehav Rev 2024; 157:105538. [PMID: 38220035 PMCID: PMC10839673 DOI: 10.1016/j.neubiorev.2024.105538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/16/2024]
Abstract
Psychedelic agents, such as LSD and psilocybin, induce marked alterations in consciousness via activation of the 5-HT2A receptor (5-HT2ARs). We hypothesize that psychedelics enforce a state of synthetic surprise through the biased activation of the 5-HTRs system. This idea is informed by recent insights into the role of 5-HT in signaling surprise. The effects on consciousness, explained by the cognitive penetrability of perception, can be described within the predictive coding framework where surprise corresponds to prediction error, the mismatch between predictions and actual sensory input. Crucially, the precision afforded to the prediction error determines its effect on priors, enabling a dynamic interaction between top-down expectations and incoming sensory data. By integrating recent findings on predictive coding circuitry and 5-HT2ARs transcriptomic data, we propose a biological implementation with emphasis on the role of inhibitory interneurons. Implications arise for the clinical use of psychedelics, which may rely primarily on their inherent capacity to induce surprise in order to disrupt maladaptive patterns.
Collapse
Affiliation(s)
- Roberto De Filippo
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany.
| | - Dietmar Schmitz
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Einstein Center for Neuroscience, 10117 Berlin, Germany; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, 10117 Berlin, Germany; Humboldt-Universität zu Berlin, Bernstein Center for Computational Neuroscience, Philippstr. 13, 10115 Berlin, Germany
| |
Collapse
|
40
|
Fordyce BA, Roth BL. Making Sense of Psychedelics in the CNS. Int J Neuropsychopharmacol 2024; 27:pyae007. [PMID: 38289825 PMCID: PMC10888522 DOI: 10.1093/ijnp/pyae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/29/2024] [Indexed: 02/01/2024] Open
Abstract
For centuries, ancient lineages have consumed psychedelic compounds from natural sources. In the modern era, scientists have since harnessed the power of computational tools, cellular assays, and behavioral metrics to study how these compounds instigate changes on molecular, cellular, circuit-wide, and system levels. Here, we provide a brief history of psychedelics and their use in science, medicine, and culture. We then outline current techniques for studying psychedelics from a pharmacological perspective. Finally, we address known gaps in the field and potential avenues of further research to broaden our collective understanding of physiological changes induced by psychedelics, the limits of their therapeutic capabilities, and how researchers can improve and inform treatments that are rapidly becoming accessible worldwide.
Collapse
Affiliation(s)
- Blake A Fordyce
- Department of Neuroscience, UNC Chapel Hill Medical School Chapel Hill, North Carolina, USA
| | - Bryan L Roth
- Department of Pharmacology, UNC Chapel Hill Medical School Chapel Hill, North Carolina, USA
| |
Collapse
|
41
|
Fletcher PJ, Li Z, Ji XD, Lê AD. Established sensitization of ethanol-induced locomotor activity is not reversed by psilocybin or the 5-HT 2A receptor agonist TCB-2 in male DBA/2J mice. Pharmacol Biochem Behav 2024; 235:173703. [PMID: 38154589 DOI: 10.1016/j.pbb.2023.173703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/28/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Abstract
RATIONALE Psychedelic drugs, which share in common 5-HT2A receptor agonist activity, have shown promise in treating alcohol-use disorders (AUDs). Repeated exposure to ethanol (EtOH) induces molecular and behavioural changes reflective of neuroadaptations that may contribute to addiction. Psychedelic drugs can induce neuroplasticity also, raising the possibility that their potential clinical effects in AUD may involve an action to reverse or offset effects of long-term changes induced by EtOH. This possibility was examined by investigating whether psilocybin, or the 5-HT2A receptor agonist TCB-2, counteracted established sensitization of EtOH-induced locomotor activity. METHODS Male DBA/2J mice received repeated injections of 2.2 g/kg EtOH to induce a sensitized locomotor activity response. In two experiments separate groups of mice were then injected with psilocybin (0, 0.3 and 1 kg/kg) or TCB-2 (0, 1 and 3 mg/kg) on 5 consecutive days. Next, mice were challenged with 1.8 g/kg EtOH and locomotor activity measured for 15 min. RESULTS Relative to naïve controls, previously sensitized mice showed enhanced locomotor activity to the challenge dose. Despite reducing locomotor activity in their own right psilocybin and TCB-2 did not alter the strength of this sensitized response. CONCLUSION Psilocybin and TCB-2 at behaviourally effective doses did not reverse sensitization of EtOH-induced activity. This suggests that mechanisms involved in mediating short-term reductions in EtOH intake by psilocybin or TCB-2 may not involve a capacity of these drugs to offset enduring changes in behaviour and any underlying neural adaptations induced by repeated intermittent exposure to EtOH.
Collapse
Affiliation(s)
- Paul J Fletcher
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| | - Zhaoxia Li
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Xiao Dong Ji
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Anh D Lê
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
42
|
Brandt SD, Kavanagh PV, Westphal F, Pulver B, Schwelm HM, Stratford A, Auwärter V, Halberstadt AL. Analytical and behavioral characterization of N-ethyl-N-isopropyllysergamide (EIPLA), an isomer of N 6 -ethylnorlysergic acid N,N-diethylamide (ETH-LAD). Drug Test Anal 2024; 16:187-198. [PMID: 37321559 DOI: 10.1002/dta.3530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023]
Abstract
Preclinical investigations have shown that N-ethyl-N-isopropyllysergamide (EIPLA) exhibits lysergic acid diethylamide (LSD)-like properties, which suggests that it might show psychoactive effects in humans. EIPLA is also an isomer of N6 -ethylnorlysergic acid N,N-diethylamide (ETH-LAD), a lysergamide known to produce psychedelic effects in humans that emerged as a research chemical. EIPLA was subjected to analysis by various forms of mass spectrometry, chromatography (GC, LC), nuclear magnetic resonance (NMR) spectroscopy, and GC condensed-phase infrared spectroscopy. The most straightforward differentiation between EIPLA and ETH-LAD included the evaluation of mass spectral features that reflected the structural differences (EIPLA: N6 -methyl and N-ethyl-N-isopropylamide group; ETH-LAD: N6 -ethyl and N,N-diethylamide group). Proton NMR analysis of blotter extracts suggested that EIPLA was detected as the base instead of a salt, and two blotter extracts suspected to contain EIPLA revealed the detection of 96.9 ± 0.5 μg (RSD: 0.6%) and 85.8 ± 2.8 μg base equivalents based on LC-MS analysis. The in vivo activity of EIPLA was evaluated using the mouse head-twitch response (HTR) assay. Similar to LSD and other serotonergic psychedelics, EIPLA induced the HTR (ED50 = 234.6 nmol/kg), which was about half the potency of LSD (ED50 = 132.8 nmol/kg). These findings are consistent with the results of previous studies demonstrating that EIPLA can mimic the effects of known psychedelic drugs in rodent behavioral models. The dissemination of analytical data for EIPLA was deemed justifiable to aid future forensic and clinical investigations.
Collapse
Affiliation(s)
- Simon D Brandt
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Pierce V Kavanagh
- Department of Pharmacology and Therapeutics, School of Medicine, Trinity Centre for Health Sciences, St. James Hospital, Dublin 8, Ireland
| | - Folker Westphal
- State Bureau of Criminal Investigation Schleswig-Holstein, Section Narcotics/Toxicology, Kiel, Germany
| | - Benedikt Pulver
- State Bureau of Criminal Investigation Schleswig-Holstein, Section Narcotics/Toxicology, Kiel, Germany
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Hermann Staudinger Graduate School, University of Freiburg, Freiburg, Germany
| | - Hannes M Schwelm
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Hermann Staudinger Graduate School, University of Freiburg, Freiburg, Germany
| | | | - Volker Auwärter
- State Bureau of Criminal Investigation Schleswig-Holstein, Section Narcotics/Toxicology, Kiel, Germany
| | - Adam L Halberstadt
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
- Research Service, VA San Diego Healthcare System, San Diego, California, USA
| |
Collapse
|
43
|
Raithatha S, Hagel JM, Matinkhoo K, Yu L, Press D, Cook SG, Sharma G, Dhananjaya D, Jensen G, Lee JB, Cai C, Gallant J, Bains J, Tucker JE, Facchini PJ. Novel Psilocin Prodrugs with Altered Pharmacological Properties as Candidate Therapies for Treatment-Resistant Anxiety Disorders. J Med Chem 2024; 67:1024-1043. [PMID: 37983270 PMCID: PMC10823477 DOI: 10.1021/acs.jmedchem.3c01225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/23/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023]
Abstract
The psychedelic prodrug psilocybin has shown therapeutic benefits for the treatment of numerous psychiatric conditions. Despite positive clinical end points targeting depression and anxiety, concerns regarding the duration of the psychedelic experience produced by psilocybin, associated with enduring systemic exposure to the active metabolite psilocin, pose a barrier to its therapeutic application. Our objective was to create a novel prodrug of psilocin with similar therapeutic benefits but a reduced duration of psychedelic effects compared with psilocybin. Here, we report the synthesis and functional screening of 28 new chemical entities. Our strategy was to introduce a diversity of cleavable groups at the 4-hydroxy position of the core indole moiety to modulate metabolic processing. We identified several novel prodrugs of psilocin with altered pharmacokinetic profiles and reduced pharmacological exposure compared with psilocybin. These candidate prodrugs have the potential to maintain the long-term benefits of psilocybin therapy while attenuating the duration of psychedelic effects.
Collapse
Affiliation(s)
| | - Jillian M. Hagel
- Enveric
Biosciences, Inc., 3655
36 Street NW, Calgary, Alberta T2L 1Y8, Canada
| | - Kaveh Matinkhoo
- Enveric
Biosciences, Inc., 3655
36 Street NW, Calgary, Alberta T2L 1Y8, Canada
| | - Lisa Yu
- Enveric
Biosciences, Inc., 3655
36 Street NW, Calgary, Alberta T2L 1Y8, Canada
| | - David Press
- Enveric
Biosciences, Inc., 3655
36 Street NW, Calgary, Alberta T2L 1Y8, Canada
| | - Sarah G. Cook
- Department
of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Govinda Sharma
- Enveric
Biosciences, Inc., 3655
36 Street NW, Calgary, Alberta T2L 1Y8, Canada
| | - D. Dhananjaya
- Enveric
Biosciences, Inc., 3655
36 Street NW, Calgary, Alberta T2L 1Y8, Canada
| | - Glynnis Jensen
- Enveric
Biosciences, Inc., 3655
36 Street NW, Calgary, Alberta T2L 1Y8, Canada
| | - Jessica B. Lee
- Enveric
Biosciences, Inc., 3655
36 Street NW, Calgary, Alberta T2L 1Y8, Canada
| | - Charlie Cai
- Enveric
Biosciences, Inc., 3655
36 Street NW, Calgary, Alberta T2L 1Y8, Canada
| | - Jonathan Gallant
- Enveric
Biosciences, Inc., 3655
36 Street NW, Calgary, Alberta T2L 1Y8, Canada
| | - Jaideep Bains
- Hotchkiss
Brain Institute and Department of Physiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Joseph E. Tucker
- Enveric
Biosciences, Inc., 3655
36 Street NW, Calgary, Alberta T2L 1Y8, Canada
- Department
of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Peter J. Facchini
- Enveric
Biosciences, Inc., 3655
36 Street NW, Calgary, Alberta T2L 1Y8, Canada
- Department
of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
44
|
Sherwood AM, Burkhartzmeyer EK, Williamson SE, Baumann MH, Glatfelter GC. Psychedelic-like Activity of Norpsilocin Analogues. ACS Chem Neurosci 2024; 15:315-327. [PMID: 38189238 PMCID: PMC10797613 DOI: 10.1021/acschemneuro.3c00610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Primary metabolites of mushroom tryptamines, psilocybin and baeocystin (i.e., psilocin and norpsilocin), exhibit potent agonist activity at the serotonin 2A receptor (5-HT2A) in vitro but differ in their 5-HT2A-mediated effects in vivo. In particular, psilocin produces centrally mediated psychedelic effects in vivo, whereas norpsilocin, differing only by the loss of an N-methyl group, is devoid of psychedelic-like effects. These observations suggest that the secondary methylamine group in norpsilocin impacts its central nervous system (CNS) bioavailability but not its receptor pharmacodynamics. To test this hypothesis, eight norpsilocin derivatives were synthesized with varied secondary alkyl-, allyl-, and benzylamine groups, primarily aiming to increase their lipophilicity and brain permeability. Structure-activity relationships for the norpsilocin analogues were evaluated using the mouse head-twitch response (HTR) as a proxy for CNS-mediated psychedelic-like effects. HTR studies revealed that extending the N-methyl group of norpsilocin by a single methyl group, to give the corresponding secondary N-ethyl analogue (4-HO-NET), was sufficient to produce psilocin-like activity (median effective dose or ED50 = 1.4 mg/kg). Notably, N-allyl, N-propyl, N-isopropyl, and N-benzyl derivatives also induced psilocin-like HTR activity (ED50 = 1.1-3.2 mg/kg), with variable maximum effects (26-77 total HTR events). By contrast, adding bulkier tert-butyl or cyclohexyl groups in the same position did not elicit psilocin-like HTRs. Pharmacological assessments of the tryptamine series in vitro demonstrated interactions with multiple serotonin receptor subtypes, including 5-HT2A, and other CNS signaling proteins (e.g., sigma receptors). Overall, our data highlight key structural requirements for CNS-mediated psychedelic-like effects of norpsilocin analogues.
Collapse
Affiliation(s)
| | | | | | - Michael H. Baumann
- Designer
Drug Research Unit, National Institute on
Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224, United States
| | - Grant C. Glatfelter
- Designer
Drug Research Unit, National Institute on
Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224, United States
| |
Collapse
|
45
|
Duan W, Cao D, Wang S, Cheng J. Serotonin 2A Receptor (5-HT 2AR) Agonists: Psychedelics and Non-Hallucinogenic Analogues as Emerging Antidepressants. Chem Rev 2024; 124:124-163. [PMID: 38033123 DOI: 10.1021/acs.chemrev.3c00375] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Psychedelics make up a group of psychoactive compounds that induce hallucinogenic effects by activating the serotonin 2A receptor (5-HT2AR). Clinical trials have demonstrated the traditional psychedelic substances like psilocybin as a class of rapid-acting and long-lasting antidepressants. However, there is a pressing need for rationally designed 5-HT2AR agonists that possess optimal pharmacological profiles in order to fully reveal the therapeutic potential of these agonists and identify safer drug candidates devoid of hallucinogenic effects. This Perspective provides an overview of the structure-activity relationships of existing 5-HT2AR agonists based on their chemical classifications and discusses recent advancements in understanding their molecular pharmacology at a structural level. The encouraging clinical outcomes of psychedelics in depression treatment have sparked drug discovery endeavors aimed at developing novel 5-HT2AR agonists with improved subtype selectivity and signaling bias properties, which could serve as safer and potentially nonhallucinogenic antidepressants. These efforts can be significantly expedited through the utilization of structure-based methods and functional selectivity-directed screening.
Collapse
Affiliation(s)
- Wenwen Duan
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Dongmei Cao
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Sheng Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jianjun Cheng
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| |
Collapse
|
46
|
Gumpper RH, Roth BL. Psychedelics: preclinical insights provide directions for future research. Neuropsychopharmacology 2024; 49:119-127. [PMID: 36932180 PMCID: PMC10700551 DOI: 10.1038/s41386-023-01567-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/30/2023] [Accepted: 02/28/2023] [Indexed: 03/19/2023]
Abstract
Recently, psychedelics have emerged as promising therapeutics for numerous neuropsychiatric disorders. While their potential in the clinic has yet to be fully elucidated, understanding their molecular and biological mechanisms is imperative as these compounds are becoming widely used both in therapeutic and recreational contexts. This review examines the current understanding of basic biology, pharmacology, and structural biology in an attempt to reveal both the knowns and unknowns within the field.
Collapse
Affiliation(s)
- Ryan H Gumpper
- Department of Pharmacology, UNC School of Medicine, Chapel Hill, NC, 27514, USA
| | - Bryan L Roth
- Department of Pharmacology, UNC School of Medicine, Chapel Hill, NC, 27514, USA.
| |
Collapse
|
47
|
Sharp T, Collins H. Mechanisms of SSRI Therapy and Discontinuation. Curr Top Behav Neurosci 2024; 66:21-47. [PMID: 37955823 DOI: 10.1007/7854_2023_452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
SSRIs are one of the most widely used drug therapies in primary care and psychiatry, and central to the management of the most common mental health problems in today's society. Despite this, SSRIs suffer from a slow onset of therapeutic effect and relatively poor efficacy as well as adverse effects, with recent concerns being focused on a disabling SSRI discontinuation syndrome. The mechanism underpinning their therapeutic effect has long shifted away from thinking that SSRIs act simply by increasing 5-HT in the synapse. Rather, a current popular view is that increased 5-HT is just the beginning of a series of complex downstream signalling events, which trigger changes in neural plasticity at the functional and structural level. These changes in plasticity are then thought to interact with neuropsychological processes to enhance re-learning of emotional experiences that ultimately brings about changes in mood. This compelling view of SSRI action is underpinning attempts to understand fast-acting antidepressants, such as ketamine and psychedelic drugs, and aid the development of future therapies. An important gap in the theory is evidence that changes in plasticity are causally linked to relevant behavioural effects. Also, predictions that the SSRI-induced neural plasticity might have applicability in other areas of medicine have not yet been borne out. In contrast to the sophisticated view of the antidepressant action of SSRIs, the mechanism underpinning SSRI discontinuation is little explored. Nevertheless, evidence of rebound increases in 5-HT neuron excitability immediately on cessation of SSRI treatment provide a starting point for future investigation. Indeed, this evidence allows formulation of a mechanistic explanation of SSRI discontinuation which draws on parallels with the withdrawal states of other psychotropic drugs.
Collapse
Affiliation(s)
- Trevor Sharp
- Department of Pharmacology, University of Oxford, Oxford, UK.
| | - Helen Collins
- Department of Pharmacology, University of Oxford, Oxford, UK
| |
Collapse
|
48
|
Wallach J, Cao AB, Calkins MM, Heim AJ, Lanham JK, Bonniwell EM, Hennessey JJ, Bock HA, Anderson EI, Sherwood AM, Morris H, de Klein R, Klein AK, Cuccurazzu B, Gamrat J, Fannana T, Zauhar R, Halberstadt AL, McCorvy JD. Identification of 5-HT 2A receptor signaling pathways associated with psychedelic potential. Nat Commun 2023; 14:8221. [PMID: 38102107 PMCID: PMC10724237 DOI: 10.1038/s41467-023-44016-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
Serotonergic psychedelics possess considerable therapeutic potential. Although 5-HT2A receptor activation mediates psychedelic effects, prototypical psychedelics activate both 5-HT2A-Gq/11 and β-arrestin2 transducers, making their respective roles unclear. To elucidate this, we develop a series of 5-HT2A-selective ligands with varying Gq efficacies, including β-arrestin-biased ligands. We show that 5-HT2A-Gq but not 5-HT2A-β-arrestin2 recruitment efficacy predicts psychedelic potential, assessed using head-twitch response (HTR) magnitude in male mice. We further show that disrupting Gq-PLC signaling attenuates the HTR and a threshold level of Gq activation is required to induce psychedelic-like effects, consistent with the fact that certain 5-HT2A partial agonists (e.g., lisuride) are non-psychedelic. Understanding the role of 5-HT2A Gq-efficacy in psychedelic-like psychopharmacology permits rational development of non-psychedelic 5-HT2A agonists. We also demonstrate that β-arrestin-biased 5-HT2A receptor agonists block psychedelic effects and induce receptor downregulation and tachyphylaxis. Overall, 5-HT2A receptor Gq-signaling can be fine-tuned to generate ligands distinct from classical psychedelics.
Collapse
Affiliation(s)
- Jason Wallach
- Department of Pharmaceutical Sciences, Saint Joseph's University, Philadelphia, PA, 19104, USA.
| | - Andrew B Cao
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Maggie M Calkins
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Andrew J Heim
- Department of Chemistry, Saint Joseph's University, Philadelphia, PA, 19104, USA
- Chemical Computing Group ULC, 910-1010 Sherbrooke W, Montréal, QC, H3A 2R7, Canada
| | - Janelle K Lanham
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Emma M Bonniwell
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Joseph J Hennessey
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Hailey A Bock
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Emilie I Anderson
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | | | - Hamilton Morris
- Department of Pharmaceutical Sciences, Saint Joseph's University, Philadelphia, PA, 19104, USA
| | - Robbin de Klein
- Research Service, VA San Diego Healthcare System, San Diego, CA, 92161, USA
| | - Adam K Klein
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
- Gilgamesh Pharmaceuticals, New York, NY, 10003, USA
| | - Bruna Cuccurazzu
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - James Gamrat
- Department of Pharmaceutical Sciences, Saint Joseph's University, Philadelphia, PA, 19104, USA
| | - Tilka Fannana
- Department of Pharmaceutical Sciences, Saint Joseph's University, Philadelphia, PA, 19104, USA
| | - Randy Zauhar
- Department of Chemistry, Saint Joseph's University, Philadelphia, PA, 19104, USA
- Artemis Discovery, LLC, Suite 300, 709 N 2nd Street, Philadelphia, PA, 19123, USA
| | - Adam L Halberstadt
- Research Service, VA San Diego Healthcare System, San Diego, CA, 92161, USA.
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA.
- Center for Psychedelic Research, University of California San Diego, La Jolla, CA, 92093, USA.
| | - John D McCorvy
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
49
|
Glennon R, Dukat M. α-Ethyltryptamine: A Ratiocinatory Review of a Forgotten Antidepressant. ACS Pharmacol Transl Sci 2023; 6:1780-1789. [PMID: 38093842 PMCID: PMC10714429 DOI: 10.1021/acsptsci.3c00139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 11/09/2024]
Abstract
α-Ethyltryptamine (AET) is quite an interesting, but perhaps long-forgotten, centrally acting agent. Known for more than 75 years, AET was once clinically available as an antidepressant but was withdrawn shortly after its introduction. AET was subsequently controlled as a U.S. Schedule I substance due to its perceived abuse liability and/or toxicity but remains an agent of interest. Hallucinogenic tryptamines (that is, serotonergic psychedelic agents) are now in vogue as novel and exciting chemotherapeutics for the treatment of various neuropsychiatric disorders, including treatment-resistant depression and anxiety. Does AET represent a serotonergic psychedelic agent? Does AET (or its analogs) deserve further investigation? Here, the history of AET is critically reviewed in detail, and an argument is made that AET might have been an agent well ahead of its time. It possesses many of the hallmarks of an antidepressant, suggesting that AET derivatives and particularly their optical isomers are deserving of further investigation.
Collapse
Affiliation(s)
- Richard
A. Glennon
- Department of Medicinal Chemistry,
School of Pharmacy, Virginia Commonwealth
University, Richmond, Virginia 23298, United States
| | - Mal̵gorzata Dukat
- Department of Medicinal Chemistry,
School of Pharmacy, Virginia Commonwealth
University, Richmond, Virginia 23298, United States
| |
Collapse
|
50
|
Cameron LP, Benetatos J, Lewis V, Bonniwell EM, Jaster AM, Moliner R, Castrén E, McCorvy JD, Palner M, Aguilar-Valles A. Beyond the 5-HT 2A Receptor: Classic and Nonclassic Targets in Psychedelic Drug Action. J Neurosci 2023; 43:7472-7482. [PMID: 37940583 PMCID: PMC10634557 DOI: 10.1523/jneurosci.1384-23.2023] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 11/10/2023] Open
Abstract
Serotonergic psychedelics, such as psilocybin and LSD, have garnered significant attention in recent years for their potential therapeutic effects and unique mechanisms of action. These compounds exert their primary effects through activating serotonin 5-HT2A receptors, found predominantly in cortical regions. By interacting with these receptors, serotonergic psychedelics induce alterations in perception, cognition, and emotions, leading to the characteristic psychedelic experience. One of the most crucial aspects of serotonergic psychedelics is their ability to promote neuroplasticity, the formation of new neural connections, and rewire neuronal networks. This neuroplasticity is believed to underlie their therapeutic potential for various mental health conditions, including depression, anxiety, and substance use disorders. In this mini-review, we will discuss how the 5-HT2A receptor activation is just one facet of the complex mechanisms of action of serotonergic psychedelics. They also interact with other serotonin receptor subtypes, such as 5-HT1A and 5-HT2C receptors, and with neurotrophin receptors (e.g., tropomyosin receptor kinase B). These interactions contribute to the complexity of their effects on perception, mood, and cognition. Moreover, as psychedelic research advances, there is an increasing interest in developing nonhallucinogenic derivatives of these drugs to create safer and more targeted medications for psychiatric disorders by removing the hallucinogenic properties while retaining the potential therapeutic benefits. These nonhallucinogenic derivatives would offer patients therapeutic advantages without the intense psychedelic experience, potentially reducing the risks of adverse reactions. Finally, we discuss the potential of psychedelics as substrates for post-translational modification of proteins as part of their mechanism of action.
Collapse
Affiliation(s)
- Lindsay P Cameron
- Department of Psychiatry, Stanford University, Palo Alto 94305, California
| | - Joseph Benetatos
- Department of Neurosciences, University of California-San Diego, La Jolla 92093, California
| | - Vern Lewis
- Department of Neuroscience, Carleton University, Ottawa K1S 5B6, Ontario Canada
| | - Emma M Bonniwell
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee 53226, Wisconsin
| | - Alaina M Jaster
- Pharmacology and Toxicology, Physiology and Biophysics, Virginia Commonwealth University, Richmond 23298, Virginia
| | - Rafael Moliner
- Neuroscience Center, HiLIFE and Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Eero Castrén
- Neuroscience Center, HiLIFE and Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - John D McCorvy
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee 53226, Wisconsin
| | - Mikael Palner
- Clinical Physiology and Nuclear Medicine, Department Clinical Research, University of Southern Denmark, Odense DK-2100, Denmark
| | | |
Collapse
|