1
|
Wolff C, John D, Winkler U, Hochmuth L, Hirrlinger J, Köhler S. Insulin and leptin acutely modulate the energy metabolism of primary hypothalamic and cortical astrocytes. J Neurochem 2025; 169:e16211. [PMID: 39175305 DOI: 10.1111/jnc.16211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/06/2024] [Accepted: 08/11/2024] [Indexed: 08/24/2024]
Abstract
Astrocytes constitute a heterogeneous cell population within the brain, contributing crucially to brain homeostasis and playing an important role in overall brain function. Their function and metabolism are not only regulated by local signals, for example, from nearby neurons, but also by long-range signals such as hormones. Thus, two prominent hormones primarily known for regulating the energy balance of the whole organism, insulin, and leptin, have been reported to also impact astrocytes within the brain. In this study, we investigated the acute regulation of astrocytic metabolism by these hormones in cultured astrocytes prepared from the mouse cortex and hypothalamus, a pivotal region in the context of nutritional regulation. Utilizing genetically encoded, fluorescent nanosensors, the cytosolic concentrations of glucose, lactate, and ATP, along with glycolytic rate and the NADH/NAD+ redox state were measured. Under basal conditions, differences between the two populations of astrocytes were observed for glucose and lactate concentrations as well as the glycolytic rate. Additionally, astrocytic metabolism responded to insulin and leptin in both brain regions, with some unique characteristics for each cell population. Finally, both hormones influenced how cells responded to elevated extracellular levels of potassium ions, a common indicator of neuronal activity. In summary, our study provides evidence that insulin and leptin acutely regulate astrocytic metabolism within minutes. Additionally, while astrocytes from the hypothalamus and cortex share similarities in their metabolism, they also exhibit distinct properties, further underscoring the growing recognition of astrocyte heterogeneity.
Collapse
Affiliation(s)
- Christopher Wolff
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, University of Leipzig, Leipzig, Germany
| | - Dorit John
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, University of Leipzig, Leipzig, Germany
- Medical Department II-Division of Oncology, Gastroenterology, Hepatology and Pneumology, University of Leipzig Medical Center, Leipzig, Germany
| | - Ulrike Winkler
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, University of Leipzig, Leipzig, Germany
| | - Luise Hochmuth
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, University of Leipzig, Leipzig, Germany
| | - Johannes Hirrlinger
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, University of Leipzig, Leipzig, Germany
- Department of Neurogenetics, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Susanne Köhler
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, University of Leipzig, Leipzig, Germany
- Sächsisches Krankenhaus Altscherbitz, Clinic for Neurology, Schkeuditz, Germany
| |
Collapse
|
2
|
Lines J, Baraibar A, Nanclares C, Martin ED, Aguilar J, Kofuji P, Navarrete M, Araque A. A spatial threshold for astrocyte calcium surge. eLife 2024; 12:RP90046. [PMID: 39680037 DOI: 10.7554/elife.90046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
Astrocytes are active cells involved in brain function through the bidirectional communication with neurons, in which astrocyte calcium plays a crucial role. Synaptically evoked calcium increases can be localized to independent subcellular domains or expand to the entire cell, i.e., calcium surge. Because a single astrocyte may contact ~100,000 synapses, the control of the intracellular calcium signal propagation may have relevant consequences on brain function. Yet, the properties governing the spatial dynamics of astrocyte calcium remains poorly defined. Imaging subcellular responses of cortical astrocytes to sensory stimulation in mice, we show that sensory-evoked astrocyte calcium responses originated and remained localized in domains of the astrocytic arborization, but eventually propagated to the entire cell if a spatial threshold of >23% of the arborization being activated was surpassed. Using Itpr2-/- mice, we found that type-2 IP3 receptors were necessary for the generation of astrocyte calcium surge. We finally show using in situ electrophysiological recordings that the spatial threshold of the astrocyte calcium signal consequently determined the gliotransmitter release. Present results reveal a fundamental property of astrocyte physiology, i.e., a spatial threshold for astrocyte calcium propagation, which depends on astrocyte intrinsic properties and governs astrocyte integration of local synaptic activity and subsequent neuromodulation.
Collapse
Affiliation(s)
- Justin Lines
- Department of Neuroscience, University of Minnesota, Minneapolis, United States
| | - Andres Baraibar
- Department of Neuroscience, University of Minnesota, Minneapolis, United States
| | - Carmen Nanclares
- Department of Neuroscience, University of Minnesota, Minneapolis, United States
| | | | - Juan Aguilar
- Experimental Neurophysiology Group, Hospital Nacional de Parapléjicos SESCAM, Toledo, Spain
| | - Paulo Kofuji
- Department of Neuroscience, University of Minnesota, Minneapolis, United States
| | | | - Alfonso Araque
- Department of Neuroscience, University of Minnesota, Minneapolis, United States
| |
Collapse
|
3
|
Novakovic MM, Prakriya M. Calcium signaling at the interface between astrocytes and brain inflammation. Curr Opin Neurobiol 2024; 90:102940. [PMID: 39673911 DOI: 10.1016/j.conb.2024.102940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/30/2024] [Accepted: 11/14/2024] [Indexed: 12/16/2024]
Abstract
Astrocytes are the most prevalent glial cells of the brain and mediate vital roles in the development and function of the nervous system. Astrocytes, along with microglia, also play key roles in initiating inflammatory immune responses following brain injury, stress, or disease-related triggers. While these glial immune responses help contain and resolve cellular damage to the brain, dysregulation of astrocyte activity can in some cases amplify inflammation and worsen impact on neural tissue. As nonexcitable cells, astrocytes excitability is regulated primarily by Ca2+ signals that control key functions such as gene expression, release of inflammatory mediators, and cell metabolism. In this review, we examine the molecular and functional architecture of Ca2+ signaling networks in astrocytes and their impact on astrocyte effector functions involved in inflammation and immunity.
Collapse
Affiliation(s)
- Michaela M Novakovic
- Department of Pharmacology, Northwestern Feinberg School of Medicine, Chicago, IL 60607, USA
| | - Murali Prakriya
- Department of Pharmacology, Northwestern Feinberg School of Medicine, Chicago, IL 60607, USA.
| |
Collapse
|
4
|
Kosenkov AM, Mal'tseva VN, Maiorov SA, Gaidin SG. The role of the endocannabinoid system in the pathogenesis and treatment of epilepsy. Rev Neurosci 2024:revneuro-2024-0114. [PMID: 39660979 DOI: 10.1515/revneuro-2024-0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024]
Abstract
Epilepsy is a group of chronic neurological brain disorders characterized by recurrent spontaneous unprovoked seizures, which are accompanied by significant neurobiological, cognitive, and psychosocial impairments. With a global prevalence of approximately 0.5-1 % of the population, epilepsy remains a serious public health concern. Despite the development and widespread use of over 20 anticonvulsant drugs, around 30 % of patients continue to experience drug-resistant seizures, leading to a substantial reduction in quality of life and increased mortality risk. Given the limited efficacy of current treatments, exploring new therapeutic approaches is critically important. In recent years, Gi-protein-coupled receptors, particularly cannabinoid receptors CB1 and CB2, have garnered increasing attention as promising targets for the treatment seizures and prevention of epilepsy. Emerging evidence suggests a significant role of the cannabinoid system in modulating neuronal activity and protecting against hyperexcitability, underscoring the importance of further research in this area. This review provides up-to-date insights into the pathogenesis and treatment of epilepsy, with a special focus on the role of the cannabinoid system, highlighting the need for continued investigation to develop more effective therapeutic strategies.
Collapse
Affiliation(s)
- Artem M Kosenkov
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russian Federation
| | - Valentina N Mal'tseva
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russian Federation
| | - Sergei A Maiorov
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russian Federation
| | - Sergei G Gaidin
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russian Federation
| |
Collapse
|
5
|
Lu Y, Gu Y, Chan ASL, Yung Y, Wong YH. Activation of Bradykinin B 2 Receptors in Astrocytes Stimulates the Release of Leukemia Inhibitory Factor for Autocrine and Paracrine Signaling. Int J Mol Sci 2024; 25:13079. [PMID: 39684791 DOI: 10.3390/ijms252313079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Communications between different cell types within a tissue are often critical for the proper functioning of an organ. In the central nervous system, interactions among neurons and glial cells are known to modulate neurotransmission, energy metabolism, extracellular ion homeostasis, and neuroprotection. Here we showed that bradykinin, a proinflammatory neuropeptide, can be detected by astrocytes, resulting in the secretion of cytokines that act on neurons. In astrocytic cell lines and primary astrocytes, bradykinin and several other ligands acting on Gq-coupled receptors stimulated Ca2+ mobilization, which subsequently led to the release of leukemia inhibitory factor (LIF) and interleukin-6 (IL-6). The bradykinin B2 receptor antagonist, HOE-140, effectively blocked the ability of bradykinin to mobilize Ca2+ and stimulate mitogen-activated protein kinases (MAPKs) in astrocytes. Interestingly, incubation of neuronal cell lines and primary cortical neurons with conditioned media from bradykinin-treated astrocytes resulted in the activation of STAT3, a key component downstream of LIF and IL-6 receptors. LIF was apparently the major active factor in the conditioned media as the STAT3 response was almost completely neutralized by an anti-LIF antiserum. The presence of kininogen and kallikrein transcripts in neuronal cells but not in astrocytic cells indicates that neurons can produce bradykinin. Correspondingly, conditioned media from neuronal cells stimulated MAPKs in astrocytes in a HOE-140-sensitive manner. These studies demonstrate that paracrine signaling between neurons and astrocytes may involve ligands of Gq-coupled receptors and cytokines such as LIF.
Collapse
Affiliation(s)
- Ying Lu
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- School of Public Health, Nantong University, Nantong City 226019, China
| | - Yishan Gu
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Anthony S L Chan
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ying Yung
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yung H Wong
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- State Key Laboratory of Molecular Neuroscience, and the Molecular Neuroscience Center, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, InnoHK, Hong Kong, China
| |
Collapse
|
6
|
Pál B. On the functions of astrocyte-mediated neuronal slow inward currents. Neural Regen Res 2024; 19:2602-2612. [PMID: 38595279 PMCID: PMC11168512 DOI: 10.4103/nrr.nrr-d-23-01723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/25/2023] [Accepted: 01/24/2024] [Indexed: 04/11/2024] Open
Abstract
Slow inward currents are known as neuronal excitatory currents mediated by glutamate release and activation of neuronal extrasynaptic N-methyl-D-aspartate receptors with the contribution of astrocytes. These events are significantly slower than the excitatory postsynaptic currents. Parameters of slow inward currents are determined by several factors including the mechanisms of astrocytic activation and glutamate release, as well as the diffusion pathways from the release site towards the extrasynaptic receptors. Astrocytes are stimulated by neuronal network activity, which in turn excite neurons, forming an astrocyte-neuron feedback loop. Mostly as a consequence of brain edema, astrocytic swelling can also induce slow inward currents under pathological conditions. There is a growing body of evidence on the roles of slow inward currents on a single neuron or local network level. These events often occur in synchrony on neurons located in the same astrocytic domain. Besides synchronization of neuronal excitability, slow inward currents also set synaptic strength via eliciting timing-dependent synaptic plasticity. In addition, slow inward currents are also subject to non-synaptic plasticity triggered by long-lasting stimulation of the excitatory inputs. Of note, there might be important region-specific differences in the roles and actions triggering slow inward currents. In greater networks, the pathophysiological roles of slow inward currents can be better understood than physiological ones. Slow inward currents are identified in the pathophysiological background of autism, as slow inward currents drive early hypersynchrony of the neural networks. Slow inward currents are significant contributors to paroxysmal depolarizational shifts/interictal spikes. These events are related to epilepsy, but also found in Alzheimer's disease, Parkinson's disease, and stroke, leading to the decline of cognitive functions. Events with features overlapping with slow inward currents (excitatory, N-methyl-D-aspartate-receptor mediated currents with astrocytic contribution) as ischemic currents and spreading depolarization also have a well-known pathophysiological role in worsening consequences of stroke, traumatic brain injury, or epilepsy. One might assume that slow inward currents occurring with low frequency under physiological conditions might contribute to synaptic plasticity and memory formation. However, to state this, more experimental evidence from greater neuronal networks or the level of the individual is needed. In this review, I aimed to summarize findings on slow inward currents and to speculate on the potential functions of it.
Collapse
Affiliation(s)
- Balázs Pál
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
7
|
Liu S, Cheng H, Cui L, Jin L, Li Y, Zhu C, Ji Q, Tang J. Astrocytic purinergic signalling contributes to the development and maintenance of neuropathic pain via modulation of glutamate release. J Neurochem 2024; 168:3727-3744. [PMID: 36869630 DOI: 10.1111/jnc.15800] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023]
Abstract
Although activation of astrocytes is critical in developing neuropathic pain (NP) following nerve injury, the underlying mechanisms of NP and therapeutic management for NP are still vague. Importantly, the decreases in the levels of astrocytic glutamate transporter-1 (GLT-1) in the spinal dorsal horn result in enhanced excitatory transmission and cause persistent pain. P2Y1 purinergic receptor (P2Y1R) has been shown to enhance many inflammatory processes. The up-regulated expression of astrocytic P2Y1R is crucial to participate in pain transduction under conditions of nerve injury and peripheral inflammation considering that P2Y1R is potentially involved in glutamate release and synaptic transmission. This study indicates that the expression of P2Y1R in the spinal cord was increased accompanied by the activation of A1 phenotype astrocytes in the rat model of spinal nerve ligation (SNL). Astrocyte-specific knockdown of P2Y1R alleviated SNL-induced nociceptive responses and mitigated A1 reactive astrocytes, which subsequently increased GLT-1 expression. Conversely, in naïve rats, P2Y1R over-expression induced a canonical NP-like phenotype and spontaneous hypernociceptive responses and increased the concentration of glutamate in the spinal dorsal horn. Besides, our in vitro data showed that the proinflammatory cytokine tumour necrosis factor-alpha contributes to A1/A2 astrocyte reactivity and Ca2+-dependent release of glutamate. Conclusively, our results provide novel insights that as a significant regulator of astrocytic A1/A2 polarization and neuroinflammation, P2Y1R may represent a potential target for the treatment of SNL-induced NP.
Collapse
Affiliation(s)
- Suting Liu
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - Hao Cheng
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - Liying Cui
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - Li Jin
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - Yunzi Li
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - Chao Zhu
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Qing Ji
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - Jun Tang
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, PR China
| |
Collapse
|
8
|
Drummond GT, Natesan A, Celotto M, Shih J, Ojha P, Osako Y, Park J, Sipe GO, Jenks KR, Breton-Provencher V, Simpson PC, Panzeri S, Sur M. Cortical norepinephrine-astrocyte signaling critically mediates learned behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.620009. [PMID: 39484425 PMCID: PMC11527196 DOI: 10.1101/2024.10.24.620009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Updating behavior based on feedback from the environment is a crucial means by which organisms learn and develop optimal behavioral strategies1-3. Norepinephrine (NE) release from the locus coeruleus (LC) has been shown to mediate learned behaviors4-6 such that in a task with graded stimulus uncertainty and performance, a high level of NE released after an unexpected outcome causes improvement in subsequent behavior7. Yet, how the transient activity of LC-NE neurons, lasting tens of milliseconds, influences behavior several seconds later, is unclear. Here, we show that NE acts directly on cortical astrocytes via Adra1a adrenergic receptors to elicit sustained increases in intracellular calcium. Chemogenetic blockade of astrocytic calcium elevation prevents the improvement in behavioral performance. NE-activated calcium invokes purinergic pathways in cortical astrocytes that signal to neurons; pathway-specific astrocyte gene expression is altered in mice trained on the task, and blocking neuronal adenosine-sensitive A1 receptors also prevents post-reinforcement behavioral gain. Finally, blocking either astrocyte calcium dynamics or A1 receptors alters encoding of the task in prefrontal cortex neurons, preventing the post-reinforcement change in discriminability of rewarded and unrewarded stimuli underlying behavioral improvement. Together, these data demonstrate that astrocytes, rather than indirectly reflecting neuronal drive, play a direct, instrumental role in representing task-relevant information and signaling to neurons to mediate a fundamental component of learning in the brain.
Collapse
Affiliation(s)
- Gabrielle T. Drummond
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Arundhati Natesan
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Marco Celotto
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Institute of Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), 20251 Hamburg, Germany
| | - Jennifer Shih
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Prachi Ojha
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yuma Osako
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jiho Park
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Grayson O. Sipe
- Department of Biology, Eberly College of Science and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Kyle R. Jenks
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Vincent Breton-Provencher
- Department of Psychiatry and Neuroscience, CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada
| | - Paul C. Simpson
- Department of Medicine and Research Service, San Francisco Veterans Affairs Medical Center and Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
| | - Stefano Panzeri
- Institute of Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), 20251 Hamburg, Germany
| | - Mriganka Sur
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
9
|
Ahrens MB, Khakh BS, Poskanzer KE. Astrocyte Calcium Signaling. Cold Spring Harb Perspect Biol 2024; 16:a041353. [PMID: 38768971 PMCID: PMC11444304 DOI: 10.1101/cshperspect.a041353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Astrocytes are predominant glial cells that tile the central nervous system and participate in well-established functional and morphological interactions with neurons, blood vessels, and other glia. These ubiquitous cells display rich intracellular Ca2+ signaling, which has now been studied for over 30 years. In this review, we provide a summary and perspective of recent progress concerning the study of astrocyte intracellular Ca2+ signaling as well as discussion of its potential functions. Progress has occurred in the areas of imaging, silencing, activating, and analyzing astrocyte Ca2+ signals. These insights have collectively permitted exploration of the relationships of astrocyte Ca2+ signals to neural circuit function and behavior in a variety of species. We summarize these aspects along with a framework for mechanistically interpreting behavioral studies to identify directly causal effects. We finish by providing a perspective on new avenues of research concerning astrocyte Ca2+ signaling.
Collapse
Affiliation(s)
- Misha B Ahrens
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA
| | - Baljit S Khakh
- Department of Physiology and Department of Neurobiology, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Kira E Poskanzer
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California 94143, USA
| |
Collapse
|
10
|
Qin H, Zhou L, Haque FT, Martin-Jimenez C, Trang A, Benveniste EN, Wang Q. Diverse signaling mechanisms and heterogeneity of astrocyte reactivity in Alzheimer's disease. J Neurochem 2024; 168:3536-3557. [PMID: 37932959 DOI: 10.1111/jnc.16002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/08/2023]
Abstract
Alzheimer's disease (AD) affects various brain cell types, including astrocytes, which are the most abundant cell types in the central nervous system (CNS). Astrocytes not only provide homeostatic support to neurons but also actively regulate synaptic signaling and functions and become reactive in response to CNS insults through diverse signaling pathways including the JAK/STAT, NF-κB, and GPCR-elicited pathways. The advent of new technology for transcriptomic profiling at the single-cell level has led to increasing recognition of the highly versatile nature of reactive astrocytes and the context-dependent specificity of astrocyte reactivity. In AD, reactive astrocytes have long been observed in senile plaques and have recently been suggested to play a role in AD pathogenesis and progression. However, the precise contributions of reactive astrocytes to AD remain elusive, and targeting this complex cell population for AD treatment poses significant challenges. In this review, we summarize the current understanding of astrocyte reactivity and its role in AD, with a particular focus on the signaling pathways that promote astrocyte reactivity and the heterogeneity of reactive astrocytes. Furthermore, we explore potential implications for the development of therapeutics for AD. Our objective is to shed light on the complex involvement of astrocytes in AD and offer insights into potential therapeutic targets and strategies for treating and managing this devastating neurodegenerative disorder.
Collapse
Affiliation(s)
- Hongwei Qin
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Lianna Zhou
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Faris T Haque
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Cynthia Martin-Jimenez
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Amy Trang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Etty N Benveniste
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Qin Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
11
|
Koss KM, Son T, Li C, Hao Y, Cao J, Churchward MA, Zhang ZJ, Wertheim JA, Derda R, Todd KG. Toward discovering a novel family of peptides targeting neuroinflammatory states of brain microglia and astrocytes. J Neurochem 2024; 168:3386-3414. [PMID: 37171455 PMCID: PMC10640667 DOI: 10.1111/jnc.15840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023]
Abstract
Microglia are immune-derived cells critical to the development and healthy function of the brain and spinal cord, yet are implicated in the active pathology of many neuropsychiatric disorders. A range of functional phenotypes associated with the healthy brain or disease states has been suggested from in vivo work and were modeled in vitro as surveying, reactive, and primed sub-types of primary rat microglia and mixed microglia/astrocytes. It was hypothesized that the biomolecular profile of these cells undergoes a phenotypical change as well, and these functional phenotypes were explored for potential novel peptide binders using a custom 7 amino acid-presenting M13 phage library (SX7) to identify unique peptides that bind differentially to these respective cell types. Surveying glia were untreated, reactive were induced with a lipopolysaccharide treatment, recovery was modeled with a potent anti-inflammatory treatment dexamethasone, and priming was determined by subsequently challenging the cells with interferon gamma. Microglial function was profiled by determining the secretion of cytokines and nitric oxide, and expression of inducible nitric oxide synthase. After incubation with the SX7 phage library, populations of SX7-positive microglia and/or astrocytes were collected using fluorescence-activated cell sorting, SX7 phage was amplified in Escherichia coli culture, and phage DNA was sequenced via next-generation sequencing. Binding validation was done with synthesized peptides via in-cell westerns. Fifty-eight unique peptides were discovered, and their potential functions were assessed using a basic local alignment search tool. Peptides potentially originated from proteins ranging in function from a variety of supportive glial roles, including synapse support and pruning, to inflammatory incitement including cytokine and interleukin activation, and potential regulation in neurodegenerative and neuropsychiatric disorders.
Collapse
Affiliation(s)
- K M Koss
- Comprehensive Transplant Center and Department of Surgery, Feinberg School of Medicine, Northwestern University, Illinois, Chicago, USA
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Alberta, Edmonton, Canada
- Department of Surgery, University of Arizona College of Medicine, Arizona, Tucson, USA
| | - T Son
- Comprehensive Transplant Center and Department of Surgery, Feinberg School of Medicine, Northwestern University, Illinois, Chicago, USA
| | - C Li
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr NW, Edmonton, AB T6G 2G2, Canada
| | - Y Hao
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr NW, Edmonton, AB T6G 2G2, Canada
| | - J Cao
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr NW, Edmonton, AB T6G 2G2, Canada
- 48Hour Discovery Inc, 11421 Saskatchewan Dr NW, Edmonton, AB T6G 2M9, Canada
| | - M A Churchward
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Alberta, Edmonton, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Alberta, Edmonton, Canada
- Department of Biology and Environmental Sciences, Concordia University of Edmonton, Alberta, Edmonton, Canada
| | - Z J Zhang
- Comprehensive Transplant Center and Department of Surgery, Feinberg School of Medicine, Northwestern University, Illinois, Chicago, USA
| | - J A Wertheim
- Comprehensive Transplant Center and Department of Surgery, Feinberg School of Medicine, Northwestern University, Illinois, Chicago, USA
- Department of Surgery, University of Arizona College of Medicine, Arizona, Tucson, USA
| | - R Derda
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr NW, Edmonton, AB T6G 2G2, Canada
- 48Hour Discovery Inc, 11421 Saskatchewan Dr NW, Edmonton, AB T6G 2M9, Canada
| | - K G Todd
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Alberta, Edmonton, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Alberta, Edmonton, Canada
- Department of Biomedical Engineering, University of Alberta, Alberta, Edmonton, Canada
| |
Collapse
|
12
|
Yarotskyy V, Nass SR, Hahn YK, Contois L, McQuiston AR, Knapp PE, Hauser KF. Sustained fentanyl exposure inhibits neuronal activity in dissociated striatal neuronal-glial cocultures through actions independent of opioid receptors. J Neurophysiol 2024; 132:1056-1073. [PMID: 39110896 PMCID: PMC11427067 DOI: 10.1152/jn.00444.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/26/2024] [Accepted: 07/31/2024] [Indexed: 09/19/2024] Open
Abstract
Besides having high potency and efficacy at the µ-opioid (MOR) and other opioid receptor types, fentanyl has some affinity for some adrenergic receptor types, which may underlie its unique pathophysiological differences from typical opioids. To better understand the unique actions of fentanyl, we assessed the extent to which fentanyl alters striatal medium spiny neuron (MSN) activity via opioid receptors or α1-adrenoceptors in dopamine type 1 or type 2 receptor (D1 or D2)-expressing MSNs. In neuronal and mixed-glial cocultures from the striatum, acute fentanyl (100 nM) exposure decreased the frequency of spontaneous action potentials. Overnight exposure of cocultures to 100 nM fentanyl severely reduced the proportion of MSNs with spontaneous action potentials, which was unaffected by coexposure to the opioid receptor antagonist naloxone (10 µM) but fully negated by coadministering the pan-α1-adrenoceptor inverse agonist prazosin (100 nM) and partially reversed by the selective α1A-adrenoceptor antagonist RS 100329 (300 nM). Acute fentanyl (100 nM) exposure modestly reduced the frequency of action potentials and caused firing rate adaptations in D2, but not D1, MSNs. Prolonged (2-5 h) fentanyl (100 nM) application dramatically attenuated firing rates in both D1 and D2 MSNs. To identify possible cellular sites of α1-adrenoceptor action, α1-adrenoceptors were localized in subpopulations of striatal astroglia and neurons by immunocytochemistry and Adra1a mRNA by in situ hybridization in astrocytes. Thus, sustained fentanyl exposure can inhibit striatal MSN activity via a nonopioid receptor-dependent pathway, which may be modulated via complex actions in α1-adrenoceptor-expressing striatal neurons and/or glia.NEW & NOTEWORTHY Acute fentanyl exposure attenuated the activity of striatal medium spiny neurons (MSNs) in vitro and in dopamine D2, but not D1, receptor-expressing MSNs in ex vivo slices. By contrast, sustained fentanyl exposure suppressed the spontaneous activity of MSNs cocultured with glia through a nonopioid receptor-dependent mechanism modulated, in part, by α1-adrenoceptors. Fentanyl exposure can affect striatal function via a nonopioid receptor mechanism of action that appears mediated by α1-adrenoreceptor-expressing striatal neurons and/or astroglia.
Collapse
Affiliation(s)
- Viktor Yarotskyy
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Sara R Nass
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Yun-Kyung Hahn
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Liangru Contois
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
| | - A Rory McQuiston
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Pamela E Knapp
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
- Institute for Drug and Alcohol Studies, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
- Institute for Drug and Alcohol Studies, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
| |
Collapse
|
13
|
Fabbri R, Scidà A, Saracino E, Conte G, Kovtun A, Candini A, Kirdajova D, Spennato D, Marchetti V, Lazzarini C, Konstantoulaki A, Dambruoso P, Caprini M, Muccini M, Ursino M, Anderova M, Treossi E, Zamboni R, Palermo V, Benfenati V. Graphene oxide electrodes enable electrical stimulation of distinct calcium signalling in brain astrocytes. NATURE NANOTECHNOLOGY 2024; 19:1344-1353. [PMID: 38987650 PMCID: PMC11405283 DOI: 10.1038/s41565-024-01711-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/31/2024] [Indexed: 07/12/2024]
Abstract
Astrocytes are responsible for maintaining homoeostasis and cognitive functions through calcium signalling, a process that is altered in brain diseases. Current bioelectronic tools are designed to study neurons and are not suitable for controlling calcium signals in astrocytes. Here, we show that electrical stimulation of astrocytes using electrodes coated with graphene oxide and reduced graphene oxide induces respectively a slow response to calcium, mediated by external calcium influx, and a sharp one, exclusively due to calcium release from intracellular stores. Our results suggest that the different conductivities of the substrate influence the electric field at the cell-electrolyte or cell-material interfaces, favouring different signalling events in vitro and ex vivo. Patch-clamp, voltage-sensitive dye and calcium imaging data support the proposed model. In summary, we provide evidence of a simple tool to selectively control distinct calcium signals in brain astrocytes for straightforward investigations in neuroscience and bioelectronic medicine.
Collapse
Affiliation(s)
- Roberta Fabbri
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Alessandra Scidà
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Emanuela Saracino
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Giorgia Conte
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Alessandro Kovtun
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Andrea Candini
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Denisa Kirdajova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, CAS, Prague, Czech Republic
| | - Diletta Spennato
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Valeria Marchetti
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, CAS, Prague, Czech Republic
- Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Chiara Lazzarini
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Aikaterini Konstantoulaki
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Paolo Dambruoso
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Marco Caprini
- Department of Pharmacy and Biotechnology (FaBit), University of Bologna, Bologna, Italy
| | - Michele Muccini
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati, Bologna, Italy
| | - Mauro Ursino
- Dipartimento di Ingegneria dell'Energia Elettrica e dell'Informazione 'Guglielmo Marconi', University of Bologna, Cesena, Italy
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, CAS, Prague, Czech Republic
| | - Emanuele Treossi
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy.
| | - Roberto Zamboni
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Vincenzo Palermo
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy.
| | - Valentina Benfenati
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy.
| |
Collapse
|
14
|
Hashimoto JG, Margolies N, Zhang X, Karpf J, Song Y, Davis BA, Zhang F, Linhardt RJ, Carbone L, Guizzetti M. Astrocyte extracellular matrix modulates neuronal dendritic development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.606424. [PMID: 39211148 PMCID: PMC11361265 DOI: 10.1101/2024.08.06.606424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Major developmental events occurring in the hippocampus during the third trimester of human gestation and neonatally in altricial rodents include rapid and synchronized dendritic arborization and astrocyte proliferation and maturation. We tested the hypothesis that signals sent by developing astrocytes to developing neurons modulate dendritic development in vivo. We altered neuronal development by neonatal (third trimester-equivalent) ethanol exposure in mice; this treatment increased dendritic arborization in hippocampal pyramidal neurons. We next assessed concurrent changes in the mouse astrocyte translatome by translating ribosomal affinity purification (TRAP)-seq. We followed up on ethanol-inhibition of astrocyte Chpf2 and Chsy1 gene translation because these genes encode for biosynthetic enzymes of chondroitin sulfate glycosaminoglycan (CS-GAG) chains (extracellular matrix components that inhibit neuronal development and plasticity) and have not been explored before for their roles in dendritic arborization. We report that Chpf2 and Chsy1 are enriched in astrocytes and their translation is inhibited by ethanol, which also reduces the levels of CS-GAGs measured by Liquid Chromatography/Mass Spectrometry. Finally, astrocyte-conditioned medium derived from Chfp2-silenced astrocytes increased neurite branching of hippocampal neurons in vitro. These results demonstrate that CS-GAG biosynthetic enzymes in astrocytes regulates dendritic arborization in developing neurons.
Collapse
Affiliation(s)
- Joel G. Hashimoto
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR
- VA Portland Health Care System, Portland, OR
| | - Nicholas Margolies
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR
- VA Portland Health Care System, Portland, OR
| | - Xiaolu Zhang
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR
- VA Portland Health Care System, Portland, OR
| | - Joshua Karpf
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR
| | - Yuefan Song
- Chemistry and Chemical Biology, Biomedical Engineering, Chemical and Biological Engineering, and Biology; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY
| | - Brett A. Davis
- Department of Medicine & Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR
| | - Fuming Zhang
- Chemistry and Chemical Biology, Biomedical Engineering, Chemical and Biological Engineering, and Biology; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY
| | - Robert J. Linhardt
- Chemistry and Chemical Biology, Biomedical Engineering, Chemical and Biological Engineering, and Biology; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY
| | - Lucia Carbone
- Department of Medicine & Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR
- Department of Molecular and Genetics, Oregon Health & Science University, Portland, OR
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR
- Division of Genetics, Oregon National Primate Research Center, Beaverton, OR
| | - Marina Guizzetti
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR
- VA Portland Health Care System, Portland, OR
| |
Collapse
|
15
|
Shigetomi E, Suzuki H, Hirayama YJ, Sano F, Nagai Y, Yoshihara K, Koga K, Tateoka T, Yoshioka H, Shinozaki Y, Kinouchi H, Tanaka KF, Bito H, Tsuda M, Koizumi S. Disease-relevant upregulation of P2Y 1 receptor in astrocytes enhances neuronal excitability via IGFBP2. Nat Commun 2024; 15:6525. [PMID: 39117630 PMCID: PMC11310333 DOI: 10.1038/s41467-024-50190-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 06/26/2024] [Indexed: 08/10/2024] Open
Abstract
Reactive astrocytes play a pivotal role in the pathogenesis of neurological diseases; however, their functional phenotype and the downstream molecules by which they modify disease pathogenesis remain unclear. Here, we genetically increase P2Y1 receptor (P2Y1R) expression, which is upregulated in reactive astrocytes in several neurological diseases, in astrocytes of male mice to explore its function and the downstream molecule. This astrocyte-specific P2Y1R overexpression causes neuronal hyperexcitability by increasing both astrocytic and neuronal Ca2+ signals. We identify insulin-like growth factor-binding protein 2 (IGFBP2) as a downstream molecule of P2Y1R in astrocytes; IGFBP2 acts as an excitatory signal to cause neuronal excitation. In neurological disease models of epilepsy and stroke, reactive astrocytes upregulate P2Y1R and increase IGFBP2. The present findings identify a mechanism underlying astrocyte-driven neuronal hyperexcitability, which is likely to be shared by several neurological disorders, providing insights that might be relevant for intervention in diverse neurological disorders.
Collapse
Affiliation(s)
- Eiji Shigetomi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan.
- Yamanashi GLIA center, University of Yamanashi, Yamanashi, 409-3898, Japan.
| | - Hideaki Suzuki
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
- Yamanashi GLIA center, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Yukiho J Hirayama
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Fumikazu Sano
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
- Yamanashi GLIA center, University of Yamanashi, Yamanashi, 409-3898, Japan
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Yuki Nagai
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
- Yamanashi GLIA center, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Kohei Yoshihara
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Keisuke Koga
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
- Department of Neurophysiology, Hyogo College of Medicine, Hyogo, 663-8501, Japan
| | - Toru Tateoka
- Department of Neurosurgery, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Hideyuki Yoshioka
- Department of Neurosurgery, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Youichi Shinozaki
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
- Yamanashi GLIA center, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Hiroyuki Kinouchi
- Department of Neurosurgery, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Kenji F Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Makoto Tsuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan.
- Yamanashi GLIA center, University of Yamanashi, Yamanashi, 409-3898, Japan.
| |
Collapse
|
16
|
Lines J, Baraibar A, Nanclares C, Martín ED, Aguilar J, Kofuji P, Navarrete M, Araque A. A spatial threshold for astrocyte calcium surge. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.18.549563. [PMID: 37503130 PMCID: PMC10370153 DOI: 10.1101/2023.07.18.549563] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Astrocytes are active cells involved in brain function through the bidirectional communication with neurons, in which the astrocyte calcium signal plays a crucial role. Synaptically-evoked calcium increases can be localized to independent subcellular domains or expand to the entire cell, i.e., calcium surge. In turn, astrocytes may regulate individual synapses by calcium-dependent release of gliotransmitters. Because a single astrocyte may contact ∼100,000 synapses, the control of the intracellular calcium signal propagation may have relevant consequences on brain function by regulating the spatial range of astrocyte neuromodulation of synapses. Yet, the properties governing the spatial dynamics of the astrocyte calcium signal remains poorly defined. Imaging subcellular responses of cortical astrocytes to sensory stimulation in mice, we show that sensory-evoked astrocyte calcium responses originated and remained localized in domains of the astrocytic arborization, but eventually propagated to the entire cell if a spatial threshold of >23% of the arborization being activated was surpassed. Using transgenic IP 3 R2 -/- mice, we found that type-2 IP 3 receptors were necessary for the generation of the astrocyte calcium surge. We finally show using in situ electrophysiological recordings that the spatial threshold of the astrocyte calcium signal consequently determined the gliotransmitter release. Present results reveal a fundamental property of astrocyte calcium physiology, i.e., a spatial threshold for the astrocyte intracellular calcium signal propagation, which depends on astrocyte intrinsic properties and governs the astrocyte integration of local synaptic activity and the subsequent neuromodulation. One-Sentence Summary There is a spatial threshold for the astrocyte intracellular calcium signal propagation that is determined by astrocyte intrinsic properties and controls gliotransmission.
Collapse
|
17
|
Yan C, Liu Z. The role of periaqueductal gray astrocytes in anxiety-like behavior induced by acute stress. Biochem Biophys Res Commun 2024; 720:150073. [PMID: 38754161 DOI: 10.1016/j.bbrc.2024.150073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/19/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
Astrocytes in the central nervous system play a vital role in modulating synaptic transmission and neuronal activation by releasing gliotransmitters. The 5-HTergic neurons in the ventrolateral periaqueductal gray (vlPAG) are important in anxiety processing. However, it remains uncertain whether the regulation of astrocytic activity on vlPAG 5-HTergic neurons is involved in anxiety processing. Here, through chemogenetic manipulation, we explored the impact of astrocytic activity in the PAG on the regulation of anxiety. To determine the role of astrocytes in the control of anxiety, we induced anxiety-like behaviors in mice through foot shock and investigated their effects on synaptic transmission and neuronal excitability in vlPAG 5-HTergic neurons. Foot shock caused anxiety-like behaviors, which were accompanied with the increase of the amplitude and frequency of miniature excitatory postsynaptic currents (mEPSCs), the area of slow inward currents (SICs), and the spike frequency of action potentials (AP) in vlPAG 5-HTergic neurons. The chemogenetic inhibition of vlPAG astrocytes was found to attenuate stress-induced anxiety-like behaviors and decrease the heightened synaptic transmission and neuronal excitability of vlPAG 5-HTergic neurons. Conversely, chemogenetic activation of vlPAG astrocytes triggered anxiety-like behaviors, enhanced synaptic transmission, and increased the excitability of vlPAG 5-HTergic neurons in unstressed mice. In summary, this study has provided initial insights into the pathway by which astrocytes influence behavior through the rapid regulation of associated neurons. This offers a new perspective for the investigation of the biological mechanisms underlying anxiety.
Collapse
Affiliation(s)
- Chuanting Yan
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, 199 Chang'an South Road, Xi'an, 710062, China; Lingang Laboratory, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, 555 Qiangye Road, Shanghai, 201210, China
| | - Zhiqiang Liu
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, 199 Chang'an South Road, Xi'an, 710062, China.
| |
Collapse
|
18
|
Lu CL, Ren J, Cao X. An Astroglial Basis of Major Depressive Disorder: Molecular, Cellular, and Circuit Features. Biol Psychiatry 2024:S0006-3223(24)01484-7. [PMID: 39084500 DOI: 10.1016/j.biopsych.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/17/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024]
Abstract
Major depressive disorder is a common psychiatric disorder and a leading cause of disability worldwide. Astrocytes play a role in the maintenance of the function of the central nervous system, both physiologically and pathologically. Accumulated evidence indicates that the astrocyte is an important contributor to the pathophysiology of major depressive disorder including blood-brain barrier integrity, gap junctions, gliotransmission, glutamate homeostasis, and energy metabolism. Here, we comprehensively summarize an astroglial basis for major depressive disorder based on molecular, cellular, and circuit properties, suggesting that astrocytes appear to be highly sensitive to stress and are likely to be uniquely positioned to integrate peripheral and central stress responses.
Collapse
Affiliation(s)
- Cheng-Lin Lu
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China; Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jing Ren
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Xiong Cao
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China; Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
19
|
Zhao D, Hu M, Liu S. Glial cells in the mammalian olfactory bulb. Front Cell Neurosci 2024; 18:1426094. [PMID: 39081666 PMCID: PMC11286597 DOI: 10.3389/fncel.2024.1426094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
The mammalian olfactory bulb (OB), an essential part of the olfactory system, plays a critical role in odor detection and neural processing. Historically, research has predominantly focused on the neuronal components of the OB, often overlooking the vital contributions of glial cells. Recent advancements, however, underscore the significant roles that glial cells play within this intricate neural structure. This review discus the diverse functions and dynamics of glial cells in the mammalian OB, mainly focused on astrocytes, microglia, oligodendrocytes, olfactory ensheathing cells, and radial glia cells. Each type of glial contributes uniquely to the OB's functionality, influencing everything from synaptic modulation and neuronal survival to immune defense and axonal guidance. The review features their roles in maintaining neural health, their involvement in neurodegenerative diseases, and their potential in therapeutic applications for neuroregeneration. By providing a comprehensive overview of glial cell types, their mechanisms, and interactions within the OB, this article aims to enhance our understanding of the olfactory system's complexity and the pivotal roles glial cells play in both health and disease.
Collapse
Affiliation(s)
| | | | - Shaolin Liu
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, Department of Biomedical Sciences, University of Georgia College of Veterinary Medicine, Athens, GA, United States
| |
Collapse
|
20
|
Melrose J. CNS/PNS proteoglycans functionalize neuronal and astrocyte niche microenvironments optimizing cellular activity by preserving membrane polarization dynamics, ionic microenvironments, ion fluxes, neuronal activation, and network neurotransductive capacity. J Neurosci Res 2024; 102:e25361. [PMID: 39034899 DOI: 10.1002/jnr.25361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/22/2024] [Accepted: 05/27/2024] [Indexed: 07/23/2024]
Abstract
Central and peripheral nervous system (CNS/PNS) proteoglycans (PGs) have diverse functional roles, this study examined how these control cellular behavior and tissue function. The CNS/PNS extracellular matrix (ECM) is a dynamic, responsive, highly interactive, space-filling, cell supportive, stabilizing structure maintaining tissue compartments, ionic microenvironments, and microgradients that regulate neuronal activity and maintain the neuron in an optimal ionic microenvironment. The CNS/PNS contains a high glycosaminoglycan content (60% hyaluronan, HA) and a diverse range of stabilizing PGs. Immobilization of HA in brain tissues by HA interactive hyalectan PGs preserves tissue hydration and neuronal activity, a paucity of HA in brain tissues results in a pro-convulsant epileptic phenotype. Diverse CS, KS, and HSPGs stabilize the blood-brain barrier and neurovascular unit, provide smart gel neurotransmitter neuron vesicle storage and delivery, organize the neuromuscular junction basement membrane, and provide motor neuron synaptic plasticity, and photoreceptor and neuron synaptic functions. PG-HA networks maintain ionic fluxes and microgradients and tissue compartments that contribute to membrane polarization dynamics essential to neuronal activation and neurotransduction. Hyalectans form neuroprotective perineuronal nets contributing to synaptic plasticity, memory, and cognitive learning. Sialoglycoprotein associated with cones and rods (SPACRCAN), an HA binding CSPG, stabilizes the inter-photoreceptor ECM. HSPGs pikachurin and eyes shut stabilize the photoreceptor synapse aiding in phototransduction and neurotransduction with retinal bipolar neurons crucial to visual acuity. This is achieved through Laminin G motifs in pikachurin, eyes shut, and neurexins that interact with the dystroglycan-cytoskeleton-ECM-stabilizing synaptic interconnections, neuronal interactive specificity, and co-ordination of regulatory action potentials in neural networks.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, New South Wales, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Sydney Medical School, Northern, The University of Sydney Faculty of Medicine and Health, Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| |
Collapse
|
21
|
Maiorov SA, Laryushkin DP, Kritskaya KA, Zinchenko VP, Gaidin SG, Kosenkov AM. The Role of Ion Channels and Intracellular Signaling Cascades in the Inhibitory Action of WIN 55,212-2 upon Hyperexcitation. Brain Sci 2024; 14:668. [PMID: 39061409 PMCID: PMC11274798 DOI: 10.3390/brainsci14070668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Gi-coupled receptors, particularly cannabinoid receptors (CBRs), are considered perspective targets for treating brain pathologies, including epilepsy. However, the precise mechanism of the anticonvulsant effect of the CBR agonists remains unknown. We have found that WIN 55,212-2 (a CBR agonist) suppresses the synchronous oscillations of the intracellular concentration of Ca2+ ions (epileptiform activity) induced in the neurons of rat hippocampal neuron-glial cultures by bicuculline or NH4Cl. As we have demonstrated, the WIN 55,212-2 effect is mediated by CB1R receptors. The agonist suppresses Ca2+ inflow mediated by the voltage-gated calcium channels but does not alter the inflow mediated by NMDA, AMPA, and kainate receptors. We have also found that phospholipase C (PLC), protein kinase C (PKC), and G-protein-coupled inwardly rectifying K+ channels (GIRK channels) are involved in the molecular mechanism underlying the inhibitory action of CB1R activation against epileptiform activity. Thus, our results demonstrate that the antiepileptic action of CB1R agonists is mediated by different intracellular signaling cascades, including non-canonical PLC/PKC-associated pathways.
Collapse
Affiliation(s)
| | | | | | | | - Sergei G. Gaidin
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia (A.M.K.)
| | | |
Collapse
|
22
|
Meadows SM, Palaguachi F, Jang MW, Licht-Murava A, Barnett D, Zimmer TS, Zhou C, McDonough SR, Orr AL, Orr AG. Hippocampal astrocytes induce sex-dimorphic effects on memory. Cell Rep 2024; 43:114278. [PMID: 38795347 PMCID: PMC11234507 DOI: 10.1016/j.celrep.2024.114278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/19/2024] [Accepted: 05/09/2024] [Indexed: 05/27/2024] Open
Abstract
Astrocytic receptors influence cognitive function and can promote behavioral deficits in disease. These effects may vary based on variables such as biological sex, but it is not known if the effects of astrocytic receptors are dependent on sex. We leveraged in vivo gene editing and chemogenetics to examine the roles of astrocytic receptors in spatial memory and other processes. We show that reductions in metabotropic glutamate receptor 3 (mGluR3), the main astrocytic glutamate receptor in adults, impair memory in females but enhance memory in males. Similarly, increases in astrocytic mGluR3 levels have sex-dependent effects and enhance memory in females. mGluR3 manipulations also alter spatial search strategies during recall in a sex-specific manner. In addition, acute chemogenetic stimulation of Gi/o-coupled or Gs-coupled receptors in hippocampal astrocytes induces bidirectional and sex-dimorphic effects on memory. Thus, astrocytes are sex-dependent modulators of cognitive function and may promote sex differences in aging and disease.
Collapse
Affiliation(s)
- Samantha M Meadows
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY 10021, USA
| | - Fernando Palaguachi
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Minwoo Wendy Jang
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Avital Licht-Murava
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Daniel Barnett
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY 10021, USA
| | - Till S Zimmer
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Constance Zhou
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
| | - Samantha R McDonough
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY 10021, USA
| | - Adam L Orr
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY 10021, USA
| | - Anna G Orr
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY 10021, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA.
| |
Collapse
|
23
|
Akter M, Fu Z, Zheng X, Iqbal Z, Zhang N, Karim A, Li Y. Astrocytic GPCR signaling in the anterior cingulate cortex modulates decision making in rats. OXFORD OPEN NEUROSCIENCE 2024; 3:kvae010. [PMID: 38915791 PMCID: PMC11194462 DOI: 10.1093/oons/kvae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/26/2024]
Abstract
Decision making is a process of selecting a course of action by assessing the worth or value of the potential consequences. Rat Gambling Task (RGT) is a well-established behavioral paradigm that allows for assessment of the decision-making performance of rats. Astrocytes are emerging as key players in modulating cognitive functions. Using repeated RGTs with short intersession time intervals (48 h), the current study demonstrates that Gi pathway activation of astrocytes in the anterior cingulate cortex (ACC) leads to impaired decision-making in consistently good decision-making rats. On the other hand, ACC astrocytic Gq pathway activation improves decision-making in a subset of rats who are not consistently good decision-makers. Furthermore, we show that astrocytic Gq activation is associated with an increase in the L-lactate level in the extracellular fluid of the ACC. Together, these results expand our knowledge of the role of astrocytic GPCR signaling in modulating cognitive functions.
Collapse
Affiliation(s)
- Mastura Akter
- Department of Neuroscience, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, SAR, China
| | - Zhongqi Fu
- Department of Neuroscience, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, SAR, China
| | - Xianlin Zheng
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, SAR, China
| | - Zafar Iqbal
- Department of Neuroscience, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, 15 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong, SAR, China
- Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, 17W, Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong, SAR, China
| | - Na Zhang
- Department of Neuroscience, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, SAR, China
| | - Anwarul Karim
- Department of Neuroscience, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, SAR, China
| | - Ying Li
- Department of Neuroscience, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, 15 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong, SAR, China
- Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, 17W, Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong, SAR, China
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, SAR, China
| |
Collapse
|
24
|
Birgül Iyison N, Abboud C, Abboud D, Abdulrahman AO, Bondar AN, Dam J, Georgoussi Z, Giraldo J, Horvat A, Karoussiotis C, Paz-Castro A, Scarpa M, Schihada H, Scholz N, Güvenc Tuna B, Vardjan N. ERNEST COST action overview on the (patho)physiology of GPCRs and orphan GPCRs in the nervous system. Br J Pharmacol 2024. [PMID: 38825750 DOI: 10.1111/bph.16389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/09/2024] [Accepted: 02/24/2024] [Indexed: 06/04/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are a large family of cell surface receptors that play a critical role in nervous system function by transmitting signals between cells and their environment. They are involved in many, if not all, nervous system processes, and their dysfunction has been linked to various neurological disorders representing important drug targets. This overview emphasises the GPCRs of the nervous system, which are the research focus of the members of ERNEST COST action (CA18133) working group 'Biological roles of signal transduction'. First, the (patho)physiological role of the nervous system GPCRs in the modulation of synapse function is discussed. We then debate the (patho)physiology and pharmacology of opioid, acetylcholine, chemokine, melatonin and adhesion GPCRs in the nervous system. Finally, we address the orphan GPCRs, their implication in the nervous system function and disease, and the challenges that need to be addressed to deorphanize them.
Collapse
Affiliation(s)
- Necla Birgül Iyison
- Department of Molecular Biology and Genetics, University of Bogazici, Istanbul, Turkey
| | - Clauda Abboud
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liege, Liege, Belgium
| | - Dayana Abboud
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liege, Liege, Belgium
| | | | - Ana-Nicoleta Bondar
- Faculty of Physics, University of Bucharest, Magurele, Romania
- Forschungszentrum Jülich, Institute for Computational Biomedicine (IAS-5/INM-9), Jülich, Germany
| | - Julie Dam
- Institut Cochin, CNRS, INSERM, Université Paris Cité, Paris, France
| | - Zafiroula Georgoussi
- Laboratory of Cellular Signalling and Molecular Pharmacology, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Jesús Giraldo
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística and Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain
- Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anemari Horvat
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| | - Christos Karoussiotis
- Laboratory of Cellular Signalling and Molecular Pharmacology, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Alba Paz-Castro
- Molecular Pharmacology of GPCRs research group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago, Spain
| | - Miriam Scarpa
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Hannes Schihada
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Nicole Scholz
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Bilge Güvenc Tuna
- Department of Biophysics, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Nina Vardjan
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| |
Collapse
|
25
|
Mak A, Abramian A, Driessens SLW, Boers-Escuder C, van der Loo RJ, Smit AB, van den Oever MC, Verheijen MHG. Activation of G s Signaling in Cortical Astrocytes Does Not Influence Formation of a Persistent Contextual Memory Engram. eNeuro 2024; 11:ENEURO.0056-24.2024. [PMID: 38902023 PMCID: PMC11209656 DOI: 10.1523/eneuro.0056-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/19/2024] [Accepted: 05/04/2024] [Indexed: 06/22/2024] Open
Abstract
Formation and retrieval of remote contextual memory depends on cortical engram neurons that are defined during learning. Manipulation of astrocytic Gq and Gi associated G-protein coupled receptor (GPCR) signaling has been shown to affect memory processing, but little is known about the role of cortical astrocytic Gs-GPCR signaling in remote memory acquisition and the functioning of cortical engram neurons. We assessed this by chemogenetic manipulation of astrocytes in the medial prefrontal cortex (mPFC) of male mice, during either encoding or consolidation of a contextual fear memory, while simultaneously labeling cortical engram neurons. We found that stimulation of astrocytic Gs signaling during memory encoding and consolidation did not alter remote memory expression. In line with this, the size of the mPFC engram population and the recall-induced reactivation of these neurons was unaffected. Hence, our data indicate that activation of Gs-GPCR signaling in cortical astrocytes is not sufficient to alter memory performance and functioning of cortical engram neurons.
Collapse
Affiliation(s)
- Aline Mak
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Adlin Abramian
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Stan L W Driessens
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Cristina Boers-Escuder
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Rolinka J van der Loo
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Michel C van den Oever
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Mark H G Verheijen
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| |
Collapse
|
26
|
Zhang DX, Jia SY, Xiao K, Zhang MM, Yu ZF, Liu JZ, Zhang W, Zhang LM, Xing BR, Zhou TT, Li XM, Zhao XC, An P. Icariin mitigates anxiety-like behaviors induced by hemorrhagic shock and resuscitation via inhibiting of astrocytic activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155507. [PMID: 38552430 DOI: 10.1016/j.phymed.2024.155507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/18/2024] [Accepted: 02/28/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Abnormal activation of astrocytes in the amygdala contributes to anxiety after hemorrhagic shock and resuscitation (HSR). Nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB)-associated epigenetic reprogramming of astrocytic activation is crucial to anxiety. A bioactive monomer derived from Epimedium icariin (ICA) has been reported to modulate NF-κB signaling and astrocytic activation. PURPOSE The present study aimed to investigate the effects of ICA on post-HSR anxiety disorders and its potential mechanism of action. METHODS We first induced HSR in mice through a bleeding and re-transfusion model and selectively inhibited and activated astrocytes in the amygdala using chemogenetics. Then, ICA (40 mg/kg) was administered by oral gavage once daily for 21 days. Behavioral, electrophysiological, and pathological changes were assessed after HSR using the light-dark transition test, elevated plus maze, recording of local field potential (LFP), and immunofluorescence assays. RESULTS Exposure to HSR reduced the duration of the light chamber and attenuated open-arm entries. Moreover, HSR exposure increased the theta oscillation power in the amygdala and upregulated NF-κB p65, H3K27ac, and H3K4me3 expression. Contrarily, chemogenetic inhibition of astrocytes significantly reversed these changes. Chemogenetic inhibition in astrocytes was simulated by ICA, but chemogenetic activation of astrocytes blocked the neuroprotective effects of ICA. CONCLUSION ICA mitigated anxiety-like behaviors induced by HSR in mice via inhibiting astrocytic activation, which is possibly associated with NF-κB-induced epigenetic reprogramming.
Collapse
Affiliation(s)
- Dong-Xue Zhang
- Department of Gerontology, Cangzhou Central Hospital, Cangzhou, China
| | - Shi-Yan Jia
- Anesthesia and Trauma Research Unit, Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No. 2 Hospital), Cangzhou, China; Hebei Province Key Laboratory of Integrated Traditional and Western Medicine in Neurological Rehabilitation, China
| | - Ke Xiao
- Department of Anesthesiology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Ming-Ming Zhang
- Department of Anesthesiology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Zhi-Fang Yu
- Anesthesia and Trauma Research Unit, Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No. 2 Hospital), Cangzhou, China
| | - Ji-Zhen Liu
- Department of Anesthesiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Zhang
- Department of Anesthesiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li-Min Zhang
- Anesthesia and Trauma Research Unit, Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No. 2 Hospital), Cangzhou, China
| | - Bao-Rui Xing
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing)
| | - Ting-Ting Zhou
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing)
| | - Xiao-Ming Li
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing)
| | - Xiao-Chun Zhao
- Department of Anesthesiology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Ping An
- Department of Neurobiology, School of Life Science, China Medical University, Shenyang, China.
| |
Collapse
|
27
|
Puebla M, Muñoz MF, Lillo MA, Contreras JE, Figueroa XF. Control of astrocytic Ca 2+ signaling by nitric oxide-dependent S-nitrosylation of Ca 2+ homeostasis modulator 1 channels. Biol Res 2024; 57:19. [PMID: 38689353 PMCID: PMC11059852 DOI: 10.1186/s40659-024-00503-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 04/18/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Astrocytes Ca2+ signaling play a central role in the modulation of neuronal function. Activation of metabotropic glutamate receptors (mGluR) by glutamate released during an increase in synaptic activity triggers coordinated Ca2+ signals in astrocytes. Importantly, astrocytes express the Ca2+-dependent nitric oxide (NO)-synthetizing enzymes eNOS and nNOS, which might contribute to the Ca2+ signals by triggering Ca2+ influx or ATP release through the activation of connexin 43 (Cx43) hemichannels, pannexin-1 (Panx-1) channels or Ca2+ homeostasis modulator 1 (CALHM1) channels. Hence, we aim to evaluate the participation of NO in the astrocytic Ca2+ signaling initiated by stimulation of mGluR in primary cultures of astrocytes from rat brain cortex. RESULTS Astrocytes were stimulated with glutamate or t-ACPD and NO-dependent changes in [Ca2+]i and ATP release were evaluated. In addition, the activity of Cx43 hemichannels, Panx-1 channels and CALHM1 channels was also analyzed. The expression of Cx43, Panx-1 and CALHM1 in astrocytes was confirmed by immunofluorescence analysis and both glutamate and t-ACPD induced NO-mediated activation of CALHM1 channels via direct S-nitrosylation, which was further confirmed by assessing CALHM1-mediated current using the two-electrode voltage clamp technique in Xenopus oocytes. Pharmacological blockade or siRNA-mediated inhibition of CALHM1 expression revealed that the opening of these channels provides a pathway for ATP release and the subsequent purinergic receptor-dependent activation of Cx43 hemichannels and Panx-1 channels, which further contributes to the astrocytic Ca2+ signaling. CONCLUSIONS Our findings demonstrate that activation of CALHM1 channels through NO-mediated S-nitrosylation in astrocytes in vitro is critical for the generation of glutamate-initiated astrocytic Ca2+ signaling.
Collapse
Affiliation(s)
- Mariela Puebla
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330025, Santiago, Chile
| | - Manuel F Muñoz
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330025, Santiago, Chile
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| | - Mauricio A Lillo
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Jorge E Contreras
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Xavier F Figueroa
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330025, Santiago, Chile.
| |
Collapse
|
28
|
Zhang M, Chen T, Lu X, Lan X, Chen Z, Lu S. G protein-coupled receptors (GPCRs): advances in structures, mechanisms, and drug discovery. Signal Transduct Target Ther 2024; 9:88. [PMID: 38594257 PMCID: PMC11004190 DOI: 10.1038/s41392-024-01803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/19/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024] Open
Abstract
G protein-coupled receptors (GPCRs), the largest family of human membrane proteins and an important class of drug targets, play a role in maintaining numerous physiological processes. Agonist or antagonist, orthosteric effects or allosteric effects, and biased signaling or balanced signaling, characterize the complexity of GPCR dynamic features. In this study, we first review the structural advancements, activation mechanisms, and functional diversity of GPCRs. We then focus on GPCR drug discovery by revealing the detailed drug-target interactions and the underlying mechanisms of orthosteric drugs approved by the US Food and Drug Administration in the past five years. Particularly, an up-to-date analysis is performed on available GPCR structures complexed with synthetic small-molecule allosteric modulators to elucidate key receptor-ligand interactions and allosteric mechanisms. Finally, we highlight how the widespread GPCR-druggable allosteric sites can guide structure- or mechanism-based drug design and propose prospects of designing bitopic ligands for the future therapeutic potential of targeting this receptor family.
Collapse
Affiliation(s)
- Mingyang Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ting Chen
- Department of Cardiology, Changzheng Hospital, Affiliated to Naval Medical University, Shanghai, 200003, China
| | - Xun Lu
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaobing Lan
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Ziqiang Chen
- Department of Orthopedics, Changhai Hospital, Affiliated to Naval Medical University, Shanghai, 200433, China.
| | - Shaoyong Lu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
29
|
Chalmers N, Masouti E, Beckervordersandforth R. Astrocytes in the adult dentate gyrus-balance between adult and developmental tasks. Mol Psychiatry 2024; 29:982-991. [PMID: 38177351 PMCID: PMC11176073 DOI: 10.1038/s41380-023-02386-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024]
Abstract
Astrocytes, a major glial cell type in the brain, are indispensable for the integration, maintenance and survival of neurons during development and adulthood. Both life phases make specific demands on the molecular and physiological properties of astrocytes, and most research projects traditionally focus on either developmental or adult astrocyte functions. In most brain regions, the generation of brain cells and the establishment of neural circuits ends with postnatal development. However, few neurogenic niches exist in the adult brain in which new neurons and glial cells are produced lifelong, and the integration of new cells into functional circuits represent a very special form of plasticity. Consequently, in the neurogenic niche, the astrocytes must be equipped to execute both mature and developmental tasks in order to integrate newborn neurons into the circuit and yet maintain overall homeostasis without affecting the preexisting neurons. In this review, we focus on astrocytes of the hippocampal dentate gyrus (DG), and discuss specific features of the astrocytic compartment that may allow the execution of both tasks. Firstly, astrocytes of the adult DG are molecularly, morphologically and functionally diverse, and the distinct astrocytes subtypes are characterized by their localization to DG layers. This spatial separation may lead to a functional specification of astrocytes subtypes according to the neuronal structures they are embedded in, hence a division of labor. Secondly, the astrocytic compartment is not static, but steadily increasing in numbers due to lifelong astrogenesis. Interestingly, astrogenesis can adapt to environmental and behavioral stimuli, revealing an unexpected astrocyte dynamic that allows the niche to adopt to changing demands. The diversity and dynamic of astrocytes in the adult DG implicate a vital contribution to hippocampal plasticity and represent an interesting model to uncover mechanisms how astrocytes simultaneously fulfill developmental and adult tasks.
Collapse
Affiliation(s)
- Nicholas Chalmers
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Evangelia Masouti
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | |
Collapse
|
30
|
Li D, Li S, Pan M, Li Q, Song J, Zhang R. The role of extracellular glutamate homeostasis dysregulated by astrocyte in epileptic discharges: a model evidence. Cogn Neurodyn 2024; 18:485-502. [PMID: 38699615 PMCID: PMC11061099 DOI: 10.1007/s11571-023-10001-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/26/2023] [Accepted: 08/13/2023] [Indexed: 05/05/2024] Open
Abstract
Glutamate (Glu) is a predominant excitatory neurotransmitter that acts on glutamate receptors to transfer signals in the central nervous system. Abnormally elevated extracellular glutamate levels is closely related to the generation and transition of epileptic seizures. However, there lacks of investigation regarding the role of extracellular glutamate homeostasis dysregulated by astrocyte in neuronal epileptic discharges. According to this, we propose a novel neuron-astrocyte computational model (NAG) by incorporating extracellular Glu concentration dynamics from three aspects of regulatory mechanisms: (1) the Glu uptake through astrocyte EAAT2; (2) the binding and release Glu via activating astrocyte mGluRs; and (3) the Glu free diffusion in the extracellular space. Then the proposed model NAG is analyzed theoretically and numerically to verify the effect of extracellular Glu homeostasis dysregulated by such three regulatory mechanisms on neuronal epileptic discharges. Our results demonstrate that the neuronal epileptic discharges can be aggravated by the downregulation expression of EAAT2, the aberrant activation of mGluRs, and the elevated Glu levels in extracellular micro-environment; as well as various discharge states (including bursting, mixed-mode spiking, and tonic firing) can be transited by their combination. Furthermore, we find that such factors can also alter the bifurcation threshold for the generation and transition of epileptic discharges. The results in this paper can be helpful for researchers to understand the astrocyte role in modulating extracellular Glu homeostasis, and provide theoretical basis for future related experimental studies.
Collapse
Affiliation(s)
- Duo Li
- The Medical Big Data Research Center and The School of Mathematics, Northwest University, Xi’an, 710127 China
| | - Sihui Li
- The Medical Big Data Research Center and The School of Mathematics, Northwest University, Xi’an, 710127 China
| | - Min Pan
- The Medical Big Data Research Center and The School of Mathematics, Northwest University, Xi’an, 710127 China
| | - Qiang Li
- The Medical Big Data Research Center and The School of Mathematics, Northwest University, Xi’an, 710127 China
| | - Jiangling Song
- The Medical Big Data Research Center and The School of Mathematics, Northwest University, Xi’an, 710127 China
| | - Rui Zhang
- The Medical Big Data Research Center and The School of Mathematics, Northwest University, Xi’an, 710127 China
| |
Collapse
|
31
|
Ishibashi K, Ichinose T, Kadokawa R, Mizutani R, Iwabuchi S, Togi S, Ura H, Tange S, Shinjo K, Nakayama J, Nanjo S, Niida Y, Kondo Y, Hashimoto S, Sahai E, Yano S, Nakada M, Hirata E. Astrocyte-induced mGluR1 activates human lung cancer brain metastasis via glutamate-dependent stabilization of EGFR. Dev Cell 2024; 59:579-594.e6. [PMID: 38309264 DOI: 10.1016/j.devcel.2024.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/11/2023] [Accepted: 01/12/2024] [Indexed: 02/05/2024]
Abstract
There are limited methods to stably analyze the interactions between cancer cells and glial cells in vitro, which hinders our molecular understanding. Here, we develop a simple and stable culture method of mouse glial cells, termed mixed-glial culture on/in soft substrate (MGS), which serves well as a platform to study cancer-glia interactions. Using this method, we find that human lung cancer cells become overly dependent on metabotropic glutamate receptor 1 (mGluR1) signaling in the brain microenvironment. Mechanistically, interactions with astrocytes induce mGluR1 in cancer cells through the Wnt-5a/prickle planar cell polarity protein 1 (PRICKLE1)/RE1 silencing transcription factor (REST) axis. Induced mGluR1 directly interacts with and stabilizes the epidermal growth factor receptor (EGFR) in a glutamate-dependent manner, and these cells then become responsive to mGluR1 inhibition. Our results highlight increased dependence on mGluR1 signaling as an adaptive strategy and vulnerability of human lung cancer brain metastasis.
Collapse
Affiliation(s)
- Kojiro Ishibashi
- Division of Tumor Cell Biology and Bioimaging, Cancer Research Institute of Kanazawa University, Kanazawa 920-1192, Ishikawa, Japan
| | - Toshiya Ichinose
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Ishikawa, Japan
| | - Riki Kadokawa
- Division of Tumor Cell Biology and Bioimaging, Cancer Research Institute of Kanazawa University, Kanazawa 920-1192, Ishikawa, Japan
| | - Ryo Mizutani
- Division of Tumor Cell Biology and Bioimaging, Cancer Research Institute of Kanazawa University, Kanazawa 920-1192, Ishikawa, Japan
| | - Sadahiro Iwabuchi
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Wakayama, Japan
| | - Sumihito Togi
- Center for Clinical Genomics, Kanazawa Medical University Hospital, Uchinada 920-0293, Ishikawa, Japan; Division of Genomic Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan
| | - Hiroki Ura
- Center for Clinical Genomics, Kanazawa Medical University Hospital, Uchinada 920-0293, Ishikawa, Japan; Division of Genomic Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan
| | - Shoichiro Tange
- Department of Medical Genome Sciences, Cancer Research Institute, Sapporo Medical University School of Medicine, Sapporo 060-8556, Hokkaido, Japan
| | - Keiko Shinjo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Aichi, Japan
| | - Jun Nakayama
- Department of Oncogenesis and Growth Regulation, Research Institute, Osaka International Cancer Institute, Osaka 541-8567, Osaka, Japan
| | - Shigeki Nanjo
- Department of Respiratory Medicine, Kanazawa University Hospital, Kanazawa 920-8641, Ishikawa, Japan; Division of Medical Oncology, Cancer Research Institute of Kanazawa University, Kanazawa 920-8641, Ishikawa, Japan
| | - Yo Niida
- Center for Clinical Genomics, Kanazawa Medical University Hospital, Uchinada 920-0293, Ishikawa, Japan; Division of Genomic Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan
| | - Yutaka Kondo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Aichi, Japan
| | - Shinichi Hashimoto
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Wakayama, Japan
| | - Erik Sahai
- Tumor Cell Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Seiji Yano
- Department of Respiratory Medicine, Kanazawa University Hospital, Kanazawa 920-8641, Ishikawa, Japan; Division of Medical Oncology, Cancer Research Institute of Kanazawa University, Kanazawa 920-8641, Ishikawa, Japan; Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Ishikawa, Japan
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Ishikawa, Japan
| | - Eishu Hirata
- Division of Tumor Cell Biology and Bioimaging, Cancer Research Institute of Kanazawa University, Kanazawa 920-1192, Ishikawa, Japan; Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Ishikawa, Japan.
| |
Collapse
|
32
|
Montalant A, Kiehn O, Perrier JF. Dopamine and noradrenaline activate spinal astrocyte endfeet via D1-like receptors. Eur J Neurosci 2024; 59:1278-1295. [PMID: 38052454 DOI: 10.1111/ejn.16205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 12/07/2023]
Abstract
Astrocytes, the most abundant glial cells in the central nervous system, respond to a wide variety of neurotransmitters binding to metabotropic receptors. Here, we investigated the intracellular calcium responses of spinal cord astrocytes to dopamine and noradrenaline, two catecholamines released by specific descending pathways. In a slice preparation from the spinal cord of neonatal mice, puff application of dopamine resulted in intracellular calcium responses that remained in the endfeet. Noradrenaline induced stronger responses that also started in the endfeet but spread to neighbouring compartments. The intracellular calcium responses were unaffected by blocking neuronal activity or inhibiting various neurotransmitter receptors, suggesting a direct effect of dopamine and noradrenaline on astrocytes. The intracellular calcium responses induced by noradrenaline and dopamine were inhibited by the D1 receptor antagonist SCH 23390. We assessed the functional consequences of these astrocytic responses by examining changes in arteriole diameter. Puff application of dopamine or noradrenaline resulted in vasoconstriction of spinal arterioles. However, blocking D1 receptors or manipulating astrocytic intracellular calcium levels did not abolish the vasoconstrictions, indicating that the observed intracellular calcium responses in astrocyte endfeet were not responsible for the vascular changes. Our findings demonstrate a compartmentalized response of spinal cord astrocytes to catecholamines and expand our understanding of astrocyte-neurotransmitter interactions and their potential roles in the physiology of the central nervous system.
Collapse
Affiliation(s)
- Alexia Montalant
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ole Kiehn
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jean-François Perrier
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
33
|
Musotto R, Wanderlingh U, D’Ascola A, Spatuzza M, Catania MV, De Pittà M, Pioggia G. Dynamics of astrocytes Ca 2+ signaling: a low-cost fluorescence customized system for 2D cultures. Front Cell Dev Biol 2024; 12:1320672. [PMID: 38322166 PMCID: PMC10844566 DOI: 10.3389/fcell.2024.1320672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
In an effort to help reduce the costs of fluorescence microscopy and expand the use of this valuable technique, we developed a low-cost platform capable of visualising and analysing the spatio-temporal dynamics of intracellular Ca2+ signalling in astrocytes. The created platform, consisting of a specially adapted fluorescence microscope and a data analysis procedure performed with Imagej Fiji software and custom scripts, allowed us to detect relative changes of intracellular Ca2+ ions in astrocytes. To demonstrate the usefulness of the workflow, we applied the methodology to several in vitro astrocyte preparations, specifically immortalised human astrocyte cells and wild-type mouse cells. To demonstrate the reliability of the procedure, analyses were conducted by stimulating astrocyte activity with the agonist dihydroxyphenylglycine (DHPG), alone or in the presence of the antagonist 2-methyl-6-phenylethyl-pyridine (MPEP).
Collapse
Affiliation(s)
- Rosa Musotto
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Messina, Italy
| | - Ulderico Wanderlingh
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Messina, Italy
| | - Angela D’Ascola
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, Messina, Italy
| | - Michela Spatuzza
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Catania, Italy
| | - Maria Vincenza Catania
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Catania, Italy
| | - Maurizio De Pittà
- Division of Clinical and Computational Neurosciences, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Basque Center for Applied Mathematics, Bilbao, Spain
- Department of Neurosciences, Faculty of Medicine, The University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Messina, Italy
| |
Collapse
|
34
|
Shigetomi E, Sakai K, Koizumi S. Extracellular ATP/adenosine dynamics in the brain and its role in health and disease. Front Cell Dev Biol 2024; 11:1343653. [PMID: 38304611 PMCID: PMC10830686 DOI: 10.3389/fcell.2023.1343653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/31/2023] [Indexed: 02/03/2024] Open
Abstract
Extracellular ATP and adenosine are neuromodulators that regulate numerous neuronal functions in the brain. Neuronal activity and brain insults such as ischemic and traumatic injury upregulate these neuromodulators, which exert their effects by activating purinergic receptors. In addition, extracellular ATP/adenosine signaling plays a pivotal role in the pathogenesis of neurological diseases. Virtually every cell type in the brain contributes to the elevation of ATP/adenosine, and various mechanisms underlying this increase have been proposed. Extracellular adenosine is thought to be mainly produced via the degradation of extracellular ATP. However, adenosine is also released from neurons and glia in the brain. Therefore, the regulation of extracellular ATP/adenosine in physiological and pathophysiological conditions is likely far more complex than previously thought. To elucidate the complex mechanisms that regulate extracellular ATP/adenosine levels, accurate methods of assessing their spatiotemporal dynamics are needed. Several novel techniques for acquiring spatiotemporal information on extracellular ATP/adenosine, including fluorescent sensors, have been developed and have started to reveal the mechanisms underlying the release, uptake and degradation of ATP/adenosine. Here, we review methods for analyzing extracellular ATP/adenosine dynamics as well as the current state of knowledge on the spatiotemporal dynamics of ATP/adenosine in the brain. We focus on the mechanisms used by neurons and glia to cooperatively produce the activity-dependent increase in ATP/adenosine and its physiological and pathophysiological significance in the brain.
Collapse
Affiliation(s)
- Eiji Shigetomi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
- Yamanashi GLIA Center, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Kent Sakai
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
- Yamanashi GLIA Center, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
- Yamanashi GLIA Center, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| |
Collapse
|
35
|
Wang J, Cheng P, Qu Y, Zhu G. Astrocytes and Memory: Implications for the Treatment of Memory-related Disorders. Curr Neuropharmacol 2024; 22:2217-2239. [PMID: 38288836 PMCID: PMC11337689 DOI: 10.2174/1570159x22666240128102039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/29/2023] [Indexed: 08/23/2024] Open
Abstract
Memory refers to the imprint accumulated in the brain by life experiences and represents the basis for humans to engage in advanced psychological activities such as thinking and imagination. Previously, research activities focused on memory have always targeted neurons. However, in addition to neurons, astrocytes are also involved in the encoding, consolidation, and extinction of memory. In particular, astrocytes are known to affect the recruitment and function of neurons at the level of local synapses and brain networks. Moreover, the involvement of astrocytes in memory and memory-related disorders, especially in Alzheimer's disease (AD) and post-traumatic stress disorder (PTSD), has been investigated extensively. In this review, we describe the unique contributions of astrocytes to synaptic plasticity and neuronal networks and discuss the role of astrocytes in different types of memory processing. In addition, we also explore the roles of astrocytes in the pathogenesis of memory-related disorders, such as AD, brain aging, PTSD and addiction, thus suggesting that targeting astrocytes may represent a potential strategy to treat memory-related neurological diseases. In conclusion, this review emphasizes that thinking from the perspective of astrocytes will provide new ideas for the diagnosis and therapy of memory-related neurological disorders.
Collapse
Affiliation(s)
- Juan Wang
- Key Laboratory of Xin’an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Ping Cheng
- Key Laboratory of Xin’an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yan Qu
- Key Laboratory of Xin’an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Guoqi Zhu
- Key Laboratory of Xin’an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
36
|
Miao H, Wei Y, Lee SG, Wu Z, Kaur J, Kim WJ. Glia-specific expression of neuropeptide receptor Lgr4 regulates development and adult physiology in Drosophila. J Neurosci Res 2024; 102:e25271. [PMID: 38284837 DOI: 10.1002/jnr.25271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 10/10/2023] [Accepted: 10/28/2023] [Indexed: 01/30/2024]
Abstract
Similar to the human brain, Drosophila glia may well be divided into several subtypes that each carries out specific functions. Glial GPCRs play key roles in crosstalk between neurons and glia. Drosophila Lgr4 (dLgr4) is a human relaxin receptor homolog involved in angiogenesis, cardiovascular regulation, collagen remodeling, and wound healing. A recent study suggests that ilp7 might be the ligand for Lgr4 and regulates escape behavior of Drosophila larvae. Here we demonstrate that Drosophila Lgr4 expression in glial cells, not neurons, is necessary for early development, adult behavior, and lifespan. Reducing the Lgr4 level in glial cells disrupts Drosophila development, while knocking down other LGR family members in glia has no impact. Adult-specific knockdown of Lgr4 in glia but not neurons reduce locomotion, male reproductive success, and animal longevity. The investigation of how glial expression of Lgr4 contributes to this behavioral alteration will increase our understanding of how insulin signaling via glia selectively modulates neuronal activity and behavior.
Collapse
Affiliation(s)
- Hongyu Miao
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, China
| | - Yanan Wei
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, China
| | - Seung Gee Lee
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Zekun Wu
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, China
| | - Jasdeep Kaur
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Woo Jae Kim
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, China
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
37
|
Zhang W, Yin J, Gao BY, Lu X, Duan YJ, Liu XY, Li MZ, Jiang S. Inhibition of astroglial hemichannels ameliorates infrasonic noise induced short-term learning and memory impairment. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2023; 19:23. [PMID: 38110991 PMCID: PMC10726613 DOI: 10.1186/s12993-023-00226-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/13/2023] [Indexed: 12/20/2023]
Abstract
As a kind of environmental noise, infrasonic noise has negative effects on various human organs. To date, research has shown that infrasound impairs cognitive function, especially the ability for learning and memory. Previously, we demonstrated that impaired learning and memory induced by infrasound was closely related with glia activation; however, the underlying mechanisms remain unclear. Connexin 43 hemichannels (Cx43 HCs), which are mainly expressed in hippocampal astrocytes, are activated under pathological conditions, lending support to the hypothesis that Cx43 HCs might function in the impaired learning and memory induced by infrasound. This study revealed that that blocking hippocampal Cx43 HCs or downregulating hippocampal Cx43 expression significantly alleviated impaired learning and memory induced by infrasound. We also observed that infrasound exposure led to the abundant release of glutamate and ATP through Cx43 HCs. In addition, the abundant release of glutamate and ATP depended on proinflammatory cytokines. Our finds suggested that the enhanced release of ATP and glutamate by astroglial Cx43 HCs may be involved in the learning and memory deficits caused by infrasound exposure.
Collapse
Affiliation(s)
- Wei Zhang
- Teaching and Evaluation Center of Air Force Medical University, Xi'an, 710032, China
| | - Jue Yin
- Department of Rehabilitation Medicine, The China-Japan Friendship Hospital, No.2 Ying Hua Yuan East Street, Beijing, 100029, People's Republic of China
| | - Bei-Yao Gao
- Department of Rehabilitation Medicine, The China-Japan Friendship Hospital, No.2 Ying Hua Yuan East Street, Beijing, 100029, People's Republic of China
| | - Xi Lu
- Department of Rehabilitation Medicine, The China-Japan Friendship Hospital, No.2 Ying Hua Yuan East Street, Beijing, 100029, People's Republic of China
| | - Ya-Jing Duan
- Department of Rehabilitation Medicine, The China-Japan Friendship Hospital, No.2 Ying Hua Yuan East Street, Beijing, 100029, People's Republic of China
| | - Xu-Yan Liu
- Department of Rehabilitation Medicine, The China-Japan Friendship Hospital, No.2 Ying Hua Yuan East Street, Beijing, 100029, People's Republic of China
| | - Ming-Zhen Li
- Department of Rehabilitation Medicine, The China-Japan Friendship Hospital, No.2 Ying Hua Yuan East Street, Beijing, 100029, People's Republic of China
| | - Shan Jiang
- Department of Rehabilitation Medicine, The China-Japan Friendship Hospital, No.2 Ying Hua Yuan East Street, Beijing, 100029, People's Republic of China.
| |
Collapse
|
38
|
Akter M, Hasan M, Ramkrishnan AS, Iqbal Z, Zheng X, Fu Z, Lei Z, Karim A, Li Y. Astrocyte and L-lactate in the anterior cingulate cortex modulate schema memory and neuronal mitochondrial biogenesis. eLife 2023; 12:e85751. [PMID: 37960975 PMCID: PMC10645423 DOI: 10.7554/elife.85751] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Astrocyte-derived L-lactate was shown to confer beneficial effects on synaptic plasticity and cognitive functions. However, how astrocytic Gi signaling in the anterior cingulate cortex (ACC) modulates L-lactate levels and schema memory is not clear. Here, using chemogenetic approach and well-established behavioral paradigm, we demonstrate that astrocytic Gi pathway activation in the ACC causes significant impairments in flavor-place paired associates (PAs) learning, schema formation, and PA memory retrieval in rats. It also impairs new PA learning even if a prior associative schema exists. These impairments are mediated by decreased L-lactate in the ACC due to astrocytic Gi activation. Concurrent exogenous L-lactate administration bilaterally into the ACC rescues these impairments. Furthermore, we show that the impaired schema memory formation is associated with a decreased neuronal mitochondrial biogenesis caused by decreased L-lactate level in the ACC upon astrocytic Gi activation. Our study also reveals that L-lactate-mediated mitochondrial biogenesis is dependent on monocarboxylate transporter 2 (MCT2) and NMDA receptor activity - discovering a previously unrecognized signaling role of L-lactate. These findings expand our understanding of the role of astrocytes and L-lactate in the brain functions.
Collapse
Affiliation(s)
- Mastura Akter
- Department of Neuroscience, City University of Hong KongHong Kong SARChina
- Department of Biomedical Sciences, City University of Hong KongHong Kong SARChina
| | - Mahadi Hasan
- Department of Neuroscience, City University of Hong KongHong Kong SARChina
- Department of Biomedical Sciences, City University of Hong KongHong Kong SARChina
| | - Aruna Surendran Ramkrishnan
- Department of Neuroscience, City University of Hong KongHong Kong SARChina
- Department of Biomedical Sciences, City University of Hong KongHong Kong SARChina
| | - Zafar Iqbal
- Department of Neuroscience, City University of Hong KongHong Kong SARChina
- Department of Biomedical Sciences, City University of Hong KongHong Kong SARChina
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of SciencesHong Kong SARChina
| | - Xianlin Zheng
- Department of Neuroscience, City University of Hong KongHong Kong SARChina
- Department of Biomedical Sciences, City University of Hong KongHong Kong SARChina
| | - Zhongqi Fu
- Department of Neuroscience, City University of Hong KongHong Kong SARChina
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of SciencesHong Kong SARChina
| | - Zhuogui Lei
- Department of Neuroscience, City University of Hong KongHong Kong SARChina
- Department of Biomedical Sciences, City University of Hong KongHong Kong SARChina
| | - Anwarul Karim
- Department of Neuroscience, City University of Hong KongHong Kong SARChina
| | - Ying Li
- Department of Neuroscience, City University of Hong KongHong Kong SARChina
- Department of Biomedical Sciences, City University of Hong KongHong Kong SARChina
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of SciencesHong Kong SARChina
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong KongHong Kong SARChina
| |
Collapse
|
39
|
Jin Z, Lakshmanan A, Zhang R, Tran TA, Rabut C, Dutka P, Duan M, Hurt RC, Malounda D, Yao Y, Shapiro MG. Ultrasonic reporters of calcium for deep tissue imaging of cellular signals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.09.566364. [PMID: 37986929 PMCID: PMC10659314 DOI: 10.1101/2023.11.09.566364] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Calcium imaging has enabled major biological discoveries. However, the scattering of light by tissue limits the use of standard fluorescent calcium indicators in living animals. To address this limitation, we introduce the first genetically encoded ultrasonic reporter of calcium (URoC). Based on a unique class of air-filled protein nanostructures called gas vesicles, we engineered URoC to produce elevated nonlinear ultrasound signal upon binding to calcium ions. With URoC expressed in mammalian cells, we demonstrate noninvasive ultrasound imaging of calcium signaling in vivo during drug-induced receptor activation. URoC brings the depth and resolution advantages of ultrasound to the in vivo imaging of dynamic cellular function and paves the way for acoustic biosensing of a broader variety of biological signals.
Collapse
|
40
|
Nanclares C, Noriega-Prieto JA, Labrada-Moncada FE, Cvetanovic M, Araque A, Kofuji P. Altered calcium signaling in Bergmann glia contributes to spinocerebellar ataxia type-1 in a mouse model of SCA1. Neurobiol Dis 2023; 187:106318. [PMID: 37802154 PMCID: PMC10624966 DOI: 10.1016/j.nbd.2023.106318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/08/2023] Open
Abstract
Spinocerebellar ataxia type 1 (SCA1) is a neurodegenerative disease caused by an abnormal expansion of glutamine (Q) encoding CAG repeats in the ATAXIN1 (ATXN1) gene and characterized by progressive cerebellar ataxia, dysarthria, and eventual deterioration of bulbar functions. SCA1 shows severe degeneration of cerebellar Purkinje cells (PCs) and activation of Bergmann glia (BG), a type of cerebellar astroglia closely associated with PCs. Combining electrophysiological recordings, calcium imaging techniques, and chemogenetic approaches, we have investigated the electrical intrinsic and synaptic properties of PCs and the physiological properties of BG in SCA1 mouse model expressing mutant ATXN1 only in PCs. PCs of SCA1 mice displayed lower spontaneous firing rate and larger slow afterhyperpolarization currents (sIAHP) than wildtype mice, whereas the properties of the synaptic inputs were unaffected. BG of SCA1 mice showed higher calcium hyperactivity and gliotransmission, manifested by higher frequency of NMDAR-mediated slow inward currents (SICs) in PC. Preventing the BG calcium hyperexcitability of SCA1 mice by loading BG with the calcium chelator BAPTA restored sIAHP and spontaneous firing rate of PCs to similar levels of wildtype mice. Moreover, mimicking the BG hyperactivity by activating BG expressing Gq-DREADDs in wildtype mice reproduced the SCA1 pathological phenotype of PCs, i.e., enhancement of sIAHP and decrease of spontaneous firing rate. These results indicate that the intrinsic electrical properties of PCs, but not their synaptic properties, were altered in SCA1 mice and that these alterations were associated with the hyperexcitability of BG. Moreover, preventing BG hyperexcitability in SCA1 mice and promoting BG hyperexcitability in wildtype mice prevented and mimicked, respectively, the pathological electrophysiological phenotype of PCs. Therefore, BG plays a relevant role in the dysfunction of the electrical intrinsic properties of PCs in SCA1 mice, suggesting that they may serve as potential targets for therapeutic approaches to treat the spinocerebellar ataxia type 1.
Collapse
Affiliation(s)
- Carmen Nanclares
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | - Marija Cvetanovic
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alfonso Araque
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Paulo Kofuji
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
41
|
Guidolin D, Tortorella C, Marcoli M, Cervetto C, De Caro R, Maura G, Agnati LF. Modulation of Neuron and Astrocyte Dopamine Receptors via Receptor-Receptor Interactions. Pharmaceuticals (Basel) 2023; 16:1427. [PMID: 37895898 PMCID: PMC10610355 DOI: 10.3390/ph16101427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
Dopamine neurotransmission plays critical roles in regulating complex cognitive and behavioral processes including reward, motivation, reinforcement learning, and movement. Dopamine receptors are classified into five subtypes, widely distributed across the brain, including regions responsible for motor functions and specific areas related to cognitive and emotional functions. Dopamine also acts on astrocytes, which express dopamine receptors as well. The discovery of direct receptor-receptor interactions, leading to the formation of multimeric receptor complexes at the cell membrane and providing the cell decoding apparatus with flexible dynamics in terms of recognition and signal transduction, has expanded the knowledge of the G-protein-coupled receptor-mediated signaling processes. The purpose of this review article is to provide an overview of currently identified receptor complexes containing dopamine receptors and of their modulatory action on dopamine-mediated signaling between neurons and between neurons and astrocytes. Pharmacological possibilities offered by targeting receptor complexes in terms of addressing neuropsychiatric disorders associated with altered dopamine signaling will also be briefly discussed.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Neuroscience, University of Padova, 35122 Padova, Italy; (C.T.); (R.D.C.)
| | - Cinzia Tortorella
- Department of Neuroscience, University of Padova, 35122 Padova, Italy; (C.T.); (R.D.C.)
| | - Manuela Marcoli
- Department of Pharmacy, University of Genova, 16126 Genova, Italy; (M.M.); (C.C.); (G.M.)
| | - Chiara Cervetto
- Department of Pharmacy, University of Genova, 16126 Genova, Italy; (M.M.); (C.C.); (G.M.)
| | - Raffaele De Caro
- Department of Neuroscience, University of Padova, 35122 Padova, Italy; (C.T.); (R.D.C.)
| | - Guido Maura
- Department of Pharmacy, University of Genova, 16126 Genova, Italy; (M.M.); (C.C.); (G.M.)
| | - Luigi F. Agnati
- Department of Biomedical, Metabolic Sciences and Neuroscience, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| |
Collapse
|
42
|
Brazhe A, Verisokin A, Verveyko D, Postnov D. Astrocytes: new evidence, new models, new roles. Biophys Rev 2023; 15:1303-1333. [PMID: 37975000 PMCID: PMC10643736 DOI: 10.1007/s12551-023-01145-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/08/2023] [Indexed: 11/19/2023] Open
Abstract
Astrocytes have been in the limelight of active research for about 3 decades now. Over this period, ideas about their function and role in the nervous system have evolved from simple assistance in energy supply and homeostasis maintenance to a complex informational and metabolic hub that integrates data on local neuronal activity, sensory and arousal context, and orchestrates many crucial processes in the brain. Rapid progress in experimental techniques and data analysis produces a growing body of data, which can be used as a foundation for formulation of new hypotheses, building new refined mathematical models, and ultimately should lead to a new level of understanding of the contribution of astrocytes to the cognitive tasks performed by the brain. Here, we highlight recent progress in astrocyte research, which we believe expands our understanding of how low-level signaling at a cellular level builds up to processes at the level of the whole brain and animal behavior. We start our review with revisiting data on the role of noradrenaline-mediated astrocytic signaling in locomotion, arousal, sensory integration, memory, and sleep. We then briefly review astrocyte contribution to the regulation of cerebral blood flow regulation, which is followed by a discussion of biophysical mechanisms underlying astrocyte effects on different brain processes. The experimental section is closed by an overview of recent experimental techniques available for modulation and visualization of astrocyte dynamics. We then evaluate how the new data can be potentially incorporated into the new mathematical models or where and how it already has been done. Finally, we discuss an interesting prospect that astrocytes may be key players in important processes such as the switching between sleep and wakefulness and the removal of toxic metabolites from the brain milieu.
Collapse
Affiliation(s)
- Alexey Brazhe
- Department of Biophysics, Biological Faculty, Lomonosov Moscow State University, Leninskie Gory, 1/24, Moscow, 119234 Russia
- Department of Molecular Neurobiology, Institute of Bioorganic Chemistry RAS, GSP-7, Miklukho-Maklay Str., 16/10, Moscow, 117997 Russia
| | - Andrey Verisokin
- Department of Theoretical Physics, Kursk State University, Radishcheva st., 33, Kursk, 305000 Russia
| | - Darya Verveyko
- Department of Theoretical Physics, Kursk State University, Radishcheva st., 33, Kursk, 305000 Russia
| | - Dmitry Postnov
- Department of Optics and Biophotonics, Saratov State University, Astrakhanskaya st., 83, Saratov, 410012 Russia
| |
Collapse
|
43
|
Coulter OR, Walker CD, Risher ML. Astrocyte-specific Ca 2+ activity: Mechanisms of action, experimental tools, and roles in ethanol-induced dysfunction. Biochem Cell Biol 2023; 101:410-421. [PMID: 36989534 DOI: 10.1139/bcb-2023-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
Astrocytes are a subtype of non-neuronal glial cells that reside in the central nervous system. Astrocytes have extensive peripheral astrocytic processes that ensheathe synapses to form the tripartite synapse. Through a multitude of pathways, astrocytes can influence synaptic development and structural maturation, respond to neuronal signals, and modulate synaptic transmission. Over the last decade, strong evidence has emerged demonstrating that astrocytes can influence behavioral outcomes in various animal models of cognition. However, the full extent of how astrocytes influence brain function is still being revealed. Astrocyte calcium (Ca2+) signaling has emerged as an important driver of astrocyte-neuronal communication allowing intricate crosstalk through mechanisms that are still not fully understood. Here, we will review the field's current understanding of astrocyte Ca2+ signaling and discuss the sophisticated state-of-the-art tools and approaches used to continue unraveling astrocytes' interesting role in brain function. Using the field of pre-clinical ethanol (EtOH) studies in the context of alcohol use disorder, we focus on how these novel approaches have helped to reveal an important role for astrocyte Ca2+ function in regulating EtOH consumption and how astrocyte Ca2+ dysfunction contributes to the cognitive deficits that emerge after EtOH exposure in a rodent model.
Collapse
Affiliation(s)
- O R Coulter
- Department of Biomedical Research, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - C D Walker
- Department of Biomedical Research, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
- Neurobiology Research Laboratory, Hershel 'Woody' Williams Veterans Affairs Medical Center, Huntington, WV 25704, USA
| | - M-L Risher
- Department of Biomedical Research, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
- Neurobiology Research Laboratory, Hershel 'Woody' Williams Veterans Affairs Medical Center, Huntington, WV 25704, USA
| |
Collapse
|
44
|
Roqué PJ, Barria A, Zhang X, Hashimoto JG, Costa LG, Guizzetti M. Synaptogenesis by Cholinergic Stimulation of Astrocytes. Neurochem Res 2023; 48:3212-3227. [PMID: 37402036 PMCID: PMC10493036 DOI: 10.1007/s11064-023-03979-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/31/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023]
Abstract
Astrocytes release numerous factors known to contribute to the process of synaptogenesis, yet knowledge about the signals that control their release is limited. We hypothesized that neuron-derived signals stimulate astrocytes, which respond to neurons through the modulation of astrocyte-released synaptogenic factors. Here we investigate the effect of cholinergic stimulation of astrocytes on synaptogenesis in co-cultured neurons. Using a culture system where primary rat astrocytes and primary rat neurons are first grown separately allowed us to independently manipulate astrocyte cholinergic signaling. Subsequent co-culture of pre-stimulated astrocytes with naïve neurons enabled us to assess how prior stimulation of astrocyte acetylcholine receptors uniquely modulates neuronal synapse formation. Pre-treatment of astrocytes with the acetylcholine receptor agonist carbachol increased the expression of synaptic proteins, the number of pre- and postsynaptic puncta, and the number of functional synapses in hippocampal neurons after 24 h in co-culture. Astrocyte secretion of the synaptogenic protein thrombospondin-1 increased after cholinergic stimulation and inhibition of the receptor for thrombospondins prevented the increase in neuronal synaptic structures. Thus, we identified a novel mechanism of neuron-astrocyte-neuron communication, where neuronal release of acetylcholine stimulates astrocytes to release synaptogenic proteins leading to increased synaptogenesis in neurons. This study provides new insights into the role of neurotransmitter receptors in developing astrocytes and into our understanding of the modulation of astrocyte-induced synaptogenesis.
Collapse
Affiliation(s)
- Pamela J Roqué
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Andrés Barria
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Xiaolu Zhang
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
- VA Portland Health Care System, Portland, OR, USA
| | - Joel G Hashimoto
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
- VA Portland Health Care System, Portland, OR, USA
| | - Lucio G Costa
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
- Department of Medicine & Surgery, University of Parma, Parma, Italy
| | - Marina Guizzetti
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA.
- VA Portland Health Care System, Portland, OR, USA.
| |
Collapse
|
45
|
Ozawa K, Nagao M, Konno A, Iwai Y, Vittani M, Kusk P, Mishima T, Hirai H, Nedergaard M, Hirase H. Astrocytic GPCR-Induced Ca 2+ Signaling Is Not Causally Related to Local Cerebral Blood Flow Changes. Int J Mol Sci 2023; 24:13590. [PMID: 37686396 PMCID: PMC10487464 DOI: 10.3390/ijms241713590] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/17/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Activation of Gq-type G protein-coupled receptors (GPCRs) gives rise to large cytosolic Ca2+ elevations in astrocytes. Previous in vitro and in vivo studies have indicated that astrocytic Ca2+ elevations are closely associated with diameter changes in the nearby blood vessels, which astrocytes enwrap with their endfeet. However, the causal relationship between astrocytic Ca2+ elevations and blood vessel diameter changes has been questioned, as mice with diminished astrocytic Ca2+ signaling show normal sensory hyperemia. We addressed this controversy by imaging cortical vasculature while optogenetically elevating astrocyte Ca2+ in a novel transgenic mouse line, expressing Opto-Gq-type GPCR Optoα1AR (Astro-Optoα1AR) in astrocytes. Blue light illumination on the surface of the somatosensory cortex induced Ca2+ elevations in cortical astrocytes and their endfeet in mice under anesthesia. Blood vessel diameter did not change significantly with Optoα1AR-induced Ca2+ elevations in astrocytes, while it was increased by forelimb stimulation. Next, we labeled blood plasma with red fluorescence using AAV8-P3-Alb-mScarlet in Astro-Optoα1AR mice. We were able to identify arterioles that display diameter changes in superficial areas of the somatosensory cortex through the thinned skull. Photo-stimulation of astrocytes in the cortical area did not result in noticeable changes in the arteriole diameters compared with their background strain C57BL/6. Together, compelling evidence for astrocytic Gq pathway-induced vasodiameter changes was not observed. Our results support the notion that short-term (<10 s) hyperemia is not mediated by GPCR-induced astrocytic Ca2+ signaling.
Collapse
Affiliation(s)
- Katsuya Ozawa
- Laboratory for Neuron-Glia Circuitry, RIKEN Center for Brain Science, Wako 351-0106, Saitama, Japan; (K.O.)
| | - Masaki Nagao
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, 1172 Copenhagen, Denmark
| | - Ayumu Konno
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Maebashi 371-8511, Gunma, Japan
- Viral Vector Core, Gunma University, Initiative for Advanced Research, Maebashi 371-8511, Gunma, Japan
| | - Youichi Iwai
- Laboratory for Neuron-Glia Circuitry, RIKEN Center for Brain Science, Wako 351-0106, Saitama, Japan; (K.O.)
| | - Marta Vittani
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, 1172 Copenhagen, Denmark
| | - Peter Kusk
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, 1172 Copenhagen, Denmark
| | - Tsuneko Mishima
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, 1172 Copenhagen, Denmark
| | - Hirokazu Hirai
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Maebashi 371-8511, Gunma, Japan
- Viral Vector Core, Gunma University, Initiative for Advanced Research, Maebashi 371-8511, Gunma, Japan
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, 1172 Copenhagen, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hajime Hirase
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, 1172 Copenhagen, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
46
|
Chen X, Gao R, Song Y, Xu T, Jin L, Zhang W, Chen Z, Wang H, Wu W, Zhang S, Zhang G, Zhang N, Chang L, Liu H, Li H, Wu Y. Astrocytic AT1R deficiency ameliorates Aβ-induced cognitive deficits and synaptotoxicity through β-arrestin2 signaling. Prog Neurobiol 2023; 228:102489. [PMID: 37355221 DOI: 10.1016/j.pneurobio.2023.102489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 06/20/2023] [Indexed: 06/26/2023]
Abstract
Alzheimer's disease (AD) seriously influences human health, and there is no effective treatment to prevent or cure AD. Recent studies have shown that angiotensin II type 1 receptor (AT1R) blockers significantly reduce the prevalence of AD, while the precise role and mechanism of AT1R in AD remain obscure. In this study, for the first time, we identified that astrocytic but not neuronal AT1R levels were significantly increased in AD model rats and found that astrocyte-specific knockout of AT1R significantly ameliorated amyloid β (Aβ)-induced cognitive deficits and synaptotoxicity. Pretreating astrocytes with an AT1R blocker also alleviated Aβ-induced synaptotoxicity in the coculture system of hippocampal neurons and astrocytes. Moreover, AT1R could directly bind to Aβ1-42 and activate the astrocytic β-arrestin2 pathway in a biased manner, and biased inhibition of the astrocytic AT1R/β-arrestin2 pathway relieved Aβ-induced neurotoxicity. Furthermore, we demonstrated that astrocytic AT1R/β-arrestin2 pathway-mediated synaptotoxicity was associated with the aggregation of autophagosomes, which triggered the disordered degradation of Aβ. Our findings reveal a novel molecular mechanism of astrocytic AT1R in Aβ-induced neurodegeneration and might contribute to establishing new targets for AD prevention and therapy.
Collapse
Affiliation(s)
- Xinyue Chen
- Beijing Key Laboratory of Neural Regeneration and Repair, Department of Anatomy, School of Basic Medical Sciences, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Ruiqi Gao
- Beijing Key Laboratory of Neural Regeneration and Repair, Department of Anatomy, School of Basic Medical Sciences, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Yizhi Song
- Beijing Key Laboratory of Neural Regeneration and Repair, Department of Anatomy, School of Basic Medical Sciences, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Tao Xu
- Beijing Key Laboratory of Neural Regeneration and Repair, Department of Anatomy, School of Basic Medical Sciences, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Liangyun Jin
- Electron Microscope Room of Central Laboratory, Capital Medical University, Beijing 100069, China
| | - Wanning Zhang
- Beijing Key Laboratory of Neural Regeneration and Repair, Department of Anatomy, School of Basic Medical Sciences, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Ziyan Chen
- Beijing Key Laboratory of Neural Regeneration and Repair, Department of Anatomy, School of Basic Medical Sciences, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Hongqi Wang
- Beijing Key Laboratory of Neural Regeneration and Repair, Department of Anatomy, School of Basic Medical Sciences, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Wenxing Wu
- Beijing Key Laboratory of Neural Regeneration and Repair, Department of Anatomy, School of Basic Medical Sciences, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Suli Zhang
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Guitao Zhang
- Beijing Key Laboratory of Neural Regeneration and Repair, Department of Anatomy, School of Basic Medical Sciences, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Ning Zhang
- Department of Neuropsychiatry and Behavioral Neurology and Clinical Psychology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Lirong Chang
- Beijing Key Laboratory of Neural Regeneration and Repair, Department of Anatomy, School of Basic Medical Sciences, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Huirong Liu
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Hui Li
- Beijing Key Laboratory of Neural Regeneration and Repair, Department of Anatomy, School of Basic Medical Sciences, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China.
| | - Yan Wu
- Beijing Key Laboratory of Neural Regeneration and Repair, Department of Anatomy, School of Basic Medical Sciences, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
47
|
Ravariu C. From Enzymatic Dopamine Biosensors to OECT Biosensors of Dopamine. BIOSENSORS 2023; 13:806. [PMID: 37622892 PMCID: PMC10452593 DOI: 10.3390/bios13080806] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
Neurotransmitters are an important category of substances used inside the nervous system, whose detection with biosensors has been seriously addressed in the last decades. Dopamine, a neurotransmitter from the catecholamine family, was recently discovered to have implications for cardiac arrest or muscle contractions. In addition to having many other neuro-psychiatric implications, dopamine can be detected in blood, urine, and sweat. This review highlights the importance of biosensors as influential tools for dopamine recognition. The first part of this article is related to an introduction to biosensors for neurotransmitters, with a focus on dopamine. The regular methods in their detection are expensive and require high expertise personnel. A major direction of evolution of these biosensors has expanded with the integration of active biological materials suitable for molecular recognition near electronic devices. Secondly, for dopamine in particular, the miniaturized biosensors offer excellent sensitivity and specificity and offer cheaper detection than conventional spectrometry, while their linear detection ranges from the last years fall exactly on the clinical intervals. Thirdly, the applications of novel nanomaterials and biomaterials to these biosensors are discussed. Older generations, metabolism-based or enzymatic biosensors, could not detect concentrations below the micro-molar range. But new generations of biosensors combine aptamer receptors and organic electrochemical transistors, OECTs, as transducers. They have pushed the detection limit to the pico-molar and even femto-molar ranges, which fully correspond to the usual ranges of clinical detection of human dopamine in body humors that cover 0.1 ÷ 10 nM. In addition, if ten years ago the use of natural dopamine receptors on cell membranes seemed impossible for biosensors, the actual technology allows co-integrate transistors and vesicles with natural receptors of dopamine, like G protein-coupled receptors. The technology is still complicated, but the uni-molecular detection selectivity is promising.
Collapse
Affiliation(s)
- Cristian Ravariu
- Biodevices and Nano-Electronics of Cell Group, Department of Electronic Devices Circuits and Architectures, Polytechnic University of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- EduSciArt SRL, Iovita 2, 050686 Bucharest, Romania
| |
Collapse
|
48
|
Ingiosi AM, Hayworth CR, Frank MG. Activation of Basal Forebrain Astrocytes Induces Wakefulness without Compensatory Changes in Sleep Drive. J Neurosci 2023; 43:5792-5809. [PMID: 37487739 PMCID: PMC10423050 DOI: 10.1523/jneurosci.0163-23.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/08/2023] [Accepted: 07/13/2023] [Indexed: 07/26/2023] Open
Abstract
Mammalian sleep is regulated by a homeostatic process that increases sleep drive and intensity as a function of prior wake time. Sleep homeostasis has traditionally been thought to be a product of neurons, but recent findings demonstrate that this process is also modulated by glial astrocytes. The precise role of astrocytes in the accumulation and discharge of sleep drive is unknown. We investigated this question by selectively activating basal forebrain (BF) astrocytes using designer receptors exclusively activated by designer drugs (DREADDs) in male and female mice. DREADD activation of the Gq-protein-coupled pathway in BF astrocytes produced long and continuous periods of wakefulness that paradoxically did not cause the expected homeostatic response to sleep loss (e.g., increases in sleep time or intensity). Further investigations showed that this was not because of indirect effects of the ligand that activated DREADDs. These findings suggest that the need for sleep is not only driven by wakefulness per se, but also by specific neuronal-glial circuits that are differentially activated in wakefulness.SIGNIFICANCE STATEMENT Sleep drive is controlled by a homeostatic process that increases sleep duration and intensity based on prior time spent awake. Non-neuronal brain cells (e.g., glial astrocytes) influence this homeostatic process, but their precise role is unclear. We used a genetic technique to activate astrocytes in the basal forebrain (BF) of mice, a brain region important for sleep and wake expression and sleep homeostasis. Astroglial activation induced prolonged wakefulness without the expected homeostatic increase in sleep drive (i.e., sleep duration and intensity). These findings indicate that our need to sleep is also driven by non-neuronal cells, and not only by time spent awake.
Collapse
Affiliation(s)
- Ashley M Ingiosi
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington 99202
| | - Christopher R Hayworth
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington 99202
| | - Marcos G Frank
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington 99202
- Gleason Institute for Neuroscience, Washington State University, Spokane, Washington 99202
- Sleep Performance and Research Center, Washington State University, Spokane, Washington, 99202
| |
Collapse
|
49
|
Ono G, Kobayakawa K, Saiwai H, Tamaru T, Iura H, Haruta Y, Kitade K, Iida K, Kawaguchi K, Matsumoto Y, Tsuda M, Tamura T, Ozato K, Inoue K, Konno DJ, Maeda T, Okada S, Nakashima Y. Macrophages play a leading role in determining the direction of astrocytic migration in spinal cord injury via ADP-P2Y1R axis. Sci Rep 2023; 13:11177. [PMID: 37429920 DOI: 10.1038/s41598-023-38301-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 07/06/2023] [Indexed: 07/12/2023] Open
Abstract
After spinal cord injury (SCI), inflammatory cells such as macrophages infiltrate the injured area, and astrocytes migrate, forming a glial scar around macrophages. The glial scar inhibits axonal regeneration, resulting in significant permanent disability. However, the mechanism through which glial scar-forming astrocytes migrate to the injury site has not been clarified. Here we show that migrating macrophages attract reactive astrocytes toward the center of the lesion after SCI. Chimeric mice with bone marrow lacking IRF8, which controls macrophage centripetal migration after SCI, showed widely scattered macrophages in the injured spinal cord with the formation of a huge glial scar around the macrophages. To determine whether astrocytes or macrophages play a leading role in determining the directions of migration, we generated chimeric mice with reactive astrocyte-specific Socs3-/- mice, which showed enhanced astrocyte migration, and bone marrow from IRF8-/- mice. In this mouse model, macrophages were widely scattered, and a huge glial scar was formed around the macrophages as in wild-type mice that were transplanted with IRF8-/- bone marrow. In addition, we revealed that macrophage-secreted ATP-derived ADP attracts astrocytes via the P2Y1 receptor. Our findings revealed a mechanism through which migrating macrophages attract astrocytes and affect the pathophysiology and outcome after SCI.
Collapse
Affiliation(s)
- Gentaro Ono
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kazu Kobayakawa
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Hirokazu Saiwai
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tetsuya Tamaru
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hirotaka Iura
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yohei Haruta
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kazuki Kitade
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Keiichiro Iida
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kenichi Kawaguchi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshihiro Matsumoto
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Makoto Tsuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Kyushu University Institute for Advanced Study, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-shi, Fukuoka, 819-0395, Japan
| | - Tomohiko Tamura
- Department of Immunology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Keiko Ozato
- Program in Genomics of Differentiation, Section on Molecular Genetics of Immunity, Division of Developmental Biology, NICHD, National Institutes of Health, Building 6A, Room 2A01, 6 Center Drive, Bethesda, MD, 20892, USA
| | - Kazuhide Inoue
- Kyushu University Institute for Advanced Study, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-shi, Fukuoka, 819-0395, Japan
- Greenpharma Research Center for System Drug Discovery, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Dai-Jiro Konno
- Department of Energy and Materials, Faculty of Science and Engineering, Kindai University, Osaka, 577-8502, Japan
| | - Takeshi Maeda
- Department of Orthopaedic Surgery, Spinal Injuries Center, 550-4 Igisu, Iizuka, Fukuoka, 820-8508, Japan
| | - Seiji Okada
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Yasuharu Nakashima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
50
|
Lin J, Cheng X, Wang H, Du L, Li X, Zhao G, Xie C. Activation of astrocytes in the basal forebrain in mice facilitates isoflurane-induced loss of consciousness and prolongs recovery. BMC Anesthesiol 2023; 23:213. [PMID: 37340348 DOI: 10.1186/s12871-023-02166-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 06/06/2023] [Indexed: 06/22/2023] Open
Abstract
OBJECTIVES General anesthesia results in a state of unconsciousness that is similar to sleep. In recent years, increasing evidence has reported that astrocytes play a crucial role in regulating sleep. However, whether astrocytes are involved in general anesthesia is unknown. METHODS In the present study, the designer receptors exclusively activated by designer drugs (DREADDs) approach was utilized to specifically activate astrocytes in the basal forebrain (BF) and observed its effect on isoflurane anesthesia. One the other side, L-α-aminoadipic acid was used to selectively inhibit astrocytes in the BF and investigated its influence on isoflurane-induced hypnotic effect. During the anesthesia experiment, cortical electroencephalography (EEG) signals were recorded as well. RESULTS The chemogenetic activation group had a significantly shorter isoflurane induction time, longer recovery time, and higher delta power of EEG during anesthesia maintenance and recovery periods than the control group. Inhibition of astrocytes in the BF delayed isoflurane-induced loss of consciousness, promoted recovery, decreased delta power and increased beta and gamma power during maintenance and recovery periods. CONCLUSIONS The present study suggests that astrocytes in the BF region are involved in isoflurane anesthesia and may be a potential target for regulating the consciousness state of anesthesia.
Collapse
Affiliation(s)
- Jialing Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou City, 510120, People's Republic of China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province, 510120, People's Republic of China
| | - Xuefeng Cheng
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou City, 510120, People's Republic of China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province, 510120, People's Republic of China
| | - Haoyuan Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou City, 510120, People's Republic of China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province, 510120, People's Republic of China
| | - Lin Du
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou City, 510120, People's Republic of China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province, 510120, People's Republic of China
| | - Xiangyu Li
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou City, 510120, People's Republic of China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province, 510120, People's Republic of China
| | - Gaofeng Zhao
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou City, 510120, People's Republic of China.
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province, 510120, People's Republic of China.
| | - Chuangbo Xie
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou City, 510120, People's Republic of China.
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province, 510120, People's Republic of China.
| |
Collapse
|