1
|
N'Diaye M, Ducourneau EG, Bakoyiannis I, Potier M, Lafenetre P, Ferreira G. Obesogenic diet induces sex-specific alterations of contextual fear memory and associated hippocampal activity in mice. Cereb Cortex 2024; 34:bhae254. [PMID: 38934712 DOI: 10.1093/cercor/bhae254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
In addition to metabolic and cardiovascular disorders, obesity is associated with cognitive deficits in humans and animal models. We have previously shown that obesogenic high-fat and sugar diet intake during adolescence (adoHFSD) impairs hippocampus (HPC)-dependent memory in rodents. These results were obtained in males only and it remains to evaluate whether adoHFSD has similar effect in females. Therefore, here, we investigated the effects of adoHFSD consumption on HPC-dependent contextual fear memory and associated brain activation in male and female mice. Exposure to adoHFSD increased fat mass accumulation and glucose levels in both males and females but impaired contextual fear memory only in males. Compared with females, contextual fear conditioning induced higher neuronal activation in the dorsal and ventral HPC (CA1 and CA3 subfields) as well as in the medial prefrontal cortex in males. Also, adoHFSD-fed males showed enhanced c-Fos expression in the dorsal HPC, particularly in the dentate gyrus, and in the basolateral amygdala compared with the other groups. Finally, chemogenetic inactivation of the dorsal HPC rescued adoHFSD-induced memory deficits in males. Our results suggest that males are more vulnerable to the effects of adoHFSD on HPC-dependent aversive memory than females, due to overactivation of the dorsal HPC.
Collapse
Affiliation(s)
- Matéo N'Diaye
- NutriNeuro Lab, FoodCircus Team, Université de Bordeaux, UMR 1286 INRAE, Bordeaux INP, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Eva-Gunnel Ducourneau
- NutriNeuro Lab, FoodCircus Team, Université de Bordeaux, UMR 1286 INRAE, Bordeaux INP, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Ioannis Bakoyiannis
- NutriNeuro Lab, FoodCircus Team, Université de Bordeaux, UMR 1286 INRAE, Bordeaux INP, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Mylène Potier
- NutriNeuro Lab, FoodCircus Team, Université de Bordeaux, UMR 1286 INRAE, Bordeaux INP, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Pauline Lafenetre
- NutriNeuro Lab, FoodCircus Team, Université de Bordeaux, UMR 1286 INRAE, Bordeaux INP, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Guillaume Ferreira
- NutriNeuro Lab, FoodCircus Team, Université de Bordeaux, UMR 1286 INRAE, Bordeaux INP, 146 rue Léo Saignat, 33076 Bordeaux, France
| |
Collapse
|
2
|
Debler RA, Madison CA, Hillbrick L, Gallegos P, Safe S, Chapkin RS, Eitan S. Selective aryl hydrocarbon receptor modulators can act as antidepressants in obese female mice. J Affect Disord 2023; 333:409-419. [PMID: 37084978 PMCID: PMC10561895 DOI: 10.1016/j.jad.2023.04.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/27/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
BACKGROUND Obese females are more likely to suffer from depression and are also more likely to be resistant to current medications. This study examined the potential antidepressant-like effects of 1,4-dihydroxy-2-napthoic acid (DHNA), a selective aryl hydrocarbon receptor modulator (SAhRM), in obese female mice. METHODS Obesity was established by feeding C57BL/6N female mice a high fat diet (HFD) for 9-10 weeks. Subsequently, mice were subjected to unpredictable chronic mild stress (UCMS) or remained unstressed. Daily administration of vehicle or 20 mg/kg DHNA began three weeks prior or on the third week of UCMS. Mice were examined for depression-like behaviors (sucrose preference, forced swim test (FST), splash and tape groom tests), anxiety (open-field test, light/dark test, novelty-induced hypophagia), and cognition (object location recognition, novel object recognition, Morris water maze). RESULTS UCMS did not alter, and DHNA slightly increased, weight gain in HFD-fed females. HFD decreased sucrose preference, increased FST immobility time, but did not alter splash and tape tests' grooming time. UCMS did not have additional effects on sucrose preference. UCMS further increased FST immobility time and decreased splash and tape tests' grooming time; these effects were prevented and reversed by DHNA treatment. HFD did not affect behaviors in the cognitive tests. UCMS impaired spatial learning; this effect was not prevented nor reversed by DHNA. CONCLUSIONS DHNA protected against UCMS-induced depression-like behaviors in HFD-fed female mice. DHNA neither improved nor worsened UCMS-induced impairment of spatial learning. Our findings indicate that DHNA has high potential to act as an antidepressant in obese females.
Collapse
Affiliation(s)
- Roanna A Debler
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA
| | - Caitlin A Madison
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA
| | - Lauren Hillbrick
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA
| | - Paula Gallegos
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466, USA
| | - Robert S Chapkin
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Shoshana Eitan
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA.
| |
Collapse
|
3
|
Nota MH, Nicolas S, O’Leary OF, Nolan YM. Outrunning a bad diet: interactions between exercise and a Western-style diet for adolescent mental health, metabolism and microbes. Neurosci Biobehav Rev 2023; 149:105147. [PMID: 36990371 DOI: 10.1016/j.neubiorev.2023.105147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
Adolescence is a period of biological, psychological and social changes, and the peak time for the emergence of mental health problems. During this life stage, brain plasticity including hippocampal neurogenesis is increased, which is crucial for cognitive functions and regulation of emotional responses. The hippocampus is especially susceptible to environmental and lifestyle influences, mediated by changes in physiological systems, resulting in enhanced brain plasticity but also an elevated risk for developing mental health problems. Indeed, adolescence is accompanied by increased activation of the maturing hypothalamic-pituitary-adrenal axis, sensitivity to metabolic changes due to increased nutritional needs and hormonal changes, and gut microbiota maturation. Importantly, dietary habits and levels of physical activity significantly impact these systems. In this review, the interactions between exercise and Western-style diets, which are high in fat and sugar, on adolescent stress susceptibility, metabolism and the gut microbiota are explored. We provide an overview of current knowledge on implications of these interactions for hippocampal function and adolescent mental health, and speculate on potential mechanisms which require further investigation.
Collapse
|
4
|
Guzzetta KE, Cryan JF, O’Leary OF. Microbiota-Gut-Brain Axis Regulation of Adult Hippocampal Neurogenesis. Brain Plast 2022; 8:97-119. [PMID: 36448039 PMCID: PMC9661352 DOI: 10.3233/bpl-220141] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2022] [Indexed: 11/15/2022] Open
Abstract
The birth, maturation, and integration of new neurons in the adult hippocampus regulates specific learning and memory processes, responses to stress, and antidepressant treatment efficacy. This process of adult hippocampal neurogenesis is sensitive to environmental stimuli, including peripheral signals from certain cytokines, hormones, and metabolites, which can promote or hinder the production and survival of new hippocampal neurons. The trillions of microorganisms resident to the gastrointestinal tract, collectively known as the gut microbiota, also demonstrate the ability to modulate adult hippocampal neurogenesis. In doing so, the microbiota-gut-brain axis can influence brain functions regulated by adult hippocampal neurogenesis. Unlike the hippocampus, the gut microbiota is highly accessible to direct interventions, such as prebiotics, probiotics, and antibiotics, and can be manipulated by lifestyle choices including diet. Therefore, understanding the pathways by which the gut microbiota shapes hippocampal neurogenesis may reveal novel targets for non-invasive therapeutics to treat disorders in which alterations in hippocampal neurogenesis have been implicated. This review first outlines the factors which influence both the gut microbiome and adult hippocampal neurogenesis, with cognizance that these effects might happen either independently or due to microbiota-driven mechanisms. We then highlight approaches for investigating the regulation of adult hippocampal neurogenesis by the microbiota-gut-brain axis. Finally, we summarize the current evidence demonstrating the gut microbiota's ability to influence adult hippocampal neurogenesis, including mechanisms driven through immune pathways, microbial metabolites, endocrine signalling, and the nervous system, and postulate implications for these effects in disease onset and treatment.
Collapse
Affiliation(s)
- Katherine E. Guzzetta
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Olivia F. O’Leary
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
5
|
Hernández-Ramírez S, Salcedo-Tello P, Osorio-Gómez D, Bermúdez-Rattoni F, Pacheco-López G, Ferreira G, Lafenetre P, Guzmán-Ramos KR. Voluntary physical activity improves spatial and recognition memory deficits induced by post-weaning chronic exposure to a high-fat diet. Physiol Behav 2022; 254:113910. [PMID: 35820628 DOI: 10.1016/j.physbeh.2022.113910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/02/2022] [Accepted: 07/08/2022] [Indexed: 11/19/2022]
Abstract
Childhood and adolescent exposure to obesogenic environments has contributed to the development of several health disorders, including neurocognitive impairment. Adolescence is a critical neurodevelopmental window highly influenced by environmental factors that affect brain function until adulthood. Post-weaning chronic exposure to a high-fat diet (HFD) adversely affects memory performance; physical activity is one approach to coping with these dysfunctions. Previous studies indicate that voluntary exercise prevents HFD's detrimental effects on memory; however, it remains to evaluate whether it has a remedial/therapeutical effect when introduced after a long-term HFD exposure. This study was conducted on a diet-induced obesity mice model over six months. After three months of HFD exposure (without interrupting the diet) access to voluntary physical activity was provided. HFD produced weight gain, increased adiposity, and impaired glucose tolerance. Voluntary physical exercise ameliorated glucose tolerance and halted weight gain and fat accumulation. Additionally, physical activity mitigated HFD-induced spatial and recognition memory impairments. Our data indicate that voluntary physical exercise starting after several months of periadolescent HFD exposure reverses metabolic and cognitive alterations demonstrating that voluntary exercise, in addition to its known preventive effect, also has a restorative impact on metabolism and cognition dysfunctions associated with obesity.
Collapse
Affiliation(s)
- Susana Hernández-Ramírez
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana (UAM), Av. de las Garzas No. 10, Lerma de Villada, Estado de México, C.P. 52005, Mexico
| | - Pamela Salcedo-Tello
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud. Universidad Autónoma Metropolitana (UAM), Unidad Lerma. Av. de las Garzas No. 10, Col. el Panteón, Lerma de Villada, Estado de México, C.P. 52005, Mexico
| | - Daniel Osorio-Gómez
- División de Neurociencias. Instituto de Fisiología Celular. Universidad Nacional Autónoma de México (UNAM). Circuito Exterior, Ciudad Universitaria, 04510 Mexico City
| | - Federico Bermúdez-Rattoni
- División de Neurociencias. Instituto de Fisiología Celular. Universidad Nacional Autónoma de México (UNAM). Circuito Exterior, Ciudad Universitaria, 04510 Mexico City
| | - Gustavo Pacheco-López
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud. Universidad Autónoma Metropolitana (UAM), Unidad Lerma. Av. de las Garzas No. 10, Col. el Panteón, Lerma de Villada, Estado de México, C.P. 52005, Mexico
| | - Guillaume Ferreira
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro Laboratory, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Pauline Lafenetre
- Université de Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
| | - Kioko R Guzmán-Ramos
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud. Universidad Autónoma Metropolitana (UAM), Unidad Lerma. Av. de las Garzas No. 10, Col. el Panteón, Lerma de Villada, Estado de México, C.P. 52005, Mexico.
| |
Collapse
|
6
|
Melatonin treatment improves cognitive deficits by altering inflammatory and neurotrophic factors in the hippocampus of obese mice. Physiol Behav 2022; 254:113919. [PMID: 35858673 DOI: 10.1016/j.physbeh.2022.113919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/09/2022] [Accepted: 07/15/2022] [Indexed: 01/10/2023]
Abstract
Overweight and obesity are associated with an increased risk of developing dementia and cognitive deficits. Neuroinflammation is one of the most important mechanisms behind cognitive impairment in obese patients. In recent years, the neuroendocrine hormone melatonin has been suggested to have therapeutic effects for memory decline in several neuropsychiatric and neurological conditions. However, the effects of melatonin on cognitive function under obesity conditions still need to be clarified. The purpose of this study was to determine whether melatonin treatment can improve cognitive impairment in obese mice. To this end, male C57BL6 mice were treated with a high-fat diet (HFD) for 20 weeks to induce obesity. The animal received melatonin for 8 weeks. Cognitive functions were evaluated using the Y maze, object recognition test, and the Morris water maze. We measured inflammatory cytokines including tumor necrosis factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-17A, and brain-derived neurotrophic factor (BDNF) in the hippocampus of obese mice. Our results show that HFD-induced obesity significantly impaired working, spatial and recognition memory by increasing IFN-γ and IL-17A and decreasing BDNF levels in the hippocampus of mice. On the other hand, melatonin treatment effectively improved all cognitive impairments and reduced TNF-α, IFN-γ, and IL-17A and elevated BDNF levels in the hippocampus of obese mice. Taken together, this study suggests that melatonin treatment could have a beneficial role in the treatment of cognitive impairment in obesity.
Collapse
|
7
|
Fabianová K, Babeľová J, Fabian D, Popovičová A, Martončíková M, Raček A, Račeková E. Maternal High-Energy Diet during Pregnancy and Lactation Impairs Neurogenesis and Alters the Behavior of Adult Offspring in a Phenotype-Dependent Manner. Int J Mol Sci 2022; 23:ijms23105564. [PMID: 35628378 PMCID: PMC9146615 DOI: 10.3390/ijms23105564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 11/30/2022] Open
Abstract
Obesity is one of the biggest and most costly health challenges the modern world encounters. Substantial evidence suggests that the risk of metabolic syndrome or obesity formation may be affected at a very early stage of development, in particular through fetal and/or neonatal overfeeding. Outcomes from epidemiological studies indicate that maternal nutrition during pregnancy and lactation has a profound impact on adult neurogenesis in the offspring. In the present study, an intergenerational dietary model employing overfeeding of experimental mice during prenatal and early postnatal development was applied to acquire mice with various body conditions. We investigated the impact of the maternal high-energy diet during pregnancy and lactation on adult neurogenesis in the olfactory neurogenic region involving the subventricular zone (SVZ) and the rostral migratory stream (RMS) and some behavioral tasks including memory, anxiety and nociception. Our findings show that a maternal high-energy diet administered during pregnancy and lactation modifies proliferation and differentiation, and induced degeneration of cells in the SVZ/RMS of offspring, but only in mice where extreme phenotype, such as significant overweight/adiposity or obesity is manifested. Thereafter, a maternal high-energy diet enhances anxiety-related behavior in offspring regardless of its body condition and impairs learning and memory in offspring with an extreme phenotype.
Collapse
Affiliation(s)
- Kamila Fabianová
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, 040 01 Košice, Slovakia; (A.P.); (M.M.); (A.R.); (E.R.)
- Correspondence:
| | - Janka Babeľová
- Centre of Biosciences, Institute of Animal Physiology, Slovak Academy of Sciences, Šoltésovej 4-6, 040 01 Košice, Slovakia; (J.B.); (D.F.)
| | - Dušan Fabian
- Centre of Biosciences, Institute of Animal Physiology, Slovak Academy of Sciences, Šoltésovej 4-6, 040 01 Košice, Slovakia; (J.B.); (D.F.)
| | - Alexandra Popovičová
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, 040 01 Košice, Slovakia; (A.P.); (M.M.); (A.R.); (E.R.)
| | - Marcela Martončíková
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, 040 01 Košice, Slovakia; (A.P.); (M.M.); (A.R.); (E.R.)
| | - Adam Raček
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, 040 01 Košice, Slovakia; (A.P.); (M.M.); (A.R.); (E.R.)
| | - Enikő Račeková
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, 040 01 Košice, Slovakia; (A.P.); (M.M.); (A.R.); (E.R.)
| |
Collapse
|
8
|
Senko AN, Overall RW, Silhavy J, Mlejnek P, Malínská H, Hüttl M, Marková I, Fabel KS, Lu L, Stuchlik A, Williams RW, Pravenec M, Kempermann G. Systems genetics in the rat HXB/BXH family identifies Tti2 as a pleiotropic quantitative trait gene for adult hippocampal neurogenesis and serum glucose. PLoS Genet 2022; 18:e1009638. [PMID: 35377872 PMCID: PMC9060359 DOI: 10.1371/journal.pgen.1009638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 05/02/2022] [Accepted: 03/07/2022] [Indexed: 11/19/2022] Open
Abstract
Neurogenesis in the adult hippocampus contributes to learning and memory in the healthy brain but is dysregulated in metabolic and neurodegenerative diseases. The molecular relationships between neural stem cell activity, adult neurogenesis, and global metabolism are largely unknown. Here we applied unbiased systems genetics methods to quantify genetic covariation among adult neurogenesis and metabolic phenotypes in peripheral tissues of a genetically diverse family of rat strains, derived from a cross between the spontaneously hypertensive (SHR/OlaIpcv) strain and Brown Norway (BN-Lx/Cub). The HXB/BXH family is a very well established model to dissect genetic variants that modulate metabolic and cardiovascular diseases and we have accumulated deep phenome and transcriptome data in a FAIR-compliant resource for systematic and integrative analyses. Here we measured rates of precursor cell proliferation, survival of new neurons, and gene expression in the hippocampus of the entire HXB/BXH family, including both parents. These data were combined with published metabolic phenotypes to detect a neurometabolic quantitative trait locus (QTL) for serum glucose and neuronal survival on Chromosome 16: 62.1-66.3 Mb. We subsequently fine-mapped the key phenotype to a locus that includes the Telo2-interacting protein 2 gene (Tti2)-a chaperone that modulates the activity and stability of PIKK kinases. To verify the hypothesis that differences in neurogenesis and glucose levels are caused by a polymorphism in Tti2, we generated a targeted frameshift mutation on the SHR/OlaIpcv background. Heterozygous SHR-Tti2+/- mutants had lower rates of hippocampal neurogenesis and hallmarks of dysglycemia compared to wild-type littermates. Our findings highlight Tti2 as a causal genetic link between glucose metabolism and structural brain plasticity. In humans, more than 800 genomic variants are linked to TTI2 expression, seven of which have associations to protein and blood stem cell factor concentrations, blood pressure and frontotemporal dementia.
Collapse
Affiliation(s)
- Anna N. Senko
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Germany
- CRTD–Center for Regenerative Therapies Dresden, Technische Universität Dresden, Germany
| | - Rupert W. Overall
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Germany
- CRTD–Center for Regenerative Therapies Dresden, Technische Universität Dresden, Germany
| | - Jan Silhavy
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Mlejnek
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Malínská
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Martina Hüttl
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Irena Marková
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Klaus S. Fabel
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Germany
- CRTD–Center for Regenerative Therapies Dresden, Technische Universität Dresden, Germany
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Ales Stuchlik
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Robert W. Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Michal Pravenec
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Gerd Kempermann
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Germany
- CRTD–Center for Regenerative Therapies Dresden, Technische Universität Dresden, Germany
| |
Collapse
|
9
|
Salas-Venegas V, Flores-Torres RP, Rodríguez-Cortés YM, Rodríguez-Retana D, Ramírez-Carreto RJ, Concepción-Carrillo LE, Pérez-Flores LJ, Alarcón-Aguilar A, López-Díazguerrero NE, Gómez-González B, Chavarría A, Konigsberg M. The Obese Brain: Mechanisms of Systemic and Local Inflammation, and Interventions to Reverse the Cognitive Deficit. Front Integr Neurosci 2022; 16:798995. [PMID: 35422689 PMCID: PMC9002268 DOI: 10.3389/fnint.2022.798995] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Overweight and obesity are now considered a worldwide pandemic and a growing public health problem with severe economic and social consequences. Adipose tissue is an organ with neuroimmune-endocrine functions, which participates in homeostasis. So, adipocyte hypertrophy and hyperplasia induce a state of chronic inflammation that causes changes in the brain and induce neuroinflammation. Studies with obese animal models and obese patients have shown a relationship between diet and cognitive decline, especially working memory and learning deficiencies. Here we analyze how obesity-related peripheral inflammation can affect central nervous system physiology, generating neuroinflammation. Given that the blood-brain barrier is an interface between the periphery and the central nervous system, its altered physiology in obesity may mediate the consequences on various cognitive processes. Finally, several interventions, and the use of natural compounds and exercise to prevent the adverse effects of obesity in the brain are also discussed.
Collapse
Affiliation(s)
- Verónica Salas-Venegas
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana - Unidad Iztapalapa, Mexico City, Mexico
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud (DCBS), Universidad Autónoma Metropolitana Iztapalapa, CDMX, Mexico City, Mexico
| | - Rosa Pamela Flores-Torres
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana - Unidad Iztapalapa, Mexico City, Mexico
- Departamento de Biología de la Reproducción, DCBS, Universidad Autónoma Metropolitana Iztapalapa, Ciudad de México (CDMX), Mexico City, Mexico
| | - Yesica María Rodríguez-Cortés
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Diego Rodríguez-Retana
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Ricardo Jair Ramírez-Carreto
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Luis Edgar Concepción-Carrillo
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Laura Josefina Pérez-Flores
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud (DCBS), Universidad Autónoma Metropolitana Iztapalapa, CDMX, Mexico City, Mexico
| | - Adriana Alarcón-Aguilar
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud (DCBS), Universidad Autónoma Metropolitana Iztapalapa, CDMX, Mexico City, Mexico
| | - Norma Edith López-Díazguerrero
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud (DCBS), Universidad Autónoma Metropolitana Iztapalapa, CDMX, Mexico City, Mexico
| | - Beatriz Gómez-González
- Departamento de Biología de la Reproducción, DCBS, Universidad Autónoma Metropolitana Iztapalapa, Ciudad de México (CDMX), Mexico City, Mexico
| | - Anahí Chavarría
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Mina Konigsberg
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud (DCBS), Universidad Autónoma Metropolitana Iztapalapa, CDMX, Mexico City, Mexico
- *Correspondence: Mina Konigsberg,
| |
Collapse
|
10
|
Winberg J, Rentz J, Sugamori K, Swardfager W, Mitchell J. Sex Differences in Metabolic and Behavioral Responses to Exercise but Not Exogenous Osteocalcin Treatment in Mice Fed a High Fat Diet. Front Physiol 2022; 13:831056. [PMID: 35309065 PMCID: PMC8924498 DOI: 10.3389/fphys.2022.831056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/07/2022] [Indexed: 11/16/2022] Open
Abstract
Background Exercise helps improve glucose handling in diabetes and has been shown to improve mood and cognition in other conditions. Osteocalcin, a protein produced by bone osteoblasts, was reported to have endocrine actions to improve both metabolism and also improve age-related cognitive deficits in mice. Methods This study was designed to compare the effects of daily treadmill running exercise with injection of osteocalcin in high fat diet (HFD) induced diabetes in male and female C57BL/6J mice. Following established glucose intolerance and treatment for 8 weeks, mice were assessed for anxiety on an elevated plus maze, motivation by tail suspension test and cognition and memory in a puzzle box. Endogenous osteocalcin was measured by ELISA. Results Mice on HFD had high weight gain, glucose intolerance and increased white fat. Exercise increased circulating osteocalcin levels in female mice but decreased them in male mice. Exercise also decreased weight gain and improved glucose tolerance in female but not male mice; however, treatment with osteocalcin made no metabolic improvements in either males or females. HFD induced anxiety only in female mice and this was not improved by osteocalcin. Exercise induced anxiety only in male mice. HFD also increased depressive-like behavior in both sexes, and this was improved by either exercise or osteocalcin treatment. Cognitive deficits were seen in both male and female mice on HFD. Exercise improved cognitive performance in female but not male mice, while osteocalcin treatment improved cognitive performance in both sexes. Conclusion There were sex differences in the effects of exercise on endogenous osteocalcin regulation that correlated with improvements in cognitive but not metabolic outcomes. Exogenous osteocalcin did not improve metabolism but was effective in improving HFD-induced cognitive deficits. Sex is an important variable in hormonal and cognitive responses to exercise in diabetes.
Collapse
Affiliation(s)
- Jordan Winberg
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Jesse Rentz
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Kim Sugamori
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Walter Swardfager
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
- *Correspondence: Walter Swardfager,
| | - Jane Mitchell
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Villarreal-Silva EE, González-Navarro AR, Salazar-Ybarra RA, Quiroga-García O, Cruz-Elizondo MADJ, García-García A, Rodríguez-Rocha H, Morales-Gómez JA, Quiroga-Garza A, Elizondo-Omaña RE, de León ÁRMP, Guzmán-López S. Aged rats learn Morris Water maze using non-spatial search strategies evidenced by a parameter-based algorithm. Transl Neurosci 2022; 13:134-144. [PMID: 35855084 PMCID: PMC9250324 DOI: 10.1515/tnsci-2022-0221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/15/2022] Open
Abstract
Spatial learning and memory are used by all individuals who need to move in a space. Morris water maze (MWM) is an accepted method for its evaluation in murine models and has many protocols, ranging from the classic parameters of latency, distance, and number of crossings to the platform zone, to other more complex methods involving computerized trajectory analysis. Algorithm-based SS analysis is an alternative that enriches traditional classic parameters. We developed a non-computerized parameter-based Search Strategy Algorithm (SSA), to classify strategies and detect changes in spatial memory and learning. For this, our algorithm was validated using young and aged rats, evaluated by two observers who classified the trajectories of the rats based on the effectiveness, localization, and precision to reach the platform. SSA is classified into 10 categories, classified by effectiveness, initial direction, and precision. Traditional measurements were unable to show significant differences in the learning process. However, significant differences were identified in SSA. Young rats used a direct search strategy (SS), while aged rats preferred indirect ones. The number of platform crossings was the only variable to show the difference in the intermediate probe trial. The parameter-based algorithm represents an alternative to the computerized SS methods to analyze the spatial memory and learning process in young and age rats. We validate the use of SSA as an alternative to computerized SS analysis spatial learning acquisition. We demonstrated that aged rats had the ability to learn spatial memory tasks using different search strategies. The use of SSA resulted in a reliable and reproducible method to analyze MWM protocols.
Collapse
Affiliation(s)
- Eliud Enrique Villarreal-Silva
- Neurosurgery and Neuroendovascular Therapy Department, “Dr. José Eleuterio González” University Hospital, Universidad Autónoma de Nuevo León, Madero Av. and Dr. Aguirre Pequeño s/n. Col. Mitras Centro, Monterrey C.P. 64460, Nuevo León, México
| | | | | | - Oscar Quiroga-García
- Human Anatomy Department, Universidad Autónoma de Nuevo León, School of Medicine, Nuevo León, México
| | | | - Aracely García-García
- Histology Department, Universidad Autónoma de Nuevo León, School of Medicine, Nuevo León, México
| | - Humberto Rodríguez-Rocha
- Histology Department, Universidad Autónoma de Nuevo León, School of Medicine, Nuevo León, México
| | - Jesús Alberto Morales-Gómez
- Neurosurgery and Neuroendovascular Therapy Department, “Dr. José Eleuterio González” University Hospital, Universidad Autónoma de Nuevo León, Madero Av. and Dr. Aguirre Pequeño s/n. Col. Mitras Centro, Monterrey C.P. 64460, Nuevo León, México
| | - Alejandro Quiroga-Garza
- Human Anatomy Department, Universidad Autónoma de Nuevo León, School of Medicine, Nuevo León, México
| | | | - Ángel Raymundo Martínez-Ponce de León
- Neurosurgery and Neuroendovascular Therapy Department, “Dr. José Eleuterio González” University Hospital, Universidad Autónoma de Nuevo León, Madero Av. and Dr. Aguirre Pequeño s/n. Col. Mitras Centro, Monterrey C.P. 64460, Nuevo León, México
| | - Santos Guzmán-López
- Human Anatomy Department, Universidad Autónoma de Nuevo León, School of Medicine, Nuevo León, México
| |
Collapse
|
12
|
De Sousa RAL, Santos LG, Lopes PM, Cavalcante BRR, Improta-Caria AC, Cassilhas RC. Physical exercise consequences on memory in obesity: A systematic review. Obes Rev 2021; 22:e13298. [PMID: 34105227 DOI: 10.1111/obr.13298] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/17/2021] [Accepted: 05/19/2021] [Indexed: 01/01/2023]
Abstract
Obesity is associated with changes in memory. Thus, the aim of this systematic review was to investigate the physical exercise consequences on memory in obesity. A search was carried out in the PubMed, Lilacs, and Scielo databases with the following descriptors: "physical exercise," "memory," and "obesity." A total of 16 studies were analyzed in this review. Low, moderate, and high intensity exercise training showed positive effects on memory in patients with obesity (100%). The animal models of obesity used in their physical exercise protocols: treadmill (72.7%) or wheel running (27.3%). Most of the animal studies (81.8%) revealed positive effects of the physical exercise protocol on memory in obesity. Mouse was the most commonly used animal (54.5%), and a 60% high-fat diet (HFD) was the most commonly method used to induce obesity (82%). We did not identify any knockout model of obesity that was used to evaluate memory and used physical exercise as the main intervention. Thus, exercise training, independently if it is resistance or endurance training, seems to be an excellent intervention to prevent and inhibit cognitive impairment and memory loss on obese patients and animal models of obesity.
Collapse
Affiliation(s)
- Ricardo Augusto Leoni De Sousa
- Physical Education Department, Federal University of the Valleys of Jequitinhonha and Mucuri (UFVJM), Diamantina, Brazil.,Neuroscience and Exercise Study Group (Grupo de Estudos em Neurociências e Exercício - GENE), UFVJM, Diamantina, Brazil.,Multicenter Post Graduation Program in Physiological Sciences (PMPGCF), Brazilian Society of Physiology, UFVJM, Diamantina, Brazil
| | - Letícia Gomes Santos
- Physical Education Department, Federal University of the Valleys of Jequitinhonha and Mucuri (UFVJM), Diamantina, Brazil.,Neuroscience and Exercise Study Group (Grupo de Estudos em Neurociências e Exercício - GENE), UFVJM, Diamantina, Brazil
| | - Paulo Maurício Lopes
- Physical Education Department, Federal University of the Valleys of Jequitinhonha and Mucuri (UFVJM), Diamantina, Brazil.,Neuroscience and Exercise Study Group (Grupo de Estudos em Neurociências e Exercício - GENE), UFVJM, Diamantina, Brazil.,Post Graduation Program in Health Sciences (PPGCS), UFVJM, Diamantina, Brazil
| | | | | | - Ricardo Cardoso Cassilhas
- Physical Education Department, Federal University of the Valleys of Jequitinhonha and Mucuri (UFVJM), Diamantina, Brazil.,Neuroscience and Exercise Study Group (Grupo de Estudos em Neurociências e Exercício - GENE), UFVJM, Diamantina, Brazil.,Multicenter Post Graduation Program in Physiological Sciences (PMPGCF), Brazilian Society of Physiology, UFVJM, Diamantina, Brazil.,Post Graduation Program in Health Sciences (PPGCS), UFVJM, Diamantina, Brazil
| |
Collapse
|
13
|
Tomiga Y, Sakai K, Ra SG, Kusano M, Ito A, Uehara Y, Takahashi H, Kawanaka K, Soejima H, Higaki Y. Short-term running exercise alters DNA methylation patterns in neuronal nitric oxide synthase and brain-derived neurotrophic factor genes in the mouse hippocampus and reduces anxiety-like behaviors. FASEB J 2021; 35:e21767. [PMID: 34325488 DOI: 10.1096/fj.202100630r] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/14/2021] [Accepted: 06/14/2021] [Indexed: 02/04/2023]
Abstract
Running exercise has beneficial effects on brain health. However, the effects of relatively short-term running exercise (STEx) on behavior, and its underlying signaling pathways, are poorly understood. In this study, we evaluated the possibility that the regulation by STEx of brain-derived neurotrophic factor (BDNF) and neuronal nitric oxide synthase (nNOS, encoded by NOS1), which are important molecules for anxiety regulation, might involve mechanisms of epigenetic modification, such as DNA methylation. C57BL/6J male mice were divided into sedentary (SED, n = 12) and STEx (EX, n = 15) groups; STEx was conducted with the mice for a duration of 11 days. STEx reduced anxiety-like behaviors, and STEx reduced Nos1α and increased Bdnf exon I and IV mRNA levels in the hippocampus. Interestingly, behavioral parameters were associated with Bdnf exon I and IV and Nos1α mRNA levels in the ventral, but not dorsal, hippocampal region. However, STEx had no effect on peroxisome proliferator-activated receptor-γ coactivator 1α (Pgc-1α) or fibronectin type III domain-containing 5 (Fndc5) mRNA levels, which are relatively long-term exercise-induced upstream regulators of BDNF. In parallel with gene expression changes, we found, for the first time, that STEx downregulated Bdnf promoter IV and upregulated Nos1 DNA methylation levels in the hippocampus, and these patterns were partially different between the dorsal and ventral regions. These findings suggest that the beneficial effects of running exercise on mood regulation may be controlled by alterations in epigenetic mechanisms, especially in the ventral hippocampus. These effects occur even after a relatively short-term period of exercise.
Collapse
Affiliation(s)
- Yuki Tomiga
- The Fukuoka University Institute for Physical Activity, Fukuoka University, Fukuoka, Japan.,Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Kazuya Sakai
- Graduate School of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| | - Song-Gyu Ra
- The Fukuoka University Institute for Physical Activity, Fukuoka University, Fukuoka, Japan.,Institute of Liberal Arts and Sciences, Tokushima University, Tokushima, Japan.,Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| | - Masaki Kusano
- Graduate School of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| | - Ai Ito
- The Fukuoka University Institute for Physical Activity, Fukuoka University, Fukuoka, Japan
| | - Yoshinari Uehara
- The Fukuoka University Institute for Physical Activity, Fukuoka University, Fukuoka, Japan.,Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| | - Hirokazu Takahashi
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan.,Liver Center, Saga University Hospital, Saga, Japan
| | - Kentaro Kawanaka
- The Fukuoka University Institute for Physical Activity, Fukuoka University, Fukuoka, Japan.,Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| | - Hidenobu Soejima
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Yasuki Higaki
- The Fukuoka University Institute for Physical Activity, Fukuoka University, Fukuoka, Japan.,Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
14
|
Tsan L, Décarie-Spain L, Noble EE, Kanoski SE. Western Diet Consumption During Development: Setting the Stage for Neurocognitive Dysfunction. Front Neurosci 2021; 15:632312. [PMID: 33642988 PMCID: PMC7902933 DOI: 10.3389/fnins.2021.632312] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/19/2021] [Indexed: 01/18/2023] Open
Abstract
The dietary pattern in industrialized countries has changed substantially over the past century due to technological advances in agriculture, food processing, storage, marketing, and distribution practices. The availability of highly palatable, calorically dense foods that are shelf-stable has facilitated a food environment where overconsumption of foods that have a high percentage of calories derived from fat (particularly saturated fat) and sugar is extremely common in modern Westernized societies. In addition to being a predictor of obesity and metabolic dysfunction, consumption of a Western diet (WD) is related to poorer cognitive performance across the lifespan. In particular, WD consumption during critical early life stages of development has negative consequences on various cognitive abilities later in adulthood. This review highlights rodent model research identifying dietary, metabolic, and neurobiological mechanisms linking consumption of a WD during early life periods of development (gestation, lactation, juvenile and adolescence) with behavioral impairments in multiple cognitive domains, including anxiety-like behavior, learning and memory function, reward-motivated behavior, and social behavior. The literature supports a model in which early life WD consumption leads to long-lasting neurocognitive impairments that are largely dissociable from WD effects on obesity and metabolic dysfunction.
Collapse
Affiliation(s)
- Linda Tsan
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, United States.,Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, United States
| | - Léa Décarie-Spain
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, United States
| | - Emily E Noble
- Department of Foods and Nutrition, University of Georgia, Athens, GA, United States
| | - Scott E Kanoski
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, United States.,Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
15
|
Appropriate exercise level attenuates gut dysbiosis and valeric acid increase to improve neuroplasticity and cognitive function after surgery in mice. Mol Psychiatry 2021; 26:7167-7187. [PMID: 34663905 PMCID: PMC8873004 DOI: 10.1038/s41380-021-01291-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/19/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
Postoperative cognitive dysfunction (POCD) affects the outcome of millions of patients each year. Aging is a risk factor for POCD. Here, we showed that surgery induced learning and memory dysfunction in adult mice. Transplantation of feces from surgery mice but not from control mice led to learning and memory impairment in non-surgery mice. Low intensity exercise improved learning and memory in surgery mice. Exercise attenuated surgery-induced neuroinflammation and decrease of gut microbiota diversity. These exercise effects were present in non-exercise mice receiving feces from exercise mice. Exercise reduced valeric acid, a gut microbiota product, in the blood. Valeric acid worsened neuroinflammation, learning and memory in exercise mice with surgery. The downstream effects of exercise included attenuating growth factor decrease, maintaining astrocytes in the A2 phenotypical form possibly via decreasing C3 signaling and improving neuroplasticity. Similar to these results from adult mice, exercise attenuated learning and memory impairment in old mice with surgery. Old mice receiving feces from old exercise mice had better learning and memory than those receiving control old mouse feces. Surgery increased blood valeric acid. Valeric acid blocked exercise effects on learning and memory in old surgery mice. Exercise stabilized gut microbiota, reduced neuroinflammation, attenuated growth factor decrease and preserved neuroplasticity in old mice with surgery. These results provide direct evidence that gut microbiota alteration contributes to POCD development. Valeric acid is a mediator for this effect and a potential target for brain health. Low intensity exercise stabilizes gut microbiota in the presence of insult, such as surgery.
Collapse
|
16
|
From Obesity to Hippocampal Neurodegeneration: Pathogenesis and Non-Pharmacological Interventions. Int J Mol Sci 2020; 22:ijms22010201. [PMID: 33379163 PMCID: PMC7796248 DOI: 10.3390/ijms22010201] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/16/2022] Open
Abstract
High-caloric diet and physical inactivity predispose individuals to obesity and diabetes, which are risk factors of hippocampal neurodegeneration and cognitive deficits. Along with the adipose-hippocampus crosstalk, chronically inflamed adipose tissue secretes inflammatory cytokine could trigger neuroinflammatory responses in the hippocampus, and in turn, impairs hippocampal neuroplasticity under obese and diabetic conditions. Hence, caloric restriction and physical exercise are critical non-pharmacological interventions to halt the pathogenesis from obesity to hippocampal neurodegeneration. In response to physical exercise, peripheral organs, including the adipose tissue, skeletal muscles, and liver, can secret numerous exerkines, which bring beneficial effects to metabolic and brain health. In this review, we summarized how chronic inflammation in adipose tissue could trigger neuroinflammation and hippocampal impairment, which potentially contribute to cognitive deficits in obese and diabetic conditions. We also discussed the potential mechanisms underlying the neurotrophic and neuroprotective effects of caloric restriction and physical exercise by counteracting neuroinflammation, plasticity deficits, and cognitive impairments. This review provides timely insights into how chronic metabolic disorders, like obesity, could impair brain health and cognitive functions in later life.
Collapse
|
17
|
Glushchak K, Ficarro A, Schoenfeld TJ. High-fat diet and acute stress have different effects on object preference tests in rats during adolescence and adulthood. Behav Brain Res 2020; 399:112993. [PMID: 33152318 DOI: 10.1016/j.bbr.2020.112993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/30/2020] [Accepted: 10/28/2020] [Indexed: 12/16/2022]
Abstract
Meals of high-fat diet (HFD) during adolescence produce stronger impairments to memory during adolescence than adulthood, however recovery of memory from adolescent HFD is underexplored. In addition, many tests of rodent memory are confounded by aversive or food-based stimuli, making it difficult to determine baseline memory processing affected by HFD. Thus, we utilized three cohorts of rats (adolescent HFD, adult HFD, and adolescent HFD with recovery) to explore the effects of HFD at different ages on two traditional tests of memory based strictly on object exploration, novel object recognition and novel object location tests. To isolate stress as a variable, rats were tested either at baseline or with cold water swim occurring directly after object acquisition. Results show that preference for novel objects is impaired by stress across all groups, but HFD alone only impairs preference for novel objects during adolescence, although this recovers after switching to a control diet. Additionally, preference for an object in a new location is impaired by HFD in all age groups and fails to recover following diet change. Together the data suggest that stress and HFD differentially affect object preference, based on test type, except during the adolescent period. Because these tests are traditionally interpreted as memory processes dependent on two distinct brain regions, the hippocampus and perirhinal cortex, these results support that stress and HFD affect the hippocampus and perirhinal cortex differently. The data affirm that while perirhinal cortex-dependent behavior recovers, the adolescent period is susceptible to long-lasting dysfunctions of hippocampal behavior by HFD.
Collapse
Affiliation(s)
- Karina Glushchak
- Department of Psychological Science and Neuroscience, Belmont University, Nashville, TN, 37212, USA
| | - Alexandria Ficarro
- Department of Psychological Science and Neuroscience, Belmont University, Nashville, TN, 37212, USA
| | - Timothy J Schoenfeld
- Department of Psychological Science and Neuroscience, Belmont University, Nashville, TN, 37212, USA.
| |
Collapse
|
18
|
Effects of Regular Exercise on Diabetes-Induced Memory Deficits and Biochemical Parameters in Male Rats. J Mol Neurosci 2020; 71:1023-1030. [PMID: 33000398 DOI: 10.1007/s12031-020-01724-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 09/25/2020] [Indexed: 10/23/2022]
Abstract
The main objective of current work was to determine the effects of treadmill-running and swimming exercise on passive avoidance learning (PAL) and blood biochemical parameters in rats with streptozotocin (STZ)-induced diabetes. Male Wistar rats were divided into the following 6 groups (N = 6-8 per group): CON, healthy rats without exercise (N = 8); STZ, diabetic rats without exercise (N = 8); CON-SE, healthy rats subjected to swimming exercise (2 months; N = 6); STZ-SE, diabetic rats subjected to swimming exercise (2 months; N = 7); CON-TE, healthy rats subjected to treadmill exercise (2 months; N = 8); STZ-TE, diabetic rats subjected to treadmill exercise (2 months; N = 8). Diabetes was induced by a single intraperitoneal injection of 50 mg/kg STZ. Our results showed that STZ decreased the step-through latency in the retention test (STLr) and increased the time spent in the dark compartment (TDC) when compared with the CON group. However, treadmill-running and swimming exercise in STZ-treated rats increased the STLr and decreased the TDC when compared with STZ-treated rats without exercise in PAL. Blood low-density lipoprotein (LDL) and triglyceride (TG) levels in the STZ group were significantly higher than those in the CON group, whereas plasma total antioxidant capacity (TAC) and levels of catalase (CAT) and glutathione peroxidase (GPx) were lower in the STZ group compared with the CON group. The levels of LDL and TG decreased and the levels of TAC, CAT, and GPx increased in the exercise groups in comparison with the STZ group. The present results indicate that regular exercise enhances learning and memory in diabetic rats and that these effects may occur through activation of the antioxidant system.
Collapse
|
19
|
Yang TY, Gao Z, Liang NC. Sex-Dependent Wheel Running Effects on High Fat Diet Preference, Metabolic Outcomes, and Performance on the Barnes Maze in Rats. Nutrients 2020; 12:nu12092721. [PMID: 32899519 PMCID: PMC7551623 DOI: 10.3390/nu12092721] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 01/18/2023] Open
Abstract
Excessive and prolonged intake of highly palatable, high fat (HF) foods contributes to the pathogenesis of obesity, metabolic syndrome, and cognitive impairment. Exercise can restore energy homeostasis and suppress HF diet preference in rats. However, it is unclear if exercise confers similar protection against the detrimental outcomes associated with a chronic HF diet preference and feeding in both sexes. We used our wheel running (WR) and two-diet choice (chow vs. HF) paradigm to investigate the efficacy of exercise in reversing HF diet-associated metabolic and cognitive dysregulation in rats, hypothesizing that beneficial effects of exercise would be more pronounced in males. All WR rats showed HF diet avoidance upon running initiation, and males, but not females, had a prolonged reduction in HF diet preference. Moreover, exercise only improved glucose tolerance and insulin profile in males. Compared to sedentary controls, all WR rats improved learning to escape on the Barnes maze. Only WR females increased errors made during subsequent reversal learning trials, indicating a sex-dependent effect of exercise on behavioral flexibility. Taken together, our results suggest that exercise is more effective at attenuating HF-associated metabolic deficits in males, and highlights the importance of developing sex-specific treatment interventions for obesity and cognitive dysfunction.
Collapse
Affiliation(s)
- Tiffany Y. Yang
- Department of Psychology, College of Liberal Arts and Sciences, University of Illinois—Urbana-Champaign, Champaign, IL 61820, USA; (T.Y.Y.); (Z.G.)
| | - Zijun Gao
- Department of Psychology, College of Liberal Arts and Sciences, University of Illinois—Urbana-Champaign, Champaign, IL 61820, USA; (T.Y.Y.); (Z.G.)
| | - Nu-Chu Liang
- Department of Psychology, College of Liberal Arts and Sciences, University of Illinois—Urbana-Champaign, Champaign, IL 61820, USA; (T.Y.Y.); (Z.G.)
- Division of Nutritional Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois—Urbana-Champaign, Urbana, IL 61801, USA
- Neuroscience Program, College of Liberal Arts and Sciences, University of Illinois—Urbana-Champaign, Urbana, IL 61801, USA
- Correspondence: ; Tel.: +1-(217)-244-7873
| |
Collapse
|
20
|
da Silva-Pinto T, Silveira MM, de Souza JF, Moreira ALP, Vieira EA, Longo GO, Luchiari AC. Damselfish face climate change: Impact of temperature and habitat structure on agonistic behavior. PLoS One 2020; 15:e0235389. [PMID: 32603347 PMCID: PMC7326182 DOI: 10.1371/journal.pone.0235389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 06/16/2020] [Indexed: 12/27/2022] Open
Abstract
Oceans absorb a huge part of the atmospheric heat, leading to the rise in water temperature. Reefs are among the most affected ecosystems, where the complex behavioral repertoire of fishes is usually an indicator of environmental impacts. Here, we examined whether temperature (28 and 34°C) and habitat complexity (high and low) interact to affect the agonistic behavior (mirror test) of the dusky damselfish (Stegastes fuscus), a key species in Brazilian reefs because of its gardening capacity and territorial behavior. Higher temperatures altered basal behavior in both high and low-complexity conditions. Fish kept at 28°C under the high-complexity condition were more aggressive than those at a higher temperature (34°C) and in a low-complexity condition, which also exhibited lower dispersion. Our data show that changes in behavior of coral reef fish is associated to fluctuations in environmental conditions. Thus, it is important to implement management or conservation strategies that could mitigate global change effects.
Collapse
Affiliation(s)
- Thalles da Silva-Pinto
- Laboratório de Peixes, Departamento de Fisiologia e Comportamento, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Mayara Moura Silveira
- Laboratório de Peixes, Departamento de Fisiologia e Comportamento, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Jéssica Ferreira de Souza
- Laboratório de Peixes, Departamento de Fisiologia e Comportamento, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Ana Luisa Pires Moreira
- Laboratório de Peixes, Departamento de Fisiologia e Comportamento, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Edson Aparecido Vieira
- Laboratório de Ecologia Marinha, Departamento de Oceanografia e Limnologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Guilherme Ortigara Longo
- Laboratório de Ecologia Marinha, Departamento de Oceanografia e Limnologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Ana Carolina Luchiari
- Laboratório de Peixes, Departamento de Fisiologia e Comportamento, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
- * E-mail:
| |
Collapse
|
21
|
Effects of exercise on proactive interference in memory: potential neuroplasticity and neurochemical mechanisms. Psychopharmacology (Berl) 2020; 237:1917-1929. [PMID: 32488351 DOI: 10.1007/s00213-020-05554-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 05/11/2020] [Indexed: 02/07/2023]
Abstract
Proactive interference occurs when consolidated memory traces inhibit new learning. This kind of interference decreases the efficiency of new learning and also causes memory errors. Exercise has been shown to facilitate some types of cognitive function; however, whether exercise reduces proactive interference to enhance learning efficiency is not well understood. Thus, this review discusses the effects of exercise on proactive memory interference and explores potential mechanisms, such as neurogenesis and neurochemical changes, mediating any effect.
Collapse
|
22
|
Omidi G, Rezvani-Kamran A, Ganji A, Komaki S, Etaee F, Asadbegi M, Komaki A. Effects of Hypericum scabrum extract on dentate gyrus synaptic plasticity in high fat diet-fed rats. J Physiol Sci 2020; 70:19. [PMID: 32209056 PMCID: PMC7093352 DOI: 10.1186/s12576-020-00747-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 03/09/2020] [Indexed: 01/09/2023]
Abstract
High-fat diet (HFD) can induce deficits in neural function, oxidative stress, and decrease hippocampal neurogenesis. Hypericum (H.) scabrum extract (Ext) contains compounds that could treat neurological disorders. This study aimed to examine the neuroprotective impacts of the H. scabrum Ext on hippocampal synaptic plasticity in rats that were fed HFD. Fifty-four male Wistar rats (220 ± 10 g) were randomly arranged in six groups: (1) HFD group; (2) HFD + Ext300 group; (3) HFD + Ext100 group; (4) Control group; (5) Ext 300 mg/kg group; (6) Ext 100 mg/kg group. These protocols were administrated for 3 months. After this stage, a stimulating electrode was implanted in the perforant pathway (PP), and a bipolar recording electrode was embedded into the dentate gyrus (DG). Long-term potentiation (LTP) was provoked by high-frequency stimulation (HFS) of the PP. Field excitatory postsynaptic potentials (EPSP) and population spikes (PS) were recorded at 5, 30, and 60 min after HFS. The HFD group exhibited a large and significant decrease in their PS amplitude and EPSP slope as compared to the control and extract groups. In reverse, H. scabrum administration in the HFD + Ext rats reversed the effect of HFD on the PS amplitude and EPSP slope. The results of the study support that H. scabrum Ext can inhibit diminished synaptic plasticity caused by the HFD. These effects are probably due to the extreme antioxidant impacts of the Ext and its capability to scavenge free radicals.
Collapse
Affiliation(s)
- Ghazaleh Omidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Arezoo Rezvani-Kamran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ahmad Ganji
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Somayeh Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Farshid Etaee
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,Rahe Sabz Addiction Rehabilitation Clinic, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoumeh Asadbegi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran. .,Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, 65178/518, Hamadan, Iran.
| |
Collapse
|
23
|
High-Fat Diet-Induced Obesity Causes Sex-Specific Deficits in Adult Hippocampal Neurogenesis in Mice. eNeuro 2020; 7:ENEURO.0391-19.2019. [PMID: 31871124 PMCID: PMC6946541 DOI: 10.1523/eneuro.0391-19.2019] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/26/2019] [Accepted: 12/01/2019] [Indexed: 12/13/2022] Open
Abstract
Adult hippocampal neurogenesis (AHN) is suppressed by high-fat (HF) diet and metabolic disease, including obesity and type 2 diabetes. Deficits in AHN may contribute to cognitive decline and increased risk of dementia and mood disorders, which have higher prevalence in women. However, sex differences in the effects of HF diet/metabolic disease on AHN have yet to be thoroughly investigated. Herein, male and female C57BL/6J mice were fed an HF or control (CON) diet from ∼2 to 6 months of age. After 3 months on the diet, mice were injected with 5-ethynyl-2′-deoxyuridine (EdU) then killed 4 weeks later. Cell proliferation, differentiation/maturation, and survival of new neurons in the dentate gyrus were assessed with immunofluorescence for EdU, Ki67, doublecortin (DCX), and NeuN. CON females had more proliferating cells (Ki67+) and neuroblasts/immature neurons (DCX+) compared with CON males; however, HF diet reduced these cells in females to the levels of males. Diet did not affect neurogenesis in males. Further, the numbers of proliferating cells and immature neurons were inversely correlated with both weight gain and glucose intolerance in females only. These effects were robust in the dorsal hippocampus, which supports cognitive processes. Assessment of microglia in the dentate gyrus using immunofluorescence for Iba1 and CD68 uncovered sex-specific effects of diet, which may contribute to observed differences in neurogenesis. These findings demonstrate sex-specific effects of HF diet/metabolic disease on AHN, and highlight the potential for targeting neurogenic deficits to treat cognitive decline and reduce the risk of dementia associated with these conditions, particularly in females.
Collapse
|
24
|
Guo J, Bertalan G, Meierhofer D, Klein C, Schreyer S, Steiner B, Wang S, Vieira da Silva R, Infante-Duarte C, Koch S, Boehm-Sturm P, Braun J, Sack I. Brain maturation is associated with increasing tissue stiffness and decreasing tissue fluidity. Acta Biomater 2019; 99:433-442. [PMID: 31449927 DOI: 10.1016/j.actbio.2019.08.036] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/16/2019] [Accepted: 08/21/2019] [Indexed: 12/21/2022]
Abstract
Biomechanical cues guide proliferation, growth and maturation of neurons. Yet the molecules that shape the brain's biomechanical properties are unidentified and the relationship between neural development and viscoelasticity of brain tissue remains elusive. Here we combined novel in-vivo tomoelastography and ex-vivo proteomics to investigate whether viscoelasticity of the mouse brain correlates with protein alterations within the critical phase of brain maturation. For the first time, high-resolution atlases of viscoelasticity of the mouse brain were generated, revealing that (i) brain stiffness increased alongside progressive accumulation of microtubular structures, myelination, cytoskeleton linkage and cell-matrix attachment, and that (ii) viscosity-related tissue fluidity decreased alongside downregulated actin crosslinking and axonal organization. Taken together, our results show that brain maturation is associated with a shift of brain mechanical properties towards a more solid-rigid behavior consistent with reduced tissue fluidity. This shift appears to be driven by several molecular processes associated with myelination, cytoskeletal crosslinking and axonal organization. STATEMENT OF SIGNIFICANCE: The viscoelastic properties of brain tissue shape the environment in which neurons proliferate, grow, and mature. In the present study, novel tomoelastography was used to spatially map tissue mechanical properties of the in-vivo mouse brain during maturation. In vivo tomoelastography was also combined with ex vivo mass spectrometry proteomic analysis to identify the molecules which shape the biomechanical properties of brain tissue. With the combined technique, we observed that brain maturation is associated with a shift of brain mechanical properties towards a more solid-rigid behavior consistent with reduced tissue fluidity which is driven by multiple molecular processes. We believe that this shift of brain mechanical properties discovered in our study reflects a fundamental biophysical signature of brain maturation.
Collapse
|
25
|
Murray S, Chen EY. Examining Adolescence as a Sensitive Period for High-Fat, High-Sugar Diet Exposure: A Systematic Review of the Animal Literature. Front Neurosci 2019; 13:1108. [PMID: 31708722 PMCID: PMC6823907 DOI: 10.3389/fnins.2019.01108] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/01/2019] [Indexed: 01/08/2023] Open
Abstract
Animal studies suggest that poor nutrition (e.g., high-fat, high-sugar diets) may lead to impairments in cognitive functioning. Accumulating evidence suggests that the deleterious effects of these diets appear more pronounced in animals maintained on this diet early in life, consistent with the notion that the developing brain may be especially vulnerable to environmental insults. The current paper provides the first systematic review of studies comparing the effects of high-fat, high-sugar diet exposure during adolescence and adulthood on memory performance. The majority of studies (7/8) identified here report diet-induced memory problems when diet exposure began in adolescence but not adulthood. These findings lend support to the hypothesis that adolescence is a sensitive period during which palatable diets may contribute to negative neurocognitive effects. The current review explores putative mechanisms involved in diet-induced cognitive dysfunction and highlights promising areas for further research.
Collapse
Affiliation(s)
- Susan Murray
- Department of Psychology, Temple University, Philadelphia, PA, United States
| | - Eunice Y Chen
- Department of Psychology, Temple University, Philadelphia, PA, United States
| |
Collapse
|
26
|
Iggena D, Klein C, Rasińska J, Sparenberg M, Winter Y, Steiner B. Physical activity sustains memory retrieval in dopamine-depleted mice previously treated with L-Dopa. Behav Brain Res 2019; 369:111915. [PMID: 30998993 DOI: 10.1016/j.bbr.2019.111915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/13/2019] [Accepted: 04/14/2019] [Indexed: 01/27/2023]
Abstract
The neurodegenerative disorder Parkinson's disease affects motor abilities as well as cognition. The gold standard therapy is L-Dopa, which mainly restores motor skills. Therefore, we require additional interventions to sustain cognitive functions in Parkinson's disease. The lifestyle intervention "physical activity" improves adult hippocampal neurogenesis and memory but so far, its impact has not been investigated in rodent models for Parkinson's disease previously treated with the standard therapy. We hereby asked whether physical activity serves as a pro-neurogenic and -cognitive stimulus in dopamine-depleted mice previously treated with L-Dopa. Therefore, we injected dopamine-depleted mice with L-Dopa/Benserazide followed either by exercise or by a sedentary lifestyle. We analysed adult hippocampal neurogenesis histologically and assessed spatial memory in the Morris water maze. Furthermore, we investigated the hippocampal and striatal monoaminergic cross-talk. Physical activity prevented memory decline and was linked to a slower dopamine turnover but did not enhance neurogenesis in dopamine-depleted mice previously treated with L-Dopa. In conclusion, physical activity did not develop its full pro-neurogenic potential in mice previously treated with L-Dopa but sustained spatial cognition in Parkinson's disease.
Collapse
Affiliation(s)
- D Iggena
- Department of Neurology, Charité-Universitätsmedizin, Charitéplatz 1, 10117, Berlin, Germany.
| | - C Klein
- Department of Neurology, Charité-Universitätsmedizin, Charitéplatz 1, 10117, Berlin, Germany
| | - J Rasińska
- Department of Neurology, Charité-Universitätsmedizin, Charitéplatz 1, 10117, Berlin, Germany
| | - M Sparenberg
- Department of Neurology, Charité-Universitätsmedizin, Charitéplatz 1, 10117, Berlin, Germany
| | - Y Winter
- Department of Biology, Humboldt-University Berlin, Philippstraße 13, 10099, Berlin, Germany
| | - B Steiner
- Department of Neurology, Charité-Universitätsmedizin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
27
|
Khazen T, Hatoum OA, Ferreira G, Maroun M. Acute exposure to a high-fat diet in juvenile male rats disrupts hippocampal-dependent memory and plasticity through glucocorticoids. Sci Rep 2019; 9:12270. [PMID: 31439894 PMCID: PMC6706405 DOI: 10.1038/s41598-019-48800-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/09/2019] [Indexed: 02/06/2023] Open
Abstract
The limbic circuit is still undergoing maturation during juvenility and adolescence, explaining why environmental and metabolic challenges during these developmental periods can have specific adverse effects on cognitive functions. We have previously shown that long-term exposure (8-12 weeks) to high-fat diet (HFD) during adolescence (from weaning to adulthood), but not at adulthood, was associated with altered amygdala and hippocampal functions. Moreover, these HFD effects were normalized by treatment with glucocorticoid receptor (GR) antagonists. Here, we examined in male rats whether acute exposure (7-9 days) to HFD during juvenility [from postnatal day (PND) 21 to PND 28-30] or adulthood (from PND 60 to PND 67-69) is sufficient to affect hippocampal functions and whether it is also dependent on GRs activation. Juvenile HFD abolished both hippocampal synaptic plasticity, assessed through in vivo long-term potentiation (LTP) in CA1, and long-term hippocampal-dependent memory, using object location memory (OLM). No effect of HFD was observed in short-term OLM suggesting a specific effect on consolidation process. In contrast, adult HFD enhanced in vivo LTP and OLM. Systemic application of GR antagonist alleviated HFD-induced LTP and OLM impairments in juveniles. These results suggest that acute exposure to HFD during juvenility is sufficient to impair hippocampal functions in a GR-dependent manner. Interestingly, this effect depends on the developmental period studied as acute exposure to HFD at adulthood did not impair, but rather enhanced, hippocampal functions.
Collapse
Affiliation(s)
- Tala Khazen
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Ossama A Hatoum
- Department of Surgery B- HaEmek Medical Center, Faculty of Medicine, Technion: Israel Institute of Technology, Haifa, Israel
| | - Guillaume Ferreira
- INRA, Nutrition and Integrative Neurobiology, UMR1286, Bordeaux, France.,University of Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
| | - Mouna Maroun
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel.
| |
Collapse
|
28
|
The Counteracting Effects of Exercise on High-Fat Diet-Induced Memory Impairment: A Systematic Review. Brain Sci 2019; 9:brainsci9060145. [PMID: 31226771 PMCID: PMC6627483 DOI: 10.3390/brainsci9060145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/15/2022] Open
Abstract
The objective of the present review was to evaluate whether exercise can counteract a potential high-fat diet-induced memory impairment effect. The evaluated databases included: Google Scholar, Sports Discus, Embase/PubMed, Web of Science, and PsychInfo. Studies were included if: (1) an experimental/intervention study was conducted, (2) the experiment/intervention included both a high-fat diet and exercise group, and evaluated whether exercise could counteract the negative effects of a high-fat diet on memory, and (3) evaluated memory function (any type) as the outcome measure. In total, 17 articles met the inclusionary criteria. All 17 studies (conducted in rodents) demonstrated that the high-fat diet protocol impaired memory function and all 17 studies demonstrated a counteracting effect with chronic exercise engagement. Mechanisms of these robust effects are discussed herein.
Collapse
|
29
|
Grillo CA, Woodruff JL, Macht VA, Reagan LP. Insulin resistance and hippocampal dysfunction: Disentangling peripheral and brain causes from consequences. Exp Neurol 2019; 318:71-77. [PMID: 31028829 DOI: 10.1016/j.expneurol.2019.04.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023]
Abstract
In the periphery insulin plays a critical role in the regulation of metabolic homeostasis by stimulating glucose uptake into peripheral organs. In the central nervous system (CNS), insulin plays a critical role in the formation of neural circuits and synaptic connections from the earliest stages of development and facilitates and promotes neuroplasticity in the adult brain. Beyond these physiological roles of insulin, a shared feature between the periphery and CNS is that decreases in insulin receptor activity and signaling (i.e. insulin resistance) contributes to the pathological consequences of type 2 diabetes (T2DM) and obesity. Indeed, clinical and preclinical studies illustrate that CNS insulin resistance elicits neuroplasticity deficits that lead to decreases in cognitive function and increased risk of neuropsychiatric disorders. The goals of this review are to provide an overview of the literature that have identified the neuroplasticity deficits observed in T2DM and obesity, as well as to discuss the potential causes and consequences of insulin resistance in the CNS, with a particular focus on how insulin resistance impacts hippocampal neuroplasticity. Interestingly, studies that have examined the effects of hippocampal-specific insulin resistance illustrate that brain insulin resistance may impair neuroplasticity independent of peripheral insulin resistance, thereby supporting the concept that restoration of brain insulin activity is an attractive therapeutic strategy to ameliorate or reverse cognitive decline observed in patients with CNS insulin resistance such as T2DM and Alzheimer's Disease.
Collapse
Affiliation(s)
- Claudia A Grillo
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, & Neuroscience, Columbia, SC, USA; WJB Dorn VA Medical Center, Columbia, SC 29209, USA
| | - Jennifer L Woodruff
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, & Neuroscience, Columbia, SC, USA; WJB Dorn VA Medical Center, Columbia, SC 29209, USA
| | - Victoria A Macht
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, & Neuroscience, Columbia, SC, USA; WJB Dorn VA Medical Center, Columbia, SC 29209, USA
| | - Lawrence P Reagan
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, & Neuroscience, Columbia, SC, USA; WJB Dorn VA Medical Center, Columbia, SC 29209, USA.
| |
Collapse
|
30
|
Feng W, Li Q, Wang W, Chen Y, Zhang W, Zhao T, Mao G, Wu X, Yang L. Influence of Chronic Toxicity, Lipid Metabolism, Learning and Memory Ability, and Related Enzyme in Sprague-Dawley Rats by Long-Term Chromium Malate Supplementation. Biol Trace Elem Res 2019; 187:243-257. [PMID: 29797207 DOI: 10.1007/s12011-018-1377-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/03/2018] [Indexed: 12/11/2022]
Abstract
In our previous study, chromium malate is beneficial for type 2 diabetic rats in control glycometabolism and lipid metabolism. The present study was designed to observe the chronic toxicity, lipid metabolism, learning and memory ability, and related enzymes of chromium malate in rats during the year. The results showed that pathological, toxic, feces, and urine of chromium malate (at daily doses of 10.0, 15.0, and 20.0 μg Cr/kg bm) did not change measurably. Chromium malate (at daily doses of 15.0 and 20.0 μg Cr/kg bm) could significantly reduce the levels of total cholesterol (TC), LDL, and triglyceride (TG), and increase the level of HDL in male rats compared to control group and chromium picolinate group. Significant escalating trends of the escape latency and swimming speed (Morris water maze test), and the original platform quadrant stops, residence time, and swimming speed (Space exploration test) in male rats of chromium malate groups were obtained. The SOD, GSH-Px, and TChE activities of chromium malate (at daily doses of 15.0 and 20.0 μg Cr/kg bm) were enhanced significantly in male rats compared with those of the normal control group and chromium picolinate group. Glycometabolism and related enzymes had no significant changes compared to normal control group and chromium picolinate group. These results indicated that long-term chromium malate supplementation did not cause measurable toxicity at daily doses of 10.0, 15.0, and 20.0 μg Cr/kg bm and could improve dyslipidemia and learning and memory deficits.
Collapse
Affiliation(s)
- Weiwei Feng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
- Institute of Environmental health and Ecological Security, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qian Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wei Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yao Chen
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Weijie Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guanghua Mao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiangyang Wu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
- Institute of Environmental health and Ecological Security, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
31
|
Klein C, Jonas W, Wiedmer P, Schreyer S, Akyüz L, Spranger J, Hellweg R, Steiner B. High-fat Diet and Physical Exercise Differentially Modulate Adult Neurogenesis in the Mouse Hypothalamus. Neuroscience 2018; 400:146-156. [PMID: 30599265 DOI: 10.1016/j.neuroscience.2018.12.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023]
Abstract
The hypothalamus has emerged as a novel neurogenic niche in the adult brain during the past decade. However, little is known about its regulation and the role hypothalamic neurogenesis might play in body weight and appetite control. High-fat diet (HFD) has been demonstrated to induce an inflammatory response and to alter neurogenesis in the hypothalamus and functional outcome measures, e.g. body weight. Such modulation poses similarities to what is known from adult hippocampal neurogenesis, which is highly responsive to lifestyle factors, such as nutrition or physical exercise. With the rising question of a principle of neurogenic stimulation by lifestyle in the adult brain as a physiological regulatory mechanism of central and peripheral functions, exercise is interventionally applied in obesity and metabolic syndrome conditions, promoting weight loss and improving glucose tolerance and insulin sensitivity. To investigate the potential pro-neurogenic cellular processes underlying such beneficial peripheral outcomes, we exposed adult female mice to HFD together with physical exercise and evaluated neurogenesis and inflammatory markers in the arcuate nucleus (ArcN) of the hypothalamus. We found that HFD increased neurogenesis, whereas physical exercise stimulated cell proliferation. HFD also increased the amount of microglia, which was counteracted by physical exercise. Physiologically, exercise increased food and fat intake but reduced HFD-induced body weight gain. These findings support the hypothesis that hypothalamic neurogenesis may represent a counter-regulatory mechanism in response to environmental or physiological insults to maintain energy balance.
Collapse
Affiliation(s)
- C Klein
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology, Germany
| | - W Jonas
- German Institute of Human Nutrition, Department of Experimental Diabetology, Potsdam-Rehbrücke, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - P Wiedmer
- German Institute of Human Nutrition, Department of Experimental Diabetology, Potsdam-Rehbrücke, Germany
| | - S Schreyer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology, Germany
| | - L Akyüz
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Immunology, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, und Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Germany
| | - J Spranger
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, und Berlin Institute of Health, Department of Endocrinology, Diabetes and Nutritional Medicine, Berlin, Germany
| | - R Hellweg
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, und Berlin Institute of Health, Department of Psychiatry, Berlin, Germany
| | - B Steiner
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology, Germany.
| |
Collapse
|
32
|
Pereira-Caixeta AR, Guarnieri LO, Medeiros DC, Mendes EMAM, Ladeira LCD, Pereira MT, Moraes MFD, Pereira GS. Inhibiting constitutive neurogenesis compromises long-term social recognition memory. Neurobiol Learn Mem 2018; 155:92-103. [PMID: 29964163 DOI: 10.1016/j.nlm.2018.06.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/20/2018] [Accepted: 06/27/2018] [Indexed: 01/14/2023]
Abstract
Although the functional role for newborn neurons in neural circuits is still matter of investigation, there is no doubt that neurogenesis modulates learning and memory in rodents. In general, boosting neurogenesis before learning, using genetic-target tools or drugs, improves hippocampus-dependent memories. However, inhibiting neurogenesis may yield contradictory results depending on the type of memory evaluated. Here we tested the hypothesis that inhibiting constitutive neurogenesis would compromise social recognition memory (SRM). Male Swiss mice were submitted to three distinct procedures to inhibit neurogenesis: (1) intra-cerebral infusion of Cystosine-β-D-Arabinofuranoside (AraC); (2) intra-peritoneal injection of temozolomide (TMZ) and (3) cranial gamma irradiation. All three methods decreased cell proliferation and neurogenesis in the dentate gyrus of the dorsal (dDG) and ventral hippocampus (vDG), and the olfactory bulb (OB). However, the percentage inhibition diverged between methods and brain regions. Ara-C, TMZ and gamma irradiation impaired SRM, though only gamma irradiation did not cause side effects on weight gain, locomotor activity and anxiety. Finally, we examined the contribution of cell proliferation in vDG, dDG and OB to SRM. The percent of inhibition in the dDG correlates with SRM, independently of the method utilized. This correlation was observed for granular cell layer of OB and vDG, only when the inhibition was induced by gamma irradiation. Animal's performance was restrained by the inhibition of dDG cell proliferation, suggesting that cell proliferation in the dDG has a greater contribution to SRM. Altogether, our results demonstrate that SRM, similarly to other hippocampus-dependent memories, has its formation impaired by reducing constitutive neurogenesis.
Collapse
Affiliation(s)
- Ana Raquel Pereira-Caixeta
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Leonardo O Guarnieri
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniel C Medeiros
- Centro de Tecnologia e Pesquisa em Magneto Ressonância, Programa de Pós-Graduação em Engenharia Elétrica - Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Eduardo M A M Mendes
- Centro de Tecnologia e Pesquisa em Magneto Ressonância, Programa de Pós-Graduação em Engenharia Elétrica - Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luiz C D Ladeira
- Laboratório de Irradiação Gama, Centro de Desenvolvimento da Tecnologia Nuclear/Comissão Nacional de Energia Nuclear, Brazil
| | - Márcio T Pereira
- Laboratório de Irradiação Gama, Centro de Desenvolvimento da Tecnologia Nuclear/Comissão Nacional de Energia Nuclear, Brazil
| | - Márcio F D Moraes
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Centro de Tecnologia e Pesquisa em Magneto Ressonância, Programa de Pós-Graduação em Engenharia Elétrica - Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Grace S Pereira
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
33
|
Allen RS, Hanif AM, Gogniat MA, Prall BC, Haider R, Aung MH, Prunty MC, Mees LM, Coulter MM, Motz CT, Boatright JH, Pardue MT. TrkB signalling pathway mediates the protective effects of exercise in the diabetic rat retina. Eur J Neurosci 2018. [PMID: 29537701 DOI: 10.1111/ejn.13909] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Diabetic retinopathy is a leading cause of vision loss. Treatment options for early retinopathy are sparse. Exercise protects dying photoreceptors in models of retinal degeneration, thereby preserving vision. We tested the protective effects of exercise on retinal and cognitive deficits in a type 1 diabetes model and determined whether the TrkB pathway mediates this effect. Hyperglycaemia was induced in Long Evans rats via streptozotocin injection (STZ; 100 mg/kg). Following confirmed hyperglycaemia, both control and diabetic rats underwent treadmill exercise for 30 min, 5 days/week at 0 m/min (inactive groups) or 15 m/min (active groups) for 8 weeks. A TrkB receptor antagonist (ANA-12), or vehicle, was injected 2.5 h before exercise training. We measured spatial frequency and contrast sensitivity using optokinetic tracking biweekly post-STZ; retinal function using electroretinography at 4 and 8 weeks; and cognitive function and exploratory behaviour using Y-maze at 8 weeks. Retinal neurotrophin-4 was measured using ELISA. Compared with non-diabetic controls, diabetic rats showed significantly reduced spatial frequency and contrast sensitivity, delayed electroretinogram oscillatory potential and flicker implicit times and reduced cognitive function and exploratory behaviour. Exercise interventions significantly delayed the appearance of all deficits, except for exploratory behaviour. Treatment with ANA-12 significantly reduced this protection, suggesting a TrkB-mediated mechanism. Despite this, no changes in retinal neurotrohin-4 were observed with diabetes or exercise. Exercise protected against early visual and cognitive dysfunction in diabetic rats, suggesting that exercise interventions started after hyperglycaemia diagnosis may be a beneficial treatment. The translational potential is high, given that exercise treatment is non-invasive, patient controlled and inexpensive.
Collapse
Affiliation(s)
- Rachael S Allen
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, 1670 Clairmont Road, Decatur, GA, 30033, USA.,Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Adam M Hanif
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, 1670 Clairmont Road, Decatur, GA, 30033, USA
| | - Marissa A Gogniat
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, 1670 Clairmont Road, Decatur, GA, 30033, USA.,Department of Ophthalmology, Emory University, Atlanta, GA, USA
| | - Brian C Prall
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, 1670 Clairmont Road, Decatur, GA, 30033, USA.,Department of Ophthalmology, Emory University, Atlanta, GA, USA.,Neuroscience Program, Emory University, Atlanta, GA, USA
| | - Raza Haider
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, 1670 Clairmont Road, Decatur, GA, 30033, USA
| | - Moe H Aung
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, 1670 Clairmont Road, Decatur, GA, 30033, USA.,Department of Ophthalmology, Emory University, Atlanta, GA, USA.,Neuroscience Program, Emory University, Atlanta, GA, USA
| | - Megan C Prunty
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, 1670 Clairmont Road, Decatur, GA, 30033, USA
| | - Lukas M Mees
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, 1670 Clairmont Road, Decatur, GA, 30033, USA.,Department of Ophthalmology, Emory University, Atlanta, GA, USA
| | - Monica M Coulter
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, 1670 Clairmont Road, Decatur, GA, 30033, USA
| | - Cara T Motz
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, 1670 Clairmont Road, Decatur, GA, 30033, USA
| | - Jeffrey H Boatright
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, 1670 Clairmont Road, Decatur, GA, 30033, USA.,Department of Ophthalmology, Emory University, Atlanta, GA, USA.,Neuroscience Program, Emory University, Atlanta, GA, USA
| | - Machelle T Pardue
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, 1670 Clairmont Road, Decatur, GA, 30033, USA.,Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.,Neuroscience Program, Emory University, Atlanta, GA, USA
| |
Collapse
|
34
|
Vetreno RP, Lawrimore CJ, Rowsey PJ, Crews FT. Persistent Adult Neuroimmune Activation and Loss of Hippocampal Neurogenesis Following Adolescent Ethanol Exposure: Blockade by Exercise and the Anti-inflammatory Drug Indomethacin. Front Neurosci 2018; 12:200. [PMID: 29643762 PMCID: PMC5882830 DOI: 10.3389/fnins.2018.00200] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/13/2018] [Indexed: 12/14/2022] Open
Abstract
Alcohol abuse and binge drinking are common during adolescence, a developmental period characterized by heightened neuroplasticity. Animal studies reveal that adolescent ethanol exposure decreases hippocampal neurogenesis that persists into adulthood, but the mechanism remains to be fully elucidated. Using a rodent model of adolescent intermittent ethanol (AIE; 5.0 g/kg, i.g., 2-days on/2-days off from postnatal day [P]25 to P55), we tested the hypothesis that AIE-induced upregulation of neuroimmune signaling contributes to the loss of hippocampal neurogenesis in adulthood. We found that AIE caused upregulation of multiple proinflammatory Toll-like receptors (TLRs), increased expression of phosphorylated NF-κB p65 (pNF-κB p65) and the cell death marker cleaved caspase 3, and reduced markers of neurogenesis in the adult (P80) hippocampus, which is consistent with persistently increased neuroimmune signaling reducing neurogenesis. We observed a similar increase of pNF-κB p65-immunoreactive cells in the post-mortem human alcoholic hippocampus, an effect that was negatively correlated with age of drinking onset. Voluntary wheel running from P24 to P80 prevented the AIE-induced loss of neurogenesis markers (i.e., nestin and doublecortin) in the adult hippocampus that was paralleled by blockade of increased expression of the cell death marker cleaved caspase 3. Wheel running also prevented the AIE-induced increase of hippocampal pNF-κB p65 and induction of neuroimmune NF-κB target genes, including TNFα and IκBα in the adult brain. Administration of the anti-inflammatory drug indomethacin during AIE prevented the loss of neurogenesis markers (i.e., nestin and doublecortin) and the concomitant increase of cleaved caspase 3, an effect that was accompanied by blockade of the increase of pNF-κB p65. Similarly, administration of the proinflammatory TLR4 activator lipopolysaccharide resulted in a loss of doublecortin that was paralleled by increased expression of cleaved caspase 3 and pNF-κB p65 in the hippocampal dentate gyrus of CON animals that mimicked the AIE-induced loss of neurogenesis. Taken together, these data suggest that exercise and anti-inflammatory drugs protect against adolescent binge ethanol-induced brain neuroimmune signaling and the loss of neurogenesis in the adult hippocampus.
Collapse
Affiliation(s)
- Ryan P. Vetreno
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Colleen J. Lawrimore
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Pamela J. Rowsey
- School of Nursing, The University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Fulton T. Crews
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
35
|
Agustí A, García-Pardo MP, López-Almela I, Campillo I, Maes M, Romaní-Pérez M, Sanz Y. Interplay Between the Gut-Brain Axis, Obesity and Cognitive Function. Front Neurosci 2018; 12:155. [PMID: 29615850 PMCID: PMC5864897 DOI: 10.3389/fnins.2018.00155] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/26/2018] [Indexed: 12/12/2022] Open
Abstract
Obesity continues to be one of the major public health problems due to its high prevalence and co-morbidities. Common co-morbidities not only include cardiometabolic disorders but also mood and cognitive disorders. Obese subjects often show deficits in memory, learning and executive functions compared to normal weight subjects. Epidemiological studies also indicate that obesity is associated with a higher risk of developing depression and anxiety, and vice versa. These associations between pathologies that presumably have different etiologies suggest shared pathological mechanisms. Gut microbiota is a mediating factor between the environmental pressures (e.g., diet, lifestyle) and host physiology, and its alteration could partly explain the cross-link between those pathologies. Westernized dietary patterns are known to be a major cause of the obesity epidemic, which also promotes a dysbiotic drift in the gut microbiota; this, in turn, seems to contribute to obesity-related complications. Experimental studies in animal models and, to a lesser extent, in humans suggest that the obesity-associated microbiota may contribute to the endocrine, neurochemical and inflammatory alterations underlying obesity and its comorbidities. These include dysregulation of the HPA-axis with overproduction of glucocorticoids, alterations in levels of neuroactive metabolites (e.g., neurotransmitters, short-chain fatty acids) and activation of a pro-inflammatory milieu that can cause neuro-inflammation. This review updates current knowledge about the role and mode of action of the gut microbiota in the cross-link between energy metabolism, mood and cognitive function.
Collapse
Affiliation(s)
- Ana Agustí
- Microbial Ecology and Nutrition Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Maria P García-Pardo
- Microbial Ecology and Nutrition Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Inmaculada López-Almela
- Microbial Ecology and Nutrition Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Isabel Campillo
- Microbial Ecology and Nutrition Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Marina Romaní-Pérez
- Microbial Ecology and Nutrition Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Yolanda Sanz
- Microbial Ecology and Nutrition Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| |
Collapse
|
36
|
Chen JM, Li QW, Jiang GX, Zeng SJ, Shen J, Sun J, Wu DH, Cheng Q. Association of neck circumference and cognitive impairment among Chinese elderly. Brain Behav 2018. [PMID: 29541547 PMCID: PMC5840437 DOI: 10.1002/brb3.937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES To investigate the association between neck circumference (NC) and cognitive impairment and interactions between relevant variables to the risk of cognitive impairment. METHODS A population-based survey was conducted among elderly inhabitants aged 60 years and over from a community in Shanghai suburb. Multivariate logistic regression analyses were performed to evaluate associations and log likelihood ratio tests to examine interactions. RESULTS Cognitive impairment was identified in 269 (10.8%) subjects from 2,500 participants. Higher BMI (OR = 1.55; 95% CI = 1.11-2.16), higher WHR (OR = 1.44; 95% CI = 1.07-1.95), and higher total cholesterol (TC) (OR = 1.52; 95% CI = 1.09-2.13) were significantly associated with the increased risk of cognitive impairment. Significant interactions were observed between TC and a few other relevant variables, respectively. CONCLUSIONS NC was associated with the high risk of cognitive impairment. Additive effects of NC with TC on cognitive impairment were observed.
Collapse
Affiliation(s)
- Jin-Mei Chen
- Department of Neurology Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine Discipline Construction Research Center of China Hospital Development Institute Shanghai Jiao Tong University Shanghai China.,School of Public Health Shanghai Jiao Tong University Shanghai China
| | - Qing-Wei Li
- Department of Psychiatry Tongji Hospital Tongji University School of Medicine Shanghai China.,Shanghai Mental Health Central Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Guo-Xin Jiang
- Department of Public Health Sciences Karolinska Institute Stockholm Sweden
| | - Shu-Jun Zeng
- School of Public Health Shanghai Jiao Tong University Shanghai China
| | - Jun Shen
- Department of Neurology Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine Discipline Construction Research Center of China Hospital Development Institute Shanghai Jiao Tong University Shanghai China
| | - Ji Sun
- Department of Neurology Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine Discipline Construction Research Center of China Hospital Development Institute Shanghai Jiao Tong University Shanghai China
| | - Dan-Hong Wu
- Department of Neurology Shanghai Fifth People's Hospital Fudan University Shanghai China
| | - Qi Cheng
- Department of Neurology Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine Discipline Construction Research Center of China Hospital Development Institute Shanghai Jiao Tong University Shanghai China.,School of Public Health Shanghai Jiao Tong University Shanghai China
| |
Collapse
|
37
|
Park HS, Cho HS, Kim TW. Physical exercise promotes memory capability by enhancing hippocampal mitochondrial functions and inhibiting apoptosis in obesity-induced insulin resistance by high fat diet. Metab Brain Dis 2018; 33:283-292. [PMID: 29185193 DOI: 10.1007/s11011-017-0160-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/20/2017] [Indexed: 01/04/2023]
Abstract
A high-fat diet induces obesity in mice, leading to insulin resistance, decreased mitochondrial function, and increased apoptosis in the hippocampus, which eventually result in memory loss. The present study investigated the effect of physical exercise on memory, hippocampal mitochondrial function, and apoptosis in mice with in insulin resistance caused by obesity due to high-fat diet. Mice were randomly divided into four groups: control (CON), control and exercise (CON + EX), high fat diet (HFD), and high fat diet and exercise (HFD + EX). After receiving a high-fat (60%) diet for 20 weeks to induce obesity, the animals were subjected to an exercise routine 6 times per week, for 12 weeks. The exercise duration and intensity gradually increased over 4-week intervals. Hippocampal memory was examined using the step-down avoidance task. Mitochondrial function and apoptosis were also examined in the hippocampus and dentate gyrus. We found that obesity owing to a high-fat diet induced insulin resistance and caused a decrease in memory function. Insulin resistance also caused a decrease in mitochondrial function in the hippocampus by reducing Ca2+ retention and O2, respiration, increasing the levels of H2O2, and Cyp-D, and mPTP opening. In addition, apoptosis in the hippocampus increased owing to decreased expression of Bcl-2 and increased expression of Bax, cytochrome c, and caspase-3 and TUNEL-positive cells. In contrast, physical exercise led to reduced insulin resistance, improved mitochondrial function, and reduced apoptosis in the hippocampus. The results suggest that physiological stimulations such as exercise improve hippocampal function and suppress apoptosis, potentially preventing the memory loss associated with obesity-induced insulin resistance.
Collapse
Affiliation(s)
- Hye-Sang Park
- Department of Physiology, College of Medicine, Kyung-Hee University, Seoul, Republic of Korea
| | - Han-Sam Cho
- Department of Physiology, College of Medicine, Kyung-Hee University, Seoul, Republic of Korea
| | - Tae-Woon Kim
- Department of Physiology, College of Medicine, Kyung-Hee University, Seoul, Republic of Korea.
- Exercise Rehabilitation Research Institute, Department of Exercise & Health Science, SangMyung University, Seoul, Republic of Korea.
| |
Collapse
|
38
|
Dietary inflammatory index and memory function: population-based national sample of elderly Americans. Br J Nutr 2018; 119:552-558. [PMID: 29361990 DOI: 10.1017/s0007114517003804] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The objective of this study was to examine the association between dietary inflammatory potential and memory and cognitive functioning among a representative sample of the US older adult population. Cross-sectional data from the 2011-2012 and 2013-2014 National Health and Nutrition Examination Survey were utilised to identify an aggregate sample of adults 60-85 years of age (n 1723). Dietary inflammatory index (DII®) scores were calculated using 24-h dietary recall interviews. Three memory-related assessments were employed, including the Consortium to Establish a Registry for Alzheimer's disease (CERAD) Word Learning subset, the Animal Fluency test and the Digit Symbol Substitution Test (DSST). Inverse associations were observed between DII scores and the different memory parameters. Episodic memory (CERAD) (b adjusted=-0·39; 95 % CI -0·79, 0·00), semantic-based memory (Animal Fluency Test) (b adjusted=-1·18; 95 % CI -2·17, -0·20) and executive function and working-memory (DSST) (b adjusted=-2·80; 95 % CI -5·58, -0·02) performances were lowest among those with the highest mean DII score. Though inverse relationships were observed between DII scores and memory and cognitive functioning, future work is needed to further explore the neurobiological mechanisms underlying the complex relationship between inflammation-related dietary behaviour and memory and cognition.
Collapse
|
39
|
Wang Q, Yuan J, Yu Z, Lin L, Jiang Y, Cao Z, Zhuang P, Whalen MJ, Song B, Wang XJ, Li X, Lo EH, Xu Y, Wang X. FGF21 Attenuates High-Fat Diet-Induced Cognitive Impairment via Metabolic Regulation and Anti-inflammation of Obese Mice. Mol Neurobiol 2017; 55:4702-4717. [PMID: 28712011 DOI: 10.1007/s12035-017-0663-7] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/15/2017] [Indexed: 12/25/2022]
Abstract
Accumulating studies suggest that overnutrition-associated obesity may lead to development of type 2 diabetes mellitus and metabolic syndromes (MetS). MetS and its components are important risk factors of mild cognitive impairment, age-related cognitive decline, vascular dementia, and Alzheimer's disease. It has been recently proposed that development of a disease-course modification strategy toward early and effective risk factor management would be clinically significant in reducing the risk of metabolic disorder-initiated cognitive decline. In the present study, we propose that fibroblast growth factor 21 (FGF21) is a novel candidate for the disease-course modification approach. Using a high-fat diet (HFD) consumption-induced obese mouse model, we tested our hypothesis that recombinant human FGF21 (rFGF21) administration is effective for improving obesity-induced cognitive dysfunction and anxiety-like behavior, by its multiple metabolic modulation and anti-pro-inflammation actions. Our experimental findings support our hypothesis that rFGF21 is protective to HFD-induced cognitive impairment, at least in part by metabolic regulation in glucose tolerance impairment, insulin resistance, and hyperlipidemia; potent systemic pro-inflammation inhibition; and improvement of hippocampal dysfunction, particularly by inhibiting pro-neuroinflammation and neurogenesis deficit. This study suggests that FGF21 might be a novel molecular target of the disease-course-modifying strategy for early intervention of MstS-associated cognitive decline.
Collapse
Affiliation(s)
- Qingzhi Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450007, China.,Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Jing Yuan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450007, China.,Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Zhanyang Yu
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Li Lin
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yinghua Jiang
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Zeyuan Cao
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Pengwei Zhuang
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Michael J Whalen
- Neurobehavioral Core Facility, Department of Pediatrics, Pediatric Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Bo Song
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450007, China
| | - Xiao-Jie Wang
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaokun Li
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450007, China.
| | - Xiaoying Wang
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA.
| |
Collapse
|
40
|
Fidaleo M, Cavallucci V, Pani G. Nutrients, neurogenesis and brain ageing: From disease mechanisms to therapeutic opportunities. Biochem Pharmacol 2017; 141:63-76. [PMID: 28539263 DOI: 10.1016/j.bcp.2017.05.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/19/2017] [Indexed: 02/08/2023]
Abstract
Appreciation of the physiological relevance of mammalian adult neurogenesis has in recent years rapidly expanded from a phenomenon of homeostatic cell replacement and brain repair to the current view of a complex process involved in high order cognitive functions. In parallel, an array of endogenous or exogenous triggers of neurogenesis has also been identified, among which metabolic and nutritional cues have drawn significant attention. Converging evidence from animal and in vitro studies points to nutrient sensing and energy metabolism as major physiological determinants of neural stem cell fate, and modulators of the whole neurogenic process. While the cellular and molecular circuitries underlying metabolic regulation of neurogenesis are still incompletely understood, the key role of mitochondrial activity and dynamics, and the importance of autophagy have begun to be fully appreciated; moreover, nutrient-sensitive pathways and transducers such as the insulin-IGF cascade, the AMPK/mTOR axis and the transcription regulators CREB and Sirt-1 have been included, beside more established "developmental" signals like Notch and Wnt, in the molecular networks that dictate neural-stem-cell self-renewal, migration and differentiation in response to local and systemic inputs. Many of these nutrient-related cascades are deregulated in the contest of metabolic diseases and in ageing, and may contribute to impaired neurogenesis and thus to cognition defects observed in these conditions. Importantly, accumulating knowledge on the metabolic control of neurogenesis provides a theoretical framework for the trial of new or repurposed drugs capable of interfering with nutrient sensing as enhancers of neurogenesis in the context of neurodegeneration and brain senescence.
Collapse
Affiliation(s)
- Marco Fidaleo
- Institute of General Pathology, Università Cattolica School of Medicine, 00168 Rome, Italy
| | - Virve Cavallucci
- Institute of General Pathology, Università Cattolica School of Medicine, 00168 Rome, Italy
| | - Giovambattista Pani
- Institute of General Pathology, Università Cattolica School of Medicine, 00168 Rome, Italy.
| |
Collapse
|
41
|
Klein C, Schreyer S, Kohrs FE, Elhamoury P, Pfeffer A, Munder T, Steiner B. Stimulation of adult hippocampal neurogenesis by physical exercise and enriched environment is disturbed in a CADASIL mouse model. Sci Rep 2017; 7:45372. [PMID: 28345617 PMCID: PMC5366944 DOI: 10.1038/srep45372] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/23/2017] [Indexed: 01/16/2023] Open
Abstract
In the course of CADASIL (Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy), a dysregulated adult hippocampal neurogenesis has been suggested as a potential mechanism for early cognitive decline. Previous work has shown that mice overexpressing wild type Notch3 and mice overexpressing Notch3 with a CADASIL mutation display impaired cell proliferation and survival of newly born hippocampal neurons prior to vascular abnormalities. Here, we aimed to elucidate how the long-term survival of these newly generated neurons is regulated by Notch3. Knowing that adult neurogenesis can be robustly stimulated by physical exercise and environmental enrichment, we also investigated the influence of such stimuli as potential therapeutic instruments for a dysregulated hippocampal neurogenesis in the CADASIL mouse model. Therefore, young-adult female mice were housed in standard (STD), environmentally enriched (ENR) or running wheel cages (RUN) for either 28 days or 6 months. Mice overexpressing mutated Notch3 and developing CADASIL (TgN3R169C), and mice overexpressing wild type Notch3 (TgN3WT) were used. We found that neurogenic stimulation by RUN and ENR is apparently impaired in both transgenic lines. The finding suggests that a disturbed neurogenic process due to Notch3-dependent micromilieu changes might be one vascular-independent mechanism contributing to cognitive decline observed in CADASIL.
Collapse
Affiliation(s)
- C Klein
- Charité - University Medicine, Department of Neurology, Berlin, Germany
| | - S Schreyer
- Charité - University Medicine, Department of Neurology, Berlin, Germany
| | - F E Kohrs
- Charité - University Medicine, Department of Neurology, Berlin, Germany
| | - P Elhamoury
- Charité - University Medicine, Department of Neurology, Berlin, Germany
| | - A Pfeffer
- Charité - University Medicine, Department of Neurology, Berlin, Germany
| | - T Munder
- Charité - University Medicine, Department of Neurology, Berlin, Germany
| | - B Steiner
- Charité - University Medicine, Department of Neurology, Berlin, Germany
| |
Collapse
|
42
|
Morin JP, Rodríguez-Durán LF, Guzmán-Ramos K, Perez-Cruz C, Ferreira G, Diaz-Cintra S, Pacheco-López G. Palatable Hyper-Caloric Foods Impact on Neuronal Plasticity. Front Behav Neurosci 2017; 11:19. [PMID: 28261067 PMCID: PMC5306218 DOI: 10.3389/fnbeh.2017.00019] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/23/2017] [Indexed: 01/01/2023] Open
Abstract
Neural plasticity is an intrinsic and essential characteristic of the nervous system that allows animals “self-tuning” to adapt to their environment over their lifetime. Activity-dependent synaptic plasticity in the central nervous system is a form of neural plasticity that underlies learning and memory formation, as well as long-lasting, environmentally-induced maladaptive behaviors, such as drug addiction and overeating of palatable hyper-caloric (PHc) food. In western societies, the abundance of PHc foods has caused a dramatic increase in the incidence of overweight/obesity and related disorders. To this regard, it has been suggested that increased adiposity may be caused at least in part by behavioral changes in the affected individuals that are induced by the chronic consumption of PHc foods; some authors have even drawn attention to the similarity that exists between over-indulgent eating and drug addiction. Long-term misuse of certain dietary components has also been linked to chronic neuroimmune maladaptation that may predispose individuals to neurodegenerative conditions such as Alzheimer’s disease. In this review article, we discuss recent evidence that shows how consumption of PHc food can cause maladaptive neural plasticity that converts short-term ingestive drives into compulsive behaviors. We also discuss the neural mechanisms of how chronic consumption of PHc foods may alter brain function and lead to cognitive impairments, focusing on prenatal, childhood and adolescence as vulnerable neurodevelopmental stages to dietary environmental insults. Finally, we outline a societal agenda for harnessing permissive obesogenic environments.
Collapse
Affiliation(s)
- Jean-Pascal Morin
- Department of Health Sciences, Metropolitan Autonomous University (UAM)Lerma, Mexico; Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-EssenEssen, Germany
| | - Luis F Rodríguez-Durán
- Department of Health Sciences, Metropolitan Autonomous University (UAM)Lerma, Mexico; Laboratory of Neurobiology of Learning and Memory, Division of Research and Graduate Studies, Faculty of Psychology, National Autonomous University of Mexico (UNAM)Mexico City, Mexico
| | - Kioko Guzmán-Ramos
- Department of Health Sciences, Metropolitan Autonomous University (UAM) Lerma, Mexico
| | - Claudia Perez-Cruz
- Department of Pharmacology, Center of Research and Advance Studies (CINVESTAV) Mexico City, Mexico
| | - Guillaume Ferreira
- Laboratory of Nutrition and Integrative Neurobiology, National Institute of Agricultural Research (INRA), UMR 1286Bordeaux, France; Laboratory of Nutrition and Integrative Neurobiology, Université de BordeauxBordeaux, France
| | - Sofia Diaz-Cintra
- Institute of Neurobiology, National Autonomous University of Mexico (UNAM) Queretaro, Mexico
| | - Gustavo Pacheco-López
- Department of Health Sciences, Metropolitan Autonomous University (UAM)Lerma, Mexico; Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) ZurichSchwerzenbach, Switzerland
| |
Collapse
|
43
|
A high fat diet-induced decrease in hippocampal newly-born neurons of male mice is exacerbated by mild psychological stress using a Communication Box. J Affect Disord 2017; 209:209-216. [PMID: 27930914 DOI: 10.1016/j.jad.2016.11.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/26/2016] [Accepted: 11/15/2016] [Indexed: 01/25/2023]
Abstract
BACKGROUND Obese persons have a higher incidence of depression than healthy-weight persons. Several studies indicated that the exposure to a high fat diet (HFD) results in a decrease in hippocampal neurogenesis, which leads to higher stress response and stress-induced depression. Although stress is a risk factor for obesity and depression, no studies to date have investigated the effect of stress on the hippocampal neurogenesis of HFD-induced obese animals. The aim of this study was to elucidate whether or not obese HFD-fed mice are vulnerable to stress-induced depression by investigating hippocampal neurogenesis. METHODS Sixty-four male ICR mice (four weeks of age) were fed a control (N=24) or 45%HFD (N=40) for seven weeks. Of the HFD-fed group, twenty-four mice met the criteria for "diet-induced obesity". The animals were then exposed to three consecutive days of psychological stress using a Communication Box. Half were sacrificed to evaluate the physiological changes, and the other half were perfused to quantify hippocampal neuroblasts/immature neurons by the estimation of doublecortin-immunopositive cells. RESULTS In the HFD-fed mice, psychological stress resulted in increases in caloric intake and visceral adipose tissue and a significant decrease in doublecortin-positive cells in the dentate gyrus; however, no such differences were found in the control diet-fed group. Limitations Further study using other neurogenic markers to assess the stage-specific changes in hippocampal neurogenesis will be required CONCLUSIONS: Our findings suggest that an HFD-induced decrease in hippocampal newly-born neurons leads to stress vulnerability, which may contribute to a high risk of stress-induced depression for obese persons.
Collapse
|
44
|
Liu Z, Sun Y, Qiao Q, Zhao T, Zhang W, Ren B, Liu Q, Liu X. Sesamol ameliorates high-fat and high-fructose induced cognitive defects via improving insulin signaling disruption in the central nervous system. Food Funct 2017; 8:710-719. [DOI: 10.1039/c6fo01562j] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The present study demonstrated that sesamol prevents high-fat and high-fructose diet induced systemic insulin resistance and cognitive defects via stimulating PI3K/Akt signaling, improving ERK/CREB/BDNF cascades, and preserving mitochondrial function.
Collapse
Affiliation(s)
- Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food
- College of Food Science and Engineering
- Northwest A&F University
- Yangling
- China
| | - Yali Sun
- Laboratory of Functional Chemistry and Nutrition of Food
- College of Food Science and Engineering
- Northwest A&F University
- Yangling
- China
| | - Qinglian Qiao
- Laboratory of Functional Chemistry and Nutrition of Food
- College of Food Science and Engineering
- Northwest A&F University
- Yangling
- China
| | - Tong Zhao
- Laboratory of Functional Chemistry and Nutrition of Food
- College of Food Science and Engineering
- Northwest A&F University
- Yangling
- China
| | - Wentong Zhang
- Laboratory of Functional Chemistry and Nutrition of Food
- College of Food Science and Engineering
- Northwest A&F University
- Yangling
- China
| | - Bo Ren
- Laboratory of Functional Chemistry and Nutrition of Food
- College of Food Science and Engineering
- Northwest A&F University
- Yangling
- China
| | - Qian Liu
- Laboratory of Functional Chemistry and Nutrition of Food
- College of Food Science and Engineering
- Northwest A&F University
- Yangling
- China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food
- College of Food Science and Engineering
- Northwest A&F University
- Yangling
- China
| |
Collapse
|
45
|
Lee JM, Park JM, Song MK, Kim YJ, Kim YJ. Comparison of the behavioral effects of exercise and high fat diet on cognitive function in adolescent rats. J Exerc Rehabil 2016; 12:520-525. [PMID: 28119872 PMCID: PMC5227312 DOI: 10.12965/jer.1632856.428] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 11/28/2016] [Indexed: 12/20/2022] Open
Abstract
Adolescence is a critical period for neurodevelopment, neuronal plasticity, and cognitive function. Experiences of adolescence can be exerted positive and negative effects on brain development. Physical exercise has a positive effect on brain function, which is characterized by improving memory function and increased neural plasticity. High fat diet (HFD)-induced obesity has a negative effect on brain function, which is characterized by insulin resistance and neuroinflammation and reduced microvessel constructure. Although the positive effect of exercise and negative effect of obesity on cognitive function have been documented, it has not been well whether comparison of the effects of exercise and obesity on cognitive function in adolescent rats. In the present study, we evaluated the behavioral changes related to cognitive function induced by exercise and obesity in adolescent rats. Male Wistar rats were randomly divided into three groups: the control group (CON), the exercise group (Ex), the high fat diet group (HFD). The HFD containing fat 60% was freely provided. The present results showed that spatial learning ability and short-term memory did not show significant effect exercise as compared to the control group. The present results showed that spatial learning ability and short-term memory was significantly decreased HFD-induced obesity group as compared to the control group. These results suggest that positive effect of physical exercise in adolescence rats may be exerted no significant effect on cognitive function. But, negative effect of HFD-induced obesity might induce cognitive impairment. HFD-induced obesity in adolescent rats may be used as an animal model of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Jae-Min Lee
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Jong-Min Park
- Department of Basic Nursing Science, College of Nursing Science, Kyung Hee University, Seoul, Korea
| | - Min Kyung Song
- Department of Basic Nursing Science, College of Nursing Science, Kyung Hee University, Seoul, Korea
| | - Yoon Ju Kim
- Department of Basic Nursing Science, College of Nursing Science, Kyung Hee University, Seoul, Korea
| | - Youn-Jung Kim
- Department of Basic Nursing Science, College of Nursing Science, Kyung Hee University, Seoul, Korea
| |
Collapse
|
46
|
Boitard C, Parkes SL, Cavaroc A, Tantot F, Castanon N, Layé S, Tronel S, Pacheco-Lopez G, Coutureau E, Ferreira G. Switching Adolescent High-Fat Diet to Adult Control Diet Restores Neurocognitive Alterations. Front Behav Neurosci 2016; 10:225. [PMID: 27917115 PMCID: PMC5116459 DOI: 10.3389/fnbeh.2016.00225] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/08/2016] [Indexed: 11/18/2022] Open
Abstract
In addition to metabolic and cardiovascular disorders, obesity is associated with adverse cognitive and emotional outcomes. Its growing prevalence in adolescents is particularly alarming since this is a period of ongoing maturation for brain structures (including the hippocampus and amygdala) and for the hypothalamic-pituitary-adrenal (HPA) stress axis, which is required for cognitive and emotional processing. We recently demonstrated that adolescent, but not adult, high-fat diet (HF) exposure leads to impaired hippocampal function and enhanced amygdala function through HPA axis alteration (Boitard et al., 2012, 2014, 2015). Here, we assessed whether the effects of adolescent HF consumption on brain function are permanent or reversible. After adolescent exposure to HF, switching to a standard control diet restored levels of hippocampal neurogenesis and normalized enhanced HPA axis reactivity, amygdala activity and avoidance memory. Therefore, while the adolescent period is highly vulnerable to the deleterious effects of diet-induced obesity, adult exposure to a standard diet appears sufficient to reverse alterations of brain function.
Collapse
Affiliation(s)
- Chloé Boitard
- Institut national de la Recherche Agronomique (INRA), Nutrition and Integrative Neurobiology, UMR 1286Bordeaux, France
- Université de BordeauxBordeaux, France
| | - Shauna L. Parkes
- Institut national de la Recherche Agronomique (INRA), Nutrition and Integrative Neurobiology, UMR 1286Bordeaux, France
- Université de BordeauxBordeaux, France
- Centre National de la Recherche Scientifique (CNRS), Institut de Neurosciences Cognitives et Intégratives d’Aquitaine, UMR 5287Bordeaux, France
| | - Amandine Cavaroc
- Institut national de la Recherche Agronomique (INRA), Nutrition and Integrative Neurobiology, UMR 1286Bordeaux, France
- Université de BordeauxBordeaux, France
| | - Frédéric Tantot
- Institut national de la Recherche Agronomique (INRA), Nutrition and Integrative Neurobiology, UMR 1286Bordeaux, France
- Université de BordeauxBordeaux, France
| | - Nathalie Castanon
- Institut national de la Recherche Agronomique (INRA), Nutrition and Integrative Neurobiology, UMR 1286Bordeaux, France
- Université de BordeauxBordeaux, France
| | - Sophie Layé
- Institut national de la Recherche Agronomique (INRA), Nutrition and Integrative Neurobiology, UMR 1286Bordeaux, France
- Université de BordeauxBordeaux, France
| | - Sophie Tronel
- Université de BordeauxBordeaux, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 Neuro Centre MagendieBordeaux, France
| | - Gustavo Pacheco-Lopez
- Biological and Health Sciences Division, Campus Lerma, Metropolitan Autonomous University (UAM)Lerma, Mexico
| | - Etienne Coutureau
- Université de BordeauxBordeaux, France
- Centre National de la Recherche Scientifique (CNRS), Institut de Neurosciences Cognitives et Intégratives d’Aquitaine, UMR 5287Bordeaux, France
| | - Guillaume Ferreira
- Institut national de la Recherche Agronomique (INRA), Nutrition and Integrative Neurobiology, UMR 1286Bordeaux, France
- Université de BordeauxBordeaux, France
| |
Collapse
|
47
|
Portela LV, Brochier AW, Haas CB, de Carvalho AK, Gnoato JA, Zimmer ER, Kalinine E, Pellerin L, Muller AP. Hyperpalatable Diet and Physical Exercise Modulate the Expression of the Glial Monocarboxylate Transporters MCT1 and 4. Mol Neurobiol 2016; 54:5807-5814. [DOI: 10.1007/s12035-016-0119-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/12/2016] [Indexed: 12/17/2022]
|
48
|
Pagnotti GM, Styner M. Exercise Regulation of Marrow Adipose Tissue. Front Endocrinol (Lausanne) 2016; 7:94. [PMID: 27471493 PMCID: PMC4943947 DOI: 10.3389/fendo.2016.00094] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 07/04/2016] [Indexed: 12/20/2022] Open
Abstract
Despite association with low bone density and skeletal fractures, marrow adipose tissue (MAT) remains poorly understood. The marrow adipocyte originates from the mesenchymal stem cell (MSC) pool that also gives rise to osteoblasts, chondrocytes, and myocytes, among other cell types. To date, the presence of MAT has been attributed to preferential biasing of MSC into the adipocyte rather than osteoblast lineage, thus negatively impacting bone formation. Here, we focus on understanding the physiology of MAT in the setting of exercise, dietary interventions, and pharmacologic agents that alter fat metabolism. The beneficial effect of exercise on musculoskeletal strength is known: exercise induces bone formation, encourages growth of skeletally supportive tissues, inhibits bone resorption, and alters skeletal architecture through direct and indirect effects on a multiplicity of cells involved in skeletal adaptation. MAT is less well studied due to the lack of reproducible quantification techniques. In recent work, osmium-based 3D quantification shows a robust response of MAT to both dietary and exercise intervention in that MAT is elevated in response to high-fat diet and can be suppressed following daily exercise. Exercise-induced bone formation correlates with suppression of MAT, such that exercise effects might be due to either calorie expenditure from this depot or from mechanical biasing of MSC lineage away from fat and toward bone, or a combination thereof. Following treatment with the anti-diabetes drug rosiglitazone - a PPARγ-agonist known to increase MAT and fracture risk - mice demonstrate a fivefold higher femur MAT volume compared to the controls. In addition to preventing MAT accumulation in control mice, exercise intervention significantly lowers MAT accumulation in rosiglitazone-treated mice. Importantly, exercise induction of trabecular bone volume is unhindered by rosiglitazone. Thus, despite rosiglitazone augmentation of MAT, exercise significantly suppresses MAT volume and induces bone formation. That exercise can both suppress MAT volume and increase bone quantity, notwithstanding the skeletal harm induced by rosiglitazone, underscores exercise as a powerful regulator of bone remodeling, encouraging marrow stem cells toward the osteogenic lineage to fulfill an adaptive need for bone formation. Thus, exercise represents an effective strategy to mitigate the deleterious effects of overeating and iatrogenic etiologies on bone and fat.
Collapse
Affiliation(s)
- Gabriel M. Pagnotti
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Maya Styner
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
- *Correspondence: Maya Styner,
| |
Collapse
|