1
|
Zou B, Long Y, Gao R, Liu Q, Tian X, Liu B, Zhou Q. Nanodelivery system of traditional Chinese medicine bioactive compounds: Application in the treatment of prostate cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:155554. [PMID: 39341127 DOI: 10.1016/j.phymed.2024.155554] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND The long history of clinical experience in China have confirmed the effectiveness of traditional Chinese medicine (TCM) in treating prostate cancer (PCa). Until now, several bioactive compounds with anti-PCa potential, such as curcumin, gallic acid, and quercetin, have been extracted from TCM. Recent studies have shown that encapsulating these TCM bioactive compounds into nano-delivery system enhanced their bioavailability and improved their ability to target PCa tumors. PURPOSE This review aims to summarize the anti-PCa effects and molecular mechanisms of TCM bioactive compounds and discuss the clinical application prospects and future research trends of nano-delivery system based on these compounds. METHODS Literatures focusing on the treatment of PCa using traditional Chinese medicine compounds via nano-drug delivery system were searched from Electronic databases, including PubMed, Web of Science, and Scopus until December 2023. RESULTS Polyphenols, alkaloids, terpenes, and quinones exhibit anti-PCa effects through various pathways. Notably, compounds like curcumin, gallic acid, quercetin, and tanshinone have been extensively studied in nano-delivery systems for anti-PCa purpose. Nano-delivery systems enhance the biological activity of free compounds and reduce toxic side effects, as well. Commonly used nanomaterials for delivering TCM compounds include polymer nanomaterials, liposomes, solid lipid nanoparticles, nanostructured lipid carriers, and niosomes. CONCLUSION Research on nano-delivery systems for TCM bioactive compounds holds promising prospects for anti-PCa therapy. However, extensive clinical trials are necessary to evaluate the effectiveness and safety of these nanodrugs.
Collapse
Affiliation(s)
- Bo Zou
- The First Hospital of Hunan University of Chinese Medicine, 95, Changsha 410007, Hunan, China
| | - Yan Long
- The First Hospital of Hunan University of Chinese Medicine, 95, Changsha 410007, Hunan, China
| | - Ruisong Gao
- The First Hospital of Hunan University of Chinese Medicine, 95, Changsha 410007, Hunan, China
| | - Qizhi Liu
- Hunan University of Chinese Medicine, 300, Changsha 410208, Hunan, China
| | - Xuefei Tian
- Hunan University of Chinese Medicine, 300, Changsha 410208, Hunan, China
| | - Bin Liu
- College of Biology of Hunan University, Changsha 410208, Hunan, China.
| | - Qing Zhou
- The First Hospital of Hunan University of Chinese Medicine, 95, Changsha 410007, Hunan, China.
| |
Collapse
|
2
|
Markowska J, Kasprzak-Drozd K, Niziński P, Dragan M, Kondracka A, Gondek E, Oniszczuk T, Oniszczuk A. Quercetin: A Promising Candidate for the Management of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Molecules 2024; 29:5245. [PMID: 39598636 PMCID: PMC11596905 DOI: 10.3390/molecules29225245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a chronic liver disease. The development of MASLD is influenced by a multitude of diseases associated with modern lifestyles, including but not limited to diabetes mellitus, hypertension, hyperlipidaemia and obesity. These conditions are often consequences of the adoption of unhealthy habits, namely a sedentary lifestyle, a lack of physical activity, poor dietary choices and excessive alcohol consumption. The treatment of MASLD is primarily based on modifying the patient's lifestyle and pharmacological intervention. Despite the absence of FDA-approved pharmacological agents for the treatment of MASLD, several potential therapeutic modalities have demonstrated efficacy in reversing the histopathological features of the disease. Among the botanical ingredients belonging to the flavonoid group is quercetin (QE). QE has been demonstrated to possess a number of beneficial physiological effects, including anti-inflammatory, anticancer and antifungal properties. Additionally, it functions as a natural antioxidant. Preclinical evidence indicates that QE may play a beneficial role in reducing liver damage and improving metabolic health. Early human studies also suggest that QE may be an effective treatment for MASLD due to its antioxidant, anti-inflammatory, and lipid-regulating properties. This review aims to summarize the available information on the therapeutic effects of QE in MASLD.
Collapse
Affiliation(s)
- Julia Markowska
- Science Circle of the Department of Inorganic Chemistry, Medical University of Lublin, Dr. Witolda Chodźki 4a, 20-093 Lublin, Poland; (J.M.); (M.D.)
| | - Kamila Kasprzak-Drozd
- Department of Inorganic Chemistry, Medical University of Lublin, Dr. Witolda Chodźki 4a, 20-093 Lublin, Poland;
| | - Przemysław Niziński
- Department of Pharmacology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland;
| | - Magdalena Dragan
- Science Circle of the Department of Inorganic Chemistry, Medical University of Lublin, Dr. Witolda Chodźki 4a, 20-093 Lublin, Poland; (J.M.); (M.D.)
| | - Adrianna Kondracka
- Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, 20-081 Lublin, Poland;
| | - Ewa Gondek
- Department of Food Engineering and Process Management, Institute of Food Science, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776 Warsaw, Poland
| | - Tomasz Oniszczuk
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland;
| | - Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, Dr. Witolda Chodźki 4a, 20-093 Lublin, Poland;
| |
Collapse
|
3
|
Sultan WS, Mahmoud AM, Ahmed SA, Alruhaimi RS, Alzoghaibi MA, El-Bassuony AA, Hasona NA, Kamel EM. Phytochemical Analysis and Anti-dyslipidemia and Antioxidant Activities of Pluchea dioscoridis: In Vitro, In Silico and In Vivo Studies. Chem Biodivers 2024; 21:e202400842. [PMID: 38884416 DOI: 10.1002/cbdv.202400842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/18/2024]
Abstract
Pluchea dioscoridis (L.) DC. is a flowering wild plant used traditionally in the treatment of rhematic disorders. This study investigated the phytochemical and in vitro radical scavenging activity (RSA), and in vivo anti-hyperlipidemic, antioxidant and anti-inflammatory properties of P. dioscoridis. The antihyperlipidemic efficacy was determined in a rat model of dyslipidemia. The extract and fractions of P. dioscoridis showed RSA with the ethyl acetate (EA) fraction exhibiting the most potent activity. The phytochemical analysis of P. dioscoridis EA fraction (PDEAF) led to the isolation of five compounds (lupeol, quercetin, lupeol acetate, stigmasterol, and syringic acid). To evaluate its anti-hyperlipidemic effect, three doses of PDEAF were supplemented to rats for 14 days and poloxamer-407 was administered on day 15 to induce dyslipidemia. All doses of PDEAF decreased plasma triglycerides, cholesterol, low-density lipoprotein-cholesterol (LDL-C) and very low-density lipoprotein-cholesterol (vLDL-C), and increased plasma lipoprotein lipase (LPL). PDEAF upregulated hepatic LDL receptor and suppressed 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, decreased lipid peroxidation and tumor necrosis factor (TNF)-α and enhanced reduced glutathione (GSH) and enzymatic antioxidants in dyslipidmeic rats. In silico findings revealed the binding affinity of the isolated compounds towards LPL, HMG-CoA reductase, and LDL receptor. In conclusion, P. dioscoridis is rich in phytoconstituents, exhibited RSA and its EA fraction effectively prevented acute dyslipidemia and its associated oxidative stress and inflammatory response.
Collapse
Affiliation(s)
- Wageha S Sultan
- Department of Chemistry, Research Institute of Medicinal and Aromatic Plants, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Ayman M Mahmoud
- Department of Life Sciences, Faculty of Science & Engineering, Manchester Metropolitan University, Manchester, M1 5GD, UK
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Shimaa A Ahmed
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Reem S Alruhaimi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Mohammed A Alzoghaibi
- Physiology Department, College of Medicine, King Saud University, Riyadh, 11461, Saudi Arabia
| | - Ashraf A El-Bassuony
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Nabil A Hasona
- Biochemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Emadeldin M Kamel
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
| |
Collapse
|
4
|
Li N, Cui C, Xu J, Mi M, Wang J, Qin Y. Quercetin intervention reduced hepatic fat deposition in patients with nonalcoholic fatty liver disease: a randomized, double-blind, placebo-controlled crossover clinical trial. Am J Clin Nutr 2024; 120:507-517. [PMID: 39032786 DOI: 10.1016/j.ajcnut.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) has become a growing public health problem worldwide. However, there is still lack of effective treatment strategies except lifestyle intervention. OBJECTIVES To evaluate whether quercetin improves intrahepatic lipid content in patients with NAFLD. METHODS In this randomized, double-blind, placebo-controlled crossover trial, 41 patients with NAFLD were randomly assigned to receive the quercetin (500 mg) or placebo capsules for 12 wk, then switched interventions for another 12 wk after a 4-wk washout period. The primary outcome was intrahepatic lipid content evaluated by magnetic resonance imaging estimated proton density fat fraction. The secondary outcomes were liver function measurements, etc. Safety outcomes included blood routine. RESULTS A total of 36 patients completed the trial. In intention-to-treat analyses, the quercetin intervention moderately decreased the intrahepatic lipid contents from 11.5% ± 6.4% to 9.6% ± 5.8%, compared with the placebo intervention (decreased by 0.1% ± 2.6%, P = 0.013 and adjusted P value is 0.028). Body weight and body mass index were mildly reduced by 1.5 ± 2.6 kg and 0.5 ± 0.9 kg/m2 after the quercetin intervention (P < 0.05 and both adjusted P values are 0.038), whereas the reductions were only 0.2 ± 1.8 kg and 0.1 ± 0.7 kg/m2 after the placebo intervention. The intrahepatic lipid content reductions were noticeably positively associated with the body weight losses after the quercetin and placebo interventions (r = 0.557 and 0.412, P < 0.001 and P = 0.007, respectively). Subgroup analyses found that the reduction of intrahepatic lipid contents in females (3.0% ± 3.7%) was about twice as large as that in males (1.4% ± 2.5%) with a trend of statistical significance (P = 0.113 and adjusted P value is 0.061). There were no significant differences in other secondary and safety outcomes. No adverse events associated with study intervention were found. CONCLUSIONS Twelve weeks treatment of quercetin could reduce intrahepatic lipid contents in patients with NAFLD, possibly explained by a slightly larger body weight loss in the quercetin group. TRIAL REGISTRATION The trial is registered at www.chictr.org.cn as ChiCTR2100047904.
Collapse
Affiliation(s)
- NingChao Li
- Department of Nutrition, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Chun Cui
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jing Xu
- Department of Endocrinology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - ManTian Mi
- Research Center for Nutrition and Health, Institute of Military Preventive Medicine, Army Medical University, Chongqing, China
| | - Jian Wang
- Department of Nutrition, Xinqiao Hospital, Army Medical University, Chongqing, China.
| | - Yu Qin
- Research Center for Nutrition and Health, Institute of Military Preventive Medicine, Army Medical University, Chongqing, China.
| |
Collapse
|
5
|
Lee K, Kim HJ, Kim JY, Shim JJ, Lee JH. A Mixture of Lactobacillus HY7601 and KY1032 Regulates Energy Metabolism in Adipose Tissue and Improves Cholesterol Disposal in High-Fat-Diet-Fed Mice. Nutrients 2024; 16:2570. [PMID: 39125449 PMCID: PMC11314552 DOI: 10.3390/nu16152570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024] Open
Abstract
We aimed to characterize the anti-obesity and anti-atherosclerosis effects of Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 using high-fat diet (HFD)-fed obese C57BL/6 mice. We divided the mice into control (CON), HFD, HFD with 108 CFU/kg/day probiotics (HFD + KL, HY7301:KY1032 = 1:1), and HFD with 109 CFU/kg/day probiotics (HFD + KH, HY7301:KY1032 = 1:1) groups and fed/treated them during 7 weeks. The body mass, brown adipose tissue (BAT), inguinal white adipose tissue (iWAT), and epididymal white adipose tissue (eWAT) masses and the total cholesterol and triglyceride concentrations were remarkably lower in probiotic-treated groups than in the HFD group in a dose-dependent manner. In addition, the expression of uncoupling protein 1 in the BAT, iWAT, and eWAT was significantly higher in probiotic-treated HFD mice than in the HFD mice, as demonstrated by immunofluorescence staining and Western blotting. We also measured the expression of cholesterol transport genes in the liver and jejunum and found that the expression of those encoding liver-X-receptor α, ATP-binding cassette transporters G5 and G8, and cholesterol 7α-hydroxylase were significantly higher in the HFD + KH mice than in the HFD mice. Thus, a Lactobacillus HY7601 and KY1032 mixture with 109 CFU/kg/day concentration can assist with body weight regulation through the management of lipid metabolism and thermogenesis.
Collapse
Affiliation(s)
| | | | - Joo-Yun Kim
- R&BD Center, Hy Co., Ltd., 22 Giheungdanji-ro 24 Beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (K.L.); (H.-J.K.); (J.-J.S.); (J.-H.L.)
| | | | | |
Collapse
|
6
|
Pu M, Wang Q, Hui Y, Zhao A, Wei L, Chen L, Wang B. Untargeted metabolomics analysis of probiotic jujube juice and its anti-obesity effects on high-fat-diet-induced obese mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:4989-5000. [PMID: 38308575 DOI: 10.1002/jsfa.13353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 02/05/2024]
Abstract
BACKGROUND Dietary intervention, including polyphenol consumption, is recognized as an effective strategy to prevent obesity. Although fermented jujube juice (FJJ) with lactic acid bacteria has been shown to be rich in polyphenols and have strong antioxidant properties, little is known about its anti-obesity properties. RESULTS Untargeted metabolomics was employed to identify and analyze the differential metabolites between FJJ and raw jujube juice. A total of 431 metabolites belonging to diverse classes and with various functional active ingredients were quantitatively identified. The animal experiments results showed that FJJ administration for 13 weeks significantly inhibited high-fat-diet-induced body and epididymal adipose weight gain, and improved the serum lipid parameters in obese mice. Additionally, DNA-sequencing results revealed that FJJ treatment increased Akkermansia abundance in the gut and changed the composition of fecal microbiota by decreasing the Firmicutes/Bacteroidota ratio and Helicobacter pylori abundance. CONCLUSION These findings suggest that FJJ contributes to regulating lipid accumulation and gut microbiota composition in high-fat-diet-induced obese mice, which helps to prevent obesity. Hence, FJJ has the potential to be a beneficial beverage for controlling obesity. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Meixue Pu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Qi Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Yuanyuan Hui
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Aiqing Zhao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Lusha Wei
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Li Chen
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Bini Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
7
|
Bhat S, Majeed Y, Yatoo GN, Hassan S, Khan T, Sofi PA, Ganai BA, Fazili KM, Zargar SM. Unravelling effects of phytochemicals from buckwheat on cholesterol metabolism and lipid accumulation in HepG2 cells and its validation through gene expression analysis. Mol Biol Rep 2024; 51:759. [PMID: 38874818 DOI: 10.1007/s11033-024-09695-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND The objective of this research was to elucidate the hypocholesterolemic effects of a bioactive compound extracted from buckwheat, and to delineate its influence on the regulatory mechanisms of cholesterol metabolism. The compound under investigation was identified as quercetin. MATERIAL AND RESULTS In vitro experiments conducted on HepG2 cells treated with quercetin revealed a significant reduction in intracellular cholesterol accumulation. This phenomenon was rigorously quantified by assessing the transcriptional activity of key genes involved in the biosynthesis and metabolism of cholesterol. A statistically significant reduction in the expression of HMG-CoA reductase (HMGCR) was observed, indicating a decrease in endogenous cholesterol synthesis. Conversely, an upregulation in the expression of cholesterol 7 alpha-hydroxylase (CYP7A1) was also observed, suggesting an enhanced catabolism of cholesterol to bile acids. Furthermore, the study explored the combinatory effects of quercetin and simvastatin, a clinically utilized statin, revealing a synergistic action in modulating cholesterol levels at various dosages. CONCLUSIONS The findings from this research provide a comprehensive insight into the mechanistic pathways through which quercetin, a phytochemical derived from buckwheat, exerts its hypocholesterolemic effects. Additionally, the observed synergistic interaction between quercetin and simvastatin opens up new avenues for the development of combined therapeutic strategies to manage hyperlipidemia.
Collapse
Affiliation(s)
- Sabreena Bhat
- CORD, University of Kashmir, Hazratbal, Srinagar, 190006, Jammu & Kashmir, India
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shalimar, Srinagar, 190025, Jammu & Kashmir, India
| | - Younis Majeed
- Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, 190006, Jammu & Kashmir, India
| | - Gulam Nabi Yatoo
- Department of Chemistry, National Institute of Technology Srinagar, Srinagar, 190006, Jammu & Kashmir, India
| | - Shahnawaz Hassan
- CORD, University of Kashmir, Hazratbal, Srinagar, 190006, Jammu & Kashmir, India
| | - Tamana Khan
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shalimar, Srinagar, 190025, Jammu & Kashmir, India
| | - Parvaze A Sofi
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shalimar, Srinagar, 190025, Jammu & Kashmir, India
| | - Bashir Ahmed Ganai
- CORD, University of Kashmir, Hazratbal, Srinagar, 190006, Jammu & Kashmir, India.
| | - Khalid Majid Fazili
- Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, 190006, Jammu & Kashmir, India
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shalimar, Srinagar, 190025, Jammu & Kashmir, India.
| |
Collapse
|
8
|
Yu Cai Lim M, Kiat Ho H. Pharmacological modulation of cholesterol 7α-hydroxylase (CYP7A1) as a therapeutic strategy for hypercholesterolemia. Biochem Pharmacol 2024; 220:115985. [PMID: 38154545 DOI: 10.1016/j.bcp.2023.115985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/30/2023]
Abstract
Despite the availability of many therapeutic options, the prevalence of hypercholesterolemia remains high. There exists a significant unmet medical need for novel drugs and/or treatment combinations to effectively combat hypercholesterolemia while minimizing adverse reactions. The modulation of cholesterol 7α-hydroxylase (CYP7A1) expression via perturbation of the farnesoid X receptor (FXR) - dependent pathways, primarily FXR/small heterodimer partner (SHP) and FXR/ fibroblast growth factor (FGF)-19/ fibroblast growth factor receptor (FGFR)-4 pathways, presents as a potential option to lower cholesterol levels. This paper provides a comprehensive review of the important role that CYP7A1 plays in cholesterol homeostasis and how its expression can be exploited to assert differential control of bile acid synthesis and cholesterol metabolism. Additionally, the paper also summarizes the current therapeutic options for hypercholesterolemia, and positions modulators of CYP7A1 expression, namely FGFR4 inhibitors and FXR antagonists, as emerging and distinct pharmacological agents to complement and diversify the treatment regime. Their mechanistic and clinical considerations are also extensively described to interrogate the benefits and risks associated with using FXR-mediating agents, either singularly or in combination with recognised agents such as statins to target hypercholesterolemia.
Collapse
Affiliation(s)
- Megan Yu Cai Lim
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Han Kiat Ho
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
9
|
Ziaei S, Alimohammadi‐Kamalabadi M, Hasani M, Malekahmadi M, Persad E, Heshmati J. The effect of quercetin supplementation on clinical outcomes in COVID-19 patients: A systematic review and meta-analysis. Food Sci Nutr 2023; 11:7504-7514. [PMID: 38107099 PMCID: PMC10724618 DOI: 10.1002/fsn3.3715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 12/19/2023] Open
Abstract
Coronavirus disease (COVID-19) affects both the respiratory system and the body as a whole. Natural molecules, such as flavonoid quercetin, as potential treatment methods to help patients combat COVID-19. The aim of this systematic review and meta-analysis is to give a comprehensive overview of the impact of quercetin supplementation on inflammatory factors, hospital admission, and mortality of patients with COVID-19. The search has been conducted on PubMed, Scopus, Web of Science, EMBASE, and the Cochrane Library using relevant keywords until August 25, 2023. We included randomized controlled trials (RCTs) comparing COVID-19 patients who received quercetin supplementation versus controls. We included five studies summarizing the evidence in 544 patients. Meta-analysis showed that quercetin administration significantly reduced LDH activity (standard mean difference (SMD): -0.42, 95% CI: -0.82, -0.02, I 2 = 48.86%), decreased the risk of hospital admission by 70% (RR: 0.30, 95% CI: 0.14, 0.62, I 2 = 00.00%), ICU admission by 73% (RR: 0.27, 95% CI: 0.09, 0.78, I 2 = 20.66%), and mortality by 82% (RR: 0.18, 95% CI: 0.03, 0.98, I 2 = 00.00%). No significant changes in CRP, D-dimmer, and ferritin were found between groups. Quercetin was found to significantly reduce LDH levels and decrease the risk of hospital and ICU admission and mortality in patients with COVID-19 infection.
Collapse
Affiliation(s)
- Somayeh Ziaei
- ICU Department, Emam Reza HospitalKermanshah University of Medical SciencesKermanshahIran
| | - Malek Alimohammadi‐Kamalabadi
- Department of Cellular‐Molecular Nutrition, School of Nutritional Sciences and DieteticsTehran University of Medical SciencesTehranIran
| | - Motahareh Hasani
- Department of Nutritional Sciences, School of HealthGolestan University of Medical SciencesGorganIran
| | - Mahsa Malekahmadi
- Department of Cellular‐Molecular Nutrition, School of Nutritional Sciences and DieteticsTehran University of Medical SciencesTehranIran
- Imam Khomeini Hospital Complex, Tehran University of Medicinal Sciences Tehran IranTehran University of Medical SciencesTehranIran
| | - Emma Persad
- Department for Evidence‐based Medicine and EvaluationDanube University KremsKremsAustria
| | - Javad Heshmati
- Songhor Healthcare CenterKermanshah University of Medical SciencesKermanshahIran
| |
Collapse
|
10
|
Zhang W, Zheng Y, Yan F, Dong M, Ren Y. Research progress of quercetin in cardiovascular disease. Front Cardiovasc Med 2023; 10:1203713. [PMID: 38054093 PMCID: PMC10694509 DOI: 10.3389/fcvm.2023.1203713] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
Quercetin is one of the most common flavonoids. More and more studies have found that quercetin has great potential utilization value in cardiovascular diseases (CVD), such as antioxidant, antiplatelet aggregation, antibacterial, cholesterol lowering, endothelial cell protection, etc. However, the medicinal value of quercetin is mostly limited to animal models and preclinical studies. Due to the complexity of the human body and functional structure compared to animals, more research is needed to explore whether quercetin has the same mechanism of action and pharmacological value as animal experiments. In order to systematically understand the clinical application value of quercetin, this article reviews the research progress of quercetin in CVD, including preclinical and clinical studies. We will focus on the relationship between quercetin and common CVD, such as atherosclerosis, myocardial infarction, ischemia reperfusion injury, heart failure, hypertension and arrhythmia, etc. By elaborating on the pathophysiological mechanism and clinical application research progress of quercetin's protective effect on CVD, data support is provided for the transformation of quercetin from laboratory to clinical application.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Oncology, Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People’s Hospital (The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Yan Zheng
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Fang Yan
- Geriatric Diseases Institute of Chengdu, Center for Medicine Research and Translation, Chengdu Fifth People’s Hospital, Chengdu, China
| | - Mingqing Dong
- Geriatric Diseases Institute of Chengdu, Center for Medicine Research and Translation, Chengdu Fifth People’s Hospital, Chengdu, China
| | - Yazhou Ren
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
11
|
Pauletto M, Giantin M, Tolosi R, Bassan I, Bardhi A, Barbarossa A, Montanucci L, Zaghini A, Dacasto M. Discovering the Protective Effects of Quercetin on Aflatoxin B1-Induced Toxicity in Bovine Foetal Hepatocyte-Derived Cells (BFH12). Toxins (Basel) 2023; 15:555. [PMID: 37755981 PMCID: PMC10534839 DOI: 10.3390/toxins15090555] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023] Open
Abstract
Aflatoxin B1 (AFB1) induces lipid peroxidation and mortality in bovine foetal hepatocyte-derived cells (BFH12), with underlying transcriptional perturbations associated mainly with cancer, cellular damage, inflammation, bioactivation, and detoxification pathways. In this cell line, curcumin and resveratrol have proven to be effective in mitigating AFB1-induced toxicity. In this paper, we preliminarily assessed the potential anti-AFB1 activity of a natural polyphenol, quercetin (QUE), in BFH12 cells. To this end, we primarily measured QUE cytotoxicity using a WST-1 reagent. Then, we pre-treated the cells with QUE and exposed them to AFB1. The protective role of QUE was evaluated by measuring cytotoxicity, transcriptional changes (RNA-sequencing), lipid peroxidation (malondialdehyde production), and targeted post-transcriptional modifications (NQO1 and CYP3A enzymatic activity). The results demonstrated that QUE, like curcumin and resveratrol, reduced AFB1-induced cytotoxicity and lipid peroxidation and caused larger transcriptional variations than AFB1 alone. Most of the differentially expressed genes were involved in lipid homeostasis, inflammatory and immune processes, and carcinogenesis. As for enzymatic activities, QUE significantly reverted CYP3A variations induced by AFB1, but not those of NQO1. This study provides new knowledge about key molecular mechanisms involved in QUE-mediated protection against AFB1 toxicity and encourages in vivo studies to assess QUE's bioavailability and beneficial effects on aflatoxicosis.
Collapse
Affiliation(s)
- Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, I-35020 Legnaro, Italy; (M.G.); (R.T.); (I.B.); (M.D.)
| | - Mery Giantin
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, I-35020 Legnaro, Italy; (M.G.); (R.T.); (I.B.); (M.D.)
| | - Roberta Tolosi
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, I-35020 Legnaro, Italy; (M.G.); (R.T.); (I.B.); (M.D.)
| | - Irene Bassan
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, I-35020 Legnaro, Italy; (M.G.); (R.T.); (I.B.); (M.D.)
| | - Anisa Bardhi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, I-40064 Bologna, Italy; (A.B.); (A.B.); (A.Z.)
| | - Andrea Barbarossa
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, I-40064 Bologna, Italy; (A.B.); (A.B.); (A.Z.)
| | - Ludovica Montanucci
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA;
| | - Anna Zaghini
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, I-40064 Bologna, Italy; (A.B.); (A.B.); (A.Z.)
| | - Mauro Dacasto
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, I-35020 Legnaro, Italy; (M.G.); (R.T.); (I.B.); (M.D.)
| |
Collapse
|
12
|
Tveter KM, Mezhibovsky E, Wu Y, Roopchand DE. Bile acid metabolism and signaling: Emerging pharmacological targets of dietary polyphenols. Pharmacol Ther 2023; 248:108457. [PMID: 37268113 PMCID: PMC10528343 DOI: 10.1016/j.pharmthera.2023.108457] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/03/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023]
Abstract
Beyond their role as emulsifiers of lipophilic compounds, bile acids (BAs) are signaling endocrine molecules that show differential affinity and specificity for a variety of canonical and non-canonical BA receptors. Primary BAs (PBAs) are synthesized in the liver while secondary BAs (SBAs) are gut microbial metabolites of PBA species. PBAs and SBAs signal to BA receptors that regulate downstream pathways of inflammation and energy metabolism. Dysregulation of BA metabolism or signaling has emerged as a feature of chronic disease. Dietary polyphenols are non-nutritive plant-derived compounds associated with decreased risk of metabolic syndrome, type-2 diabetes, hepatobiliary and cardiovascular disease. Evidence suggests that the health promoting effects of dietary polyphenols are linked to their ability to alter the gut microbial community, the BA pool, and BA signaling. In this review we provide an overview of BA metabolism and summarize studies that link the cardiometabolic improvements of dietary polyphenols to their modulation of BA metabolism and signaling pathways, and the gut microbiota. Finally, we discuss approaches and challenges in deciphering cause-effect relationships between dietary polyphenols, BAs, and gut microbes.
Collapse
Affiliation(s)
- Kevin M Tveter
- Rutgers, The State University of New Jersey, Department of Food Science, Institute for Food Nutrition and Health [Center for Microbiome, Nutrition and Health & Rutgers Center for Lipid Research], 61 Dudley Road, New Brunswick, NJ 08901, USA
| | - Esther Mezhibovsky
- Rutgers, The State University of New Jersey, Department of Food Science, Institute for Food Nutrition and Health [Center for Microbiome, Nutrition and Health & Rutgers Center for Lipid Research], 61 Dudley Road, New Brunswick, NJ 08901, USA
| | - Yue Wu
- Rutgers, The State University of New Jersey, Department of Food Science, Institute for Food Nutrition and Health [Center for Microbiome, Nutrition and Health & Rutgers Center for Lipid Research], 61 Dudley Road, New Brunswick, NJ 08901, USA
| | - Diana E Roopchand
- Rutgers, The State University of New Jersey, Department of Food Science, Institute for Food Nutrition and Health [Center for Microbiome, Nutrition and Health & Rutgers Center for Lipid Research], 61 Dudley Road, New Brunswick, NJ 08901, USA.
| |
Collapse
|
13
|
Yang T, Wang Y, Cao X, Peng Y, Huang J, Chen L, Pang J, Jiang Z, Qian S, Liu Y, Ying C, Wang T, Zhang F, Lu Q, Yin X. Targeting mTOR/YY1 signaling pathway by quercetin through CYP7A1-mediated cholesterol-to-bile acids conversion alleviated type 2 diabetes mellitus induced hepatic lipid accumulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 113:154703. [PMID: 36889164 DOI: 10.1016/j.phymed.2023.154703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/31/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Hepatic lipid accumulation was a major promoter for the further development of non-alcoholic fatty liver disease (NAFLD) in type 2 diabetes (T2DM). mTOR/YY1 signaling pathway regulated many metabolic processes in different organs, and played an important role in hepatic lipid metabolism. Thus, targeting mTOR/YY1 signaling pathway might be a novel therapeutic strategy of T2DM-associated NALFD. PURPOSE To investigate the effects and the mechanism of quercetin against T2DM-associated NAFLD. STUDY DESIGN AND METHODS The combine abilities of 24 flavonoid compounds with mTOR were detected by computer virtual screening (VS) and molecular modeling. mTOR/YY1 signaling pathway was examined in the liver of db/db mice, and high glucose (HG) and free fatty acid (FFA) co-cultured HepG2 cells. YY1 overexpression lentivirus vector and mTOR specific inhibitor rapamycin were used to further identify the indispensable role of mTOR/YY1 signaling pathway in quercetin's amelioration effect of hepatic lipid accumulation in vitro. Clinical studies, luciferase assay and chromatin immunoprecipitation (ChIP) assay were all carried out to investigate the potential mechanisms by which quercetin exerted its amelioration effect of hepatic lipid accumulation. RESULTS Quercetin had the strongest ability to combine with mTOR and could competitively occupy its binding pocked. Along with the alleviated hepatic injury by quercetin, mTOR/YY1 signaling pathway was down-regulated in vivo and in vitro. However, the alleviation effect of quercetin against hepatic lipid accumulation was inhibited by YY1 overexpression in vitro. Mechanistically, the down-regulated nuclear YY1 induced by quercetin directly bound to CYP7A1 promoter and activated its transcription, resulting in the restoration of cholesterol homeostasis via the conversion of cholesterol-to-bile acids (BAs). CONCLUSION The hepatoprotective effect of quercetin on T2DM-associated NAFLD was linked to the restoration of cholesterol homeostasis by the conversion of cholesterol-to-BAs via down-regulating mTOR/YY1 signaling pathway, leading to the increased CYP7A1 activity.
Collapse
Affiliation(s)
- Tingting Yang
- Department of Clinical Pharmacology, School of Pharmacy, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, NO. 209. Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Yiying Wang
- Department of Clinical Pharmacology, School of Pharmacy, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, NO. 209. Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Xinyun Cao
- Department of Clinical Pharmacology, School of Pharmacy, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, NO. 209. Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Yuting Peng
- Department of Clinical Pharmacology, School of Pharmacy, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, NO. 209. Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Jiawan Huang
- Department of Clinical Pharmacology, School of Pharmacy, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, NO. 209. Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Li Chen
- Department of Clinical Pharmacology, School of Pharmacy, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, NO. 209. Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Jiale Pang
- Department of Clinical Pharmacology, School of Pharmacy, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, NO. 209. Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Zhenzhou Jiang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Sitong Qian
- Department of Clinical Pharmacology, School of Pharmacy, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, NO. 209. Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Ying Liu
- Department of Clinical Pharmacology, School of Pharmacy, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, NO. 209. Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Changjiang Ying
- Department of Endocrinology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China
| | - Tao Wang
- Department of Pharmacy, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China
| | - Fan Zhang
- Department of Pharmacy, Xuzhou Central Hospital, Xuzhou 221009, China
| | - Qian Lu
- Department of Clinical Pharmacology, School of Pharmacy, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, NO. 209. Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Xiaoxing Yin
- Department of Clinical Pharmacology, School of Pharmacy, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, NO. 209. Tongshan Road, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
14
|
Lin S, Huang L, Wu Y, Huang L, Wu P, Huang T, Li Z, Hu Y. Uncovering the protective mechanism of Pien-Tze-Huang in rat with alcoholic liver injury based on cytokines analysis and untargeted metabonomics. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1217:123626. [PMID: 36753840 DOI: 10.1016/j.jchromb.2023.123626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 12/17/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Pien-Tze-Huang (PTH) is a well-known traditional Chinese patent medicine with excellent liver-protection effect. However, the mechanism of hepatoprotective action has not yet been entirely elucidated. The aim of this study was to investigate the mechanism of protective effect of PTH on alcohol-induced liver injury in rats using cytokine analysis and untargeted metabolomics approaches. An alcoholic liver disease (ALD) model with SD rats was established, and PTH was administered according to the prescribed dose. The hepatoprotective effect of PTH was evaluated by pathological observation of liver tissue and changes in biochemical index activity and cytokines in serum. Serum samples were analyzed by ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-QTOF/MS), and differentially expressed metabolites were screened by multivariate statistical analysis. KEGG combined with metabolic pathway analysis were used to evaluate the underlying metabolic pathways. Results showed liver histopathology injury was attenuated. The levels of IL-6, TNF-α and NF-κB were significantly decreased in rats intervened with PTH groups, suggesting that it may alleviate inflammation via suppressing the inflammatory cytokines signaling pathway. Eighty differentially expressed metabolites were found and identified. Pathway analysis indicated that the hepatoprotective effects of PTH occurred through the regulation of inflammatory cytokines signaling pathway, primary bile acid biosynthesis, vitamin B6 metabolism pathway, cholesterol metabolism, and tyrosine metabolism. PTH showed favorable hepatoprotective effect through multiple pathways. This study has great importance in fully revealing the mechanism of hepatoprotective action and can help improve the clinical application of PTH.
Collapse
Affiliation(s)
- Shouer Lin
- School of Pharmacy, Fujian Medical university, Fuzhou, Fujian, 350122, China; Physical and Chemical Analysis Department, Fujian Provincial Center For Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, Fujian, 350001, China
| | - Lingyi Huang
- School of Pharmacy, Fujian Medical university, Fuzhou, Fujian, 350122, China
| | - Youjia Wu
- School of Pharmacy, Fujian Medical university, Fuzhou, Fujian, 350122, China
| | - Liying Huang
- School of Pharmacy, Fujian Medical university, Fuzhou, Fujian, 350122, China.
| | - Pingping Wu
- School of Pharmacy, Fujian Medical university, Fuzhou, Fujian, 350122, China
| | - Tingxuan Huang
- School of Pharmacy, Fujian Medical university, Fuzhou, Fujian, 350122, China
| | - Zhenyue Li
- School of Pharmacy, Fujian Medical university, Fuzhou, Fujian, 350122, China
| | - Yuhan Hu
- School of Pharmacy, Fujian Medical university, Fuzhou, Fujian, 350122, China
| |
Collapse
|
15
|
Potential Role of Quercetin Glycosides as Anti-Atherosclerotic Food-Derived Factors for Human Health. Antioxidants (Basel) 2023; 12:antiox12020258. [PMID: 36829817 PMCID: PMC9952755 DOI: 10.3390/antiox12020258] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Quercetin is a monomeric polyphenol of plant origin that belongs to the flavonol-type flavonoid subclass. Extensive studies using cultured cells and experimental model animals have demonstrated the anti-atherosclerotic effects of dietary quercetin in relation to the prevention of cardiovascular disease (CVD). As quercetin is exclusively present in plant-based foods in the form of glycosides, this review focuses on the bioavailability and bioefficacy of quercetin glycosides in relation to vascular health effects. Some glucose-bound glycosides are absorbed from the small intestine after glucuronide/sulfate conjugation. Both conjugated metabolites and deconjugated quercetin aglycones formed by plasma β-glucuronidase activity act as food-derived anti-atherogenic factors by exerting antioxidant, anti-inflammatory, and plasma low-density lipoprotein cholesterol-lowering effects. However, most quercetin glycosides reach the large intestine, where they are subject to gut microbiota-dependent catabolism resulting in deglycosylated aglycone and chain-scission products. These catabolites also affect vascular health after transfer into the circulation. Furthermore, quercetin glycosides may improve gut microbiota profiles. A variety of human cohort studies and intervention studies support the idea that the intake of quercetin glycoside-rich plant foods such as onion helps to prevent CVD. Thus, quercetin glycoside-rich foods offer potential benefits in terms of cardiovascular health and possible clinical applications.
Collapse
|
16
|
Zhang Y, Lin Z, Wang L, Guo X, Hao Z, Li Z, Johnston LJ, Dong B. Cooperative Interaction of Phenolic Acids and Flavonoids Contained in Activated Charcoal with Herb Extracts, Involving Cholesterol, Bile Acid, and FXR/PXR Activation in Broilers Fed with Mycotoxin-Containing Diets. Antioxidants (Basel) 2022; 11:2200. [PMID: 36358572 PMCID: PMC9686537 DOI: 10.3390/antiox11112200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2023] Open
Abstract
The charcoal-herb extract complex (CHC) is a product of activated charcoal sorption of herb extracts that contain phenolic acids and flavonoids. The effective dose of CHC to promote animal growth is about one tenth of effective dosage of activated charcoal. The purpose of this study was to evaluate potential cooperative interactions between activated charcoal and herb extracts. Two feeding experiments were conducted. In Experiment 1, a responsive dose of CHC to broiler growth was determined to be 250 mg/kg of the diet. In Experiment 2, CHC increased growth performance and improved meat quality, but decreased indices of oxidative stress and inflammation as compared with similar doses of activated charcoal or herb extracts. CHC also increased concentrations of serum cholesterol, bile acid in the gallbladder, and bile acid in feces. The herb extracts present in CHC were largely represented by phenolic acids (PAs, caffeic acid, and vanillin) and flavonoids (FVs, daidzein, and quercetin-D-glucoside) in the detoxification activity of CHC in a mouse rescue test when the mice were gavaged with T-2 mycotoxin. PAs and FVs significantly increased the expression of CYP7A1, PXR, CYP3A37, Slco1B3, and Bsep in chicken primary hepatocytes. In conclusion, CHC integrated the cooperative interactions of activated charcoal and herb extracts via the FXR/RXR-PXR pathway to detoxify mycotoxins.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Zishen Lin
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Lixue Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Xiangyue Guo
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Zhihui Hao
- Center of Research and Innovation of Chinese Traditional Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lee J. Johnston
- Swine Nutrition and Production, West Central Research and Outreach Center, University of Minnesota, Morris, MN 56267, USA
| | - Bing Dong
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| |
Collapse
|
17
|
Study on the mechanism of anti-hepatic fibrosis of Glycyrrhiza Uralensis-Salvia miltiorrhiza prescription based on serum and urine metabolomics and network pharmacology. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1209:123416. [PMID: 36027704 DOI: 10.1016/j.jchromb.2022.123416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/08/2022] [Accepted: 08/09/2022] [Indexed: 11/22/2022]
Abstract
Hepatic fibrosis (HF) is a kind of chronic epidemic liver disease. Glycyrrhiza Uralensis and Salvia Miltiorrhiza (GUSM), traditional Chinese medicine, has the obvious clinical treatment of liver fibrosis. This study aimed to investigate the mechanisms of GUSM against HF by an integrated strategy combining untargeted metabolomics with network pharmacology. The results showed that GUSM prescription can improve the morphology and structure of liver tissue, inhibit the proliferation of collagen fibers and reducing the inflammatory response of the liver and so on. Endogenous metabolites and HF-related potential biomarkers in serum and urine were detected by ultra-high-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF/MS). The metabolic pathways were enriched by MetaboAnalyst. GUSM prescription showed an antifibrotic effect on rats by regulating metabolic pathways, mainly pentose and glucuronate interconversions and arachidonic acid metabolism. Network pharmacology was then applied to find 42 overlapping targets of GUSM-HF. Quercetin was found to be the main active component and STAT3 was the main active target in GUSM prescription. Molecular docking showed high affinities between quercetin and STAT3. Therefore, GUSM has protective effects on HF by regulating the metabolism and different signaling pathways. The work also shows that the metabolomic and network pharmacology methods are promising tools to gain insight into the efficacy and mechanism research of traditional Chinese medicines.
Collapse
|
18
|
Ruidas B, Sur TK, Das Mukhopadhyay C, Sinha K, Som Chaudhury S, Sharma P, Bhowmick S, Majumder R, Saha A. Quercetin: a silent retarder of fatty acid oxidation in breast cancer metastasis through steering of mitochondrial CPT1. Breast Cancer 2022; 29:748-760. [PMID: 35511410 DOI: 10.1007/s12282-022-01356-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/28/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Recent evidence confirmed that the maximum energy in metastatic breast cancer progression is supplied by fatty acid oxidation (FAO) governed by a rate-limiting enzyme, carnitine palmitoyltransferase 1 (CPT1). Therefore, the active limitation of FAO could be an emerging aspect to inhibit breast cancer progression. Herein, for the first time, we have introduced quercetin (QT) from a non-dietary source (Mikania micrantha Kunth) to limit the FAO in triple-negative breast cancer cells (TNBC) through an active targeting of CPT1. METHODS Molecular quantification of QT was confirmed through high-performance thin-layer chromatography (HPTLC). Computational docking analyses predicted the binding affinity of QT to CPT1. Cell-based seahorse energy efflux investigated the mitochondrial respiration rate, glycolytic function and ATP production rate. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) investigated the FAO-associated gene expression. Matrigel cell invasion and fluorescence-activated cell sorting analyses investigated anti-metastatic and apoptotic cell death induction activities, respectively. In vivo antitumor activities were checked using the female breast cancer mice (BALB/c) model. RESULTS QT resulted in a significant reduction in the intracellular mitochondrial respiration and glycolytic function, limiting extensive ATP production. In turn, QT elevated the reactive oxygen species (ROS) and depleted antioxidant levels to induce anti-metastatic and cell apoptosis activities. qRT-PCR resulted in active healing of altered FAO-associated gene expression which was well predicted through the successful in silico molecular binding potentiality of QT to CPT1. Subsequently, QT has shown excellent in vivo antitumor activities through the altered lipid profile and oxidative stress-healing capabilities. CONCLUSIONS All the obtained data significantly grounded the fact that QT could be a promising metabolism-targeted breast cancer therapeutic.
Collapse
Affiliation(s)
- Bhuban Ruidas
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, 711103, India.
| | - Tapas Kumar Sur
- Department of Pharmacology, R G Kar Medical College and Hospital, Kolkata, West Bengal, 700004, India
| | - Chitrangada Das Mukhopadhyay
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, 711103, India
| | - Koel Sinha
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, 711103, India
| | - Sutapa Som Chaudhury
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, 711103, India
| | - Pramita Sharma
- Department of Zoology, Hooghly Mohsin College affiliated to University of Burdwan, Hooghly, West Bengal, 712101, India
| | - Shovonlal Bhowmick
- Department of Chemical Technology, University of Calcutta, 92, A. P. C. Road, Kolkata, 700009, India
| | - Rabindranath Majumder
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, 711103, India
| | - Achintya Saha
- Department of Chemical Technology, University of Calcutta, 92, A. P. C. Road, Kolkata, 700009, India
| |
Collapse
|
19
|
Xin Y, Hou Y, Zhang J, Ding T, Guan Z, Zhang D, Wang D, Jia S, Li S, Zhao X. Metabolomics analysis of the effects of quercetin on Cd-induced hepatotoxicityin rats. Free Radic Res 2022; 56:185-195. [PMID: 35414335 DOI: 10.1080/10715762.2022.2064285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Cadmium(Cd) is known to cause damage to the liver. In this study, metabolomics technology was used to investigate the effect of quercetin(QE) on Cd-induced hepatotoxicity. A total of 60 male SD rats were randomly divided into the following 6 groups: control group (C), low and high dose QE group (Q1: 10 mg/kg·bw, Q2: 50 mg/kg·bw), Cd group (D), low and high dose QE and Cd combined intervention group (DQ1, DQ2). The rats were given Cd chloride (CdCl2) at a concentration of 40 mg/L through free drinking water. After 12 weeks of treatment, liver samples of rats were collected for metabonomic analysis. A total of 12 metabolites were identified, the intensities of PC(18:0/14:1(9Z)) and Arachidonate acid were decreased in the Cd-treated group (p < 0.01), whereas the intensities of Chenodeoxyglycocholic acid, Cholic acid, Taurochenodesoxycholic acid, Glycocholic acid, Prostaglandin D2, 15-Deoxy-d-12,14-PGJ2, Oxidized glutathione, Cholesterol, Protoporphyrin IX, Bilirubinwere increased significantly in the Cd-treated group compared with group C(p < 0.01). When rats were given high doses of QE and Cd at the same time, the intensity of the above metabolites was significantly restored in group DQ2. Results suggest that The protective effect of QE on Cd-induced liver injury is associated with antioxidant activity of QE, as well as QE can regulates hepatic bile acid metabolism by affecting FXR and BSEP, and regulates AA metabolism by inhibiting Cd-induced activities of COX-2 and PLA2.
Collapse
Affiliation(s)
- Youwei Xin
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yali Hou
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jingnan Zhang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang, China
| | - Tingting Ding
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhiyu Guan
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang, China
| | - Dongyan Zhang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang, China
| | - Dan Wang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang, China
| | - Siqi Jia
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang, China
| | - Siqi Li
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiujuan Zhao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
20
|
Pawar A, Russo M, Rani I, Goswami K, Russo GL, Pal A. A critical evaluation of risk to reward ratio of quercetin supplementation for COVID-19 and associated comorbid conditions. Phytother Res 2022; 36:2394-2415. [PMID: 35393674 PMCID: PMC9111035 DOI: 10.1002/ptr.7461] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 03/19/2022] [Accepted: 03/26/2022] [Indexed: 01/08/2023]
Abstract
The interim results of the large, multinational trials on coronavirus disease 2019 (COVID‐19) using a combination of antiviral drugs appear to have little to no effect on the 28‐day mortality or the in‐hospital course. Therefore, there is a still vivid interest in finding alternate re‐purposed drugs and nutrition supplements, which can halt or slow the disease severity. We review here the multiple preclinical studies, partially supported by clinical evidence showing the quercetin's possible therapeutic/prophylaxis efficacy against severe acute respiratory syndrome coronavirus (SARS‐CoV) as well as comorbidities like chronic obstructive pulmonary disease (COPD), diabetes mellitus, obesity, coagulopathy, and hypertension. Currently, 14 interventional clinical trials are underway assessing the efficacy of quercetin along with other antiviral drugs/nutritional supplements as prophylaxis/treatment option against COVID‐19. The present review is tempting to suggest that, based on circumstantial scientific evidence and preliminary clinical data, the flavonoid quercetin can ameliorate COVID‐19 infection and symptoms acting in concert on two parallel and independent paths: inhibiting key factors responsible for SARS‐CoV‐2 infections and mitigating the clinical manifestations of the disease in patients with comorbid conditions. Despite the broad therapeutic properties of quercetin, further high power randomized clinical trials are needed to firmly establish its clinical efficacy against COVID‐19.
Collapse
Affiliation(s)
- Anil Pawar
- Department of Zoology, DAV University, Jalandhar, India
| | - Maria Russo
- National Research Council, Institute of Food Sciences, Avellino, Italy
| | - Isha Rani
- Department of Biochemistry, Maharishi Markandeshwar Institute of Medical Sciences and Research (MMIMSR), Maharishi Markandeshwar University (MMU), Ambala, India
| | | | - Gian Luigi Russo
- National Research Council, Institute of Food Sciences, Avellino, Italy
| | - Amit Pal
- Department of Biochemistry, AIIMS, Kalyani, India
| |
Collapse
|
21
|
|
22
|
Wang B, Wang S, Ding M, Lu H, Wu H, Li Y. Quercetin Regulates Calcium and Phosphorus Metabolism Through the Wnt Signaling Pathway in Broilers. Front Vet Sci 2022; 8:786519. [PMID: 35155643 PMCID: PMC8828646 DOI: 10.3389/fvets.2021.786519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/22/2021] [Indexed: 12/22/2022] Open
Abstract
This study intended to explore the effect and mechanism of different doses of dietary quercetin on calcium and phosphorus metabolism to provide an experimental basis for preventing leg disease in broilers. A total of 480 1-day-old healthy Arbor Acre broilers were randomly allotted into four groups (0, 0.02, 0.04, 0.06%) for 42 days. Compared with control, 0.06% quercetin significantly increased the unit weight and the relative weight of tibia in broilers (P < 0.05). Meanwhile, phosphorus content and bone mineral density (BMD) were significantly increased by 0.06% dietary quercetin supplementation in tibia (P < 0.05). Ash of tibia was significantly increased by 0.04 and 0.06% quercetin in broilers (P < 0.05). In addition, 0.06% quercetin significantly increased the content of serum calcium-binding protein (CB), estradiol (E2), osteocalcin (OC), alkaline phosphatase (ALP), and calcitonin (CT) (P < 0.05); 0.04% quercetin significantly increased 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) (P < 0.05) content in serum of broilers. The content of serum parathyroid (PTH) was significantly decreased by 0.02 and 0.06% quercetin (P < 0.05) in broilers. Gene Ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the Wnt signaling pathway was a key signaling pathway of calcium and phosphorus metabolism in broilers which was significantly regulated by quercetin. The differentially expressed genes (DEGs) from transcriptome sequencing were validated with real-time quantitative PCR (RT-qPCR). In conclusion, 0.06% dietary quercetin supplementation improved calcium and phosphorus metabolism by regulating the Wnt signaling pathway in broilers.
Collapse
|
23
|
Sun P, Zhao L, Zhang N, Zhou J, Zhang L, Wu W, Ji B, Zhou F. Bioactivity of Dietary Polyphenols: The Role in LDL-C Lowering. Foods 2021; 10:2666. [PMID: 34828946 PMCID: PMC8617782 DOI: 10.3390/foods10112666] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular diseases are the leading causes of the death around the world. An elevation of the low-density lipoprotein cholesterol (LDL-C) level is one of the most important risk factors for cardiovascular diseases. To achieve optimal plasma LDL-C levels, clinal therapies were investigated which targeted different metabolism pathways. However, some therapies also caused various adverse effects. Thus, there is a need for new treatment options and/or combination therapies to inhibit the LDL-C level. Dietary polyphenols have received much attention in the prevention of cardiovascular diseases due to their potential LDL-C lowering effects. However, the effectiveness and potential mechanisms of polyphenols in lowering LDL-C is not comprehensively summarized. This review focused on dietary polyphenols that could reduce LDL-C and their mechanisms of action. This review also discussed the limitations and suggestions regarding previous studies.
Collapse
Affiliation(s)
- Peng Sun
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.S.); (N.Z.); (J.Z.); (L.Z.); (B.J.)
| | - Liang Zhao
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China;
| | - Nanhai Zhang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.S.); (N.Z.); (J.Z.); (L.Z.); (B.J.)
| | - Jingxuan Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.S.); (N.Z.); (J.Z.); (L.Z.); (B.J.)
| | - Liebing Zhang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.S.); (N.Z.); (J.Z.); (L.Z.); (B.J.)
| | - Wei Wu
- College of Engineering, China Agricultural University, Beijing 100083, China;
| | - Baoping Ji
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.S.); (N.Z.); (J.Z.); (L.Z.); (B.J.)
| | - Feng Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.S.); (N.Z.); (J.Z.); (L.Z.); (B.J.)
| |
Collapse
|
24
|
Pawar A, Pal A, Goswami K, Squitti R, Rongiolettie M. Molecular basis of quercetin as a plausible common denominator of macrophage-cholesterol-fenofibrate dependent potential COVID-19 treatment axis. RESULTS IN CHEMISTRY 2021; 3:100148. [PMID: 34150487 PMCID: PMC8196513 DOI: 10.1016/j.rechem.2021.100148] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/09/2021] [Indexed: 12/18/2022] Open
Abstract
The world's largest randomized control trial against COVID-19 using remdesivir, hydroxychloroquine, lopinavir and interferon-β1a appeared to have little or no effect on hospitalized COVID-19 patients. This has again led to search for alternate re-purposed drugs and/or effective “add-on” nutritional supplementation, which can complement or enhance the therapeutic effect of re-purposed drug. Focus has been shifted to therapeutic targets of severe acute respiratory syndrome coronavirus (SARS-CoV-2), which includes specific enzymes and regulators of lipid metabolism. Very recently, fenofibrate (cholesterol-lowering drug), suppressed the SARS-CoV-2 replication and pathogenesis by affecting the pathways of lipid metabolism in lung cells of COVID-19 patients. A preclinical study has shown synergistic effect of quercetin (a flavonoid) and fenofibrate in reducing the cholesterol content, which might be useful in COVID-19 treatment. Based on the scientific literature, use of quercetin and fenofibrate in COVID-19 seems meaningful in pharmaceutical and biomedical research, and warrants basic, experimental and clinical studies. In this article, we have summarized the contemporary findings about drug fenofibrate and its effect on membrane synthesis of COVID-19 virus along with emphasizing on possible synergistic effects of quercetin with fenofibrate.
Collapse
Affiliation(s)
- Anil Pawar
- Department of Zoology, DAV University, Jalandhar 144012, Punjab, India
| | - Amit Pal
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Kalyani 741245, West Bengal, India
| | - Kalyan Goswami
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Kalyani 741245, West Bengal, India
| | - Rosanna Squitti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Mauro Rongiolettie
- Department of Laboratory Medicine, Research and Development Division, San Giovanni Calibita Fatebenefratelli Hospital, Isola Tiberina, Rome, Italy
| |
Collapse
|
25
|
Quercetin and non-alcoholic fatty liver disease: A review based on experimental data and bioinformatic analysis. Food Chem Toxicol 2021; 154:112314. [PMID: 34087406 DOI: 10.1016/j.fct.2021.112314] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 05/18/2021] [Accepted: 05/29/2021] [Indexed: 02/08/2023]
Abstract
Quercetin, a polyphenol widely present in the plant kingdom, has received great interest due to pleiotropic effects. As evidenced by animal and cellular studies, quercetin exerts hepatoprotection against non-alcoholic fatty liver disease (NAFLD), particularly in hepatic steatosis and hepatitis. Mechanically, various hypotheses of such protective effects have been actively proposed, including improving fatty acid metabolism, anti-inflammation, anti-oxidant, modulating gut microbiota and bile acid, etc. Here, the role of quercetin in NAFLD was summarized. With a particular focus on molecular mechanism, we comprehensively discussed the pathways of quercetin on NAFLD based on the analysis from Gene Expression Omnibus (GEO) database and experimental evidence.
Collapse
|
26
|
Circulating bile acids as a link between the gut microbiota and cardiovascular health: impact of prebiotics, probiotics and polyphenol-rich foods. Nutr Res Rev 2021; 35:161-180. [PMID: 33926590 DOI: 10.1017/s0954422421000081] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Beneficial effects of probiotic, prebiotic and polyphenol-rich interventions on fasting lipid profiles have been reported, with changes in the gut microbiota composition believed to play an important role in lipid regulation. Primary bile acids, which are involved in the digestion of fats and cholesterol metabolism, can be converted by the gut microbiota to secondary bile acids, some species of which are less well reabsorbed and consequently may be excreted in the stool. This can lead to increased hepatic bile acid neo-synthesis, resulting in a net loss of circulating low-density lipoprotein. Bile acids may therefore provide a link between the gut microbiota and cardiovascular health. This narrative review presents an overview of bile acid metabolism and the role of probiotics, prebiotics and polyphenol-rich foods in modulating circulating cardiovascular disease (CVD) risk markers and bile acids. Although findings from human studies are inconsistent, there is growing evidence for associations between these dietary components and improved lipid CVD risk markers, attributed to modulation of the gut microbiota and bile acid metabolism. These include increased bile acid neo-synthesis, due to bile sequestering action, bile salt metabolising activity and effects of short-chain fatty acids generated through bacterial fermentation of fibres. Animal studies have demonstrated effects on the FXR/FGF-15 axis and hepatic genes involved in bile acid synthesis (CYP7A1) and cholesterol synthesis (SREBP and HMGR). Further human studies are needed to determine the relationship between diet and bile acid metabolism and whether circulating bile acids can be utilised as a potential CVD risk biomarker.
Collapse
|
27
|
Dagher O, Mury P, Thorin-Trescases N, Noly PE, Thorin E, Carrier M. Therapeutic Potential of Quercetin to Alleviate Endothelial Dysfunction in Age-Related Cardiovascular Diseases. Front Cardiovasc Med 2021; 8:658400. [PMID: 33860002 PMCID: PMC8042157 DOI: 10.3389/fcvm.2021.658400] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022] Open
Abstract
The vascular endothelium occupies a catalog of functions that contribute to the homeostasis of the cardiovascular system. It is a physically active barrier between circulating blood and tissue, a regulator of the vascular tone, a biochemical processor and a modulator of coagulation, inflammation, and immunity. Given these essential roles, it comes to no surprise that endothelial dysfunction is prodromal to chronic age-related diseases of the heart and arteries, globally termed cardiovascular diseases (CVD). An example would be ischemic heart disease (IHD), which is the main cause of death from CVD. We have made phenomenal advances in treating CVD, but the aging endothelium, as it senesces, always seems to out-run the benefits of medical and surgical therapies. Remarkably, many epidemiological studies have detected a correlation between a flavonoid-rich diet and a lower incidence of mortality from CVD. Quercetin, a member of the flavonoid class, is a natural compound ubiquitously found in various food sources such as fruits, vegetables, seeds, nuts, and wine. It has been reported to have a wide range of health promoting effects and has gained significant attention over the years. A growing body of evidence suggests quercetin could lower the risk of IHD by mitigating endothelial dysfunction and its risk factors, such as hypertension, atherosclerosis, accumulation of senescent endothelial cells, and endothelial-mesenchymal transition (EndoMT). In this review, we will explore these pathophysiological cascades and their interrelation with endothelial dysfunction. We will then present the scientific evidence to quercetin's anti-atherosclerotic, anti-hypertensive, senolytic, and anti-EndoMT effects. Finally, we will discuss the prospect for its clinical use in alleviating myocardial ischemic injuries in IHD.
Collapse
Affiliation(s)
- Olina Dagher
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Center for Research, Montreal Heart Institute, Montreal, QC, Canada
| | - Pauline Mury
- Center for Research, Montreal Heart Institute, Montreal, QC, Canada
| | | | - Pierre Emmanuel Noly
- Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Center for Research, Montreal Heart Institute, Montreal, QC, Canada
| | - Eric Thorin
- Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Center for Research, Montreal Heart Institute, Montreal, QC, Canada
| | - Michel Carrier
- Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Center for Research, Montreal Heart Institute, Montreal, QC, Canada
| |
Collapse
|
28
|
Grzelak-Błaszczyk K, Milala J, Kołodziejczyk K, Sójka M, Czarnecki A, Kosmala M, Klewicki R, Fotschki B, Jurgoński A, Juśkiewicz J. Protocatechuic acid and quercetin glucosides in onions attenuate changes induced by high fat diet in rats. Food Funct 2021; 11:3585-3597. [PMID: 32285077 DOI: 10.1039/c9fo02633a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Yellow onion waste from industrial peeling was used to obtain three pure preparations: protocatechuic acid (PA), quercetin diglycosides (QD) and quercetin monoglycosides (QM). PA contained 61% protocatechuic acid, QD contained 35% quercetin diglucosides, mainly quercetin-3,4'-diglucoside, and QM contained 41% monoglucosides, mainly quercetin-4'-glucoside. The highest antioxidant activity was shown by PA. The effects of preparations on the digestive functions of the gastrointestinal tract of rats as well as the biochemical parameters and antioxidant capacity of the blood in model research on Wistar rats sustained by a high-fat diet were assessed (5 groups per 8 animals). The results of the present experiment showed that different onion phenolic preparations differently modulated the enzymatic activity of faecal (P < 0.001) and caecal (P < 0.001) microbiota. For instance, the QD preparation but not QM efficiently reduced the faecal and caecal bacterial β-glucuronidase activity. Both protocatechuic acid and quercetin monoglycosides showed a beneficial effect by regulating blood lipids (reduction of TC (P < 0.001) and TG (P < 0.001), non-HDL increase in HDL (P < 0.001)), thereby lowering the risk factors for atherosclerotic lesions AI (P = 0.038) and AII (P = 0.013). In addition, onion phenols showed a strong antioxidant effect, however, with a different mechanism: protocatechuic acid via serum ACL (P = 0.033) increase and hepatic GSSG (P = 0.070) decrease, QM via ACW (P < 0.001) increase and hepatic TBARS (P = 0.002) decrease, and QD via serum ACW increase and hepatic GSSG decrease. It can be concluded that onion polyphenols with a lower molar weight, i.e. QM more preferably affect the blood lipid profile than QD. However QD more efficiently reduced the faecal and caecal bacterial β-glucuronidase activity.
Collapse
Affiliation(s)
- Katarzyna Grzelak-Błaszczyk
- Institute of Food Technology and Analysis, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland.
| | - Joanna Milala
- Institute of Food Technology and Analysis, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland.
| | - Krzysztof Kołodziejczyk
- Institute of Food Technology and Analysis, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland.
| | - Michał Sójka
- Institute of Food Technology and Analysis, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland.
| | - Andrzej Czarnecki
- Institute of Food Technology and Analysis, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland.
| | - Monika Kosmala
- Institute of Food Technology and Analysis, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland.
| | - Robert Klewicki
- Institute of Food Technology and Analysis, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland.
| | - Bartosz Fotschki
- Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Division of Food Science, Tuwima 10, 10-748 Olsztyn, Poland.
| | - Adam Jurgoński
- Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Division of Food Science, Tuwima 10, 10-748 Olsztyn, Poland.
| | - Jerzy Juśkiewicz
- Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Division of Food Science, Tuwima 10, 10-748 Olsztyn, Poland.
| |
Collapse
|
29
|
Wen K, Fang X, Yang J, Yao Y, Nandakumar KS, Salem ML, Cheng K. Recent Research on Flavonoids and their Biomedical Applications. Curr Med Chem 2021; 28:1042-1066. [PMID: 32660393 DOI: 10.2174/0929867327666200713184138] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 02/14/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023]
Abstract
Flavonoids, commonly found in various plants, are a class of polyphenolic compounds having a basic structural unit of 2-phenylchromone. Flavonoid compounds have attracted much attention due to their wide biological applications. In order to facilitate further research on the biomedical application of flavonoids, we surveyed the literature published on the use of flavonoids in medicine during the past decade, documented the commonly found structures in natural flavonoids, and summarized their pharmacological activities as well as associated mechanisms of action against a variety of health disorders including chronic inflammation, cancer, cardiovascular complications and hypoglycemia. In this mini-review, we provide suggestions for further research on the biomedical applications of flavonoids.
Collapse
Affiliation(s)
- Kangmei Wen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaochuan Fang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Junli Yang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yongfang Yao
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | | | | | - Kui Cheng
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
30
|
INTENSITY OF OXIDATIVE STRESS IN THE COMORBID COURSE OF NON-ALCOHOLIC STEATOGEPATITIS AND DIABETIC KIDNEY DISEASE IN PATIENTS WITH TYPE 2 DIABETES MELLITUS. WORLD OF MEDICINE AND BIOLOGY 2021. [DOI: 10.26724/2079-8334-2021-3-77-175-178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Dehghani F, Sezavar Seyedi Jandaghi SH, Janani L, Sarebanhassanabadi M, Emamat H, Vafa M. Effects of quercetin supplementation on inflammatory factors and quality of life in post-myocardial infarction patients: A double blind, placebo-controlled, randomized clinical trial. Phytother Res 2020; 35:2085-2098. [PMID: 33216421 DOI: 10.1002/ptr.6955] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/05/2020] [Accepted: 11/03/2020] [Indexed: 01/09/2023]
Abstract
Myocardial infarction (MI) is one of the leading causes of death in the world. Epidemiological studies have shown that dietary flavonoids are inversely related to cardiovascular morbidity and mortality. The study aimed to determine whether quercetin supplementation can improve inflammatory factors, total antioxidant capacity (TAC) and quality of life (QOL) in patients following MI. This randomized double-blind, placebo-controlled trial was conducted on 88 post-MI patients. Participants were randomly assigned into quercetin (n = 44) and placebo groups (n = 44) receiving 500 mg/day quercetin or placebo tablets for 8 weeks. Quercetin supplementation significantly increased serum TAC compared to placebo (Difference: 0.24 (0.01) mmol/L and 0.00 (0.00) mmol/L respectively; p < .001). TNF-α levels significantly decreased in the quercetin group (p = .009); this was not, however, significant compared to the placebo group. As for QOL dimensions, quercetin significantly lowered the scores of insecurity (Difference: -0.66 (12.5) and 0.00 (5.55) respectively; p < .001). No significant changes in IL-6, hs-CRP, blood pressure and other QOL dimensions were observed between the two groups. Quercetin supplementation (500 mg/day) in post-MI patients for 8 weeks significantly elevated TAC and improved the insecurity dimension of QOL, but failed to show any significant effect on inflammatory factors, blood pressure and other QOL dimensions.
Collapse
Affiliation(s)
- Fereshteh Dehghani
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | | | - Leila Janani
- Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | | | - Hadi Emamat
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Vafa
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Wang F, Zhao C, Tian G, Wei X, Ma Z, Cui J, Wei R, Bao Y, Kong W, Zheng J. Naringin Alleviates Atherosclerosis in ApoE -/- Mice by Regulating Cholesterol Metabolism Involved in Gut Microbiota Remodeling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12651-12660. [PMID: 33107729 DOI: 10.1021/acs.jafc.0c05800] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Naringin, a major flavonoid in citrus, has potential for preventing atherosclerosis. The presence in the colon of a large amount of naringin after oral intake might affect the gut microbiota. We investigated the role of gut microbiota remodeling in the alleviation of atherosclerosis by naringin. Naringin significantly alleviated atherosclerosis and lowered the serum and liver cholesterol levels by 24.04 and 28.37% in ApoE-/- mice fed with a high-fat diet. Nontarget metabolomics showed that naringin modulated the hepatic levels of cholesterol derivatives and bile acids. Naringin increased the excretion of bile acids and neutral sterols by 1.6- and 4.3-fold, respectively. The main potential pathway by which naringin alleviated atherosclerosis was the gut microbiota-liver-cholesterol axis. Naringin modulated the abundances of bile salt hydrolase- and 7α-dehydroxylase-producing bacteria, promoting bile acid synthesis from cholesterol by upregulating CYP7A1 via suppression of the FXR/FGF15 pathway. In addition, naringin facilitated reverse cholesterol transport by downregulating PCSK9/IDOL. The results provide insight into the atherosclerosis-alleviation mechanisms of citrus flavonoids and a scientific basis for the development of functional foods containing citrus flavonoids.
Collapse
Affiliation(s)
- Feng Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chengying Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guifang Tian
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xue Wei
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zihan Ma
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Jiefen Cui
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Rujun Wei
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuming Bao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Jinkai Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
33
|
Quercetin Improving Lipid Metabolism by Regulating Lipid Metabolism Pathway of Ileum Mucosa in Broilers. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8686248. [PMID: 33014279 PMCID: PMC7520004 DOI: 10.1155/2020/8686248] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 02/06/2023]
Abstract
This study is aimed at evaluating the regulatory mechanism of quercetin on lipid metabolism in the ileum of broilers to better understand these pathways decreasing abdominal fat. 480 chickens were randomly divided into 4 groups (control, 0.02% quercetin, 0.04% quercetin, and 0.06% quercetin). Breast muscle, thigh muscle, and abdominal fat pad were removed and weighed at 42 d of age. Serum was obtained by centrifuging blood samples from the jugular vein (10 ml) to determine high-density lipoprotein (HDL), total cholesterol (TC), low-density lipoprotein (LDL), triglyceride (TG), leptin, and adiponectin using ELISA. About 5 g of the ileum was harvested and immediately frozen in liquid nitrogen for RNA-seq. Then, the confirmation of RNA-seq results by the Real-Time Quantitative PCR (RT-qPCR) method was evaluated using Pearson's correlation. Compared with control, abdominal fat percentage was significantly decreased with increasing quercetin supplementation, and the best result was obtained at 0.06% dietary quercetin supplementation (P < 0.01). Breast muscle percentage was significantly decreased at 0.02% quercetin (P < 0.01), and thigh muscle percentage tended to increase (P = 0.078). Meanwhile, 0.04% and 0.06% quercetin significantly decreased TG (P < 0.01), TC (P < 0.01), and LDL content (P < 0.05) in serum. Serum leptin and adiponectin contents were significantly increased by 0.04% and 0.06% dietary quercetin supplementation, compared with the control (P < 0.01). Analyses of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) database were used to identify differently expressed genes and lipid metabolism pathways. Quercetin decreased abdominal fat percentage through regulating fat digestion and absorption, glycerophospholipid metabolism, AMPK signaling pathway, fatty acid degradation, and cholesterol metabolism.
Collapse
|
34
|
Deng Q, Li XX, Fang Y, Chen X, Xue J. Therapeutic Potential of Quercetin as an Antiatherosclerotic Agent in Atherosclerotic Cardiovascular Disease: A Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:5926381. [PMID: 32565865 PMCID: PMC7292974 DOI: 10.1155/2020/5926381] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/31/2020] [Accepted: 05/02/2020] [Indexed: 12/11/2022]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is one of the diseases with the highest morbidity and mortality globally. It causes a huge burden on families and caregivers and high costs for medicine and surgical interventions. Given expensive surgeries and failures of most conventional treatments, medical community tries to find a more cost-effective cure. Thus, attentions have been primarily focused on food or herbs. Quercetin (Qu) extracted from food, a flavonoid component, develops potentials of alternative or complementary medicine in atherosclerosis. Due to the wide range of health benefits, researchers have considered to apply Qu as a natural compound in therapy. This review is aimed to identify the antiatherosclerosis functions of Qu in treating ASCVD such as anti-inflammatory, antioxidant properties, effects on endothelium-dependent vasodilation, and blood lipid-lowering.
Collapse
Affiliation(s)
- Qian Deng
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao Xue Li
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanting Fang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Chen
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingui Xue
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
35
|
Li Y, Sheng Y, Lu X, Guo X, Xu G, Han X, An L, Du P. Isolation and purification of acidic polysaccharides from Agaricus blazei Murill and evaluation of their lipid-lowering mechanism. Int J Biol Macromol 2020; 157:276-287. [PMID: 32344083 DOI: 10.1016/j.ijbiomac.2020.04.190] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 01/08/2023]
Abstract
Polysaccharides are important active constituents of Agaricus blazei Morrill. In the present study, WABM-A was isolated from WABM using DEAE-cellulose, and subsequently purified using sepharose CL-6B to obtain the acidic polysaccharide WABM-A-b. WABM-A-b is mainly composed of Glc dextran, with a molecular weight of 10 KDa and β-1,6-D-Glcp as its main chain. The results of in vivo experiments show that in comparison with the MG, WABM-A significantly reduced the serum levels of TC, TG, and LDL-C, increased the serum levels of HDL-C (P < 0.01), and upregulated the liver expression of PPARγ, LXRα, ABCA1, and ABCG1 in rats with hyperlipidemia (P < 0.05). The results of in vitro experiments show that in comparison with the MG group, WABM-A-b-H significantly reduced the levels of TC and TG in HepG2 cells induced by oleic acid (P < 0.01), and significantly upregulated the protein expression of PPARγ, LXRα, ABCA1, and ABCG1 (P < 0.05). The present study demonstrates that WABM-A-b is an acidic glucan with lipid-lowering activity. The lipid-lowering mechanism of WABM-A-b is via the activation of the PPARγ/LXRα/ABCA1/ABCG1 cholesterol metabolism pathway. This is the first time that the hypolipidemic effect of Agaricus blazei Morrill acidic polysaccharides has been reported.
Collapse
Affiliation(s)
- Yuxin Li
- College of Pharmacy, Beihua University, Jilin 132013, China
| | - Yu Sheng
- College of Pharmacy, Beihua University, Jilin 132013, China
| | - Xuechun Lu
- General Hospital of the People's Liberation Army, Beijing 100853, China
| | - Xiao Guo
- College of Pharmacy, Beihua University, Jilin 132013, China
| | - Guangyu Xu
- College of Pharmacy, Beihua University, Jilin 132013, China
| | - Xiao Han
- College of Pharmacy, Beihua University, Jilin 132013, China
| | - Liping An
- College of Pharmacy, Beihua University, Jilin 132013, China.
| | - Peige Du
- College of Pharmacy, Beihua University, Jilin 132013, China.
| |
Collapse
|
36
|
Donaldson J, Ngema M, Nkomozepi P, Erlwanger K. Quercetin administration post-weaning attenuates high-fructose, high-cholesterol diet-induced hepatic steatosis in growing, female, Sprague Dawley rat pups. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:6954-6961. [PMID: 31414497 DOI: 10.1002/jsfa.9984] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/15/2019] [Accepted: 08/10/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Fructose and cholesterol-rich diets have been implicated in the upsurge of metabolic syndrome (MetS). Phytochemicals are being explored as alternatives for the prevention and management of MetS. Thirty-six 21-day-old, female Sprague Dawley rats fed a high-fructose, high-cholesterol diet post-weaning were used to investigate the prophylactic potential of quercetin. Group 1 was given standard rat chow (SRC); Group 2: SRC and quercetin (75 mg kg-1 daily); Group 3: SRC and fenofibrate (100 mg kg-1 daily); Group 4 was given a high cholesterol diet (HCD) (2% added dietary cholesterol in SRC), 20% fructose drinking solution (FS); Group 5 was given HCD, 20% FS and quercetin (75 mg kg-1 daily); Group 6: HCD, 20% FS and fenofibrate (100 mg kg-1 daily). Rats were fed ad libitum for 8 weeks, euthanized, and blood and liver samples were collected. RESULTS The HCD and FS significantly increased (P < 0.05) absolute and relative liver masses and serum cholesterol. Fasting blood glucose, serum triglycerides, alanine transaminase, creatinine, and urea were not significantly different (P > 0.05) between groups. The HCD and FS significantly increased liver lipid yield compared to the SRC and rats receiving SRC with fenofibrate (P < 0.05). Quercetin or fenofibrate together with HCD and FS attenuated the diet-induced increase in liver lipids by approximately 50%, although this was not statistically significant. Liver macro- and micro-steatosis scores were significantly increased (P < 0.05) in rats receiving HCD and FS. Quercetin or fenofibrate administration together with HCD and FS significantly decreased (P < 0.05) liver macro-steatosis scores. CONCLUSION The prophylactic effect of quercetin on fructose and cholesterol diet-induced liver lipid accumulation may be exploited in the fight against non-alcoholic fatty liver disease (NAFLD). © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Janine Donaldson
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mandisa Ngema
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Pilani Nkomozepi
- Department of Human Anatomy and Physiology, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Kennedy Erlwanger
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
37
|
Vovkun TV, Yanchuk PI, Shtanova LY, Veselsky SP, Filimonova NB, Komarov IV. Corvitin modulates the content of lipids in rat liver bile. UKRAINIAN BIOCHEMICAL JOURNAL 2019. [DOI: 10.15407/ubj91.06.112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
38
|
Ulusoy HG, Sanlier N. A minireview of quercetin: from its metabolism to possible mechanisms of its biological activities. Crit Rev Food Sci Nutr 2019; 60:3290-3303. [PMID: 31680558 DOI: 10.1080/10408398.2019.1683810] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Quercetin, one of the most taken flavonoid with diet, belongs to the family of flavonols in which kaempferol and myricetin are also found. Quercetin occurs as a glycoside (with linked sugars) or as an aglycone (without linked sugars). Although quercetin has many different forms in nature, the form found in plants is quercetin-3-O-glucoside, which generally functions as a pigment that gives color to a multitude of fruits and vegetables. The recent literature has been reviewed using PubMed, Science Direct, and Embase databases. In this article, we reviewed quercetin with respect to chemical properties, absorption mechanism, metabolism, bioavailability, food sources, bioactivities, and possible health-promoting mechanisms. Quercetin is known as an antioxidant, anti-inflammatory, cardioprotective, and anti-obesity compound. It is thought to be beneficial against cardiovascular diseases, cancer, diabetes, neurological diseases, obesity, allergy asthma, and atopic diseases. Further clinical studies with large sample sizes are needed to determine the appropriate dose and form of quercetin for preventing diseases.
Collapse
Affiliation(s)
- Hande Gül Ulusoy
- School of Health Sciences, Department of Nutrition and Dietetic, Ankara Medipol University, Ankara, Turkey
| | - Nevin Sanlier
- School of Health Sciences, Department of Nutrition and Dietetic, Ankara Medipol University, Ankara, Turkey
| |
Collapse
|
39
|
Polyphenol Effects on Cholesterol Metabolism via Bile Acid Biosynthesis, CYP7A1: A Review. Nutrients 2019; 11:nu11112588. [PMID: 31661763 PMCID: PMC6893479 DOI: 10.3390/nu11112588] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/27/2019] [Accepted: 10/09/2019] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis, the main contributor to coronary heart disease, is characterised by an accumulation of lipids such as cholesterol in the arterial wall. Reverse cholesterol transport (RCT) reduces cholesterol via its conversion into bile acids (BAs). During RCT in non-hepatic peripheral tissues, cholesterol is transferred to high-density lipoprotein (HDL) particles and returned to the liver for conversion into BAs predominantly via the rate-limiting enzyme, cholesterol 7 α-hydroxylase (CYP7A1). Numerous reports have described that polyphenol induced increases in BA excretion and corresponding reductions in total and LDL cholesterol in animal and in-vitro studies, but the process whereby this occurs has not been extensively reviewed. There are three main mechanisms by which BA excretion can be augmented: (1) increased expression of CYP7A1; (2) reduced expression of intestinal BA transporters; and (3) changes in the gut microbiota. Here we summarise the BA metabolic pathways focusing on CYP7A1, how its gene is regulated via transcription factors, diurnal rhythms, and microRNAs. Importantly, we will address the following questions: (1) Can polyphenols enhance BA secretion by modulating the CYP7A1 biosynthetic pathway? (2) Can polyphenols alter the BA pool via changes in the gut microbiota? (3) Which polyphenols are the most promising candidates for future research? We conclude that while in rodents some polyphenols induce CYP7A1 expression predominantly by the LXRα pathway, in human cells, this may occur through FXR, NF-KB, and ERK signalling. Additionally, gut microbiota is important for the de-conjugation and excretion of BAs. Puerarin, resveratrol, and quercetin are promising candidates for further research in this area.
Collapse
|
40
|
Ruiz-Canizales J, Domínguez-Avila JA, Wall-Medrano A, Ayala-Zavala JF, González-Córdova AF, Vallejo-Córdoba B, Salazar-López NJ, González-Aguilar GA. Fiber and phenolic compounds contribution to the hepatoprotective effects of mango diets in rats fed high cholesterol/sodium cholate. Phytother Res 2019; 33:2996-3007. [PMID: 31418509 DOI: 10.1002/ptr.6479] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/19/2019] [Accepted: 07/28/2019] [Indexed: 12/12/2022]
Abstract
The present study evaluated the contribution of mango fiber (MF) and mango phenolic compounds (MP) to the hepatoprotective effect of freeze-dried mango pulp (FDM) cultivar (cv.) "Ataulfo" diets in high cholesterol/sodium cholate (HCC)-fed rats. Male Wistar rats were fed with a HCC diet for 12 weeks, either untreated, or supplemented with MF, MP, FDM, or a control diet (no HCC; n = 6/group). All mango treatments significantly decreased hepatic cholesterol deposition and altered its fatty acid profile, whereas MF and MP mitigated adipose tissue hypertrophy. MF caused a lower level of proinflammatory cytokines (IL-1α/β, IFN-γ, TNF-α) whereas FDM increased the anti-inflammatory ones (IL-4, 6, 10). Mango treatments increased catalase (CAT) activity and its mRNA expression; superoxide dismutase (SOD) activity was normalized by MF and FDM, but its activity was unrelated to its hepatic mRNA expression. Changes in CAT and SOD mRNA expression were unrelated to altered Nrf2 mRNA expression. Higher hepatic PPARα and LXRα mRNA levels were found in MP and MF. We concluded that MF and MP are highly bioactive, according to the documented hepatoprotection in HCC-fed rats; their mechanism of action appears to be related to modulating cholesterol and fatty acid metabolism as well as to stimulating the endogenous antioxidant system.
Collapse
Affiliation(s)
- Jacqueline Ruiz-Canizales
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo A. C., Hermosillo, México
| | | | - Abraham Wall-Medrano
- Departamento de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, México
| | - J Fernando Ayala-Zavala
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo A. C., Hermosillo, México
| | - Aarón F González-Córdova
- Coordinación de Alimentos de Origen Animal, Centro de Investigación en Alimentación y Desarrollo A. C., Hermosillo, México
| | - Belinda Vallejo-Córdoba
- Coordinación de Alimentos de Origen Animal, Centro de Investigación en Alimentación y Desarrollo A. C., Hermosillo, México
| | | | - Gustavo A González-Aguilar
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo A. C., Hermosillo, México
| |
Collapse
|
41
|
Cao H, Jia Q, Shen D, Yan L, Chen C, Xing S. Quercetin has a protective effect on atherosclerosis via enhancement of autophagy in ApoE -/- mice. Exp Ther Med 2019; 18:2451-2458. [PMID: 31555357 PMCID: PMC6755277 DOI: 10.3892/etm.2019.7851] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 05/31/2019] [Indexed: 11/17/2022] Open
Abstract
The present study examined the involvement of autophagy as a mechanism in the protective effect of quercetin (QUE) on atherosclerosis (AS) in ApoE−/− mice. An AS model was established by feeding ApoE−/− mice a high-fat diet (HFD). Mice were divided into four experimental groups: The model, QUE, 3-methyladenine (3-MA) and QUE + 3-MA groups. Additionally, age-matched wild-type C57BL/6 mice were used as a Control group. Autophagosomes in the aorta were examined using a transmission electron microscope. Aorta pathology, serum lipid accumulation and collagen deposition were determined by hematoxylin and eosin, Oil Red O and Masson staining, respectively. The levels of cytokines, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-18 (IL-18) were measured using ELISA assays. Protein levels of mTOR, microtubule associated protein 1 light chain 3a (LC3), P53 and cyclin dependent kinase inhibitor 1A (P21) in the aorta were analyzed using western blotting. ApoE−/− mice which were fed HFD exhibited substantial AS pathology, no autophagosomes, higher levels of TNF-α, IL-1β, IL-18 and mTOR and lower ratios of LC3 II/I. All these alterations were ameliorated and aggravated by QUE and 3-MA treatment, respectively. The inhibition of AS by QUE may be associated with the enhancement of autophagy and upregulation of P21 and P53 expression.
Collapse
Affiliation(s)
- Hui Cao
- Geriatrics Laboratory, Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China
| | - Qingling Jia
- Geriatrics Laboratory, Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China
| | - Dingzhu Shen
- Geriatrics Laboratory, Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China
| | - Li Yan
- Geriatrics Laboratory, Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China
| | - Chuan Chen
- Geriatrics Laboratory, Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China
| | - Sanli Xing
- Geriatrics Laboratory, Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China
| |
Collapse
|
42
|
Cheng C, Zhuo S, Zhang B, Zhao X, Liu Y, Liao C, Quan J, Li Z, Bode AM, Cao Y, Luo X. Treatment implications of natural compounds targeting lipid metabolism in nonalcoholic fatty liver disease, obesity and cancer. Int J Biol Sci 2019; 15:1654-1663. [PMID: 31360108 PMCID: PMC6643217 DOI: 10.7150/ijbs.33837] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/19/2019] [Indexed: 01/23/2023] Open
Abstract
Metabolic disorders can lead to a scarcity or excess of certain metabolites such as glucose, lipids, proteins, purines, and metal ions, which provide the biochemical foundation and directly contribute to the etiology of metabolic diseases. Nonalcoholic fatty liver disease, obesity, and cancer are common metabolic disorders closely associated with abnormal lipid metabolism. In this review, we first describe the regulatory machinery of lipid metabolism and its deregulation in metabolic diseases. Next, we enumerate and integrate the mechanism of action of some natural compounds, including terpenoids and flavonoids, to ameliorate the development of metabolic diseases by targeting lipid metabolism. Medicinal natural products have an established history of use in health care and therapy. Natural compounds might provide a good source of potential therapeutic agents for treating or preventing metabolic diseases with lipid metabolic abnormalities.
Collapse
Affiliation(s)
- Can Cheng
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China.,Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan 410078, PR China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078,PR China
| | - Songming Zhuo
- Department of Respiratory Medicine, Shenzhen Longgang Center Hospital, Shenzhen, Guangdong 518116, PR China
| | - Bo Zhang
- Department of Ultrasound Imaging,Xiangya Hospital,Central South University, Changsha, Hunan 410078, PR China
| | - Xu Zhao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China.,Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan 410078, PR China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078,PR China
| | - Ying Liu
- Department of Medicine, Hunan Traditional Chinese Medical College, Zhuzhou, Hunan 412000, China
| | - Chaoliang Liao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China.,Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan 410078, PR China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078,PR China
| | - Jing Quan
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China.,Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan 410078, PR China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078,PR China
| | - Zhenzhen Li
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China.,Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan 410078, PR China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078,PR China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China.,Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan 410078, PR China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078,PR China.,Molecular Imaging Research Center of Central South University, Changsha, Hunan 410078, China
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China.,Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan 410078, PR China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078,PR China.,Molecular Imaging Research Center of Central South University, Changsha, Hunan 410078, China
| |
Collapse
|
43
|
Chen Z, Sun D, Bi X, Luo W, Xu A, Chen W, Jiang J, Cai D, Guo H, Cao L. Selection and evaluation of quality markers from Yinlan capsule and its LXRα-mediated therapy for hyperlipidemia. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 59:152896. [PMID: 30978649 DOI: 10.1016/j.phymed.2019.152896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/14/2019] [Accepted: 03/16/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The selection of active compounds for the quality evaluation of traditional Chinese medicine (TCM), specifically complex formulas, remains a challenge for researchers, as components selected as indexes usually have no clear relation with the therapeutic effects of interest. As a suggested resolution, quality control markers (Q-markers) showed good perspective for discriminating numerous compounds found for specific efficacies. In the presented study, the components of the Yinlan (YL) capsule, a TCM patent formula comprising four ingredients, were evaluated and selected for their lipid regulatory effects using principles for Q-marker selection. PURPOSE The mechanism of TCM therapeutic effects involves several pathways and targets that combine to become an integrated action in the body. Therefore, it is assumed that specific compounds in YL should have good affinity for related targets and obvious effects (both up- and downregulating). Thus, a series of experiments, including cytobiology, animal-based pharmacodynamics, computer-assisted drug design, conventional content determination and pharmacokinetics, would be helpful for the selection and final confirmation of Q-markers. METHODS The capsule was first administered to Wistar mice fed a high-fat diet and tested for their triglycerides (TG) and total cholesterol (TC) values to evaluate the effectiveness of YL. Then, liver tissue was extracted for gene expression. According to the results, the compounds in YL with good affiliation were selected and determined using UHPLC-MS-MS, and those with adequate results in the capsule were chosen as Q-marker candidates. Finally, pharmacokinetics research was performed; the candidates with desirable metabolite and bioavailability parameters were confirmed as Q-markers of YL. RESULTS YL capsule was capable of lowering TG and TC levels. For target selection, the expression of LXR mRNA increased significantly at all three tested dosages. Downstream genes, such as LCAT, CYP7A1, and ABCA1, and intestinal FXR mRNA also showed significant increases in expression. For screening of the Q-marker candidates, 5 compounds were selected according to abovementioned results. The pharmacokinetics research demonstrated that the rats exploited lupeol and ginsenoside Rb3 in a desirable pattern with adequate bioavailability, which confirmed their roles as lipid regulatory Q-markers. CONCLUSION The YL capsule was demonstrated to have obvious lipid regulatory effects, which are mainly exerted by targeting LXR and its related pathway. Lupeol and ginsenoside Rb3 were validated as Q-markers that represent the anti-hyperlipidemia activity of the capsule.
Collapse
Affiliation(s)
- Zhao Chen
- The Fifth College of Clinic Medicine, Guangzhou University of Chinese Medicine, 60 Hengfu Rd., Guangzhou 510095, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, 60 Hengfu Rd., Guangzhou 510095, China
| | - Dongmei Sun
- The Fifth College of Clinic Medicine, Guangzhou University of Chinese Medicine, 60 Hengfu Rd., Guangzhou 510095, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, 60 Hengfu Rd., Guangzhou 510095, China; Guangdong Yifang Pharmaceutical Co. Ltd., 69 Jinfeng Rd., Foshan 528244, China.
| | - Xiaoli Bi
- The Fifth College of Clinic Medicine, Guangzhou University of Chinese Medicine, 60 Hengfu Rd., Guangzhou 510095, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, 60 Hengfu Rd., Guangzhou 510095, China
| | - Wenhui Luo
- The Fifth College of Clinic Medicine, Guangzhou University of Chinese Medicine, 60 Hengfu Rd., Guangzhou 510095, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, 60 Hengfu Rd., Guangzhou 510095, China; Guangdong Yifang Pharmaceutical Co. Ltd., 69 Jinfeng Rd., Foshan 528244, China
| | - Aili Xu
- The Fifth College of Clinic Medicine, Guangzhou University of Chinese Medicine, 60 Hengfu Rd., Guangzhou 510095, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, 60 Hengfu Rd., Guangzhou 510095, China
| | - Weitao Chen
- The Fifth College of Clinic Medicine, Guangzhou University of Chinese Medicine, 60 Hengfu Rd., Guangzhou 510095, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, 60 Hengfu Rd., Guangzhou 510095, China
| | - Jieyi Jiang
- The Fifth College of Clinic Medicine, Guangzhou University of Chinese Medicine, 60 Hengfu Rd., Guangzhou 510095, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, 60 Hengfu Rd., Guangzhou 510095, China
| | - Dake Cai
- The Fifth College of Clinic Medicine, Guangzhou University of Chinese Medicine, 60 Hengfu Rd., Guangzhou 510095, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, 60 Hengfu Rd., Guangzhou 510095, China
| | - Haoliang Guo
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106-2648, United States
| | - Lizhong Cao
- The Fifth College of Clinic Medicine, Guangzhou University of Chinese Medicine, 60 Hengfu Rd., Guangzhou 510095, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, 60 Hengfu Rd., Guangzhou 510095, China
| |
Collapse
|
44
|
Son HY, Lee MS, Chang E, Kim SY, Kang B, Ko H, Kim IH, Zhong Q, Jo YH, Kim CT, Kim Y. Formulation and Characterization of Quercetin-loaded Oil in Water Nanoemulsion and Evaluation of Hypocholesterolemic Activity in Rats. Nutrients 2019; 11:E244. [PMID: 30678282 PMCID: PMC6412563 DOI: 10.3390/nu11020244] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 11/16/2022] Open
Abstract
Due to poor water solubility and high susceptibility to chemical degradation, the applications of quercetin have been limited. This study investigated the effects of pH on the formation of quercetin-loaded nanoemulsion (NQ) and compared the hypocholesterolemic activity between quercetin and NQ to utilize the quercetin as functional food ingredient. NQ particle size exhibited a range of 207⁻289 nm with polydispersity index range (<0.47). The encapsulation efficiency increased stepwise from 56 to 92% as the pH increased from 4.0 to 9.0. Good stability of NQ was achieved in the pH range of 6.5⁻9.0 during 3-month storage at 21 and 37 °C. NQ displayed higher efficacy in reducing serum and hepatic cholesterol levels and increasing the release of bile acid into feces in rats fed high-cholesterol diet, compared to quercetin alone. NQ upregulated hepatic gene expression involved in bile acid synthesis and cholesterol efflux, such as cholesterol 7 alpha-hydroxylase (CYP7A1), liver X receptor alpha (LXRα), ATP-binding cassette transporter A1 (ABCA1) and ATP-binding cassette sub-family G member 1 (ABCG1). These results suggest at least partial involvement of hepatic bile acid synthesis and fecal cholesterol excretion in nanoemulsion quercetin-mediated beneficial effect on lipid abnormalities.
Collapse
Affiliation(s)
- Hye-Yeon Son
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| | - Mak-Soon Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| | - Eugene Chang
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| | - Seog-Young Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| | - Bori Kang
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| | - Hyunmi Ko
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| | - In-Hwan Kim
- Department of Integrated Biomedical and Life Sciences, Korea University, Seoul 02841, Korea.
| | - Qixin Zhong
- Department of Food Science, University of Tennessee, Knoxville, TN 37996-6196, USA.
| | - Young-Hee Jo
- Kolmar BNH CO., LTd 2-15, Sandan-gil, Jeonui-myeon, Sejong-si 30003, Korea.
| | - Chong-Tai Kim
- R&D Center, EastHill Corporation, Gwonseon-gu, Suwon-si, Gyeonggi-do 16642, Korea.
| | - Yangha Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
45
|
Figueredo KC, Guex CG, Reginato FZ, Haas da Silva AR, Cassanego GB, Lhamas CL, Boligon AA, Lopes GHH, de Freitas Bauermann L. Safety assessment of Morus nigra L. leaves: Acute and subacute oral toxicity studies in Wistar rats. JOURNAL OF ETHNOPHARMACOLOGY 2018; 224:290-296. [PMID: 29772355 DOI: 10.1016/j.jep.2018.05.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 05/03/2018] [Accepted: 05/11/2018] [Indexed: 05/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Morus nigra L. is a plant native to Asia, and well adapted to the Brazilian climate. It is popularly known as "amoreira preta", and is part of the National List of Plants of Interest to the Brazilian Unified Health System. It is used in folk medicine mainly to soften the effects of menopause, as anti-inflammatory, antidiabetic and antihypertensive. However, information on safe doses and use is still precarious. AIM OF THE STUDY To identify the chemical composition of the ethanolic extract of Morus nigra L. leaves (EEMN), as well as perform a toxicological study in male and female rats. MATERIALS AND METHODS The chemical composition of the extract was performed by HPLC/DAD. In the acute study, the dose administered was 2000 mg/kg, and signs of toxicity and mortality was observed. In the sub-acute study, the extract was administered at doses of 500, 750 and 1000 mg/kg for 28 days. Behavioral changes, object recognition test, renal and hepatic tissue assessments, biochemical and hematological parameters were determined. The extract was administered orally to male and female rats in both studies. RESULTS Quercetin and caffeic acid showed as major compounds in the extract. In the acute treatment, the extract was classified as safe (category 5), according to the protocol. In the subacute study, there was a decrease in AST in males (750 and 1000 mg/kg) and females (1000 mg/kg), reduction of total cholesterol in females (750 and 1000 mg/kg), and increase in renal and hepatic change the LPO levels. CONCLUSION The present investigation showed that EEMN did not present significant toxic effects when administered orally. Moreover, presented a potentially protective action of organs and possesses hypocholesterolemic activity, thus, it is shown as a promising natural source to be used in pharmacology.
Collapse
Affiliation(s)
- Kassia Caroline Figueredo
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | - Camille Gaube Guex
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Fernanda Ziegler Reginato
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | | | | - Cibele Lima Lhamas
- Veterinary Hospital, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Aline Augusti Boligon
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | | | |
Collapse
|
46
|
Li S, Cao H, Shen D, Jia Q, Chen C, Xing SL. Quercetin protects against ox‑LDL‑induced injury via regulation of ABCAl, LXR‑α and PCSK9 in RAW264.7 macrophages. Mol Med Rep 2018; 18:799-806. [PMID: 29845234 PMCID: PMC6059709 DOI: 10.3892/mmr.2018.9048] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 05/04/2018] [Indexed: 02/01/2023] Open
Abstract
Quercetin is a flavonoid that has anti‑inflammatory, anti‑oxidant and lipid metabolic effects. It has also been reported to reduce the risk of cardiovascular disease. The present study measured the effects of quercetin on the expression of ATP‑binding cassette transporter 1 (ABCAl), ATP‑binding cassette sub‑family G member 1 (ABCG1), liver X receptor‑α (LXR‑α), proprotein convertase subtilisin/kexin type 9 (PCSK9), p53, p21 and p16 induced by oxidized low density lipoprotein (ox‑LDL). RAW264.7 macrophages were exposed to ox‑LDL with or without 20 µmol/l quercetin and cell proliferation and senescence were quantified using β‑gal staining. Superoxide dismutase (SOD), malondialdehyde (MDA) and lipid droplets were measured in the cytoplasm using oil red staining, while intracellular and total cholesterol (TC) were measured using filipin staining and a TC kit. Immunofluorescent studies and western blot analysis were performed to quantify the expression of ABCAl, ABCG1, LXR‑α, PCSK9, p53, p21 and p16. Quercetin increased RAW264.7 cell viability and reduced lipid accumulation, senescence, lipid droplets, intracellular cholesterol and TC. It was concluded that quercetin inhibits ox‑LDL‑induced lipid droplets in RAW264.7 cells by upregulation of ABCAl, ABCG1, LXR‑α and downregulation of PCSK9, p53, p21 and p16.
Collapse
Affiliation(s)
- Shanshan Li
- Shanghai Geriatrics Institute of Chinese Medicine, Shanghai 200031, P.R. China
| | - Hui Cao
- Shanghai Geriatrics Institute of Chinese Medicine, Shanghai 200031, P.R. China
| | - Dingzhu Shen
- Shanghai Geriatrics Institute of Chinese Medicine, Shanghai 200031, P.R. China
| | - Qingling Jia
- Shanghai Geriatrics Institute of Chinese Medicine, Shanghai 200031, P.R. China
| | - Chuan Chen
- Shanghai Geriatrics Institute of Chinese Medicine, Shanghai 200031, P.R. China
| | - San Li Xing
- Shanghai Geriatrics Institute of Chinese Medicine, Shanghai 200031, P.R. China
| |
Collapse
|
47
|
Choi HK, Hwang JT, Nam TG, Kim SH, Min DK, Park SW, Chung MY. Welsh onion extract inhibits PCSK9 expression contributing to the maintenance of the LDLR level under lipid depletion conditions of HepG2 cells. Food Funct 2018; 8:4582-4591. [PMID: 29130084 DOI: 10.1039/c7fo00562h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Statins mediate the transactivation of PCSK9, which in turn limits their cholesterol-lowering effects via LDL receptor (LDLR) degradation. The objective of the present study was to investigate the mechanism of action by which Welsh onion (Allium fistulosum L. [family Amaryllidaceae]) extract (WOE) regulates LDLR and PCSK9. HepG2 cells were cultured under lipid depletion conditions using a medium supplemented with delipidated serum (DLPS). WOE (50, 100, 200, and 400 μg ml-1) significantly attenuated the DLPS-mediated increases in LDLR, PCSK9, and SREBP2 gene expression. While WOE treatment maintained the DLPS-mediated increases in LDLR protein expression, it dose-dependently and significantly attenuated the DLPS-mediated increases in the protein content of PCSK9. The suppression of PCSK9 was associated with the WOE-mediated reductions in SREBP2, but not HNF1α. WOE also dose-dependently reduced PCSK9 protein expression that was otherwise markedly induced by concomitant statin treatment. WOE-mediated PCSK9 inhibition contributed to LDLR lysosomal degradation suppression, and subsequent LDLR protein stabilization. HPLC analysis indicated that WOE contains kaempferol, quercetin, ferulic acid, and p-coumaric acid. Kaempferol and p-coumaric acid contributed to the maintenance of LDLR expression by inhibiting PCSK9 in lipid depleted HepG2 cells. Altogether, these findings suggest that WOE inhibits PCSK9 transcription and protein expression via the reduction of SREBP2, and decreased PCSK9 further contributes to LDLR degradation prevention and LDLR protein stabilization under conditions of lipoprotein deficiency. The PCSK9 inhibition-mediated mechanism of WOE was likely attributed to the action of kaempferol and p-coumaric acid present in WOE.
Collapse
Affiliation(s)
- Hyo-Kyoung Choi
- Korea Food Research Institute, Seongnam City, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
48
|
Gao W, Pu L, Chen M, Wei J, Xin Z, Wang Y, Yao Z, Shi T, Guo C. Glutathione homeostasis is significantly altered by quercetin via the Keap1/Nrf2 and MAPK signaling pathways in rats. J Clin Biochem Nutr 2017; 62:56-62. [PMID: 29371754 PMCID: PMC5773830 DOI: 10.3164/jcbn.17-40] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/08/2017] [Indexed: 12/27/2022] Open
Abstract
Previously, we showed that 0.5% quercetin simultaneously decreased serum homocysteine and glutathione (GSH) levels in rats. The aim of the present study was to investigate the effects of 0.5% quercetin on GSH metabolism, related enzymes and signal pathways in rats. Rats were fed the control diet and 0.5% quercetin-supplemented diet for 6 weeks. The results showed that quercetin reduced serum and hepatic content of GSH and the ratio of GSH and oxidized glutathione (GSSG), enhanced hepatic activity and mRNA expression of glutathione S-transferase (GST), inhibited hepatic activity and mRNA expression of glutamate cysteine ligase (GCL), and decreased hepatic glutathione reductase (GR) mRNA expression. Levels of phosphorylated p38 and extracellular signal-regulated kinase (ERK) 1/2 mitogen-activated protein kinases (MAPKs) increased, while that of nuclear factor E2-like 2 (Nrf2) protein decreased after quercetin treatment. However, no significant hepatotoxicity was noted. We concluded that quercetin treatment altered hepatic GSH metabolism by modulating GSH metabolic enzyme activities and mRNA expression in rats, and p38, ERK1/2 MAPKs, and Nrf2 were involved in modulating GSH metabolism-related enzymes.
Collapse
Affiliation(s)
- Weina Gao
- Tianjin Institute of Health and Environmental Medicine, NO.1 Dali Road, Tianjin 300050, P. R. China
| | - Lingling Pu
- Tianjin Institute of Health and Environmental Medicine, NO.1 Dali Road, Tianjin 300050, P. R. China
| | - Ming Chen
- The People's Hospital of Lichuan, Jiangxi Province, 344600, P. R. China
| | - Jingyu Wei
- Tianjin Institute of Health and Environmental Medicine, NO.1 Dali Road, Tianjin 300050, P. R. China
| | - Zhonghao Xin
- Tianjin Institute of Health and Environmental Medicine, NO.1 Dali Road, Tianjin 300050, P. R. China
| | - Yawen Wang
- Tianjin Institute of Health and Environmental Medicine, NO.1 Dali Road, Tianjin 300050, P. R. China
| | - Zhanxin Yao
- Tianjin Institute of Health and Environmental Medicine, NO.1 Dali Road, Tianjin 300050, P. R. China
| | - Tala Shi
- Tianjin Institute of Health and Environmental Medicine, NO.1 Dali Road, Tianjin 300050, P. R. China
| | - Changjiang Guo
- Tianjin Institute of Health and Environmental Medicine, NO.1 Dali Road, Tianjin 300050, P. R. China
| |
Collapse
|
49
|
McKay TB, Karamichos D. Quercetin and the ocular surface: What we know and where we are going. Exp Biol Med (Maywood) 2017; 242:565-572. [PMID: 28056553 PMCID: PMC5685256 DOI: 10.1177/1535370216685187] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Flavonoids are a class of plant and fungus secondary metabolites that serve functional roles in protecting against UV-induced oxidative stress, mediating auxin signaling, and promoting microbial defense. Flavonoids are extremely abundant in nature where their potent antioxidant capacity and very low toxicity makes them highly attractive as potential therapeutic agents. In terms of clinical applications, neither the Food and Drug Administration (FDA) nor the European Food Safety Authority (EFSA) has approved any health claims or drugs related to the use of flavonoids for therapeutic purposes. Quercetin is a common flavonol that has been shown to have potent antioxidant, anti-inflammatory, and anti-fibrotic activities both in vitro and in vivo in various tissues. Recently, the application of quercetin as a therapeutic has been gaining attention in the ocular surface scientific community in the study of dry eye, keratoconus, inflammation, and neovascularization of the cornea. This review will discuss the latest findings and the use of quercetin for the treatment of dystrophies of the ocular surface. Impact statement The eye represents a small portion of the human body, accounting for one decimal fraction of the anterior body surface. The cornea is an avascular, transparent tissue that acts as a primary barrier against mechanical and infectious damaging agents, protecting the internal structures of the eye. Corneal survival and function are affected by a number of factors including but not limited to injury, trauma, infection, genetics, and environment. Corneal injury, or trauma, often leads to loss of corneal transparency and even blindness. The concept of "curing" corneal opacity has been discussed in published form for over 200 years. Currently, full corneal transplant is the only treatment option. There is a strong interest in developing natural therapeutic products that come with minimum side effects. A novel antioxidant flavonoid, quercetin, has been gaining traction as a potential therapeutic to prevent the injured cornea. This review discusses the potential of this antioxidant.
Collapse
Affiliation(s)
- Tina B McKay
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104,USA
| | - Dimitrios Karamichos
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104,USA
- Department of Ophthalmology, Dean McGee Eye Institute, Oklahoma City, OK 73104, USA
| |
Collapse
|
50
|
Figueiredo MBGDA, Santana VRD, Nardelli MJ, Nogueira MDS, Azevedo DX, Santana DPA, Figueiredo AGDA, Duarte ÍX, Albuquerque Junior RLCD, Lima SO. The effect of the aqueous extract Peumus boldus on the proliferation of hepatocytes and liver function in rats submitted to expanded hepatectomy. Acta Cir Bras 2016; 31:608-614. [DOI: 10.1590/s0102-865020160090000006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/21/2016] [Indexed: 11/21/2022] Open
|