1
|
Li MJ, Du YX, Lan MN, Ye LY, Xu Y, Liu Y, Wu YX, Xia HY, Zhang HY, Guo M, Yang ZL, Wu ZJ, Zheng HJ. Epigenetics-Driven Appetite System Disorders and PI3K/AKT Signaling Activation Mediate a Weight Gain Resistance Phenotype Induced by a High-Fat Diet in Male Rats. Int J Eat Disord 2025. [PMID: 40237130 DOI: 10.1002/eat.24442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 04/03/2025] [Accepted: 04/03/2025] [Indexed: 04/18/2025]
Abstract
OBJECTIVE Some patients with anorexia nervosa (AN) exhibit an aversion to high-fat food. The hypothalamus plays a crucial role in feeding behavior. This study investigated the role of epigenetic modifications in the hypothalamus of male rats exhibiting a weight gain resistance (WR) phenotype induced by a high-fat diet (HFD). METHOD Male Sprague-Dawley (SD) rats were divided into normal diet (ND) and HFD groups for 9 weeks. Rats in the HFD group were then divided into HFD-induced obese (HFO) or HFD-induced WR phenotype (HFWR) groups, and body weight and food intake were monitored for 24 days. Samples such as hypothalamus and serum were collected. RESULTS The hypothalamus of HFWR rats showed increased 5-methylcytosine (5mC) levels. Whole-genome bisulfite sequencing (WGBS) analysis revealed that the level of 5mC in the hypothalamic DNA of HFWR rats was higher than that of HFO rats. The hypothalamus of HFWR rats displayed molecular disturbances in appetite systems. Through integrated analysis of the methylome and transcriptome, we discovered that alterations in methylation levels directly influenced changes in the galanin and IGF systems. Five genes (Aurkb, Cdkn1a, Galr1, ND2, and Tf) with promoter hypermethylation may be involved in appetite system disturbances. Furthermore, HFD-induced alteration of 5mC affects PI3K/Akt signaling activation, resulting in increased neuroinflammation and apoptosis in the ventromedial nucleus of the hypothalamus (VMH) in HFWR rats. DISCUSSION Our study suggests that 5mC-mediated molecular disturbances in the hypothalamic appetite system and activation of PI3K/Akt signaling in the VMH may serve as a potential pathogenic basis for HFWR.
Collapse
Affiliation(s)
- Ming-Jie Li
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Basic Medical Sciences, Fudan University, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co. Ltd., Shanghai, China
| | - Yao-Xuan Du
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Meng-Ning Lan
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lu-Yi Ye
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yu Xu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yue Liu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yi-Xiao Wu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hai-Yang Xia
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hua-Yue Zhang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Min Guo
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zi-Long Yang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Zheng-Jun Wu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co. Ltd., Shanghai, China
| | - Hua-Jun Zheng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Strnadová V, Pačesová A, Charvát V, Šmotková Z, Železná B, Kuneš J, Maletínská L. Anorexigenic neuropeptides as anti-obesity and neuroprotective agents: exploring the neuroprotective effects of anorexigenic neuropeptides. Biosci Rep 2024; 44:BSR20231385. [PMID: 38577975 PMCID: PMC11043025 DOI: 10.1042/bsr20231385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 04/06/2024] Open
Abstract
Since 1975, the incidence of obesity has increased to epidemic proportions, and the number of patients with obesity has quadrupled. Obesity is a major risk factor for developing other serious diseases, such as type 2 diabetes mellitus, hypertension, and cardiovascular diseases. Recent epidemiologic studies have defined obesity as a risk factor for the development of neurodegenerative diseases, such as Alzheimer's disease (AD) and other types of dementia. Despite all these serious comorbidities associated with obesity, there is still a lack of effective antiobesity treatment. Promising candidates for the treatment of obesity are anorexigenic neuropeptides, which are peptides produced by neurons in brain areas implicated in food intake regulation, such as the hypothalamus or the brainstem. These peptides efficiently reduce food intake and body weight. Moreover, because of the proven interconnection between obesity and the risk of developing AD, the potential neuroprotective effects of these two agents in animal models of neurodegeneration have been examined. The objective of this review was to explore anorexigenic neuropeptides produced and acting within the brain, emphasizing their potential not only for the treatment of obesity but also for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Veronika Strnadová
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Pačesová
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Vilém Charvát
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Šmotková
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Blanka Železná
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Jaroslav Kuneš
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
- Department of Biochemistry and Molecular Biology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Lenka Maletínská
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
3
|
Sarangi M, Dus M. Crème de la Créature: Dietary Influences on Behavior in Animal Models. Front Behav Neurosci 2021; 15:746299. [PMID: 34658807 PMCID: PMC8511460 DOI: 10.3389/fnbeh.2021.746299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
In humans, alterations in cognitive, motivated, and affective behaviors have been described with consumption of processed diets high in refined sugars and saturated fats and with high body mass index, but the causes, mechanisms, and consequences of these changes remain poorly understood. Animal models have provided an opportunity to answer these questions and illuminate the ways in which diet composition, especially high-levels of added sugar and saturated fats, contribute to brain physiology, plasticity, and behavior. Here we review findings from invertebrate (flies) and vertebrate models (rodents, zebrafish) that implicate these diets with changes in multiple behaviors, including eating, learning and memory, and motivation, and discuss limitations, open questions, and future opportunities.
Collapse
Affiliation(s)
| | - Monica Dus
- Department of Molecular, Cellular, and Developmental Biology, The University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
4
|
Singh A, de Araujo AM, Krieger JP, Vergara M, Ip CK, de Lartigue G. Demystifying functional role of cocaine- and amphetamine-related transcript (CART) peptide in control of energy homeostasis: A twenty-five year expedition. Peptides 2021; 140:170534. [PMID: 33757831 PMCID: PMC8369463 DOI: 10.1016/j.peptides.2021.170534] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 02/28/2021] [Accepted: 03/16/2021] [Indexed: 12/17/2022]
Abstract
Cocaine- and amphetamine-related transcript (CART) is a neuropeptide first discovered in the striatum of the rat brain. Later, the genetic sequence and function of CART peptide (CARTp) was found to be conserved among multiple mammalian species. Over the 25 years, since its discovery, CART mRNA (Cartpt) expression has been reported widely throughout the central and peripheral nervous systems underscoring its role in diverse physiological functions. Here, we review the localization and function of CARTp as it relates to energy homeostasis. We summarize the expression changes of central and peripheral Cartpt in response to metabolic states and make use of available large data sets to gain additional insights into the anatomy of the Cartpt expressing vagal neurons and their expression patterns in the gut. Furthermore, we provide an overview of the role of CARTp as an anorexigenic signal and its effect on energy expenditure and body weight control with insights from both pharmacological and transgenic animal studies. Subsequently, we discuss the role of CARTp in the pathophysiology of obesity and review important new developments towards identifying a candidate receptor for CARTp signalling. Altogether, the field of CARTp research has made rapid and substantial progress recently, and we review the case for considering CARTp as a potential therapeutic target for stemming the obesity epidemic.
Collapse
Affiliation(s)
- Arashdeep Singh
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, USA
| | - Alan Moreira de Araujo
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, USA
| | - Jean-Philippe Krieger
- Department of Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Macarena Vergara
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, USA
| | - Chi Kin Ip
- Neuroscience Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, Australia; Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Guillaume de Lartigue
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
5
|
Wang L, Yu CC, Li J, Tian Q, Du YJ. Mechanism of Action of Acupuncture in Obesity: A Perspective From the Hypothalamus. Front Endocrinol (Lausanne) 2021; 12:632324. [PMID: 33868169 PMCID: PMC8050351 DOI: 10.3389/fendo.2021.632324] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/16/2021] [Indexed: 01/22/2023] Open
Abstract
Obesity is a prevalent metabolic disease caused by an imbalance in food intake and energy expenditure. Although acupuncture is widely used in the treatment of obesity in a clinical setting, its mechanism has not been adequately elucidated. As the key pivot of appetite signals, the hypothalamus receives afferent and efferent signals from the brainstem and peripheral tissue, leading to the formation of a complex appetite regulation circuit, thereby effectively regulating food intake and energy homeostasis. This review mainly discusses the relationship between the hypothalamic nuclei, related neuropeptides, brainstem, peripheral signals, and obesity, as well as mechanisms of acupuncture on obesity from the perspective of the hypothalamus, exploring the current evidence and therapeutic targets for mechanism of action of acupuncture in obesity.
Collapse
Affiliation(s)
- Li Wang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Chao-Chao Yu
- Department of Tuina, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
- The Fourth Clinical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jia Li
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Qing Tian
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan-Jun Du
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
- *Correspondence: Yan-Jun Du,
| |
Collapse
|
6
|
Schellekens H, Torres-Fuentes C, van de Wouw M, Long-Smith CM, Mitchell A, Strain C, Berding K, Bastiaanssen TFS, Rea K, Golubeva AV, Arboleya S, Verpaalen M, Pusceddu MM, Murphy A, Fouhy F, Murphy K, Ross P, Roy BL, Stanton C, Dinan TG, Cryan JF. Bifidobacterium longum counters the effects of obesity: Partial successful translation from rodent to human. EBioMedicine 2020; 63:103176. [PMID: 33349590 PMCID: PMC7838052 DOI: 10.1016/j.ebiom.2020.103176] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/13/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023] Open
Abstract
Background The human gut microbiota has emerged as a key factor in the development of obesity. Certain probiotic strains have shown anti-obesity effects. The objective of this study was to investigate whether Bifidobacterium longum APC1472 has anti-obesity effects in high-fat diet (HFD)-induced obese mice and whether B. longum APC1472 supplementation reduces body-mass index (BMI) in healthy overweight/obese individuals as the primary outcome. B. longum APC1472 effects on waist-to-hip ratio (W/H ratio) and on obesity-associated plasma biomarkers were analysed as secondary outcomes. Methods B. longum APC1472 was administered to HFD-fed C57BL/6 mice in drinking water for 16 weeks. In the human intervention trial, participants received B. longum APC1472 or placebo supplementation for 12 weeks, during which primary and secondary outcomes were measured at the beginning and end of the intervention. Findings B. longum APC1472 supplementation was associated with decreased bodyweight, fat depots accumulation and increased glucose tolerance in HFD-fed mice. While, in healthy overweight/obese adults, the supplementation of B. longum APC1472 strain did not change primary outcomes of BMI (0.03, 95% CI [-0.4, 0.3]) or W/H ratio (0.003, 95% CI [-0.01, 0.01]), a positive effect on the secondary outcome of fasting blood glucose levels was found (-0.299, 95% CI [-0.44, -0.09]). Interpretation This study shows a positive translational effect of B. longum APC1472 on fasting blood glucose from a preclinical mouse model of obesity to a human intervention study in otherwise healthy overweight and obese individuals. This highlights the promising potential of B. longum APC1472 to be developed as a valuable supplement in reducing specific markers of obesity. Funding This research was funded in part by Science Foundation Ireland in the form of a Research Centre grant (SFI/12/RC/2273) to APC Microbiome Ireland and by a research grant from Cremo S.A.
Collapse
Affiliation(s)
- Harriët Schellekens
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| | | | | | | | - Avery Mitchell
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Conall Strain
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Kirsten Berding
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Thomaz F S Bastiaanssen
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Kieran Rea
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Anna V Golubeva
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Silvia Arboleya
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Mathieu Verpaalen
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | | | - Amy Murphy
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Fiona Fouhy
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Kiera Murphy
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland; College of Science Engineering & Food Science, University College Cork, Cork, Ireland
| | | | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Dept of Psychiatry and Behavioural Neuroscience, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
7
|
Ahmadian-Moghadam H, Sadat-Shirazi MS, Zarrindast MR. Cocaine- and amphetamine-regulated transcript (CART): A multifaceted neuropeptide. Peptides 2018; 110:56-77. [PMID: 30391426 DOI: 10.1016/j.peptides.2018.10.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 10/15/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022]
Abstract
Over the last 35 years, the continuous discovery of novel neuropeptides has been the key to the better understanding of how the central nervous system has integrated with neuronal signals and behavioral responses. Cocaine and amphetamine-regulated transcript (CART) was discovered in 1995 in the rat striatum but later was found to be highly expressed in the hypothalamus. The widespread distribution of CART peptide in the brain complicated the understanding of the role played by this neurotransmitter. The main objective of the current compact review is to piece together the fragments of available information about origin, expression, distribution, projection, and function of CART peptides. Accumulative evidence suggests CART as a neurotransmitter and neuroprotective agent that is mainly involved in regulation of feeding, addiction, stress, anxiety, innate fear, neurological disease, neuropathic pain, depression, osteoporosis, insulin secretion, learning, memory, reproduction, vision, sleep, thirst and body temperature. In spite of the vast number of studies about the CART, the overall pictures about the CART functions are sketchy. First, there is a lack of information about cloned receptor, specific agonist and antagonist. Second, CART peptides are detected in discrete sets of neurons that can modulate countless activities and third; CART peptides exist in several fragments due to post-translational processing. For these reasons the overall picture about the CART peptides are sketchy and confounding.
Collapse
Affiliation(s)
- Hamid Ahmadian-Moghadam
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad-Reza Zarrindast
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Institute, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
8
|
Wanlong Z, Di Z, Dongmin H, Guang Y. Roles of hypothalamic neuropeptide gene expression in body mass regulation in Eothenomys miletus (Mammalia: Rodentia: Cricetidae). THE EUROPEAN ZOOLOGICAL JOURNAL 2017. [DOI: 10.1080/24750263.2017.1334840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Z. Wanlong
- Key Laboratory of Adaptive Evolution and Ecological Conservation on Plants and Animals in Southwest Mountain Ecosystem of Yunnan Higher Education Institutes, School of Life Sciences, Yunnan Normal University, Kunming, People’s Republic of China
| | - Z. Di
- School of Life Sciences, Kunming, People’s Republic of China
| | - H. Dongmin
- Key Laboratory of Adaptive Evolution and Ecological Conservation on Plants and Animals in Southwest Mountain Ecosystem of Yunnan Higher Education Institutes, School of Life Sciences, Yunnan Normal University, Kunming, People’s Republic of China
| | - Y. Guang
- College of Life Sciences, Nanjing Normal University, Nanjing, People’s Republic of China
| |
Collapse
|
9
|
do Carmo JM, da Silva AA, Romero DG, Hall JE. Changes in ambient temperature elicit divergent control of metabolic and cardiovascular actions by leptin. FASEB J 2017; 31:2418-2428. [PMID: 28228474 DOI: 10.1096/fj.201601224r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/30/2017] [Indexed: 11/11/2022]
Abstract
Interactions of hypothalamic signaling pathways that control body temperature (BT), blood pressure (BP), and energy balance are poorly understood. We investigated whether the chronic BP and metabolic actions of leptin are differentially modulated by changes in ambient temperature (TA ). Mean arterial pressure (MAP), heart rate (HR), BT, motor activity (MA), and oxygen consumption (Vo2) were measured 24 h/d at normal laboratory TA (23°C), at thermoneutral zone (TNZ, 30°C) for mice or during cold exposure (15°C) in male wild-type mice. After control measurements, leptin (4 μg/kg/min) or saline vehicle was infused for 7 d. At TNZ, leptin reduced food intake (-11.0 ± 0.5 g cumulative deficit) and body weight by 6% but caused no changes in MAP or HR. At 15°C, leptin infusion did not alter food intake but increased MAP and HR (8 ± 1 mmHg and 33 ± 7 bpm), while Vo2 increased by ∼10%. Leptin reduced plasma glucose and insulin levels at 15°C but not at 30°C. These results demonstrate that the chronic anorexic effects of leptin are enhanced at TNZ, while its effects on insulin and glucose levels are attenuated and its effects on BP and HR are abolished. Conversely, cold TA caused resistance to leptin's anorexic effects but amplified its effects to raise BP and reduce insulin and glucose levels. Thus, the brain circuits by which leptin regulates food intake and cardiovascular function are differentially influenced by changes in TA -Do Carmo, J. M., da Silva, A. A., Romero, D. G., Hall, J. E. Changes in ambient temperature elicit divergent control of metabolic and cardiovascular actions by leptin.
Collapse
Affiliation(s)
- Jussara M do Carmo
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA;
| | - Alexandre A da Silva
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA.,Centro Universitário Barão de Mauá, Ribeirão Preto, São Paulo, Brazil
| | - Damian G Romero
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - John E Hall
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
10
|
Wan-Long Z, Zheng-Kun W. Effects of random food deprivation and refeeding on energy metabolism, behavior and hypothalamic neuropeptide expression in Apodemus chevrieri. Comp Biochem Physiol A Mol Integr Physiol 2016; 201:71-78. [PMID: 27387442 DOI: 10.1016/j.cbpa.2016.06.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 10/21/2022]
Abstract
Maintaining adaptive control of behavior and physiology is the main strategy used by animals in responding to changes of food resources. To investigate the effects of random food deprivation (FD) and refeeding on energy metabolism and behavior in Apodemus chevrieri, we acclimated adult males to FD for 4weeks, then refed them ad libitum for 4weeks (FD-Re group). During the period of FD, animals were fed ad libitum for 4 randomly assigned days each week, and deprived of food the other 3days. A control group was fed ad libitum for 8weeks. At 4 and 8weeks we measured body mass, thermogenesis, serum leptin levels, body composition, gastrointestinal tract morphology, behavior and hypothalamic neuropeptide expression. At 4weeks, food intake, gastrointestinal mass, neuropeptide Y (NPY) and agouti-related protein (AgRP) mRNA expressions increased and thermogenesis, leptin levels, pro-opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) expressions decreased in FD compared with controls. FD also showed more resting behavior and less activity than the controls on ad libitum day. There were no differences between FD-Re and controls at 8weeks, indicating significant plasticity. These results suggested that animals can compensate for unpredictable reduction in food availability by increasing food intake and reducing energy expended through thermogenesis and activity. Leptin levels, NPY, AgRP, POMC, and CART mRNA levels may also regulate energy metabolism. Significant plasticity in energy metabolism and behavior was shown by A. chevrieri over a short timescale, allowing them to adapt to food shortages in nutritionally unpredictable environments.
Collapse
Affiliation(s)
- Zhu Wan-Long
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Science, Yunnan Normal University, Kunming 650500, China.
| | - Wang Zheng-Kun
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Science, Yunnan Normal University, Kunming 650500, China
| |
Collapse
|
11
|
Cifani C, Micioni Di Bonaventura MV, Pucci M, Giusepponi ME, Romano A, Di Francesco A, Maccarrone M, D'Addario C. Regulation of hypothalamic neuropeptides gene expression in diet induced obesity resistant rats: possible targets for obesity prediction? Front Neurosci 2015; 9:187. [PMID: 26106286 PMCID: PMC4458694 DOI: 10.3389/fnins.2015.00187] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/11/2015] [Indexed: 12/11/2022] Open
Abstract
Several factors play a role in obesity (i.e., behavior, environment, and genetics) and epigenetic regulation of gene expression has emerged as a potential contributor in the susceptibility and development of obesity. To investigate the individual sensitivity to weight gain/resistance, we here studied gene transcription regulation of several hypothalamic neuropeptides involved in the control of energy balance in rats developing obesity (diet-induced obesity, DIO) or not (diet resistant, DR), when fed with a high fat diet. Rats have been followed up to 21 weeks of high fat diet exposure. After 5 weeks high fat diet exposure, the obese phenotype was developed and we observed a selective down-regulation of the orexigenic neuropeptide Y (NPY) and peroxisome proliferator-activated receptor gamma (PPAR-γ) genes. No changes were observed in the expression of the agouti-related protein (AgRP), as well as for all the anorexigenic genes under study. After long-term high fat diet exposure (21 weeks), NPY and PPAR-γ, as well as most of the genes under study, resulted not be different between DIO and DR, whereas a lower expression of the anorexigenic pro-opio-melanocortin (POMC) gene was observed in DIO rats when compared to DR rats. Moreover we observed that changes in NPY and POMC mRNA were inversely correlated with gene promoters DNA methylation. Our findings suggest that selective alterations in hypothalamic peptide genes regulation could contribute to the development of overweight in rats and that environmental factor, as in this animal model, might be partially responsible of these changes via epigenetic mechanism.
Collapse
Affiliation(s)
- Carlo Cifani
- Pharmacology Unit, School of Pharmacy, University of Camerino Camerino, Italy ; Intramural Research Program, National Institute on Drug Abuse/National Institutes of Health Baltimore, MD, USA
| | | | - Mariangela Pucci
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo Teramo, Italy
| | - Maria E Giusepponi
- Pharmacology Unit, School of Pharmacy, University of Camerino Camerino, Italy
| | - Adele Romano
- Department of Physiology and Pharmacology "V. Erspamer," Sapienza University of Rome Rome, Italy
| | - Andrea Di Francesco
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo Teramo, Italy
| | - Mauro Maccarrone
- Center of Integrated Research, Campus Bio-Medico University of Rome Rome, Italy ; European Center for Brain Research (CERC)/Santa Lucia Foundation Rome, Italy
| | - Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo Teramo, Italy ; European Center for Brain Research (CERC)/Santa Lucia Foundation Rome, Italy
| |
Collapse
|
12
|
Lenglos C, Mitra A, Guèvremont G, Timofeeva E. Regulation of expression of relaxin-3 and its receptor RXFP3 in the brain of diet-induced obese rats. Neuropeptides 2014; 48:119-32. [PMID: 24629399 DOI: 10.1016/j.npep.2014.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 02/04/2014] [Accepted: 02/13/2014] [Indexed: 02/08/2023]
Abstract
An animal model closely related to human obesity is diet-induced obesity in Sprague-Dawley rats. These rats placed on a high-energy (HE) diet show wide distribution in body weight gain with a subset of animals developing diet-induced obesity (DIO) and the remaining animals showing a diet-resistant (DR) phenotype. Once obesity is established, DIO rats strongly defend their increased body weight against caloric restriction. There is evidence that neuropeptide relaxin-3 is involved in food intake regulation, but the levels of expression of relaxin-3 and its receptor have not been yet demonstrated in the DIO model. The present study investigated the brain expression of relaxin-3 and its cognate receptor RXFP3 in DIO and DR rats maintained on an HE diet since weaning. Expression of relaxin-3 and RXFP3 mRNAs was assessed by in situ hybridization in ad libitum, food-deprived (12 h) and refed (1 h) feeding states. The levels of expression of relaxin-3 in the medial portion of the nucleus incertus (NI) were higher in the DIO rats compared to the DR rats in the ad libitum-fed state. Food deprivation increased the levels of expression of relaxin-3 in the medial NI in DR but not DIO rats. The stronger expression of relaxin-3 in the ad libitum-fed state in the DIO rats was accompanied by low expression of the RXFP3 receptor in the paraventricular hypothalamic nucleus (PVN), supraoptic nucleus, central amygdala (CeA), NI, and nucleus of the solitary tract (NTS). Refeeding increased expression of RXFP3 in the paraventricular thalamic nucleus, parvocellular PVN, CeA, NI, and NTS in the DIO rats. These results provide evidence that DIO rats show a constitutive increase in relaxin-3 expression in the medial NI and that refeeding after food deprivation may enhance the orexigenic effects of relaxin-3 in DIO rats by rapid upregulation of the expression of RXFP3 in the specific brain regions involved in food intake regulation.
Collapse
Affiliation(s)
- Christophe Lenglos
- Faculté de Médecine, Département Psychiatrie et Neurosciences, Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, QC G1V 4G5, Canada
| | - Arojit Mitra
- Faculté de Médecine, Département Psychiatrie et Neurosciences, Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, QC G1V 4G5, Canada
| | - Geneviève Guèvremont
- Faculté de Médecine, Département Psychiatrie et Neurosciences, Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, QC G1V 4G5, Canada
| | - Elena Timofeeva
- Faculté de Médecine, Département Psychiatrie et Neurosciences, Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, QC G1V 4G5, Canada.
| |
Collapse
|
13
|
Duca FA, Sakar Y, Lepage P, Devime F, Langelier B, Doré J, Covasa M. Replication of obesity and associated signaling pathways through transfer of microbiota from obese-prone rats. Diabetes 2014; 63:1624-36. [PMID: 24430437 DOI: 10.2337/db13-1526] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aberrations in gut microbiota are associated with metabolic disorders, including obesity. However, whether shifts in the microbiota profile during obesity are a characteristic of the phenotype or a consequence of obesogenic feeding remains elusive. Therefore, we aimed to determine differences in the gut microbiota of obese-prone (OP) and obese-resistant (OR) rats and examined the contribution of this microbiota to the behavioral and metabolic characteristics during obesity. We found that OP rats display a gut microbiota distinct from OR rats fed the same high-fat diet, with a higher Firmicutes-to-Bacteroidetes ratio and significant genera differences. Transfer of OP but not OR microbiota to germ-free (GF) mice replicated the characteristics of the OP phenotype, including reduced intestinal and hypothalamic satiation signaling, hyperphagia, increased weight gain and adiposity, and enhanced lipogenesis and adipogenesis. Furthermore, increased gut permeability through conventionalization resulted in inflammation by proinflammatory nuclear factor (NF)-κB/inhibitor of NF-κB kinase subunit signaling in adipose tissue, liver, and hypothalamus. OP donor and GF recipient animals harbored specific species from Oscillibacter and Clostridium clusters XIVa and IV that were completely absent from OR animals. In conclusion, susceptibility to obesity is characterized by an unfavorable microbiome predisposing the host to peripheral and central inflammation and promoting weight gain and adiposity during obesogenic feeding.
Collapse
Affiliation(s)
- Frank A Duca
- UMR1913-Microbiologie de l'Alimentation au Service de la Santé, l'Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | | | | | | | | | | | | |
Collapse
|
14
|
Sugiishi A, Kimura M, Kamiya R, Ueki S, Yoneya M, Saito Y, Saito H. Derangement of ghrelin secretion after long-term high-fat diet feeding in rats. Hepatol Res 2013; 43:1105-14. [PMID: 23374505 DOI: 10.1111/hepr.12062] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 12/17/2012] [Accepted: 12/19/2012] [Indexed: 01/09/2023]
Abstract
AIM Appetite control is an important goal for the management of non-alcoholic fatty liver disease, diabetes mellitus and obesity; however, little is known about how hormones concerning appetite regulation are affected by long-term consumption of a high-fat diet. We investigated the effect of high-fat diet on secretory regulation of ghrelin and leptin in rats. METHODS Rats were fed a control or a high-fat diet for 18 weeks and then killed. Before being killed, a glucose tolerance test was performed. Weight, total calorie intake and blood glucose levels were measured, and the plasma levels of total and active ghrelin, and leptin were analyzed by enzyme-linked immunosorbent assay. RESULTS Body and fat weight and total calorie intake were significantly higher in the high-fat diet group than in the control, although blood glucose levels did not differ. Plasma leptin was significantly higher in the high-fat diet group, and a significant positive correlation was observed between bodyweight and leptin levels in both groups. The levels of active and total ghrelin were not significantly changed by high-fat diet, and active ghrelin levels in the control group significantly correlated negatively with bodyweight, while its correlation was lost in the high-fat diet group. The glucose tolerance test showed that ghrelin levels were significantly higher than those of controls even 60 min after glucose loading. CONCLUSION These results indicate that secretion of ghrelin, but not leptin, are deranged by consumption of a high-fat diet, and active ghrelin levels lose their correlation with bodyweight and food intake.
Collapse
Affiliation(s)
- Aya Sugiishi
- Faculty of Pharmacy, Keio University, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Nakhate KT, Subhedar NK, Bharne AP, Singru PS, Kokare DM. Involvement of cocaine- and amphetamine-regulated transcript peptide in the hyperphagic and body weight promoting effects of allopregnanolone in rats. Brain Res 2013; 1532:44-55. [DOI: 10.1016/j.brainres.2013.07.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/28/2013] [Accepted: 07/30/2013] [Indexed: 11/16/2022]
|
16
|
Carnier J, de Mello MT, Ackel-DElia C, Corgosinho FC, Campos RMDS, Sanches PDL, Masquio DCL, Bueno CR, Ganen ADP, Martins AC, Caranti DA, Tock L, Clemente APG, Tufik S, Dâmaso AR. Aerobic training (AT) is more effective than aerobic plus resistance training (AT+RT) to improve anorexigenic/orexigenic factors in obese adolescents. Appetite 2013; 69:168-73. [PMID: 23764241 DOI: 10.1016/j.appet.2013.05.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 05/25/2013] [Accepted: 05/27/2013] [Indexed: 12/16/2022]
Abstract
BACKGROUND The regulation of energy balance is influenced by physical exercise. Although some studies show a stimulation of hormones related to food intake, others show that exercise provides satiety. AIM The aim of this study was to compare the effects of aerobic training (AT) and aerobic plus resistance training (AT+RT) on anorexigenic and orexigenic factors in obese adolescents undergoing interdisciplinary weight loss therapy. METHODS A total of 26 obese adolescents, aged 15-19 years with BMI≥P95 were submitted to 12 months of interdisciplinary intervention (clinical support, nutrition, psychology and physical exercise) and divided into two groups, aerobic training (AT) (n=13) or aerobic plus resistance training (AT+RT) (n=13), which were matched according to gender and body mass. Blood samples were collected to analyze orexigenic factors (AgRP, NPY, MCH) and the anorexigenic factor alpha-MSH. RESULTS The AT and AT+RT groups significantly reduced body mass, body mass index and body fat mass (kg) during the therapy. The AT group showed no significant changes in body lean mass (kg), whereas the AT+RT group showed an increase in body lean mass (kg) during the interdisciplinary intervention. There was an increase in AgRP levels (ng/ml) only in the AT+RT group after 6 months of interdisciplinary intervention compared with baseline condition. Conversely, α-MSH levels (ng/ml) increased only in the AT group after 12 months of interdisciplinary intervention compared with baseline condition. CONCLUSION Aerobic training (AT) as part of an interdisciplinary therapy is more effective than aerobic plus resistance training (AT+RT) to improve secretion of anorexigenic/orexigenic factors in obese adolescents.
Collapse
Affiliation(s)
- June Carnier
- Programa de Pós-Graduação em Nutrição, Universidade Federal de São Paulo - UNIFESP, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Younes-Rapozo V, Moura EG, Manhães AC, Pinheiro CR, Santos-Silva AP, de Oliveira E, Lisboa PC. Maternal nicotine exposure during lactation alters hypothalamic neuropeptides expression in the adult rat progeny. Food Chem Toxicol 2013; 58:158-68. [PMID: 23623838 DOI: 10.1016/j.fct.2013.04.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/08/2013] [Accepted: 04/16/2013] [Indexed: 11/28/2022]
Abstract
Maternal exposure to nicotine during lactation causes hyperleptinemia in the pups and, at adulthood, these animals are overweight and hyperleptinemic, while, in their hypothalamus, the leptin signaling pathway is reduced, evidencing a central leptin resistance. Then, we evaluated the expression of pro-opiomelanocortin (POMC), alpha-melanocyte stimulating hormone (α-MSH), cocaine and amphetamine-regulated transcript (CART), neuropeptide Y (NPY), agouti-related peptide (AgRP) and others in different hypothalamic nuclei in order to better understand the mechanisms underlying the obese phenotype observed in these animals at adulthood. On the 2nd postnatal day (P2), dams were subcutaneously implanted with osmotic minipumps releasing nicotine (NIC-6 mg/kg/day) or saline for 14 days. Offspring were killed in P180 and immunohistochemistry and Western blot analysis were carried out. Significance data had p<0.05. Adult NIC offspring showed more intense NPY staining in the paraventricular nucleus (PVN) (+21%) and increased number of POMC-positive cells in the: arcuate nucleus (+33%), as an increase in fiber density of α-MSH in PVN (+85%). However, the number of CART-positive cells was reduced in the PVN (-25%). CRH staining was more intense in NIC offspring (+136%). Orexins and AgRP were not altered. Thus, maternal nicotine exposure changes hypothalamic neuropeptides in the adult progeny that is partially compatible with leptin resistance.
Collapse
Affiliation(s)
- Viviane Younes-Rapozo
- Laboratório de Fisiologia Endócrina, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
18
|
Cocaine- and amphetamine-regulated transcript (CART) peptide immunoreactivity in feeding- and reward-related brain areas of young OLETF rats. J Chem Neuroanat 2013; 50-51:75-84. [PMID: 23545074 DOI: 10.1016/j.jchemneu.2013.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/21/2013] [Accepted: 03/21/2013] [Indexed: 02/06/2023]
Abstract
Cocaine- and amphetamine-regulated transcript (CART) peptide is expressed in brain areas involved in the control of appetite, drug reward and homeostatic regulation and it has an overall anorexigenic effect. Recently, we have shown that CART peptide immunoreactivity was significantly reduced in the rostral part of the nucleus accumbens and in the rostro-medial part of the nucleus of the solitary tract in adult CCK-1 receptor deficient obese diabetic Otsuka Long Evans Tokushima Fatty (OLETF) rats compared to Long Evans Tokushima Otsuka (LETO) lean controls. It is not clear, however, whether altered CART expression is caused primarily by the deficiency in CCK-1 signaling or whether is related to the obese and diabetic phenotype of the OLETF strain which develops at a later age. Therefore, in the present study, CART-immunoreaction in feeding-related areas of the brain was compared in young, age-matched (6-7 weeks old) non-obese, non-diabetic OLETF rats and in LETO controls. We found that, young, non-diabetic OLETF rats revealed unaltered distribution of CART-peptide expressing neurons and axons throughout the brain when compared to age-matched LETO rats. In contrast to previous results observed in the obese diabetic adult rats, intensity of CART immunoreaction did not differ in the areas related to control of food-intake and reward in the young OLETFs compared to young LETO rats. Our findings suggest that factors secondary to obesity and/or diabetes rather than impaired CCK-1 receptor signaling may contribute to altered CART expression in the OLETF strain.
Collapse
|
19
|
Jacob PS, de Meneses Fujii TM, Yamada M, Borges MC, Pantaleão LC, Borelli P, Fock R, Rogero MM. Isocaloric intake of a high-fat diet promotes insulin resistance and inflammation in Wistar rats. Cell Biochem Funct 2012; 31:244-53. [PMID: 23008133 DOI: 10.1002/cbf.2894] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 08/19/2012] [Accepted: 08/20/2012] [Indexed: 12/22/2022]
Abstract
The aim of this study was to investigate the effect of isocaloric intake from a high-fat diet (HFD) on insulin resistance and inflammation in rats. Male Wistar rats were fed on an HFD (n = 12) or control diet (n = 12) for 12 weeks. Subsequently, all animals were euthanized, and blood glucose, insulin, free fatty acids, C-reactive protein, lipid profile, cytokines and hepatic-enzyme activity were determined. Carcass chemical composition was also analyzed. During the first and the twelfth weeks of the experimental protocol, the oral glucose tolerance test and insulin tolerance test were performed and demonstrated insulin resistance (P < 0.05) in the HFD group. Although food intake (g) was lower (P < 0.05) in the HFD group compared with the control group, the concentration of total cholesterol, low-density lipoprotein, C-reactive protein and liver weight were all significantly higher. The kinase inhibitor of κB, c-Jun N-terminal kinase and protein kinase B expressions were determined in the liver and skeletal muscle. After an insulin stimulus, the HFD group demonstrated decreased (P = 0.05) hepatic protein kinase B expression, whereas the kinase inhibitor of κB phospho/total ratio was elevated in the HFD muscle (P = 0.02). In conclusion, the isocaloric intake from the HFD induced insulin resistance, associated with impaired insulin signalling in the liver and an inflammatory response in the muscle.
Collapse
Affiliation(s)
- Patrícia Silva Jacob
- Department of Nutrition, School of Public Health, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Early weaning is associated with higher neuropeptide Y (NPY) and lower cocaine- and amphetamine-regulated transcript (CART) expressions in the paraventricular nucleus (PVN) in adulthood. Br J Nutr 2012; 108:2286-95. [DOI: 10.1017/s0007114512000487] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The interruption of lactation for a short period, without the use of pharmacological substances or maternal separation, causes offspring malnutrition and hypoleptinaemia and programmes for metabolic disorders such as higher body weight and adiposity, hyperphagia, hyperleptinaemia and central leptin resistance in adulthood. Here, in order to clarify the mechanisms underlying the phenotype observed in adult early-weaned (EW) rats, we studied the expression of neuropeptide Y (NPY), agouti-related peptide (AgRP), pro-opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) in different hypothalamic nuclei by immunohistochemistry and Western blot. In the EW group, the teats of lactating rats were blocked with a bandage to interrupt lactation during the last 3 d, while control pups had free access to milk throughout the entire lactation period. At age 180 d, EW offspring showed higher NPY staining in the paraventricular nucleus (PVN), as well as NPY protein content (+68 %) in total hypothalamus than control ones. AgRP showed no changes in staining or Western blot. POMC content was not affected; however, its distribution pattern was altered. CART-positive cells of EW offspring had lower immunoreactivity associated with reduced cell number in the PVN and lower protein content ( − 38 %) in total hypothalamus. The present data indicate that precocious weaning can imprint the neuronal circuitry, especially in the PVN, and cause a long-term effect on the expression of specific orexigenic and anorexigenic neuropeptides, such as NPY and CART, that can be caused by leptin resistance and are coherent with the hyperphagia observed in these animals.
Collapse
|
21
|
Tian DR, Tso P, Han JS. Diet-induced obese rats exhibit impaired LKB1-AMPK signaling in hypothalamus and adipose tissue. Peptides 2012; 35:23-30. [PMID: 22465622 DOI: 10.1016/j.peptides.2012.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 02/02/2012] [Accepted: 02/02/2012] [Indexed: 11/18/2022]
Abstract
AMPK not only acts as a sensor of cellular energy status but also plays a critical role in the energy balance of the body. In this study, LKB1-AMPK signaling was investigated in diet-induced obese (DIO) and diet resistant (DR) rats. In hypothalamus, DIO rats had lower level of LKB1, AMPKα and pAMPKα than chow-fed or DR rats. Both orexigenic peptide NPY and anorexigenic peptide POMC expression were reduced in hypothalamus of DIO rats. i.c.v. injection of AICAR, an activator of AMPK, increased NPY expression but did not alter POMC expression in DIO rats. In periphery, LKB1 protein content and pAMPKα level were lower in the adipose tissue of DIO rats compared to chow-fed and DR rats. Moreover, pAMPKα and LKB1 protein levels obtained from epididymal fat pad were inversely correlated with epididymal fat mass. LKB1 protein content and pAMPKα in skeletal muscle of DIO rats were not different from those in the muscles of chow-fed and DR rats. In summary, DIO rats, but not DR rats, have impaired LKB1-AMPK signaling in hypothalamus and adipose tissue, suggesting the disturbed energy balance observed in DIO rats is related with abnormalities of AMPK signaling in a tissue specific manner.
Collapse
|
22
|
AMBATI S, DUAN J, HARTZELL DL, CHOI YH, DELLA-FERA MA, BAILE CA. GIP-Dependent Expression of Hypothalamic Genes. Physiol Res 2011; 60:941-50. [DOI: 10.33549/physiolres.932151] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
GIP (glucose dependent insulinotrophic polypeptide), originally identified as an incretin peptide synthesized in the gut, has recently been identified, along with its receptors (GIPR), in the brain. Our objective was to investigate the role of GIP in hypothalamic gene expression of biomarkers linked to regulating energy balance and feeding behavior related neurocircuitry. Rats with lateral cerebroventricular cannulas were administered 10 μg GIP or 10 μl artificial cerebrospinal fluid (aCSF) daily for 4 days, after which whole hypothalami were collected. Real time Taqman™ RT-PCR was used to quantitatively compare the mRNA expression levels of a set of genes in the hypothalamus. Administration of GIP resulted in up-regulation of hypothalamic mRNA levels of AVP (46.9±4.5 %), CART (25.9±2.7 %), CREB1 (38.5±4.5 %), GABRD (67.1±11 %), JAK2 (22.1±3.6 %), MAPK1 (33.8±7.8 %), NPY (25.3±5.3 %), OXT (49.1±5.1 %), STAT3 (21.6±3.8 %), and TH (33.9±8.5 %). In a second experiment the same set of genes was evaluated in GIPR-/- and GIPR+/? mice to determine the effect of lack of GIP stimulation on gene expression. In GIPR-/- mice expressions of the following genes were down-regulated: AVP (27.1±7.5 %), CART (28.3±3.7 %), OXT (25.2±5.8 %), PTGES (23.9±4.5 %), and STAT3 (8.8±2.3 %). These results suggest that AVP, CART, OXT and STAT3 may be involved in energy balance-related hypothalamic circuits affected by GIP.
Collapse
Affiliation(s)
| | | | | | | | | | - C. A. BAILE
- Department of Animal and Dairy Science, University of Georgia, Athens, USA
| |
Collapse
|
23
|
Tian DR, Tso P, Han JS. Arcuate nucleus of hypothalamus is involved in mediating the satiety effect of electroacupuncture in obese rats. Peptides 2011; 32:2394-9. [PMID: 22064014 DOI: 10.1016/j.peptides.2011.10.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 10/19/2011] [Accepted: 10/20/2011] [Indexed: 12/16/2022]
Abstract
Obesity is a major health problem in the world. Since effective remedies are rare, researchers are trying to discover new therapies for obesity, and acupuncture is among the most popular alternative approaches. This study investigated the anti-obesity mechanisms of EA, using a rat model of diet-induced obesity. After feeding with a high-fat diet for 9 weeks, a number of rats who gained weight that surpassed the maximal body weight of rats in the chow-fed group were considered obese and employed in the study. A 2 Hz EA treatment at the acupoints ST36/SP6 with the intensity increasing stepwise from 0.5-1-1.5 mA was given once a day for 30 min. Rats treated with EA showed significantly decreased food intake and reduced body weight compared with the rats in DIO and restraint group. EA treatment increased peptide levels of α-MSH and mRNA levels of its precursor POMC in the arcuate nuclear of hypothalamus (ARH) neurons. In addition, the cerebral spinal fluid (CSF) content of α-MSH was elevated by EA application. ARH lesions by monosodium glutamate abolished the inhibition effect of EA on food intake and body weight. A non-acupoint stimulation did not show the benefit effect on food intake inhibition and body weight reduction compared with restraint and ST36/SP6 EA treatment. We concluded that EA treatment at ST36/SP6 acted through ARH to significantly inhibit food intake and body weight gain when fed a high-fat diet and that the stimulation of α-MSH expression and release might be involved in the mechanism.
Collapse
|
24
|
Proteomic analysis of rat hypothalamus revealed the role of ubiquitin-proteasome system in the genesis of DR or DIO. Neurochem Res 2011; 36:939-46. [PMID: 21344186 PMCID: PMC3084942 DOI: 10.1007/s11064-011-0423-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2011] [Indexed: 01/11/2023]
Abstract
Obesity has become a global epidemic, contributing to the increasing burdens of cardiovascular disease and type 2 diabetes. However, the precise molecular mechanisms of obesity remain poorly elucidated. The hypothalamus plays a major part in regulating energy homeostasis by integrating all kinds of nutritional signals. This study investigated the hypothalamus protein profile in diet-induced obese (DIO) and diet-resistant (DR) rats using two dimensional gel electrophoresis (2-DE) combined with MALDI-TOF/TOF–MS analysis. Twenty-two proteins were identified in the hypothalamus of DIO or DR rats. These include metabolic enzymes, antioxidant proteins, proteasome related proteins, and signaling proteins, some of which are related to AMP-activated protein kinase (AMPK) signaling or mitochondrial respiration. Among these proteins, in comparison with the normal-diet group, Ubiquitin was significantly decreased in DR rats but not changed in DIO rats, while Ubiquitin carboxyl-terminal esterase L1 (UCHL-1) was decreased in DIO rats but not changed in DR rats. The expression level of Ubiquitin and UCHL-1 were further validated using Western blot analysis. Our study reveals that Ubiquitin and UCHL-1 are obesity-related factors in the hypothalamus that may play an important role in the genesis of DR or DIO by interfering with the integrated signaling network that control energy balance and feeding.
Collapse
|
25
|
Hou J, Zheng DZ, Zhou JY, Zhou SW. Orexigenic effect of cocaine- and amphetamine-regulated transcript (CART) after injection into hypothalamic nuclei in streptozotocin-diabetic rats. Clin Exp Pharmacol Physiol 2010; 37:989-95. [DOI: 10.1111/j.1440-1681.2010.05423.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Effect of high-fat feeding on expression of genes controlling availability of dopamine in mouse hypothalamus. Nutrition 2009; 26:411-22. [PMID: 19811894 PMCID: PMC2839073 DOI: 10.1016/j.nut.2009.05.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 03/15/2009] [Accepted: 05/08/2009] [Indexed: 11/22/2022]
Abstract
Objective Hypothalamic centers integrate external signals of nutrient availability and energy status and initiate responses to maintain homeostasis. Quantifying changes in hypothalamic gene expression in the presence of nutrient excess may identify novel responsive elements. Methods Affymetrix Mouse Genome 430 2.0 oligonucleotide microarrays containing 45 102 probe sets were used to interrogate differential expression of genes in dietary-induced obesity model C57BL6 inbred mice fed a high-fat (35% fat; n = 8) or standard (4% fat; n = 6) diet from 3 to 15 wk of age. Ontologies of regulated genes were examined and expression of selected genes was validated by quantitative real-time polymerase chain reaction. Results One thousand two hundred twelve unique gene transcripts showed altered expression on the microarrays. Gene ontology analysis revealed changes in neuropeptide genes responding to leptin, Pomc, Cart, Npy, and Agrp, compatible with a homeostatic response to high-fat intake, although mean weight increased 2.3-fold compared with standard fed mice (P < 0.001). Neurotransmitter system ontologies revealed upregulation of five genes controlling availability of dopamine. Changes in Th tyrosine hydroxylase (2.1-fold) and Slc18a2 solute carrier family 18 (vesicular monoamine), member 2 (4.4-fold) controlling synthesis and release, and Slc6a3 solute carrier family 6 (neurotransmitter transporter, dopamine), member 3 (4.8-fold), Snca α-synuclein (1.3-fold), and Maoa monoamine oxidase (1.9-fold) limiting availability were confirmed by quantitative real-time polymerase chain reaction. Conclusion Expression of five genes involved in availability of dopamine was increased after a high-fat diet. Failure to reduce dopamine availability sufficiently, to counter the feeding reward effect, could contribute to diet-induced obesity in these mice.
Collapse
|
27
|
Yu Y, Deng C, Huang XF. Obese reversal by a chronic energy restricted diet leaves an increased Arc NPY/AgRP, but no alteration in POMC/CART, mRNA expression in diet-induced obese mice. Behav Brain Res 2009; 205:50-6. [PMID: 19616032 DOI: 10.1016/j.bbr.2009.07.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 06/26/2009] [Accepted: 07/03/2009] [Indexed: 11/24/2022]
Abstract
Weight regain after weight loss is a major hurdle for combating obesity. The aim of this study is to examine orexigenic and anorectic neuropeptides of the hypothalamic arcuate nucleus (Arc) in response to weight loss after chronic energy intake restriction. Thirty mice were fed with a high-fat diet for 8 weeks and then classified as diet-induced obese (DIO; n=10) or diet-resistant (DR; n=10) mice according to the highest and lowest body weight gainers. Five mice from DIO and DR groups were placed on an energy restricted diet or continued on their high-fat diet ad libitum for 6 weeks. An additional five mice were on a LF diet throughout the course of this study as controls. Results showed that a six-week energy restricted diet completely reversed the increased body weight, fat mass and leptin in the DIO mice to the levels of the LF and DR mice. Arc neuropeptide Y (NPY) and agouti-related protein (AgRP) mRNA expression in DIO mice after obesity reversal were significantly higher than DIO mice without obesity reversal (17%, 47%, both p<0.05), while the Arc pro-opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) mRNA showed no difference. Both NPY and AgRP expression in DIO mice were negatively correlated with plasma leptin (R=-0.78, p<0.05; R=-0.72, p<0.05). In conclusion, while chronic energy restriction will lead to weight loss, it can up-regulate hypothalamic orexigenic peptides, which may be an important contributing factor to weight regain after a weight loss program from an energy restricted diet.
Collapse
Affiliation(s)
- Yinghua Yu
- Centre for Translational Neuroscience, School of Health Sciences, University of Wollongong, Northfield Avenue, NSW 2522, Australia
| | | | | |
Collapse
|
28
|
Rogge G, Jones D, Hubert GW, Lin Y, Kuhar MJ. CART peptides: regulators of body weight, reward and other functions. Nat Rev Neurosci 2008; 9:747-58. [PMID: 18802445 PMCID: PMC4418456 DOI: 10.1038/nrn2493] [Citation(s) in RCA: 252] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Over the past decade or so, CART (cocaine- and amphetamine-regulated transcript) peptides have emerged as major neurotransmitters and hormones. CART peptides are widely distributed in the CNS and are involved in regulating many processes, including food intake and the maintenance of body weight, reward and endocrine functions. Recent studies have produced a wealth of information about the location, regulation, processing and functions of CART peptides, but additional studies aimed at elucidating the physiological effects of the peptides and at characterizing the CART receptor(s) are needed to take advantage of possible therapeutic applications.
Collapse
Affiliation(s)
- G Rogge
- Neuroscience Division, Yerkes National Primate Research Center of Emory University, 954 Gatewood Road NE, Atlanta, Georgia 30329, USA
| | | | | | | | | |
Collapse
|
29
|
Electroacupuncture in the treatment of obesity. Neurochem Res 2008; 33:2023-7. [PMID: 18719995 DOI: 10.1007/s11064-008-9822-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 08/04/2008] [Indexed: 10/21/2022]
Abstract
Obesity is becoming one of the most common health problems in the world. Many other disorders, such as hypertension and diabetes are considered as the consequences of obesity. Since effective remedies are rare (only two drugs, Orlistat and Sibutramine, were officially approved by the US Food and Drug Administration for long-term obesity treatment so far), researchers are trying to discover new therapies for obesity, and acupuncture is among the most popular alternative approaches. To facilitate weight reduction, one can use manual acupuncture, electroacupuncture (EA) or transcutaneous electrical acupoint stimulation (TEAS). As the parameters of the EA or TEAS can be precisely characterized and the results are more or less reproducible, this review will focus on EA as a treatment modality for obesity. Results obtained in this laboratory in recent five years will be summarized in some detail.
Collapse
|
30
|
Yu Y, South T, Wang Q, Huang XF. Differential expression of hypothalamic CART mRNA in response to body weight change following different dietary interventions. Neurochem Int 2008; 52:1422-30. [DOI: 10.1016/j.neuint.2008.03.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2007] [Revised: 01/24/2008] [Accepted: 03/18/2008] [Indexed: 01/08/2023]
|
31
|
Dandekar MP, Singru PS, Kokare DM, Lechan RM, Thim L, Clausen JT, Subhedar NK. Importance of cocaine- and amphetamine-regulated transcript peptide in the central nucleus of amygdala in anxiogenic responses induced by ethanol withdrawal. Neuropsychopharmacology 2008; 33:1127-36. [PMID: 17637604 DOI: 10.1038/sj.npp.1301516] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We studied the involvement of cocaine- and amphetamine-regulated transcript peptide (CART) in the central nucleus of amygdala (CeA), lateral bed nucleus of the stria terminalis (BNSTl) and nucleus accumbens shell (AcbSh) in generation of ethanol withdrawal symptoms, with particular focus on anxiety-like behavior using a social interaction test. Administration of CART (54-102) into the lateral ventricle (50 and 100 ng) and bilaterally in the CeA (10 and 20 ng) caused a significant reduction in social interaction, suggesting an anxiogenic action of the peptide. Chronic ethanol treatment for 15 days followed by withdrawal precipitated an anxiogenic response at 24 h that was attenuated by intracerebroventricular (5 mul) and intra-CeA (1 mul) administration of antibodies against CART (1 : 500 dilution). An immunocytochemistry protocol was employed to study the response of the endogenous CART system in the CeA following chronic ethanol withdrawal. At 0 h ethanol withdrawal, CART immunoreactivity was apparent in few fibers and the profile was similar to that in the pair-fed control rats. Twenty-four hours following ethanol withdrawal, a highly significant increase (P<0.001) in CART immunoreactivity was noticed in the CeA, which returned to normal 48 and 72 h post-withdrawal. Similar doses of CART or CART antibody injected bilaterally into the BNSTl or AcbSh produced no response in the social interaction test. Furthermore, the CART immunoreactivity profile did not change at the post-withdrawal time points in each of these brain sites. We suggest that CART may mediate the early signs of anxiety-like behavior induced by ethanol withdrawal within the neuroanatomical framework of the CeA.
Collapse
Affiliation(s)
- Manoj P Dandekar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University Campus, Nagpur, India
| | | | | | | | | | | | | |
Collapse
|
32
|
Buettner R, Schölmerich J, Bollheimer LC. High-fat diets: modeling the metabolic disorders of human obesity in rodents. Obesity (Silver Spring) 2007; 15:798-808. [PMID: 17426312 DOI: 10.1038/oby.2007.608] [Citation(s) in RCA: 795] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
RESEARCH METHODS AND PROCEDURES High-fat (HF) diet feeding can induce obesity and metabolic disorders in rodents that resemble the human metabolic syndrome. However, this dietary intervention is not standardized, and the HF-induced phenotype varies distinctly among different studies. The question which HF diet type is best to model the metabolic deterioration seen in human obesity remains unclear. Therefore, in this review, metabolic data obtained with different HF diet approaches are compiled. Both whole-body and organ-specific diet effects are analyzed. RESULTS On the basis of these results, we conclude that animal fats and omega-6/omega-9-containing plant oils can be used to generate an obese and insulin-resistant phenotype in rodents, whereas fish oil-fed animals do not develop these disorders. DISCUSSION Looking at the present data, it does not seem possible to define an ideal HF diet, and an exact definition of diet composition and a thorough metabolic characterization of the HF diet effects in a researcher's specific laboratory setting remains essential for metabolic studies with this model.
Collapse
Affiliation(s)
- Roland Buettner
- Department of Internal Medicine I, University of Regensburg, 93042 Regensburg, Germany.
| | | | | |
Collapse
|
33
|
Vicentic A, Jones DC. The CART (cocaine- and amphetamine-regulated transcript) system in appetite and drug addiction. J Pharmacol Exp Ther 2007; 320:499-506. [PMID: 16840648 DOI: 10.1124/jpet.105.091512] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CART (cocaine- and amphetamine-regulated transcript) peptides are neuromodulators that are involved in feeding, drug reward, stress, cardiovascular function, and bone remodeling. CART peptides are abundant but discretely distributed in the brain, pituitary and adrenal glands, pancreas, and gut. High expression of CART in discrete hypothalamic nuclei associated with feeding has led to behavioral and pharmacological studies that strongly support an anorectic action of CART in feeding. Subsequent studies on humans and transgenic animals provide additional evidence that CART is important in the regulation of appetite as mutations in the CART gene are linked to eating disorders, including obesity and anorexia. The expression of CART in the mesolimbic dopamine circuit has lead to functional studies demonstrating CART's psychostimulant-like effects on locomotor activity and conditioned place preference in rats. These and other findings demonstrated that CART modulates mesolimbic dopamine systems and affects psychostimulant-induced reward and reinforcing behaviors. The link between CART and psychostimulants was substantiated by demonstrating alterations of the CART system in human cocaine addicts. CART seems to regulate the mesolimbic dopamine system, which serves as a common mechanism of action for both feeding and addiction. Indeed, recent studies that demonstrated CART projections from specific hypothalamic areas associated with feeding to specific mesolimbic areas linked to reward/motivation behaviors provide evidence that CART may be an important connection between food- and drug-related rewards. Given the enormous public health burden of both obesity and drug addiction, future studies exploring the pharmacotherapies targeting CART peptide represent an exciting and challenging research area.
Collapse
Affiliation(s)
- Aleksandra Vicentic
- Yerkes National Primate Research Center of Emory University, Atlanta, GA 30329, USA.
| | | |
Collapse
|
34
|
Fetoui H, Bouaziz H, Mahjoubi-Samet A, Soussia L, Guermazi F, Zeghal N. Food restriction induced thyroid changes and their reversal after refeeding in female rats and their pups. ACTA BIOLOGICA HUNGARICA 2006; 57:391-402. [PMID: 17278701 DOI: 10.1556/abiol.57.2006.4.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In the present study, two groups of pregnant female rats were submitted to food restriction (24 h fast versus 24 h diet intake) from the 14th day of pregnancy until either the 14th day (group B) or the 4th day after parturition (group C). All pups and their mothers were sacrificed on day 14 after delivery. The body weight of the 14-day-old pups (group B) was 46% less than the controls (group A). Free thyroxine and free triiodothyronine levels in the plasma were reduced by 44 and 16% in pups and by 20 and 36% in their mothers, respectively. These reductions were correlated with a decrease in thyroid iodine content of the pups (-50%) and their mothers (-24%). Radioiodine uptake (131I) by the thyroid gland of pups was significantly increased by 27%. Plasma TSH levels were decreased by 38% in pups and by 44% in dams. Morphological changes in thyroid glands were observed in energy restricted dams and in their pups. Some of follicles in pups were empty. Moroever in dams, we noted the presence of peripheral resorbed vacuoles, sign of thyroid hyperactivity. After a refeeding (group C) period of ten days, total recovery occurred in plasma thyroid hormone levels (FT4 and FT3) and in thyroid iodine contents of pups in spite of a partial recovery of body weights and plasma TSH levels. In dams, a partial recovery occurred in plasma thyroid hormone levels in spite of total recovery in thyroid iodine contents, while plasma TSH levels exceeded control values. A significant amelioration in thyroid histological aspects was observed in pups and their dams.
Collapse
Affiliation(s)
- Hamadi Fetoui
- Animal Physiology Laboratory, Sciences Faculty of Sfax, Sfax, Tunisia
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
The central role of CART peptide in feeding, drug abuse and stress has been widely researched however, CART's role in the peripheral system are less explored. CART peptide is present in a variety of peripheral tissues including sympathetic ganglion neurons, adrenal glands, gut, pancreas and blood. Studies that examined circulating CART demonstrated that the active fragment with a molecular weight of CART55-102 is present in the blood of rats and rhesus macaques. Interestingly, CART expression in these species exhibits a distinctive diurnal rhythm which correlates with the respective daily rhythms of corticosterone and feeding. In the rat, adrenalectomy significantly reduces blood CART levels and abolishes its daily rhythm while corticosterone replacement reinstates CART expression to control levels. In addition, direct administration of corticosterone significantly increases CART blood levels while administration of corticosterone synthesis blocker metyrapone, inhibits CART blood levels. These data suggest that the adrenal gland could be a source of blood CART and that glucocorticoids may play a role in the generation of CART's diurnal rhythm. Moreover, fuel availability may be important in the control of CART levels and its daily rhythm, since 24 h food restriction alters CART levels and abolishes its rhythm. In addition to blood, both CART peptide and mRNA exhibit food-dependent diurnal rhythm in discrete rat brain areas including the nucleus accumbens, amygdala and hypothalamus. Altogether, these findings suggest that CART is influenced by hypothalamic-pituitary-adrenal interactions and that it may play a role in multiple physiological processes possibly involving feeding, stress, reward and motivation.
Collapse
Affiliation(s)
- Aleksandra Vicentic
- Neuroscience Division, Yerkes National Primate Research Center of Emory University, Atlanta, GA 30329, USA.
| |
Collapse
|
36
|
Archer ZA, Rayner DV, Barrett P, Balik A, Duncan JS, Moar KM, Mercer JG. Hypothalamic energy balance gene responses in the Sprague-Dawley rat to supplementation of high-energy diet with liquid ensure and subsequent transfer to chow. J Neuroendocrinol 2005; 17:711-9. [PMID: 16218999 DOI: 10.1111/j.1365-2826.2005.01363.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Energy dense, high fat, high sugar, foods and beverages in our diet are a major contributor to the escalating global obesity problem. Here, we examine the physiological and neuroendocrine effects of feeding rats a solid high-energy (HE) diet with or without a liquid supplement (Ensure) and the consequence of subsequently transferring animals back to chow (C). Outbred Sprague-Dawley rats were fed C until 49-56 days of age, and then transferred a HE diet for 3 weeks before allocation to one of two weight-matched groups. Over the next 10 weeks, one group remained on HE diet, whereas the other had access to the liquid diet, chocolate Ensure (EN), in addition to HE diet (HE + EN). Half the rats from each group were then killed, and the remainder were returned to C for 3 weeks. Supplementation of the HE diet with EN accelerated weight gain and increased daily energy intake, adipose tissue mass, and circulating leptin levels. Transferring animals back to C caused a decrease in bodyweight in the HE + EN group, whereas HE animals were weight stable. Both groups also exhibited voluntary hypophagia, although the magnitude and duration of this response was greater in HE + EN animals. The only effect of Ensure on the hypothalamic genes studied was on tyrosine kinase B expression in the ventromedial hypothalamic nucleus (VMH), which was increased in rats given the supplement. Withdrawal of the obesogenic diets decreased gene expression for cocaine-and-amphetamine regulated transcript (CART) and dynorphin (DYN) in the arcuate nucleus (ARC), and DYN and brain-derived neurotrophic factor (BDNF) in the VMH, whereas neuropeptide Y (NPY) gene expression in the ARC was increased. These changes were independent of previous dietary history. EN supplementation generates distinct physiological responses, yet has a minimal effect on hypothalamic neuropeptide or receptor gene expression, possibly due to the development of leptin resistance. Withdrawal of obesogenic diets induces changes in the gene expression consistent with NPY, CART and BDNF attempting to oppose weight gain on either HE or HE + EN.
Collapse
Affiliation(s)
- Z A Archer
- Division of Energy Balance and Obesity, Rowett Research Institute, Aberdeen Centre for Energy Regulation and Obesity (ACERO), Bucksburn, Aberdeen, UK.
| | | | | | | | | | | | | |
Collapse
|
37
|
Tian DR, Li XD, Wang F, Niu DB, He QH, Li YS, Chang JK, Yang J, Han JS. Up-regulation of the expression of cocaine and amphetamine-regulated transcript peptide by electroacupuncture in the arcuate nucleus of diet-induced obese rats. Neurosci Lett 2005; 383:17-21. [PMID: 15885905 DOI: 10.1016/j.neulet.2005.03.039] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Revised: 03/19/2005] [Accepted: 03/23/2005] [Indexed: 12/16/2022]
Abstract
It was reported that acupuncture or electro-acupuncture (EA) is effective in reducing the body weight for obese patients, although the mechanisms remain obscure. In a previous study, we have found that rats fed with high-fat (HIF) diet developed diet-induced obesity (DIO) with a concomitant decrease in the hypothalamic content of the cocaine and amphetamine-regulated transcript (CART) peptide, a peptide with anorexiogenic effect. To assess the central effect of EA on DIO rat, we revealed that EA up-regulated the expression of CART peptide in the arcuate nucleus (ARC) of the DIO rats. After feeding with HIF diet for 14 weeks, the DIO rats received EA stimulation three times per week for 4 weeks. The expression of CART peptide in ARC was measured using immunohistochemistry. The plasma ACTH was measured with ELISA. EA caused a reduction of both body weight and energy intake in DIO rats and increased the expression of CART peptide in ARC. The plasma ACTH was increased in response to restraint stress, but EA produced no further increase in ACTH levels. The results suggest that EA can up-regulate the expression of CART peptide to approach normal level, resulting in an inhibition of food intake and a reduction of body weight in DIO rats.
Collapse
Affiliation(s)
- De-Run Tian
- Department of Anatomy, Tianjin Medical University, China
| | | | | | | | | | | | | | | | | |
Collapse
|