1
|
Schroeter T, Lapham K, Varma MVS, Obach RS. Positioning Enzyme- and Transporter-Based Precipitant Drug-Drug Interaction Studies in Drug Design. J Med Chem 2025; 68:1021-1032. [PMID: 39762221 DOI: 10.1021/acs.jmedchem.4c02629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
In vitro assessment of the potential of compounds to affect drug metabolizing enzymes and transporters and perpetrate drug-drug interactions (DDIs) is a common practice in drug research. For the development phase, regulators define an exhaustive list of enzymes and transporters to consider, but DDIs associated with many of these are minor and can be well-managed in the clinic; thus, progression of drug candidates that address unmet medical needs should not be curtailed due to this property. However, some enzymes and transporters are very important in drug disposition, so it is important to avoid/reduce inhibition or induction of these through drug design. Herein, simplified criteria and methodologies amenable to high-throughput screening are defined to enable drug design to address DDI risk. A strategy is proposed that focuses on the most important enzymes and transporters: namely, cytochrome P450 (CYP) 3A4, CYP2C9, and CYP2D6, organic anion transporting polypeptide (OATP) 1B1, and breast cancer resistant protein (BCRP).
Collapse
Affiliation(s)
- Thomas Schroeter
- Department of Pharmacokinetics Dynamics & Metabolism, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Kimberly Lapham
- Department of Pharmacokinetics Dynamics & Metabolism, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Manthena V S Varma
- Department of Pharmacokinetics Dynamics & Metabolism, Pfizer Inc., Groton, Connecticut 06340, United States
| | - R Scott Obach
- Department of Pharmacokinetics Dynamics & Metabolism, Pfizer Inc., Groton, Connecticut 06340, United States
| |
Collapse
|
2
|
Ysebaert L, Protin C, Obéric L, Beziat G, De Barros S, Bonneau B, Allal B, Yakoubi M, Quillet-Mary A, Despas F. Ibrutinib pharmacokinetics in B-lymphoproliferative disorders discloses exposure-related incidence of hypertension. J Hypertens 2024:00004872-990000000-00594. [PMID: 39835452 DOI: 10.1097/hjh.0000000000003937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 11/03/2024] [Indexed: 01/22/2025]
Abstract
OBJECTIVE Ibrutinib has been the first Bruton tyrosine kinase inhibitor (BTKi) authorized for the treatment of B-cell lymphoproliferative disorders (B-LPDs). Numerous publications have confirmed the efficacy of this orally administrated drug in chemo-free regimens for B-LPDs. They also reported several adverse events (AE) associated with ibrutinib treatment. Whether these AEs depended on ibrutinib exposure has however been seldom explored. METHODS In the study reported here, the incidence of AE was recorded in 92 patients with B-LPD (mostly chronic lymphocytic leukemia n = 79) for whom ibrutinib alone was proposed as fist line therapy. Moreover, a pharmacokinetics (PK) exploration was planned over one day after 1 month treatment. PK assays included drug and metabolite (DHD-ibrutinib) mean/median and maximal plasmatic concentrations as well as areas under the curve (AUE) data. RESULTS This PK evaluation was analyzed regarding AEs recorded over the first year of therapy, which were similar as in published reports. PK data disclosed a significant impact of ibrutinib exposure on infections but mostly on the occurrence of hypertension. The latter was mostly related to dihydrodiol-ibrutinib (DHD-ibrutinib) exposure. CONCLUSIONS These data suggest that a DHD-ibrutinib assay after one month of treatment could be interesting to consider a lower dosage for patients above maximal concentration thresholds for the drug, its metabolite or the sum of both. Whether this can be applied to newer BTKi remains to be explored but it could be important for patients to whom ibrutinib is proposed.
Collapse
Affiliation(s)
- Loïc Ysebaert
- Hematology Department, Institut Universitaire du Cancer de Toulouse-Oncopole, Center for Cancer Research of Toulouse (CRCT), Inserm UMR1037, IUC-Toulouse-Oncopole
- Center for Cancer Research of Toulouse (CRCT), UMR1037, Inserm-University Toulouse III Paul Sabatier-ERL5294 CNRS
| | - Caroline Protin
- Hematology Department, Institut Universitaire du Cancer de Toulouse-Oncopole, Center for Cancer Research of Toulouse (CRCT), Inserm UMR1037, IUC-Toulouse-Oncopole
| | - Lucie Obéric
- Hematology Department, Institut Universitaire du Cancer de Toulouse-Oncopole, Center for Cancer Research of Toulouse (CRCT), Inserm UMR1037, IUC-Toulouse-Oncopole
| | | | - Sandra De Barros
- Service de pharmacologie médicale et clinique, faculté de médecine, Centre Hospitalier Universitaire
| | - Baptiste Bonneau
- Service de pharmacologie médicale et clinique, faculté de médecine, Centre Hospitalier Universitaire
- Unité MeDatAS-CIC 1436, Service de Pharmacologie Médicale et Clinique, CHU de Toulouse, Faculté de Médecine, Université Toulouse III, 37 allées Jules Guesde, Toulouse
| | - Ben Allal
- Center for Cancer Research of Toulouse (CRCT), UMR1037, Université de Toulouse, Inserm, and Institut Claudius-Regaud, IUCT-Oncopole
| | - Malika Yakoubi
- Center for Cancer Research of Toulouse (CRCT), UMR1037, Université de Toulouse, Inserm, and Institut Claudius-Regaud, IUCT-Oncopole
| | - Anne Quillet-Mary
- Center for Cancer Research of Toulouse (CRCT), UMR1037, Inserm-University Toulouse III Paul Sabatier-ERL5294 CNRS
| | - Fabien Despas
- Service de pharmacologie médicale et clinique, faculté de médecine, Centre Hospitalier Universitaire
- Institute of Cardiovascular and Metabolic Diseases, National Institute of Health and Medical Research (Inserm), UMR-1048, Toulouse, France
| |
Collapse
|
3
|
Halabi R, Yusuff K, Park C, DeShaw A, Gonzalez‐Torres C, Husain MI, O'Donovan C, Alda M, Mulsant BH, Ortiz A. Mood regulation in euthymic patients with a history of antidepressant-induced mania. Bipolar Disord 2024; 26:810-819. [PMID: 39333012 PMCID: PMC11627008 DOI: 10.1111/bdi.13504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
INTRODUCTION The use of antidepressants in bipolar disorder (BD) remains contentious, in part due to the risk of antidepressant-induced mania (AIM). However, there is no information on the architecture of mood regulation in patients who have experienced AIM. We compared the architecture of mood regulation in euthymic patients with and without a history of AIM. METHODS Eighty-four euthymic participants were included. Participants rated their mood, anxiety and energy levels daily using an electronic (e-) visual analog scale, for a mean (SD) of 280.8(151.4) days. We analyzed their multivariate time series by computing each variable's auto-correlation, inter-variable cross-correlation, and composite multiscale entropy of mood, anxiety, and energy. Then, we compared the data features of participants with a history of AIM and those without AIM, using analysis of covariance, controlling for age, sex, and current treatment. RESULTS Based on 18,103 daily observations, participants with AIM showed significantly stronger day-to-day auto-correlation and cross-correlation for mood, anxiety, and energy than those without AIM. The highest cross-correlation in participants with AIM was between mood and energy within the same day (median (IQR), 0.58 (0.27)). The strongest negative cross-correlation in participants with AIM was between mood and anxiety series within the same day (median (IQR), -0.52 (0.34)). CONCLUSION Patients with a history of AIM have a different underlying mood architecture compared to those without AIM. Their mood, anxiety and energy stay the same from day-to-day; and their anxiety is negatively correlated with their mood.
Collapse
Affiliation(s)
- Ramzi Halabi
- Campbell Family Research InstituteCentre for Addiction and Mental Health (CAMH)TorontoOntarioCanada
| | - Khairatun Yusuff
- Campbell Family Research InstituteCentre for Addiction and Mental Health (CAMH)TorontoOntarioCanada
| | - Clara Park
- Campbell Family Research InstituteCentre for Addiction and Mental Health (CAMH)TorontoOntarioCanada
| | - Alexandra DeShaw
- Department of PsychiatryDalhousie UniversityHalifaxNova ScotiaCanada
| | | | - Muhammad I. Husain
- Campbell Family Research InstituteCentre for Addiction and Mental Health (CAMH)TorontoOntarioCanada
- Department of Psychiatry, Temerty Faculty of MedicineUniversity of TorontoTorontoOntarioCanada
| | - Claire O'Donovan
- Department of PsychiatryDalhousie UniversityHalifaxNova ScotiaCanada
| | - Martin Alda
- Department of PsychiatryDalhousie UniversityHalifaxNova ScotiaCanada
- National Institute of Mental HealthKlecanyCzech Republic
| | - Benoit H. Mulsant
- Campbell Family Research InstituteCentre for Addiction and Mental Health (CAMH)TorontoOntarioCanada
- Department of Psychiatry, Temerty Faculty of MedicineUniversity of TorontoTorontoOntarioCanada
| | - Abigail Ortiz
- Campbell Family Research InstituteCentre for Addiction and Mental Health (CAMH)TorontoOntarioCanada
- Department of Psychiatry, Temerty Faculty of MedicineUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
4
|
Just KS, Pott LM, Sommer J, Scholl C, Steffens M, Denkinger MD, Rothenbacher D, Dallmeier D, Stingl JC. Association of Polymorphic Cytochrome P450 Enzyme Pathways with Falls in Multimedicated Older Adults. J Am Med Dir Assoc 2024; 25:105235. [PMID: 39236770 DOI: 10.1016/j.jamda.2024.105235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 06/27/2024] [Accepted: 07/29/2024] [Indexed: 09/07/2024]
Abstract
OBJECTIVES Dose exposure is considered relevant for drug-associated falls in older adults, pointing to an importance of drug metabolism. Aim was to analyze individual factors altering drug metabolism such as enzyme saturation by drug exposure and pharmacogenetics in the context of drug-associated falls. DESIGN Prospective population-based study (ActiFE-Ulm study). SETTING AND PARTICIPANTS Community-dwelling older adults. METHODS Focus was laid on the metabolism by polymorphic cytochrome P450 (CYP) enzymes CYP2C19, 2C9, and 2D6. Relevant variants of pharmacogenes were analyzed. Logistic binary regression analysis was used to calculate odds ratios (ORs) and 95% CIs for falls observed prospectively over a 1-year period with drug metabolism characteristics. RESULTS In total, 1377 participants were included in the analysis. Although the phenotype predicted by the genotype was not, the use of drugs metabolized by CYP2C19 was associated with falls. Drugs not known as fall risk-increasing drugs (FRIDs; ie, non-FRIDs), but metabolized by CYP2C19, showed an OR of 1.46 (1.11-1.93) in adjusted analysis. Significant effect modification was observed for a reduced CYP2C19 activity phenotype with non-FRIDs metabolized by CYP2C19. CONCLUSIONS AND IMPLICATIONS This study suggests an association between the occurrence of falls in older adults and the metabolic capacity of CYP2C19. Thus, an important step toward prevention of falls might be to personalize dosage and treatment length of the main drug classes known to be CYP2C19 substrates, such as many antidepressants, opioids, and sedatives, but also proton pump inhibitors in particular in poor and intermediate metabolizers.
Collapse
Affiliation(s)
- Katja S Just
- Institute of Clinical Pharmacology, University Hospital RWTH Aachen, Aachen, Germany.
| | - Laura M Pott
- Institute of Clinical Pharmacology, University Hospital RWTH Aachen, Aachen, Germany
| | - Jakob Sommer
- Institute of Clinical Pharmacology, University Hospital RWTH Aachen, Aachen, Germany
| | - Catharina Scholl
- Research Department, Federal Institute of Drugs and Medical Devices, Bonn, Germany
| | - Michael Steffens
- Research Department, Federal Institute of Drugs and Medical Devices, Bonn, Germany
| | - Michael D Denkinger
- AGAPLESION Bethesda Clinic, Ulm, Germany; Geriatric Centre Ulm, Ulm, Germany; Institute for Geriatric Research, Ulm University Medical Center, Ulm Germany
| | | | - Dhayana Dallmeier
- AGAPLESION Bethesda Clinic, Ulm, Germany; Geriatric Centre Ulm, Ulm, Germany; Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Julia C Stingl
- Institute of Clinical Pharmacology, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
5
|
Trevor GR, Lim YJ, Urquhart BL. Pharmacometabolomics in Drug Disposition, Toxicity, and Precision Medicine. Drug Metab Dispos 2024; 52:1187-1195. [PMID: 38228395 DOI: 10.1124/dmd.123.001074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/22/2023] [Accepted: 01/11/2024] [Indexed: 01/18/2024] Open
Abstract
The precision medicine initiative has driven a substantial change in the way scientists and health care practitioners think about diagnosing and treating disease. While it has long been recognized that drug response is determined by the intersection of genetic, environmental, and disease factors, improvements in technology have afforded precision medicine guided dosing of drugs to improve efficacy and reduce toxicity. Pharmacometabolomics aims to evaluate small molecule metabolites in plasma and/or urine to help evaluate mechanisms that predict and/or reflect drug efficacy and toxicity. In this mini review, we provide an overview of pharmacometabolomic approaches and methodologies. Relevant examples where metabolomic techniques have been used to better understand drug efficacy and toxicity in major depressive disorder and cancer chemotherapy are discussed. In addition, the utility of metabolomics in drug development and understanding drug metabolism, transport, and pharmacokinetics is reviewed. Pharmacometabolomic approaches can help describe factors mediating drug disposition, efficacy, and toxicity. While important advancements in this area have been made, there remain several challenges that must be overcome before this approach can be fully implemented into clinical drug therapy. SIGNIFICANCE STATEMENT: Pharmacometabolomics has emerged as an approach to identify metabolites that allow for implementation of precision medicine approaches to pharmacotherapy. This review article provides an overview of pharmacometabolomics including highlights of important examples.
Collapse
Affiliation(s)
- George R Trevor
- Department of Physiology and Pharmacology (G.R.T., Y.J.L., B.L.U.) and Division of Nephrology, Department of Medicine (B.L.U.), Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Yong Jin Lim
- Department of Physiology and Pharmacology (G.R.T., Y.J.L., B.L.U.) and Division of Nephrology, Department of Medicine (B.L.U.), Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Bradley L Urquhart
- Department of Physiology and Pharmacology (G.R.T., Y.J.L., B.L.U.) and Division of Nephrology, Department of Medicine (B.L.U.), Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
6
|
Uno Y, Minami Y, Tsukiyama-Kohara K, Murayama N, Yamazaki H. Identification of cytochrome P450 2C18 and 2C76 in tree shrews: P450 2C18 effectively oxidizes typical human P450 2C9/2C19 chiral substrates warfarin and omeprazole with less stereoselectivity. Biochem Pharmacol 2024; 228:115990. [PMID: 38110158 DOI: 10.1016/j.bcp.2023.115990] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/20/2023]
Abstract
Cytochromes P450 (P450s or CYPs), especially the CYP2C family, are important drug-metabolizing enzymes that play major roles in drug metabolism. Tree shrews, a non-rodent primate-like species, are used in various fields of biomedical research, notably hepatitis virus infection; however, its drug-metabolizing enzymes have not been fully investigated. In this study, tree shrew CYP2C18, CYP2C76a, CYP2C76b, and CYP2C76c cDNAs were identified and contained open reading frames of 489 or 490 amino acids with high sequence identities (70-78 %) to human CYP2Cs. Tree shrew CYP2C76a, CYP2C76b, and CYP2C76c showed higher sequence identities (79-80 %) to cynomolgus CYP2C76 and were not orthologous to any human CYP2C. Phylogenetic analysis revealed that tree shrew CYP2C18 and CYP2C76s were closely related to rat CYP2Cs and cynomolgus CYP2C76, respectively. Tree shrew CYP2C genes formed a gene cluster similar to human CYP2C genes. All four tree shrew CYP2C mRNAs showed predominant expressions in liver, among the tissue types examined; expression of CYP2C18 mRNA was also detected in small intestine. In liver, CYP2C18 mRNA was the most abundant among the tree shrew CYP2C mRNAs. In metabolic assays using human CYP2C substrates, all tree shrew CYP2Cs showed metabolic activities toward diclofenac, R,S-omeprazole, paclitaxel, and R,S-warfarin, with the activity of CYP2C18 exceeding that of the other CYP2Cs. Moreover, tree shrew CYP2C76 enzymes metabolized progesterone more efficiently than human, cynomolgus, or marmoset CYP2Cs. Therefore, these novel tree shrew CYP2Cs are expressed abundantly in liver, encode functional enzymes that metabolize human CYP2C substrates, and are likely responsible for drug clearances.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima 890-0065, Japan.
| | - Yuhki Minami
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima 890-0065, Japan
| | - Kyoko Tsukiyama-Kohara
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima 890-0065, Japan
| | - Norie Murayama
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Hiroshi Yamazaki
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan.
| |
Collapse
|
7
|
Wu A, Raack EJ, Ross CJD, Carleton BC. Implementation and Evaluation Strategies for Pharmacogenetic Testing in Hospital Settings: A Scoping Review. Ther Drug Monit 2024:00007691-990000000-00266. [PMID: 39264345 DOI: 10.1097/ftd.0000000000001243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/01/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Pharmacogenetic testing in clinical settings has improved the safety and efficacy of drug treatment. There is a growing number of studies evaluating pharmacogenetic implementation and identifying barriers and facilitators. However, no review has focused on bridging the gap between identifying barriers and facilitators of testing and the clinical strategies adopted in response. This review was conducted to understand the implementation and evaluation strategies of pharmacogenetic testing programs. METHODS A PRISMA-compliant scoping review was conducted. The included studies discussed pharmacogenetic testing programs implemented in a hospital setting. Quantitative, qualitative, and mixed design methods were included. RESULTS A total of 232 of the 7043 articles that described clinical pharmacogenetic programs were included. The most common specialties that described pharmacogenetic implementation were psychiatry (26%) and oncology (16%), although many studies described institutional programs implemented across multiple specialties (19%). Different specialties reported different clinical outcomes, but all reported similar program performance indicators, such as test uptake and the number of times the test recommendations were followed. There were benefits and drawbacks to delivering test results through research personnel, pharmacists, and electronic alerts, but active engagement of physicians was necessary for the incorporation of pharmacogenetic results into clinical decision making. CONCLUSIONS Further research is required on the maintenance and sustainability of pharmacogenetic testing initiatives. These findings provide an overview of the implementation and evaluation strategies of different specialties that can be used to improve pharmacogenetic testing.
Collapse
Affiliation(s)
- Angela Wu
- Department of Experimental Medicine, University of British Columbia
- BC Children's Hospital Research Institute
| | - Edward J Raack
- BC Children's Hospital Research Institute
- Department of Medical Genetics, University of British Columbia
| | - Colin J D Ross
- BC Children's Hospital Research Institute
- Division of Translational Therapeutics, Department of Pediatrics, University of British Columbia; and
| | - Bruce C Carleton
- BC Children's Hospital Research Institute
- Department of Medical Genetics, University of British Columbia
- Division of Translational Therapeutics, Department of Pediatrics, University of British Columbia; and
- Therapeutic Evaluation Unit, Provincial Health Services Authority, Vancouver, British Columbia, Canada
| |
Collapse
|
8
|
Kwon CH, Ha MW. Pharmacogenetic Approach to Tramadol Use in the Arab Population. Int J Mol Sci 2024; 25:8939. [PMID: 39201627 PMCID: PMC11354576 DOI: 10.3390/ijms25168939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/24/2024] [Accepted: 08/03/2024] [Indexed: 09/02/2024] Open
Abstract
Tramdol is one of most popular opioids used for postoperative analgesia worldwide. Among Arabic countries, there are reports that its dosage is not appropriate due to cultural background. To provide theoretical background of the proper usage of tramadol, this study analyzed the association between several genetic polymorphisms (CYP2D6/OPRM1) and the effect of tramadol. A total of 39 patients who took tramadol for postoperative analgesia were recruited, samples were obtained, and their DNA was extracted for polymerase chain reaction products analysis followed by allelic variations of CYP2D6 and OPRM A118G determination. Numerical pain scales were measured before and 1 h after taking tramadol. The effect of tramadol was defined by the difference between these scales. We concluded that CYP2D6 and OPRM1 A118G single nucleotide polymorphisms may serve as crucial determinants in predicting tramadol efficacy and susceptibility to post-surgical pain. Further validation of personalized prescription practices based on these genetic polymorphisms could provide valuable insights for the development of clinical guidelines tailored to post-surgical tramadol use in the Arabic population.
Collapse
Affiliation(s)
- Chan-Hyuk Kwon
- Seoul Shingil Rehabilitation Medicine Clinic, 162 Shingil-ro, Yeongdeungpo-gu, Seoul 07362, Republic of Korea
| | - Min Woo Ha
- Jeju Research Institute of Pharmaceutical Sciences, College of Pharmacy, Jeju National University, 102 Jejudaehak-ro, Jeju-si 63243, Jeju-do, Republic of Korea
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, 102 Jejudaehak-ro, Jeju-si 63243, Jeju-do, Republic of Korea
| |
Collapse
|
9
|
Ma J, Yu H, Li G, An T. Mechanism of cytochrome P450s mediated interference with glutathione and amino acid metabolisms from halogenated PAHs exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134589. [PMID: 38772114 DOI: 10.1016/j.jhazmat.2024.134589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 05/23/2024]
Abstract
Epidemiological evidence indicates that exposure to halogenated polycyclic aromatic hydrocarbons (HPAHs) is associated with many adverse effects. However, the mechanisms of metabolic disorder of HPAHs remains limited. Herein, effects of pyrene (Pyr), and its halogenated derivatives (1-chloropyrene (1-Cl-Pyr), 1-bromopyrene (1-Br-Pyr)) on endogenous metabolic pathways were investigated, in human hepatoma (HepG2) and HepG2-derived cell lines expressing various human cytochrome P450s (CYPs). Non-targeted metabolomics results suggested that 1-Br-Pyr and Pyr exposure (625 nM) induced disruption in glutathione and riboflavin metabolism which associated with redox imbalance, through abnormal accumulation of oxidized glutathione, mediated by bioactivation of CYP2E1. Conversely, CYP2C9-mediated 1-Cl-Pyr significantly interfered with glutathione metabolism intermediates, including glycine, L-glutamic acid and pyroglutamic acid. Notably, CYP1A1-mediated Pyr-induced perturbation of amino acid metabolism which associated with nutrition and glycolipid metabolism, resulting in significant upregulation of most amino acids, whereas halogenated derivatives mediated by CYP1A2 substantially downregulated amino acids. In conclusion, this study suggested that Pyr and its halogenated derivatives exert potent effects on endogenous metabolism disruption under the action of various exogenous metabolic enzymes (CYPs). Thus, new evidence was provided to toxicological mechanisms of HPAHs, and reveals potential health risks of HPAHs in inducing diseases caused by redox and amino acid imbalances.
Collapse
Affiliation(s)
- Jiaying Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Guangzhou Key cLaboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Hang Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Guangzhou Key cLaboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Guangzhou Key cLaboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Guangzhou Key cLaboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
10
|
Sun Y, Zhang Y, Lu Z, Liao Y, Feng Q, Yu M, Chen Y, Kang Z, Feng X, Zhao G, Sun J, Yang Y, Guo L, Zhang D, Bi W, Huang H, Yue W. Contribution of copy number variants on antipsychotic treatment response in Han Chinese patients with schizophrenia. EBioMedicine 2024; 105:105195. [PMID: 38870545 PMCID: PMC11225184 DOI: 10.1016/j.ebiom.2024.105195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Response to antipsychotic drugs (APD) varies greatly among individuals and is affected by genetic factors. This study aims to demonstrate genome-wide associations between copy number variants (CNVs) and response to APD in patients with schizophrenia. METHODS A total of 3030 patients of Han Chinese ethnicity randomly received APD (aripiprazole, olanzapine, quetiapine, risperidone, ziprasidone, haloperidol and perphenazine) treatment for six weeks. This study is a secondary data analysis. Percentage change on the Positive and Negative Syndrome Scale (PANSS) reduction was used to assess APD efficacy, and more than 50% change was considered as APD response. Associations between CNV burden, gene set, CNV loci and CNV break-point and APD efficacy were analysed. FINDINGS Higher CNV losses burden decreased the odds of 6-week APD response (OR = 0.66 [0.44, 0.98]). CNV losses in synaptic pathway involved in neurotransmitters were associated with 2-week PANSS reduction rate. CNV involved in sialylation (1p31.1 losses) and cellular metabolism (19q13.32 gains) associated with 6-week PANSS reduction rate at genome-wide significant level. Additional 36 CNVs associated with PANSS factors improvement. The OR of protective CNVs for 6-week APD response was 3.10 (95% CI: 1.33-7.19) and risk CNVs was 8.47 (95% CI: 1.92-37.43). CNV interacted with genetic risk score on APD efficacy (Beta = -1.53, SE = 0.66, P = 0.021). The area under curve to differ 6-week APD response attained 80.45% (95% CI: 78.07%-82.82%). INTERPRETATION Copy number variants contributed to poor APD efficacy and synaptic pathway involved in neurotransmitter was highlighted. FUNDING National Natural Science Foundation of China, National Key R&D Program of China, China Postdoctoral Science Foundation.
Collapse
Affiliation(s)
- Yaoyao Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Yuyanan Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Zhe Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Yundan Liao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Qidi Feng
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mingrui Yu
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yu Chen
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zhewei Kang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Xiaoyang Feng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Guorui Zhao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Junyuan Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Yang Yang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Liangkun Guo
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Dai Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China; Chinese Institute for Brain Research, Beijing 102206, China
| | - Wenjian Bi
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Hailiang Huang
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Weihua Yue
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China.
| |
Collapse
|
11
|
Guo J, Zhou W, Ma X, Li Y, Zhang H, Wei J, Du S, Jin T. Genetic Variability of CYP4F2, CYP2D6, CYP2E1, and ACE in the Chinese Yi Population. Biochem Genet 2024:10.1007/s10528-024-10748-y. [PMID: 38850376 DOI: 10.1007/s10528-024-10748-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/17/2024] [Indexed: 06/10/2024]
Abstract
Genetic polymorphisms of very important pharmacogenes (VIP) are a significant factor contributing to inter-individual variability in drug therapy. The purpose of this study was to identify significantly different loci in the Yi population and to enrich their pharmacogenomic information. 54 VIP variants were selected from the Pharmacogenomics Knowledge Base (PharmGKB) and genotyped in 200 Yi individuals. Then, we compared their genotype distribution between the Yi population and the other 26 populations using the χ2 test. Compared with the other 26 populations, the genotype frequencies of 4 single nucleotide polymorphisms (SNPs), rs2108622 (CYP4F2), rs1065852 (CYP2D6), rs2070676 (CYP2E1), and rs4291 (ACE), had significant differences in the Yi population. For example, the TT genotype frequency of rs2108622 (8.1%) was higher than that of African populations, and the AA genotype frequency of rs1065852 (27.3%) was higher than that of other populations except East Asians. We also found that the Yi populations differed the least from East Asians and the most from Africans. Furthermore, the differences in these variants might be related to the effectiveness and toxicity risk of using warfarin, iloperidone, cisplatin cyclophosphamide, and other drugs in the Yi population. Our data complement the pharmacogenomic information of the Yi population and provide theoretical guidance for their personalized treatment.
Collapse
Affiliation(s)
- Jinping Guo
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), School of Life Sciences, Ministry of Education, Northwest University, #229 North TaiBai Road, Xi'an, Shaanxi, 710069, China
- College of Life Science, Northwest University, Xi'an, 710127, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Wenqian Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), School of Life Sciences, Ministry of Education, Northwest University, #229 North TaiBai Road, Xi'an, Shaanxi, 710069, China
- College of Life Science, Northwest University, Xi'an, 710127, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Xiaoya Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), School of Life Sciences, Ministry of Education, Northwest University, #229 North TaiBai Road, Xi'an, Shaanxi, 710069, China
- College of Life Science, Northwest University, Xi'an, 710127, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Yujie Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), School of Life Sciences, Ministry of Education, Northwest University, #229 North TaiBai Road, Xi'an, Shaanxi, 710069, China
- College of Life Science, Northwest University, Xi'an, 710127, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Huan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), School of Life Sciences, Ministry of Education, Northwest University, #229 North TaiBai Road, Xi'an, Shaanxi, 710069, China
- College of Life Science, Northwest University, Xi'an, 710127, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Jie Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), School of Life Sciences, Ministry of Education, Northwest University, #229 North TaiBai Road, Xi'an, Shaanxi, 710069, China
- College of Life Science, Northwest University, Xi'an, 710127, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Shuli Du
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), School of Life Sciences, Ministry of Education, Northwest University, #229 North TaiBai Road, Xi'an, Shaanxi, 710069, China.
- College of Life Science, Northwest University, Xi'an, 710127, China.
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Tianbo Jin
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), School of Life Sciences, Ministry of Education, Northwest University, #229 North TaiBai Road, Xi'an, Shaanxi, 710069, China.
- College of Life Science, Northwest University, Xi'an, 710127, China.
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
12
|
Gao X, Wang H, Chen H. Impact of CYP2D6 and ADRB1 polymorphisms on heart rate of post-PCI patients treated with metoprolol. Pharmacogenomics 2024:1-9. [PMID: 29095089 DOI: 10.2217/pgs-2017-0203] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/15/2017] [Indexed: 12/20/2022] Open
Abstract
Aim: To explore the effect of CYP2D6*10 (100C > T) and ADRB1 1165 G > C polymorphisms on heart rate of post-PCI (percutaneous coronary intervention) patients treated with metoprolol succinate sustained-release tablets. Methods: A total of 756 inpatients with metoprolol succinate sustained-release tablets were selected and the genotypes of CYP2D6*10 and ADRB1 1165G > C were detected in 319 patients using gene chip detection. The target heart rate was defined as a resting heart rate < 70 beats/min. Clinical data were collected. Results: A total of 319 inpatients were enrolled in the study. The mutant allele frequencies of CYP2D6 and ADRB1 were 57.21 and 69.44%, respectively. Whatever the dose of metoprolol, the heart rates were lower in patients with homozygous mutation of CYP2D6 than those with heterozygous mutation and wild-type (p < 0.05). Nevertheless, this effect was not seen between different genotypes of ADRB1. Logistic regression analysis showed that the dose of metoprolol and the genotypes of CYP2D6 were predictors of heart rate <70 beats/min in these patients. Further multivariate analysis indicated that patients with homozygous mutation had better control of heart rates compared with those with wild-type and heterozygous mutation of CYP2D6*10 genotypes (all: p < 0.001). Conclusion:CYP2D6*10 polymorphisms were associated with the heart rate of post-PCI patients treated with metoprolol succinate sustained-release tablets.
Collapse
Affiliation(s)
- Xiaofeng Gao
- Fujian Provincial Cardiovascular Disease Institute, Fujian Medical University, Fuzhou, Fujian, P.R. China
- Ningde Hospital affiliated to Fujian Medical University,13 Mingdong East Road, Ningde, Fujian 352100, P.R. China
| | - Huan Wang
- Fujian Provincial Cardiovascular Disease Institute, Fujian Medical University, Fuzhou, Fujian, P.R. China
- Department of Internal Medicine, Fujian Provincal Cardiovascular Disease Institute, Provincial Clinical College of Fujian Medical University, 134 East Street, Fuzhou, Fujian 350001, P.R. China
| | - Hui Chen
- Department of Internal Medicine, Fujian Provincal Cardiovascular Disease Institute, Provincial Clinical College of Fujian Medical University, 134 East Street, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
13
|
Baltzer Houlind M, Hansen L, Iversen E, Rasmussen HB, Larsen JB, Jørgensen S, Dalhoff K, Damkier P, Walls AB, Vermehren C, Andersen TRH, Kallemose T, Christrup L, Westergaard N. Pharmacogenetic testing of CYP2D6, CYP2C19 and CYP2C9 in Denmark: Agreement between publicly funded genotyping tests and the subsequent phenotype classification. Basic Clin Pharmacol Toxicol 2024; 134:756-763. [PMID: 38403838 DOI: 10.1111/bcpt.13990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/27/2024]
Affiliation(s)
- Morten Baltzer Houlind
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
- Emergency Department, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
- The Capital Region Pharmacy, Herlev, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Luise Hansen
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Esben Iversen
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Henrik Berg Rasmussen
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Roskilde, Denmark
| | | | - Steffen Jørgensen
- Centre for Engineering and Science, University College Absalon, Naestved, Denmark
| | - Kim Dalhoff
- Department of Clinical Pharmacology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Per Damkier
- Department of Clinical Pharmacology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Anne B Walls
- The Capital Region Pharmacy, Herlev, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Vermehren
- The Capital Region Pharmacy, Herlev, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | - Thomas Kallemose
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Lona Christrup
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
14
|
Lee GH, Kim V, Lee SG, Jeong E, Kim C, Lee YB, Kim D. Catalytic enhancements in cytochrome P450 2C19 by cytochrome b5. Toxicol Res 2024; 40:215-222. [PMID: 38525137 PMCID: PMC10959859 DOI: 10.1007/s43188-023-00219-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/31/2023] [Accepted: 11/23/2023] [Indexed: 03/26/2024] Open
Abstract
Human cytochrome P450 2C19 catalyzes P450 enzyme reactions of various substrates, including steroids and clinical drugs. Recombinant P450 2C19 enzyme with histidine tag was successfully expressed in Escherichia coli and purified using affinity column chromatography. Ultra-performance liquid chromatography-tandem mass (UPLC-MS/MS) spectrometry showed that the purified P450 2C19 enzyme catalyzed 5-hydroxylation reaction of omeprazole. The purified enzyme displayed typical type I binding spectra to progesterone with a Kd value of 4.5 ± 0.2 µM, indicating a tight substrate binding. P450 2C19 catalyzed the hydroxylation of progesterone to produce 21-hydroxy (OH) as a major and 17-OH product as a minor product. Steady-state kinetic analysis of progesterone 21-hydroxylation indicated that the addition of cytochrome b5 stimulated a five-times catalytic turnover number of P450 2C19 with a kcat value of 1.07 ± 0.08 min-1. The molecular docking model of progesterone in the active site of P450 2C19 displayed that the 21-carbon of progesterone was located close to the heme with a distance of 4.7 Å, suggesting 21-hydroxylation of progesterone is the optimal reaction of P450 2C19 enzyme for a productive orientation of the substrate. Our findings will help investigate the extent to which cytochrome b5 affects the metabolism of P450 2C19 to drugs and steroids. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-023-00219-8.
Collapse
Affiliation(s)
- Gyu-Hyeong Lee
- Department of Biological Sciences, Konkuk University, 120 Neungdongro, Gwangjjn-Gu, Seoul, 05025 Republic of Korea
| | - Vitchan Kim
- Department of Biological Sciences, Konkuk University, 120 Neungdongro, Gwangjjn-Gu, Seoul, 05025 Republic of Korea
| | - Sung-Gyu Lee
- Department of Biological Sciences, Konkuk University, 120 Neungdongro, Gwangjjn-Gu, Seoul, 05025 Republic of Korea
| | - Eunseo Jeong
- Department of Biological Sciences, Konkuk University, 120 Neungdongro, Gwangjjn-Gu, Seoul, 05025 Republic of Korea
| | - Changmin Kim
- Department of Biological Sciences, Konkuk University, 120 Neungdongro, Gwangjjn-Gu, Seoul, 05025 Republic of Korea
| | - Yoo-Bin Lee
- Department of Biological Sciences, Konkuk University, 120 Neungdongro, Gwangjjn-Gu, Seoul, 05025 Republic of Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, 120 Neungdongro, Gwangjjn-Gu, Seoul, 05025 Republic of Korea
| |
Collapse
|
15
|
Li Y, Chang Y, Yan Y, Ma X, Zhou W, Zhang H, Guo J, Wei J, Jin T. Very important pharmacogenetic variants landscape and potential clinical relevance in the Zhuang population from Yunnan province. Sci Rep 2024; 14:7495. [PMID: 38553524 PMCID: PMC10980727 DOI: 10.1038/s41598-024-58092-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024] Open
Abstract
The gradual evolution of pharmacogenomics has shed light on the genetic basis for inter-individual drug response variations across diverse populations. This study aimed to identify pharmacogenomic variants that differ in Zhuang population compared with other populations and investigate their potential clinical relevance in gene-drug and genotypic-phenotypic associations. A total of 48 variants from 24 genes were genotyped in 200 Zhuang subjects using the Agena MassARRAY platform. The allele frequencies and genotype distribution data of 26 populations were obtained from the 1000 Genomes Project, followed by a comparison and statistical analysis. After Bonferroni correction, significant differences in genotype frequencies were observed of CYP3A5 (rs776746), ACE (rs4291), KCNH2 (rs1805123), and CYP2D6 (rs1065852) between the Zhuang population and the other 26 populations. It was also found that the Chinese Dai in Xishuangbanna, China, Han Chinese in Beijing, China, and Southern Han Chinese, China showed least deviation from the Zhuang population. The Esan in Nigeria, Gambian in Western Division, The Gambia, and Yoruba in Ibadan, Nigeria exhibited the largest differences. This was also proved by structural analysis, Fst analysis and phylogenetic tree. Furthermore, these differential variants may be associated with the pharmacological efficacy and toxicity of Captopril, Amlodipine, Lisinopril, metoclopramide, and alpha-hydroxymetoprolol in the Zhuang population. Our study has filled the gap of pharmacogenomic information in the Zhuang population and has provided a theoretical framework for the secure administration of drugs in the Zhuang population.
Collapse
Affiliation(s)
- Yujie Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, #229 North TaiBai Road, Xi'an, 710069, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, 710127, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Yanting Chang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, #229 North TaiBai Road, Xi'an, 710069, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, 710127, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Yan Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, #229 North TaiBai Road, Xi'an, 710069, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, 710127, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Xiaoya Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, #229 North TaiBai Road, Xi'an, 710069, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, 710127, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Wenqian Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, #229 North TaiBai Road, Xi'an, 710069, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, 710127, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Huan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, #229 North TaiBai Road, Xi'an, 710069, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, 710127, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Jinping Guo
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, #229 North TaiBai Road, Xi'an, 710069, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, 710127, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Jie Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, #229 North TaiBai Road, Xi'an, 710069, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, 710127, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Tianbo Jin
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, #229 North TaiBai Road, Xi'an, 710069, Shaanxi, China.
- College of Life Science, Northwest University, Xi'an, 710127, China.
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, 710069, Shaanxi, China.
| |
Collapse
|
16
|
Jmel H, Sarno S, Giuliani C, Boukhalfa W, Abdelhak S, Luiselli D, Kefi R. Genetic diversity of variants involved in drug response among Tunisian and Italian populations toward personalized medicine. Sci Rep 2024; 14:5842. [PMID: 38462643 PMCID: PMC10925599 DOI: 10.1038/s41598-024-55239-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 02/21/2024] [Indexed: 03/12/2024] Open
Abstract
Adverse drug reactions (ADR) represent a significant contributor to morbidity and mortality, imposing a substantial financial burden. Genetic ancestry plays a crucial role in drug response. The aim of this study is to characterize the genetic variability of selected pharmacogenes involved with ADR in Tunisians and Italians, with a comparative analysis against global populations. A cohort of 135 healthy Tunisians and 737 Italians were genotyped using a SNP array. Variants located in 25 Very Important Pharmacogenes implicated in ADR were extracted from the genotyping data. Distribution analysis of common variants in Tunisian and Italian populations in comparison to 24 publicly available worldwide populations was performed using PLINK and R software. Results from Principle Component and ADMIXTURE analyses showed a high genetic similarity among Mediterranean populations, distinguishing them from Sub-Saharan African and Asian populations. The Fst comparative analysis identified 27 variants exhibiting significant differentiation between the studied populations. Among these variants, four SNPs rs622342, rs3846662, rs7294, rs5215 located in SLC22A1, HMGCR, VKORC1 and KCNJ11 genes respectively, are reported to be associated with ethnic variability in drug responses. In conclusion, correlating the frequencies of genotype risk variants with their associated ADRs would enhance drug outcomes and the implementation of personalized medicine in the studied populations.
Collapse
Affiliation(s)
- Haifa Jmel
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- University of Tunis El Manar, Tunis, Tunisia
- Genetic Typing DNA Service Pasteur Institute, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Stefania Sarno
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy
| | - Cristina Giuliani
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy
| | - Wided Boukhalfa
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- University of Tunis El Manar, Tunis, Tunisia
| | - Sonia Abdelhak
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- University of Tunis El Manar, Tunis, Tunisia
| | - Donata Luiselli
- Laboratory of Ancient DNA (aDNALab), Department of Cultural Heritage (DBC), University of Bologna, Ravenna, Italy
| | - Rym Kefi
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia.
- University of Tunis El Manar, Tunis, Tunisia.
- Genetic Typing DNA Service Pasteur Institute, Institut Pasteur de Tunis, Tunis, Tunisia.
| |
Collapse
|
17
|
Zhao Y, Vary JC, Yadav AS, Czuba LC, Shum S, LaFrance J, Huang W, Isoherranen N, Hebert MF. Effect of isotretinoin on CYP2D6 and CYP3A activity in patients with severe acne. Br J Clin Pharmacol 2024; 90:759-768. [PMID: 37864393 PMCID: PMC10922942 DOI: 10.1111/bcp.15938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023] Open
Abstract
AIMS Previously, retinoids have decreased CYP2D6 mRNA expression in vitro and induced CYP3A4 in vitro and in vivo. This study aimed to determine whether isotretinoin administration changes CYP2D6 and CYP3A activities in patients with severe acne. METHODS Thirty-three patients (22 females and 11 males, 23.5 ± 6.0 years old) expected to receive isotretinoin treatment completed the study. All participants were genotyped for CYP2D6 and CYP3A5. Participants received dextromethorphan (DM) 30 mg orally as a dual-probe substrate of CYP2D6 and CYP3A activity at two study timepoints: pre-isotretinoin treatment and with isotretinoin for at least 1 week. The concentrations of isotretinoin, DM and their metabolites were measured in 2-h postdose plasma samples and in cumulative 0-4-h urine collections using liquid chromatography-mass spectrometry. RESULTS In CYP2D6 extensive metabolizers, the urinary dextrorphan (DX)/DM metabolic ratio (MR) (CYP2D6 activity marker) was numerically, but not significantly, lower with isotretinoin administration compared to pre-isotretinoin (geometric mean ratio [GMR] [90% confidence interval (CI)] 0.78 [0.55, 1.11]). The urinary 3-hydroxymorphinan (3HM)/DX MR (CYP3A activity marker) was increased (GMR 1.18 [1.03, 1.35]) and the urinary DX-O-glucuronide/DX MR (proposed UGT2B marker) was increased (GMR 1.22 [1.06, 1.39]) with isotretinoin administration compared to pre-isotretinoin. CONCLUSIONS Administration of isotretinoin did not significantly reduce CYP2D6 activity in extensive metabolizers, suggesting that the predicted downregulation of CYP2D6 based on in vitro data does not translate into humans. We observed a modest increase in CYP3A activity (predominantly CYP3A4) with isotretinoin treatment. The data also suggest that DX glucuronidation is increased following isotretinoin administration.
Collapse
Affiliation(s)
- Yuqian Zhao
- Department of Pharmaceutics, University of Washington, School of Pharmacy, Seattle, Washington, USA
| | - Jay C. Vary
- Department of Medicine, Division of Dermatology, University of Washington, School of Medicine, Seattle, Washington, USA
| | - Aprajita S. Yadav
- Department of Pharmaceutics, University of Washington, School of Pharmacy, Seattle, Washington, USA
| | - Lindsay C. Czuba
- Department of Pharmaceutics, University of Washington, School of Pharmacy, Seattle, Washington, USA
| | - Sara Shum
- Department of Pharmaceutics, University of Washington, School of Pharmacy, Seattle, Washington, USA
| | - Jeffrey LaFrance
- Department of Pharmaceutics, University of Washington, School of Pharmacy, Seattle, Washington, USA
| | - Weize Huang
- Department of Pharmaceutics, University of Washington, School of Pharmacy, Seattle, Washington, USA
| | - Nina Isoherranen
- Department of Pharmaceutics, University of Washington, School of Pharmacy, Seattle, Washington, USA
- Milo Gibaldi Endowed Chair of Pharmaceutics, Department of Pharmaceutics, University of Washington, School of Pharmacy, Seattle, Washington, USA
| | - Mary F. Hebert
- Department of Pharmacy, University of Washington, School of Pharmacy, Seattle, Washington, USA
- Department of Obstetrics and Gynecology, University of Washington, School of Medicine, Seattle, Washington, USA
| |
Collapse
|
18
|
Elsalahaty MI, Alkafaas SS, Bashir AO, El-Tarabily KA, El-Saadony MT, Yousef EH. Revealing the association between vitamin D metabolic pathway gene variants and lung cancer risk: a systematic review and meta-analysis. Front Genet 2024; 15:1302527. [PMID: 38482381 PMCID: PMC10933101 DOI: 10.3389/fgene.2024.1302527] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/05/2024] [Indexed: 10/16/2024] Open
Abstract
Lung cancer is a crucial global issue, with more than one million deaths annually. While smoking is considered the main etiology of the disease, several genetic variants are associated with it. Alterations in vitamin D pathway genes have also been studied in regards to lung cancer, but the findings have been inconclusive. We here present a systematic review and meta-analysis of seven genes in this pathway: CYP2R1, CYP27B1, CYP24A1, CYP3A4, CYP3A5, GC, and VDR. Four databases (PubMed, Scopus, Cochrane Library, and Web of Science (WOS) databases) were searched. From these, 16 eligible case-control studies comprising 6,206 lung cancer cases and 7,272 health controls were obtained. These studies were subjected to comprehensive data extraction and quality scoring, and the pooled odds ratio with a 95% confidence interval was calculated to estimate the effect of each variant along with heterogeneity analysis and a risk of bias assessment. Our meta-analysis revealed an association between CYP3A4 (rs2740574) and lung cancer in the allelic, heterozygous, and dominant models. In addition, both VDR (Fok1: rs2228570) and VDR (Cdx-2: rs11568820) displayed a protective role in lung cancer development in the heterozygous and dominant models. Furthermore, VDR (Taq1: rs731236) showed a decreased risk of lung cancer in the allelic, homozygous, and recessive models. Similarly, VDR (BsmI: rs1544410) had a positive effect on lung cancer risk when subjected to allelic and recessive models. Our meta-analysis revealed the lack of association of CYP2R1 (rs10741657), CYP27B1 (rs3782130), CYP27B1 (rs10877012), CYP24A1 (rs6068816), CYP24A1 (rs4809960), CYP3A5 (rs776746), GC (rs7041), GC (rs4588), and VDR (ApaI: rs7975232) with lung cancer. Our work revealed that CYP3A4 (rs2740574) can represent an independent risk factor for lung cancer. This conclusion can aid better personalized medicine for lung cancer management, while further assessment for genetic variants of CYP3A4, CYP27B1, CYP24A1, GC, and VDR is still required to address more robust evidence.
Collapse
Affiliation(s)
- Mohamed I. Elsalahaty
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Aya O. Bashir
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Eman H. Yousef
- Department of Biochemistry, Faculty of Pharmacy, Horus University-Egypt, Damietta, Egypt
| |
Collapse
|
19
|
Uno Y, Murayama N, Yamazaki H. Novel Cytochrome P450 2C119 Enzymes in Cynomolgus and Rhesus Macaques Metabolize Progesterone, Diclofenac, and Omeprazole. Drug Metab Dispos 2024; 52:266-273. [PMID: 38123944 DOI: 10.1124/dmd.123.001583] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Cynomolgus and rhesus macaques are used in drug metabolism studies due to their evolutionary and phylogenetic closeness to humans. Cytochromes P450 (P450s or CYPs), including the CYP2C family enzyme, are important endogenous and exogenous substrate-metabolizing enzymes and play major roles in drug metabolism. In cynomolgus and rhesus macaques, six CYP2Cs have been identified and characterized, namely, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2C76, and CYP2C93. In this study, CYP2C119, a new CYP2C, was identified and characterized in cynomolgus and rhesus macaques. Cynomolgus and rhesus CYP2C119 contained open reading frames of 489 amino acids with high sequence identities to human CYP2C8 and to cynomolgus and rhesus CYP2C8. Phylogenetic analysis showed that cynomolgus and rhesus CYP2C119 were closely related to cynomolgus and rhesus CYP2C8. In cynomolgus and rhesus genomes, CYP2C genes, including CYP2C119, form a cluster. Among the tissues analyzed, cynomolgus CYP2C119 mRNA was predominantly expressed in liver. Hepatic expressions of CYP2C119 mRNA in four cynomolgus and two rhesus macaques varied, with no expression in one rhesus macaque. Among the CYP2C mRNAs, CYP2C119 mRNA was expressed less abundantly than CYP2C8, CYP2C9, CYP2C19, and CYP2C76 mRNAs but more abundantly than CYP2C18 mRNA. Recombinant cynomolgus and rhesus CYP2C119 catalyzed progesterone 16α-, 17α-, and 21-hydroxylation and diclofenac and omeprazole oxidations, indicating that CYP2C119 is a functional enzyme. Therefore, the novel CYP2C119 gene, expressed in macaque liver, encodes a functional enzyme that metabolizes human CYP2C substrates and is likely responsible for drug clearances. SIGNIFICANCE STATEMENT: Cytochrome P450 2C119 was found in cynomolgus and rhesus macaques, in addition to the known P450 2C8, 2C9, 2C18, 2C19, 2C76, and 2C93. Cynomolgus and rhesus CYP2C119 contain open reading frames of 489 amino acids with high sequence identity to human CYP2C8. Cynomolgus CYP2C119 mRNA is predominantly expressed in the liver. Recombinant CYP2C119 catalyzed progesterone hydroxylation and diclofenac and omeprazole oxidations. Therefore, the novel CYP2C119 gene expressed in the macaque liver encodes a functional enzyme that metabolizes human CYP2C substrates.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima, Japan (Y.U.) and Showa Pharmaceutical University, Machida, Tokyo, Japan (N.M., H.Y.)
| | - Norie Murayama
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima, Japan (Y.U.) and Showa Pharmaceutical University, Machida, Tokyo, Japan (N.M., H.Y.)
| | - Hiroshi Yamazaki
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima, Japan (Y.U.) and Showa Pharmaceutical University, Machida, Tokyo, Japan (N.M., H.Y.)
| |
Collapse
|
20
|
Park S, Lee GH, Kim S, Kim S, Kim Y, Choi SA. Risk Factors for Respiratory Depression Associated with Tramadol Based on the Global Pharmacovigilance Database (VigiBase). Pharmaceuticals (Basel) 2024; 17:205. [PMID: 38399420 PMCID: PMC10893455 DOI: 10.3390/ph17020205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Tramadol, a weak μ-opioid receptor agonist, has been used worldwide for pain management. It is considered to have a favorable safety profile without serious adverse events; however, safety issues of respiratory depression were proposed by regulatory governments. We aimed to examine the risk and contributing factors associated with tramadol-related respiratory depression using a real-world database, VigiBase. Disproportionality analysis of tramadol and tramadol/paracetamol was performed using proportional reporting ratios, reporting odds ratios, and information components for all drugs and opioids. Factors related to respiratory depression, including sex, age, presence of abuse, death, and various concomitant medications, were evaluated. Among 140,721 tramadol reports, respiratory depression was reported in 1126 cases, 81.3% of which were deemed serious. Five adverse events were detected as signals of tramadol-related acute central respiratory depression (ACRD) in 882 reports. A higher proportion of ACRD cases in children and adolescents was observed than all adverse events cases of tramadol. Concomitant users of CYP2D6 inhibitors, opioids, benzodiazepines, and anti-depressant drugs showed a higher proportion in ACRD cases than non-ACRD cases. ACRD was related to drug abuse and death. This pharmacovigilance study, using VigiBase, confirmed a high risk of respiratory depression (a serious, potentially fatal adverse event) secondary to the use of tramadol, especially in pediatric patients, drug abusers, or during concomitant use of opioids, benzodiazepines, or antidepressants.
Collapse
Affiliation(s)
- Sunny Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Korea University, Sejong 30019, Republic of Korea;
| | - Geon-Ho Lee
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Soyun Kim
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Solee Kim
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Yeju Kim
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Soo-An Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Korea University, Sejong 30019, Republic of Korea;
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
21
|
Hoste E, Haufroid V, Deldicque L, Balligand JL, Elens L. Atorvastatin-associated myotoxicity: A toxicokinetic review of pharmacogenetic associations to evaluate the feasibility of precision pharmacotherapy. Clin Biochem 2024; 124:110707. [PMID: 38182100 DOI: 10.1016/j.clinbiochem.2024.110707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
Atorvastatin (ATV) and other statins are highly effective in reducing cholesterol levels. However, in some patients, the development of drug-associated muscle side effects remains an issue as it compromises the adherence to treatment. Since the toxicity is dose-dependent, exploring factors modulating pharmacokinetics (PK) appears fundamental. The purpose of this review aims at reporting the current state of knowledge about the singular genetic susceptibilities influencing the risk of developing ATV muscle adverse events through PK modulations. Multiple single nucleotide polymorphisms (SNP) in efflux (ABCB1, ABCC1, ABCC2, ABCC4 and ABCG2) and influx (SLCO1B1, SLCO1B3 and SLCO2B1) transporters have been explored for their association with ATV PK modulation or with statin-related myotoxicities (SRM) development. The most convincing pharmacogenetic association with ATV remains the influence of the rs4149056 (c.521 T > C) in SLCO1B1 on ATV PK and pharmacodynamics. This SNP has been robustly associated with increased ATV systemic exposure and consequently, an increased risk of SRM. Additionally, the SNP rs2231142 (c.421C > A) in ABCG2 has also been associated with increased drug exposure and higher risk of SRM occurrence. SLCO1B1 and ABCG2 pharmacogenetic associations highlight that modulation of ATV systemic exposure is important to explain the risk of developing SRM. However, some novel observations credit the hypothesis that additional genes (e.g. SLCO2B1 or ABCC1) might be important for explaining local PK modulations within the muscle tissue, indicating that studying the local PK directly at the skeletal muscle level might pave the way for additional understanding.
Collapse
Affiliation(s)
- Emilia Hoste
- Integrated PharmacoMetrics, pharmacoGenomics and Pharmacokinetics, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels 1200, Belgium; Louvain Center for Toxicology and Applied Pharmacology, Institut de recherche expérimentale et clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Vincent Haufroid
- Louvain Center for Toxicology and Applied Pharmacology, Institut de recherche expérimentale et clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium; Department of Clinical Chemistry, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Louise Deldicque
- Institute of Neuroscience (IoNS), Université Catholique de Louvain (UCLouvain), Louvain-la-Neuve 1348, Belgium
| | - Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics (FATH), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Laure Elens
- Integrated PharmacoMetrics, pharmacoGenomics and Pharmacokinetics, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels 1200, Belgium; Louvain Center for Toxicology and Applied Pharmacology, Institut de recherche expérimentale et clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium.
| |
Collapse
|
22
|
Wang C, Cheng B, Wei W, Gui L, Zeng W, Wang Y, Wang Y, Chen Q, Xu L, Miao J, Lan K. Comparison of 1Beta- and 5Beta-hydroxylation of Deoxycholate and Glycodeoxycholate as In Vitro Index Reactions for Cytochrome P450 3A Activities. Drug Metab Dispos 2024; 52:126-134. [PMID: 38050044 DOI: 10.1124/dmd.123.001513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/06/2023] Open
Abstract
Cytochrome P450 3A (CYP3A) participates in the metabolism of more than 30% of clinical drugs. The vast intra- and inter-individual variations in CYP3A activity pose great challenges to drug development and personalized medicine. It has been disclosed that human CYP3A4 and CYP3A7 are exclusively responsible for the tertiary oxidations of deoxycholic acid (DCA) and glycodeoxycholic acid (GDCA) regioselectivity at C-1β and C-5β This work aimed to compare the 1β- and 5β-hydroxylation of DCA and GDCA as potential in vitro CYP3A index reactions in both human liver microsomes and recombinant P450 enzymes. The results demonstrated that the metabolic activity of DCA 1β- and 5β-hydroxylation was 5-10 times higher than that of GDCA, suggesting that 1β-hydroxyglycodeoxycholic acid and 5β-hydroxyglycodeoxycholic acid may originate from DCA oxidation followed by conjugation in humans. Metabolic phenotyping data revealed that DCA 1β-hydroxylation, DCA 5β-hydroxylation, and GDCA 5β-hydroxylation were predominantly catalyzed by CYP3A4 (>80%), while GDCA 1β-hydroxylation had approximately equal contributions from CYP3A4 (41%) and 3A7 (58%). Robust Pearson correlation was established for the intrinsic clearance of DCA 1β- and 5β-hydroxylation with midazolam (MDZ) 1'- and 4-hydroxylation in fourteen single donor microsomes. Although DCA 5β-hydroxylation exhibited a stronger correlation with MDZ oxidation, DCA 1β-hydroxylation exhibited higher reactivity than DCA 5β-hydroxylation. It is therefore suggested that DCA 1β- and 5β-hydroxylations may serve as alternatives to T 6β-hydroxylation as in vitro CYP3A index reactions. SIGNIFICANCE STATEMENT: The oxidation of DCA and GDCA is primarily catalyzed by CYP3A4 and CYP3A7. This work compared the 1β- and 5β-hydroxylation of DCA and GDCA as in vitro index reactions to assess CYP3A activities. It was disclosed that the metabolic activity of DCA 1β- and 5β-hydroxylation was 5-10 times higher than that of GDCA. Although DCA 1β-hydroxylation exhibited higher metabolic activity than DCA 5β-hydroxylation, DCA 5β-hydroxylation demonstrated stronger correlation with MDZ oxidation than DCA 1β-hydroxylation in individual liver microsomes.
Collapse
Affiliation(s)
- Cuitong Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West ChinaSchool of Pharmacy, Sichuan University, Chengdu, China (C.W., B.C., W.W., L.G., W.Z., Y.W., Y.W., Q.C., L.X., K.L.); Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., L.X., K.L.); and Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China (J.M.)
| | - Bin Cheng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West ChinaSchool of Pharmacy, Sichuan University, Chengdu, China (C.W., B.C., W.W., L.G., W.Z., Y.W., Y.W., Q.C., L.X., K.L.); Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., L.X., K.L.); and Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China (J.M.)
| | - Wei Wei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West ChinaSchool of Pharmacy, Sichuan University, Chengdu, China (C.W., B.C., W.W., L.G., W.Z., Y.W., Y.W., Q.C., L.X., K.L.); Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., L.X., K.L.); and Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China (J.M.)
| | - Lanlan Gui
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West ChinaSchool of Pharmacy, Sichuan University, Chengdu, China (C.W., B.C., W.W., L.G., W.Z., Y.W., Y.W., Q.C., L.X., K.L.); Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., L.X., K.L.); and Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China (J.M.)
| | - Wushuang Zeng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West ChinaSchool of Pharmacy, Sichuan University, Chengdu, China (C.W., B.C., W.W., L.G., W.Z., Y.W., Y.W., Q.C., L.X., K.L.); Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., L.X., K.L.); and Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China (J.M.)
| | - Yutong Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West ChinaSchool of Pharmacy, Sichuan University, Chengdu, China (C.W., B.C., W.W., L.G., W.Z., Y.W., Y.W., Q.C., L.X., K.L.); Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., L.X., K.L.); and Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China (J.M.)
| | - Yixuan Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West ChinaSchool of Pharmacy, Sichuan University, Chengdu, China (C.W., B.C., W.W., L.G., W.Z., Y.W., Y.W., Q.C., L.X., K.L.); Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., L.X., K.L.); and Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China (J.M.)
| | - Qi Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West ChinaSchool of Pharmacy, Sichuan University, Chengdu, China (C.W., B.C., W.W., L.G., W.Z., Y.W., Y.W., Q.C., L.X., K.L.); Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., L.X., K.L.); and Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China (J.M.)
| | - Liang Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West ChinaSchool of Pharmacy, Sichuan University, Chengdu, China (C.W., B.C., W.W., L.G., W.Z., Y.W., Y.W., Q.C., L.X., K.L.); Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., L.X., K.L.); and Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China (J.M.)
| | - Jia Miao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West ChinaSchool of Pharmacy, Sichuan University, Chengdu, China (C.W., B.C., W.W., L.G., W.Z., Y.W., Y.W., Q.C., L.X., K.L.); Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., L.X., K.L.); and Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China (J.M.)
| | - Ke Lan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West ChinaSchool of Pharmacy, Sichuan University, Chengdu, China (C.W., B.C., W.W., L.G., W.Z., Y.W., Y.W., Q.C., L.X., K.L.); Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., L.X., K.L.); and Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China (J.M.)
| |
Collapse
|
23
|
Fisher JL, Clark AD, Jones EF, Lasseigne BN. Sex-biased gene expression and gene-regulatory networks of sex-biased adverse event drug targets and drug metabolism genes. BMC Pharmacol Toxicol 2024; 25:5. [PMID: 38167211 PMCID: PMC10763002 DOI: 10.1186/s40360-023-00727-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Previous pharmacovigilance studies and a retroactive review of cancer clinical trial studies identified that women were more likely to experience drug adverse events (i.e., any unintended effects of medication), and men were more likely to experience adverse events that resulted in hospitalization or death. These sex-biased adverse events (SBAEs) are due to many factors not entirely understood, including differences in body mass, hormones, pharmacokinetics, and liver drug metabolism enzymes and transporters. METHODS We first identified drugs associated with SBAEs from the FDA Adverse Event Reporting System (FAERS) database. Next, we evaluated sex-specific gene expression of the known drug targets and metabolism enzymes for those SBAE-associated drugs. We also constructed sex-specific tissue gene-regulatory networks to determine if these known drug targets and metabolism enzymes from the SBAE-associated drugs had sex-specific gene-regulatory network properties and predicted regulatory relationships. RESULTS We identified liver-specific gene-regulatory differences for drug metabolism genes between males and females, which could explain observed sex differences in pharmacokinetics and pharmacodynamics. In addition, we found that ~ 85% of SBAE-associated drug targets had sex-biased gene expression or were core genes of sex- and tissue-specific network communities, significantly higher than randomly selected drug targets. Lastly, we provide the sex-biased drug-adverse event pairs, drug targets, and drug metabolism enzymes as a resource for the research community. CONCLUSIONS Overall, we provide evidence that many SBAEs are associated with drug targets and drug metabolism genes that are differentially expressed and regulated between males and females. These SBAE-associated drug metabolism enzymes and drug targets may be useful for future studies seeking to explain or predict SBAEs.
Collapse
Affiliation(s)
- Jennifer L Fisher
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amanda D Clark
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Emma F Jones
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brittany N Lasseigne
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
24
|
Kavyani B, Saffari F, Afgar A, Kavyani S, Rezaie M, Sharifi F, Ahmadrajabi R. Gallocin-derived Engineered Peptides Targeting EGFR and VEGFR in Colorectal Cancer: A Bioinformatic Approach. Curr Top Med Chem 2024; 24:1599-1614. [PMID: 38840394 DOI: 10.2174/0115680266295587240522050712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) treatment using time-saving and cost-effective targeted therapies with high selectivity and low toxicity drugs, is a great challenge. In primary investigations on Gallocin, as the most proposed factor in CRC pathogenesis caused by Streptococcus gallolyticus, it was surprisingly found that this bacteriocin has four α-helix structures and some anti-cancer sequences. OBJECTIVE The aim of this study was to determine the ability of Gallocin-based anticancer peptides (ACPs) against epidermal growth factor receptor (EGFR) and vascular epidermal growth factor receptor (VEGFR) and the evaluation of their pharmacokinetic properties using bioinformatic approaches. METHODS Support vector machine algorithm web-based tools were used for predicting ACPs. The physicochemical characteristics and the potential of anti-cancer activity of Gallocin-derived ACPs were determined by in silico tools. The 3D structure of predicted ACPs was modeled using modeling tools. The interactions between predicted ACPs and targets were investigated by molecular docking exercises. Then, the stability of ligand-receptor interactions was determined by molecular dynamic simulation. Finally, ADMET analysis was carried out to check the pharmacokinetic properties and toxicity of ACPs. RESULTS Four amino acid sequences with anti-cancer potential were selected. Through molecular docking, Pep2, and Pep3 gained the best scores, more binding affinity, and strong attachments by the formation of reasonable H-bonds with both EGFR and VEGFR. Molecular simulation confirmed the stability of Pep3- EGFR. According to pharmacokinetic analysis, the ACPs were safe and truthful. CONCLUSION Designed peptides can be nominated as drugs for CRC treatment. However, different in-vitro and in-vivo assessments are required to approve this claim.
Collapse
Affiliation(s)
- Batoul Kavyani
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Fereshteh Saffari
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Afgar
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Sajjad Kavyani
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Masoud Rezaie
- Student Research Committee, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Sharifi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Roya Ahmadrajabi
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
25
|
Fisher JL, Clark AD, Jones EF, Lasseigne BN. Sex-biased gene expression and gene-regulatory networks of sex-biased adverse event drug targets and drug metabolism genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541950. [PMID: 37362157 PMCID: PMC10290285 DOI: 10.1101/2023.05.23.541950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Background Previous pharmacovigilance studies and a retroactive review of cancer clinical trial studies identified that women were more likely to experience drug adverse events (i.e., any unintended effects of medication), and men were more likely to experience adverse events that resulted in hospitalization or death. These sex-biased adverse events (SBAEs) are due to many factors not entirely understood, including differences in body mass, hormones, pharmacokinetics, and liver drug metabolism enzymes and transporters. Methods We first identified drugs associated with SBAEs from the FDA Adverse Event Reporting System (FAERS) database. Next, we evaluated sex-specific gene expression of the known drug targets and metabolism enzymes for those SBAE-associated drugs. We also constructed sex-specific tissue gene-regulatory networks to determine if these known drug targets and metabolism enzymes from the SBAE-associated drugs had sex-specific gene-regulatory network properties and predicted regulatory relationships. Results We identified liver-specific gene-regulatory differences for drug metabolism genes between males and females, which could explain observed sex differences in pharmacokinetics and pharmacodynamics. In addition, we found that ~85% of SBAE-associated drug targets had sex-biased gene expression or were core genes of sex- and tissue-specific network communities, significantly higher than randomly selected drug targets. Lastly, we provide the sex-biased drug-adverse event pairs, drug targets, and drug metabolism enzymes as a resource for the research community. Conclusions Overall, we provide evidence that many SBAEs are associated with drug targets and drug metabolism genes that are differentially expressed and regulated between males and females. These SBAE-associated drug metabolism enzymes and drug targets may be useful for future studies seeking to explain or predict SBAEs.
Collapse
Affiliation(s)
- Jennifer L. Fisher
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Amanda D. Clark
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Emma F. Jones
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Brittany N. Lasseigne
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| |
Collapse
|
26
|
Bellanca CM, Augello E, Cantone AF, Di Mauro R, Attaguile GA, Di Giovanni V, Condorelli GA, Di Benedetto G, Cantarella G, Bernardini R. Insight into Risk Factors, Pharmacogenetics/Genomics, and Management of Adverse Drug Reactions in Elderly: A Narrative Review. Pharmaceuticals (Basel) 2023; 16:1542. [PMID: 38004408 PMCID: PMC10674329 DOI: 10.3390/ph16111542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
The European Medicine Agency (EMA) has defined Adverse Drug Reactions (ADRs) as "a noxious and unintended response to a medicine", not including poisoning, accidental, or intentional overdoses. The ADR occurrence differs based on the approach adopted for defining and detecting them, the characteristics of the population under study, and the research setting. ADRs have a significant impact on morbidity and mortality, particularly among older adults, and represent a financial burden for health services. Between 30% and 60% of ADRs might be predictable and preventable, emerging as a result of inappropriate prescription, drug chemistry inherent toxicity, cell-specific drug toxicity, age- and sex-related anomalies in drug absorption, distribution, metabolism, and elimination (ADME), and drug-drug interactions (DDIs) in combination therapies or when a patient is treated with different drugs for concomitant disorders. This is particularly important in chronic diseases which require long-term treatments. Rapid developments in pharmacogenetics/genomics have improved the understanding of ADRs accompanied by more accurate prescriptions and reduction in unnecessary costs. To alleviate the burden of ADRs, especially in the elderly, interventions focused on pharmaceutical principles, such as medication review and reconciliation, should be integrated into a broader assessment of patients' characteristics, needs, and health priorities. Digital health interventions could offer valuable solutions to assist healthcare professionals in identifying inappropriate prescriptions and promoting patient adherence to pharmacotherapies.
Collapse
Affiliation(s)
- Carlo Maria Bellanca
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (C.M.B.); (E.A.); (A.F.C.); (G.A.A.); (G.A.C.); (G.C.); (R.B.)
- Clinical Toxicology Unit, University Hospital of Catania, 95123 Catania, Italy
| | - Egle Augello
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (C.M.B.); (E.A.); (A.F.C.); (G.A.A.); (G.A.C.); (G.C.); (R.B.)
- Clinical Toxicology Unit, University Hospital of Catania, 95123 Catania, Italy
| | - Anna Flavia Cantone
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (C.M.B.); (E.A.); (A.F.C.); (G.A.A.); (G.A.C.); (G.C.); (R.B.)
| | - Rosaria Di Mauro
- Dipartimento del Farmaco, ASP Trapani, 91100 Trapani, Italy; (R.D.M.); (V.D.G.)
| | - Giuseppe Antonino Attaguile
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (C.M.B.); (E.A.); (A.F.C.); (G.A.A.); (G.A.C.); (G.C.); (R.B.)
| | | | - Guido Attilio Condorelli
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (C.M.B.); (E.A.); (A.F.C.); (G.A.A.); (G.A.C.); (G.C.); (R.B.)
| | - Giulia Di Benedetto
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (C.M.B.); (E.A.); (A.F.C.); (G.A.A.); (G.A.C.); (G.C.); (R.B.)
- Clinical Toxicology Unit, University Hospital of Catania, 95123 Catania, Italy
| | - Giuseppina Cantarella
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (C.M.B.); (E.A.); (A.F.C.); (G.A.A.); (G.A.C.); (G.C.); (R.B.)
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (C.M.B.); (E.A.); (A.F.C.); (G.A.A.); (G.A.C.); (G.C.); (R.B.)
- Clinical Toxicology Unit, University Hospital of Catania, 95123 Catania, Italy
| |
Collapse
|
27
|
Shimizu M, Uehara S, Ohyama K, Nishimura H, Tanaka Y, Saito Y, Suemizu H, Yoshida S, Yamazaki H. Pharmacokinetic Models Scaled-up from Humanized-liver Mouse Data Can Account for Drug Monitoring Results of Atomoxetine and Its 4-Hydroxylated and N-Demethylated Metabolites i n Pediatric Patients Genotyped for Cytochrome P450 2D6. Drug Metab Dispos 2023; 52:DMD-AR-2023-001481. [PMID: 37879849 DOI: 10.1124/dmd.123.001481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023] Open
Abstract
Atomoxetine is a cytochrome P450 (P450) 2D6 probe substrate and an approved medicine for attention-deficit/hyperactivity disorder. In this humanized-liver mouse study, interactions between atomoxetine and the P450 2D6 probe drug paroxetine were observed. Human physiologically based pharmacokinetic (PBPK) models were established by scaling up humanized-liver mouse data obtained in the absence or presence of paroxetine. These models could explain the drug monitoring results of atomoxetine and its primary 4-hydroxylated and N-demethylated metabolites in Japanese children aged 8-14 years and could be used to help establish the correct dosage and for the evaluation of clinical outcomes. The results of simple PBPK models (using input parameters that reflected the subjects' small body size and normal or reduced P450 2D6-dependent clearance) were in general agreement with one-point measured plasma concentrations of atomoxetine and its 4-hydroxylated and N-demethylated metabolites in 13 pediatric participants. Unexpectedly high hepatic exposure, possibly in intermediate-metabolizer patients harboring CYP2D6*10 or 2D6*36 alleles, might in part explain the adverse effects of atomoxetine prescribed alone recorded in a Japanese adverse-event database. The steady-state, one-point drug monitoring data from the participants indicated extensive biotransformation of atomoxetine to 4-hydroxyatomoxetine under individually prescribed doses of atomoxetine. These results also suggest that a relatively narrow range of 4-hydroxyatomoxetine and N-desmethylatomoxetine concentration ratios in spot urine and/or plasma samples from pediatric patients could be a simple semiquantitative determinant factor for P450 2D6 intermediate metabolizers, compared with the wide range of concentrations of the two primary metabolites and substrate in extensive metabolizers. Significance Statement Validated simple pharmacokinetic models are able to predict steady-state plasma concentrations of the approved medicine atomoxetine and its primary metabolites in the majority of pediatric patients. The package insert advises careful dose escalation, especially for poor metabolizers; however, no simple way exists to determine P450 2D6 phenotypes. A relatively narrow range ratio of 4-hydroxyatomoxetine and N-desmethylatomoxetine in spot urine/plasma samples could be a simple semi-quantitative determinant factor for P450 2D6 intermediate metabolizers to optimize or confirm the correct dosage.
Collapse
Affiliation(s)
- Makiko Shimizu
- Lab. of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Japan
| | | | | | | | - Yoichi Tanaka
- Division of Medicinal Safety Science, National Institute of Health Sciences, Japan
| | | | | | | | - Hiroshi Yamazaki
- Lab. Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Japan
| |
Collapse
|
28
|
Scantamburlo G, Nofziger C, Paulmichl M, Vanoni S. Genetic analysis of the equine orthologues for human CYP2D6: unraveling the complexity of the CYP2D family in horses. Front Vet Sci 2023; 10:1188633. [PMID: 37929279 PMCID: PMC10620600 DOI: 10.3389/fvets.2023.1188633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction Because of their importance as companion animals or as racehorses, horses can be treated with various drugs. Although it is known that drug withdrawal times can vary for each horse, pharmacogenetics for these animals has not been adequately studied and requires further development. Since CYP2D6 is responsible for the metabolism of 25-30% of drugs in humans, including some used to treat horses, a study of the CYP2D family in horses was conducted to define its genetic structure as well as its expression pattern in the liver. Methods Genomic DNA extracted from venous blood and mRNA from fresh liver tissue were amplified and sequenced to analyze the genomic structure, genotype, and expression of the various enzymes that are part of the equine orthologous family for CYP2D6. Results Amplification and sequencing of the gDNA of CYP2D50, the major CYP2D6 orthologue identified in previous studies, revealed a novel putative genomic structure for this gene compared with that reported from the EquCab3.0 assembly, including the formation of a hybrid structure similar to what happens in human CYP2D6. At the mRNA level, transcripts from six different members of the equine CYP2D family were detected in horse liver. In addition, genotyping of CYP2D50 and CYP2D82 revealed the presence of several polymorphisms, six of which result in novel, nonsynonymous amino acid changes for each of the two genes. Discussion This study aimed to elucidate the pharmacogenetic analysis of the CYP2D family in horses and resulted in the identification of a novel gene structure for CYP2D50, the expression of six different members of the CYP2D family in horse liver, and several novel polymorphisms for CYP2D50 and CYP2D82.
Collapse
|
29
|
Roberts B, Cooper Z, Lu S, Stanley S, Majda BT, Collins KRL, Gilkes L, Rodger J, Akkari PA, Hood SD. Utility of pharmacogenetic testing to optimise antidepressant pharmacotherapy in youth: a narrative literature review. Front Pharmacol 2023; 14:1267294. [PMID: 37795032 PMCID: PMC10545970 DOI: 10.3389/fphar.2023.1267294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/30/2023] [Indexed: 10/06/2023] Open
Abstract
Pharmacogenetics (PGx) is the study and application of how interindividual differences in our genomes can influence drug responses. By evaluating individuals' genetic variability in genes related to drug metabolism, PGx testing has the capabilities to individualise primary care and build a safer drug prescription model than the current "one-size-fits-all" approach. In particular, the use of PGx testing in psychiatry has shown promising evidence in improving drug efficacy as well as reducing toxicity and adverse drug reactions. Despite randomised controlled trials demonstrating an evidence base for its use, there are still numerous barriers impeding its implementation. This review paper will discuss the management of mental health conditions with PGx-guided treatment with a strong focus on youth mental illness. PGx testing in clinical practice, the concerns for its implementation in youth psychiatry, and some of the barriers inhibiting its integration in clinical healthcare will also be discussed. Overall, this paper provides a comprehensive review of the current state of knowledge and application for PGx in psychiatry and summarises the capabilities of genetic information to personalising medicine for the treatment of mental ill-health in youth.
Collapse
Affiliation(s)
- Bradley Roberts
- The Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - Zahra Cooper
- The Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Stephanie Lu
- School of Psychological Science, University of Western Australia, Crawley, WA, Australia
| | - Susanne Stanley
- Division of Psychiatry, School of Medicine, University of Western Australia, Crawley, WA, Australia
| | | | - Khan R. L. Collins
- Western Australian Department of Health, North Metropolitan Health Service, Perth, WA, Australia
| | - Lucy Gilkes
- School of Medicine, University of Notre Dame, Fremantle, WA, Australia
- Divison of General Practice, School of Medicine, University of Western Australia, Crawley, WA, Australia
| | - Jennifer Rodger
- The Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - P. Anthony Akkari
- The Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- School of Human Sciences, University of Western Australia, Crawley, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia
- Division of Neurology, Duke University Medical Centre, Duke University, Durham, United States
| | - Sean D. Hood
- Division of Psychiatry, School of Medicine, University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
30
|
Pjevac M, Redenšek Trampuž S, Blagus T, Dolžan V, Bon J. Case report: application of pharmacogenetics in the personalized treatment of an elderly patient with a major depressive episode. Front Psychiatry 2023; 14:1250253. [PMID: 37608991 PMCID: PMC10440381 DOI: 10.3389/fpsyt.2023.1250253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023] Open
Abstract
Background Pharmacogenetic analyses can predict interpersonal differences in response to psychopharmacotherapy, which greatly facilitates the selection of the most effective medication at optimal doses. By personalizing therapy in this way, we can minimize adverse drug reactions (ADR) and prevent polypharmacy. Most psychotropic medications are metabolized by the cytochrome P450 enzymes CYP2D6, CYP2C19, and CYPA3A4, which influence drug metabolism and concentration, affecting both efficacy and the occurrence of ADR. The relationships between genetic variations and enzymatic activity allow pharmacogenetic analysis to provide important data for optimal drug selection. The following case report illustrates the impact of pharmacogenetic analysis on the course of pharmacologic treatment in an elderly patient with a major depressive episode. Methods We present a case of a 79-year-old patient treated for severe depression with psychotic symptoms. We collected data on treatment selection and response to treatment before and after pharmacogenetic analysis. For pharmacogenetic analysis, common functional variants in CYP1A2, CYP3A4, CYP2B6, CYP2C19, and CYP2D6 were genotyped, and corresponding evidence-based treatment recommendations were prepared. Results The patient suffered from lack of efficacy and serious ADR of several medications, resulting in worsening depression and treatment resistance over the course of several months of treatment. Pharmacogenetic analysis provided important insights into the patient's pharmacokinetic phenotype and allowed us to personalize treatment and achieve remission of the depressive episode. Conclusion In the case presented, we have shown how consideration of pharmacogenetic characteristics in an individual patient can improve treatment outcome and patient well-being. Knowledge of the patient's pharmacogenetic characteristics helped us to personalize treatment, resulting in complete remission of psychopathology. Due to the complexity of psychiatric disorders, the efficacy of combinations of different medications, which are often required in individual patients, cannot be clearly explained. Therefore, it is of great importance to conduct further pharmacokinetic and pharmacogenetic studies to better assess gene-drug interactions in psychopharmacotherapy.
Collapse
Affiliation(s)
- Milica Pjevac
- Centre for Clinical Psychiatry, University Psychiatric Clinic Ljubljana, Ljubljana, Slovenia
| | - Sara Redenšek Trampuž
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tanja Blagus
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jurij Bon
- Centre for Clinical Psychiatry, University Psychiatric Clinic Ljubljana, Ljubljana, Slovenia
- Department of Psychiatry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
31
|
Bian J, Zhao J, Zhao Y, Hao X, He S, Li Y, Huang L. Impact of individual factors on DNA methylation of drug metabolism genes: A systematic review. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2023; 64:401-415. [PMID: 37522536 DOI: 10.1002/em.22567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/12/2023] [Accepted: 07/26/2023] [Indexed: 08/01/2023]
Abstract
Individual differences in drug response have always existed in clinical treatment. Many non-genetic factors show non-negligible impacts on personalized medicine. Emerging studies have demonstrated epigenetic could connect non-genetic factors and individual treatment differences. We used systematic retrieval methods and reviewed studies that showed individual factors' impact on DNA methylation of drug metabolism genes. In total, 68 studies were included, and half (n = 36) were cohort studies. Six aspects of individual factors were summarized from the perspective of personalized medicine: parental exposure, environmental pollutants exposure, obesity and diet, drugs, gender and others. The most research (n = 11) focused on ABCG1 methylation. The majority of studies showed non-genetic factors could result in a significant DNA methylation alteration in drug metabolism genes, which subsequently affects the pharmacokinetic processes. However, the underlying mechanism remained unknown. Finally, some viewpoints were presented for future research.
Collapse
Affiliation(s)
- Jialu Bian
- Department of Pharmacy, People's Hospital of Peking University, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China
| | - Jinxia Zhao
- Department of Pharmacy, People's Hospital of Peking University, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China
| | - Yinyu Zhao
- Department of Pharmacy, People's Hospital of Peking University, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China
| | - Xu Hao
- Department of Pharmacy, People's Hospital of Peking University, Beijing, China
| | - Shiyu He
- Department of Pharmacy, People's Hospital of Peking University, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China
| | - Yuanyuan Li
- Department of Pharmacy, People's Hospital of Peking University, Beijing, China
| | - Lin Huang
- Department of Pharmacy, People's Hospital of Peking University, Beijing, China
| |
Collapse
|
32
|
Camargo AC, Matte U, Botton MR. Identification of adverse drug reactions that may be related to pharmacogenetics in a public hospital in the South of Brazil. Expert Opin Drug Saf 2023; 22:621-627. [PMID: 36794346 DOI: 10.1080/14740338.2023.2181337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/16/2023] [Indexed: 02/17/2023]
Abstract
BACKGROUND Adverse drug reactions (ADRs) are of great concern in clinical practice. Pharmacogenetics can identify individuals and groups at increased risk of developing ADRs, enabling treatment adjustments to improve outcomes. The study aimed to determine the prevalence of ADRs related to drugs with pharmacogenetic evidence level 1A in a public hospital in Southern Brazil. RESEARCH DESIGN AND METHODS ADR information was collected from the pharmaceutical registries from 2017 to 2019. Drugs that have pharmacogenetic evidence level 1A were selected. Public genomic databases were used to estimate the genotypes/phenotypes frequency. RESULTS During the period, 585 ADRs were spontaneously notified. Most were moderate (76.3%), whereas severe reactions accounted for 33.8%. Additionally, 109 ADRs caused by 41 drugs presented pharmacogenetic evidence level 1A, representing 18.6% of all notified reactions. Depending on the drug-gene pair, up to 35% of individuals from Southern Brazil could be at risk of developing ADRs. CONCLUSIONS Relevant amount of ADRs were related to drugs with pharmacogenetic recommendations on drug labels and/or guidelines. Genetic information could guide and improve clinical outcomes, decreasing ADR incidence and reducing treatment costs.
Collapse
Affiliation(s)
- Amanda C Camargo
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Cells, Tissues and Genes Laboratory, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Ursula Matte
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Cells, Tissues and Genes Laboratory, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Mariana R Botton
- Cells, Tissues and Genes Laboratory, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Transplant Immunology and Personalized Medicine Unit, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
33
|
Khoza N, Twesigomwe D, Othman H. Characterizing the combined effects of cytochrome P450 missense variation within star allele definitions. Pharmacogenomics 2023; 24:561-578. [PMID: 37503750 DOI: 10.2217/pgs-2023-0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
Background: Cytochrome P450 (CYP) genetic variation largely impacts drug response. However, many CYP star alleles (haplotypes) lack functional annotation, impeding our understanding of drug metabolism mechanisms. We aimed to investigate the impact of missense variant combinations on CYP protein structures. Methods: Normal mode analysis was conducted on 261 missense variants within 91 CYP haplotypes. CYP2D6*2 and CYP2D6*17 were prioritized for molecular dynamics simulation. Results: Normal mode analysis and molecular dynamics highlight the effects of known CYP missense variants on protein stability and conformational dynamics. Missense variants within haplotypes may have intermodulating effects on protein structure and function. Conclusion: This study highlights the utility of multiscale modeling in interpreting CYP missense variants and particularly their combinations within various star alleles.
Collapse
Affiliation(s)
- Nhlamulo Khoza
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, 9 Jubilee Road, Parktown, Johannesburg, 2193, South Africa
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2001, South Africa
| | - David Twesigomwe
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, 9 Jubilee Road, Parktown, Johannesburg, 2193, South Africa
| | - Houcemeddine Othman
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, 9 Jubilee Road, Parktown, Johannesburg, 2193, South Africa
- Laboratory of Human Cytogenetics, Molecular Genetics and Reproductive Biology, Farhat Hached University Hospital, Sousse, 4000, Tunisia
| |
Collapse
|
34
|
Padmanabhan S, du Toit C, Dominiczak AF. Cardiovascular precision medicine - A pharmacogenomic perspective. CAMBRIDGE PRISMS. PRECISION MEDICINE 2023; 1:e28. [PMID: 38550953 PMCID: PMC10953758 DOI: 10.1017/pcm.2023.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/24/2023] [Accepted: 06/12/2023] [Indexed: 05/16/2024]
Abstract
Precision medicine envisages the integration of an individual's clinical and biological features obtained from laboratory tests, imaging, high-throughput omics and health records, to drive a personalised approach to diagnosis and treatment with a higher chance of success. As only up to half of patients respond to medication prescribed following the current one-size-fits-all treatment strategy, the need for a more personalised approach is evident. One of the routes to transforming healthcare through precision medicine is pharmacogenomics (PGx). Around 95% of the population is estimated to carry one or more actionable pharmacogenetic variants and over 75% of adults over 50 years old are on a prescription with a known PGx association. Whilst there are compelling examples of pharmacogenomic implementation in clinical practice, the case for cardiovascular PGx is still evolving. In this review, we shall summarise the current status of PGx in cardiovascular diseases and look at the key enablers and barriers to PGx implementation in clinical practice.
Collapse
Affiliation(s)
- Sandosh Padmanabhan
- BHF Glasgow Cardiovascular Research Centre, School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Clea du Toit
- BHF Glasgow Cardiovascular Research Centre, School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Anna F. Dominiczak
- BHF Glasgow Cardiovascular Research Centre, School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| |
Collapse
|
35
|
Jin J, Zhong XB. Epigenetic Mechanisms Contribute to Intraindividual Variations of Drug Metabolism Mediated by Cytochrome P450 Enzymes. Drug Metab Dispos 2023; 51:672-684. [PMID: 36973001 PMCID: PMC10197210 DOI: 10.1124/dmd.122.001007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/24/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Significant interindividual and intraindividual variations on cytochrome P450 (CYP)-mediated drug metabolism exist in the general population globally. Genetic polymorphisms are one of the major contribution factors for interindividual variations, but epigenetic mechanisms mainly contribute to intraindividual variations, including DNA methylation, histone modifications, microRNAs, and long non-coding RNAs. The current review provides analysis of advanced knowledge in the last decade on contributions of epigenetic mechanisms to intraindividual variations on CYP-mediated drug metabolism in several situations, including (1) ontogeny, the developmental changes of CYP expression in individuals from neonates to adults; (2) increased activities of CYP enzymes induced by drug treatment; (3) increased activities of CYP enzymes in adult ages induced by drug treatment at neonate ages; and (4) decreased activities of CYP enzymes in individuals with drug-induced liver injury (DILI). Furthermore, current challenges, knowledge gaps, and future perspective of the epigenetic mechanisms in development of CYP pharmacoepigenetics are discussed. In conclusion, epigenetic mechanisms have been proven to contribute to intraindividual variations of drug metabolism mediated by CYP enzymes in age development, drug induction, and DILI conditions. The knowledge has helped understanding how intraindividual variation are generated. Future studies are needed to develop CYP-based pharmacoepigenetics to guide clinical applications for precision medicine with improved therapeutic efficacy and reduced risk of adverse drug reactions and toxicity. SIGNIFICANCE STATEMENT: Understanding epigenetic mechanisms in contribution to intraindividual variations of CYP-mediated drug metabolism may help to develop CYP-based pharmacoepigenetics for precision medicine to improve therapeutic efficacy and reduce adverse drug reactions and toxicity for drugs metabolized by CYP enzymes.
Collapse
Affiliation(s)
- Jing Jin
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
36
|
Konstandi M, Johnson EO. Age-related modifications in CYP-dependent drug metabolism: role of stress. Front Endocrinol (Lausanne) 2023; 14:1143835. [PMID: 37293497 PMCID: PMC10244505 DOI: 10.3389/fendo.2023.1143835] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/10/2023] [Indexed: 06/10/2023] Open
Abstract
Accumulating clinical evidence indicates extensive inter-individual variations in the effectiveness and adverse effects of standard treatment protocols, which are largely attributed to the multifactorial regulation of the hepatic CYP-dependent drug metabolism that is connected with either transcriptional or post-translational modifications. Age and stress belong to the most important factors in CYP gene regulation. Alterations in neuroendocrine responses to stress, which are associated with modified hypothalamo-pituitary-adrenal axis function, usually accompany ageing. In this light, ageing followed by a decline of the functional integrity of organs, including liver, a failure in preserving homeostasis under stress, increased morbidity and susceptibility to stress, among others, holds a determinant role in the CYP-catalyzed drug metabolism and thus, in the outcome and toxicity of pharmacotherapy. Modifications in the drug metabolizing capacity of the liver with age have been reported and in particular, a decline in the activity of the main CYP isoforms in male senescent rats, indicating decreased metabolism and higher levels of the drug-substrates in their blood. These factors along with the restricted experience in the use of the most medicines in childhood and elderly, could explain at an extent the inter-individual variability in drug efficacy and toxicity outcomes, and underscore the necessity of designing the treatment protocols, accordingly.
Collapse
Affiliation(s)
- Maria Konstandi
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Elizabeth O. Johnson
- Department of Anatomy, School of Medicine, European University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
37
|
Samarasinghe SR, Hoy W, Jadhao S, McMorran BJ, Guchelaar HJ, Nagaraj SH. The pharmacogenomic landscape of an Indigenous Australian population. Front Pharmacol 2023; 14:1180640. [PMID: 37284308 PMCID: PMC10241071 DOI: 10.3389/fphar.2023.1180640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/07/2023] [Indexed: 06/08/2023] Open
Abstract
Background: Population genomic studies of individuals of Indigenous ancestry have been extremely limited comprising <0.5% of participants in international genetic databases and genome-wide association studies, contributing to a "genomic gap" that limits their access to personalised medicine. While Indigenous Australians face a high burden of chronic disease and associated medication exposure, corresponding genomic and drug safety datasets are sorely lacking. Methods: To address this, we conducted a pharmacogenomic study of almost 500 individuals from a founder Indigenous Tiwi population. Whole genome sequencing was performed using short-read Illumina Novaseq6000 technology. We characterised the pharmacogenomics (PGx) landscape of this population by analysing sequencing results and associated pharmacological treatment data. Results: We observed that every individual in the cohort carry at least one actionable genotype and 77% of them carry at least three clinically actionable genotypes across 19 pharmacogenes. Overall, 41% of the Tiwi cohort were predicted to exhibit impaired CYP2D6 metabolism, with this frequency being much higher than that for other global populations. Over half of the population predicted an impaired CYP2C9, CYP2C19, and CYP2B6 metabolism with implications for the processing of commonly used analgesics, statins, anticoagulants, antiretrovirals, antidepressants, and antipsychotics. Moreover, we identified 31 potentially actionable novel variants within Very Important Pharmacogenes (VIPs), five of which were common among the Tiwi. We further detected important clinical implications for the drugs involved with cancer pharmacogenomics such as thiopurines and tamoxifen, immunosuppressants like tacrolimus and certain antivirals used in the hepatitis C treatment due to potential differences in their metabolic processing. Conclusion: The pharmacogenomic profiles generated in our study demonstrate the utility of pre-emptive PGx testing and have the potential to help guide the development and application of precision therapeutic strategies tailored to Tiwi Indigenous patients. Our research provides valuable insights on pre-emptive PGx testing and the feasibility of its use in ancestrally diverse populations, emphasizing the need for increased diversity and inclusivity in PGx investigations.
Collapse
Affiliation(s)
| | - Wendy Hoy
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Sudhir Jadhao
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Brendan J McMorran
- John Curtin School of Medical Research, College of Health and Medicine, Australian National University, Canberra, ACT, Australia
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, Netherlands
| | - Shivashankar H Nagaraj
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
38
|
Zhou N, Zhu Y, Hu M, Zheng R, Sun M, Bian Y, Chen X, Li T. Evaluation potential effects of Picroside II on cytochrome P450 enzymes in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116582. [PMID: 37192720 DOI: 10.1016/j.jep.2023.116582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 05/18/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Picrorhiza scrophulariiflora Pennell, a well-known Chinese herb, has been traditionally utilized as an antioxidant and anti-inflammatory agent. One of its main bioactive components is Picroside II, a glycoside derivative. However, there is limited information on the effects of Picroside II on the activity of cytochrome P450 (CYP) enzymes nor on potential herb-drug interactions are rarely studied. AIM OF THE STUDY The purpose of the study was to investigate the effects of Picroside II on the activity of cytochrome P450 enzymes in vitro and in vivo and its potential herb-drug interactions. MATERIALS AND METHODS Specific probe substrates were employed to assess the effect of Picroside II on the activity of P450 enzymes. The inhibitory effects of Picroside II on CYP enzymes were assayed both in human (i.e., 1A, 2C9, 2C19, 2D6, 2E1, and 3A) and rat (i.e., 1A, 2C6/11, 2D1, 2E1, and 3A) liver microsomes in vitro. The inductive effects were investigated in rats following oral gavage of 2.5 mg/kg and 10 mg/kg Picroside II. A specific Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS) method was developed to determine the formation of specific metabolites. RESULTS Enzyme inhibition results showed that Picroside II (0.5-200 μM) had no evident inhibitory effects on rat and human liver microsomes in vitro. Interestingly, the administration of multiple doses of 10 mg/kg Picroside II inhibited the activity of CYP2C6/11 by reducing the rate of formation of 4-hydroxydiclofenac and 4-hydroxymephenytoin, while Picroside II at 2.5 mg/kg increased the activity of CYP3A by promoting the formation of 1-hydroxymidazolam and 6-hydroxychlorzoxazone in rats. In addition, there were negligible effects on CYP1A, CYP2D1, and CYP2E1 in rats. CONCLUSIONS The results indicated that Picroside II modulated the activities of CYP enzymes and was involved in CYP2C and CYP3A medicated herb-drug interactions. Therefore, careful monitoring is necessary when Picroside II is used in combination with related conventional drugs.
Collapse
Affiliation(s)
- Nan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Yujie Zhu
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Miaorong Hu
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Rongyao Zheng
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Mengqi Sun
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Yueying Bian
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Xijing Chen
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China.
| | - Tingting Li
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
39
|
Zhou W, Guo J, Li Y, Ma X, Yang S, Wei J, Zhang H, Zhang S, Jin T. Genetic polymorphisms of pharmacogenomic VIP variants in the Hui population from Ningxia Province of China. Funct Integr Genomics 2023; 23:85. [PMID: 36930384 DOI: 10.1007/s10142-023-01021-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023]
Abstract
Pharmacogenomics has been widely used to study the very important pharmacogenetic (VIP) variants among different populations. However, there is little pharmacogenomic information about the Chinese Hui population. Our research aimed to reveal the outstandingly different loci in the Hui population, and provide a theoretical foundation for personalized drug use in the Hui population, so as to facilitate more effective treatment of diseases. This study genotyped 53 VIP variants of 26 genes in 200 independent Hui individuals based on the Pharmacogenetics and Pharmacogenomics Knowledge Base (PharmGKB). Remarkable differences in the genotype and allele frequencies between the Hui and 26 other populations from the 1000 Genomes Project were assessed using the χ2 test. The genotype and allele frequencies of single nucleotide polymorphisms (SNPs) in PTGS2 (rs20417), NAT2 (rs1801280), NAT2 (rs1208), ACE (rs4291), and CYP2D6 (rs1065852) were considerably different in the Hui population compared with those in the other 26 populations. Besides, using the PharmGKB database, we identified several VIP variants that may alter the drug metabolism of ibuprofen, rofecoxib (PTGS2), captopril (ACE), citalopram, and escitalopram (CYP2D6). We also discovered other variants associated with adverse reactions to cisplatin and cyclophosphamide (NAT2). Our study indicated that the loci of PTGS2 (rs20417), NAT2 (rs1801280 and rs1208), ACE (rs4291), and CYP2D6 (rs1065852) in the Hui population were obviously different from those in the other 26 populations, which provides reliable information for predicting drug efficacy. Besides, it supplements the pharmacogenomic knowledge of the Hui population and lays the foundation for the individualized treatment for the Hui population.
Collapse
Affiliation(s)
- Wenqian Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, 710127, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Jinping Guo
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, 710127, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Yujie Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, 710127, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Xiaoya Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, 710127, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Shuangyu Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, 710127, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Jie Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, 710127, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Huan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, 710127, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Shanshan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China.
- College of Life Science, Northwest University, Xi'an, 710127, Shaanxi, China.
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an, 710069, Shaanxi, China.
| | - Tianbo Jin
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China.
- College of Life Science, Northwest University, Xi'an, 710127, Shaanxi, China.
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an, 710069, Shaanxi, China.
| |
Collapse
|
40
|
Personalizing atomoxetine dosing in children with ADHD: what can we learn from current supporting evidence. Eur J Clin Pharmacol 2023; 79:349-370. [PMID: 36645468 DOI: 10.1007/s00228-022-03449-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/20/2022] [Indexed: 01/17/2023]
Abstract
PURPOSE There is marked heterogeneity in treatment response of atomoxetine in patients with attention deficit/hyperactivity disorder (ADHD), especially for the pediatric population. This review aims to evaluate current evidence to characterize the dose-exposure relationship, establish clinically relevant metrics for systemic exposure to atomoxetine, define a therapeutic exposure range, and to provide a dose-adaptation strategy before implementing personalized dosing for atomoxetine in children with ADHD. METHODS A comprehensive search was performed across electronic databases (PubMed and Embase) covering the period of January 1, 1985 to July 10, 2022, to summarize recent advances in the pharmacokinetics, pharmacogenomics/pharmacogenetics (PGx), therapeutic drug monitoring (TDM), physiologically based pharmacokinetics (PBPK), and population pharmacokinetics (PPK) of atomoxetine in children with ADHD. RESULTS Some factors affecting the pharmacokinetics of atomoxetine were summarized, including food, CYP2D6 and CYP2C19 phenotypes, and drug‒drug interactions (DDIs). The association between treatment response and genetic polymorphisms of genes encoding pharmacological targets, such as norepinephrine transporter (NET/SLC6A2) and dopamine β hydroxylase (DBH), was also discussed. Based on well-developed and validated assays for monitoring plasma concentrations of atomoxetine, the therapeutic reference range in pediatric patients with ADHD proposed by several studies was summarized. However, supporting evidence on the relationship between systemic atomoxetine exposure levels and clinical response was far from sufficient. CONCLUSION Personalizing atomoxetine dosage may be even more complex than anticipated thus far, but elucidating the best way to tailor the non-stimulant to a patient's individual need will be achieved by combining two strategies: detailed research in linking the pharmacokinetics and pharmacodynamics in pediatric patients, and better understanding in nature and causes of ADHD, as well as environmental stressors.
Collapse
|
41
|
García-González X, Cubo E, Simón-Vicente L, Mariscal N, Alcaraz R, Aguado L, Rivadeneyra-Posadas J, Sanz-Solas A, Saiz-Rodríguez M. Pharmacogenetics in the Treatment of Huntington’s Disease: Review and Future Perspectives. J Pers Med 2023; 13:jpm13030385. [PMID: 36983567 PMCID: PMC10056055 DOI: 10.3390/jpm13030385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023] Open
Abstract
Huntington’s disease (HD) is an autosomal dominant progressive brain disorder, caused by a pathological expansion of a CAG repeat that encodes the huntingtin gene. This genetic neurodegenerative rare disease is characterized by cognitive, motor, and neuropsychiatric manifestations. The aim of the treatment is symptomatic and addresses the hyperkinetic disorders (chorea, dystonia, myoclonus, tics, etc.) and the behavioural and cognitive disturbances (depression, anxiety, psychosis, etc.) associated with the disease. HD is still a complex condition in need of innovative and efficient treatment. The long-term goal of pharmacogenetic studies is to use genotype data to predict the effective treatment response to a specific drug and, in turn, prevent potential undesirable effects of its administration. Chorea, depression, and psychotic symptoms have a substantial impact on HD patients’ quality of life and could be better controlled with the help of pharmacogenetic knowledge. We aimed to carry out a review of the available publications and evidence related to the pharmacogenetics of HD, with the objective of compiling all information that may be useful in optimizing drug administration. The impact of pharmacogenetic information on the response to antidepressants and antipsychotics is well documented in psychiatric patients, but this approach has not been investigated in HD patients. Future research should address several issues to ensure that pharmacogenetic clinical use is appropriately supported, feasible, and applicable.
Collapse
Affiliation(s)
- Xandra García-González
- Pharmacy Department, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
| | - Esther Cubo
- Neurology Department, Hospital Universitario de Burgos, 09006 Burgos, Spain
- Department of Health Sciences, University of Burgos, 09001 Burgos, Spain
| | | | - Natividad Mariscal
- Neurology Department, Hospital Universitario de Burgos, 09006 Burgos, Spain
| | - Raquel Alcaraz
- Research Unit, Fundación Burgos por la Investigación de la Salud (FBIS), Hospital Universitario de Burgos, 09006 Burgos, Spain
| | - Laura Aguado
- Neurology Department, Hospital Universitario de Burgos, 09006 Burgos, Spain
| | - Jéssica Rivadeneyra-Posadas
- Research Unit, Fundación Burgos por la Investigación de la Salud (FBIS), Hospital Universitario de Burgos, 09006 Burgos, Spain
| | - Antonio Sanz-Solas
- Research Unit, Fundación Burgos por la Investigación de la Salud (FBIS), Hospital Universitario de Burgos, 09006 Burgos, Spain
| | - Miriam Saiz-Rodríguez
- Department of Health Sciences, University of Burgos, 09001 Burgos, Spain
- Research Unit, Fundación Burgos por la Investigación de la Salud (FBIS), Hospital Universitario de Burgos, 09006 Burgos, Spain
- Correspondence:
| |
Collapse
|
42
|
Zheng XX, You YX, Zhao LL, Du Y, Xu SQ, Tang DQ. Effects of UGT1A, CYP2C9/19 and ABAT polymorphisms on plasma concentration of valproic acid in Chinese epilepsy patients. Pharmacogenomics 2023; 24:153-162. [PMID: 36718958 DOI: 10.2217/pgs-2022-0156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Aim: To evaluate the association between genetic polymorphisms and plasma concentration-to-dose ratio of valproic acid (CDRV) in Chinese epileptic patients. Methods: A total of 46 epileptic patients treated with valproic acid therapy were enrolled. 18 SNPs in nine genes related to valproic acid were directly sequenced with Sanger methods. Results: Patients carrying UGT1A6 heterozygous genotypes had significantly lower CDRV than those carrying the wild-type genotypes. In contrast, patients with the homozygote genotypes of CYP2C9 and ABAT had higher CDRV than those with the wild-type genotypes and patients with the heterozygous genotypes of CYP2C19 had higher CDRV. Conclusion: Detection of genetic polymorphism in these genes might facilitate an appropriate dose of valproic acid for epileptic patients. Further studies with larger cohorts are necessary to underpin these observations.
Collapse
Affiliation(s)
- Xiao-Xiao Zheng
- Department of Clinical Pharmacy, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, 269 University Road, Xuzhou City, Jiangsu Province, P.R. China
| | - Yu-Xin You
- Jiangsu Key Laboratory of New Drug Research & Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Lin-Lin Zhao
- Jiangsu Key Laboratory of New Drug Research & Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yan Du
- Jiangsu Key Laboratory of New Drug Research & Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.,Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou, 221004, China
| | - Sheng-Qiu Xu
- Department of Clinical Pharmacy, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, 269 University Road, Xuzhou City, Jiangsu Province, P.R. China
| | - Dao-Quan Tang
- Jiangsu Key Laboratory of New Drug Research & Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.,Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou, 221004, China
| |
Collapse
|
43
|
Inui T, Nomoto R, Yokota J, Yamashita T, Okada K, Kishimoto W, Nakase H, Mizuguchi H. Establishment of MDR1-knockout human enteroids for pharmaceutical application. Drug Metab Pharmacokinet 2023; 48:100476. [PMID: 36521426 DOI: 10.1016/j.dmpk.2022.100476] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/15/2022]
Abstract
In the drug development process, it is important to assess the contributions of drug-metabolizing enzymes and/or drug transporters to the intestinal pharmacokinetics of candidate compounds. For such assessments, chemical inhibitors are often used in in vitro systems. However, this practice poses two problems: one is the low expression levels of pharmacokinetic-related genes in conventional in vitro systems, such as Caco-2 cells, and the other is the off-target and less-efficient effects of their inhibitors. Here, as a model, we have established human biopsy-derived enteroids deficient in MDR1, a key efflux transporter. The expression levels and activities of other pharmacokinetic-related genes, such as CYP3A4, in the MDR1-knockout (KO) enteroid-derived monolayers were maintained at levels as high as those in the WT enteroid-derived monolayers. The contribution of MDR1 to the cytotoxicity of vinblastine, which CYP3A4 metabolized, was accurately evaluated by using the MDR1-KO enteroid-derived monolayers. In contrast, it could not be evaluated in the WT enteroid-derived monolayers treated by verapamil, a widely used MDR1 inhibitor, due to the off-target effect of verapamil, which also inhibits CYP3A4. The combination of human enteroid-derived monolayers and genome editing technology would be a powerful tool to evaluate the contributions of specific pharmacokinetic-related molecules.
Collapse
Affiliation(s)
- Tatsuya Inui
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Ryuga Nomoto
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Jumpei Yokota
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Tomoki Yamashita
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kentaro Okada
- Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Wataru Kishimoto
- Department of Pharmacokinetics and Nonclinical Safety, Nippon Boehringer Ingelheim Co, Ltd, Kobe, Hyogo, 650-0047, Japan
| | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, School of Medicine, Sapporo Medical University, Sapporo, Hokkaido, 060-8556, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, 565-0871, Japan; Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan; Laboratory of Functional Organoid for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan; Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
44
|
Werheni Ammeri R, Eturki S, Simeone GDR, Ben Moussa K, Hassen W, Moussa M, Hassen A. Effectiveness of combined tools: adsorption, bioaugmentation and phytoremediation for pesticides removal from wastewater. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 25:1474-1487. [PMID: 36606367 DOI: 10.1080/15226514.2022.2164249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The aim of this study was the comparison of two process in pentachlorophenol (PCP: 100 mg L-1) removal by combined process bioaugmentation-adsorption and bioaugmentation-phytoremediation in secondary treated wastewater (STWW). The phytoremediation procedure was conducted by using two plants such as Typha angustifolia and Schoenoplectus acutus, and the bioaugmentation procedure was operated by Pseudomonas putida HM 627618 as a plant growth promoting bacteria (PGPR). The adsorption process was performed by palm date activated carbon. The PCP monitoring was assessed by high performance liquid chromatography (HPLC) and the optical density determination at 600 nm (OD600). The performance of the two processes was observed by the determination of total bacteria, chlorophylls and physical and chemical analysis (COD, pH, conductivity, chloride, and organic carbon). The alfalfa seed germination test was conducted to assess the two operational performance procedures. According to the results obtained from the physical and chemical analysis of the treated STWW, there was no significant differences in the pH and in the EC content of the bioaugmentation-phytoremediation treatment, while a significant increase of the EC content was observed in the bioaugmentation-adsorption to 5.08 mS cm-1. The COD value significantly decreased up to 1320 mg L-1 in bioaugmentation-adsorption treatment (control value 2400 mg L-1) and 98 mg L-1 in bioaugmentation-phytoremediation treatment (control value 98 mg L-1). Microbial biomass monitoring of P. putida shows significant greater in both processes in the order of 9.18 and 7.01 Log CFU mL-1 for bioaugmentation-adsorption and bioaugmentation-phytoremediation, respectively. The chlorophyll content in Typha angustifolia and Schoenoplectus acutus significantly decreased after 144 h with the exception of the chlorophyll a content of Schoenoplectus acutus in which the content increased up to 3.31 mg mL-1. Comparing the performance of these two treatments, it was found according to HPLC analysis that the bioaugmentation-adsorption process was more efficient in removing about 97% of PCP after 48 h, against around 90% of PCP after 72 h for the phytoremediation-bioaugmentation. The alfalfa seeds showed a germination rate after the 5th day of incubation of 100% and 95%, respectively for the PCP-non-contaminated and treated STWW, while for wastewater containing PCP the germination was totally inhibited.
Collapse
Affiliation(s)
- Rim Werheni Ammeri
- Water Treatment and Recycling Laboratory, Water Research and Technology Center (CERTE), Technopark Borj-Cédria, Soliman, Tunisia
- Eremology and Combating Desertification (LR16IRA01) Arid Regions Institute of Medenine, Medenine, Tunisia
| | - Saifeddine Eturki
- Eremology and Combating Desertification (LR16IRA01) Arid Regions Institute of Medenine, Medenine, Tunisia
| | | | - Kawther Ben Moussa
- Eremology and Combating Desertification (LR16IRA01) Arid Regions Institute of Medenine, Medenine, Tunisia
| | - Wafa Hassen
- Research Unit of Analysis and Process Applied to the Environmental-APAE Higher Institute of Applied Sciences and Technology Mahdia, the University of Monastir, Monastir, Tunisia
| | - Mohamed Moussa
- Eremology and Combating Desertification (LR16IRA01) Arid Regions Institute of Medenine, Medenine, Tunisia
| | - Abdennaceur Hassen
- Water Treatment and Recycling Laboratory, Water Research and Technology Center (CERTE), Technopark Borj-Cédria, Soliman, Tunisia
| |
Collapse
|
45
|
Cho H, Kim YJ, Chae JW, Meyer MR, Kim SK, Ryu CS. In vitro metabolic characterization of the SARS-CoV-2 papain-like protease inhibitors GRL0617 and HY-17542. Front Pharmacol 2023; 14:1067408. [PMID: 36874001 PMCID: PMC9975351 DOI: 10.3389/fphar.2023.1067408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
The SARS-CoV-2 pandemic requires a new therapeutic target for viral infection, and papain-like protease (Plpro) has been suggested as a druggable target. This in-vitro study was conducted to examine the drug metabolism of the GRL0617 and HY-17542, Plpro inhibitors. Metabolism of these inhibitors was studied to predict the pharmacokinetics in human liver microsomes. The hepatic cytochrome P450 (CYP) isoforms responsible for their metabolism were identified using recombinant enzymes. The drug-drug interaction potential mediated by cytochrome P450 inhibition was estimated. In human liver microsomes, the Plpro inhibitors had phase I and phase I + II metabolism with half-lives of 26.35 and 29.53 min, respectively. Hydroxylation (M1) and desaturation (-H2, M3) of the para-amino toluene side chain were the predominant reactions mediated with CYP3A4 and CYP3A5. CYP2D6 is responsible for the hydroxylation of the naphthalene side ring. GRL0617 inhibits major drug-metabolizing enzymes, including CYP2C9 and CYP3A4. HY-17542 is structural analog of GRL0617 and it is metabolized to GRL0617 through non-cytochrome P450 reactions in human liver microsomes without NADPH. Like GRL0617 and HY-17542 undergoes additional hepatic metabolism. The in-vitro hepatic metabolism of the Plpro inhibitors featured short half-lives; preclinical metabolism studies are needed to determine therapeutic doses for these inhibitors.
Collapse
Affiliation(s)
- Hyunki Cho
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Young Jun Kim
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, Saarbrücken, Germany
| | - Jung-Woo Chae
- College of Pharmacy, Chungnam National Univerisity, Daejeon, Republic of Korea
| | - Markus R Meyer
- Department of Experimental and Clinical Toxicology, Center for Molecular Signaling (PZMS), Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg, Germany
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National Univerisity, Daejeon, Republic of Korea
| | - Chang Seon Ryu
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, Saarbrücken, Germany
| |
Collapse
|
46
|
Tsermpini EE, Serretti A, Dolžan V. Precision Medicine in Antidepressants Treatment. Handb Exp Pharmacol 2023; 280:131-186. [PMID: 37195310 DOI: 10.1007/164_2023_654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Precision medicine uses innovative approaches to improve disease prevention and treatment outcomes by taking into account people's genetic backgrounds, environments, and lifestyles. Treatment of depression is particularly challenging, given that 30-50% of patients do not respond adequately to antidepressants, while those who respond may experience unpleasant adverse drug reactions (ADRs) that decrease their quality of life and compliance. This chapter aims to present the available scientific data that focus on the impact of genetic variants on the efficacy and toxicity of antidepressants. We compiled data from candidate gene and genome-wide association studies that investigated associations between pharmacodynamic and pharmacokinetic genes and response to antidepressants regarding symptom improvement and ADRs. We also summarized the existing pharmacogenetic-based treatment guidelines for antidepressants, used to guide the selection of the right antidepressant and its dose based on the patient's genetic profile, aiming to achieve maximum efficacy and minimum toxicity. Finally, we reviewed the clinical implementation of pharmacogenomics studies focusing on patients on antidepressants. The available data demonstrate that precision medicine can increase the efficacy of antidepressants and reduce the occurrence of ADRs and ultimately improve patients' quality of life.
Collapse
Affiliation(s)
- Evangelia Eirini Tsermpini
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Alessandro Serretti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
47
|
Lim M, Carollo A, Neoh MJY, Esposito G. Mapping miRNA Research in Schizophrenia: A Scientometric Review. Int J Mol Sci 2022; 24:ijms24010436. [PMID: 36613876 PMCID: PMC9820708 DOI: 10.3390/ijms24010436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Micro RNA (miRNA) research has great implications in uncovering the aetiology of neuropsychiatric conditions due to the role of miRNA in brain development and function. Schizophrenia, a complex yet devastating neuropsychiatric disorder, is one such condition that had been extensively studied in the realm of miRNA. Although a relatively new field of research, this area of study has progressed sufficiently to warrant dozens of reviews summarising findings from past to present. However, as a majority of reviews cannot encapsulate the full body of research, there is still a need to synthesise the diversity of publications made in this area in a systematic but easy-to-understand manner. Therefore, this study adopted bibliometrics and scientometrics, specifically document co-citation analysis (DCA), to review the literature on miRNAs in the context of schizophrenia over the course of history. From a literature search on Scopus, 992 papers were found and analysed with CiteSpace. DCA analysis generated a network of 13 major clusters with different thematic focuses within the subject area. Finally, these clusters are qualitatively discussed. miRNA research has branched into schizophrenia, among other medical and psychiatric conditions, due to previous findings in other forms of non-coding RNA. With the rise of big data, bioinformatics analyses are increasingly common in this field of research. The future of research is projected to rely more heavily on interdisciplinary collaboration. Additionally, it can be expected that there will be more translational studies focusing on the application of these findings to the development of effective treatments.
Collapse
Affiliation(s)
- Mengyu Lim
- Psychology Program, School of Social Sciences, Nanyang Technological University, Singapore 639818, Singapore
| | - Alessandro Carollo
- Department of Psychology and Cognitive Science, University of Trento, 38068 Rovereto, Italy
| | - Michelle Jin Yee Neoh
- Psychology Program, School of Social Sciences, Nanyang Technological University, Singapore 639818, Singapore
| | - Gianluca Esposito
- Department of Psychology and Cognitive Science, University of Trento, 38068 Rovereto, Italy
- Correspondence:
| |
Collapse
|
48
|
Pharmakogenomik der perimenopausalen Hormontherapie. GYNAKOLOGISCHE ENDOKRINOLOGIE 2022. [DOI: 10.1007/s10304-022-00483-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
49
|
Lee J, Kim G, Chi KY, Han C, Kim JH. Generation of cytochrome P450 enzyme-polymorphic human induced pluripotent stem cell lines with CYP2D6*10/CYP3A5*3C and CYP2D6*10/CYP2C19*2. Stem Cell Res 2022; 65:102970. [PMID: 36399926 DOI: 10.1016/j.scr.2022.102970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 11/16/2022] Open
Abstract
Cytochrome P450 (CYP) reaction phenotyping has become crucial for predicting drug reactions and side effects. Single nucleotide polymorphisms (SNPs) in CYP genes alter drug metabolism capacity and cause unexpected drug-related reactions. Here, we established two human induced pluripotent stem cell (hiPSC) lines with pharmacologically important SNPs in CYP2D6 in conjunction with CYP2C19 or CYP3A5 genes. These hiPSC lines can serve as valuable resources for expanding our understanding of the relationships between genotypes and drug reactions.
Collapse
Affiliation(s)
- Jaehun Lee
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea; Department of New Drug Development, NEXEL Co., Ltd., Seoul 02580, South Korea
| | - Gyeongmin Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea
| | - Kyun Yoo Chi
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea
| | - Choongseong Han
- Department of New Drug Development, NEXEL Co., Ltd., Seoul 02580, South Korea
| | - Jong-Hoon Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea.
| |
Collapse
|
50
|
Relevance of CYP2D6 Gene Variants in Population Genetic Differentiation. Pharmaceutics 2022; 14:pharmaceutics14112481. [PMID: 36432672 PMCID: PMC9694252 DOI: 10.3390/pharmaceutics14112481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
Abstract
A significant portion of the variability in complex features, such as drug response, is likely caused by human genetic diversity. One of the highly polymorphic pharmacogenes is CYP2D6, encoding an enzyme involved in the metabolism of about 25% of commonly prescribed drugs. In a directed search of the 1000 Genomes Phase III variation data, 86 single nucleotide polymorphisms (SNPs) in the CYP2D6 gene were extracted from the genotypes of 2504 individuals from 26 populations, and then used to reconstruct haplotypes. Analyses were performed using Haploview, Phase, and Arlequin softwares. Haplotype and nucleotide diversity were high in all populations, but highest in populations of African ancestry. Pairwise FST showed significant results for eleven SNPs, six of which were characteristic of African populations, while four SNPs were most common in East Asian populations. A principal component analysis of CYP2D6 haplotypes showed that African populations form one cluster, Asian populations form another cluster with East and South Asian populations separated, while European populations form the third cluster. Linkage disequilibrium showed that all African populations have three or more haplotype blocks within the CYP2D6 gene, while other world populations have one, except for Chinese Dai and Punjabi in Pakistan populations, which have two.
Collapse
|