1
|
Zhang T, Liu C, Zhong N, Wang Y, Huang Y, Zhang X. Advances in the Treatment of Cognitive Impairment in Schizophrenia: Targeting NMDA Receptor Pathways. Int J Mol Sci 2024; 25:10668. [PMID: 39408997 PMCID: PMC11477438 DOI: 10.3390/ijms251910668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Cognitive impairment is a core feature of schizophrenia, playing a pivotal role in the pathogenesis and prognosis of this disorder. Cognitive impairment in schizophrenia encompasses a wide range of domains, including processing speed, episodic memory, working memory, and executive function. These deficits persist throughout the course of the illness and significantly impact functional outcomes and quality of life. Therefore, it is imperative to identify the biological basis of cognitive deficits in schizophrenia and develop effective treatments. The role of N-methyl-D-aspartate (NMDA) receptors in synaptic transmission and plasticity has long been recognized, making them potential targets for schizophrenia treatment. This review will focus on emerging pharmacology targeting NMDA receptors, offering strategies for the prevention and treatment of cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoqin Zhang
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo 315211, China; (T.Z.); (C.L.); (N.Z.); (Y.W.); (Y.H.)
| |
Collapse
|
2
|
Maitre M, Taleb O, Jeltsch-David H, Klein C, Mensah-Nyagan AG. Xanthurenic acid: A role in brain intercellular signaling. J Neurochem 2024; 168:2303-2315. [PMID: 38481090 DOI: 10.1111/jnc.16099] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 10/04/2024]
Abstract
Xanthurenic acid (XA) raises a growing multidisciplinary interest based upon its oxidizing properties, its ability to complex certain metal ions, and its detoxifier capacity of 3-hydroxykynurenine (3-HK), its brain precursor. However, little is still known about the role and mechanisms of action of XA in the central nervous system (CNS). Therefore, many research groups have recently investigated XA and its central functions extensively. The present paper critically reviews and discusses all major data related to XA properties and neuronal activities to contribute to the improvement of the current knowledge on XA's central roles and mechanisms of action. In particular, our data showed the existence of a specific G-protein-coupled receptor (GPCR) for XA localized exclusively in brain neurons exhibiting Ca2+-dependent dendritic release and specific electrophysiological responses. XA properties and central activities suggest a role for this compound in brain intercellular signaling. Indeed, XA stimulates cerebral dopamine (DA) release contrary to its structural analog, kynurenic acid (KYNA). Thus, KYNA/XA ratio could be fundamental in the regulation of brain glutamate and DA release. Cerebral XA may also represent an homeostatic signal between the periphery and several brain regions where XA accumulates easily after peripheral administration. Therefore, XA status in certain psychoses or neurodegenerative diseases seems to be reinforced by its brain-specific properties in balance with its formation and peripheral inputs.
Collapse
Affiliation(s)
- Michel Maitre
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, Strasbourg, France
| | - Omar Taleb
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, Strasbourg, France
| | - Hélène Jeltsch-David
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, Strasbourg, France
- Biotechnologie et signalisation cellulaire, UMR 7242 CNRS/Université de Strasbourg, Illkirch Cedex, France
| | - Christian Klein
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, Strasbourg, France
| | - Ayikoe-Guy Mensah-Nyagan
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, Strasbourg, France
| |
Collapse
|
3
|
Alves LDF, Moore JB, Kell DB. The Biology and Biochemistry of Kynurenic Acid, a Potential Nutraceutical with Multiple Biological Effects. Int J Mol Sci 2024; 25:9082. [PMID: 39201768 PMCID: PMC11354673 DOI: 10.3390/ijms25169082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Kynurenic acid (KYNA) is an antioxidant degradation product of tryptophan that has been shown to have a variety of cytoprotective, neuroprotective and neuronal signalling properties. However, mammalian transporters and receptors display micromolar binding constants; these are consistent with its typically micromolar tissue concentrations but far above its serum/plasma concentration (normally tens of nanomolar), suggesting large gaps in our knowledge of its transport and mechanisms of action, in that the main influx transporters characterized to date are equilibrative, not concentrative. In addition, it is a substrate of a known anion efflux pump (ABCC4), whose in vivo activity is largely unknown. Exogeneous addition of L-tryptophan or L-kynurenine leads to the production of KYNA but also to that of many other co-metabolites (including some such as 3-hydroxy-L-kynurenine and quinolinic acid that may be toxic). With the exception of chestnut honey, KYNA exists at relatively low levels in natural foodstuffs. However, its bioavailability is reasonable, and as the terminal element of an irreversible reaction of most tryptophan degradation pathways, it might be added exogenously without disturbing upstream metabolism significantly. Many examples, which we review, show that it has valuable bioactivity. Given the above, we review its potential utility as a nutraceutical, finding it significantly worthy of further study and development.
Collapse
Affiliation(s)
- Luana de Fátima Alves
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| | - J. Bernadette Moore
- School of Food Science & Nutrition, University of Leeds, Leeds LS2 9JT, UK;
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| | - Douglas B. Kell
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Søltofts Plads, 2800 Kongens Lyngby, Denmark
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| |
Collapse
|
4
|
Stone TW, Darlington LG, Badawy AAB, Williams RO. The Complex World of Kynurenic Acid: Reflections on Biological Issues and Therapeutic Strategy. Int J Mol Sci 2024; 25:9040. [PMID: 39201726 PMCID: PMC11354734 DOI: 10.3390/ijms25169040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
It has been unequivocally established that kynurenic acid has a number of actions in a variety of cells and tissues, raising, in principle, the possibility of targeting its generation, metabolism or sites of action to manipulate those effects to a beneficial therapeutic end. However, many basic aspects of the biology of kynurenic acid remain unclear, potentially leading to some confusion and misinterpretations of data. They include questions of the source, generation, targets, enzyme expression, endogenous concentrations and sites of action. This essay is intended to raise and discuss many of these aspects as a source of reference for more balanced discussion. Those issues are followed by examples of situations in which modulating and correcting kynurenic acid production or activity could bring significant therapeutic benefit, including neurological and psychiatric conditions, inflammatory diseases and cell protection. More information is required to obtain a clear overall view of the pharmacological environment relevant to kynurenic acid, especially with respect to the active concentrations of kynurenine metabolites in vivo and changed levels in disease. The data and ideas presented here should permit a greater confidence in appreciating the sites of action and interaction of kynurenic acid under different local conditions and pathologies, enhancing our understanding of kynurenic acid itself and the many clinical conditions in which manipulating its pharmacology could be of clinical value.
Collapse
Affiliation(s)
- Trevor W. Stone
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK;
| | - L. Gail Darlington
- Worthing Hospital, University Hospitals Sussex NHS Foundation Trust, Worthing BN11 2DH, UK
| | - Abdulla A.-B. Badawy
- Formerly School of Health Sciences, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
| | - Richard O. Williams
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK;
| |
Collapse
|
5
|
Hatzimanolis A, Foteli S, Xenaki LA, Selakovic M, Dimitrakopoulos S, Vlachos I, Kosteletos I, Soldatos RF, Gazouli M, Chatzipanagiotou S, Stefanis N. Elevated serum kynurenic acid in individuals with first-episode psychosis and insufficient response to antipsychotics. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:61. [PMID: 38987245 PMCID: PMC11237022 DOI: 10.1038/s41537-024-00483-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/21/2024] [Indexed: 07/12/2024]
Abstract
The tryptophan-metabolizing kynurenine pathway (KP) can be activated by enhanced inflammatory responses and has been implicated in the pathophysiology of schizophrenia. However, there is little evidence for KP dysregulation in the early course of psychotic illness. We aimed to investigate the potential immune-mediated hyperactivity of KP in individuals with first-episode psychosis (FEP) and the relationship with symptom severity and treatment response outcomes. Serum immunoassays were performed to measure peripheral levels of inflammatory cytokines (IL-1β, IL-10, TNF-a), KP rate-limiting enzymes (IDO/TDO), and kynurenic acid (KYNA) metabolite in 104 antipsychotic-naïve patients with FEP and 80 healthy controls (HC). The Positive and Negative Syndrome Scale (PANSS) and the Global Assessment of Functioning Scale (GAF) were administered to assess psychopathology and functioning status at admission and following 4-week treatment with antipsychotics. Cytokine and KP components levels were substantially increased in FEP patients compared to HC, before and after antipsychotic treatment. A significant positive correlation between pro-inflammatory IL-1β and KYNA levels was observed among FEP patients, but not in HC. Importantly, within-patient analysis revealed that those with higher baseline KYNA experienced more severe negative symptoms and poorer clinical improvement at follow-up. These findings suggest that KP is upregulated in early psychosis, likely through the induction of IL-1β-dependent pathways, and raised peripheral KYNA might represent a promising indicator of non-response to antipsychotic medication in patients with FEP.
Collapse
Affiliation(s)
- Alex Hatzimanolis
- Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece.
- Neurobiology Research Institute, Theodore-Theohari Cozzika Foundation, Athens, Greece.
| | - Stefania Foteli
- Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
- Department of Medical Biopathology, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
| | - Lida-Alkisti Xenaki
- Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
| | - Mirjana Selakovic
- Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
| | - Stefanos Dimitrakopoulos
- Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
| | - Ilias Vlachos
- Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
| | - Ioannis Kosteletos
- Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
| | - Rigas-Filippos Soldatos
- Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Stylianos Chatzipanagiotou
- Department of Medical Biopathology, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
| | - Nikos Stefanis
- Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
- Neurobiology Research Institute, Theodore-Theohari Cozzika Foundation, Athens, Greece
- World Federation of Societies of Biological Psychiatry, First Episode Psychosis Task Force, Barsbüttel, Germany
| |
Collapse
|
6
|
Taracha E, Czarna M, Turzyńska D, Sobolewska A, Maciejak P. Long-term disruption of tissue levels of glutamate and glutamatergic neurotransmission neuromodulators, taurine and kynurenic acid induced by amphetamine. Psychopharmacology (Berl) 2024; 241:1387-1398. [PMID: 38480557 DOI: 10.1007/s00213-024-06570-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 03/04/2024] [Indexed: 06/26/2024]
Abstract
RATIONALE Chronic amphetamine (AMPH) use leading to addiction results in adaptive changes within the central nervous system that persist well beyond the drug's elimination from the body and can precipitate relapse. Notably, alterations in glutamatergic neurotransmission play a crucial role in drug-associated behaviours. OBJECTIVES This study aimed to identify changes induced by amphetamine in glutamate levels and the neuromodulators of glutamatergic neurotransmission (taurine and kynurenic acid) observable after 14 and 28 days of abstinence in key brain regions implicated in addiction: the cortex (Cx), nucleus accumbens (Acb), and dorsolateral striatum (CPu-L). METHODS The rats were administered 12 doses of amphetamine (AMPH) intraperitoneally (i.p.) at 1.5 mg/kg. The behavioural response was evaluated through ultrasonic vocalizations (USV). High-performance liquid chromatography (HPLC) was used to measure the levels of glutamate, taurine, and kynurenic acid in the Cx, Acb, and CPu-L after 14 and 28 days of abstinence. RESULTS AMPH administration led to sensitisation towards AMPH's rewarding effects, as evidenced by changes in USV. There was a noticeable decrease in kynurenic acid levels and an increase in both taurine and glutamate in the CPu-L, along with an increase in glutamate levels in the Cx, 28 days following the final AMPH injection. CONCLUSIONS The most significant changes in the tissue levels of glutamate, taurine, and kynurenic acid were seen in the CPu-L 28 days after the last dose of AMPH. The emergence of these changes exclusively after 28 days suggests that the processes initiated by AMPH use and subsequent abstinence take time to become apparent and may be enduring. This could contribute to the incubation of craving and the risk of relapse. Developing pharmacological strategies to counteract the reduction in kynurenic acid induced by psychostimulants may provide new avenues for therapy development.
Collapse
Affiliation(s)
- Ewa Taracha
- Department of Experimental and Clinical Neuroscience, Institute of Psychiatry and Neurology, 9 Sobieskiego St, Warsaw, 02-957, Poland.
| | - Magdalena Czarna
- Department of Experimental and Clinical Neuroscience, Institute of Psychiatry and Neurology, 9 Sobieskiego St, Warsaw, 02-957, Poland
| | - Danuta Turzyńska
- Department of Experimental and Clinical Neuroscience, Institute of Psychiatry and Neurology, 9 Sobieskiego St, Warsaw, 02-957, Poland
| | - Alicja Sobolewska
- Department of Experimental and Clinical Neuroscience, Institute of Psychiatry and Neurology, 9 Sobieskiego St, Warsaw, 02-957, Poland
| | - Piotr Maciejak
- Department of Experimental and Clinical Neuroscience, Institute of Psychiatry and Neurology, 9 Sobieskiego St, Warsaw, 02-957, Poland
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology, Medical University of Warsaw, 1B Banacha St, Warsaw, 02-097, Poland
| |
Collapse
|
7
|
Oxenkrug G, Forester B. Anthranilic Acid, a GPR109A Agonist, and Schizophrenia. Int J Tryptophan Res 2024; 17:11786469241239125. [PMID: 38532858 PMCID: PMC10964450 DOI: 10.1177/11786469241239125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
Introduction Limited clinical efficiency of current medications warrants search for new antipsychotic agents. Deorphanized G-protein coupled receptor (GPR)109A has not attracted much of attention of schizophrenia researchers. We analyzed literature and our data on endogenous agonists of GPR109A, beta-hydroxybutyrate (BHB), anthranilic (AA), butyric (BA), and nicotinic (NA) acids, in individuals with schizophrenia. Data Sex specific differences: plasma AA levels were 27% higher in female than in male patients and correlated with PANSS before 6 weeks of antipsychotics treatment (r = .625, P < .019, Spearman's test). There was no sex specific differences of plasma AA levels after treatment. AA plasma levels inversely correlated (-.58, P < .005) with PANSS scores in responders to treatment (at least, 50% improvement) but not in nonresponders. Preclinical studies suggested antipsychotic effect of BHB and BA. Clinical studies observed antipsychotic effect of NA; benzoate sodium, an AA precursor; and interventions associated with BHB upregulation (eg, fasting and ketogenic diets). Discussion Upregulation of GPR109A, an anti-inflammatory and neuroprotective receptor, inhibits cytosolic phospholipase A2 (cPLA2), an enzyme that breakdown myelin, lipid-based insulating axonal sheath that protects and promotes nerve conduction. Brain cPLA2 is upregulated in individuals with schizophrenia and subjects at high-risk for development of psychosis. Lower myelin content is associated with cognitive decline in individuals with schizophrenia. Therefore, GPR109A might exert antipsychotic effect via suppression of cPLA2, and, consequently, preservation of myelin integrity. Future research might explore antipsychotic effects of (1) human pegylated kynureninase, an enzyme that catalyzes formation of AA from kynurenine (Kyn); (2) inhibitors of Kyn conversion into kynurenic acid, for example, KYN5356, to patients with already impaired Kyn conversion into 3-hydroxykynurenine; (3) synthetic GPR 109A agonists, for example, MK-1903 and SCH900271 and GSK256073, that underwent clinical trials as anti-dyslipidemia agents. GPR109A expression, that might be a new endophenotype of schizophrenia, especially associated with cognitive impairment, needs thorough assessment.
Collapse
Affiliation(s)
- Gregory Oxenkrug
- Department of Psychiatry, Tufts University School of Medicine, Boston MA, USA
| | - Brent Forester
- Department of Psychiatry, Tufts University School of Medicine, Boston MA, USA
| |
Collapse
|
8
|
Sheibani M, Shayan M, Khalilzadeh M, Soltani ZE, Jafari-Sabet M, Ghasemi M, Dehpour AR. Kynurenine pathway and its role in neurologic, psychiatric, and inflammatory bowel diseases. Mol Biol Rep 2023; 50:10409-10425. [PMID: 37848760 DOI: 10.1007/s11033-023-08859-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/27/2023] [Indexed: 10/19/2023]
Abstract
Tryptophan metabolism along the kynurenine pathway is of central importance for the immune function. It prevents hyperinflammation and induces long-term immune tolerance. Accumulating evidence also demonstrates cytoprotective and immunomodulatory properties of kynurenine pathway in conditions affecting either central or peripheral nervous system as well as other conditions such as inflammatory bowel disease (IBD). Although multilevel association exists between the inflammatory bowel disease (IBD) and various neurologic (e.g., neurodegenerative) disorders, it is believed that the kynurenine pathway plays a pivotal role in the development of both IBD and neurodegenerative disorders. In this setting, there is strong evidence linking the gut-brain axis with intestinal dysfunctions including IBD which is consistent with the fact that the risk of neurodegenerative diseases is higher in IBD patients. This review aims to highlight the role of kynurenine metabolic pathway in various neurologic and psychiatric diseases as well as relationship between IBD and neurodegenerative disorders in the light of the kynurenine metabolic pathway.
Collapse
Affiliation(s)
- Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Razi Drug Research Centre, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Shayan
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, MS, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Khalilzadeh
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, MS, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Ebrahim Soltani
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, MS, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Jafari-Sabet
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Razi Drug Research Centre, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Ghasemi
- Department of Neurology, Lahey Hospital and Medical Center, 41 Mall Road, Burlington, MA, 01803, USA.
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, MS, Iran.
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Karanikas E. The Gordian knot of the immune-redox systems' interactions in psychosis. Int Clin Psychopharmacol 2023; 38:285-296. [PMID: 37351570 DOI: 10.1097/yic.0000000000000481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
During the last decades the attempt to enlighten the pathobiological substrate of psychosis, from merely focusing on neurotransmitters, has expanded into new areas like the immune and redox systems. Indeed, the inflammatory hypothesis concerning psychosis etiopathology has exponentially grown with findings reflecting dysfunction/aberration of the immune/redox systems' effector components namely cytokines, chemokines, CRP, complement system, antibodies, pro-/anti-oxidants, oxidative stress byproducts just to name a few. Yet, we still lie far from comprehending the underlying cellular mechanisms, their causality directions, and the moderating/mediating parameters affecting these systems; let alone the inter-systemic (between immune and redox) interactions. Findings from preclinical studies on the stress field have provided evidence indicative of multifaceted interactions among the immune and redox components so tightly intertwined as a Gordian knot. Interestingly the literature concerning the interactions between these same systems in the context of psychosis appears minimal (if not absent) and ambiguous. This review attempts to draw a frame of the immune-redox systems' interactions starting from basic research on the stress field and expanding on clinical studies with cohorts with psychosis, hoping to instigate new avenues of research.
Collapse
Affiliation(s)
- Evangelos Karanikas
- Department of Psychiatry, 424 General Military Hospital, Ring Road, Nea Efkarpia, Thessaloniki, Greece
| |
Collapse
|
10
|
Battaglia MR, Di Fazio C, Battaglia S. Activated Tryptophan-Kynurenine metabolic system in the human brain is associated with learned fear. Front Mol Neurosci 2023; 16:1217090. [PMID: 37575966 PMCID: PMC10416643 DOI: 10.3389/fnmol.2023.1217090] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Affiliation(s)
- Maria Rita Battaglia
- Istituto di Ricovero e Cura a Carattere Scientifico Azienda Ospedaliero-Universitaria di Bologna, Policlinico S. Orsola, Bologna, Italy
| | - Chiara Di Fazio
- Department of Psychology, Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Bologna, Italy
| | - Simone Battaglia
- Department of Psychology, Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Bologna, Italy
- Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
11
|
Kowalski K, Misiak B. Schizophrenia and the COVID-19 pandemic: A narrative review from the biomedical perspective. REVISTA DE PSIQUIATRIA Y SALUD MENTAL 2023:S1888-9891(23)00015-0. [PMID: 37544807 DOI: 10.1016/j.rpsm.2023.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/29/2023] [Accepted: 04/12/2023] [Indexed: 08/08/2023]
Abstract
The outbreak of the Coronavirus Disease 2019 (COVID-19) pandemic in 2020 caused a rapid worsening of global mental health. Patients with severe mental disorders, including schizophrenia, are at higher risk of being infected. The neuroinvasive potential of the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) has been confirmed. The aim of this article was to present a narrative and comprehensive review of multidimensional associations between schizophrenia and COVID-19 with special emphasis on common biological pathways. Online searches were performed in the PubMed database and covered the publication period until September 17, 2022. Search terms included "psychosis", "schizophrenia", "inflammation" and "COVID-19". Viewed as a neuroinflammatory state, schizophrenia shares several neurobiological mechanisms with the COVID-19. Environmental stress, common comorbidities of schizophrenia and adverse effects of antipsychotic treatment are associated with the higher severity and mortality of the COVID-19. Additionally, more frequent relapses of psychosis have been observed, and might be related to lower treatment adherence. In the context of clinical manifestation, higher level of negative symptoms has been identified among patients with schizophrenia during the pandemic. Improvements in mental health care policy and treatment adjustment are necessary to protect people with schizophrenia who are the population that is particularly vulnerable to the consequences of the COVID-19 pandemic. Future research will show if prenatal infection with the SARS-CoV-2 increases a risk of psychosis.
Collapse
Affiliation(s)
- Krzysztof Kowalski
- Department of Psychiatry, Wroclaw Medical University, Pasteura 10 Street, 50-367 Wroclaw, Poland.
| | - Błażej Misiak
- Department of Psychiatry, Wroclaw Medical University, Pasteura 10 Street, 50-367 Wroclaw, Poland
| |
Collapse
|
12
|
A role for endothelial NMDA receptors in the pathophysiology of schizophrenia. Schizophr Res 2022; 249:63-73. [PMID: 33189520 DOI: 10.1016/j.schres.2020.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022]
Abstract
Numerous genetic and postmortem studies link N-methyl-d-aspartate receptor (NMDAR) dysfunction with schizophrenia, forming the basis of the popular glutamate hypothesis. Neuronal NMDAR abnormalities are consistently reported from both basic and clinical experiments, however, non-neuronal cells also contain NMDARs, and are rarely, if ever, considered in the discussion of glutamate action in schizophrenia. We offer an examination of recent discoveries elucidating the actions and consequences of NMDAR activation in the neuroendothelium. While there has been mixed literature regarding blood flow alterations in the schizophrenia brain, in this review, we posit that some common findings may be explained by neuroendothelial NMDAR dysfunction. In particular, we emphasize that endothelial NMDARs are key mediators of neurovascular coupling, where increased neuronal activity leads to increased blood flow. Based on the broad conclusions that hypoperfusion is a neuroanatomical finding in schizophrenia, we discuss potential mechanisms by which endothelial NMDARs contribute to this disorder. We propose that endothelial NMDAR dysfunction can be a primary cause of neurovascular abnormalities in schizophrenia. Importantly, functional MRI studies using BOLD signal as a proxy for neuron activity should be considered in a new light if neurovascular coupling is impaired in schizophrenia. This review is the first to propose that NMDARs in non-excitable cells play a role in schizophrenia.
Collapse
|
13
|
Sebastian R, Song Y, Pak C. Probing the molecular and cellular pathological mechanisms of schizophrenia using human induced pluripotent stem cell models. Schizophr Res 2022:S0920-9964(22)00263-8. [PMID: 35835709 PMCID: PMC9832179 DOI: 10.1016/j.schres.2022.06.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 01/13/2023]
Abstract
With recent advancements in psychiatric genomics, as a field, "stem cell-based disease modelers" were given the exciting yet daunting task of translating the extensive list of disease-associated risks into biologically and clinically relevant information in order to deliver therapeutically meaningful leads and insights. Despite their limitations, human induced pluripotent stem cell (iPSCs) based models have greatly aided our understanding of the molecular and cellular mechanisms underlying the complex etiology of brain disorders including schizophrenia (SCZ). In this review, we summarize the major findings from studies in the past decade which utilized iPSC models to investigate cell type-specific phenotypes relevant to idiopathic SCZ and disease penetrant alleles. Across cell type differences, several biological themes emerged, serving as potential neurodevelopmental mechanisms of SCZ, including oxidative stress and mitochondrial dysfunction, depletion of progenitor pools and insufficient differentiation potential of these progenitors, and structural and functional deficits of neurons and other supporting cells. Here, we discuss both the recent progress as well as challenges and improvements needed for future studies utilizing iPSCs as a model for SCZ and other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Rebecca Sebastian
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA; Neuroscience and Behavior Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Yoonjae Song
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - ChangHui Pak
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
14
|
The Kynurenine Pathway and Kynurenine 3-Monooxygenase Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27010273. [PMID: 35011505 PMCID: PMC8747024 DOI: 10.3390/molecules27010273] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/20/2022]
Abstract
Under normal physiological conditions, the kynurenine pathway (KP) plays a critical role in generating cellular energy and catabolizing tryptophan. Under inflammatory conditions, however, there is an upregulation of the KP enzymes, particularly kynurenine 3-monooxygenase (KMO). KMO has garnered much attention due to its production of toxic metabolites that have been implicated in many diseases and disorders. With many of these illnesses having an inadequate or modest treatment, there exists a need to develop KMO inhibitors that reduce the production of these toxic metabolites. Though prior efforts to find an appropriate KMO inhibitor were unpromising, the development of a KMO crystal structure has provided the opportunity for a rational structure-based design in the development of inhibitors. Therefore, the purpose of this review is to describe the kynurenine pathway, the kynurenine 3-monooxygenase enzyme, and KMO inhibitors and their potential candidacy for clinical use.
Collapse
|
15
|
Peripheral kynurenines as biomarkers and targets for prevention and treatment of psychiatric conditions associated with SARS-CoV-2 infection. PERSONALIZED MEDICINE IN PSYCHIATRY 2021. [PMCID: PMC8461219 DOI: 10.1016/j.pmip.2021.100088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Büki A, Kekesi G, Horvath G, Vécsei L. A Potential Interface between the Kynurenine Pathway and Autonomic Imbalance in Schizophrenia. Int J Mol Sci 2021; 22:10016. [PMID: 34576179 PMCID: PMC8467675 DOI: 10.3390/ijms221810016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023] Open
Abstract
Schizophrenia is a neuropsychiatric disorder characterized by various symptoms including autonomic imbalance. These disturbances involve almost all autonomic functions and might contribute to poor medication compliance, worsened quality of life and increased mortality. Therefore, it has a great importance to find a potential therapeutic solution to improve the autonomic disturbances. The altered level of kynurenines (e.g., kynurenic acid), as tryptophan metabolites, is almost the most consistently found biochemical abnormality in schizophrenia. Kynurenic acid influences different types of receptors, most of them involved in the pathophysiology of schizophrenia. Only few data suggest that kynurenines might have effects on multiple autonomic functions. Publications so far have discussed the implication of kynurenines and the alteration of the autonomic nervous system in schizophrenia independently from each other. Thus, the coupling between them has not yet been addressed in schizophrenia, although their direct common points, potential interfaces indicate the consideration of their interaction. The present review gathers autonomic disturbances, the impaired kynurenine pathway in schizophrenia, and the effects of kynurenine pathway on autonomic functions. In the last part of the review, the potential interaction between the two systems in schizophrenia, and the possible therapeutic options are discussed.
Collapse
Affiliation(s)
- Alexandra Büki
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 10., H-6720 Szeged, Hungary; (A.B.); (G.K.); (G.H.)
| | - Gabriella Kekesi
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 10., H-6720 Szeged, Hungary; (A.B.); (G.K.); (G.H.)
| | - Gyongyi Horvath
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 10., H-6720 Szeged, Hungary; (A.B.); (G.K.); (G.H.)
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6., H-6725 Szeged, Hungary
- MTA-SZTE Neuroscience Research Group, H-6725 Szeged, Hungary
- Interdisciplinary Excellence Center, Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6., H-6725 Szeged, Hungary
| |
Collapse
|
17
|
Bai MY, Lovejoy DB, Guillemin GJ, Kozak R, Stone TW, Koola MM. Galantamine-Memantine Combination and Kynurenine Pathway Enzyme Inhibitors in the Treatment of Neuropsychiatric Disorders. Complex Psychiatry 2021; 7:19-33. [PMID: 35141700 PMCID: PMC8443947 DOI: 10.1159/000515066] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/04/2021] [Indexed: 12/25/2022] Open
Abstract
The kynurenine pathway (KP) is a major route for L-tryptophan (L-TRP) metabolism, yielding a variety of bioactive compounds including kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK), quinolinic acid (QUIN), and picolinic acid (PIC). These tryptophan catabolites are involved in the pathogenesis of many neuropsychiatric disorders, particularly when the KP becomes dysregulated. Accordingly, the enzymes that regulate the KP such as indoleamine 2,3-dioxygenase (IDO)/tryptophan 2,3-dioxygenase, kynurenine aminotransferases (KATs), and kynurenine 3-monooxygenase (KMO) represent potential drug targets as enzymatic inhibition can favorably rebalance KP metabolite concentrations. In addition, the galantamine-memantine combination, through its modulatory effects at the alpha7 nicotinic acetylcholine receptors and N-methyl-D-aspartate receptors, may counteract the effects of KYNA. The aim of this review is to highlight the effectiveness of IDO-1, KAT II, and KMO inhibitors, as well as the galantamine-memantine combination in the modulation of different KP metabolites. KAT II inhibitors are capable of decreasing the KYNA levels in the rat brain by a maximum of 80%. KMO inhibitors effectively reduce the central nervous system (CNS) levels of 3-HK, while markedly boosting the brain concentration of KYNA. Emerging data suggest that the galantamine-memantine combination also lowers L-TRP, kynurenine, KYNA, and PIC levels in humans. Presently, there are only 2 pathophysiological mechanisms (cholinergic and glutamatergic) that are FDA approved for the treatment of cognitive dysfunction for which purpose the galantamine-memantine combination has been designed for clinical use against Alzheimer's disease. The alpha7 nicotinic-NMDA hypothesis targeted by the galantamine-memantine combination has been implicated in the pathophysiology of various CNS diseases. Similarly, KYNA is well capable of modulating the neuropathophysiology of these disorders. This is known as the KYNA-centric hypothesis, which may be implicated in the management of certain neuropsychiatric conditions. In line with this hypothesis, KYNA may be considered as the "conductor of the orchestra" for the major pathophysiological mechanisms underlying CNS disorders. Therefore, there is great opportunity to further explore and compare the biological effects of these therapeutic modalities in animal models with a special focus on their effects on KP metabolites in the CNS and with the ultimate goal of progressing to clinical trials for many neuropsychiatric diseases.
Collapse
Affiliation(s)
- Michael Y. Bai
- Department of Biomedical Sciences, Neuroinflammation Group, Macquarie University Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - David B. Lovejoy
- Department of Biomedical Sciences, Neuroinflammation Group, Macquarie University Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Gilles J. Guillemin
- Department of Biomedical Sciences, Neuroinflammation Group, Macquarie University Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Rouba Kozak
- Neuroscience Drug Discovery Unit, Takeda Pharmaceuticals International Co, Cambridge, Massachusetts, USA
| | - Trevor W. Stone
- Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - Maju Mathew Koola
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, Stony Brook, New York, USA
| |
Collapse
|
18
|
Zhang P, Huang J, Gou M, Zhou Y, Tong J, Fan F, Cui Y, Luo X, Tan S, Wang Z, Yang F, Tian B, Li CSR, Hong LE, Tan Y. Kynurenine metabolism and metabolic syndrome in patients with schizophrenia. J Psychiatr Res 2021; 139:54-61. [PMID: 34034146 DOI: 10.1016/j.jpsychires.2021.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 04/21/2021] [Accepted: 05/01/2021] [Indexed: 10/21/2022]
Abstract
Accumulating evidence indicates that a dysregulated kynurenine (KYN) pathway (KP) metabolism may play an important role in the pathogenesis of both schizophrenia and metabolic syndrome (MS). However, the underlying mechanisms remain poorly understood. Here, we aimed to evaluate the potential roles of KP in the pathogenesis of MS in schizophrenia. A total of 160 schizophrenia patients and 70 healthy controls were enrolled in this study. KP metabolites were quantified, and MS scores were calculated, for comparisons between patients and controls. Associations among the indices were explored in both groups. Multiple linear regression analyses were performed to investigate the effects of KP metabolites on MS factors. We observed a significantly higher MS score, lower levels of all KP metabolites, and higher nicotinamide adenine dinucleotide (NAD+)/quinolinic acid (QUNA) in patients than in controls (all p < 0.01). Partial correlation analyses revealed that, in the patient group, QUNA and QUNA/KYN correlated positively with MS score (r = 0.24 and 0.27, respectively, both p < 0.025), and NAD+/QUNA correlated negatively with MS score (r = -0.25, p = 0.002). Results of multiple regression analyses showed significant QUNA × group interactions in the model representing QUNA effects on MS score (β = 0.25) and a significant QUNA/KYN × group interaction in the model representing QUNA/KYN effects on MS score (β = 0.23) (both p < 0.001). Among all factors contributing to MS in schizophrenia, an interactive effect of schizophrenia itself and dysregulated KP plays a contributory role. Conceivably, modulation of the KP could theoretically lead to treating schizophrenia and MS simultaneously.
Collapse
Affiliation(s)
- Ping Zhang
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, 100096, PR China.
| | - Junchao Huang
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, 100096, PR China.
| | - Mengzhuang Gou
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, 100096, PR China.
| | - Yanfang Zhou
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, 100096, PR China.
| | - Jinghui Tong
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, 100096, PR China.
| | - Fengmei Fan
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, 100096, PR China.
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, PR China.
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06520, USA.
| | - Shuping Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, 100096, PR China.
| | - Zhiren Wang
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, 100096, PR China.
| | - Fude Yang
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, 100096, PR China.
| | - Baopeng Tian
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, 100096, PR China.
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06520, USA.
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, 21205, USA.
| | - Yunlong Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, 100096, PR China.
| |
Collapse
|
19
|
Kato D, Kamata T, Sumimoto M. Electrochemical Detection of Tryptophan Metabolites via Kynurenine Pathway by Using Nanocarbon Films. ELECTROANAL 2021. [DOI: 10.1002/elan.202100241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Dai Kato
- Health and Medical Institute National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1 Higashi Tsukuba Ibaraki 305-8566 Japan
| | - Tomoyuki Kamata
- Health and Medical Institute National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1 Higashi Tsukuba Ibaraki 305-8566 Japan
| | | |
Collapse
|
20
|
Taleb O, Maammar M, Klein C, Maitre M, Mensah-Nyagan AG. A Role for Xanthurenic Acid in the Control of Brain Dopaminergic Activity. Int J Mol Sci 2021; 22:ijms22136974. [PMID: 34203531 PMCID: PMC8268472 DOI: 10.3390/ijms22136974] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 12/22/2022] Open
Abstract
Xanthurenic acid (XA) is a metabolite of the kynurenine pathway (KP) synthetized in the brain from dietary or microbial tryptophan that crosses the blood-brain barrier through carrier-mediated transport. XA and kynurenic acid (KYNA) are two structurally related compounds of KP occurring at micromolar concentrations in the CNS and suspected to modulate some pathophysiological mechanisms of neuropsychiatric and/or neurodegenerative diseases. Particularly, various data including XA cerebral distribution (from 1 µM in olfactory bulbs and cerebellum to 0.1–0.4 µM in A9 and A10), its release, and interactions with G protein-dependent XA-receptor, glutamate transporter and metabotropic receptors, strongly support a signaling and/or neuromodulatory role for XA. However, while the parent molecule KYNA is considered as potentially involved in neuropsychiatric disorders because of its inhibitory action on dopamine release in the striatum, the effect of XA on brain dopaminergic activity remains unknown. Here, we demonstrate that acute local/microdialysis-infusions of XA dose-dependently stimulate dopamine release in the rat prefrontal cortex (four-fold increase in the presence of 20 µM XA). This stimulatory effect is blocked by XA-receptor antagonist NCS-486. Interestingly, our results show that the peripheral/intraperitoneal administration of XA, which has been proven to enhance intra-cerebral XA concentrations (about 200% increase after 50 mg/kg XA i.p), also induces a dose-dependent increase of dopamine release in the cortex and striatum. Furthermore, our in vivo electrophysiological studies reveal that the repeated/daily administrations of XA reduce by 43% the number of spontaneously firing dopaminergic neurons in the ventral tegmental area. In the substantia nigra, XA treatment does not change the number of firing neurons. Altogether, our results suggest that XA may contribute together with KYNA to generate a KYNA/XA ratio that may crucially determine the brain normal dopaminergic activity. Imbalance of this ratio may result in dopaminergic dysfunctions related to several brain disorders, including psychotic diseases and drug dependence.
Collapse
|
21
|
Tanaka M, Tóth F, Polyák H, Szabó Á, Mándi Y, Vécsei L. Immune Influencers in Action: Metabolites and Enzymes of the Tryptophan-Kynurenine Metabolic Pathway. Biomedicines 2021; 9:734. [PMID: 34202246 PMCID: PMC8301407 DOI: 10.3390/biomedicines9070734] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/16/2022] Open
Abstract
The tryptophan (TRP)-kynurenine (KYN) metabolic pathway is a main player of TRP metabolism through which more than 95% of TRP is catabolized. The pathway is activated by acute and chronic immune responses leading to a wide range of illnesses including cancer, immune diseases, neurodegenerative diseases and psychiatric disorders. The presence of positive feedback loops facilitates amplifying the immune responses vice versa. The TRP-KYN pathway synthesizes multifarious metabolites including oxidants, antioxidants, neurotoxins, neuroprotectants and immunomodulators. The immunomodulators are known to facilitate the immune system towards a tolerogenic state, resulting in chronic low-grade inflammation (LGI) that is commonly present in obesity, poor nutrition, exposer to chemicals or allergens, prodromal stage of various illnesses and chronic diseases. KYN, kynurenic acid, xanthurenic acid and cinnabarinic acid are aryl hydrocarbon receptor ligands that serve as immunomodulators. Furthermore, TRP-KYN pathway enzymes are known to be activated by the stress hormone cortisol and inflammatory cytokines, and genotypic variants were observed to contribute to inflammation and thus various diseases. The tryptophan 2,3-dioxygenase, the indoleamine 2,3-dioxygenases and the kynurenine-3-monooxygenase are main enzymes in the pathway. This review article discusses the TRP-KYN pathway with special emphasis on its interaction with the immune system and the tolerogenic shift towards chronic LGI and overviews the major symptoms, pro- and anti-inflammatory cytokines and toxic and protective KYNs to explore the linkage between chronic LGI, KYNs, and major psychiatric disorders, including depressive disorder, bipolar disorder, substance use disorder, post-traumatic stress disorder, schizophrenia and autism spectrum disorder.
Collapse
Affiliation(s)
- Masaru Tanaka
- MTA-SZTE—Neuroscience Research Group, H-6725 Szeged, Hungary; (M.T.); (F.T.)
- Interdisciplinary Excellence Centre, Department of Neurology, Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary; (H.P.); (Á.S.)
| | - Fanni Tóth
- MTA-SZTE—Neuroscience Research Group, H-6725 Szeged, Hungary; (M.T.); (F.T.)
| | - Helga Polyák
- Interdisciplinary Excellence Centre, Department of Neurology, Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary; (H.P.); (Á.S.)
| | - Ágnes Szabó
- Interdisciplinary Excellence Centre, Department of Neurology, Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary; (H.P.); (Á.S.)
| | - Yvette Mándi
- Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary;
| | - László Vécsei
- MTA-SZTE—Neuroscience Research Group, H-6725 Szeged, Hungary; (M.T.); (F.T.)
- Interdisciplinary Excellence Centre, Department of Neurology, Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary; (H.P.); (Á.S.)
| |
Collapse
|
22
|
Cross-platform validation of neurotransmitter release impairments in schizophrenia patient-derived NRXN1-mutant neurons. Proc Natl Acad Sci U S A 2021; 118:2025598118. [PMID: 34035170 DOI: 10.1073/pnas.2025598118] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heterozygous NRXN1 deletions constitute the most prevalent currently known single-gene mutation associated with schizophrenia, and additionally predispose to multiple other neurodevelopmental disorders. Engineered heterozygous NRXN1 deletions impaired neurotransmitter release in human neurons, suggesting a synaptic pathophysiological mechanism. Utilizing this observation for drug discovery, however, requires confidence in its robustness and validity. Here, we describe a multicenter effort to test the generality of this pivotal observation, using independent analyses at two laboratories of patient-derived and newly engineered human neurons with heterozygous NRXN1 deletions. Using neurons transdifferentiated from induced pluripotent stem cells that were derived from schizophrenia patients carrying heterozygous NRXN1 deletions, we observed the same synaptic impairment as in engineered NRXN1-deficient neurons. This impairment manifested as a large decrease in spontaneous synaptic events, in evoked synaptic responses, and in synaptic paired-pulse depression. Nrxn1-deficient mouse neurons generated from embryonic stem cells by the same method as human neurons did not exhibit impaired neurotransmitter release, suggesting a human-specific phenotype. Human NRXN1 deletions produced a reproducible increase in the levels of CASK, an intracellular NRXN1-binding protein, and were associated with characteristic gene-expression changes. Thus, heterozygous NRXN1 deletions robustly impair synaptic function in human neurons regardless of genetic background, enabling future drug discovery efforts.
Collapse
|
23
|
Rudzki L, Stone TW, Maes M, Misiak B, Samochowiec J, Szulc A. Gut microbiota-derived vitamins - underrated powers of a multipotent ally in psychiatric health and disease. Prog Neuropsychopharmacol Biol Psychiatry 2021; 107:110240. [PMID: 33428888 DOI: 10.1016/j.pnpbp.2020.110240] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/19/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023]
Abstract
Despite the well-established roles of B-vitamins and their deficiencies in health and disease, there is growing evidence indicating a key role of those nutrients in functions of the central nervous system and in psychopathology. Clinical data indicate the substantial role of B-vitamins in various psychiatric disorders, including major depression, bipolar disorder, schizophrenia, autism, and dementia, including Alzheimer's and Parkinson's diseases. As enzymatic cofactors, B-vitamins are involved in many physiological processes such as the metabolism of glucose, fatty acids and amino acids, metabolism of tryptophan in the kynurenine pathway, homocysteine metabolism, synthesis and metabolism of various neurotransmitters and neurohormones including serotonin, dopamine, adrenaline, acetylcholine, GABA, glutamate, D-serine, glycine, histamine and melatonin. Those vitamins are highly involved in brain energetic metabolism and respiration at the cellular level. They have a broad range of anti-inflammatory, immunomodulatory, antioxidant and neuroprotective properties. Furthermore, some of those vitamins are involved in the regulation of permeability of the intestinal and blood-brain barriers. Despite the fact that a substantial amount of the above vitamins is acquired from various dietary sources, deficiencies are not uncommon, and it is estimated that micronutrient deficiencies affect about two billion people worldwide. The majority of gut-resident microbes and the broad range of bacteria available in fermented food, express genetic machinery enabling the synthesis and metabolism of B-vitamins and, consequently, intestinal microbiota and fermented food rich in probiotic bacteria are essential sources of B-vitamins for humans. All in all, there is growing evidence that intestinal bacteria-derived vitamins play a significant role in physiology and that dysregulation of the "microbiota-vitamins frontier" is related to various disorders. In this review, we will discuss the role of vitamins in mental health and explore the perspectives and potential of how gut microbiota-derived vitamins could contribute to mental health and psychiatric treatment.
Collapse
Affiliation(s)
- Leszek Rudzki
- The Charleston Centre, 49 Neilston Road, Paisley PA2 6LY, UK.
| | | | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Bulgaria; IMPACT Strategic Research Center, Deakin University, Geelong, Australia
| | - Błażej Misiak
- Department of Psychiatry, Wroclaw Medical University, Pasteura 10 Street, 50-367 Wroclaw, Poland
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26 Street, 71-460 Szczecin, Poland
| | - Agata Szulc
- Department of Psychiatry, Medical University of Warsaw, Poland
| |
Collapse
|
24
|
Lo YC, Lin CL, Fang WY, Lőrinczi B, Szatmári I, Chang WH, Fülöp F, Wu SN. Effective Activation by Kynurenic Acid and Its Aminoalkylated Derivatives on M-Type K + Current. Int J Mol Sci 2021; 22:ijms22031300. [PMID: 33525680 PMCID: PMC7865226 DOI: 10.3390/ijms22031300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/24/2022] Open
Abstract
Kynurenic acid (KYNA, 4-oxoquinoline-2-carboxylic acid), an intermediate of the tryptophan metabolism, has been recognized to exert different neuroactive actions; however, the need of how it or its aminoalkylated amide derivative N-(2-(dimethylamino)ethyl)-3-(morpholinomethyl)-4-oxo-1,4-dihydroquinoline-2-carboxamide (KYNA-A4) exerts any effects on ion currents in excitable cells remains largely unmet. In this study, the investigations of how KYNA and other structurally similar KYNA derivatives have any adjustments on different ionic currents in pituitary GH3 cells and hippocampal mHippoE-14 neurons were performed by patch-clamp technique. KYNA or KYNA-A4 increased the amplitude of M-type K+ current (IK(M)) and concomitantly enhanced the activation time course of the current. The EC50 value required for KYNA- or KYNA-A4 -stimulated IK(M) was yielded to be 18.1 or 6.4 μM, respectively. The presence of KYNA or KYNA-A4 shifted the relationship of normalized IK(M)-conductance versus membrane potential to more depolarized potential with no change in the gating charge of the current. The voltage-dependent hysteretic area of IK(M) elicited by long-lasting triangular ramp pulse was observed in GH3 cells and that was increased during exposure to KYNA or KYNA-A4. In cell-attached current recordings, addition of KYNA raised the open probability of M-type K+ channels, along with increased mean open time of the channel. Cell exposure to KYNA or KYNA-A4 mildly inhibited delayed-rectifying K+ current; however, neither erg-mediated K+ current, hyperpolarization-activated cation current, nor voltage-gated Na+ current in GH3 cells was changed by KYNA or KYNA-A4. Under whole-cell, current-clamp recordings, exposure to KYNA or KYNA-A4 diminished the frequency of spontaneous action potentials; moreover, their reduction in firing frequency was attenuated by linopirdine, yet not by iberiotoxin or apamin. In hippocampal mHippoE-14 neurons, the addition of KYNA also increased the IK(M) amplitude effectively. Taken together, the actions presented herein would be one of the noticeable mechanisms through which they modulate functional activities of excitable cells occurring in vivo.
Collapse
Affiliation(s)
- Yi-Ching Lo
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (W.-Y.F.); (W.-H.C.)
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (Y.-C.L.); (S.-N.W.); Tel.: +886-7-3234686 (Y.-C.L.); +886-6-2353535-5334 (S.-N.W.); Fax: +886-7-3234686 (Y.-C.L.); +886-6-2362780 (S.-N.W.)
| | - Chih-Lung Lin
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan;
- Department of Neurosurgery, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wei-Yu Fang
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (W.-Y.F.); (W.-H.C.)
| | - Bálint Lőrinczi
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (B.L.); (I.S.); (F.F.)
| | - István Szatmári
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (B.L.); (I.S.); (F.F.)
| | - Wan-Hsuan Chang
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (W.-Y.F.); (W.-H.C.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (B.L.); (I.S.); (F.F.)
- MTA-SZTE Stereochemistry Research Group, Hungarian Academy of Sciences, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Sheng-Nan Wu
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan City 70101, Taiwan
- Department of Physiology, National Cheng Kung University Medical College, Tainan City 70101, Taiwan
- Correspondence: (Y.-C.L.); (S.-N.W.); Tel.: +886-7-3234686 (Y.-C.L.); +886-6-2353535-5334 (S.-N.W.); Fax: +886-7-3234686 (Y.-C.L.); +886-6-2362780 (S.-N.W.)
| |
Collapse
|
25
|
Prefrontal α7nAChR Signaling Differentially Modulates Afferent Drive and Trace Fear Conditioning Behavior in Adolescent and Adult Rats. J Neurosci 2021; 41:1908-1916. [PMID: 33478990 DOI: 10.1523/jneurosci.1941-20.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/29/2020] [Accepted: 12/23/2020] [Indexed: 01/22/2023] Open
Abstract
Increased level of kynurenic acid is thought to contribute to the development of cognitive deficits in schizophrenia through an α7nAChR-mediated mechanism in the prefrontal cortex (PFC). However, it remains unclear to what extent disruption of PFC α7nAChR signaling impacts afferent transmission and its modulation of behavior. Using male rats, we found that PFC infusion of methyllycaconitine (MLA; α7nAChR antagonist) shifts ventral hippocampal-induced local field potential (LFP) suppression to LFP facilitation, an effect only observed in adults. Hippocampal stimulation can also elicit a GluN2B-mediated LFP potentiation (when PFC GABAAR is blocked) that is insensitive to MLA. Conversely, PFC infusion of MLA diminished the gain of amygdalar transmission, which is already enabled by postnatal day (P)30. Behaviorally, the impact of prefrontal MLA on trace fear-conditioning and extinction was also age related. While freezing behavior during conditioning was reduced by MLA only in adults, it elicited opposite effects in adolescent and adult rats during extinction as revealed by the level of reduced and increased freezing response, respectively. We next asked whether the late-adolescent onset of α7nAChR modulation of hippocampal inputs contributes to the age-dependent effect of MLA during extinction. Data revealed that the increased freezing behavior elicited by MLA in adult rats could be driven by a dysregulation of the GluN2B transmission in the PFC. Collectively, these results indicate that distinct neural circuits are recruited during the extinction of trace fear memory in adolescents and adults, likely because of the late-adolescent maturation of the ventral hippocampal-PFC functional connectivity and its modulation by α7nAChR signaling.SIGNIFICANCE STATEMENT Abnormal elevation of the astrocyte-derived metabolite kynurenic acid in the prefrontal cortex (PFC) is thought to impair cognitive functions in schizophrenia through an α7nAChR-mediated mechanism. Here, we found that prefrontal α7nAChR signaling is recruited to control the gain of hippocampal and amygdalar afferent transmission in an input-specific, age-related manner during the adolescent transition to adulthood. Behaviorally, prefrontal α7nAChR modulation of trace fear memory was also age-related, likely because of the late-adolescent maturation of the ventral hippocampal pathway and its recruitment of PFC GABAergic transmission enabled by local α7nAChR signaling. Collectively, these results reveal that distinct α7nAChR-sensitive neural circuits contribute to regulate behavior responses in adolescents and adults, particularly those requiring proper integration of hippocampal and amygdalar inputs by the PFC.
Collapse
|
26
|
Sellgren CM, Imbeault S, Larsson MK, Oliveros A, Nilsson IAK, Codeluppi S, Orhan F, Bhat M, Tufvesson-Alm M, Gracias J, Kegel ME, Zheng Y, Faka A, Svedberg M, Powell SB, Caldwell S, Kamenski ME, Vawter MP, Schulmann A, Goiny M, Svensson CI, Hökfelt T, Schalling M, Schwieler L, Cervenka S, Choi DS, Landén M, Engberg G, Erhardt S. GRK3 deficiency elicits brain immune activation and psychosis. Mol Psychiatry 2021; 26:6820-6832. [PMID: 33976392 PMCID: PMC8760053 DOI: 10.1038/s41380-021-01106-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 04/07/2021] [Indexed: 02/03/2023]
Abstract
The G protein-coupled receptor kinase (GRK) family member protein GRK3 has been linked to the pathophysiology of schizophrenia and bipolar disorder. Expression, as well as protein levels, of GRK3 are reduced in post-mortem prefrontal cortex of schizophrenia subjects. Here, we investigate functional behavior and neurotransmission related to immune activation and psychosis using mice lacking functional Grk3 and utilizing a variety of methods, including behavioral, biochemical, electrophysiological, molecular, and imaging methods. Compared to wildtype controls, the Grk3-/- mice show a number of aberrations linked to psychosis, including elevated brain levels of IL-1β, increased turnover of kynurenic acid (KYNA), hyper-responsiveness to D-amphetamine, elevated spontaneous firing of midbrain dopamine neurons, and disruption in prepulse inhibition. Analyzing human genetic data, we observe a link between psychotic features in bipolar disorder, decreased GRK expression, and increased concentration of CSF KYNA. Taken together, our data suggest that Grk3-/- mice show face and construct validity relating to the psychosis phenotype with glial activation and would be suitable for translational studies of novel immunomodulatory agents in psychotic disorders.
Collapse
Affiliation(s)
- Carl M. Sellgren
- grid.4714.60000 0004 1937 0626Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden ,grid.4714.60000 0004 1937 0626Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm & Stockholm Health Care Services, Region Stockholm, Sweden
| | - Sophie Imbeault
- grid.4714.60000 0004 1937 0626Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Markus K. Larsson
- grid.4714.60000 0004 1937 0626Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Alfredo Oliveros
- grid.66875.3a0000 0004 0459 167XDepartment of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN USA
| | - Ida A. K. Nilsson
- grid.4714.60000 0004 1937 0626Translational Psychiatry, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden ,grid.24381.3c0000 0000 9241 5705Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Simone Codeluppi
- grid.4714.60000 0004 1937 0626Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Funda Orhan
- grid.4714.60000 0004 1937 0626Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Maria Bhat
- grid.418151.80000 0001 1519 6403Research and Development, Innovative Medicines, Personalised Healthcare and Biomarkers, Translational Science Centre, Science for Life Laboratory, AstraZeneca, Solna, Sweden ,grid.4714.60000 0004 1937 0626Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Maximilian Tufvesson-Alm
- grid.4714.60000 0004 1937 0626Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jessica Gracias
- grid.4714.60000 0004 1937 0626Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Magdalena E. Kegel
- grid.4714.60000 0004 1937 0626Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Yiran Zheng
- grid.4714.60000 0004 1937 0626Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Anthi Faka
- grid.4714.60000 0004 1937 0626Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Marie Svedberg
- grid.4714.60000 0004 1937 0626Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Susan B. Powell
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California San Diego, La Jolla, CA USA
| | - Sorana Caldwell
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California San Diego, La Jolla, CA USA
| | - Mary E. Kamenski
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California San Diego, La Jolla, CA USA
| | - Marquis P. Vawter
- grid.266093.80000 0001 0668 7243Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, University of California Irvine School of Medicine, Irvine, CA USA
| | - Anton Schulmann
- grid.416868.50000 0004 0464 0574Human Genetics Branch, National Institute of Mental Health, Bethesda, MD USA
| | - Michel Goiny
- grid.4714.60000 0004 1937 0626Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Camilla I. Svensson
- grid.4714.60000 0004 1937 0626Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Hökfelt
- grid.4714.60000 0004 1937 0626Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Martin Schalling
- grid.4714.60000 0004 1937 0626Translational Psychiatry, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden ,grid.24381.3c0000 0000 9241 5705Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Lilly Schwieler
- grid.4714.60000 0004 1937 0626Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Simon Cervenka
- grid.4714.60000 0004 1937 0626Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm & Stockholm Health Care Services, Region Stockholm, Sweden
| | - Doo-Sup Choi
- grid.66875.3a0000 0004 0459 167XDepartment of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN USA ,grid.66875.3a0000 0004 0459 167XDepartment of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, MN USA
| | - Mikael Landén
- grid.8761.80000 0000 9919 9582Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden ,grid.4714.60000 0004 1937 0626Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Göran Engberg
- Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | - Sophie Erhardt
- grid.4714.60000 0004 1937 0626Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
27
|
Koola MM. Alpha7 nicotinic-N-methyl-D-aspartate hypothesis in the treatment of schizophrenia and beyond. Hum Psychopharmacol 2021; 36:1-16. [PMID: 32965756 DOI: 10.1002/hup.2758] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022]
Abstract
Development of novel treatments for positive, cognitive, and negative symptoms continue to be a high-priority area of schizophrenia research and a major unmet clinical need. Given that all randomized controlled trials (RCTs) conducted to date failed with one add-on medication/mechanism of action, future RCTs with the same approach are not warranted. Even if the field develops a medication for cognition, others are still needed to treat negative and positive symptoms. Therefore, fixing one domain does not completely solve the problem. Also, targeting the cholinergic system, glutamatergic system, and cholinergic plus alpha7 nicotinic and N-methyl-D-aspartate (NMDA) receptors failed independently. Hence, targeting other less important pathophysiological mechanisms/targets is unlikely to be successful. Meta-analyses of RCTs targeting major pathophysiological mechanisms have found some efficacy signal in schizophrenia; thus, combination treatments with different mechanisms of action may enhance the efficacy signal. The objective of this article is to highlight the importance of conducting RCTs with novel combination treatments in schizophrenia to develop antischizophrenia treatments. Positive RCTs with novel combination treatments that target the alpha7 nicotinic and NMDA receptors simultaneously may lead to a disease-modifying therapeutic armamentarium in schizophrenia. Novel combination treatments that concurrently improve the three domains of psychopathology and several prognostic and theranostic biomarkers may facilitate therapeutic discovery in schizophrenia.
Collapse
Affiliation(s)
- Maju Mathew Koola
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, New York, USA
| |
Collapse
|
28
|
Liquid-Chromatographic Methods for Carboxylic Acids in Biological Samples. Molecules 2020; 25:molecules25214883. [PMID: 33105855 PMCID: PMC7660098 DOI: 10.3390/molecules25214883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 11/25/2022] Open
Abstract
Carboxyl-bearing low-molecular-weight compounds such as keto acids, fatty acids, and other organic acids are involved in a myriad of metabolic pathways owing to their high polarity and solubility in biological fluids. Various disease areas such as cancer, myeloid leukemia, heart disease, liver disease, and lifestyle diseases (obesity and diabetes) were found to be related to certain metabolic pathways and changes in the concentrations of the compounds involved in those pathways. Therefore, the quantification of such compounds provides useful information pertaining to diagnosis, pathological conditions, and disease mechanisms, spurring the development of numerous analytical methods for this purpose. This review article addresses analytical methods for the quantification of carboxylic acids, which were classified into fatty acids, tricarboxylic acid cycle and glycolysis-related compounds, amino acid metabolites, perfluorinated carboxylic acids, α-keto acids and their metabolites, thiazole-containing carboxylic acids, and miscellaneous, in biological samples from 2000 to date. Methods involving liquid chromatography coupled with ultraviolet, fluorescence, mass spectrometry, and electrochemical detection were summarized.
Collapse
|
29
|
A novel, robust method for quantification of multiple kynurenine pathway metabolites in the cerebrospinal fluid. Bioanalysis 2020; 12:379-392. [PMID: 32209024 PMCID: PMC9472175 DOI: 10.4155/bio-2019-0303] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aim: Kynurenine metabolites are potential modulators of psychiatric disease. We aimed to develop a highly sensitive biochemical analysis of cerebrospinal fluid (CSF) tryptophan (TRP) metabolites, to investigate the stability of metabolites and to confirm our previous findings of aberrant CSF quinolinic acid (QUIN) and picolinic acid (PIC) in suicide attempters using this method. Methodology & results: Ten CSF TRP metabolites were analyzed with ultraperformance LC–MS/MS. The method showed small intra- and interassay variation. Metabolites were stable following freeze–thaw cycles. A decreased CSF PIC/QUIN ratio was found in suicide attempters. Conclusion: The feasibility of reliably determining CSF TRP metabolites were demonstrated, including separation of the two isomers PIC and nicotinic acid (NA) and the finding of a reduced PIC/QUIN ratio replicated in suicide attempters.
Collapse
|
30
|
Abstract
Many studies highlighted that a bidirectional communication between the gut and the central nervous system (CNS) exists. A vigorous immune response to antigens must be avoided, and pathogenic organisms crossing the gut barrier must be detected and killed. For this reason, the immune system developed fine mechanisms able to maintain this delicate balance. The microbiota is beneficial to its host, providing protection against pathogenic bacteria. It is intimately involved in numerous aspects of host physiology, from nutritional status to behavior and stress response. In the last few years, the implication of the gut microbiota and its bioactive microbiota-derived molecules in the progression of multiple diseases, as well as in the development of neurodegenerative disorders, gained increasing attention. The purpose of this review is to provide an overview of the gut microbiota with particular attention toward neurological disorders and mast cells. Relevant roles are played by the mast cells in neuroimmune communication, such as sensors and effectors of cytokines and neurotransmitters. In this context, the intake of beneficial bacterial strains as probiotics could represent a valuable therapeutic approach to adopt in combination with classical therapies. Further studies need to be performed to understand if the gut bacteria are responsible for neurological disorders or if neurological disorders influence the bacterial profile.
Collapse
|
31
|
Szeligowski T, Yun AL, Lennox BR, Burnet PWJ. The Gut Microbiome and Schizophrenia: The Current State of the Field and Clinical Applications. Front Psychiatry 2020; 11:156. [PMID: 32226399 PMCID: PMC7080964 DOI: 10.3389/fpsyt.2020.00156] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/18/2020] [Indexed: 12/14/2022] Open
Abstract
Schizophrenia is a debilitating psychiatric disorder, leading to both physical and social morbidity. Despite its importance, the etiology of schizophrenia remains poorly understood. Furthermore, its mainstream treatments fail to address all aspects of the disorder and are associated with significant side-effects. Recently, there has been growing interest in the relationship between the gut microbiome and mental health, including in schizophrenia. In this article, we review the existing evidence implicating dysbiosis in schizophrenia and discuss how the presumed dysbiosis could fit within known hypotheses of its pathogenesis, focusing on inflammation, tryptophan metabolites, and BDNF levels. We also evaluate the clinical potential of manipulating the gut microbiome with probiotics and prebiotics as adjunctive treatments in schizophrenia, based on existing clinical and pre-clinical studies. Overall, the current data showing microbiome alterations in schizophrenia are highly discrepant and insufficient to conclude whether microbiome changes are associated with increased risk of the disorder, or are simply the result of external factors or treatment. Despite some encouraging results of pro/prebiotic supplementation, there is also inconclusive evidence for their efficacy in schizophrenia. Thus, further research and more clinical trials are needed to test the validity of manipulating the gut microbiome to improve the treatment of this disorder.
Collapse
Affiliation(s)
| | - Alexandra Lim Yun
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Belinda R Lennox
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Philip W J Burnet
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
32
|
Kynurenines and the Endocannabinoid System in Schizophrenia: Common Points and Potential Interactions. Molecules 2019; 24:molecules24203709. [PMID: 31619006 PMCID: PMC6832375 DOI: 10.3390/molecules24203709] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022] Open
Abstract
Schizophrenia, which affects around 1% of the world’s population, has been described as a complex set of symptoms triggered by multiple factors. However, the exact background mechanisms remain to be explored, whereas therapeutic agents with excellent effectivity and safety profiles have yet to be developed. Kynurenines and the endocannabinoid system (ECS) play significant roles in both the development and manifestation of schizophrenia, which have been extensively studied and reviewed previously. Accordingly, kynurenines and the ECS share multiple features and mechanisms in schizophrenia, which have yet to be reviewed. Thus, the present study focuses on the main common points and potential interactions between kynurenines and the ECS in schizophrenia, which include (i) the regulation of glutamatergic/dopaminergic/γ-aminobutyric acidergic neurotransmission, (ii) their presence in astrocytes, and (iii) their role in inflammatory mechanisms. Additionally, promising pharmaceutical approaches involving the kynurenine pathway and the ECS will be reviewed herein.
Collapse
|
33
|
Oxenkrug G, Summergrad P. Benserazide, an Inhibitor of Peripheral Kynurenine Metabolism, Attenuates Olanzapine-Induced Weight Gain, Insulin Resistance, and Dyslipidemia in C57Bl/6j Mice. Mol Neurobiol 2019; 57:135-138. [DOI: 10.1007/s12035-019-01763-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 01/09/2023]
|
34
|
Oxenkrug G, Bernstein HG, Guest PC, van der Hart M, Roeser J, Summergrad P, Steiner J. Plasma xanthurenic acid in a context of insulin resistance and obesity in schizophrenia. Schizophr Res 2019; 211:98-99. [PMID: 31383514 DOI: 10.1016/j.schres.2019.07.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Gregory Oxenkrug
- Psychiatry and Inflammation Program, Tufts University School of Medicine, Tufts Medical Center, Boston, MA, USA.
| | | | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Julien Roeser
- Charles River Laboratories, South San Francisco, CA, USA
| | - Paul Summergrad
- Department of Psychiatry, Tufts University School of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Johann Steiner
- Department of Psychiatry, University of Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| |
Collapse
|
35
|
Rossi F, Miggiano R, Ferraris DM, Rizzi M. The Synthesis of Kynurenic Acid in Mammals: An Updated Kynurenine Aminotransferase Structural KATalogue. Front Mol Biosci 2019; 6:7. [PMID: 30873412 PMCID: PMC6400995 DOI: 10.3389/fmolb.2019.00007] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 02/06/2019] [Indexed: 01/25/2023] Open
Abstract
Kynurenic acid (KYNA) is a bioactive compound that is produced along the kynurenine pathway (KP) during tryptophan degradation. In a few decades, KYNA shifted from being regarded a poorly characterized by-product of the KP to being considered a main player in many aspects of mammalian physiology, including the control of glutamatergic and cholinergic synaptic transmission, and the coordination of immunomodulation. The renewed attention being paid to the study of KYNA homeostasis is justified by the discovery of selective and potent inhibitors of kynurenine aminotransferase II, which is considered the main enzyme responsible for KYNA synthesis in the mammalian brain. Since abnormally high KYNA levels in the central nervous system have been associated with schizophrenia and cognitive impairment, these inhibitors promise the development of novel anti-psychotic and pro-cognitive drugs. Here, we summarize the currently available structural information on human and rodent kynurenine aminotransferases (KATs) as the result of global efforts aimed at describing the full complement of mammalian isozymes. These studies highlight peculiar features of KATs that can be exploited for the development of isozyme-specific inhibitors. Together with the optimization of biochemical assays to measure individual KAT activities in complex samples, this wealth of knowledge will continue to foster the identification and rational design of brain penetrant small molecules to attenuate KYNA synthesis, i.e., molecules capable of lowering KYNA levels without exposing the brain to the harmful withdrawal of KYNA-dependent neuroprotective actions.
Collapse
Affiliation(s)
- Franca Rossi
- Biochemistry and Biocrystallography Unit, DSF-Dipartimento di Scienze del Farmaco, University of Piemonte Orientale, Novara, Italy
| | - Riccardo Miggiano
- Biochemistry and Biocrystallography Unit, DSF-Dipartimento di Scienze del Farmaco, University of Piemonte Orientale, Novara, Italy
| | - Davide M Ferraris
- Biochemistry and Biocrystallography Unit, DSF-Dipartimento di Scienze del Farmaco, University of Piemonte Orientale, Novara, Italy
| | - Menico Rizzi
- Biochemistry and Biocrystallography Unit, DSF-Dipartimento di Scienze del Farmaco, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
36
|
Skolnick SD, Greig NH. Microbes and Monoamines: Potential Neuropsychiatric Consequences of Dysbiosis. Trends Neurosci 2019; 42:151-163. [PMID: 30795845 DOI: 10.1016/j.tins.2018.12.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/31/2018] [Accepted: 12/18/2018] [Indexed: 12/21/2022]
Abstract
From an evolutionary perspective, the genes of enteric microbes transmitted reliably across generations are nearly as much a part of the human organism as our own genes. Disruption of the microbiome leading to extinction of key 'heirloom' taxa can deprive individuals of metabolic pathways that have been present in their ancestors for millennia. Some of these pathways support essential synthesis and toxin clearance processes, including the generation of blood-brain barrier-crossing metabolic products crucial for normal brain function. Here, we discuss three such pathways: endogenous benzodiazepine synthesis, production of queuine/queuosine, and excretion of dietary mercury. Among them, these pathways have the potential to impact systems relevant to a wide range of neurodevelopmental and psychiatric conditions including autism, depression, anxiety, and schizophrenia.
Collapse
Affiliation(s)
- Stephen D Skolnick
- Drug Design & Development Section, Translational Gerontology Branch, Biomedical Research Center, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA.
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Biomedical Research Center, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| |
Collapse
|
37
|
Sekine A, Fukuwatari T. Acute liver failure increases kynurenic acid production in rat brain via changes in tryptophan metabolism in the periphery. Neurosci Lett 2019; 701:14-19. [PMID: 30738081 DOI: 10.1016/j.neulet.2019.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 02/03/2019] [Accepted: 02/04/2019] [Indexed: 12/20/2022]
Abstract
The tryptophan metabolite, kynurenic acid (KYNA), is a preferential antagonist of the α7 nicotinic acetylcholine receptor and N-methyl-d-aspartic acid receptor at endogenous brain concentrations. Recent studies have suggested that increased brain KYNA levels are involved in psychiatric disorders such as schizophrenia and depression. Most of the brain kynurenine (KYN), the KYNA precursor, comes from the periphery, and the liver has a central role in the peripheral tryptophan metabolism. In this study, the effect of acute liver failure (ALF) on brain KYNA production and on the peripheral tryptophan metabolism was investigated in rats. ALF was induced by administration of the hepatotoxin, thioacetamide (TAA). Brain KYNA levels were increased by TAA-induced ALF, and these increases were consistent with KYN levels in the brain, serum and liver. These results suggest that the ALF-induced increase in serum KYN contributes to the increase in brain KYNA via elevated KYN uptake within the brain. This increase in serum KYN level can be caused by the changes in tryptophan-2,3-dioxygenase activity in the liver and the immune-related activation of indoleamine-2,3-dioxygenase in extrahepatic tissues. These findings suggest that hepatic dysfunction may contribute to neurological and psychiatric diseases associated with increased KYNA levels.
Collapse
Affiliation(s)
- Airi Sekine
- Department of Nutrition, School of Human Cultures, The University of Shiga Prefecture, 2500 Hassaka, Hikone, Shiga, 522-8533, Japan
| | - Tsutomu Fukuwatari
- Department of Nutrition, School of Human Cultures, The University of Shiga Prefecture, 2500 Hassaka, Hikone, Shiga, 522-8533, Japan.
| |
Collapse
|
38
|
Malashenkova IK, Krynskiy SA, Ogurtsov DP, Mamoshina MV, Zakharova NV, Ushakov VL, Velichkovsky BM, Didkovsky NA. [A role of the immune system in the pathogenesis of schizophrenia]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 118:72-80. [PMID: 30698566 DOI: 10.17116/jnevro201811812172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The review addresses immunological aspects of schizophrenia, a multifactor disease caused by genetic factors, innate disorders of the central nervous system (CNS), including the consequences of perinatal hypoxia and infections, and adverse environmental influences. Neuroinflammation as a part of the pathophysiology of schizophrenia is characterized by the higher transcription of CNS inflammatory mediators, excessive activation of microglia, inhibition of glutamatergic receptors that leads to the decrease in the number of cortical synapses and neuronal apoptosis. The authors discuss a role of genetic polymorphisms of cytokine genes, complement system components etc. The literature data on the changes in systemic immune response and imbalance in Th1/Th2 adaptive immune responses are analyzed as well. Some papers showed higher levels of proinflammatory mediators in CSF and blood of patients with schizophrenia that indicated the involvement of blood brain barrier (BBB) dysfunction. The authors present the recent data on BBB dysfunction in schizophrenia and its role in the pathogenesis of the disease, autoimmunity in patients comparing it with immune activation and genetic predisposition. An important and arguable issues about a role of parasite and viral infections in the pathogenesis of schizophrenia, initiation of immune responses and direct impacts on the brain, an influence of antipsychotic treatment on immunity are discussed. In author's opinion, conflicting results of genetic and immunological studies of schizophrenia may be explained by different methodological approaches to selection of patients and healthy controls and the differences in schizophrenia classification.
Collapse
Affiliation(s)
- I K Malashenkova
- Research Center 'Kurchatov Institute', Moscow, Russia; Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow
| | - S A Krynskiy
- Research Center 'Kurchatov Institute', Moscow, Russia; Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow
| | - D P Ogurtsov
- Research Center 'Kurchatov Institute', Moscow, Russia; Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow
| | - M V Mamoshina
- Research Center 'Kurchatov Institute', Moscow, Russia
| | - N V Zakharova
- Russia; Alekseev Psychiatric Clinical Hospital #1, Moscow, Russia ,Pirogov Russian National Research Medical University, Moscow, Russia
| | - V L Ushakov
- Research Center 'Kurchatov Institute', Moscow, Russia
| | | | - N A Didkovsky
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow
| |
Collapse
|
39
|
Koola MM. Potential Role of Antipsychotic-Galantamine-Memantine Combination in the Treatment of Positive, Cognitive, and Negative Symptoms of Schizophrenia. MOLECULAR NEUROPSYCHIATRY 2018; 4:134-148. [PMID: 30643787 PMCID: PMC6323397 DOI: 10.1159/000494495] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/12/2018] [Indexed: 12/11/2022]
Abstract
Schizophrenia is, in part, a cognitive illness. There are no approved medications for cognitive impairments associated with schizophrenia (CIAS) and primary negative symptoms. Cholinergic and glutamatergic systems, alpha-7 nicotinic acetylcholine (α-7nACh) and N-methyl-D-aspartate (NMDA) receptors, kynurenic acid (KYNA), and mismatch negativity have been implicated in the pathophysiology of CIAS and negative symptoms. Galantamine is an acetylcholinesterase inhibitor that is also a positive allosteric modulator at the α4β2 and α7nACh receptors. Memantine is a noncompetitive NMDA receptor antagonist. Galantamine and memantine alone and in combination were effective for cognition in animals and people with Alzheimer's disease. The objective of this article is to critically dissect the published randomized controlled trials with galantamine and memantine for CIAS to highlight the efficacy signal. These studies may have failed to detect a clinically meaningful efficacy signal due to limitations, methodological issues, and possible medication nonadherence. There is evidence from a small open-label study that the galantamine-memantine combination may be effective for CIAS with kynurenine pathway metabolites as biomarkers to detect the severity of cognitive impairments. Given that there are no available treatments for cognitive impairments and primary negative symptoms in schizophrenia, testing of this "five-pronged strategy" (quintuple hypotheses: dopamine, nicotinic-cholinergic, glutamatergic/NMDA, GABA, and KYNA) is a "low-risk high-gain" approach that could be a major breakthrough in the field. The galantamine-memantine combination has the potential to treat positive, cognitive, and negative symptoms, and targeting the quintuple hypotheses concurrently may lead to a major scientific advancement - from antipsychotic treatment to antischizophrenia treatment.
Collapse
Affiliation(s)
- Maju Mathew Koola
- Department of Psychiatry and Behavioral Sciences, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| |
Collapse
|
40
|
Koola MM. Attenuated Mismatch Negativity in Attenuated Psychosis Syndrome Predicts Psychosis: Can Galantamine-Memantine Combination Prevent Psychosis? MOLECULAR NEUROPSYCHIATRY 2018; 4:71-74. [PMID: 30397594 PMCID: PMC6206967 DOI: 10.1159/000488797] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/26/2018] [Indexed: 12/13/2022]
Abstract
Although first proposed in 1987, early diagnosis and intervention of psychotic disorders has only recently become a priority in the field. The interest in clinical high risk (CHR) for psychosis skyrocketed after attenuated psychosis syndrome (APS) was added to the DSM-5. There is evidence that in individuals with APS, attenuated mismatch negativity (MMN: functioning of the auditory sensory memory system) is a robust biomarker that can predict transition to psychosis. The underlying pathophysiological mechanism of MMN is via the interaction of N-methyl-D-aspartate (NMDA) and alpha-7 nicotinic acetylcholine (α-7nACh) receptors. Galantamine is an acetylcholinesterase inhibitor and a positive allosteric modulator of the α-7nACh receptors. Memantine is an NMDA receptor antagonist. Memantine has been shown to enhance MMN in people with schizophrenia. Although no studies with galantamine have measured MMN, encenicline, an α-7 nicotinic partial agonist, increased MMN in people with schizophrenia. MMN has been suggested as a potential biomarker with the galantamine-memantine combination for the treatment of neuropsychiatric disorders. Hence, the galantamine-memantine combination may enhance MMN, thereby preventing CHR to psychosis. With no treatments available, randomized controlled trials are warranted with the galantamine-memantine combination to delay or prevent conversion to psychosis in individuals with CHR.
Collapse
Affiliation(s)
- Maju Mathew Koola
- Department of Psychiatry and Behavioral Sciences, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| |
Collapse
|
41
|
Leppik L, Kriisa K, Koido K, Koch K, Kajalaid K, Haring L, Vasar E, Zilmer M. Profiling of Amino Acids and Their Derivatives Biogenic Amines Before and After Antipsychotic Treatment in First-Episode Psychosis. Front Psychiatry 2018; 9:155. [PMID: 29740359 PMCID: PMC5928450 DOI: 10.3389/fpsyt.2018.00155] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 04/06/2018] [Indexed: 12/13/2022] Open
Abstract
Schizophrenia (SCH) is a heterogeneous disorder, deriving from a potential multitude of etiopathogenetic factors. During the past few years there has been an increasing interest in the role of circulating amino acids (AAs) and biogenic amines (BAs) in the pathophysiology of SCH. In the present study, we aimed to provide an insight into the potential role of alterations in levels of AAs and BAs as well as examine their more specific metabolic shifts in relation to early stage of SCH. We measured 21 AAs and 17 BAs in serum samples of patients with first-episode psychosis (FEP) before and after 7-month antipsychotic treatment in comparison to control subjects (CSs). According to multivariate analysis, antipsychotic-naïve FEP patients had significantly higher levels of taurine and spermine, whereas values of proline (Pro), alpha-aminoadipic acid (alpha-AAA), kynurenine (Kyn), valine (Val), tyrosine (Tyr), citrulline (Citr), tryptophan (Trp), and histidine (His) were diminished compared to CSs. Increased levels of taurine and spermine, as well as reduced levels of alpha-AAA and Kyn probably reflect the compromised function of N-methyl-D-aspartate (NMDA) receptors in patients. The decreased levels of Pro (AA modulating the function of glutamate decarboxylase) likely reflect the imbalanced function of gamma-aminobutyric acid (GABA) system in the brain of FEP patients. The alterations in ratio between Tyr and phenylalanine (Phe) can be taken as a sign of compromised function of dopaminergic system. These metabolic shifts were reinstated by 7-month antipsychotic treatment. Serum metabolic profiles can be regarded as important indicators to investigate clinical course of SCH and treatment response.
Collapse
Affiliation(s)
- Liisa Leppik
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Psychiatry Clinic of Tartu University Hospital, Tartu, Estonia
| | - Kärt Kriisa
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kati Koido
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kadri Koch
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Psychiatry Clinic of Tartu University Hospital, Tartu, Estonia
| | - Kärolin Kajalaid
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Psychiatry Clinic of Tartu University Hospital, Tartu, Estonia
| | - Liina Haring
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Psychiatry Clinic of Tartu University Hospital, Tartu, Estonia
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Mihkel Zilmer
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
42
|
Navrotskaya V, Wnorowski A, Turski W, Oxenkrug G. Effect of Kynurenic Acid on Pupae Viability of Drosophila melanogaster cinnabar and cardinal Eye Color Mutants with Altered Tryptophan-Kynurenine Metabolism. Neurotox Res 2018; 34:324-331. [PMID: 29619629 DOI: 10.1007/s12640-018-9891-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 12/22/2022]
Abstract
Kynurenic acid (KYNA) is one of the metabolites of evolutionary conserved tryptophan (Trp)/kynurenine (Kyn) metabolic pathway. Elevation of KYNA contributes to development of psychosis in schizophrenia but attenuates neurodegeneration in Drosophila model of Huntington's disease. We have reported that KYNA increased lethality of pupae of wild-type flies, but not of vermilion (v) mutants with impaired formation of Kyn from Trp, suggesting that KYNA toxicity depends on its interaction with downstream Kyn metabolites [i.e., 3-hydroxykynurenine (3-HK) and/or xanthurenic acid (XA)]. The present study aimed to further explore the mechanisms of KYNA-induced lethality by the assessment of KYNA effect on pupae of two Drosophila mutants: cinnabar (cn), characterized by higher KYNA and lower 3-HK production, and cardinal (cd), characterized by higher 3-HK and XA levels compared to wild-type flies. Our microarray datamining revealed that the gene expression pattern of enzymes forming Trp/Kyn pathway stands in line with previously reported developmental changes in KYNA, 3-HK, and XA concentrations in wild-type and mutant flies. Administration of KYNA increased pupae lethality in cd, but not in cn mutants. Present data suggest that toxic effect of exogenous KYNA depends on the presence of 3-HK and/or XA. This is further supported by our finding that early stages of Drosophila development are associated with a positive expression pattern of genes encoding sulfotransferases, enzymes that are inhibited by KYNA and are involved in detoxification of XA. Alternatively, the toxic effect of KYNA might depend on anti-proliferative effects of KYNA.
Collapse
Affiliation(s)
- Valeriya Navrotskaya
- Department of Genetics and Cytology, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
| | - Artur Wnorowski
- Department of Biopharmacy, Medical University of Lublin, Chodzki 4a/01a, 20-093, Lublin, Poland
| | - Waldemar Turski
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Gregory Oxenkrug
- Psychiatry and Inflammation Program, Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, 800 Washington St, no. 1107, Boston, MA, 02111, USA.
| |
Collapse
|
43
|
Wirthgen E, Hoeflich A, Rebl A, Günther J. Kynurenic Acid: The Janus-Faced Role of an Immunomodulatory Tryptophan Metabolite and Its Link to Pathological Conditions. Front Immunol 2018; 8:1957. [PMID: 29379504 PMCID: PMC5770815 DOI: 10.3389/fimmu.2017.01957] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/19/2017] [Indexed: 12/29/2022] Open
Abstract
Tryptophan metabolites are known to participate in the regulation of many cells of the immune system and are involved in various immune-mediated diseases and disorders. Kynurenic acid (KYNA) is a product of one branch of the kynurenine pathway of tryptophan metabolism. The influence of KYNA on important neurophysiological and neuropathological processes has been comprehensively documented. In recent years, the link of KYNA to the immune system, inflammation, and cancer has become more apparent. Given this connection, the anti-inflammatory and immunosuppressive functions of KYNA are of particular interest. These characteristics might allow KYNA to act as a "double-edged sword." The metabolite contributes to both the resolution of inflammation and the establishment of an immunosuppressive environment, which, for instance, allows for tumor immune escape. Our review provides a comprehensive update of the significant biological functions of KYNA and focuses on its immunomodulatory properties by signaling via G-protein-coupled receptor 35 (GPR35)- and aryl hydrocarbon receptor-mediated pathways. Furthermore, we discuss the role of KYNA-GPR35 interaction and microbiota associated KYNA metabolism for gut homeostasis.
Collapse
Affiliation(s)
- Elisa Wirthgen
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Andreas Hoeflich
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Alexander Rebl
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Juliane Günther
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| |
Collapse
|
44
|
Lv F, Chen S, Wang L, Jiang R, Tian H, Li J, Yao Y, Zhuo C. The role of microbiota in the pathogenesis of schizophrenia and major depressive disorder and the possibility of targeting microbiota as a treatment option. Oncotarget 2017; 8:100899-100907. [PMID: 29246029 PMCID: PMC5725071 DOI: 10.18632/oncotarget.21284] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/26/2017] [Indexed: 12/22/2022] Open
Abstract
The importance of interactions between the brain and the gastrointestinal tract has been increasingly recognized in recent years. It has been proposed that dysregulation and abnormalities in the brain-gut axis contribute to the etiology of a variety of central nervous system disorders. Particularly, dysbiosis, or impaired microbiota, has been implicated in multiple neurological and psychological disorders. The present paper reviews current evidence and theories concerning the possible mechanisms by which microbiota dysfunction contributes to the pathogenesis of schizophrenia and major depressive disorder. Clinical trials that investigated the possibility of treating both illnesses by correcting and rebalancing microbiota with probiotics are also reviewed. Overall, despite the accumulated knowledge in this field, more studies are warranted and required to further our understanding of the brain-gut axis and the possibility of targeting microbiota as a treatment option for schizophrenia and major depressive disorder.
Collapse
Affiliation(s)
- Fengli Lv
- The department of rehabilition, The Second Affiliated Hosptial of Tianjin Medical University, Tianjin, China
| | - Suling Chen
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang, China
| | - Lina Wang
- Department of Psychiatry, Tianjin Anding Hospital, Tianjin Mental Health Center, Tianjin, China
| | - Ronghuan Jiang
- Department of Psychological Medicine, Chinese People's Liberation Army, General Hospital, Chinese People's Liberation Army Medical School, Beijing, China
| | - Hongjun Tian
- Department of Psychiatry, Tianjin Anding Hospital, Tianjin Mental Health Center, Tianjin, China
| | - Jie Li
- Department of Psychiatry, Tianjin Anding Hospital, Tianjin Mental Health Center, Tianjin, China
| | - Yudong Yao
- Department of Pharmacology and Physiology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Chuanjun Zhuo
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang, China.,Department of Psychiatry, Tianjin Anding Hospital, Tianjin Mental Health Center, Tianjin, China
| |
Collapse
|
45
|
Plitman E, Iwata Y, Caravaggio F, Nakajima S, Chung JK, Gerretsen P, Kim J, Takeuchi H, Chakravarty MM, Remington G, Graff-Guerrero A. Kynurenic Acid in Schizophrenia: A Systematic Review and Meta-analysis. Schizophr Bull 2017; 43:764-777. [PMID: 28187219 PMCID: PMC5472151 DOI: 10.1093/schbul/sbw221] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Kynurenic acid (KYNA) is an endogenous antagonist of N-methyl-D-aspartate and α7 nicotinic acetylcholine receptors that is derived from astrocytes as part of the kynurenine pathway of tryptophan degradation. Evidence suggests that abnormal KYNA levels are involved in the pathophysiology of schizophrenia. However, this has never been assessed through a meta-analysis. A literature search was conducted through Ovid using Embase, Medline, and PsycINFO databases (last search: December 2016) with the search terms: (kynuren* or KYNA) and (schizophreni* or psychosis). English language studies measuring KYNA levels using any method in patients with schizophrenia and healthy controls (HCs) were identified. Standardized mean differences (SMDs) were calculated to determine differences in KYNA levels between groups. Subgroup analyses were separately performed for nonoverlapping participant samples, KYNA measurement techniques, and KYNA sample source. The influences of patients' age, antipsychotic status (%medicated), and sex (%male) on study SMDs were assessed through a meta-regression. Thirteen studies were deemed eligible for inclusion in the meta-analysis. In the main analysis, KYNA levels were elevated in the patient group. Subgroup analyses demonstrated that KYNA levels were increased in nonoverlapping participant samples, and centrally (cerebrospinal fluid and brain tissue) but not peripherally. Patients' age, %medicated, and %male were each positively associated with study SMDs. Overall, KYNA levels are increased in patients with schizophrenia, specifically within the central nervous system. An improved understanding of KYNA in patients with schizophrenia may contribute to the development of novel diagnostic approaches and therapeutic strategies.
Collapse
Affiliation(s)
- Eric Plitman
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada;,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Yusuke Iwata
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Fernando Caravaggio
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Shinichiro Nakajima
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada;,Department of Psychiatry, University of Toronto, Toronto, ON, Canada;,Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, ON, Canada;,Department of Neuropsychiatry, Keio University, Tokyo, Japan
| | - Jun Ku Chung
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada;,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Philip Gerretsen
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada;,Department of Psychiatry, University of Toronto, Toronto, ON, Canada;,Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Julia Kim
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada;,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Hiroyoshi Takeuchi
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada;,Department of Neuropsychiatry, Keio University, Tokyo, Japan;,Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - M. Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada;,Departments of Psychiatry and Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Gary Remington
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada;,Department of Psychiatry, University of Toronto, Toronto, ON, Canada;,Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, ON, Canada;,Campbell Institute Research Program, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Ariel Graff-Guerrero
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada;,Institute of Medical Science, University of Toronto, Toronto, ON, Canada;,Department of Psychiatry, University of Toronto, Toronto, ON, Canada;,Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, ON, Canada;,Campbell Institute Research Program, Centre for Addiction and Mental Health, Toronto, ON, Canada
| |
Collapse
|
46
|
Oxenkrug G, van der Hart M, Roeser J, Summergrad P. Peripheral kynurenine-3-monooxygenase deficiency as a potential risk factor for metabolic syndrome in schizophrenia patients. ACTA ACUST UNITED AC 2017; 1. [PMID: 28748226 PMCID: PMC5523985 DOI: 10.15761/icm.1000105] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Increased predisposition of schizophrenia patients (SP) to development of obesity and insulin resistance suggested common signaling pathway between metabolic syndrome (MetS) and schizophrenia. Deficiency of kynurenine-3-monooxygenase (KMO), enzyme catalyzing formation of 3-hydroxykynurenine (3-HK) from kynurenine (Kyn), a tryptophan (Trp) metabolite, might contribute to development of MetS as suggested by non-expression of KMO genes in human fat tissue and elevated serum concentrations of Kyn and its metabolites, kynurenic (KYNA) and anthranilic (ANA) acids, in diabetic patients and Zucker fatty rats (ZFR). Markers of KMO deficiency: decreased 3-HK and elevated Kyn, KYNA and ANA, were observed in brains and spinal fluids of SP, and in brains and serum of experimental animals with genetically- or pharmacologically-induced KMO deficiency. However, elevated concentrations of ANA and decreased 3-HK were reported in serum of SP without concurrent increase of Kyn and KYNA. Present study aimed to re-assess serum Kyn metabolites (HPLC-MS) in a sub-group of SP with elevated KYNA. We found increased Kyn concentrations (by 30%) and Kyn:Trp ratio (by 20%) in serum of SP with elevated KYNA concentrations (by 40%). Obtained results and our previous data suggest that peripheral KMO deficiency might be manifested by, at least, two different patterns: elevated ANA with decreased 3-HK; and elevated KYNA and KYN. The latter pattern was previously described in type 2 diabetes patients and might underline increased predisposition of SP to development of MetS. Assessment of peripheral KMO deficiency might identify SP predisposed to MetS. Attenuation of the consequences of peripheral KMO deficiency might be a new target for prevention/treatment of obesity and diabetes in SP.
Collapse
Affiliation(s)
- Gregory Oxenkrug
- Department of Psychiatry, Tufts University School of Medicine, USA
| | | | | | - Paul Summergrad
- Department of Psychiatry, Tufts University School of Medicine, USA
| |
Collapse
|
47
|
Dunne PW, Roberts DL, Quinones MP, Velligan DI, Paredes M, Walss-Bass C. Immune markers of social cognitive bias in schizophrenia. Psychiatry Res 2017; 251:319-324. [PMID: 28237910 DOI: 10.1016/j.psychres.2017.02.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 12/14/2016] [Accepted: 02/14/2017] [Indexed: 01/03/2023]
Abstract
Social cognition is impaired in schizophrenia, is relatively independent of purely neurocognitive domains such as attention and executive functioning, and may be the strongest predictor of functional outcome in this disease. Within a motivated reasoning framework, we tested the hypothesis that the anti-inflammatory Th2-associated cytokines, IL-10 and MDC, would be correlated with behavioral measures of social cognitive threat-detection bias (self-referential gaze detection bias and theory of mind (ToM) bias) in delusional versus non-delusional patients. We administered to schizophrenia patients with delusions (n=21), non-delusional patients (n=39) and controls (n=20) a social cognitive task designed to be sensitive to psychosocial stress response (the Waiting Room Task) and collected plasma levels of inflammatory markers using a bead-based flow immunoassay. Results partially supported our hypothesis. The anti-inflammatory cytokine IL-10 was associated with self-referential ToM bias in the delusional cohort as predicted, and not with non-delusional patients or healthy controls. This bias reflects a documented tendency of schizophrenia patients with delusions to excessively attribute hostile intentions to people in their environment. Since this cytokine correlated only with ToM bias and only in delusional patients, elevated levels of this cytokine in the blood may eventually serve as a useful biomarker distinguishing delusional patients from both non-delusional patients and healthy controls.
Collapse
Affiliation(s)
| | - David L Roberts
- Department of Psychiatry, Division of Community Recovery, Research and Training, University of Texas Health Sciences Center, San Antonio, 7703 Floyd Curl Drive, MC 7797, San Antonio, TX 78229, USA.
| | - Marlon P Quinones
- Laurel Ridge Hospital, 17720 Corporate Woods Drive, San Antonio, TX 78259, USA.
| | - Dawn I Velligan
- Department of Psychiatry, Division of Community Recovery, Research and Training, University of Texas Health Sciences Center, San Antonio, 7703 Floyd Curl Drive, MC 7797, San Antonio, TX 78229, USA
| | - Madelaine Paredes
- Department of Psychiatry, Division of Community Recovery, Research and Training, University of Texas Health Sciences Center, San Antonio, 7703 Floyd Curl Drive, MC 7797, San Antonio, TX 78229, USA
| | - Consuelo Walss-Bass
- Department of Psychiatry and Behavioral Sciences, 1941 East Rd, Suite 3110, University of Texas Health Sciences Center, Houston, TX 77054, USA.
| |
Collapse
|
48
|
da Silva Araújo T, Maia Chaves Filho AJ, Monte AS, Isabelle de Góis Queiroz A, Cordeiro RC, de Jesus Souza Machado M, de Freitas Lima R, Freitas de Lucena D, Maes M, Macêdo D. Reversal of schizophrenia-like symptoms and immune alterations in mice by immunomodulatory drugs. J Psychiatr Res 2017; 84:49-58. [PMID: 27697587 DOI: 10.1016/j.jpsychires.2016.09.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 08/16/2016] [Accepted: 09/20/2016] [Indexed: 01/12/2023]
Abstract
Immune dysregulation observed in schizophrenia alters tryptophan metabolism. Tryptophan metabolism is triggered by indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO). Tryptophan is converted to quinolinic acid, a potent neurotoxin, and to kynurenic acid, an NMDA antagonist. 1-Methyl-D-tryptophan (MDT) inhibits IDO. Melatonin is metabolized by IDO while inhibiting TDO. We evaluated the reversal of ketamine-induced schizophrenia-like behavioral and neurochemical alterations in mice by the administration of MDT (20 or 40 mg/kg, i.p.) or melatonin (15 mg/kg, per os). Oxidative stress and inflammatory alterations, i.e. myeloperoxidase activity (MPO), reduced glutathione (GSH), lipid peroxidation (LPO) and interleukin (IL)-4 and IL-6 were measured in the prefrontal cortex (PFC), hippocampus and striatum. Risperidone was used as standard antipsychotic. Ketamine triggered positive- (PPI deficits and hyperlocomotion), cognitive- (working memory deficits) and negative (social interaction deficits) schizophrenia-like symptoms. These symptoms were accompanied by increased MPO activity, decreased GSH and increased LPO in all brain areas and increments in hippocampal IL-4 and IL-6. MDT and melatonin reversed all ketamine-induced behavioral alterations. Risperidone did not reverse working memory deficits. MDT and melatonin reversed alterations in MPO activity and GSH levels. LP was reversed only by melatonin and risperidone. Risperidone could not reverse MPO alterations in the PFC and striatum. All drugs reversed the alterations in IL-4 and IL-6. The hippocampus and striatum of ketamine+melatonin-treated animals had lower levels of IL-6. Our findings provide further preclinical evidence that immune-inflammatory and oxidative pathways are involved in schizophrenia and that targeting these pathways is a valid treatment option in schizophrenia.
Collapse
Affiliation(s)
- Tatiane da Silva Araújo
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Adriano Jose Maia Chaves Filho
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Aline Santos Monte
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Ana Isabelle de Góis Queiroz
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Rafaela Carneiro Cordeiro
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Michel de Jesus Souza Machado
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Ricardo de Freitas Lima
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - David Freitas de Lucena
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Michael Maes
- Impact Strategic Research Center, Deakin University, Geelong, Australia; Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Health Sciences Graduate Program, Health Sciences Center, State University of Londrina, Londrina, Brazil
| | - Danielle Macêdo
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
49
|
VanPatten S, Al-Abed Y. The challenges of modulating the ‘rest and digest’ system: acetylcholine receptors as drug targets. Drug Discov Today 2017; 22:97-104. [DOI: 10.1016/j.drudis.2016.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/09/2016] [Accepted: 09/15/2016] [Indexed: 12/30/2022]
|
50
|
Mubarik A, Tohid H. Frontal lobe alterations in schizophrenia: a review. TRENDS IN PSYCHIATRY AND PSYCHOTHERAPY 2016; 38:198-206. [DOI: 10.1590/2237-6089-2015-0088] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/20/2016] [Indexed: 12/16/2022]
Abstract
Abstract Objective: To highlight the changes in the frontal lobe of the human brain in people with schizophrenia. Methods: This was a qualitative review of the literature. Results: Many schizophrenic patients exhibit functional, structural, and metabolic abnormalities in the frontal lobe. Some patients have few or no alterations, while some have more functional and structural changes than others. Magnetic resonance imaging (MRI) shows structural and functional changes in volume, gray matter, white matter, and functional activity in the frontal lobe, but the mechanisms underlying these changes are not yet fully understood. Conclusion: When schizophrenia is studied as an essential topic in the field of neuropsychiatry, neuroscientists find that the frontal lobe is the most commonly involved area of the human brain. A clear picture of how this lobe is affected in schizophrenia is still lacking. We therefore recommend that further research be conducted to improve understanding of the pathophysiology of this psychiatric dilemma.
Collapse
|