1
|
Wei FL, Liu H, Zhang SH, Du JX, Feng T, He J. Physivitrins I-R, lanostane triterpenoids with anti-inflammatory activities from the fungus Physisporinus vitreus. PHYTOCHEMISTRY 2024; 229:114314. [PMID: 39442595 DOI: 10.1016/j.phytochem.2024.114314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
Chemical investigation on the rice fermentation of the fungus Physisporinus vitreus led to the isolation of ten previously undescribed lanostane triterpenoids, physivitrins I-R, and three known analogues. The new structures were elucidated on the basis of extensive spectroscopic methods, including 1D & 2D NMR, HRESIMS, UV and ECD. Physivitrins I and P exhibited significant inhibitory activities against NO production in LPS-activated RAW267.4 macrophages with IC50 values of 8.2 and 11.5 μM, respectively. The comprehensive data indicated that P. vitreus is rich in lanostane triterpenes and has potential anti-inflammatory application prospects.
Collapse
Affiliation(s)
- Fang-Lu Wei
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Hui Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Shu-Han Zhang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Jiao-Xian Du
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Tao Feng
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; International Cooperation Base for Active Substances in Traditional Chinese Medicine in Hubei Province, Wuhan, 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central Minzu University, Wuhan, 430074, China
| | - Juan He
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central Minzu University, Wuhan, 430074, China.
| |
Collapse
|
2
|
Amrutha Lakshmi M, B R A, Manyam P, Javeedvali S, Khan AS, Palnam DW, Kandan A. Traditional to technological advancements in Ganoderma detection methods in oil palm. Folia Microbiol (Praha) 2024; 69:953-973. [PMID: 38976188 DOI: 10.1007/s12223-024-01177-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 05/19/2024] [Indexed: 07/09/2024]
Abstract
Ganoderma sp., the fungal agent causing basal stem rot (BSR), poses a severe threat to global oil palm production. Alarming increases in BSR occurrences within oil palm growing zones are attributed to varying effectiveness in its current management strategies. Asymptomatic progression of the disease and the continuous monoculture of oil palm pose challenges for prompt and effective management. Therefore, the development of precise, early, and timely detection techniques is crucial for successful BSR management. Conventional methods such as visual assessments, culture-based assays, and biochemical and physiological approaches prove time-consuming and lack specificity. Serological-based diagnostic methods, unsuitable for fungal diagnostics due to low sensitivity, assay affinity, cross-contamination which further underscores the need for improved techniques. Molecular PCR-based assays, utilizing universal, genus-specific, and species-specific primers, along with functional primers, can overcome the limitations of conventional and serological methods in fungal diagnostics. Recent advancements, including real-time PCR, biosensors, and isothermal amplification methods, facilitate accurate, specific, and sensitive Ganoderma detection. Comparative whole genomic analysis enables high-resolution discrimination of Ganoderma at the strain level. Additionally, omics tools such as transcriptomics, proteomics, and metabolomics can identify potential biomarkers for early detection of Ganoderma infection. Innovative on-field diagnostic techniques, including remote methods like volatile organic compounds profiling, tomography, hyperspectral and multispectral imaging, terrestrial laser scanning, and Red-Green-Blue cameras, contribute to a comprehensive diagnostic approach. Ultimately, the development of point-of-care, early, and cost-effective diagnostic techniques accessible to farmers is vital for the timely management of BSR in oil palm plantations.
Collapse
Affiliation(s)
- M Amrutha Lakshmi
- Plant Pathology, ICAR-Indian Institute of Oil Palm Research, India, Andhra Pradesh.
| | - Ajesh B R
- Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Pradeep Manyam
- Acharya N. G, Ranga Agricultural University, Guntur, Andhra Pradesh, India
| | - Shaik Javeedvali
- Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Amjada S Khan
- Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Dauda Wadzani Palnam
- Crop Science Unit, Department of Agronomy, Federal University, Yobe State, Gashua, Nigeria
| | - A Kandan
- ICAR-National Bureau of Agricultural Insect Resources, Bangalore, India
| |
Collapse
|
3
|
Abdelmoaty AAA, Chen J, Zhang K, Wu C, Li Y, Li P, Xu J. Senolytic effect of triterpenoid complex from Ganoderma lucidum on adriamycin-induced senescent human hepatocellular carcinoma cells model in vitro and in vivo. Front Pharmacol 2024; 15:1422363. [PMID: 39364046 PMCID: PMC11447279 DOI: 10.3389/fphar.2024.1422363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024] Open
Abstract
Background Ganoderma lucidum (G. lucidum) is a famous medicinal mushroom that has been reported to prevent and treat a variety of diseases. Different extractions from G. lucidum have been used to manage age-related diseases, including cancer. Nevertheless, the senolytic activity of G. lucidum against senescent cancer cells has not been investigated. Although cellular senescence causes tumor growth inhibition, senescent cells promote the growth of the neighboring tumor cells through paracrine effects. Therefore, the elimination of senescent cells is a new strategy for cancer treatment. Methods In this study, senescence was triggered in HCC cells by the chemotherapeutic agent Adriamycin (ADR), and subsequently, cells were treated with TC to assess its senolytic activity. Results We found for the first time that the triterpenoid complex (TC) from G. lucidum had senolytic effect, which could selectively eliminate adriamycin (ADR)-induced senescent cells (SCs) of hepatocellular carcinoma (HCC) cells via caspase-dependent and mitochondrial pathways-mediated apoptosis and reduce the levels of senescence markers, thereby inhibiting the progression of cancers caused by SCs. TC could block autophagy at the late stage in SCs, resulting in a significant activation of TC-induced apoptosis. Furthermore, TC inhibited the senescence-associated secretory phenotype (SASP) in SCs through the inhibition of NF-κB, TFEB, P38, ERK, and mTOR signaling pathways and reducing the number of SCs. Sequential administration of ADR and TC in vivo significantly reduced tumor growth and reversed the toxicity of ADR. Conclusion A triterpenoid complex isolated from G. lucidum may serve as a novel senolytic agent against SCs, and its combination with chemotherapeutic agents may enhance their antitumor efficacy.
Collapse
Affiliation(s)
- Ahmed Attia Ahmed Abdelmoaty
- Fujian Provincial Key Laboratory of Pharmacology of Natural Medicine, School of Pharmacy, Fujian Medical University, Fuzhou, China
- Fujian Xianzhilou Biological Science and Technology Co., Ltd., Fuzhou, China
| | - Jing Chen
- Fujian Provincial Key Laboratory of Pharmacology of Natural Medicine, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Kun Zhang
- Fujian Xianzhilou Biological Science and Technology Co., Ltd., Fuzhou, China
| | - Changhui Wu
- Fujian Xianzhilou Biological Science and Technology Co., Ltd., Fuzhou, China
| | - Ye Li
- Fujian Xianzhilou Biological Science and Technology Co., Ltd., Fuzhou, China
| | - Peng Li
- Fujian Provincial Key Laboratory of Pharmacology of Natural Medicine, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Jianhua Xu
- Fujian Provincial Key Laboratory of Pharmacology of Natural Medicine, School of Pharmacy, Fujian Medical University, Fuzhou, China
| |
Collapse
|
4
|
Olvera-Aripez J, Camacho-López S, Flores-Castañeda M, Belman-Rodríguez C, Vilchis-Nestor AR, Castro-Longoria E. Biosynthesis of gold nanoparticles by fungi and its potential in SERS. Bioprocess Biosyst Eng 2024; 47:1585-1593. [PMID: 38922411 DOI: 10.1007/s00449-024-03053-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
Surface enhanced Raman spectroscopy (SERS) by using gold nanoparticles (AuNPs) has gained relevance for the identification of biomolecules and some cancer cells. Searching for greener NPs synthesis alternatives, we evaluated the SERS properties of AuNPs produced by using different filamentous fungi. The AuNPs were synthesized utilizing the supernatant of Botrytis cinerea, Trichoderma atroviride, Trichoderma asperellum, Alternaria sp. and Ganoderma sessile. The AuNPs were characterized by ultraviolet-visible spectroscopy (UV-Vis) to identify its characteristic surface plasmon resonance, which was located at 545 nm (B. cinerea), 550 nm (T. atroviride), 540 nm (T. asperellum), 530 nm (Alternaria sp.), and 525 nm (G. sessile). Morphology, size and crystal structure were characterized through transmission electron microscopy (TEM); colloidal stability was assessed by Z-potential measurements. We found that, under specific incubation conditions, it was possible to obtain AuNPs with spherical and quasi-spherical shapes, which mean size range depends on the fungal species supernatant with 92.9 nm (B. cinerea), 24.7 nm (T. atroviride), 16.4 nm (T. asperellum), 9.5 nm (Alternaria sp.), and 13.6 nm (G. sessile). This, as it can be expected, has an effect on Raman amplification. A micro-Raman spectroscopy system operated at a wavelength of 532 nm was used for the evaluation of the SERS features of the AuNPs. We chose methylene blue as our target molecule since it has been widely used for such a purpose in the literature. Our results show that AuNPs synthesized with the supernatant of T. atroviride, T. asperellum and Alternaria sp. produce the stronger SERS effect, with enhancement factor (EF) of 20.9, 28.8 and 35.46, respectively. These results are promising and could serve as the base line for the development of biosensors through a facile, simple, and low-cost green alternative.
Collapse
Affiliation(s)
- Jacqueline Olvera-Aripez
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Ensenada, B.C, Mexico
| | - Santiago Camacho-López
- Optics Department, Center for Scientific Research and Higher Education of Ensenada (CICESE), Ensenada, B.C, Mexico
| | - Mariela Flores-Castañeda
- Optics Department, Center for Scientific Research and Higher Education of Ensenada (CICESE), Ensenada, B.C, Mexico
| | - Carlos Belman-Rodríguez
- Center for Nanosciences and Nanotechnology (CNyN), National Autonomous University of Mexico (UNAM), Ensenada, B.C, Mexico
| | - Alfredo R Vilchis-Nestor
- Sustainable Chemistry Research Joint Center UAEM-UNAM (CCIQS), Carr. Toluca-Atlacomulco km 14.5, San Cayetano, 50200, Toluca, Mexico
| | - Ernestina Castro-Longoria
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Ensenada, B.C, Mexico.
| |
Collapse
|
5
|
Chen TQ, Xu XL, Yang C, Yang L, Ying ZH, Shi XK, Ding MG. Comparative genomics reveals ample evidence to Ganoderma sinense cultivars for molecular identification and new FIP exploration. Genomics 2024; 116:110924. [PMID: 39178996 DOI: 10.1016/j.ygeno.2024.110924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
The first dikaryotic genome of Ganoderma cultivar Zizhi S2 (56.76 Mb, 16,681 genes) has been sequenced recently. 98.15% of complete BUSCOs were recovered in this genome assembly and high-confidence annotation rate improved to 91.41%. Collinearity analysis displayed the nuclear genome were 80.2% and 93.84% similar to reference genome of G. sinense at nucleotide and amino acid levels, which presented 8,521 core genes and 880 unique orthologous gene groups. Among that, at least six functional genes (tef1-α, β-tubulin, rpb2, CaM, Mn-SOD and VeA) and a newly discovered fip gene were highly similar 99.27% ∼100% to those in reference genome. And the mt-LSU, mt-SSU and 13 PCGs in their mitogenome were also highly conserved with 99.27%-99.87% and 99.08%-100% identity, respectively. So that, this cultivar Zizhi S2 is confirmed conspecific with Ganoderma sinense (NCBI: txid1077348). The new fip gene (MN635280.1_336bp) existing a novel mutation which can be reflected on the phylogenetic tree and 3-dimensional model topology structure.
Collapse
Affiliation(s)
- Ti-Qiang Chen
- Institute of Edible & Medicinal Mushroom, Fujian Academy of Agriculture Sciences, Fuzhou 350011, China.
| | - Xiao-Lan Xu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, China.
| | - Chi Yang
- Institute of Edible & Medicinal Mushroom, Fujian Academy of Agriculture Sciences, Fuzhou 350011, China
| | - Lin Yang
- Chengdu Jinxu Biotechnology Co., Ltd, Chengdu 610021, China
| | - Zheng-He Ying
- Institute of Edible & Medicinal Mushroom, Fujian Academy of Agriculture Sciences, Fuzhou 350011, China
| | - Xiao-Kun Shi
- Institute of Edible & Medicinal Mushroom, Fujian Academy of Agriculture Sciences, Fuzhou 350011, China
| | - Meng-Guang Ding
- Institute of Edible & Medicinal Mushroom, Fujian Academy of Agriculture Sciences, Fuzhou 350011, China
| |
Collapse
|
6
|
Qi Y, Zhong S, Pan F, Zhou J, Wang Z, Deng Z, Li H. Effects of different wall-breaking methods on the nutrient release of Ganoderma lucidum spore powder during in vitro digestion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6657-6666. [PMID: 38545871 DOI: 10.1002/jsfa.13490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/11/2024] [Accepted: 03/24/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND The hard double-walled structure of Ganoderma lucidum spore powder (GLSP) is difficult for the human body to digest, so it is very important to break the wall of GLSP. In this study, the wall of GLSP was broken by mechanical milling at room temperature (MM-R) and ultra-fine grinding at low temperature (UFG-L), respectively. RESULTS Compared with MM-R, UFG-L could better retain the sporangium powder's morphological and structural integrity. During in vitro digestion, compared with unbroken GLSP, the released amounts of polysaccharides and triterpenes from broken GLSP were significantly increased, and they increased with the increase of specific surface area. The bioaccessibility of polysaccharide and triterpene from unbroken GLSP after the intestinal stage were 29.52% and 5.37%, respectively. The bioaccessibility of polysaccharides and triterpene from broken GLSP by MM-R after the intestinal phase were 39.73-72.45% and 16.44-24.97%, while those by UFG-L were 44.53-104.18% and 12.96-32.90%, respectively. CONCLUSION The active ingredients of broken GLSP showed better digestion and absorption abilities than unbroken GLSP. Moreover, the specific surface area of GLSP by UFG-L was lower than that by MM-R, and the bioaccessibility of GLSP by UFG-L was higher than that by MM-R. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yaoyao Qi
- State Key Laboratory of Food Science and Resources, University of Nanchang, Nanchang, China
| | - Shun Zhong
- State Key Laboratory of Food Science and Resources, University of Nanchang, Nanchang, China
| | - Feng Pan
- Jiangxi Xiankelai Biotechnology Co., Ltd, Jiujiang, China
| | - Junfu Zhou
- Jiangxi Xiankelai Biotechnology Co., Ltd, Jiujiang, China
| | - Zhiyu Wang
- Jiangxi Xiankelai Biotechnology Co., Ltd, Jiujiang, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, University of Nanchang, Nanchang, China
| | - Hongyan Li
- State Key Laboratory of Food Science and Resources, University of Nanchang, Nanchang, China
| |
Collapse
|
7
|
Shao H, Li Y, Wu C, Chen R, Kang J. Triterpenes from antler-shaped fruiting body of Ganoderma lucidum and their hepatoprotective activities. PHYTOCHEMISTRY 2024; 224:114148. [PMID: 38763311 DOI: 10.1016/j.phytochem.2024.114148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/21/2024]
Abstract
Seven previously undescribed triterpenes (1-7), as well as one triterpene (8) previously described as a synthetic product, were isolated from the antler-shaped fruiting body of Ganoderma lucidum. Their structures were established based on comprehensive spectroscopy analysis. At a concentration of 10 μM, (24E)-3-oxo-15α-acetoxy-lanosta-7,9(11),24-trien-26-al (3) and (24R,25S)-3-oxo-lanosta-7,9(11)-dien-25-ethoxyl-24,26-diol (5) provided significant protection against acetaminophen-induced necrosis in human HepG2 liver cancer cells, and the cell survival rates were 69.7 and 76.1% respectively, similar to that of the positive control (glutathione, 72.1%). Based on the present results, these compounds could be potential hepatoprotective agents.
Collapse
Affiliation(s)
- Hongjie Shao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Beijing, 100050, China
| | - Ye Li
- Fujian Xianzhilou Biological Science and Technology Co. Ltd, 6 Chuangxin Road, High-Tech Zone, Fuzhou, 350108, China
| | - Changhui Wu
- Fujian Xianzhilou Biological Science and Technology Co. Ltd, 6 Chuangxin Road, High-Tech Zone, Fuzhou, 350108, China
| | - Ruoyun Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Beijing, 100050, China
| | - Jie Kang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Beijing, 100050, China.
| |
Collapse
|
8
|
Shangguan J, Wu T, Tian L, Liu Y, Zhu L, Liu R, Zhu J, Shi L, Zhao M, Ren A. Hydrogen sulfide maintains mitochondrial homeostasis and regulates ganoderic acids biosynthesis by SQR under heat stress in Ganoderma lucidum. Redox Biol 2024; 74:103227. [PMID: 38865903 PMCID: PMC11215418 DOI: 10.1016/j.redox.2024.103227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/14/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024] Open
Abstract
Hydrogen sulfide (H2S) has recently been recognized as an important gaseous transmitter with multiple physiological effects in various species. Previous studies have shown that H2S alleviated heat-induced ganoderic acids (GAs) biosynthesis, an important quality index of Ganoderma lucidum. However, a comprehensive understanding of the physiological effects and molecular mechanisms of H2S in G. lucidum remains unexplored. In this study, we found that heat treatment reduced the mitochondrial membrane potential (MMP) and mitochondrial DNA copy number (mtDNAcn) in G. lucidum. Increasing the intracellular H2S concentration through pharmacological and genetic means increased the MMP level, mtDNAcn, oxygen consumption rate level and ATP content under heat treatment, suggesting a role for H2S in mitigating heat-caused mitochondrial damage in G. lucidum. Further results indicated that H2S activates sulfide-quinone oxidoreductase (SQR) and complex III (Com III), thereby maintaining mitochondrial homeostasis under heat stress in G. lucidum. Moreover, SQR also mediated the negative regulation of H2S to GAs biosynthesis under heat stress. Furthermore, SQR might be persulfidated under heat stress in G. lucidum. Thus, our study reveals a novel physiological function and molecular mechanism of H2S signalling under heat stress in G. lucidum with broad implications for research on the environmental response of microorganisms.
Collapse
Affiliation(s)
- Jiaolei Shangguan
- Sanya Institute of Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Tao Wu
- Sanya Institute of Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Li Tian
- Sanya Institute of Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Yueqian Liu
- Sanya Institute of Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Lei Zhu
- Sanya Institute of Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Rui Liu
- Sanya Institute of Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Jing Zhu
- Sanya Institute of Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Liang Shi
- Sanya Institute of Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Mingwen Zhao
- Sanya Institute of Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China.
| | - Ang Ren
- Sanya Institute of Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China.
| |
Collapse
|
9
|
Cheng KC, Chong PCT, Hsieh CC, Lin YT, Ye CH, Khumsupan D, Lu JJ, Yu WC, Cheng KW, Yap KY, Kou WS, Cheng MT, Hsu CC, Sheen LY, Lin SP, Wei AC, Yu SH. Identification of anti-fibrotic and pro-apoptotic bioactive compounds from Ganoderma formosanum and their possible mechanisms in modulating TGF-β1-induced lung fibrosis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:118008. [PMID: 38458343 DOI: 10.1016/j.jep.2024.118008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/28/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Compendium of Materia Medica and the Classic of Materia Medica, the two most prominent records of traditional Chinese medicine, documented the therapeutic benefits of Ganoderma sinense particularly in addressing pulmonary-related ailments. Ganoderma formosanum, an indigenous subspecies of G. sinense from Taiwan, has demonstrated the same therapeutic properties. AIM OF THE STUDY The aim of this study is to identify bioactive compounds and evaluate the potential of G. formosanum extracts as a novel treatment to alleviate pulmonary fibrosis (PF). Using an in-house drug screening platform, two-stage screening was performed to determine their anti-fibrotic efficacy. METHODS AND MATERIALS G. formosanum was fractionated into four partitions by solvents of different polarities. To determine their antifibrotic and pro-apoptotic properties, the fractions were analyzed using two TGF-β1-induced pulmonary fibrosis cell models (NIH-3T3) and human pulmonary fibroblast cell lines, immunoblot, qRT-PCR, and annexin V assays. Subsequently, transcriptomic analysis was conducted to validate the findings and explore possible molecular pathways. The identification of potential bioactive compounds was achieved through UHPLC-MS/MS analysis, while molecular interaction study was investigated by multiple ligands docking and molecular dynamic simulations. RESULTS The ethyl acetate fraction (EAF) extracted from G. formosanum demonstrated substantial anti-fibrotic and pro-apoptotic effects on TGF-β1-induced fibrotic models. Moreover, the EAF exhibited no discernible cytotoxicity. Untargeted UHPLC-MS/MS analysis identified potential bioactive compounds in EAF, including stearic acid, palmitic acid, and pentadecanoic acid. Multiple ligands docking and molecular dynamic simulations further confirmed that those bioactive compounds possess the ability to inhibit TGF-β receptor 1. CONCLUSION Potential bioactive compounds in G. formosanum were successfully extracted and identified in the EAF, whose anti-fibrotic and pro-apoptotic properties could potentially modulate pulmonary fibrosis. This finding not only highlights the EAF's potential as a promising therapeutic candidate to treat pulmonary fibrosis, but it also elucidates how Ganoderma confers pulmonary health benefits as described in the ancient texts.
Collapse
Affiliation(s)
- Kuan-Chen Cheng
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C; Institute of Food Science Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C; Department of Optometry, Asia University, No. 500, Lioufeng Rd., Wufeng, Taichung, Taiwan. R.O.C; Department of Medical Research, China Medical University Hospital, China Medical University, No. 91, Hsueh-Shih Rd., Taichung, Taiwan. R.O.C
| | - Patrick Chun Theng Chong
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C
| | - Chen-Che Hsieh
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C
| | - Yu-Te Lin
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan. R.O.C
| | - Chih-Hung Ye
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C
| | - Darin Khumsupan
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C
| | - Jheng-Jhe Lu
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C
| | - Wei-Chieh Yu
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C
| | - Kai-Wen Cheng
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C
| | - Kah Yi Yap
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C
| | - Weng Si Kou
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C
| | - Meng-Tsung Cheng
- School of Pharmacy, College of Medicine, National Taiwan University, No.33, Linsen S. Rd., Taipei, 100025, Taiwan. R.O.C
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C; Leeuwenhoek Laboratories Co. Ltd., No. 71, Fanglan Rd, Taipei, 106038, Taiwan. R.O.C
| | - Lee-Yan Sheen
- Institute of Food Science Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C
| | - Shin-Ping Lin
- School of Food Safety, Taipei Medical University, No. 250, Wu-Hsing Street, Taipei, Taiwan. R.O.C
| | - An-Chi Wei
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan. R.O.C
| | - Shu-Han Yu
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan. R.O.C.
| |
Collapse
|
10
|
Xie Y, Su Y, Wang Y, Zhang D, Yu Q, Yan C. Structural clarification of mannoglucan GSBP-2 from Ganoderma sinense and its effects on triple-negative breast cancer migration and invasion. Int J Biol Macromol 2024; 269:131903. [PMID: 38688342 DOI: 10.1016/j.ijbiomac.2024.131903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Ganoderma sinense, known as Lingzhi in China, is a medicinal fungus with anti-tumor properties. Herein, crude polysaccharides (GSB) extracted from G. sinense fruiting bodies were used to selectively inhibit triple-negative breast cancer (TNBC) cells. GSBP-2 was purified from GSB, with a molecular weight of 11.5 kDa and a composition of α-l-Fucp-(1→, β-d-Glcp-(1→, β-d-GlcpA-(1→, →3)-β-d-Glcp-(1→, →3)-β-d-GlcpA-(1→, →4)-α-d-Galp-(1→,→6)-β-d-Manp-(1→, and →3,6)-β-d-Glcp-(1→ at a ratio of 1.0:6.3:1.7:5.5:1.5:4.3:8.0:7.9. The anti-MDA-MB-231 cell activity of GSBP-2 was determined by methyl thiazolyl tetrazolium, colony formation, scratch wound healing, and transwell migration assays. The results showed that GSBP-2 could selectively inhibit the proliferation, migration, and invasion of MDA-MB-231 cells through the regulation of genes targeting epithelial-mesenchymal transition (i.e., Snail1, ZEB1, VIM, CDH1, CDH2, and MMP9) in the MDA-MB-231 cells. Furthermore, Western blotting results indicated that GSBP-2 could restrict epithelial-mesenchymal transition by increasing E-cadherin and decreasing N-cadherin expression through the PI3K/Akt pathway. GSBP-2 also suppressed the angiogenesis of human umbilical vein endothelial cells. In conclusion, GSBP-2 could inhibit the proliferation, migration, and invasion of MDA-MB-231 cells and showed significant anti-angiogenic ability. These findings indicate that GSBP-2 is a promising therapeutic adjuvant for TNBC.
Collapse
Affiliation(s)
- Yikun Xie
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yifan Su
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yurong Wang
- Department of Chinese Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Dawei Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Qian Yu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Chunyan Yan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
11
|
Yang KN, Lin CY, Li WN, Tang CM, Pradhan J, Chao MW, Tseng CY. Ganoderma tsuage promotes pain sensitivity in aging mice. Sci Rep 2024; 14:11536. [PMID: 38773201 PMCID: PMC11109092 DOI: 10.1038/s41598-024-61499-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/07/2024] [Indexed: 05/23/2024] Open
Abstract
Advances in modern medicine have extended human life expectancy, leading to a world with a gradually aging society. Aging refers to a natural decline in the physiological functions of a species over time, such as reduced pain sensitivity and reaction speed. Healthy-level physiological pain serves as a warning signal to the body, helping to avoid noxious stimuli. Physiological pain sensitivity gradually decreases in the elderly, increasing the risk of injury. Therefore, geriatric health care receives growing attention, potentially improving the health status and life quality of the elderly, further reducing medical burden. Health food is a geriatric healthcare choice for the elderly with Ganoderma tsuage (GT), a Reishi type, as the main product in the market. GT contains polysaccharides, triterpenoids, adenosine, immunoregulatory proteins, and other components, including anticancer, blood sugar regulating, antioxidation, antibacterial, antivirus, and liver and stomach damage protective agents. However, its pain perception-related effects remain elusive. This study thus aimed at addressing whether GT could prevent pain sensitivity reduction in the elderly. We used a galactose-induced animal model for aging to evaluate whether GT could maintain pain sensitivity in aging mice undergoing formalin pain test, hot water test, and tail flexes. Our results demonstrated that GT significantly improved the sensitivity and reaction speed to pain in the hot water, hot plate, and formalin tests compared with the control. Therefore, our animal study positions GT as a promising compound for pain sensitivity maintenance during aging.
Collapse
Affiliation(s)
- Kai-Ning Yang
- Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Chia-Ying Lin
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan, Taiwan
| | - Wei-Nong Li
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan, Taiwan
| | - Chao-Ming Tang
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan, Taiwan
| | - Jyotirmayee Pradhan
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan, Taiwan
| | - Ming-Wei Chao
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan, Taiwan
| | - Chia-Yi Tseng
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan, Taiwan.
| |
Collapse
|
12
|
Li R, Han Q, Li X, Liu X, Jiao W. Natural Product-Derived Phytochemicals for Influenza A Virus (H1N1) Prevention and Treatment. Molecules 2024; 29:2371. [PMID: 38792236 PMCID: PMC11124286 DOI: 10.3390/molecules29102371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Influenza A (H1N1) viruses are prone to antigenic mutations and are more variable than other influenza viruses. Therefore, they have caused continuous harm to human public health since the pandemic in 2009 and in recent times. Influenza A (H1N1) can be prevented and treated in various ways, such as direct inhibition of the virus and regulation of human immunity. Among antiviral drugs, the use of natural products in treating influenza has a long history, and natural medicine has been widely considered the focus of development programs for new, safe anti-influenza drugs. In this paper, we focus on influenza A (H1N1) and summarize the natural product-derived phytochemicals for influenza A virus (H1N1) prevention and treatment, including marine natural products, flavonoids, alkaloids, terpenoids and their derivatives, phenols and their derivatives, polysaccharides, and derivatives of natural products for prevention and treatment of influenza A (H1N1) virus. We further discuss the toxicity and antiviral mechanism against influenza A (H1N1) as well as the druggability of natural products. We hope that this review will facilitate the study of the role of natural products against influenza A (H1N1) activity and provide a promising alternative for further anti-influenza A drug development.
Collapse
Affiliation(s)
- Ruichen Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450003, China; (R.L.); (X.L.)
| | - Qianru Han
- Foreign Language Education Department, Zhengzhou Shuqing Medical College, Zhengzhou 450064, China;
| | - Xiaokun Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450003, China; (R.L.); (X.L.)
| | - Xinguang Liu
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of China, Zhengzhou 450003, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450003, China
| | - Weijie Jiao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450003, China; (R.L.); (X.L.)
- Department of Pharmacy, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou 450046, China
| |
Collapse
|
13
|
Ali Syed I, Alvi IA, Fiaz M, Ahmad J, Butt S, Ullah A, Ahmed I, Niaz Z, Khan S, Hayat S, Ashique S, Zengin G, Farid A. Synthesis of Silver Nanoparticles from Ganoderma Species and Their Activity against Multi Drug Resistant Pathogens. Chem Biodivers 2024; 21:e202301304. [PMID: 37926683 DOI: 10.1002/cbdv.202301304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/04/2023] [Accepted: 11/04/2023] [Indexed: 11/07/2023]
Abstract
The widespread and indiscriminate use of broad-spectrum antibiotics leads to microbial resistance, which causes major problems in the treatment of infectious diseases. However, advances in nanotechnology using mushrooms have opened up new domains for the synthesis and use of nanoparticles against multidrug-resistant pathogens. Mushooms have recently attracted attention and are exploited for food and medicinal purposes. The current study focuses on the molecular identification, characterization of biologically synthesized silver nanoparticles by X-ray diffraction (XRD) spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), UV-Vis spectroscopy and scanning electron microscopy (SEM) and antibacterial analysis of extract and silver nanoparticles (AgNPs) synthesis from Ganoderma resinaceum against multidrug resistant microbes. Accurate identification of mushrooms is key in utilizing them for the benefit of humans. However, morphological identification of mushrooms is time consuming, tedious and may be prone to error. Molecular techniques are quick and reliable tools that are useful in mushroom taxonomy. Blast results showed that G. resinaceum (GU451247) obtained from Pakistan was 97 % same to the recognized G. resinaceum (GU451247) obtained from China as well as G. resinaceum (GU451247) obtained from India. The antimicrobial potential of mushroom composite and AgNPs showed high efficacy against pathogenic Staphylococcus aureus (ZOI 23 mm) K. pneumonia (ZOI 20 mm), Pseudomonas aeruginosa (ZOI 24 mm) and E. fecalis and A. baumannii (ZOI 10 mm), and multidrug resistant (MDR) A. baumannii (ZOI 24 mm). XRD evaluation revealed the crystalline composition of synthesized NPs with diameter of 45 nm. UV-Vis spectroscopy obsorption peaked of 589 nm confirmed the presence of AgNPs. SEM results showed the cubic morphology of AgNPs. The FTIR analysis of NPs obtained from G. resinaceum containing C=O as well as (O=C-H) stretching revealed presence of hydrogen, carbonyl and amide groups. The synthesized extract and AgNPs showed promising minimum inhibitory concentration (MIC) at 2 mg concentration against the MDR strains. AgNPs are observed to be efficient as they need less quantities to prevent bacterial growth. In the view of challenges for developing antimicrobial NPs of variable shape and size by various other methods, tuning nanoparticles synthesized via mushrooms can be a wonderful approach to resolve existing hurdles.
Collapse
Affiliation(s)
| | | | - Muhammad Fiaz
- Department of Experimental Medicine, University of Rome Tor Vergata, Italy
| | - Junaid Ahmad
- Department of Microbiology, Hazara University Mansehra
- Department of Experimental Medicine, University of Rome Tor Vergata, Italy
| | - Sadia Butt
- Department of microbiology, shaheed benazir butto women university Peshawar Pakistan
| | - Amin Ullah
- Department of Health and Biological Sciences, Abasyn University, Peshawar, 25000, Khyber, Pakhtunkhwa, Pakistan
| | - Iftikhar Ahmed
- Gomal Center of Biochemistry and Biotechnology, Gomal University, D.I.K, 29050, Pakistan
| | - Zeeshan Niaz
- Department of Microbiology, Hazara University Mansehra
| | - Sayab Khan
- Department of Microbiology, Hazara University Mansehra
| | - Shubana Hayat
- Department of Microbiology, Hazara University Mansehra
| | - Sumel Ashique
- Department of Pharmaceutics, Pandaveswar School of Pharmacy, Pandaveswar, West Bengal, 713378, India
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, 42130, Konya, Turkey
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, D.I.K, 29050, Pakistan
| |
Collapse
|
14
|
Liao XZ, Wang R, Wang X, Li G. Enantioselective total synthesis of (‒)-lucidumone enabled by tandem prins cyclization/cycloetherification sequence. Nat Commun 2024; 15:2647. [PMID: 38531853 DOI: 10.1038/s41467-024-46896-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024] Open
Abstract
The Ganoderma meroterpenoids are a growing class of natural products with architectural complexity, and exhibit a wide range of biological activities. Here, we report an enantioselective total synthesis of the Ganoderma meroterpenoid (‒)-lucidumone. The synthetic route features several key transformations, including a) a Cu-catalyzed enantioselective silicon-tethered intramolecular Diels-Alder cycloaddition to construct the highly functionalized bicyclo[2.2.2]octane moiety; b) Brønsted acid promoted tandem O-deprotection/Prins cyclization/Cycloetherification sequence followed by oxidation to install concurrently the tetrahydrofuran and the fused indanone framework; c) Fleming-Tamao oxidation to generate the secondary hydroxyl; d) an iron-catalyzed Wacker-type oxidation of hindered vinyl group to methyl ketone.
Collapse
Affiliation(s)
- Xian-Zhang Liao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
| | - Ran Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
| | - Xin Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
| | - Guang Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China.
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China.
| |
Collapse
|
15
|
Liu C, Chen F, Fan X, Liu B, Chai X, He S, Huang T, Wang X, Liu L, Liu H, Zeng D, Jiang B, Zhang X, Liu M. Combined NMR and MS-based metabonomics and real-time PCR analyses reveal dynamic metabolic changes of Ganoderma lucidum during fruiting body growing. Food Res Int 2024; 180:114056. [PMID: 38395571 DOI: 10.1016/j.foodres.2024.114056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Ganoderma lucidum (G. lucidum) is a rare medicinal fungus with various beneficial properties. One of its main components, ganoderic acids (GAs), are important triterpenoids known for their sedative and analgesic, hepatoprotective, and anti-tumor activities. Understanding the growth and development of the G. lucidum fruiting body is crucial for determining the optimal time to harvest them. In this study, we used nuclear magnetic resonance (NMR) spectroscopy to systematically characterize the metabolites of G. lucidum at seven distinct developmental stages. We also measured the contents of seven kinds of GAs using LC-MS/MS. A total of 49 metabolites were detected in G. lucidum, including amino acids, sugars, organic acids and GAs. During the transition from the bud development period (I) to the budding period (II), we observed a rapid accumulation of glucose, tyrosine, nicotinamide ribotide, inosine and GAs. After the budding period, the contents of most metabolites decreased until the mature period (VII). In addition, the contents of GAs showed an initial raising, followed by a decline during the elongation period, except for GAF, which exhibited a rapid raise during the mature stage. We also detected the expression of several genes involved in GA synthesis, finding that most genes including 16 cytochrome P450 monooxygenase were all down-regulated during periods IV and VII compared to period I. These findings provide valuable insights into the dynamic metabolic profiles of G. lucidum throughout its growth stage, and it is recommended to harvest G. lucidum at period IV.
Collapse
Affiliation(s)
- Caixiang Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Fangfang Chen
- Songjiang Yunjian High School affiliated to Shanghai Foreign Language School, Shanghai 201600, China; Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xinyu Fan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Biao Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xin Chai
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Sipei He
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Tao Huang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaohua Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Laixing Liu
- School of Management Wuhan Institute of Technology, Wuhan 430205, China.
| | - Huili Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Danyun Zeng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Bin Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; Optics Valley Laboratory, Wuhan 430074, China.
| | - Xu Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; Optics Valley Laboratory, Wuhan 430074, China.
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; Optics Valley Laboratory, Wuhan 430074, China.
| |
Collapse
|
16
|
Li QZ, Xiong C, Wong WC, Zhou LW. Medium composition optimization and characterization of polysaccharides extracted from Ganoderma boninense along with antioxidant activity. Int J Biol Macromol 2024; 260:129528. [PMID: 38246471 DOI: 10.1016/j.ijbiomac.2024.129528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/15/2023] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
Ganoderma is a well-known medicinal macrofungal genus, of which several species have been thoroughly studied from the medicinal perspective, but most species are rarely involved in. In this study, we focus on the polysaccharides extracted from Ganoderma boninense and their antioxidant activity. Ganoderma boninense is a serious pathogen of oil palms that are cultivated commercially in Southeast Asia. Response surface methodology was conducted to optimize the liquid medium composition, and the mycelia biomass reached 7.063 g/L, that is, 1.4-fold compared with the seed medium. The crude and purified polysaccharides extracted from the fermentation broth showed well 1,1-diphenyl-2-picrylhydrazyl and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid radical scavenging abilities, and the scavenging abilities of purified polysaccharides reached 94.47 % and 99.88 %, respectively. Six fractions of polysaccharides were extracted and purified from fruiting bodies, mycelia and fermentation broth separately with the elution buffers of distilled water and 0.1 M NaCl solution. Generally, the polysaccharides from fruiting bodies showed stronger protective effect on H2O2-induced HepG2 cell oxidative damage than other fractions. A total of five to seven monosaccharides were identified in the six fractions of polysaccharides. The correlation analysis revealed that the content of fucose was significantly correlated with the antioxidant activity of polysaccharides, while xylose showed negative correlation results. In summary, the polysaccharides from G. boninense have a potential to be used as natural antioxidants.
Collapse
Affiliation(s)
- Qian-Zhu Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuan Xiong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Chee Wong
- Advanced Agriecological Research Sdn. Bhd., Kota Damansara, Petaling Jaya 47810, Selangor, Malaysia
| | - Li-Wei Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
17
|
Wang Z, Qiu H, Li Y, Zhao M, Liu R. GlPRMT5 inhibits GlPP2C1 via symmetric dimethylation and regulates the biosynthesis of secondary metabolites in Ganoderma lucidum. Commun Biol 2024; 7:241. [PMID: 38418849 PMCID: PMC10902306 DOI: 10.1038/s42003-024-05942-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/20/2024] [Indexed: 03/02/2024] Open
Abstract
PRMT5, a type II arginine methyltransferase, is involved in transcriptional regulation, RNA processing and other biological processes and signal transduction. Secondary metabolites are vital pharmacological compounds in Ganoderma lucidum, and their content is an important indicator for evaluating the quality of G. lucidum. Here, we found that GlPRMT5 negatively regulates the biosynthesis of secondary metabolites. In further in-depth research, GlPP2C1 (a type 2C protein phosphatase) was identified out as an interacting protein of GlPRMT5 by immunoprecipitation-mass spectrometry (IP-MS). Further mass spectrometry detection revealed that GlPRMT5 symmetrically dimethylates the arginine 99 (R99) and arginine 493 (R493) residues of GlPP2C1 to weaken its activity. The symmetrical dimethylation modification of the R99 residue is the key to affecting GlPP2C1 activity. Symmetrical demethylation-modified GlPP2C1 does not affect the interaction with GlPRMT5. In addition, silencing GlPP2C1 clearly reduced GA content, indicating that GlPP2C1 positively regulates the biosynthesis of secondary metabolites in G. lucidum. In summary, this study reveals the molecular mechanism by which GlPRMT5 regulates secondary metabolites, and these studies provide further insights into the target proteins of GlPRMT5 and symmetric dimethylation sites. Furthermore, these studies provide a basis for the mutual regulation between different epigenetic modifications.
Collapse
Affiliation(s)
- Zi Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Hao Qiu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Yefan Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Mingwen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Rui Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China.
| |
Collapse
|
18
|
Cancemi G, Caserta S, Gangemi S, Pioggia G, Allegra A. Exploring the Therapeutic Potential of Ganoderma lucidum in Cancer. J Clin Med 2024; 13:1153. [PMID: 38398467 PMCID: PMC10889924 DOI: 10.3390/jcm13041153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Triterpenoids, such as ganoderic acid, and polysaccharides, including β-D-glucans, α-D-glucans, and α-D-mannans, are the main secondary metabolites of the medicinal fungus Ganoderma lucidum. There is evidence of the effects of ganoderic acid in hematological malignancies, whose mechanisms involve the stimulation of immune response, the macrophage-like differentiation, the activation of MAP-K pathway, an IL3-dependent cytotoxic action, the induction of cytoprotective autophagy, and the induction of apoptosis. In fact, this compound has been tested in twenty-six different human cancer cell types and has shown an anti-proliferative activity, especially in leukemia, lymphoma, and myeloma lines. Moreover, research clarified the capability of molecules from Ganoderma lucidum to induce mitochondrial damage in acute promyelocytic leukemia cells, without cytotoxic effects in normal mononuclear cells. Active lipids extracted from the spores of this fungus have also been shown to induce apoptosis mediated by downregulation of P-Akt and upregulation of caspases-3, -8, and -9. Among in vivo studies, a study in BALB/c mice injected with WEHI-3 leukemic cells suggested that treatment with Ganoderma lucidum promotes differentiation of T- and B-cell precursors, phagocytosis by PBMCs, and NK cell activity. Our review presents data revealing the possibility of employing Ganoderma lucidum in hematological malignancies and incorporating it into clinical practice.
Collapse
Affiliation(s)
- Gabriella Cancemi
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, via Consolare Valeria, 98125 Messina, Italy
| | - Santino Caserta
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, via Consolare Valeria, 98125 Messina, Italy
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy
| | - Alessandro Allegra
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, via Consolare Valeria, 98125 Messina, Italy
| |
Collapse
|
19
|
Ahmad MF, A. Alsayegh A, Ahmad FA, Akhtar MS, Alavudeen SS, Bantun F, Wahab S, Ahmed A, Ali M, Elbendary EY, Raposo A, Kambal N, H. Abdelrahman M. Ganoderma lucidum: Insight into antimicrobial and antioxidant properties with development of secondary metabolites. Heliyon 2024; 10:e25607. [PMID: 38356540 PMCID: PMC10865332 DOI: 10.1016/j.heliyon.2024.e25607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 12/15/2023] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
Ganoderma lucidum is a versatile mushroom. Polysaccharides and triterpenoids are the major bioactive compounds and have been used as traditional medicinal mushrooms since ancient times. They are currently used as nutraceuticals and functional foods. G. lucidum extracts and their bioactive compounds have been used as an alternative to antioxidants and antimicrobial agents. Secondary metabolites with many medicinal properties make it a possible substitute that could be applied as immunomodulatory, anticancer, antimicrobial, anti-oxidant, anti-inflammatory, and anti-diabetic. The miraculous properties of secondary metabolites fascinate researchers for their development and production. Recent studies have paid close attention to the different physical, genetic, biochemical, and nutritional parameters that potentiate the production of secondary metabolites. This review is an effort to collect biologically active constituents from G. lucidum that reveal potential actions against diseases with the latest improvement in a novel technique to get maximum production of secondary metabolites. Studies are going ahead to determine the efficacy of numerous compounds and assess the valuable properties achieved by G. lucidum in favor of antimicrobial and antioxidant outcomes.
Collapse
Affiliation(s)
- Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Science, Jazan University, Jazan, 45142, Saudi Arabia
| | - Abdulrahman A. Alsayegh
- Department of Clinical Nutrition, College of Applied Medical Science, Jazan University, Jazan, 45142, Saudi Arabia
| | - Fakhruddin Ali Ahmad
- Department of Basic and Applied Science, School of Engineering and Science, G.D Goenka University, Gru Gram, 122103, Haryana, India
| | - Md Sayeed Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, AlFara, Abha, 62223, Saudi Arabia
| | - Sirajudeen S. Alavudeen
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, AlFara, Abha, 62223, Saudi Arabia
| | - Farkad Bantun
- Department of Microbiology and Parasitology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Awais Ahmed
- Department of Management, Shri JJT University, Rajasthan, Post code; 333010, India
| | - M. Ali
- Department of Pharmacognosy, CBS College of Pharmacy & Technology (Pt. B. D. Sharma University of Health Sciences), Chandpur, Faridabad, Haryana, 121101, India
| | - Ehab Y. Elbendary
- Department of Clinical Nutrition, College of Applied Medical Science, Jazan University, Jazan, 45142, Saudi Arabia
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades Tecnologias, Campo Grande 376, 1749-024, Lisboa, Portugal
| | - Nahla Kambal
- Department of Clinical Nutrition, College of Applied Medical Science, Jazan University, Jazan, 45142, Saudi Arabia
| | - Mohamed H. Abdelrahman
- College of Applied Medical Sciences, Medical Laboratory Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| |
Collapse
|
20
|
Sun L, Li SD, Li Y, Wang L, Pu XM, Ge YP, Na Q, Li WH, Cheng XH. Population genetics provides insights into the important agronomic traits of Ganoderma cultivation varieties in China. Gene 2024; 893:147938. [PMID: 38381508 DOI: 10.1016/j.gene.2023.147938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 02/22/2024]
Abstract
This study aimed to investigate the species diversity and genetic differentiation of the genome of the main cultivated strains of Ganoderma in China. Population genomics analysis was conducted based on 150 cultivated strains of Ganoderma collected nationwide. The results indicated that the main species currently cultivated in China were Ganoderma sichuanense and Ganoderma lucidum, with a minor proportion of Ganoderma sessile, Ganoderma weberianum, Ganoderma sinense, Ganoderma gibbosum and Ganoderma australe. A total of 336,506 high-quality single nucleotide polymorphism (SNP) loci were obtained through population evolution analysis. The Fst values were calculated using a 5-kb sliding window, which ranged from 0.11 to 0.74. This suggests varying degrees of genetic differentiation between populations and genetic exchange among varieties. On this basis, the genes related to the stipe length, cap color and branch phenotypes of Ganoderma were excavated, and the region with the top 1% ZFst value region was used as a candidate region. A total of 137, 270 and 222 candidate genes were identified in the aforementioned 3 phenotypes, respectively. Gene annotation revealed that genes associated with stipe length were mainly related to cell division and differentiation, including proteins such as Nse4 protein and DIM1 protein. The genes related to Ganoderma red color were mainly related to the metabolism of tryptophan and flavonoids. The genes related to the branch were mainly related to cytokinin synthesis, ABC transporter and cytochrome P450. This study provided 150 valuable genome resequencing data in assessing the diversity and genetic differentiation of Ganoderma and laid a foundation for agronomic trait analysis and the development of new varieties of Ganoderma.
Collapse
Affiliation(s)
- Lei Sun
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai 264025, China
| | - Shi-da Li
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai 264025, China
| | - Yin Li
- Yantai Hospital of Traditional Chinese Medicine, Yantai 264013, China
| | - Lei Wang
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai 264025, China
| | - Xiu-Min Pu
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai 264025, China
| | - Yu-Peng Ge
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai 264025, China
| | - Qin Na
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai 264025, China
| | - Wei-Huan Li
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai 264025, China.
| | - Xian-Hao Cheng
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai 264025, China.
| |
Collapse
|
21
|
Li F, Fan H, Sun Q, Di Y, Xia H. Effects of Medium Additives on the Mycelial Growth and Polysaccharide Biosynthesis in Submerged Culture of Bjerkandera fumosa. Molecules 2024; 29:422. [PMID: 38257335 PMCID: PMC10818688 DOI: 10.3390/molecules29020422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/29/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Medium additives have been shown to affect the synthesis of active products in fungi. This study investigated the effects of corn stalk, poplar sawdust, Tween-80, and oleic acid on mycelial biomass and physicochemical properties, as well as the bioactivity of polysaccharides, including exopolysaccharides (EPS) and intracellular polysaccharides (IPS), in the submerged culture of Bjerkandera fumosa. Results showed that the addition of corn stalk or poplar sawdust increased the production of EPS but decreased the production of IPS; Tween-80 had less effect on the production of EPS and IPS; and oleic acid stimulated polysaccharide production significantly. Polysaccharide property analysis showed that the addition of corn stalk or poplar sawdust promoted the production of high-molecular-weight components in polysaccharides and changed the monosaccharide composition of polysaccharides, as well as increased the mannose, glucuronic acid, and xylose contents of IPS. Tween-80 and oleic acid also changed the molecular weight distribution of polysaccharides but only slightly affected the composition of monosaccharides. The bioactivity assay indicated that the polysaccharides obtained by adding corn stalk possessed high hydroxyl radical scavenging and antitumor activities. The effect of poplar sawdust was slightly weaker than that of corn stalk. EPS and IPS obtained from a culture with Tween-80 and oleic acid possessed low antioxidant activity. Moreover, their antitumor activity was improved and lost, respectively. The results obtained in this work are useful for improving the understanding of the optimization and regulation of bioactive polysaccharide production in the submerged culture of B. fumosa.
Collapse
Affiliation(s)
| | | | | | | | - Hongmei Xia
- Engineering Research Center of Glycoconjugates Ministry of Education, School of Life Sciences, Northeast Normal University, Changchun 130024, China; (F.L.); (H.F.); (Q.S.); (Y.D.)
| |
Collapse
|
22
|
Sun X, Wang J, Cheng M, Qi Y, Han C. Strategies to Increase the Production of Triterpene Acids in Ligzhi or Reishi Medicinal Mushroom (Ganoderma lucidum, Agaricomycetes): A Review. Int J Med Mushrooms 2024; 26:25-41. [PMID: 38780421 DOI: 10.1615/intjmedmushrooms.2024052871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Ganoderic acids (GAs) are the main active ingredient of Ganoderma lucidum, which has been widely accepted as a medicinal mushroom. Due to the low yield of GAs produced by liquid cultured Ganoderma mycelium and solid cultured fruiting bodies, the commercial production and clinical application of GAs are limited. Therefore, it is important to increase the yield of GA in G. lucidum. A comprehensive literature search was performed with no set data range using the following keywords such as "triterpene," "ganoderic acids," "Ganoderma lucidum," and "Lingzhi" within the main databases including Web of Science, PubMed, and China National Knowledge Infrastructure (CNKI). The data were screened using titles and abstracts and those relevant to the topic were included in the paper and was not limited to studies published in English. Present review focuses on the four aspects: fermentation conditions and substrate, extrinsic elicitor, genetic engineering, and mutagenesis, which play significant roles in increasing triterpene acids production, thus providing an available reference for further research on G. lucidum fermentation.
Collapse
Affiliation(s)
- Xiaomei Sun
- Shandong University of Traditional Chinese Medicine
| | - Jing Wang
- Research and Development Center, Shandong Phoenix Biotechnology Co. Ltd., Taian, Shandong, 271000, P.R. China
| | - Mengtao Cheng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Yitong Qi
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Chunchao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, People's Republic of China; Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, Shandong, 250355, People's Republic of China
| |
Collapse
|
23
|
Mashiko T, Shingai Y, Sakai J, Adachi S, Matsuzawa A, Kamo S, Sugita K. Enantioselective Total Syntheses of (+)-Ganocin A and (-)-Cochlearol B. Org Lett 2023; 25:8382-8386. [PMID: 37955425 DOI: 10.1021/acs.orglett.3c03572] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Herein, we report the total syntheses of (+)-ganocin A and (-)-cochlearol B, featuring pentacyclic skeletons, in optically active forms. We utilized asymmetric Corey-Bakshi-Shibata reduction, phenolic oxidative cyclization, the intramolecular radical cyclization-benzylic oxidative cyclization sequence, and intramolecular [2 + 2] photocycloaddition. These key steps enabled enantioselective access with the longest linear sequence of 17 steps and 9% overall yield for (+)-ganocin A and with 16 steps and 9% overall yield for (-)-cohlearol B.
Collapse
Affiliation(s)
- Tomoya Mashiko
- Department of Synthetic Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Yuta Shingai
- Department of Synthetic Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Jun Sakai
- Department of Synthetic Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Shinya Adachi
- Department of Synthetic Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Akinobu Matsuzawa
- Department of Synthetic Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Shogo Kamo
- Department of Synthetic Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Kazuyuki Sugita
- Department of Synthetic Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| |
Collapse
|
24
|
Liu D, Diao W, Sun X, Zong J, Qi X, Liang C. Application of Miscanthus substrates in the cultivation of Ganoderma lingzhi. Arch Microbiol 2023; 205:384. [PMID: 37975884 DOI: 10.1007/s00203-023-03720-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
Ganoderma lingzhi is a traditional Chinese medicine that has been used to improve health and longevity for thousands of years. It is usually cultivated on hardwood log- or sawdust-based formulations. Conversely, in this study, we used Miscanthus sacchariflorus (MSF), M. floridulus, and M. sinensis (MSS), fast-growing perennial grasses widely distributed in China, for G. lingzhi cultivation. Mycelial growth rate, activities of lignin-degrading enzymes on colonized mushroom substrates, and expression levels of CAZymes and laccase genes based on different substrates were analyzed. Total triterpenoids, sterols, and polysaccharides content of fruiting bodies obtained from different substrates were investigated. The activities of laccase and manganese peroxidase in mycelia increased in the MSF- and MSS-based formulations compared with that in the sawdust-based formulation. The results of mycelial growth- and cultivation-related experiments showed that the Miscanthus substrates could be used as the substrates for cultivating G. lingzhi. The content of active ingredients, namely triterpenoids, sterols, and polysaccharides, in fruiting bodies cultivated on the Miscanthus substrates did not decrease compared with those in substrate obtained from the sawdust-based formulation. Therefore, the present study provides alternative substrates for the cultivation of G. lingzhi, and a reference for better utilization of inexpensive substrate in future.
Collapse
Affiliation(s)
- Dongmei Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Wentong Diao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Xueyan Sun
- Research Center for Environmental Ecology and Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Junqin Zong
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Xiwu Qi
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Chengyuan Liang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
| |
Collapse
|
25
|
Jin Yang H, Kwon EB, Choi JG, Li W. Sarcodonol A-D from fruiting bodies of Sarcodon imbricatus inhibits HCoV-OC43 induced apoptosis in MRC-5 cells. Bioorg Chem 2023; 140:106824. [PMID: 37669581 DOI: 10.1016/j.bioorg.2023.106824] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/16/2023] [Accepted: 08/28/2023] [Indexed: 09/07/2023]
Abstract
Four new 26-carboxylated ergostane-type sterols (Sarcodonol A-D) were isolated from 70% ethanol extracts of dried fruiting bodies of Sarcodon imbricatus. Their chemical structures were elucidated using 1D- and 2D-nuclear magnetic resonance and high-resolution electrospray ionization mass spectrometry, and confirmed by comparison with previously reported data. As far as we know, this is the first instance of isolating a 26-carboxylated ergostane-type sterol from nature. The determined antiviral efficacy of sarcodonol A-D (1-4) against HCoV-OC43 in MRC-5 cells confirmed that sarcodonol D (4) had significant antiviral activity. Notably, sarcodonol D (4) potently blocked virus infection at low-micromolar concentration and showed high SI (IC50 = 2.26 μM; CC50 > 100 μM; SI > 44.2). In addition, this research shows that the antiviral effect of sarcodonol D (4) via reduced apoptosis increased by viral infection is through mitochondrial stress regulation. This suggests that sarcodonol D (4) is a potential candidate for use as an antiviral treatment.
Collapse
Affiliation(s)
- Hye Jin Yang
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea; College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea
| | - Eun-Bin Kwon
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Jang-Gi Choi
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Wei Li
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea.
| |
Collapse
|
26
|
Yang L, Zhang TT, Ma QY, Xie QY, Guo JC, Lu JJ, Yu ZF, Dai HF, Zhao YX. Lanostane triterpenoids with anti-proliferative and PTP1B/α-glucosidase inhibitory activities from the fruiting bodies of Ganoderma calidophilum. PHYTOCHEMISTRY 2023; 215:113856. [PMID: 37717643 DOI: 10.1016/j.phytochem.2023.113856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/29/2023] [Accepted: 09/09/2023] [Indexed: 09/19/2023]
Abstract
Twelve previously undescribed and four known lanostane triterpenoids were isolated from the fruiting bodies of Ganoderma calidophilum. The structures of undescribed compounds, ganodecalones H-S (1-12), were elucidated by extensive spectroscopic analysis as well as ECD and NMR calculations. Compound 4 showed significant inhibitory activity against human leukaemia cell line K562, gastric cancer cell line SGC-7901, and cervical cancer cell line HeLa with IC50 values of 13.10 ± 0.19, 17.26 ± 4.75, and 4.36 ± 0.58 μM, respectively. Compound 16 exhibited inhibitory potency against protein tyrosine phosphatase 1B (PTP1B) and α-glucosidase with IC50 values of 30.2 ± 0.13 μM and 120.6 ± 0.14 μM, respectively. The binding sites and interactions of 16 with PTP1B and α-glucosidase were revealed using molecular docking simulations.
Collapse
Affiliation(s)
- Li Yang
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Ting-Ting Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qing-Yun Ma
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Qing-Yi Xie
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Jiao-Cen Guo
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Jia-Ju Lu
- Guizhou Institute of Subtropical Crops, Xingyi, Guizhou, 562400, China
| | - Zhi-Fang Yu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Hao-Fu Dai
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| | - You-Xing Zhao
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| |
Collapse
|
27
|
Chinthanom P, Vichai V, Rachtawee P, Boonpratuang T, Isaka M. Antimalarial Lanostane Dimers from Artificially Cultivated Fruiting Bodies of Ganoderma weberianum. JOURNAL OF NATURAL PRODUCTS 2023; 86:2304-2314. [PMID: 37816683 DOI: 10.1021/acs.jnatprod.3c00457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Investigation of cultivated fruiting bodies of Ganoderma weberianum led to the isolation of 11 previously unreported lanostane dimers, ganoweberianones C (3a), D (4a), E (5a), F (6a), G (7a), and H (8a) and isoganoweberianones A (1b), B (2b), D (4b), G (7b), and H (8b). Six new ganodermanontriol derivatives as three pairs of diastereomers (11/12, 13/14, and 15/16) and five new ganoweberianic acids (17-21) were also isolated. A method for semisynthesis of lanostane dimers by condensation of natural lanostanes was established, which was utilized in the structure elucidation and NMR data assignments of the undescribed natural lanostane dimers. Ganoweberianone D (4a) and isoganoweberianone D (4b) showed significant antimalarial activity against Plasmodium falciparum K1 (multidrug-resistant strain) with IC50 values of 0.057 and 0.035 μM, respectively, whereas their cytotoxicity to Vero cells was weaker (IC50 8.1 and 19 μM, respectively).
Collapse
Affiliation(s)
- Panida Chinthanom
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Klong Luang, Pathumthani 12120, Thailand
| | - Vanicha Vichai
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Klong Luang, Pathumthani 12120, Thailand
| | - Pranee Rachtawee
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Klong Luang, Pathumthani 12120, Thailand
| | - Thitiya Boonpratuang
- National Biobank of Thailand (NBT), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Klong Luang, Pathumthani 12120, Thailand
| | - Masahiko Isaka
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Klong Luang, Pathumthani 12120, Thailand
| |
Collapse
|
28
|
Cadar E, Negreanu-Pirjol T, Pascale C, Sirbu R, Prasacu I, Negreanu-Pirjol BS, Tomescu CL, Ionescu AM. Natural Bio-Compounds from Ganoderma lucidum and Their Beneficial Biological Actions for Anticancer Application: A Review. Antioxidants (Basel) 2023; 12:1907. [PMID: 38001761 PMCID: PMC10669212 DOI: 10.3390/antiox12111907] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Ganoderma lucidum (G. lucidum) has been known for many centuries in Asian countries under different names, varying depending on the country. The objective of this review is to investigate the scientific research on the natural active bio-compounds in extracts obtained from G. lucidum with significant biological actions in the treatment of cancer. This review presents the classes of bio-compounds existing in G. lucidum that have been reported over time in the main databases and have shown important biological actions in the treatment of cancer. The results highlight the fact that G. lucidum possesses important bioactive compounds such as polysaccharides, triterpenoids, sterols, proteins, nucleotides, fatty acids, vitamins, and minerals, which have been demonstrated to exhibit multiple anticancer effects, namely immunomodulatory, anti-proliferative, cytotoxic, and antioxidant action. The potential health benefits of G. lucidum are systematized based on biological actions. The findings present evidence regarding the lack of certainty about the effects of G. lucidum bio-compounds in treating different forms of cancer, which may be due to the use of different types of Ganoderma formulations, differences in the study populations, or due to drug-disease interactions. In the future, larger clinical trials are needed to clarify the potential benefits of pharmaceutical preparations of G. lucidum, standardized by the known active components in the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Emin Cadar
- Faculty of Pharmacy, “Ovidius” University of Constanta, Capitan Aviator Al. Serbanescu Street, No. 6, Campus, Building C, 900470 Constanta, Romania; (E.C.); (B.-S.N.-P.)
| | - Ticuta Negreanu-Pirjol
- Faculty of Pharmacy, “Ovidius” University of Constanta, Capitan Aviator Al. Serbanescu Street, No. 6, Campus, Building C, 900470 Constanta, Romania; (E.C.); (B.-S.N.-P.)
- Academy of Romanian Scientists, Ilfov Street, No. 3, 050044 Bucharest, Romania
| | - Carolina Pascale
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania;
| | - Rodica Sirbu
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania;
| | - Irina Prasacu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy of Bucharest, Traian Vuia Street, No. 6, Sector 2, 020956 Bucharest, Romania;
| | - Bogdan-Stefan Negreanu-Pirjol
- Faculty of Pharmacy, “Ovidius” University of Constanta, Capitan Aviator Al. Serbanescu Street, No. 6, Campus, Building C, 900470 Constanta, Romania; (E.C.); (B.-S.N.-P.)
| | - Cezar Laurentiu Tomescu
- Faculty of Medicine, “Ovidius” University of Constanta, University Alley, No. 1, Campus, Building B, 900470 Constanta, Romania; (C.L.T.); (A.-M.I.)
- “Sf. Ap. Andrei” County Clinical Emergency Hospital, Tomis Bvd., No. 145, 900591 Constanta, Romania
| | - Ana-Maria Ionescu
- Faculty of Medicine, “Ovidius” University of Constanta, University Alley, No. 1, Campus, Building B, 900470 Constanta, Romania; (C.L.T.); (A.-M.I.)
- Clinical Hospital C F Constanta, 1 Mai Bvd., No. 3–5, 900123 Constanta, Romania
| |
Collapse
|
29
|
Mousavi SM, Hashemi SA, Gholami A, Omidifar N, Chiang WH, Neralla VR, Yousefi K, Shokripour M. Ganoderma lucidum methanolic extract as a potent phytoconstituent: characterization, in-vitro antimicrobial and cytotoxic activity. Sci Rep 2023; 13:17326. [PMID: 37833299 PMCID: PMC10576041 DOI: 10.1038/s41598-023-44135-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Ganoderma lucidum methanolic extract (GLME) has attracted tremendous attention due to its exceptional antimicrobial and anticancer properties that can be delicately tuned by controlling the initial extraction's content and concentration. Herein, we detailed the characterization, antimicrobial, and cytotoxic performance of GLME as a potential multi-functional therapeutic agent. Accordingly, FTIR, XRD, FESEM, EDX, and HPLC analyses were employed to assess the samples, followed by disc diffusion and microdilution broth methods to test its antibacterial effects against four Gram-positive and Gram-negative bacterial strains, viz., Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. MTT assay was applied to determine the cytotoxic activity of GLME against PDL and Hek-293 normal cell lines and MCF-7 and K-562 cancer cell lines. The IC50 values of 598 µg mL-1 and 291 µg mL-1 were obtained for MCF-7 and K-562 cancer cell lines, which confirmed the stronger anticancer activity of the GLME against blood cancer cells than breast cancer cells. This is while the IC50 of normal Hek-293 cells is 751 µg mL-1, and the lowest toxicity was observed for normal PDL cells with more than 57% survival at a concentration of 3000 µg mL-1. The results showed that the antibacterial property of this product against E.coli bacteria was higher than streptomycin, so the zone of inhibition was observed as 44 ± 0.09 mm and 30 ± 0.11 mm, respectively. These data provide valuable insights into the therapeutic usage of GLME for treating breast and blood cancers. This work is motivated by research studies looking for pharmacological products to address chronic and acute diseases, where further resources and studies are required to explore such products' adverse effects and toxicity.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Seyyed Alireza Hashemi
- Health Policy Research Center, Health Institute, Shiraz University of Medica Sciences, Shiraz, Iran
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, P.O. Box: 71348-14336, Shiraz, Iran.
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Navid Omidifar
- Biotechnology Research Center, Shiraz University of Medical Sciences, P.O. Box: 71348-14336, Shiraz, Iran.
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.
| | | | - Khadije Yousefi
- Biotechnology Research Center, Shiraz University of Medical Sciences, P.O. Box: 71348-14336, Shiraz, Iran
| | - Mansoureh Shokripour
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
30
|
Sharif Swallah M, Bondzie-Quaye P, Wang H, Shao CS, Hua P, Alrasheed Bashir M, Benjamin Holman J, Sossah FL, Huang Q. Potentialities of Ganoderma lucidum extracts as functional ingredients in food formulation. Food Res Int 2023; 172:113161. [PMID: 37689913 DOI: 10.1016/j.foodres.2023.113161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 09/11/2023]
Abstract
Owing to the recognized therapeutic characteristics of G. lucidum, it is one of the most extensively researched mushrooms as a chemopreventive agent and as a functional food. It is a known wood-degrading basidiomycete possessing numerous pharmacological functions and is termed a natural pharmacy store due to its rich number of active compounds which have proved to portray numerous therapeutic properties. This current review highlights studies on the potentialities of G. lucidum extracts as functional ingredients on organoleptic and nutritional properties of food products (e.g., dairy, wine, beverage, bakery, meat, and other products). In addition, the study delved into various aspects of encapsulated G. lucidum extracts, their morphological and rheological characteristics, prebiotic and immunomodulatory importance, the effects on apoptosis, autophagy, cancer therapy, inflammatory responses, oxidative stress, antioxidant activities, and safety concerns. These findings have significant implications for the development of new products in the food and pharmaceutical industries. On the other hand, the various active compounds extracted from G. lucidum exhibited no toxic or adverse effects, and the appeal for it as a dietary food, natural remedy, and health-fortifying food is drastically increasing as well as attracting the interest of both the industrial and scientific communities. Furthermore, the formation of functional foods based on G. lucidum appears to have actual promise and exciting prospects in nutrition, food, and pharmaceutical sciences.
Collapse
Affiliation(s)
- Mohammed Sharif Swallah
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Precious Bondzie-Quaye
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Han Wang
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Chang-Sheng Shao
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Pei Hua
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Mona Alrasheed Bashir
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Joseph Benjamin Holman
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Frederick Leo Sossah
- Council for Scientific and Industrial Research (CSIR), Oil Palm Research Institute, Coconut Research Programme, P.O. Box 245, Sekondi, Ghana
| | - Qing Huang
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
31
|
Chinthanom P, Dokladda K, Vichai V, Choeyklin R, Thongpanchang C, Isaka M. Chemical analysis and antitubercular activity evaluation of the dried mycelial powders of the basidiomycete Ganoderma australe TBRC-BCC 22314. Fitoterapia 2023; 169:105597. [PMID: 37380134 DOI: 10.1016/j.fitote.2023.105597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 06/30/2023]
Abstract
The isolation of lanostane triterpenoids possessing significant anti-tuberculosis (anti-TB) activity from mycelial cultures of the basidiomycete Ganoderma australe strain TBRC-BCC 22314 was previously reported. To demonstrate the potential of the dried mycelial powder for utilization in anti-TB medicinal products, its authentic chemical analysis was performed. Considering the possibility of the changes in the lanostane compositions and anti-TB activity by sterilization, both autoclave treated and non-autoclaved mycelial powder materials were chemically investigated. The study led to the identification of the lanostanes responsible for the activity of the mycelial extract against Mycobacterium tuberculosis H37Ra. The anti-TB activity of the extracts from autoclaved and non-autoclaved mycelial powders were the same (MIC 3.13 μg/mL). However, the analytical results revealed several unique chemical conversions of the lanostanes under the sterilization conditions. The most potent major lanostane, ganodermic acid S (1), was shown to be significantly active also against the extensively drug-resistant (XDR) strains of M. tuberculosis.
Collapse
Affiliation(s)
- Panida Chinthanom
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Klong Luang, Pathumthani 12120, Thailand
| | - Kanchana Dokladda
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Klong Luang, Pathumthani 12120, Thailand
| | - Vanicha Vichai
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Klong Luang, Pathumthani 12120, Thailand
| | - Rattaket Choeyklin
- National Biobank of Thailand (NBT), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Klong Luang, Pathumthani 12120, Thailand
| | - Chawanee Thongpanchang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Klong Luang, Pathumthani 12120, Thailand
| | - Masahiko Isaka
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Klong Luang, Pathumthani 12120, Thailand.
| |
Collapse
|
32
|
Sułkowska-Ziaja K, Trepa M, Olechowska-Jarząb A, Nowak P, Ziaja M, Kała K, Muszyńska B. Natural Compounds of Fungal Origin with Antimicrobial Activity-Potential Cosmetics Applications. Pharmaceuticals (Basel) 2023; 16:1200. [PMID: 37765008 PMCID: PMC10535449 DOI: 10.3390/ph16091200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
The phenomenon of drug resistance in micro-organisms necessitates the search for new compounds capable of combating them. Fungi emerge as a promising source of such compounds as they produce a wide range of secondary metabolites with bacteriostatic or fungistatic activity. These compounds can serve as alternatives for commonly used antibiotics. Furthermore, fungi also accumulate compounds with antiviral activity. This review focuses on filamentous fungi and macrofungi as sources of antimicrobial compounds. The article describes both individual isolated compounds and extracts that exhibit antibacterial, antifungal, and antiviral activity. These compounds are produced by the fruiting bodies and mycelium, as well as the biomass of mycelial cultures. Additionally, this review characterizes the chemical compounds extracted from mushrooms used in the realm of cosmetology; specifically, their antimicrobial activity.
Collapse
Affiliation(s)
- Katarzyna Sułkowska-Ziaja
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Monika Trepa
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Aldona Olechowska-Jarząb
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Street, 30-688 Kraków, Poland
- Department of Microbiology, University Hospital, ul. Jakubowskiego 2, 30-688 Kraków, Poland
| | - Paweł Nowak
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Street, 30-688 Kraków, Poland
| | - Marek Ziaja
- Department of Histology, Faculty of Medicine, Jagiellonian University Medical College, Kopernika 7, 31-034 Kraków, Poland
| | - Katarzyna Kała
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Bożena Muszyńska
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
33
|
Zhao ZZ, Ji BY, Wang ZZ, Si YY, Sun YJ, Chen H, Feng WS, Zheng XK, Liu JK. Lanostane triterpenoids with anti-proliferative and anti-inflammatory activities from medicinal mushroom Ganoderma lingzhi. PHYTOCHEMISTRY 2023; 213:113791. [PMID: 37454886 DOI: 10.1016/j.phytochem.2023.113791] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Eight previously undescribed lanostane triterpenoids and nine known ones were identified from the fruiting bodies of Ganoderma lingzhi S.H. Wu, Y. Cao & Y.C. Dai. Their structures were determined based on spectroscopic data and quantum chemical calculations. Structurally, ganoderane GL-1, featuring a hydrogenated tetramethyls-phenanthraquinone, represents the first example in lanostane nor-triterpenoid group. Biologically, ganoderanes GL-2 and GL-3, distinguished by the presence of a rare "1,11-epoxy" moiety, exhibited significant inhibition against nitric oxide production induced by lipopolysaccharide in RAW264.7 macrophage cells, while ganoderanes GL-4 and GL-8 exhibited bifunctional activities of anti-proliferation and anti-inflammation.
Collapse
Affiliation(s)
- Zhen-Zhu Zhao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Bao-Yu Ji
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Zhen-Zhen Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Ying-Ying Si
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yan-Jun Sun
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Hui Chen
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Wei-Sheng Feng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Xiao-Ke Zheng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Ji-Kai Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China.
| |
Collapse
|
34
|
A narrative review on inhibitory effects of edible mushrooms against malaria and tuberculosis-the world’s deadliest diseases. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Prescott TAK, Hill R, Mas-Claret E, Gaya E, Burns E. Fungal Drug Discovery for Chronic Disease: History, New Discoveries and New Approaches. Biomolecules 2023; 13:986. [PMID: 37371566 DOI: 10.3390/biom13060986] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Fungal-derived drugs include some of the most important medicines ever discovered, and have proved pivotal in treating chronic diseases. Not only have they saved millions of lives, but they have in some cases changed perceptions of what is medically possible. However, now the low-hanging fruit have been discovered it has become much harder to make the kind of discoveries that have characterised past eras of fungal drug discovery. This may be about to change with new commercial players entering the market aiming to apply novel genomic tools to streamline the discovery process. This review examines the discovery history of approved fungal-derived drugs, and those currently in clinical trials for chronic diseases. For key molecules, we discuss their possible ecological functions in nature and how this relates to their use in human medicine. We show how the conservation of drug receptors between fungi and humans means that metabolites intended to inhibit competitor fungi often interact with human drug receptors, sometimes with unintended benefits. We also plot the distribution of drugs, antimicrobial compounds and psychoactive mushrooms onto a fungal tree and compare their distribution to those of all fungal metabolites. Finally, we examine the phenomenon of self-resistance and how this can be used to help predict metabolite mechanism of action and aid the drug discovery process.
Collapse
Affiliation(s)
| | - Rowena Hill
- Earlham Institute, Norwich NR4 7UZ, Norfolk, UK
| | | | - Ester Gaya
- Royal Botanic Gardens, Kew, Richmond TW9 3AB, Surrey, UK
| | - Edie Burns
- Royal Botanic Gardens, Kew, Richmond TW9 3AB, Surrey, UK
| |
Collapse
|
36
|
Ahmad MF, Ahmad FA, Zeyaullah M, Alsayegh AA, Mahmood SE, AlShahrani AM, Khan MS, Shama E, Hamouda A, Elbendary EY, Attia KAHA. Ganoderma lucidum: Novel Insight into Hepatoprotective Potential with Mechanisms of Action. Nutrients 2023; 15:1874. [PMID: 37111092 PMCID: PMC10146730 DOI: 10.3390/nu15081874] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Ganoderma lucidum (G. lucidum) has been widely used for its health benefits as an edible and traditional medicinal mushroom for thousands of years in Asian countries. It is currently used as a nutraceutical and functional food owing to its major bioactive compounds, polysaccharides and triterpenoids. G. lucidum exhibits a broad range of hepatoprotective impacts in various liver disorders, such as hepatic cancer, nonalcoholic fatty liver disease (NAFLD), alcohol-induced liver disease, hepatitis B, hepatic fibrosis, and liver injury induced by carbon tetrachloride (CCl4) and α-amanitin. G. lucidum protects the liver through a broad range of mechanisms that include the modulation of liver Phase I and II enzymes, the suppression of β-glucuronidase, antifibrotic and antiviral actions, the regulation of the production of nitric oxide (NO), the maintenance of hepatocellular calcium homeostasis, immunomodulatory activity, and scavenging free radicals. G. lucidum could signify an encouraging approach for the management of various chronic hepatopathies, and its potential mechanisms make it a distinctive agent when used alone or with other drugs and applied as a functional food, nutraceutical supplement, or adjuvant to modern medicine. This review summarizes the hepatoprotective properties of G. lucidum with its various mechanisms of action on different liver ailments. Biologically active substances derived from G. lucidum are still being studied for their potential benefits in treating different liver ailments.
Collapse
Affiliation(s)
- Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Fakhruddin Ali Ahmad
- Department Forensic Science, School of Engineering and Science, G.D Goenka University, Gurugram 122103, Haryana, India;
| | - Md. Zeyaullah
- Department of Basic Medical Science, College of Applied Medical Sciences, Khamis Mushayt Campus, King Khalid University (KKU), Abha 62561, Saudi Arabia
| | - Abdulrahman A. Alsayegh
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Syed Esam Mahmood
- Department of Family and Community Medicine, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia
| | - Abdullah M. AlShahrani
- Department of Basic Medical Science, College of Applied Medical Sciences, Khamis Mushayt Campus, King Khalid University (KKU), Abha 62561, Saudi Arabia
| | - Mohammad Suhail Khan
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushayt Campus, King Khalid University (KKU), Abha 62561, Saudi Arabia
| | - Eman Shama
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Alshaimaa Hamouda
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Ehab Y. Elbendary
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Kandil Abdel Hai Ali Attia
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
37
|
Ekiz E, Oz E, Abd El-Aty AM, Proestos C, Brennan C, Zeng M, Tomasevic I, Elobeid T, Çadırcı K, Bayrak M, Oz F. Exploring the Potential Medicinal Benefits of Ganoderma lucidum: From Metabolic Disorders to Coronavirus Infections. Foods 2023; 12:1512. [PMID: 37048331 PMCID: PMC10094145 DOI: 10.3390/foods12071512] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Ganoderma lucidum is a medicinal mushroom that has been traditionally used in Chinese medicine for centuries. It has been found to have a wide range of medicinal properties, including antioxidant, anti-inflammatory, and immune-boosting effects. Recent research has focused on the potential benefits of G. lucidum in treating metabolic disorders such as diabetes and obesity, as well as its possible role in preventing and treating infections caused by the coronavirus. Triterpenoids are a major group of bioactive compounds found in G. lucidum, and they have a range of biological activities, including anti-inflammatory and antioxidant properties. These compounds have been found to improve insulin sensitivity and lower blood sugar levels in animal models of diabetes. Additionally, G. lucidum polysaccharides have been found to reduce bodyweight and improve glucose metabolism in animal models of obesity. These polysaccharides can also help to increase the activity of certain white blood cells, which play a critical role in the body's immune response. For coronavirus, some in vitro studies have shown that G. lucidum polysaccharides and triterpenoids have the potential to inhibit coronavirus infection; however, these results have not been validated through clinical trials. Therefore, it would be premature to draw any definitive conclusions about the effectiveness of G. lucidum in preventing or treating coronavirus infections in humans.
Collapse
Affiliation(s)
- Elif Ekiz
- Department of Food Engineering, Agriculture Faculty, Ataturk University, Erzurum 25240, Türkiye
| | - Emel Oz
- Department of Food Engineering, Agriculture Faculty, Ataturk University, Erzurum 25240, Türkiye
| | - A. M. Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Türkiye
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, School of Sciences, National and Kapodistrian University of Athens Zografou, 15784 Athens, Greece
| | - Charles Brennan
- School of Science, RMIT University, Melbourne, VIC 3001, Australia
- Riddet Institute, Palmerston North 4442, New Zealand
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Igor Tomasevic
- Faculty of Agriculture, University of Belgrade, 11000 Belgrade, Serbia
- The German Institute of Food Technologies (DIL) Professor-von-Klitzing-Straße 7, 49610 Quakenbrück, Germany
| | - Tahra Elobeid
- Human Nutrition Department, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Kenan Çadırcı
- Department of Internal Medicine, Erzurum Regional Training and Research Hospital, Health Sciences University, Erzurum 25240, Türkiye
| | - Muharrem Bayrak
- Department of Internal Medicine, Erzurum Regional Training and Research Hospital, Health Sciences University, Erzurum 25240, Türkiye
| | - Fatih Oz
- Department of Food Engineering, Agriculture Faculty, Ataturk University, Erzurum 25240, Türkiye
| |
Collapse
|
38
|
Xu Q, Sheng CY. Lanostane triterpenoids from the fruiting bodies of Ganoderma hainanense and their cytotoxic activity. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2023; 25:342-348. [PMID: 35771834 DOI: 10.1080/10286020.2022.2094787] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Three undescribed lanostane triterpenoids, 24E-en-11-oxo-ganoderiol D (1), 11β-hydroxy-ganoderiol D (2), and 11β-hydroxy-lucidone H (3) were isolated from the 80% EtOH extract of the fruiting bodies of Ganoderma hainanense. Structural elucidation of all the compounds were performed by spectral methods such as 1 D and 2 D (1H-1H COSY, HMQC, and HMBC) NMR spectroscopy. All the triterpenoids were in vitro evaluated for their cytotoxic activities against six mammary adenocarcinoma cell lines (MCF7, MDA-MB-231, SK-BR-3, BT-20, HCC38, and AU565). As a result, compound 3 exhibited significant cytotoxic activities against all tested cell lines with IC50 values less than 20 μM.
Collapse
Affiliation(s)
- Qian Xu
- Department of General Surgery, The First people's Hospital of Taicang City, Taicang Affiliated Hospital of Soochow University, Taicang 215400, China
| | - Chen-Yi Sheng
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| |
Collapse
|
39
|
Re-Examination of the Holotype of Ganoderma sichuanense (Ganodermataceae, Polyporales) and a Clarification of the Identity of Chinese Cultivated Lingzhi. J Fungi (Basel) 2023; 9:jof9030323. [PMID: 36983491 PMCID: PMC10051598 DOI: 10.3390/jof9030323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The widely cultivated Chinese Lingzhi is a famous fungus with significant medicinal and economic value, which has commonly been misidentified as Ganoderma lucidum for a long period of time. The scientific binomial of the fungus is always a hotly debated question that revolves around G. lingzhi and G. sichuanense. To interpret the species concept of the taxon, six specific primers for G. sichuanense and one universal primer were designed. Through directed and nested PCRs, we obtained nine ITS sequences from the holotype (HMAS 42798) of G. sichuanense. By genome sequencing, the ITS sequence of the first cultivated Lingzhi (HMAS 25103) was assembled. Based on a phylogenetic study of the genus Ganoderma, the correct name for widely cultivated Ganoderma species in China was confirmed as G. sichuanense, and G. lingzhi should be a later synonym.
Collapse
|
40
|
Zhang SS, Ma QY, Xie QY, Yang L, Dai HF, Yu ZF, Zhao YX. A New Sesquiterpenoid from the Fruiting Bodies of Amauroderma amoiensis. Chem Nat Compd 2023. [DOI: 10.1007/s10600-023-03919-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
41
|
Wang T, Li X, Zhang C, Xu J. Transcriptome analysis of Ganoderma lingzhi (Agaricomycetes) response to Trichoderma hengshanicum infection. Front Microbiol 2023; 14:1131599. [PMID: 36910175 PMCID: PMC9996313 DOI: 10.3389/fmicb.2023.1131599] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Green mold caused by Trichoderma spp. has become one of the most serious diseases which threatening the production of Ganoderma lingzhi. To understand the possible resistance mechanism of the G. lingzhi response to T. hengshanicum infection, we examined the G. lingzhi transcript accumulation at 0, 12, and 24 h after T. hengshanicum inoculation. The gene expression analysis was conducted on the interaction between G. lingzhi and T. hengshanicum using RNA-seq and digital gene expression (DGE) profiling methods. Transcriptome sequencing indicated that there were 162 differentially expressed genes (DEGs) at three infection time points, containing 15 up-regulated DEGs and 147 down-regulated DEGs. Resistance-related genes thaumatin-like proteins (TLPs) (PR-5s), phenylalanine ammonia-lyase, and Beta-1,3-glucan binding protein were significantly up-regulated. At the three time points of infection, the heat shock proteins (HSPs) genes of G. lingzhi were down-regulated. The down-regulation of HSPs genes led to the inhibition of HSP function, which may compromise the HSP-mediated defense signaling transduction pathway, leading to G. lingzhi susceptibility. Pathway enrichment analyses showed that the main enriched pathways by G. lingzhi after infection were sphingolipid metabolism, ether lipid metabolism, and valine, leucine and isoleucine degradation pathway. Overall, the results described here improve fundamental knowledge of molecular responses to G. lingzhi defense and contribute to the design of strategies against Trichoderma spp.
Collapse
Affiliation(s)
- Tiantian Wang
- Agricultural College, Yanbian University, Yanji, China
- Agricultural College, Jilin Agricultural Science and Technology University, Jilin, China
| | - Xiaobin Li
- Agricultural College, Yanbian University, Yanji, China
- Agricultural College, Jilin Agricultural Science and Technology University, Jilin, China
| | - Chunlan Zhang
- College of Landscape Architecture, Changchun University, Changchun, China
| | - Jize Xu
- Agricultural College, Yanbian University, Yanji, China
- Agricultural College, Jilin Agricultural Science and Technology University, Jilin, China
- College of Plant Sciences, Jilin University, Changchun, China
| |
Collapse
|
42
|
Zheng C, Rangsinth P, Shiu PHT, Wang W, Li R, Li J, Kwan YW, Leung GPH. A Review on the Sources, Structures, and Pharmacological Activities of Lucidenic Acids. Molecules 2023; 28:molecules28041756. [PMID: 36838743 PMCID: PMC9962123 DOI: 10.3390/molecules28041756] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Ganoderma lucidum has long been used as a multi-purpose plant and functional food. The pharmacological properties of G. lucidum are primarily attributed to its polysaccharides and triterpenoids. Ganoderic and lucidenic acids are the two major triterpenoids groups in G. lucidum. Despite the discovery of 22 types of lucidenic acids, research on lucidenic acids is significantly less extensive compared to that on ganoderic acid. To the best of our knowledge, for the first time, in this review, we aimed to summarize the sources, contents, chemical structures, and pharmacological effects, including anti-cancer, anti-inflammatory, antioxidant, anti-viral, neuroprotective, anti-hyperlipidemic, anti-hypercholesterolemic, and anti-diabetic properties, of lucidenic acids. Studies on lucidenic acids are still preliminary and have several limitations. Therefore, more in-depth studies with optimal designs are essential for the development of lucidenic acids as medicines, functional foods, and nutraceuticals.
Collapse
Affiliation(s)
- Chengwen Zheng
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Panthakarn Rangsinth
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Polly H. T. Shiu
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Wen Wang
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Renkai Li
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Jingjing Li
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Yiu-Wa Kwan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - George P. H. Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
- Correspondence:
| |
Collapse
|
43
|
Increasing the production of the bioactive compounds in medicinal mushrooms: an omics perspective. Microb Cell Fact 2023; 22:11. [PMID: 36647087 PMCID: PMC9841694 DOI: 10.1186/s12934-022-02013-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Macroscopic fungi, mainly higher basidiomycetes and some ascomycetes, are considered medicinal mushrooms and have long been used in different areas due to their pharmaceutically/nutritionally valuable bioactive compounds. However, the low production of these bioactive metabolites considerably limits the utilization of medicinal mushrooms both in commerce and clinical trials. As a result, many attempts, ranging from conventional methods to novel approaches, have been made to improve their production. The novel strategies include conducting omics investigations, constructing genome-scale metabolic models, and metabolic engineering. So far, genomics and the combined use of different omics studies are the most utilized omics analyses in medicinal mushroom research (both with 31% contribution), while metabolomics (with 4% contribution) is the least. This article is the first attempt for reviewing omics investigations in medicinal mushrooms with the ultimate aim of bioactive compound overproduction. In this regard, the role of these studies and systems biology in elucidating biosynthetic pathways of bioactive compounds and their contribution to metabolic engineering will be highlighted. Also, limitations of omics investigations and strategies for overcoming them will be provided in order to facilitate the overproduction of valuable bioactive metabolites in these valuable organisms.
Collapse
|
44
|
Sułkowska-Ziaja K, Galanty A, Szewczyk A, Paśko P, Kała K, Apola A, Podolak I, Muszyńska B. Effect of Methyl Jasmonate Elicitation on Triterpene Production and Evaluation of Cytotoxic Activity of Mycelial Culture Extracts of Ganoderma applanatum (Pers.) Pat. PLANTS (BASEL, SWITZERLAND) 2023; 12:294. [PMID: 36679006 PMCID: PMC9867392 DOI: 10.3390/plants12020294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/28/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Abiotic elicitation, a well-known strategy in mushroom biotechnology, promotes increased accumulation of secondary metabolites in mycelial cultures. The study aimed the effects of methyl jasmonate (MeJA) on the production of triterpenes in submerged cultures of Ganoderma applanatum. Further, the study evaluated the cytotoxic activity of the extract corresponding to the optimal elicitation variant in selected human cancer cell lines as well as the selectivity against normal cells. MeJA was added on days 1, 4, 6, and 8 in the 10-day growth cycle at concentrations of 10, 50, 100, 150, and 200 µM MeJA. The HPLC-DAD was used to analyze the triterpenes. The cytotoxic activity was tested using the MTTFc assay in grouped panels of skin, prostate, and gastrointestinal cancer cells. The results of the quantitative analyses confirmed the stimulating effect of MeJA on the production of ganoderic acid A and ganoderic acid C. The greatest increase in total triterpenes was found on day 6 of the culture cycle compared to the control group-with the concentration of MeJA-150 µM. Compared to the control samples, mycelial culture extract after the most productive elicitation variant showed significant cytotoxic activity against prostate cancer cells and moderate effects on melanoma cells. Ganoderma applanatum mycelial cultures can be proposed as a model to study the dynamics of the accumulation of compounds with therapeutic values through abiotic elicitation.
Collapse
Affiliation(s)
- Katarzyna Sułkowska-Ziaja
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Agnieszka Galanty
- Department of Pharmacognosy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Agnieszka Szewczyk
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Paweł Paśko
- Department of Food Chemistry and Nutrition, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Katarzyna Kała
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Anna Apola
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Irma Podolak
- Department of Pharmacognosy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Bożena Muszyńska
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
45
|
Rikame TN, Ranawade PS, Mittal SPK, Barvkar VT, Borde MY, Tak RD. Characterization and Biological Studies of the Terpenoids from Ganoderma resinaceum and Serpula similis (Agaricomycetes). Int J Med Mushrooms 2023; 25:15-31. [PMID: 37947061 DOI: 10.1615/intjmedmushrooms.2023050771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Mycochemical properties and bioactivities of Ganoderma resinaceum and Serpula similis remain unexplored. The present study assessed antioxidant, cytotoxicity, and cell migration abilities of Ganoderma and Serpula extracts, followed by their phytochemical analyses. The MTT assay was conducted to determine the cytotoxicity along with the cell migration studies in human cancer cell lines. The antioxidant profiles were evaluated through DPPH and FRAP assays. Furthermore, LC-MS/MS analysis was performed to elucidate the phytochemicals responsible for anticancer and antioxidant activities. Significant concentration-dependent cytotoxicities of 12.7% and 13.7% were observed against HCT 116 cell lines at 1% and 5% concentrations of the G. resinaceum extract, respectively. Similarly, significant concentration-dependent cytotoxicities of 6.7% and 25.5% were observed at 1% and 5% concentrations of the S. similis extract, respectively. The extracts of G. resinaceum and S. similis both shows better anti-migration potential in lung cancer cells. Both extracts demonstrated good scavenging activity on DPPH and ferric ion free radicals. LC-MS analysis revealed 11 compounds from S. similis and 15 compounds from G. resinaceum fruiting bodies. Compounds such as terpenoids, alkaloids, cytotoxic peptides, and other metabolites were identified as major components in both extracts. These extracts exhibited cytotoxic activity against HCT 116 cancer cells, along with moderate antioxidant activity. This implies that the extracts might be used as bioactive natural sources in the pharmaceutical and food industries.
Collapse
Affiliation(s)
- Tejal N Rikame
- Department of Chemistry, Ahmednagar College, Ahmednagar 414001, MH, India
| | - Preeti S Ranawade
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, MH, India
| | - Smriti P K Mittal
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, MH, India
| | - Vitthal T Barvkar
- Department of Botany, Savitribai Phule Pune University, Pune 411007, MH, India
| | - Mahesh Y Borde
- Department of Botany, Savitribai Phule Pune University, Pune 411007, MH, India
| | - Rajesh D Tak
- Department of Chemistry, Ahmednagar College, Ahmednagar 414001, MH, India
| |
Collapse
|
46
|
Espinosa-García V, Fernandez JJ, Nicolás-Hernández DS, Arberas-Jiménez I, Rodríguez-Expósito RL, Souto ML, Piñero JE, Mendoza G, Lorenzo-Morales J, Trigos Á. Antiparasitic Activity of Compounds Isolated from Ganoderma tuberculosum (Agaricomycetes) from Mexico. Int J Med Mushrooms 2023; 25:63-72. [PMID: 37824406 DOI: 10.1615/intjmedmushrooms.2023049446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The genus Ganoderma has a long history of use in traditional Asiatic medicine due to its different nutritional and medicinal properties. In Mexico, the species G. tuberculosum is used in indigenous communities, for example, the Wixaritari and mestizos of Villa Guerrero Jalisco for the treatment of diseases that may be related to parasitic infections; however, few chemical studies corroborate its traditional medicinal potential. Thereby, the objective of this study was to isolate and identify anti-parasitic activity compounds from a strain of G. tuberculosum native to Mexico. From the fruiting bodies of G. tuberculosum (GVL-21) a hexane extract was obtained which was subjected to guided fractioning to isolate pure compounds. The in vitro anti-parasitic activity of the pure compound (IC50) was assayed against Leishmania amazonensis, Trypanosoma cruzi, Acanthamoeba castellanii Neff, and Naegleria fowleri. Furthermore, the cytotoxicity (CC50) of the isolated compounds was determined against murine macrophages. The guided fractioning produced 5 compounds: ergosterol (1), ergosta-4,6,8(14),22-tetraen-3-one (2), ergosta-7,22-dien-3β-ol (3), 3,5-dihydroxy-ergosta-7,22-dien-6-one (4), and ganoderic acid DM (5). Compounds 2 and 5 showed the best anti-parasitic activity in an IC50 range of 54.34 ± 8.02 to 12.38 ± 2.72 µM against all the parasites assayed and low cytotoxicity against murine macrophages. The present study showed for the first time the in vitro anti-parasitic activity of compounds 1-5 against L. amazonensis, T. cruzi, A. castellanii Neff, and N. fowleri, corroborating the medicinal potential of Ganoderma and its traditional applications.
Collapse
Affiliation(s)
- Victoria Espinosa-García
- Instituto de Biotecnología y Ecología Aplicada, Universidad Veracruzana, Av. de las Culturas Veracruzanas 101, 91090 Xalapa, Veracruz, México
| | - Jose J Fernandez
- Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avda. Astrofísico F. Sánchez 2, 38206 La Laguna, Tenerife, Spain; Departamento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico F. Sánchez 2, 38206 La Laguna, Tenerife, Spain
| | - Desirée San Nicolás-Hernández
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Avda. Astrofísico F. Sánchez s/n, 38206 La Laguna, Tenerife, Spain; Red de Investigación Cooperativa en Enfermedades Tropicales, Madrid, Spain
| | - Iñigo Arberas-Jiménez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Avda. Astrofísico F. Sánchez s/n, 38206 La Laguna, Tenerife, Spain; Red de Investigación Cooperativa en Enfermedades Tropicales, Madrid, Spain
| | - Rubén L Rodríguez-Expósito
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Avda. Astrofísico F. Sánchez s/n, 38206 La Laguna, Tenerife, Spain; Red de Investigación Cooperativa en Enfermedades Tropicales, Madrid, Spain
| | - María L Souto
- Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avda. Astrofísico F. Sánchez 2, 38206 La Laguna, Tenerife, Spain; Departamento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico F. Sánchez 2, 38206 La Laguna, Tenerife, Spain
| | - José E Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Avda. Astrofísico F. Sánchez s/n, 38206 La Laguna, Tenerife, Spain; Red de Investigación Cooperativa en Enfermedades Tropicales, Madrid, Spain
| | - Guillermo Mendoza
- Centro de Investigación en Micología Aplicada, Universidad Veracruzana, Calle Médicos 5, Unidad del Bosque, 91010 Xalapa, Veracruz, México
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Avda. Astrofísico F. Sánchez s/n, 38206 La Laguna, Tenerife, Spain; Red de Investigación Cooperativa en Enfermedades Tropicales, Madrid, Spain
| | - Ángel Trigos
- Centro de Investigación en Micología Aplicada, Universidad Veracruzana, Calle Médicos 5, Unidad del Bosque, 91010 Xalapa, Veracruz, México
| |
Collapse
|
47
|
Wu P, Xiao W, Luo Y, Xiong Z, Chen X, He J, Sha A, Gui M, Li Q. Comprehensive analysis of codon bias in 13 Ganoderma mitochondrial genomes. Front Microbiol 2023; 14:1170790. [PMID: 37213503 PMCID: PMC10192751 DOI: 10.3389/fmicb.2023.1170790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/12/2023] [Indexed: 05/23/2023] Open
Abstract
Introduction Codon usage bias is a prevalent phenomenon observed across various species and genes. However, the specific attributes of codon usage in the mitochondrial genome of Ganoderma species remain unknown. Methods In this study, we investigated the codon bias of 12 mitochondrial core protein-coding genes (PCGs) in 9 Ganoderma species, including 13 Ganoderma strains. Results The codons of all Ganoderma strains showed a preference for ending in A/T. Additionally, correlations between codon base composition and the codon adaptation index (CAI), codon bias index (CBI) and frequency of optimal codons (FOP) were identified, demonstrating the impact of base composition on codon bias. Various base bias indicators were found to vary between or within Ganoderma strains, including GC3s, the CAI, the CBI, and the FOP. The results also revealed that the mitochondrial core PCGs of Ganoderma have an average effective number of codons (ENC) lower than 35, indicating strong bias toward certain codons. Evidence from neutrality plot and PR2-bias plot analysis indicates that natural selection is a major factor affecting codon bias in Ganoderma. Additionally, 11 to 22 optimal codons (ΔRSCU>0.08 and RSCU>1) were identified in 13 Ganoderma strains, with GCA, AUC, and UUC being the most widely used optimal codons in Ganoderma. By analyzing the combined mitochondrial sequences and relative synonymous codon usage (RSCU) values, the genetic relationships between or within Ganoderma strains were determined, indicating variations between them. Nevertheless, RSCU-based analysis illustrated the intra- and interspecies relationships of certain Ganoderma species. Discussion This study deepens our insight into the synonymous codon usage characteristics, genetics, and evolution of this important fungal group.
Collapse
Affiliation(s)
- Peng Wu
- Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Wenqi Xiao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Yingyong Luo
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Zhuang Xiong
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Xiaodie Chen
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Jing He
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Ajia Sha
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Mingying Gui
- Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunnan Agricultural University, Kunming, Yunnan, China
- *Correspondence: Mingying Gui,
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
- Qiang Li,
| |
Collapse
|
48
|
Olou B, Langer E, Ryvarden L, Krah FS, Hounwanou G, Piepenbring M, Yorou N. New records and barcode sequence data of wood-inhabiting polypores in Benin with notes on their phylogenetic placements and distribution. Fungal Syst Evol 2023; 11:11-42. [PMID: 37469936 PMCID: PMC10353294 DOI: 10.3114/fuse.2023.11.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/13/2023] [Indexed: 07/21/2023] Open
Abstract
Wood-inhabiting fungi (WIF), such as polypores, are extremely species-rich and play vital roles in the functioning of forest ecosystems as decomposers. Despite the importance of polypores, our knowledge of the diversity and distribution of these fungi is still poor in general and especially for West Africa. To advance our knowledge we here summarise results from field collections between 2017 and 2021 and present (i) a taxonomic overview, (ii) phylogenetic placements and (iii) an illustrated catalogue of wood-inhabiting polypore fungi with colour pictures. During the field sampling campaigns, we collected 647 specimens. Based on morphological characteristics and molecular barcode data, 76 polypore species belonging to six orders, 15 families and 39 genera were identified. Of the 76 species, 30 are new to the West Africa, 69 new to Benin, and two new combinations Fuscoporia beninensis and Megasporia minuta are proposed. With this summary, we provide new data for further research. Citation: Olou BA, Langer E, Ryvarden L, Krah F-S, Hounwanou GB, Piepenbring M, Yorou NS (2023). New records and barcode sequence data of wood-inhabiting polypores in Benin with notes on their phylogenetic placements and distribution. Fungal Systematics and Evolution 11: 11-42. doi: 10.3114/fuse.2023.11.02.
Collapse
Affiliation(s)
- B.A. Olou
- Research Unit Tropical Mycology and Plants-Soil Fungi Interactions (MyTIPS), Faculty of Agronomy, University of Parakou, BP 123 Parakou, Benin
| | - E. Langer
- Department of Ecology, University of Kassel, Heinrich-Plett-Str. 40, Kassel, Germany
| | - L. Ryvarden
- Institute of Biology, University of Oslo, P.O. Box 1066, Blindern, N-0316 Oslo, Norway
| | - F.-S. Krah
- Faculty of Biological Sciences, Institute for Ecology, Evolution and Diversity, Conservation Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - G.B. Hounwanou
- Research Unit Tropical Mycology and Plants-Soil Fungi Interactions (MyTIPS), Faculty of Agronomy, University of Parakou, BP 123 Parakou, Benin
| | - M. Piepenbring
- Department of Mycology, Goethe University Frankfurt am Main, Biologicum, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| | - N.S. Yorou
- Research Unit Tropical Mycology and Plants-Soil Fungi Interactions (MyTIPS), Faculty of Agronomy, University of Parakou, BP 123 Parakou, Benin
| |
Collapse
|
49
|
Galappaththi MCA, Patabendige NM, Premarathne BM, Hapuarachchi KK, Tibpromma S, Dai DQ, Suwannarach N, Rapior S, Karunarathna SC. A Review of Ganoderma Triterpenoids and Their Bioactivities. Biomolecules 2022; 13:24. [PMID: 36671409 PMCID: PMC9856212 DOI: 10.3390/biom13010024] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022] Open
Abstract
For centuries, Ganoderma has been used as a traditional medicine in Asian countries to prevent and treat various diseases. Numerous publications are stating that Ganoderma species have a variety of beneficial medicinal properties, and investigations on different metabolic regulations of Ganoderma species, extracts or isolated compounds have been performed both in vitro and in vivo. However, it has frequently been questioned whether Ganoderma is simply a dietary supplement for health or just a useful "medication" for restorative purposes. More than 600 chemical compounds including alkaloids, meroterpenoids, nucleobases, nucleosides, polysaccharides, proteins, steroids and triterpenes were extracted and identified from Ganoderma, with triterpenes serving as the primary components. In recent years, Ganoderma triterpenes and other small molecular constituents have aroused the interest of chemists and pharmacologists. Meanwhile, considering the significance of the triterpene constituents in the development of new drugs, this review describes 495 compounds from 25 Ganoderma species published between 1984 and 2022, commenting on their source, biosynthetic pathway, identification, biological activities and biosynthesis, together with applications of advanced analytical techniques to the characterization of Ganoderma triterpenoids.
Collapse
Affiliation(s)
- Mahesh C. A. Galappaththi
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
- Postgraduate Institute of Science (PGIS), University of Peradeniya, Peradeniya 20400, Sri Lanka
| | | | | | - Kalani K. Hapuarachchi
- The Engineering Research Center of Southwest Bio-Pharmaceutical Resource Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Saowaluck Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Dong-Qin Dai
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sylvie Rapior
- Laboratory of Botany, Phytochemistry and Mycology, Faculty of Pharmacy, Univ Montpellier, 15 Avenue Charles Flahault, CS 14491, CEDEX 5, 34093 Montpellier, France
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Natural Substances and Chemical Mediation Team, 15 Avenue Charles Flahault, CS 14491, CEDEX 5, 34093 Montpellier, France
| | - Samantha C. Karunarathna
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| |
Collapse
|
50
|
Viet Hung T, Thang PNT, Hien HM, Diep VT, Thu NT, Tan DM, Pham DT, Thi Ha D, Huynh DTM. Cytotoxic Activities and Fingerprint Analysis of Triterpenes by HPTLC Technique for Distinguishing Ganoderma Species from Vietnam and other Asian Countries. PLANTS (BASEL, SWITZERLAND) 2022; 11:3397. [PMID: 36501435 PMCID: PMC9738896 DOI: 10.3390/plants11233397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Ganoderma lucidum (Fr.) P. Karst. (Ganodermataceae), commonly called Linhzhi, is traditionally employed in the treatment of human diseases, including hepatitis, liver disorders, hypercholesterolemia, arthritis, bronchitis, and tumorigenic diseases. In this study, the fingerprint profiles of five different strains of G. lucidum originated from Japan, Korea, China, and Vietnam, five samples of G. lucidum growing on Erythrophloeum fordii Oliv. in Vietnam, and five related Linhzhi species (Ganoderma applanatum, Ganoderma australe, Ganoderma clossum, Ganoderma subresinosu, and Ganoderma sp.) were investigated for triterpene derivatives using high-pressure, thin-layer chromatography (HPTLC). The HPTLC fingerprint profiles demonstrated significant differences between G. lucidum and other related Linhzhi species in the presence of triterpene derivatives. Evaluation for the cytotoxicity of these samples against four cancer cell lines, including A549, MCF7, PC3, and HepG2, displayed various levels of cytotoxic effects, with IC50 values of: 15.6-46.3 µg/mL on the A549 cancer cell line, of 18.4-43.6 µg/mL on the MCF7 cancer cell line, of 10.0-32.1 µg/mL on the PC3 cancer cell line, and of 10.6-27.6 µg/mL on the HepG2 cancer cell line. Conclusively, these data contributed to the literature on the cytotoxic activities and fingerprint analysis of triterpenes by the HPTLC technique for distinguishing Ganoderma species from Vietnam and other Asian countries.
Collapse
Affiliation(s)
- Tran Viet Hung
- Institute of Drug Quality Control-Ho Chi Minh City (IDQC HCMC), Ho Chi Minh City 700000, Vietnam
| | - Phan Nguyen Truong Thang
- Institute of Drug Quality Control-Ho Chi Minh City (IDQC HCMC), Ho Chi Minh City 700000, Vietnam
| | - Ha Minh Hien
- Institute of Drug Quality Control-Ho Chi Minh City (IDQC HCMC), Ho Chi Minh City 700000, Vietnam
| | - Vu Thi Diep
- National Institute of Medicinal Materials (NIMM), Hanoi 100000, Vietnam
| | - Nguyen Thi Thu
- National Institute of Medicinal Materials (NIMM), Hanoi 100000, Vietnam
| | - Duong Minh Tan
- National Institute of Drug Quality Control (NIDQC), Hanoi 100000, Vietnam
| | - Duy Toan Pham
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho 900000, Vietnam
| | - Do Thi Ha
- National Institute of Medicinal Materials (NIMM), Hanoi 100000, Vietnam
| | - Duyen Thi My Huynh
- Department of Pharmaceutical and Pharmaceutical Technology, Faculty of Pharmacy, Can Tho University of Medicine and Pharmacy, Can Tho 900000, Vietnam
| |
Collapse
|