1
|
Zhang S, Yuan X, Duan J, Hu J, Wei C, Zhang Y, Wang J, Li C, Hou S, Luo X, Li J, Zhang X, Wang Z. Genome-wide identification and characterization of pectin methylesterase inhibitor gene family members related to abiotic stresses in watermelon. FRONTIERS IN PLANT SCIENCE 2024; 15:1454046. [PMID: 39354949 PMCID: PMC11442291 DOI: 10.3389/fpls.2024.1454046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/23/2024] [Indexed: 10/03/2024]
Abstract
Pectin is a vital component of plant cell walls and its methylation process is regulated by pectin methylesterase inhibitors (PMEIs). PMEIs regulate the structural and functional modifications of cell walls in plants and play an important role in plant processes such as seed germination, fruit ripening, and stress response. Although the PMEI gene family has been well characterized in model plants, the understanding of its molecular evolution and biological functions in watermelon remains limited. In this study, 60 ClPMEI genes were identified and characterized, revealing their dispersion on multiple chromosomes. Based on a systematic developmental analysis, these genes were classified into three subfamilies, which was further supported by the exon, intron, and conserved motif distribution. Analysis of cis-elements and expression patterns indicated that ClPMEIs might be involved in regulating the tolerance of watermelon to various abiotic stresses. Moreover, distinct ClPMEI genes exhibit specific functions under different abiotic stresses. For example, ClPMEI51 and ClPMEI54 showed a significant upregulation in expression levels during the late stage of drought treatments, whereas ClPMEI3 and ClPMEI12 displayed a significant downregulation under low-temperature induction. Subcellular localization prediction and analysis revealed that the ClPMEI family member proteins were localized to the cell membrane. This study provided an important foundation for the further exploration of the functions of ClPMEI genes in watermelon.
Collapse
Affiliation(s)
- Siyu Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Xianyang, China
| | - Xinhao Yuan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Xianyang, China
| | - Jiahao Duan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Xianyang, China
| | - Jun Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Xianyang, China
| | - Chunhua Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Xianyang, China
| | - Yong Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Xianyang, China
| | - Jiafa Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Xianyang, China
| | - Chao Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Xianyang, China
- Research Institute of Grape and Melon of Xinjiang Uyghur Autonomous Region, Turpan, China
| | - Shengcan Hou
- Kaifeng Academy of Agriculture and Forestry Sciences, Kaifeng, China
| | - Xiaodan Luo
- Kaifeng Academy of Agriculture and Forestry Sciences, Kaifeng, China
| | - Junhua Li
- Kaifeng Academy of Agriculture and Forestry Sciences, Kaifeng, China
| | - Xian Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Xianyang, China
| | - Zhongyuan Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Xianyang, China
| |
Collapse
|
2
|
Grandjean C, Veronesi C, Rusterucci C, Gautier C, Maillot Y, Leschevin M, Fournet F, Drouaud J, Marcelo P, Zabijak L, Delavault P, Simier P, Bouton S, Pageau K. Pectin Remodeling and Involvement of AtPME3 in the Parasitic Plant-Plant Interaction, Phelipanche ramosa- Arabidospis thaliana. PLANTS (BASEL, SWITZERLAND) 2024; 13:2168. [PMID: 39124288 PMCID: PMC11314565 DOI: 10.3390/plants13152168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
Phelipanche ramosa is a root parasitic plant fully dependent on host plants for nutrition and development. Upon germination, the parasitic seedling develops inside the infected roots a specific organ, the haustorium, thanks to the cell wall-degrading enzymes of haustorial intrusive cells, and induces modifications in the host's cell walls. The model plant Arabidopsis thaliana is susceptible to P. ramosa; thus, mutants in cell wall metabolism, particularly those involved in pectin remodeling, like Atpme3-1, are of interest in studying the involvement of cell wall-degrading enzymes in the establishment of plant-plant interactions. Host-parasite co-cultures in mini-rhizotron systems revealed that parasite attachments are twice as numerous and tubercle growth is quicker on Atpme3-1 roots than on WT roots. Compared to WT, the increased susceptibility in AtPME3-1 is associated with reduced PME activity in the roots and a lower degree of pectin methylesterification at the host-parasite interface, as detected immunohistochemically in infected roots. In addition, both WT and Atpme3-1 roots responded to infestation by modulating the expression of PAE- and PME-encoding genes, as well as related global enzyme activities in the roots before and after parasite attachment. However, these modulations differed between WT and Atpme3-1, which may contribute to different pectin remodeling in the roots and contrasting susceptibility to P. ramosa. With this integrative study, we aim to define a model of cell wall response to this specific biotic stress and indicate, for the first time, the role of PME3 in this parasitic plant-plant interaction.
Collapse
Affiliation(s)
- Cyril Grandjean
- UMR INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation, Université de Picardie Jules Verne, F-80000 Amiens, France; (C.G.); (C.R.); (C.G.); (Y.M.); (M.L.); (F.F.)
| | - Christophe Veronesi
- CNRS, US2B, UMR 6286, Nantes Université, F-44000 Nantes, France; (C.V.); (P.D.); (P.S.)
| | - Christine Rusterucci
- UMR INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation, Université de Picardie Jules Verne, F-80000 Amiens, France; (C.G.); (C.R.); (C.G.); (Y.M.); (M.L.); (F.F.)
| | - Charlotte Gautier
- UMR INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation, Université de Picardie Jules Verne, F-80000 Amiens, France; (C.G.); (C.R.); (C.G.); (Y.M.); (M.L.); (F.F.)
| | - Yannis Maillot
- UMR INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation, Université de Picardie Jules Verne, F-80000 Amiens, France; (C.G.); (C.R.); (C.G.); (Y.M.); (M.L.); (F.F.)
| | - Maïté Leschevin
- UMR INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation, Université de Picardie Jules Verne, F-80000 Amiens, France; (C.G.); (C.R.); (C.G.); (Y.M.); (M.L.); (F.F.)
| | - Françoise Fournet
- UMR INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation, Université de Picardie Jules Verne, F-80000 Amiens, France; (C.G.); (C.R.); (C.G.); (Y.M.); (M.L.); (F.F.)
| | - Jan Drouaud
- Centre Régional de Ressources en Biologie Moléculaire UPJV, Bâtiment Serres-Transfert Rue Dallery—UFR des Sciences, Passage du Sourire d’Avril, F-80039 Amiens, France;
| | - Paulo Marcelo
- Plateforme d’Ingénierie Cellulaire & Analyses des Protéines ICAP, Université de Picardie Jules Verne, F-80000 Amiens, France; (P.M.); (L.Z.)
| | - Luciane Zabijak
- Plateforme d’Ingénierie Cellulaire & Analyses des Protéines ICAP, Université de Picardie Jules Verne, F-80000 Amiens, France; (P.M.); (L.Z.)
| | - Philippe Delavault
- CNRS, US2B, UMR 6286, Nantes Université, F-44000 Nantes, France; (C.V.); (P.D.); (P.S.)
| | - Philippe Simier
- CNRS, US2B, UMR 6286, Nantes Université, F-44000 Nantes, France; (C.V.); (P.D.); (P.S.)
| | - Sophie Bouton
- UMR INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation, Université de Picardie Jules Verne, F-80000 Amiens, France; (C.G.); (C.R.); (C.G.); (Y.M.); (M.L.); (F.F.)
| | - Karine Pageau
- UMR INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation, Université de Picardie Jules Verne, F-80000 Amiens, France; (C.G.); (C.R.); (C.G.); (Y.M.); (M.L.); (F.F.)
| |
Collapse
|
3
|
Takahashi D, Soga K, Kikuchi T, Kutsuno T, Hao P, Sasaki K, Nishiyama Y, Kidokoro S, Sampathkumar A, Bacic A, Johnson KL, Kotake T. Structural changes in cell wall pectic polymers contribute to freezing tolerance induced by cold acclimation in plants. Curr Biol 2024; 34:958-968.e5. [PMID: 38335960 DOI: 10.1016/j.cub.2024.01.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/20/2023] [Accepted: 01/17/2024] [Indexed: 02/12/2024]
Abstract
Subzero temperatures are often lethal to plants. Many temperate herbaceous plants have a cold acclimation mechanism that allows them to sense a drop in temperature and prepare for freezing stress through accumulation of soluble sugars and cryoprotective proteins. As ice formation primarily occurs in the apoplast (the cell wall space), cell wall functional properties are important for plant freezing tolerance. Although previous studies have shown that the amounts of constituent sugars of the cell wall, in particular those of pectic polysaccharides, are altered by cold acclimation, the significance of this change during cold acclimation has not been clarified. We found that β-1,4-galactan, which forms neutral side chains of the acidic pectic rhamnogalacturonan-I, accumulates in the cell walls of Arabidopsis and various freezing-tolerant vegetables during cold acclimation. The gals1 gals2 gals3 triple mutant, which has reduced β-1,4-galactan in the cell wall, exhibited impaired freezing tolerance compared with wild-type Arabidopsis during initial stages of cold acclimation. Expression of genes involved in the galactan biosynthesis pathway, such as galactan synthases and UDP-glucose 4-epimerases, was induced during cold acclimation in Arabidopsis, explaining the galactan accumulation. Cold acclimation resulted in a decrease in extensibility and an increase in rigidity of the cell wall in the wild type, whereas these changes were not observed in the gals1 gals2 gals3 triple mutant. These results indicate that the accumulation of pectic β-1,4-galactan contributes to acquired freezing tolerance by cold acclimation, likely via changes in cell wall mechanical properties.
Collapse
Affiliation(s)
- Daisuke Takahashi
- Graduate School of Science & Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan.
| | - Kouichi Soga
- Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Takuma Kikuchi
- Graduate School of Science & Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Tatsuya Kutsuno
- Graduate School of Science & Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Pengfei Hao
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, VIC 3086, Australia
| | - Kazuma Sasaki
- Graduate School of Science & Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Yui Nishiyama
- Department of Biochemistry & Molecular Biology, Faculty of Science, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Satoshi Kidokoro
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Arun Sampathkumar
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Antony Bacic
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, VIC 3086, Australia
| | - Kim L Johnson
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, VIC 3086, Australia
| | - Toshihisa Kotake
- Graduate School of Science & Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| |
Collapse
|
4
|
Guo R, Zhou Z, Cai R, Liu L, Wang R, Sun Y, Wang D, Yan Z, Guo C. Metabolomic and physiological analysis of alfalfa (Medicago sativa L.) in response to saline and alkaline stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108338. [PMID: 38244388 DOI: 10.1016/j.plaphy.2024.108338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/24/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024]
Abstract
Alfalfa (Medicago sativa L.) is a leguminous forage widely grown worldwide. Saline and alkaline stress can affect its development and yield. To elucidate the physiological mechanisms of alfalfa in response to saline and alkaline stress, we investigated the growth and physiological and metabolomic changes in alfalfa under saline (100 mM NaCl) and alkaline (100 mM Na2CO3, NaHCO3) stress. At the same Na+ concentration, alkaline stress caused more damage than that caused by saline stress. A total of 65 and 124 metabolites were identified in response to saline and alkaline stress, respectively. Determination of gene expression, enzyme activity, substance content, and KEGG enrichment analysis in key pathways revealed that alfalfa responded to saline stress primarily by osmoregulation and TCA cycle enhancement. Flavonoid synthesis, TCA cycle, glutamate anabolism, jasmonate synthesis, and cell wall component synthesis increased as responses to alkaline stress. This study provides important resources for breeding saline-alkaline-resistant alfalfa.
Collapse
Affiliation(s)
- Rui Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Zeyu Zhou
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Run Cai
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Lei Liu
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Ruixin Wang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Yugang Sun
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Dan Wang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Zhe Yan
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China.
| |
Collapse
|
5
|
Wang W, Zhang Y, Liu C, Dong Y, Jiang X, Zhao C, Li G, Xu K, Huo Z. Label-Free Quantitative Proteomics Reveal the Mechanisms of Young Wheat ( Triticum aestivum L.) Ears' Response to Spring Freezing. Int J Mol Sci 2023; 24:15892. [PMID: 37958875 PMCID: PMC10648784 DOI: 10.3390/ijms242115892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Late spring frost is an important meteorological factor threatening the safe production of winter wheat in China. The young ear is the most vulnerable organ of the wheat plant to spring frost. To gain an insight into the mechanisms underpinning young wheat ears' tolerance to freezing, we performed a comparative proteome analysis of wheat varieties Xumai33 (XM33, freezing-sensitive) and Jimai22 (JM22, freezing-tolerant) under normal and freezing conditions using label-free quantitative proteomic techniques during the anther connective tissue formation phase (ACFP). Under freezing stress, 392 and 103 differently expressed proteins (DEPs) were identified in the young ears of XM33 and JM22, respectively, and among these, 30 proteins were common in both varieties. A functional characterization analysis revealed that these DEPs were associated with antioxidant capacity, cell wall modification, protein folding, dehydration response, and plant-pathogen interactions. The young ears of JM22 showed significantly higher expression levels of antioxidant enzymes, heat shock proteins, and dehydrin under normal conditions compared to those of XM33, which might help to prepare the young ears of JM22 for freezing stress. Our results lead to new insights into understanding the mechanisms in young wheat ears' response to freezing stress and provide pivotal potential candidate proteins required for improving young wheat ears' tolerance to spring frost.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhongyang Huo
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Agricultural College, Yangzhou University, No. 88 Daxue South Road, Yangzhou 225009, China; (W.W.); (G.L.); (K.X.)
| |
Collapse
|
6
|
Zheng L, Liu Q, Wu R, Zhu M, Dorjee T, Zhou Y, Gao F. The alteration of proteins and metabolites in leaf apoplast and the related gene expression associated with the adaptation of Ammopiptanthus mongolicus to winter freezing stress. Int J Biol Macromol 2023; 240:124479. [PMID: 37072058 DOI: 10.1016/j.ijbiomac.2023.124479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/20/2023]
Abstract
Ammopiptanthus mongolicus, an evergreen broad-leaved plant, can tolerate severe freezing stress (temperatures as low as -20 °C in winter). The apoplast is the space outside the plasma membrane that plays an important role in plant responses to environmental stress. Here, we investigated, using a multi-omics approach, the dynamic alterations in the levels of proteins and metabolites in the apoplast and related gene expression changes involved in the adaptation of A. mongolicus to winter freezing stress. Of the 962 proteins identified in the apoplast, the abundance of several PR proteins, including PR3 and PR5, increased significantly in winter, which may contribute to winter freezing-stress tolerance by functioning as antifreeze proteins. The increased abundance of the cell-wall polysaccharides and cell wall-modifying proteins, including PMEI, XTH32, and EXLA1, may enhance the mechanical properties of the cell wall in A. mongolicus. Accumulation of flavonoids and free amino acids in the apoplast may be beneficial for ROS scavenging and the maintenance of osmotic homeostasis. Integrated analyses revealed gene expression changes associated with alterations in the levels of apoplast proteins and metabolites. Our study improved the current understanding of the roles of apoplast proteins and metabolites in plant adaptation to winter freezing stress.
Collapse
Affiliation(s)
- Lamei Zheng
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Qi Liu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Rongqi Wu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Ming Zhu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Tashi Dorjee
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yijun Zhou
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Fei Gao
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| |
Collapse
|
7
|
Hou Y, Wong DCJ, Li Q, Zhou H, Zhu Z, Gong L, Liang J, Ren H, Liang Z, Wang Q, Xin H. Dissecting the effect of ethylene in the transcriptional regulation of chilling treatment in grapevine leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:1084-1097. [PMID: 36921558 DOI: 10.1016/j.plaphy.2023.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Ethylene (ETH) plays important roles in various development programs and stress responses in plants. In grapevines, ETH increased dramatically under chilling stress and is known to positively regulate cold tolerance. However, the role of ETH in transcriptional regulation during chilling stress of grapevine leaves is still not clear. To address this gap, targeted hormone profiling and transcriptomic analysis were performed on leaves of Vitis amurensis under chilling stress with and without aminoethoxyvinylglycine (AVG, a inhibitor of ETH synthesis) treatment. APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) and WRKY transcription factors (TF) were only the two highly enriched TF families that were consistently up-regulated during chilling stress but inhibited by AVG. The comparison of leaf transcriptomes between chilling treatment and chilling with AVG allowed the identification of potential ETH-regulated genes. Potential genes that are positively regulated by ETH are enriched in solute transport, protein biosynthesis, phytohormone action, antioxidant and carbohydrate metabolism. Conversely, genes related to the synthesis and signaling of ETH, indole-3-acetic acid (IAA), abscisic acid (ABA) were up-regulated by chilling treatment but inhibited by AVG. The contents of ETH, ABA and IAA also paralleled with the transcriptome data, which suggests that the response of ABA and IAA during chilling stress may regulate by ETH signaling, and together may belong to an integrated network of hormonal signaling pathways underpinning chilling stress response in grapevine leaves. Together, these findings provide new clues for further studying the complex regulatory mechanism of ETH under low-temperature stress in plants more generally and new opportunities for breeding cold-resilient grapevines.
Collapse
Affiliation(s)
- Yujun Hou
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture/Center of Economic Botany, Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Darren C J Wong
- Ecology and Evolution, Research School of Biology, Australian National University, Acton, ACT, 2601, Australia
| | - Qingyun Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture/Center of Economic Botany, Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huimin Zhou
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture/Center of Economic Botany, Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenfei Zhu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture/Center of Economic Botany, Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Linzhong Gong
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Ju Liang
- Turpan Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Xinjiang, 830091, China
| | - Hongsong Ren
- Turpan Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Xinjiang, 830091, China
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Science and Enology, And CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Science, Beijing, 100093, China
| | - Qingfeng Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture/Center of Economic Botany, Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiping Xin
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture/Center of Economic Botany, Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Kutsuno T, Chowhan S, Kotake T, Takahashi D. Temporal cell wall changes during cold acclimation and deacclimation and their potential involvement in freezing tolerance and growth. PHYSIOLOGIA PLANTARUM 2023; 175:e13837. [PMID: 36461890 PMCID: PMC10107845 DOI: 10.1111/ppl.13837] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/16/2022] [Accepted: 11/25/2022] [Indexed: 05/19/2023]
Abstract
Plants adapt to freezing stress through cold acclimation, which is induced by nonfreezing low temperatures and accompanied by growth arrest. A later increase in temperature after cold acclimation leads to rapid loss of freezing tolerance and growth resumption, a process called deacclimation. Appropriate regulation of the trade-off between freezing tolerance and growth is necessary for efficient plant development in a changing environment. The cell wall, which mainly consists of polysaccharide polymers, is involved in both freezing tolerance and growth. Still, it is unclear how the balance between freezing tolerance and growth is affected during cold acclimation and deacclimation by the changes in cell wall structure and what role is played by its monosaccharide composition. Therefore, to elucidate the regulatory mechanisms controlling freezing tolerance and growth during cold acclimation and deacclimation, we investigated cell wall changes in detail by sequential fractionation and monosaccharide composition analysis in the model plant Arabidopsis thaliana, for which a plethora of information and mutant lines are available. We found that arabinogalactan proteins and pectic galactan changed in close coordination with changes in freezing tolerance and growth during cold acclimation and deacclimation. On the other hand, arabinan and xyloglucan did not return to nonacclimation levels after deacclimation but stabilized at cold acclimation levels. This indicates that deacclimation does not completely restore cell wall composition to the nonacclimated state but rather changes it to a specific novel composition that is probably a consequence of the loss of freezing tolerance and provides conditions for growth resumption.
Collapse
Affiliation(s)
- Tatsuya Kutsuno
- Graduate School of Science & EngineeringSaitama UniversitySaitamaJapan
| | - Sushan Chowhan
- Graduate School of Science & EngineeringSaitama UniversitySaitamaJapan
| | - Toshihisa Kotake
- Graduate School of Science & EngineeringSaitama UniversitySaitamaJapan
| | - Daisuke Takahashi
- Graduate School of Science & EngineeringSaitama UniversitySaitamaJapan
| |
Collapse
|
9
|
Stegner M, Buchner O, Geßlbauer M, Lindner J, Flörl A, Xiao N, Holzinger A, Gierlinger N, Neuner G. Frozen mountain pine needles: The endodermis discriminates between the ice-containing central tissue and the ice-free fully functional mesophyll. PHYSIOLOGIA PLANTARUM 2023; 175:e13865. [PMID: 36717368 PMCID: PMC10107293 DOI: 10.1111/ppl.13865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/22/2022] [Accepted: 01/23/2023] [Indexed: 05/19/2023]
Abstract
Conifer (Pinaceae) needles are the most frost-hardy leaves. During needle freezing, the exceptional leaf anatomy, where an endodermis separates the mesophyll from the vascular tissue, could have consequences for ice management and photosynthesis. The eco-physiological importance of needle freezing behaviour was evaluated based on the measured natural freezing strain at the alpine treeline. Ice localisation and cellular responses to ice were investigated in mountain pine needles by cryo-microscopic techniques. Their consequences for photosynthetic activity were assessed by gas exchange measurements. The freezing response was related to the microchemistry of cell walls investigated by Raman microscopy. In frozen needles, ice was confined to the central vascular cylinder bordered by the endodermis. The endodermal cell walls were lignified. In the ice-free mesophyll, cells showed no freeze-dehydration and were found photosynthetically active. Mesophyll cells had lignified tangential cell walls, which adds rigidity. Ice barriers in mountain pine needles seem to be realised by a specific lignification patterning of cell walls. This, additionally, impedes freeze-dehydration of mesophyll cells and enables gas exchange of frozen needles. At the treeline, where freezing is a dominant environmental factor, the elaborate needle freezing pattern appears of ecological importance.
Collapse
Affiliation(s)
| | - Othmar Buchner
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| | | | - Jasmin Lindner
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| | | | - Nannan Xiao
- Institute of Biophysics, University of Natural Resources and Life Sciences (BOKU)ViennaAustria
| | | | - Notburga Gierlinger
- Institute of Biophysics, University of Natural Resources and Life Sciences (BOKU)ViennaAustria
| | - Gilbert Neuner
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| |
Collapse
|
10
|
Huang W, Shi Y, Yan H, Wang H, Wu D, Grierson D, Chen K. The calcium-mediated homogalacturonan pectin complexation in cell walls contributes the firmness increase in loquat fruit during postharvest storage. J Adv Res 2022:S2090-1232(22)00211-9. [PMID: 36198382 DOI: 10.1016/j.jare.2022.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/11/2022] [Accepted: 09/24/2022] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Postharvest textural changes in fruit are mainly divided into softening and lignification. Loquat fruit could have severe lignification with increased firmness during postharvest storage. Pectin is mainly associated with the postharvest softening of fruit, but some studies also found that pectin could be involved in strengthening the mechanical properties of the plant. OBJECTIVES This study focused on characterizing the dynamics of pectin and its complexation in the cell wall of lignified loquat fruit during postharvest storage, and how these changes could influence fruit firmness. METHODS The homogalacturonan (HG) pectin in the cell wall of loquat fruit was identified using monoclonal antibodies. An oligogalacturonide (OG) probe was used to label the egg-box structure formed by Ca2+ cross-linking with low-methylesterified HG. An exogenous injection was used to verify the role of egg-box structures in the firmness increase in loquat fruit. RESULTS The JIM5 antibody revealed that low-methylesterified HG accumulated in the tricellular junctions and middle lamella of loquat fruit that had severe lignification symptoms. The pectin methylesterase (PME) activity increased during the early stages of storage at 0°C, and the calcium-pectate content and flesh firmness constantly increased during storage. The OG probe demonstrated the accumulation of egg-box structures at the cellular level. The exogenous injection of PME and Ca2+ into the loquat flesh led to an increase in firmness with more low-methylesterified HG and egg-box structure signals. CONCLUSION PME-mediated demethylesterification generated large amounts of low-methylesterified HG in the cell wall. This low-methylesterified HG further cross-linked with Ca2+ to form egg-box structures. The pectin-involved complexations then contributed to the increased firmness in loquat fruit. Overall, besides being involved in fruit softening, pectin could also be involved in strengthening the mechanical properties of postharvest fruit. This study provides new ideas for obtaining a better texture of postharvest loquat fruits based on pectin regulation.
Collapse
Affiliation(s)
- Weinan Huang
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, 310058 Hangzhou, P. R. China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, P. R. China
| | - Yanna Shi
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, 310058 Hangzhou, P. R. China
| | - He Yan
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Hao Wang
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Di Wu
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, 310058 Hangzhou, P. R. China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, P. R. China.
| | - Donald Grierson
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, 310058 Hangzhou, P. R. China; Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Loughborough, UK
| | - Kunsong Chen
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, 310058 Hangzhou, P. R. China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, P. R. China
| |
Collapse
|
11
|
Low Concentration of Aluminum-Stimulated Pollen Tube Growth of Apples (Malus domestica). PLANTS 2022; 11:plants11131705. [PMID: 35807657 PMCID: PMC9269008 DOI: 10.3390/plants11131705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022]
Abstract
Aluminum (Al) is an important element in soil constitution. Previous studies have shown that high concentration of Al affects the normal growth of crops, resulting in crop yield reduction and inferior quality. Nevertheless, Al has also been referred to as a beneficial element, especially when used at low concentrations, but the cytological mechanism is not clear. Influences of low concentration AlCl3 on the pollen tube growth of apple (Malus domestica) and its possible cytological mechanism were investigated in this study. The results showed that 20 μM AlCl3 promoted pollen germination and tube elongation; 20 μM AlCl3 enhanced Ca2+ influx but did not affect [Ca2+]c of the pollen tube tip; and 20 μM AlCl3 decreased acid pectins in pollen tubes but increased esterified pectins and arabinan pectins in pollen tubes. According to the information provided in this research, 20 μM AlCl3 stimulated growth of pollen tubes by enhancing Ca2+ influx and changing cell wall components.
Collapse
|
12
|
Liu J, Willick IR, Hiraki H, Forand AD, Lawrence JR, Swerhone GDW, Wei Y, Ghosh S, Lee YK, Olsen JE, Usadel B, Wormit A, Günl M, Karunakaran C, Dynes JJ, Tanino KK. Cold and exogenous calcium alter Allium fistulosum cell wall pectin to depress intracellular freezing temperatures. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3807-3822. [PMID: 35298622 DOI: 10.1093/jxb/erac108] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
De-methyl esterification of homogalacturonan and subsequent cross-linking with Ca2+ is hypothesized to enhance the freezing survival of cold acclimated plants by reducing the porosity of primary cell walls. To test this theory, we collected leaf epidermal peels from non- (23/18 °C) and cold acclimated (2 weeks at 12/4 °C) Japanese bunching onion (Allium fistulosum L.). Cold acclimation enhanced the temperature at which half the cells survived freezing injury by 8 °C (LT50 =-20 °C), and reduced tissue permeability by 70-fold compared with non-acclimated epidermal cells. These effects were associated with greater activity of pectin methylesterase (PME) and a reduction in the methyl esterification of homogalacturonan. Non-acclimated plants treated with 50 mM CaCl2 accumulated higher concentrations of galacturonic acid, Ca2+ in the cell wall, and a lower number of visible cell wall pores compared with that observed in cold acclimated plants. Using cryo-microscopy, we observed that 50 mM CaCl2 treatment did not lower the LT50 of non-acclimated cells, but reduced the lethal intracellular ice nucleation to temperatures observed in cold acclimated epidermal cells. We postulate that the PME-homogalacturonan-mediated reduction in cell wall porosity is integral to intracellular freezing avoidance strategies in cold acclimated herbaceous cells.
Collapse
Affiliation(s)
- Jun Liu
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ian R Willick
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Hayato Hiraki
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka, Japan
| | - Ariana D Forand
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - John R Lawrence
- Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada, Saskatoon, SK, Canada
| | - George D W Swerhone
- Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada, Saskatoon, SK, Canada
| | - Yangdou Wei
- Biology Department, University of Saskatchewan, Saskatoon, SK, Canada
| | - Supratim Ghosh
- Department of Food and Bioproducts Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Yeon Kyeong Lee
- Department of Plant Sciences, Faculty of BioSciences, Norwegian University of Life Sciences, Ås, Norway
| | - Jorunn E Olsen
- Department of Plant Sciences, Faculty of BioSciences, Norwegian University of Life Sciences, Ås, Norway
| | - Björn Usadel
- RWTH Aachen University, Institute for Biology I, Aachen, Germany
- IBG-2: Plant Sciences, Forschungszentrum Jülich, Germany
| | - Alexandra Wormit
- RWTH Aachen University, Institute for Biology I, Aachen, Germany
| | - Markus Günl
- IBG-2: Plant Sciences, Forschungszentrum Jülich, Germany
| | | | | | - Karen K Tanino
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
13
|
Rhamnogalacturonan Endolyase Family 4 Enzymes: An Update on Their Importance in the Fruit Ripening Process. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Fruit ripening is a process that produces fruit with top sensory qualities that are ideal for consumption. For the plant, the final objective is seed dispersal. One of the fruit characteristics observed by consumers is texture, which is related to the ripening and softening of the fruit. Controlled and orchestrated events occur to regulate the expression of genes involved in disassembling and solubilizing the cell wall. Studies have shown that changes in pectins are closely related to the loss of firmness and fruit softening. For this reason, studying the mechanisms and enzymes that act on pectins could help to elucidate the molecular events that occur in the fruit. This paper provides a review of the enzyme rhamnogalacturonan endolyase (RGL; EC 4.2.2.23), which is responsible for cleavage of the pectin rhamnogalacturonan I (RGL-I) between rhamnose (Rha) and galacturonic acid (GalA) through the mechanism of β-elimination during fruit ripening. RGL promotes the loosening and weakening of the cell wall and exposes the backbone of the polysaccharide to the action of other enzymes. Investigations into RGL and its relationship with fruit ripening have reliably demonstrated that this enzyme has an important role in this process.
Collapse
|
14
|
Morin A, Maurousset L, Vriet C, Lemoine R, Doidy J, Pourtau N. Carbon fluxes and environmental interactions during legume development, with a specific focus on Pisum sativum. PHYSIOLOGIA PLANTARUM 2022; 174:e13729. [PMID: 35662039 PMCID: PMC9328368 DOI: 10.1111/ppl.13729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/25/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Grain legumes are major food crops cultivated worldwide for their seeds with high nutritional content. To answer the growing concern about food safety and protein autonomy, legume cultivation must increase in the coming years. In parallel, current agricultural practices are facing environmental challenges, including global temperature increase and more frequent and severe episodes of drought stress. Crop yield directly relies on carbon allocation and is particularly affected by these global changes. We review the current knowledge on source-sink relationships and carbon resource allocation at all developmental stages, from germination to vegetative growth and seed production in grain legumes, focusing on pea (Pisum sativum). We also discuss how these source-sink relationships and carbon fluxes are influenced by biotic and abiotic factors. Major agronomic traits, including seed yield and quality, are particularly impacted by drought, temperatures, salinity, waterlogging, or pathogens and can be improved through the promotion of beneficial soil microorganisms or through optimized plant carbon resource allocation. Altogether, our review highlights the need for a better understanding of the cellular and molecular mechanisms regulating carbon fluxes from source leaves to sink organs, roots, and seeds. These advancements will further improve our understanding of yield stability and stress tolerance and contribute to the selection of climate-resilient crops.
Collapse
Affiliation(s)
- Amélie Morin
- Université de Poitiers, UMR CNRS 7267, EBI "Ecologie et Biologie des Interactions"PoitiersFrance
| | - Laurence Maurousset
- Université de Poitiers, UMR CNRS 7267, EBI "Ecologie et Biologie des Interactions"PoitiersFrance
| | - Cécile Vriet
- Université de Poitiers, UMR CNRS 7267, EBI "Ecologie et Biologie des Interactions"PoitiersFrance
| | - Rémi Lemoine
- Université de Poitiers, UMR CNRS 7267, EBI "Ecologie et Biologie des Interactions"PoitiersFrance
| | - Joan Doidy
- Université de Poitiers, UMR CNRS 7267, EBI "Ecologie et Biologie des Interactions"PoitiersFrance
| | - Nathalie Pourtau
- Université de Poitiers, UMR CNRS 7267, EBI "Ecologie et Biologie des Interactions"PoitiersFrance
| |
Collapse
|
15
|
Ferrero-Serrano Á, Sylvia MM, Forstmeier PC, Olson AJ, Ware D, Bevilacqua PC, Assmann SM. Experimental demonstration and pan-structurome prediction of climate-associated riboSNitches in Arabidopsis. Genome Biol 2022; 23:101. [PMID: 35440059 PMCID: PMC9017077 DOI: 10.1186/s13059-022-02656-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/20/2022] [Indexed: 11/23/2022] Open
Abstract
Background Genome-wide association studies (GWAS) aim to correlate phenotypic changes with genotypic variation. Upon transcription, single nucleotide variants (SNVs) may alter mRNA structure, with potential impacts on transcript stability, macromolecular interactions, and translation. However, plant genomes have not been assessed for the presence of these structure-altering polymorphisms or “riboSNitches.” Results We experimentally demonstrate the presence of riboSNitches in transcripts of two Arabidopsis genes, ZINC RIBBON 3 (ZR3) and COTTON GOLGI-RELATED 3 (CGR3), which are associated with continentality and temperature variation in the natural environment. These riboSNitches are also associated with differences in the abundance of their respective transcripts, implying a role in regulating the gene's expression in adaptation to local climate conditions. We then computationally predict riboSNitches transcriptome-wide in mRNAs of 879 naturally inbred Arabidopsis accessions. We characterize correlations between SNPs/riboSNitches in these accessions and 434 climate descriptors of their local environments, suggesting a role of these variants in local adaptation. We integrate this information in CLIMtools V2.0 and provide a new web resource, T-CLIM, that reveals associations between transcript abundance variation and local environmental variation. Conclusion We functionally validate two plant riboSNitches and, for the first time, demonstrate riboSNitch conditionality dependent on temperature, coining the term “conditional riboSNitch.” We provide the first pan-genome-wide prediction of riboSNitches in plants. We expand our previous CLIMtools web resource with riboSNitch information and with 1868 additional Arabidopsis genomes and 269 additional climate conditions, which will greatly facilitate in silico studies of natural genetic variation, its phenotypic consequences, and its role in local adaptation. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02656-4.
Collapse
Affiliation(s)
- Ángel Ferrero-Serrano
- Department of Biology, Pennsylvania State University, University Park, State College, PA, 16802, USA.
| | - Megan M Sylvia
- Department of Biology, Pennsylvania State University, University Park, State College, PA, 16802, USA
| | - Peter C Forstmeier
- Department of Biochemistry, Microbiology, and Molecular Biology, Pennsylvania State University, University Park, State College, PA, 16802, USA
| | - Andrew J Olson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.,USDA ARS NAA Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| | - Philip C Bevilacqua
- Department of Biochemistry, Microbiology, and Molecular Biology, Pennsylvania State University, University Park, State College, PA, 16802, USA.,Department of Chemistry, Pennsylvania State University, University Park, State College, PA, 16802, USA.,Center for RNA Molecular Biology, Pennsylvania State University, University Park, State College, PA, 16802, USA
| | - Sarah M Assmann
- Department of Biology, Pennsylvania State University, University Park, State College, PA, 16802, USA. .,Center for RNA Molecular Biology, Pennsylvania State University, University Park, State College, PA, 16802, USA.
| |
Collapse
|
16
|
Coculo D, Lionetti V. The Plant Invertase/Pectin Methylesterase Inhibitor Superfamily. FRONTIERS IN PLANT SCIENCE 2022; 13:863892. [PMID: 35401607 PMCID: PMC8990755 DOI: 10.3389/fpls.2022.863892] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/02/2022] [Indexed: 05/08/2023]
Abstract
Invertases (INVs) and pectin methylesterases (PMEs) are essential enzymes coordinating carbohydrate metabolism, stress responses, and sugar signaling. INVs catalyzes the cleavage of sucrose into glucose and fructose, exerting a pivotal role in sucrose metabolism, cellulose biosynthesis, nitrogen uptake, reactive oxygen species scavenging as well as osmotic stress adaptation. PMEs exert a dynamic control of pectin methylesterification to manage cell adhesion, cell wall porosity, and elasticity, as well as perception and signaling of stresses. INV and PME activities can be regulated by specific proteinaceous inhibitors, named INV inhibitors (INVIs) and PME Inhibitors (PMEIs). Despite targeting different enzymes, INVIs and PMEIs belong to the same large protein family named "Plant Invertase/Pectin Methylesterase Inhibitor Superfamily." INVIs and PMEIs, while showing a low aa sequence identity, they share several structural properties. The two inhibitors showed mainly alpha-helices in their secondary structure and both form a non-covalent 1:1 complex with their enzymatic counterpart. Some PMEI members are organized in a gene cluster with specific PMEs. Although the most important physiological information was obtained in Arabidopsis thaliana, there are now several characterized INVI/PMEIs in different plant species. This review provides an integrated and updated overview of this fascinating superfamily, from the specific activity of characterized isoforms to their specific functions in plant physiology. We also highlight INVI/PMEIs as biotechnological tools to control different aspects of plant growth and defense. Some isoforms are discussed in view of their potential applications to improve industrial processes. A review of the nomenclature of some isoforms is carried out to eliminate confusion about the identity and the names of some INVI/PMEI member. Open questions, shortcoming, and opportunities for future research are also presented.
Collapse
Affiliation(s)
| | - Vincenzo Lionetti
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
17
|
Zhao R, Cheng H, Wang Q, Lv L, Zhang Y, Song G, Zuo D. Identification of the CesA Subfamily and Functional Analysis of GhMCesA35 in Gossypium Hirsutum L. Genes (Basel) 2022; 13:genes13020292. [PMID: 35205337 PMCID: PMC8871739 DOI: 10.3390/genes13020292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 02/05/2023] Open
Abstract
The cellulose synthase genes control the biosynthesis of cellulose in plants. Nonetheless, the gene family members of CesA have not been identified in the newly assembled genome of Gossypiumhirsutum (AD1, HEBAU_NDM8). We identified 38 CesA genes in G. hirsutum (NDM8) and found that the protein sequence of GhMCesA35 is 100% identical to CelA1 in a previous study. It is already known that CelA1 is involved in cellulose biosynthesis in vitro. However, the function of this gene in vivo has not been validated. In this study, we verified the function of GhMCesA35 in vivo based on overexpressed Arabidopsis thaliana. In addition, we found that it interacted with GhCesA7 through the yeast two-hybrid assay. This study provides new insights for studying the biological functions of CesA genes in G. hirsutum, thereby improving cotton fiber quality and yield.
Collapse
Affiliation(s)
- Ruolin Zhao
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (R.Z.); (H.C.); (Q.W.); (L.L.); (Y.Z.); (G.S.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Hailiang Cheng
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (R.Z.); (H.C.); (Q.W.); (L.L.); (Y.Z.); (G.S.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Qiaolian Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (R.Z.); (H.C.); (Q.W.); (L.L.); (Y.Z.); (G.S.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Limin Lv
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (R.Z.); (H.C.); (Q.W.); (L.L.); (Y.Z.); (G.S.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Youping Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (R.Z.); (H.C.); (Q.W.); (L.L.); (Y.Z.); (G.S.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Guoli Song
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (R.Z.); (H.C.); (Q.W.); (L.L.); (Y.Z.); (G.S.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Dongyun Zuo
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (R.Z.); (H.C.); (Q.W.); (L.L.); (Y.Z.); (G.S.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: ; Tel.: +86-037-2256-2375
| |
Collapse
|
18
|
Li B, Wang H, He S, Ding Z, Wang Y, Li N, Hao X, Wang L, Yang Y, Qian W. Genome-Wide Identification of the PMEI Gene Family in Tea Plant and Functional Analysis of CsPMEI2 and CsPMEI4 Through Ectopic Overexpression. FRONTIERS IN PLANT SCIENCE 2022; 12:807514. [PMID: 35154201 PMCID: PMC8829431 DOI: 10.3389/fpls.2021.807514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/14/2021] [Indexed: 05/26/2023]
Abstract
Pectin methylesterase inhibitor (PMEI) inhibits pectin methylesterase (PME) activity at post-translation level, which plays core roles in vegetative and reproductive processes and various stress responses of plants. However, the roles of PMEIs in tea plant are still undiscovered. Herein, a total of 51 CsPMEIs genes were identified from tea plant genome. CsPMEI1-4 transcripts were varied in different tea plant tissues and regulated by various treatments, including biotic and abiotic stresses, sugar treatments, cold acclimation and bud dormancy. Overexpression of CsPMEI4 slightly decreased cold tolerance of transgenic Arabidopsis associated with lower electrolyte leakage, soluble sugars contents and transcripts of many cold-induced genes as compared to wild type plants. Under long-day and short-day conditions, CsPMEI2/4 promoted early flowering phenotypes in transgenic Arabidopsis along with higher expression levels of many flowering-related genes. Moreover, overexpression of CsPMEI2/4 decreased PME activity, but increased sugars contents (sucrose, glucose, and fructose) in transgenic Arabidopsis as compared with wild type plants under short-day condition. These results indicate that CsPMEIs are widely involved in tea plant vegetative and reproductive processes, and also in various stress responses. Moreover, CsPMEI4 negatively regulated cold response, meanwhile, CsPMEI2/4 promoted early flowering of transgenic Arabidopsis via the autonomous pathway. Collectively, these results open new perspectives on the roles of PMEIs in tea plant.
Collapse
Affiliation(s)
- Bo Li
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, China
| | - Huan Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, China
| | - Shan He
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, China
| | - Zhaotang Ding
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, China
| | - Yu Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, China
| | - Nana Li
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Xinyuan Hao
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Lu Wang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Yajun Yang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Wenjun Qian
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, China
| |
Collapse
|
19
|
Huang S, Gali KK, Lachagari RVB, Chakravartty N, Bueckert RA, Tar’an B, Warkentin TD. Identification of heat responsive genes in pea stipules and anthers through transcriptional profiling. PLoS One 2021; 16:e0251167. [PMID: 34735457 PMCID: PMC8568175 DOI: 10.1371/journal.pone.0251167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/05/2021] [Indexed: 11/19/2022] Open
Abstract
Field pea (Pisum sativum L.), a cool-season legume crop, is known for poor heat tolerance. Our previous work identified PR11-2 and PR11-90 as heat tolerant and susceptible lines in a recombinant inbred population. CDC Amarillo, a Canadian elite pea variety, was considered as another heat tolerant variety based on its similar field performance as PR11-2. This study aimed to characterize the differential transcription. Plants of these three varieties were stressed for 3 h at 38°C prior to self-pollination, and RNAs from heat stressed anthers and stipules on the same flowering node were extracted and sequenced via the Illumina NovaSeq platform for the characterization of heat responsive genes. In silico results were further validated by qPCR assay. Differentially expressed genes (DEGs) were identified at log2 |fold change (FC)| ≥ 2 between high temperature and control temperature, the three varieties shared 588 DEGs which were up-regulated and 220 genes which were down-regulated in anthers when subjected to heat treatment. In stipules, 879 DEGs (463/416 upregulation/downregulation) were consistent among varieties. The above heat-induced genes of the two plant organs were related to several biological processes i.e., response to heat, protein folding and DNA templated transcription. Ten gene ontology (GO) terms were over-represented in the consistently down-regulated DEGs of the two organs, and these terms were mainly related to cell wall macromolecule metabolism, lipid transport, lipid localization, and lipid metabolic processes. GO enrichment analysis on distinct DEGs of individual pea varieties suggested that heat affected biological processes were dynamic, and variety distinct responses provide insight into molecular mechanisms of heat-tolerance response. Several biological processes, e.g., cellular response to DNA damage stimulus in stipule, electron transport chain in anther that were only observed in heat induced PR11-2 and CDC Amarillo, and their relevance to field pea heat tolerance is worth further validation.
Collapse
Affiliation(s)
- Shaoming Huang
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Krishna K. Gali
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | | | | - Bunyamin Tar’an
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Thomas D. Warkentin
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
20
|
Gold Nanoparticles-Induced Modifications in Cell Wall Composition in Barley Roots. Cells 2021; 10:cells10081965. [PMID: 34440734 PMCID: PMC8393560 DOI: 10.3390/cells10081965] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 12/28/2022] Open
Abstract
The increased use of nanoparticles (NP) in different industries inevitably results in their release into the environment. In such conditions, plants come into direct contact with NP. Knowledge about the uptake of NP by plants and their effect on different developmental processes is still insufficient. Our studies concerned analyses of the changes in the chemical components of the cell walls of Hordeum vulgare L. roots that were grown in the presence of gold nanoparticles (AuNP). The analyses were performed using the immunohistological method and fluorescence microscopy. The obtained results indicate that AuNP with different surface charges affects the presence and distribution of selected pectic and arabinogalactan protein (AGP) epitopes in the walls of root cells.
Collapse
|
21
|
Althiab-Almasaud R, Chen Y, Maza E, Djari A, Frasse P, Mollet JC, Mazars C, Jamet E, Chervin C. Ethylene signaling modulates tomato pollen tube growth through modifications of cell wall remodeling and calcium gradient. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:893-908. [PMID: 34036648 DOI: 10.1111/tpj.15353] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
Ethylene modulates plant developmental processes including flower development. Previous studies have suggested ethylene participates in pollen tube (PT) elongation, and both ethylene production and perception seem critical at the time of fertilization. The full gene set regulated by ethylene during PT growth is unknown. To study this, we used various EThylene Receptor (ETR) tomato (Solanum lycopersicum) mutants: etr3-ko, a loss-of-function (LOF) mutant; and NR (NEVER RIPE), a gain-of-function (GOF) mutant. The etr3-ko PTs grew faster than wild-type (WT) PTs. Oppositely, NR PT elongation was slower than in WT, and PTs displayed larger diameters. ETR mutations result in feedback control of ethylene production. Furthermore, ethylene treatment of germinating pollen grains increased PT length in etr-ko mutants and WT, but not in NR. Treatment with the ethylene perception inhibitor 1-methylcyclopropene decreased PT length in etr-ko mutants and WT, but had no effect on NR. This confirmed that ethylene regulates PT growth. The comparison of PT transcriptomes in LOF and GOF mutants, etr3-ko and NR, both harboring mutations of the ETR3 gene, revealed that ethylene perception has major impacts on cell wall- and calcium-related genes as confirmed by microscopic observations showing a modified distribution of the methylesterified homogalacturonan pectic motif and of calcium load. Our results establish links between PT growth, ethylene, calcium, and cell wall metabolism, and also constitute a transcriptomic resource.
Collapse
Affiliation(s)
- Rasha Althiab-Almasaud
- Laboratoire de Génomique et Biotechnologie des Fruits, Université de Toulouse, Toulouse INP-ENSAT, INRAE, Auzeville-Tolosane, France
| | - Yi Chen
- Laboratoire de Génomique et Biotechnologie des Fruits, Université de Toulouse, Toulouse INP-ENSAT, INRAE, Auzeville-Tolosane, France
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Elie Maza
- Laboratoire de Génomique et Biotechnologie des Fruits, Université de Toulouse, Toulouse INP-ENSAT, INRAE, Auzeville-Tolosane, France
| | - Anis Djari
- Laboratoire de Génomique et Biotechnologie des Fruits, Université de Toulouse, Toulouse INP-ENSAT, INRAE, Auzeville-Tolosane, France
| | - Pierre Frasse
- Laboratoire de Génomique et Biotechnologie des Fruits, Université de Toulouse, Toulouse INP-ENSAT, INRAE, Auzeville-Tolosane, France
| | - Jean-Claude Mollet
- Laboratoire Glyco-MEV, SFR NORVEGE, Innovation Chimie Carnot, Normandie Univ, UniRouen, Rouen, France
| | - Christian Mazars
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville-Tolosane, France
| | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville-Tolosane, France
| | - Christian Chervin
- Laboratoire de Génomique et Biotechnologie des Fruits, Université de Toulouse, Toulouse INP-ENSAT, INRAE, Auzeville-Tolosane, France
| |
Collapse
|
22
|
Roig-Oliver M, Rayon C, Roulard R, Fournet F, Bota J, Flexas J. Reduced photosynthesis in Arabidopsis thaliana atpme17.2 and atpae11.1 mutants is associated to altered cell wall composition. PHYSIOLOGIA PLANTARUM 2021; 172:1439-1451. [PMID: 32770751 DOI: 10.1111/ppl.13186] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 05/06/2023]
Abstract
The cell wall is a complex and dynamic structure that determines plants' performance by constant remodeling of its compounds. Although cellulose is its major load-bearing component, pectins are crucial to determine wall characteristics. Changes in pectin physicochemical properties, due to pectin remodeling enzymes (PRE), induce the rearrangement of cell wall compounds, thus, modifying wall architecture. In this work, we tested for the first time how cell wall dynamics affect photosynthetic properties in Arabidopsis thaliana pectin methylesterase atpme17.2 and pectin acetylesterase atpae11.1 mutants in comparison to wild-type Col-0. Our results showed maintained PRE activities comparing mutants with wild-type and no significant differences in cellulose, but cell wall non-cellulosic neutral sugars contents changed. Particularly, the amount of galacturonic acid (GalA) - which represents to some extent the pectin cell wall proportion - was reduced in the two mutants. Additionally, physiological characterization revealed that mutants presented a decreased net CO2 assimilation (AN ) because of reductions in both stomatal (gs ) and mesophyll conductances (gm ). Thus, our results suggest that atpme17.2 and atpae11.1 cell wall modifications due to genetic alterations could play a significant role in determining photosynthesis.
Collapse
Affiliation(s)
- Margalida Roig-Oliver
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB) - Agro-Environmental and Water Economics Institute (INAGEA), Palma, 07122, Spain
| | - Catherine Rayon
- EA 3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, 80039, France
| | - Romain Roulard
- EA 3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, 80039, France
| | - François Fournet
- EA 3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, 80039, France
| | - Josefina Bota
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB) - Agro-Environmental and Water Economics Institute (INAGEA), Palma, 07122, Spain
| | - Jaume Flexas
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB) - Agro-Environmental and Water Economics Institute (INAGEA), Palma, 07122, Spain
| |
Collapse
|
23
|
Ganie SA, Ahammed GJ. Dynamics of cell wall structure and related genomic resources for drought tolerance in rice. PLANT CELL REPORTS 2021; 40:437-459. [PMID: 33389046 DOI: 10.1007/s00299-020-02649-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/04/2020] [Indexed: 05/03/2023]
Abstract
Cell wall plasticity plays a very crucial role in vegetative and reproductive development of rice under drought and is a highly potential trait for improving rice yield under drought. Drought is a major constraint in rice (Oryza sativa L.) cultivation severely affecting all developmental stages, with the reproductive stage being the most sensitive. Rice plants employ multiple strategies to cope with drought, in which modification in cell wall dynamics plays a crucial role. Over the years, significant progress has been made in discovering the cell wall-specific genomic resources related to drought tolerance at vegetative and reproductive stages of rice. However, questions remain about how the drought-induced changes in cell wall made by these genomic resources potentially influence the vegetative and reproductive development of rice. The possibly major candidate genes underlying the function of quantitative trait loci directly or indirectly associated with the cell wall plasticization-mediated drought tolerance of rice might have a huge promise in dissecting the putative genomic regions associated with cell wall plasticity under drought. Furthermore, engineering the drought tolerance of rice using cell wall-related genes from resurrection plants may have huge prospects for rice yield improvement. Here, we review the comprehensive multidisciplinary analyses to unravel different components and mechanisms involved in drought-induced cell wall plasticity at vegetative and reproductive stages that could be targeted for improving rice yield under drought.
Collapse
Affiliation(s)
- Showkat Ahmad Ganie
- Department of Biotechnology, Visva-Bharati, Santiniketan, West Bengal, 731235, India.
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China.
| |
Collapse
|
24
|
An integrative Study Showing the Adaptation to Sub-Optimal Growth Conditions of Natural Populations of Arabidopsis thaliana: A Focus on Cell Wall Changes. Cells 2020; 9:cells9102249. [PMID: 33036444 PMCID: PMC7601860 DOI: 10.3390/cells9102249] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/28/2020] [Accepted: 10/03/2020] [Indexed: 12/12/2022] Open
Abstract
In the global warming context, plant adaptation occurs, but the underlying molecular mechanisms are poorly described. Studying natural variation of the model plant Arabidopsisthaliana adapted to various environments along an altitudinal gradient should contribute to the identification of new traits related to adaptation to contrasted growth conditions. The study was focused on the cell wall (CW) which plays major roles in the response to environmental changes. Rosettes and floral stems of four newly-described populations collected at different altitudinal levels in the Pyrenees Mountains were studied in laboratory conditions at two growth temperatures (22 vs. 15 °C) and compared to the well-described Col ecotype. Multi-omic analyses combining phenomics, metabolomics, CW proteomics, and transcriptomics were carried out to perform an integrative study to understand the mechanisms of plant adaptation to contrasted growth temperature. Different developmental responses of rosettes and floral stems were observed, especially at the CW level. In addition, specific population responses are shown in relation with their environment and their genetics. Candidate genes or proteins playing roles in the CW dynamics were identified and will deserve functional validation. Using a powerful framework of data integration has led to conclusions that could not have been reached using standard statistical approaches.
Collapse
|
25
|
Xu Y, Hu D, Hou X, Shen J, Liu J, Cen X, Fu J, Li X, Hu H, Xiong L. OsTMF attenuates cold tolerance by affecting cell wall properties in rice. THE NEW PHYTOLOGIST 2020; 227:498-512. [PMID: 32176820 DOI: 10.1111/nph.16549] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 03/04/2020] [Indexed: 05/15/2023]
Abstract
Plant cell wall composition and structure can be modified as plants adapt to environmental stresses; however, the underlying regulatory mechanisms remain elusive. Here, we report that OsTMF, a homologue of the human TATA modulatory factor (TMF) in rice (Oryza sativa) and highly conserved in plants, negatively regulates cold tolerance through modification of cell wall properties. Cold stress increased the expression of OsTMF and accumulation of OsTMF in the nucleus, where OsTMF acts as a transcription activator and modulates the expression of genes involved in pectin degradation (OsBURP16), cellulose biosynthesis (OsCesA4 and OsCesA9), and cell wall structural maintenance (genes encoding proline-rich proteins and peroxidases). OsTMF directly activated the expression of OsBURP16, OsCesA4, and OsCesA9 through binding to the TATA cis-elements in their promoters. Under cold stress conditions, OsTMF negatively regulated pectin content and peroxidase activity and positively regulated cellulose content, causing corresponding alterations to cell wall properties, all of which collectively contribute to the negative effect of OsTMF on cold tolerance. Our findings unravel a previously unreported molecular mechanism of a conserved plant TMF protein in the regulation of cell wall changes under cold stress.
Collapse
Affiliation(s)
- Yan Xu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Dan Hu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xin Hou
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianqiang Shen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Juhong Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiang Cen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Fu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Honghong Hu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
26
|
Popielarska-Konieczna M, Sala K, Abdullah M, Tuleja M, Kurczyńska E. Extracellular matrix and wall composition are diverse in the organogenic and non-organogenic calli of Actinidia arguta. PLANT CELL REPORTS 2020; 39:779-798. [PMID: 32232559 PMCID: PMC7235053 DOI: 10.1007/s00299-020-02530-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
Differences in the composition and the structural organisation of the extracellular matrix correlate with the morphogenic competence of the callus tissue that originated from the isolated endosperm of kiwifruit. The chemical composition and structural organisation of the extracellular matrix, including the cell wall and the layer on its surface, may correspond with the morphogenic competence of a tissue. In the presented study, this relationship was found in the callus tissue that had been differentiated from the isolated endosperm of the kiwiberry, Actinidia arguta. The experimental system was based on callus samples of exactly the same age that had originated from an isolated endosperm but were cultured under controlled conditions promoting either an organogenic or a non-organogenic pathway. The analyses which were performed using bright field, fluorescence and scanning electron microscopy techniques showed significant differences between the two types of calli. The organogenic tissue was compact and the outer walls of the peripheral cells were covered with granular structures. The non-organogenic tissue was composed of loosely attached cells, which were connected via a net-like structure. The extracellular matrices from both the non- and organogenic tissues were abundant in pectic homogalacturonan and extensins (LM19, LM20, JIM11, JIM12 and JIM20 epitopes), but the epitopes that are characteristic for rhamnogalacturonan I (LM5 and LM6), hemicellulose (LM25) and the arabinogalactan protein (LM2) were detected only in the non-organogenic callus. Moreover, we report the epitopes, which presence is characteristic for the Actinidia endosperm (LM21 and LM25, heteromannan and xyloglucan) and for the endosperm-derived cells that undergo dedifferentiation (loss of LM21 and LM25; appearance or increase in the content of LM5, LM6, LM19, JIM11, JIM12, JIM20, JIM8 and JIM16 epitopes).
Collapse
Affiliation(s)
- Marzena Popielarska-Konieczna
- Department of Plant Cytology and Embryology, Faculty of Biology, Institute of Botany, Jagiellonian University in Cracow, Gronostajowa 9, 30-387, Cracow, Poland
| | - Katarzyna Sala
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Jagiellonska 28, 40-032, Katowice, Poland.
| | - Mohib Abdullah
- Department of Plant Cytology and Embryology, Faculty of Biology, Institute of Botany, Jagiellonian University in Cracow, Gronostajowa 9, 30-387, Cracow, Poland
| | - Monika Tuleja
- Department of Plant Cytology and Embryology, Faculty of Biology, Institute of Botany, Jagiellonian University in Cracow, Gronostajowa 9, 30-387, Cracow, Poland
| | - Ewa Kurczyńska
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Jagiellonska 28, 40-032, Katowice, Poland
| |
Collapse
|
27
|
Duran Garzon C, Lequart M, Rautengarten C, Bassard S, Sellier-Richard H, Baldet P, Heazlewood JL, Gibon Y, Domon JM, Giauffret C, Rayon C. Regulation of carbon metabolism in two maize sister lines contrasted for chilling tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:356-369. [PMID: 31557299 DOI: 10.1093/jxb/erz421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/16/2019] [Indexed: 05/16/2023]
Abstract
Maize can grow in cool temperate climates but is often exposed to spring chilling temperatures that can affect early seedling growth. Here, we used two sister double-haploid lines displaying a contrasted tolerance to chilling to identify major determinants of long-term chilling tolerance. The chilling-sensitive (CS) and the chilling-tolerant (CT) lines were grown at 14 °C day/10 °C night for 60 d. CS plants displayed a strong reduction in growth and aerial biomass compared with CT plants. Photosynthetic efficiency was affected with an increase in energy dissipation in both lines. Chilling tolerance in CT plants was associated with higher chlorophyll content, glucose-6-phosphate dehydrogenase activity, and higher sucrose to starch ratio. Few changes in cell wall composition were observed in both genotypes. There was no obvious correlation between nucleotide sugar content and cell wall polysaccharide composition. Our findings suggest that the central starch-sucrose metabolism is one major determinant of the response to low temperature, and its modulation accounts for the ability of CT plants to cope with low temperature. This modulation seemed to be linked to a strong alteration in the biosynthesis of nucleotide sugars that, at a high level, could reflect the remobilization of carbon in response to chilling.
Collapse
Affiliation(s)
- Catalina Duran Garzon
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, France
| | - Michelle Lequart
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, France
| | | | - Solène Bassard
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, France
| | - Hélène Sellier-Richard
- Unité Expérimentale Grandes Cultures Innovation et Environnement, INRA-Estrées-Mons, Péronne, France
| | - Pierre Baldet
- UMR1332, Biologie du Fruit et Pathologie, Bordeaux Métabolome, INRA, Université de Bordeaux, Villenave d'Ornon, France
| | - Joshua L Heazlewood
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Yves Gibon
- UMR1332, Biologie du Fruit et Pathologie, Bordeaux Métabolome, INRA, Université de Bordeaux, Villenave d'Ornon, France
| | - Jean-Marc Domon
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, France
| | | | - Catherine Rayon
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, France
| |
Collapse
|
28
|
Roig-Oliver M, Nadal M, Clemente-Moreno MJ, Bota J, Flexas J. Cell wall components regulate photosynthesis and leaf water relations of Vitis vinifera cv. Grenache acclimated to contrasting environmental conditions. JOURNAL OF PLANT PHYSIOLOGY 2020; 244:153084. [PMID: 31812907 DOI: 10.1016/j.jplph.2019.153084] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/18/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
Environmental conditions determine plants performance as they shape - among other key factors - leaf features and physiology. However, little is known regarding to the changes occurring in leaf cell wall composition during the acclimation to an environmental stress and, specially, if these changes have an impact on other leaf physiology aspects. In order to induce changes in photosynthesis, leaf water relations and cell wall main components (i.e., cellulose, hemicelluloses and pectins) and see how they co-vary, Vitis vinifera cv. Grenache was tested under four different conditions: (i) non-stress conditions (i.e., control, with high summer temperature and irradiance), (ii) growth chamber conditions, (iii) growth chamber under water stress and (iv) cold growth chamber. Plants developed in growth chambers decreased net CO2 assimilation (AN) and mesophyll conductance (gm) compared to control. Although cold did not change the bulk modulus of elasticity (ε), it decreased in growth chamber conditions and water stress. Control treatment showed the highest values for photosynthetic parameters and ε as well as for leaf structural traits such as leaf mass area (LMA) and leaf density (LD). Whereas cellulose content correlated with photosynthetic parameters, particularly AN and gm, pectins and the amount of alcohol insoluble residue (AIR) - an approximation of the isolated cell wall fraction - correlated with leaf water parameters, specifically, ε. Although preliminary, our results suggest that cell wall modifications due to environmental acclimations can play a significant role in leaf physiology by affecting distinctly photosynthesis and water relations in a manner that might depend on environmental conditions.
Collapse
Affiliation(s)
- Margalida Roig-Oliver
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB), INAGEA, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain.
| | - Miquel Nadal
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB), INAGEA, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain.
| | - María José Clemente-Moreno
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB), INAGEA, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain.
| | - Josefina Bota
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB), INAGEA, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain.
| | - Jaume Flexas
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB), INAGEA, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain.
| |
Collapse
|
29
|
Panter PE, Kent O, Dale M, Smith SJ, Skipsey M, Thorlby G, Cummins I, Ramsay N, Begum RA, Sanhueza D, Fry SC, Knight MR, Knight H. MUR1-mediated cell-wall fucosylation is required for freezing tolerance in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2019; 224:1518-1531. [PMID: 31549420 PMCID: PMC6899859 DOI: 10.1111/nph.16209] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/28/2019] [Indexed: 05/20/2023]
Abstract
Forward genetic screens play a key role in the identification of genes contributing to plant stress tolerance. Using a screen for freezing sensitivity, we have identified a novel freezing tolerance gene, SENSITIVE-TO-FREEZING8, in Arabidopsis thaliana. We identified SFR8 using recombination-based mapping and whole-genome sequencing. As SFR8 was predicted to have an effect on cell wall composition, we used GC-MS and polyacrylamide gel electrophoresis to measure cell-wall fucose and boron (B)-dependent dimerization of the cell-wall pectic domain rhamnogalacturonan II (RGII) in planta. After treatments to promote borate-bridging of RGII, we assessed freeze-induced damage in wild-type and sfr8 plants by measuring electrolyte leakage from freeze-thawed leaf discs. We mapped the sfr8 mutation to MUR1, a gene encoding the fucose biosynthetic enzyme GDP-d-mannose-4,6-dehydratase. sfr8 cell walls exhibited low cell-wall fucose levels and reduced RGII bridging. Freezing sensitivity of sfr8 mutants was ameliorated by B supplementation, which can restore RGII dimerization. B transport mutants with reduced RGII dimerization were also freezing-sensitive. Our research identifies a role for the structure and composition of the plant primary cell wall in determining basal plant freezing tolerance and highlights the specific importance of fucosylation, most likely through its effect on the ability of RGII pectin to dimerize.
Collapse
Affiliation(s)
- Paige E. Panter
- Department of Biosciences & Durham Centre for Crop Improvement TechnologyDurham UniversitySouth RoadDurhamDH1 3LEUK
| | - Olivia Kent
- Department of Biosciences & Durham Centre for Crop Improvement TechnologyDurham UniversitySouth RoadDurhamDH1 3LEUK
| | - Maeve Dale
- Department of Biosciences & Durham Centre for Crop Improvement TechnologyDurham UniversitySouth RoadDurhamDH1 3LEUK
| | - Sarah J. Smith
- Department of Biosciences & Durham Centre for Crop Improvement TechnologyDurham UniversitySouth RoadDurhamDH1 3LEUK
| | - Mark Skipsey
- Department of Biosciences & Durham Centre for Crop Improvement TechnologyDurham UniversitySouth RoadDurhamDH1 3LEUK
| | - Glenn Thorlby
- Scion49 Sala Street, Private Bag 3020Rotorua3046New Zealand
| | - Ian Cummins
- Department of Biosciences & Durham Centre for Crop Improvement TechnologyDurham UniversitySouth RoadDurhamDH1 3LEUK
| | - Nathan Ramsay
- Department of Biosciences & Durham Centre for Crop Improvement TechnologyDurham UniversitySouth RoadDurhamDH1 3LEUK
| | - Rifat A. Begum
- Institute of Molecular Plant SciencesThe University of EdinburghDaniel Rutherford Building, The King’s Buildings, Max Born CrescentEdinburghEH9 3BFUK
| | - Dayan Sanhueza
- Institute of Molecular Plant SciencesThe University of EdinburghDaniel Rutherford Building, The King’s Buildings, Max Born CrescentEdinburghEH9 3BFUK
| | - Stephen C. Fry
- Institute of Molecular Plant SciencesThe University of EdinburghDaniel Rutherford Building, The King’s Buildings, Max Born CrescentEdinburghEH9 3BFUK
| | - Marc R. Knight
- Department of Biosciences & Durham Centre for Crop Improvement TechnologyDurham UniversitySouth RoadDurhamDH1 3LEUK
| | - Heather Knight
- Department of Biosciences & Durham Centre for Crop Improvement TechnologyDurham UniversitySouth RoadDurhamDH1 3LEUK
| |
Collapse
|
30
|
Jaskowiak J, Kwasniewska J, Milewska-Hendel A, Kurczynska EU, Szurman-Zubrzycka M, Szarejko I. Aluminum Alters the Histology and Pectin Cell Wall Composition of Barley Roots. Int J Mol Sci 2019; 20:ijms20123039. [PMID: 31234423 PMCID: PMC6628276 DOI: 10.3390/ijms20123039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 01/05/2023] Open
Abstract
Aluminum (Al) is one of the most important crust elements causing reduced plant production in acidic soils. Barley (Hordeum vulgare L.) is considered to be one of the crops that is most sensitive to Al, and the root cell wall is the primary target of Al toxicity. In this study, we evaluate the possible involvement of specific pectic epitopes in the cells of barley roots in response to aluminum exposure. We targeted four different pectic epitopes recognized by LM5, LM6, LM19, and LM20 antibodies using an immunocytochemical approach. Since Al becomes available and toxic to plants in acidic soils, we performed our analyses on barley roots that had been grown in acidic conditions (pH 4.0) with and without Al and in control conditions (pH 6.0). Differences connected with the presence and distribution of the pectic epitopes between the control and Al-treated roots were observed. In the Al-treated roots, pectins with galactan sidechains were detected with a visually lower fluorescence intensity than in the control roots while pectins with arabinan sidechains were abundantly present. Furthermore, esterified homogalacturonans (HGs) were present with a visually higher fluorescence intensity compared to the control, while methyl-esterified HGs were present in a similar amount. Based on the presented results, it was concluded that methyl-esterified HG can be a marker for newly arising cell walls. Additionally, histological changes were detected in the roots grown under Al exposure. Among them, an increase in root diameter, shortening of root cap, and increase in the size of rhizodermal cells and divisions of exodermal and cortex cells were observed. The presented data extend upon the knowledge on the chemical composition of the cell wall of barley root cells under stress conditions. The response of cells to Al can be expressed by the specific distribution of pectins in the cell wall and, thus, enables the knowledge on Al toxicity to be extended by explaining the mechanism by which Al inhibits root elongation.
Collapse
Affiliation(s)
- Joanna Jaskowiak
- Department of Plant Anatomy and Cytology, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland.
| | - Jolanta Kwasniewska
- Department of Plant Anatomy and Cytology, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland.
| | - Anna Milewska-Hendel
- Department of Cell Biology, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland.
| | - Ewa Urszula Kurczynska
- Department of Cell Biology, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland.
| | - Miriam Szurman-Zubrzycka
- Department of Genetics, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland.
| | - Iwona Szarejko
- Department of Genetics, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland.
| |
Collapse
|
31
|
Klepikova AV, Kulakovskiy IV, Kasianov AS, Logacheva MD, Penin AA. An update to database TraVA: organ-specific cold stress response in Arabidopsis thaliana. BMC PLANT BIOLOGY 2019; 19:49. [PMID: 30813912 PMCID: PMC6393959 DOI: 10.1186/s12870-019-1636-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
BACKGROUND Transcriptome map is a powerful tool for a variety of biological studies; transcriptome maps that include different organs, tissues, cells and stages of development are currently available for at least 30 plants. Some of them include samples treated by environmental or biotic stresses. However, most studies explore only limited set of organs and developmental stages (leaves or seedlings). In order to provide broader view of organ-specific strategies of cold stress response we studied expression changes that follow exposure to cold (+ 4 °C) in different aerial parts of plant: cotyledons, hypocotyl, leaves, young flowers, mature flowers and seeds using RNA-seq. RESULTS The results on differential expression in leaves are congruent with current knowledge on stress response pathways, in particular, the role of CBF genes. In other organs, both essence and dynamics of gene expression changes are different. We show the involvement of genes that are confined to narrow expression patterns in non-stress conditions into stress response. In particular, the genes that control cell wall modification in pollen, are activated in leaves. In seeds, predominant pattern is the change of lipid metabolism. CONCLUSIONS Stress response is highly organ-specific; different pathways are involved in this process in each type of organs. The results were integrated with previously published transcriptome map of Arabidopsis thaliana and used for an update of a public database TraVa: http://travadb.org/browse/Species=AthStress .
Collapse
Affiliation(s)
- Anna V. Klepikova
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Bolshoy Karetny per. 19, build.1, Moscow, 127051 Russia
| | - Ivan V. Kulakovskiy
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina 3, Moscow, 119991 Russia
- Institute of Mathematical Problems of Biology RAS - the Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Vitkevicha 1, Pushchino, Moscow Region, 142290 Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
| | - Artem S. Kasianov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina 3, Moscow, 119991 Russia
| | - Maria D. Logacheva
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Bolshoy Karetny per. 19, build.1, Moscow, 127051 Russia
- Moscow State University, Leninskye gory, build 1, Moscow, 119992 Russia
- Skolkovo Institute of Science and Technology, Nobelya Ulitsa 3, Moscow, 121205 Russia
| | - Aleksey A. Penin
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Bolshoy Karetny per. 19, build.1, Moscow, 127051 Russia
- Moscow State University, Leninskye gory, build 1, Moscow, 119992 Russia
| |
Collapse
|
32
|
Rastogi S, Shah S, Kumar R, Vashisth D, Akhtar MQ, Kumar A, Dwivedi UN, Shasany AK. Ocimum metabolomics in response to abiotic stresses: Cold, flood, drought and salinity. PLoS One 2019; 14:e0210903. [PMID: 30726239 PMCID: PMC6364901 DOI: 10.1371/journal.pone.0210903] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/03/2019] [Indexed: 11/19/2022] Open
Abstract
Ocimum tenuiflorum is a widely used medicinal plant since ancient times and still continues to be irreplaceable due to its properties. The plant has been explored chemically and pharmacologically, however, the molecular studies have been started lately. In an attempt to get a comprehensive overview of the abiotic stress response in O. tenuiflorum, de novo transcriptome sequencing of plant leaves under the cold, drought, flood and salinity stresses was carried out. A comparative differential gene expression (DGE) study was carried out between the common transcripts in each stress with respect to the control. KEGG pathway analysis and gene ontology (GO) enrichment studies exhibited several modifications in metabolic pathways as the result of four abiotic stresses. Besides this, a comparative metabolite profiling of stress and control samples was performed. Among the cold, drought, flood and salinity stresses, the plant was most susceptible to the cold stress. Severe treatments of all these abiotic stresses also decreased eugenol which is the main secondary metabolite present in the O. tenuiflorum plant. This investigation presents a comprehensive analysis of the abiotic stress effects in O. tenuiflorum. Current study provides an insight to the status of pathway genes’ expression that help synthesizing economically valuable phenylpropanoids and terpenoids related to the adaptation of the plant. This study identified several putative abiotic stress tolerant genes which can be utilized to either breed stress tolerant O. tenuiflorum through pyramiding or generating transgenic plants.
Collapse
Affiliation(s)
- Shubhra Rastogi
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Saumya Shah
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Ritesh Kumar
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Divya Vashisth
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Md Qussen Akhtar
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Ajay Kumar
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Upendra Nath Dwivedi
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Ajit Kumar Shasany
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
- * E-mail:
| |
Collapse
|
33
|
Khudyakov AN, Kuleshova LG, Zaitseva OO, Sergushkina MI, Vetoshkin KA, Polezhaeva TV. Effect of Pectins on Water Crystallization Pattern and Integrity of Cells During Freezing. Biopreserv Biobank 2019; 17:52-57. [DOI: 10.1089/bio.2018.0066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Affiliation(s)
- Andrey Nikolayevich Khudyakov
- Laboratory of Cryophysiology of Blood, Institute of Physiology, Komi Scientific Center of the Russian Academy of Sciences, Komi Republic, Syktyvkar, Russian Federation
| | - Larisa Georgievna Kuleshova
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Oksana Olegovna Zaitseva
- Laboratory of Cryophysiology of Blood, Institute of Physiology, Komi Scientific Center of the Russian Academy of Sciences, Komi Republic, Syktyvkar, Russian Federation
| | - Marta Igorevna Sergushkina
- Laboratory of Cryophysiology of Blood, Institute of Physiology, Komi Scientific Center of the Russian Academy of Sciences, Komi Republic, Syktyvkar, Russian Federation
| | | | - Tatyana Vitalyevna Polezhaeva
- Laboratory of Cryophysiology of Blood, Institute of Physiology, Komi Scientific Center of the Russian Academy of Sciences, Komi Republic, Syktyvkar, Russian Federation
| |
Collapse
|
34
|
Hao X, Tang H, Wang B, Yue C, Wang L, Zeng J, Yang Y, Wang X. Integrative transcriptional and metabolic analyses provide insights into cold spell response mechanisms in young shoots of the tea plant. TREE PHYSIOLOGY 2018; 38:1655-1671. [PMID: 29688561 DOI: 10.1093/treephys/tpy038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 03/21/2018] [Indexed: 06/08/2023]
Abstract
Green tea has attracted an increasing number of consumers worldwide due to its multiple health benefits. With the increase in global warming, more frequent cold spells in the spring often cause more serious damage to green tea production because of the young leaves used. We recorded the changes in climatic conditions during a typical cold spell and the damage symptoms caused by the cold spell in different tea cultivars and breeding lines. By simulating the low temperature of a cold spell under controlled conditions, comparative transcriptome and metabolic analyses were performed with sprouting shoots. Many pathways and genes were regulated differentially by the cold spell conditions. Taking into account the metabolic analysis, the results suggested that the mitogen-activated protein kinase (MAPK)-dependent ethylene and calcium signalling pathways were two major early cold-responsive mechanisms involved in sprouting shoots and were followed by the induction of the Inducer of CBF Expressions (ICE)-C-repeat binding factors (CBF)-cold-responsive (COR) signalling pathway to augment cold tolerance. During the cold shock, growth, photosynthesis and secondary metabolism-mainly involving flavonoid biosynthesis-were remarkably affected. Notably, the increased starch metabolism, which might be dependent on the high expression of β-amylase3 (BAM3) induced by CBF, played crucial roles in protecting young shoots against freezing cold. A schematic diagram of cold spell response mechanisms specifically involved in the sprouting shoots of the tea plant is ultimately proposed. Some essential transcriptional and metabolic changes were further confirmed in the plant materials under natural cold spell conditions. Our results provide a global view of the reprograming of transcription and metabolism in sprouting tea shoots during a cold spell and meaningful information for future practices.
Collapse
Affiliation(s)
- Xinyuan Hao
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Hu Tang
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Bo Wang
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Chuan Yue
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou, China
| | - Lu Wang
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Jianming Zeng
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Yajun Yang
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Xinchao Wang
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| |
Collapse
|
35
|
The Multifaceted Role of Pectin Methylesterase Inhibitors (PMEIs). Int J Mol Sci 2018; 19:ijms19102878. [PMID: 30248977 PMCID: PMC6213510 DOI: 10.3390/ijms19102878] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 01/30/2023] Open
Abstract
Plant cell walls are complex and dynamic structures that play important roles in growth and development, as well as in response to stresses. Pectin is a major polysaccharide of cell walls rich in galacturonic acid (GalA). Homogalacturonan (HG) is considered the most abundant pectic polymer in plant cell walls and is partially methylesterified at the C6 atom of galacturonic acid. Its degree (and pattern) of methylation (DM) has been shown to affect biomechanical properties of the cell wall by making pectin susceptible for enzymatic de-polymerization and enabling gel formation. Pectin methylesterases (PMEs) catalyze the removal of methyl-groups from the HG backbone and their activity is modulated by a family of proteinaceous inhibitors known as pectin methylesterase inhibitors (PMEIs). As such, the interplay between PME and PMEI can be considered as a determinant of cell adhesion, cell wall porosity and elasticity, as well as a source of signaling molecules released upon cell wall stress. This review aims to highlight recent updates in our understanding of the PMEI gene family, their regulation and structure, interaction with PMEs, as well as their function in response to stress and during development.
Collapse
|
36
|
Gawkowska D, Cybulska J, Zdunek A. Structure-Related Gelling of Pectins and Linking with Other Natural Compounds: A Review. Polymers (Basel) 2018; 10:E762. [PMID: 30960687 PMCID: PMC6404037 DOI: 10.3390/polym10070762] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/06/2018] [Accepted: 07/10/2018] [Indexed: 01/07/2023] Open
Abstract
Pectins are polysaccharides present commonly in dicotyledonous and non-grass monocotyledonous plants. Depending on the source, pectins may vary in molecular size, degrees of acetylation and methylation and contents of galacturonic acid and neutral sugar residues. Therefore, pectins demonstrate versatile gelling properties and are capable of forming complexes with other natural compounds, and as a result, they are useful for designing food products. This review focuses on the structure-related mechanisms of pectin gelling and linking with other natural compounds such as cellulose, hemicellulose, ferulic acid, proteins, starch, and chitosan. For each system, optimal conditions for obtaining useful functionality for food design are described. This review strongly recommends that pectins, as a natural biocomponent, should be the focus for both the food industry and the bioeconomy since pectins are abundant in fruits and may also be extracted from cell walls in a similar way to cellulose and hemicellulose. However, due to the complexity of the pectin family and the dynamic structural changes during plant organ development, a more intensive study of their structure-related properties is necessary. Fractioning using different solvents at well-defined development stages and an in-depth study of the molecular structure and properties within each fraction and stage, is one possible way to proceed with the investigation.
Collapse
Affiliation(s)
- Diana Gawkowska
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| | - Justyna Cybulska
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| |
Collapse
|
37
|
The pectinases from Sphenophorus levis: Potential for biotechnological applications. Int J Biol Macromol 2018; 112:499-508. [DOI: 10.1016/j.ijbiomac.2018.01.172] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/23/2018] [Accepted: 01/25/2018] [Indexed: 12/16/2022]
|
38
|
Chen J, Chen X, Zhang Q, Zhang Y, Ou X, An L, Feng H, Zhao Z. A cold-induced pectin methyl-esterase inhibitor gene contributes negatively to freezing tolerance but positively to salt tolerance in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2018; 222:67-78. [PMID: 29407551 DOI: 10.1016/j.jplph.2018.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 01/15/2018] [Accepted: 01/15/2018] [Indexed: 05/24/2023]
Abstract
Plant pectin methyl-esterase (PME) and PME inhibitor (PMEI) belong to large gene families whose members are proposed to be widely involved in growth, development, and stress responses; however, the biological functions of most PMEs and PMEIs have not been characterized. In this study, we studied the roles of CbPMEI1, a cold-induced pectin methyl-esterase inhibitor (PMEI) gene from Chorispora bungeana, under freezing and salt stress. The putative CbPMEI1 peptide shares highest similarity (83%) with AT5G62360 (PMEI13) of Arabidopsis. Overexpression of either CbPMEI1 or PMEI13 in Arabidopsis decreased tissue PME activity and enhanced the degree of methoxylation of cell wall pectins, indicating that both genes encode functional PMEIs. CbPMEI1 and PMEI13 were induced by cold but repressed by salt stress and abscisic acid, suggesting distinct roles of the genes in freezing and salt stress tolerance. Interestingly, transgenic Arabidopsis plants overexpressing CbPMEI1 or PMEI13 showed decreased freezing tolerance, as indicated by survival and electrolyte leakage assays. On the other hand, the salt tolerance of transgenic plants was increased, showing higher rates of germination, root growth, and survival under salinity conditions as compared with non-transgenic wild-type plants. Although the transgenic plants were freezing-sensitive, they showed longer roots than wild-type plants under cold conditions, suggesting a role of PMEs in balancing the trade-off between freezing tolerance and growth. Thus, our study indicates that CbPMEI1 and PMEI13 are involved in root growth regulation under cold and salt stresses, and suggests that PMEIs may be potential targets for genetic engineering aimed to improve fitness of plants under stress conditions.
Collapse
Affiliation(s)
- Jian Chen
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xuehui Chen
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qingfeng Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yidan Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiangli Ou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lizhe An
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Huyuan Feng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Zhiguang Zhao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
39
|
Willick IR, Takahashi D, Fowler DB, Uemura M, Tanino KK. Tissue-specific changes in apoplastic proteins and cell wall structure during cold acclimation of winter wheat crowns. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1221-1234. [PMID: 29373702 PMCID: PMC6019019 DOI: 10.1093/jxb/erx450] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 11/29/2017] [Indexed: 05/04/2023]
Abstract
The wheat (Triticum aestivum L.) crown is the critical organ of low temperature stress survival over winter. In cold-acclimated crowns, ice formation in the apoplast causes severe tissue disruption as it grows at the expense of intracellular water. While previous crown studies have shown the vascular transition zone (VTZ) to have a higher freezing sensitivity than the shoot apical meristem (SAM), the mechanism behind the differential freezing response is not fully understood. Cooling cold-acclimated crowns to -10 °C resulted in an absence of VTZ tetrazolium chloride staining, whereas the temperatures at which 50% of the SAM stained positive and 50% of plants recovered (LT50) were similar after cold acclimation for 21 (-16 °C) and 42 d (-20 °C) at 4 °C. Proteomic analysis of the apoplastic fluids identified dehydrins, vernalization-responsive proteins, and cold shock proteins preferentially accumulated in the SAM. In contrast, modifications to the VTZ centered on increases in pathogenesis-related proteins, anti-freeze proteins, and sugar hydrolyzing enzymes. Fourier transform infrared spectroscopy focal plane array analysis identified the biochemical modification of the cell wall to enhance methyl-esterified cross-linking of glucuronoarabinoxylans in the VTZ. These findings indicate that the SAM and VTZ express two distinct tissue-specific apoplastic responses during cold acclimation.
Collapse
Affiliation(s)
- Ian R Willick
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Daisuke Takahashi
- United Graduate School of Agricultural Sciences, Iwate University, Morioka, Japan
- Department of Plant-biosciences and Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - D Brian Fowler
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Matsuo Uemura
- United Graduate School of Agricultural Sciences, Iwate University, Morioka, Japan
- Department of Plant-biosciences and Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Karen K Tanino
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
40
|
Takahashi D, Uemura M, Kawamura Y. Freezing Tolerance of Plant Cells: From the Aspect of Plasma Membrane and Microdomain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1081:61-79. [PMID: 30288704 DOI: 10.1007/978-981-13-1244-1_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Freezing stress is accompanied by a state change from water to ice and has multiple facets causing dehydration; consequently, hyperosmotic and mechanical stresses coupled with unfavorable chilling stress act in a parallel way. Freezing tolerance varies widely among plant species, and, for example, most temperate plants can overcome deleterious effects caused by freezing temperatures in winter. Destabilization and dysfunction of the plasma membrane are tightly linked to freezing injury of plant cells. Plant freezing tolerance increases upon exposure to nonfreezing low temperatures (cold acclimation). Recent studies have unveiled pleiotropic responses of plasma membrane lipids and proteins to cold acclimation. In addition, advanced techniques have given new insights into plasma membrane structural non-homogeneity, namely, microdomains. This chapter describes physiological implications of plasma membrane responses enhancing freezing tolerance during cold acclimation, with a focus on microdomains.
Collapse
Affiliation(s)
- Daisuke Takahashi
- Central Infrastructure Group Genomics and Transcript Profiling, Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Matsuo Uemura
- United Graduate School of Agricultural Sciences and Department of Plant-biosciences, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Yukio Kawamura
- Cryobiofrontier Research Center and Department of Plant-biosciences, and United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate, Japan.
| |
Collapse
|
41
|
Effect of Low Temperature Cultivation on the Phytochemical Profile and Bioactivity of Arctic Plants: A Case of Dracocephalum palmatum. Int J Mol Sci 2017; 18:ijms18122579. [PMID: 29189749 PMCID: PMC5751182 DOI: 10.3390/ijms18122579] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/08/2017] [Accepted: 11/28/2017] [Indexed: 01/07/2023] Open
Abstract
The influence of climatic factors, e.g., low temperature, on the phytochemical composition and bioactivity of the arctic plant Dracocephalum palmatum Steph. ax Willd. (palmate dragonhead), a traditional food and medical herb of Northern Siberia, was investigated. D. palmatum seedlings were grown in a greenhouse experiment at normal (20 °C, NT) and low (1 °C, LT) temperature levels and five groups of components that were lipophilic and hydrophilic in nature were characterized. The analyses indicated that D. palmatum under NT demonstrates high content of photosynthetic pigments, specific fatty acid (FA) profile with domination of saturated FA (53.3%) and the essential oil with trans-pinocamphone as a main component (37.9%). Phenolic compounds were identified using a combination of high performance liquid chromatography with diode array detection and electrospray ionization mass-spectrometric detection (HPLC-DAD-ESI-MS) techniques, as well as free carbohydrates and water soluble polysaccharides. For the first time, it was established that the cold acclimation of D. palmatum seedlings resulted in various changes in physiological and biochemical parameters such as membrane permeability, photosynthetic potential, membrane fluidity, leaf surface secretory function, reactive oxygen species-antioxidant balance, osmoregulator content and cell wall polymers. In brief, results showed that the adaptive strategy of D. palmatum under LT was realized on the accumulation of membrane or surface components with more fluid properties (unsaturated FA and essential oils), antioxidants (phenolic compounds and enzymes), osmoprotectants (free sugars) and cell wall components (polysaccharides). In addition, the occurrence of unusual flavonoids including two new isomeric malonyl esters of eriodictyol-7-O-glucoside was found in LT samples. Data thus obtained allow improving our understanding of ecophysiological mechanisms of cold adaptation of arctic plants.
Collapse
|
42
|
Sénéchal F, Habrylo O, Hocq L, Domon JM, Marcelo P, Lefebvre V, Pelloux J, Mercadante D. Structural and dynamical characterization of the pH-dependence of the pectin methylesterase-pectin methylesterase inhibitor complex. J Biol Chem 2017; 292:21538-21547. [PMID: 29109147 DOI: 10.1074/jbc.ra117.000197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/02/2017] [Indexed: 11/06/2022] Open
Abstract
Pectin methylesterases (PMEs) catalyze the demethylesterification of pectin, one of the main polysaccharides in the plant cell wall, and are of critical importance in plant development. PME activity generates highly negatively charged pectin and mutates the physiochemical properties of the plant cell wall such that remodeling of the plant cell can occur. PMEs are therefore tightly regulated by proteinaceous inhibitors (PMEIs), some of which become active upon changes in cellular pH. Nevertheless, a detailed picture of how this pH-dependent inhibition of PME occurs at the molecular level is missing. Herein, using an interdisciplinary approach that included homology modeling, MD simulations, and biophysical and biochemical characterizations, we investigated the molecular basis of PME3 inhibition by PMEI7 in Arabidopsis thaliana Our complementary approach uncovered how changes in the protonation of amino acids at the complex interface shift the network of interacting residues between intermolecular and intramolecular. These shifts ultimately regulate the stability of the PME3-PMEI7 complex and the inhibition of the PME as a function of the pH. These findings suggest a general model of how pH-dependent proteinaceous inhibitors function. Moreover, they enhance our understanding of how PMEs may be regulated by pH and provide new insights into how this regulation may control the physical properties and structure of the plant cell wall.
Collapse
Affiliation(s)
- Fabien Sénéchal
- From the EA3900-BIOPI Biologie des Plantes et Innovation SFR Condorcet FR CNRS 3417, Université de Picardie, 80039 Amiens, France
| | - Olivier Habrylo
- From the EA3900-BIOPI Biologie des Plantes et Innovation SFR Condorcet FR CNRS 3417, Université de Picardie, 80039 Amiens, France
| | - Ludivine Hocq
- From the EA3900-BIOPI Biologie des Plantes et Innovation SFR Condorcet FR CNRS 3417, Université de Picardie, 80039 Amiens, France
| | - Jean-Marc Domon
- From the EA3900-BIOPI Biologie des Plantes et Innovation SFR Condorcet FR CNRS 3417, Université de Picardie, 80039 Amiens, France
| | - Paulo Marcelo
- the Plateforme ICAP, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, 80054 Amiens, France
| | - Valérie Lefebvre
- From the EA3900-BIOPI Biologie des Plantes et Innovation SFR Condorcet FR CNRS 3417, Université de Picardie, 80039 Amiens, France
| | - Jérôme Pelloux
- From the EA3900-BIOPI Biologie des Plantes et Innovation SFR Condorcet FR CNRS 3417, Université de Picardie, 80039 Amiens, France,
| | - Davide Mercadante
- the Heidelberg Institute for Theoretical Studies, Heidelberg-HITS, 16920 Heidelberg, Germany, and .,the IWR-Interdisciplinary Center for Scientific Computing, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
43
|
Arias NS, Scholz FG, Goldstein G, Bucci SJ. The cost of avoiding freezing in stems: trade-off between xylem resistance to cavitation and supercooling capacity in woody plants. TREE PHYSIOLOGY 2017. [PMID: 28633378 DOI: 10.1093/treephys/tpx071] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Stems and leaves of Olea europaea L. (olive) avoid freezing damage by substantial supercooling during the winter season. Physiological changes during acclimation to low temperatures were studied in five olive cultivars. Water relations and hydraulic traits, ice nucleation temperature (INT) and temperatures resulting in 50% damage (LT50) were determined. All cultivars showed a gradual decrease in INT and LT50 from the dry and warm summer to the wet and cold winter in Patagonia, Argentina. During acclimation to low temperatures there was an increase in leaf cell wall rigidity and stomatal conductance (gs), as well as a decrease in leaf apoplastic water content, leaf water potential (Ψ), sap flow and stem hydraulic conductivity (ks). More negative Ψ as a consequence of high gs and detrimental effects of low temperatures on root activity resulted in a substantial loss of ks due to embolism formation. Seasonal stem INT decrease from summer to winter was directly related to the xylem resistance to cavitation, determined by the loss of ks across cultivars. Thus the loss of freezable water in xylem vessels by embolisms increased stem supercooling capacity and delayed ice propagation from stems to the leaves. For the first time, a trade-off between xylem resistance to cavitation and stem and leaf supercooling capacity was observed in plants that avoid extracellular freezing by permanent supercooling. The substantial loss of hydraulic function in olive cultivar stems by embolism formation with their high repair costs are compensated by avoiding plant damage at very low subzero temperatures.
Collapse
Affiliation(s)
- Nadia S Arias
- Instituto de Biociencias de la Patagonia (INBIOP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), Comodoro Rivadavia, Argentina
- Grupo de Estudios Biofísicos y Eco-fisiológicos (GEBEF), UNPSJB, Comodoro Rivadavia, Argentina
| | - Fabián G Scholz
- Instituto de Biociencias de la Patagonia (INBIOP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), Comodoro Rivadavia, Argentina
- Grupo de Estudios Biofísicos y Eco-fisiológicos (GEBEF), UNPSJB, Comodoro Rivadavia, Argentina
| | - Guillermo Goldstein
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA-CONICET-Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Laboratorio de Ecología Funcional (LEF), UBA, Buenos Aires, Argentina
- Department of Biology, University of Miami, Coral Gables, PO Box 249118, FL 33124, USA
| | - Sandra J Bucci
- Instituto de Biociencias de la Patagonia (INBIOP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), Comodoro Rivadavia, Argentina
- Grupo de Estudios Biofísicos y Eco-fisiológicos (GEBEF), UNPSJB, Comodoro Rivadavia, Argentina
| |
Collapse
|
44
|
Liu R, Fang L, Yang T, Zhang X, Hu J, Zhang H, Han W, Hua Z, Hao J, Zong X. Marker-trait association analysis of frost tolerance of 672 worldwide pea (Pisum sativum L.) collections. Sci Rep 2017; 7:5919. [PMID: 28724947 PMCID: PMC5517424 DOI: 10.1038/s41598-017-06222-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/08/2017] [Indexed: 12/18/2022] Open
Abstract
Frost stress is one of the major abiotic stresses causing seedling death and yield reduction in winter pea. To improve the frost tolerance of pea, field evaluation of frost tolerance was conducted on 672 diverse pea accessions at three locations in Northern China in three growing seasons from 2013 to 2016 and marker-trait association analysis of frost tolerance were performed with 267 informative SSR markers in this study. Sixteen accessions were identified as the most winter-hardy for their ability to survive in all nine field experiments with a mean survival rate of 0.57, ranging from 0.41 to 0.75. Population structure analysis revealed a structured population of two sub-populations plus some admixtures in the 672 accessions. Association analysis detected seven markers that repeatedly had associations with frost tolerance in at least two different environments with two different statistical models. One of the markers is the functional marker EST1109 on LG VI which was predicted to co-localize with a gene involved in the metabolism of glycoproteins in response to chilling stress and may provide a novel mechanism of frost tolerance in pea. These winter-hardy germplasms and frost tolerance associated markers will play a vital role in marker-assisted breeding for winter-hardy pea cultivar.
Collapse
Affiliation(s)
- Rong Liu
- Center for Crop Germplasm Resources/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Li Fang
- Center for Crop Germplasm Resources/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tao Yang
- Center for Crop Germplasm Resources/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoyan Zhang
- Qingdao Academy of Agricultural Sciences, Qingdao, 266100, Shandong, China
| | - Jinguo Hu
- USDA, Agricultural Research Service, Western Regional Plant Introduction Station, Washington State University, Pullman, WA, 99164, USA
| | - Hongyan Zhang
- Center for Crop Germplasm Resources/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenliang Han
- Binzhou Academy of Agricultural Sciences, Binzhou, 256600, Shandong, China
| | - Zeke Hua
- Laiyang Agricultural Extension Center, Laiyang, 265200, Shandong, China
| | - Junjie Hao
- Qingdao Academy of Agricultural Sciences, Qingdao, 266100, Shandong, China
| | - Xuxiao Zong
- Center for Crop Germplasm Resources/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
45
|
Milewska-Hendel A, Baczewska AH, Sala K, Dmuchowski W, Brągoszewska P, Gozdowski D, Jozwiak A, Chojnacki T, Swiezewska E, Kurczynska E. Quantitative and qualitative characteristics of cell wall components and prenyl lipids in the leaves of Tilia x euchlora trees growing under salt stress. PLoS One 2017; 12:e0172682. [PMID: 28234963 PMCID: PMC5325302 DOI: 10.1371/journal.pone.0172682] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 02/08/2017] [Indexed: 01/11/2023] Open
Abstract
The study was focused on assessing the presence of arabinogalactan proteins (AGPs) and pectins within the cell walls as well as prenyl lipids, sodium and chlorine content in leaves of Tilia x euchlora trees. The leaves that were analyzed were collected from trees with and without signs of damage that were all growing in the same salt stress conditions. The reason for undertaking these investigations was the observations over many years that indicated that there are trees that present a healthy appearance and trees that have visible symptoms of decay in the same habitat. Leaf samples were collected from trees growing in the median strip between roadways that have been intensively salted during the winter season for many years. The sodium content was determined using atomic spectrophotometry, chloride using potentiometric titration and poly-isoprenoids using HPLC/UV. AGPs and pectins were determined using immunohistochemistry methods. The immunohistochemical analysis showed that rhamnogalacturonans I (RG-I) and homogalacturonans were differentially distributed in leaves from healthy trees in contrast to leaves from injured trees. In the case of AGPs, the most visible difference was the presence of the JIM16 epitope. Chemical analyses of sodium and chloride showed that in the leaves from injured trees, the level of these ions was higher than in the leaves from healthy trees. Based on chromatographic analysis, four poly-isoprenoid alcohols were identified in the leaves of T. x euchlora. The levels of these lipids were higher in the leaves from healthy trees. The results suggest that the differences that were detected in the apoplast and symplasm may be part of the defensive strategy of T. x euchlora trees to salt stress, which rely on changes in the chemical composition of the cell wall with respect to the pectic and AGP epitopes and an increased synthesis of prenyl lipids.
Collapse
Affiliation(s)
- Anna Milewska-Hendel
- Department of Cell Biology, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Aneta H. Baczewska
- Polish Academy of Sciences Botanical Garden–Center for the Conservation of Biological Diversity, Warsaw, Poland
| | - Katarzyna Sala
- Department of Cell Biology, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Wojciech Dmuchowski
- Polish Academy of Sciences Botanical Garden–Center for the Conservation of Biological Diversity, Warsaw, Poland
- Warsaw University of Life Sciences–SGGW, Warsaw, Poland
| | - Paulina Brągoszewska
- Institute of Environmental Protection–National Research Institute, Warsaw, Poland
| | | | - Adam Jozwiak
- Institute of Biochemistry and Biophysics–Polish Academy of Sciences, Warsaw, Poland
| | - Tadeusz Chojnacki
- Institute of Biochemistry and Biophysics–Polish Academy of Sciences, Warsaw, Poland
| | - Ewa Swiezewska
- Institute of Biochemistry and Biophysics–Polish Academy of Sciences, Warsaw, Poland
| | - Ewa Kurczynska
- Department of Cell Biology, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| |
Collapse
|
46
|
Shahryar N, Maali-Amiri R. Metabolic acclimation of tetraploid and hexaploid wheats by cold stress-induced carbohydrate accumulation. JOURNAL OF PLANT PHYSIOLOGY 2016; 204:44-53. [PMID: 27500556 DOI: 10.1016/j.jplph.2016.06.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 06/13/2016] [Accepted: 06/13/2016] [Indexed: 06/06/2023]
Abstract
Metabolic acclimation of plants to cold stress may be of great importance for their growth, survival and crop productivity. The accumulation carbohydrates associated with cold tolerance (CT), transcript levels for genes encoding related enzymes along with damage indices were comparatively studied in three genotypes of bread and durum wheats differing in sensitivity. Two (Norstar, bread wheat and Gerdish, durum wheat) were tolerant and the other, SRN (durum wheat), was susceptible to cold stress. During cold stress (-5°C for 24h), the contents of electrolyte leakage index (ELI) in Norstar and then Gerdish plants were lower than that of SRN plants, particularly in cold acclimated (CA) plants (4°C for 14days), confirming lethal temperature 50 (LT50) under field conditions. Increased carbohydrate abundances in the cases of sucrose, glucose, fructose, hexose phosphates, fructan, raffinose, arabinose resulted in different intensities of oxidative stress in bread (Norstar) plants compared to durum plants (SRN and Gerdish) plants as well as in CA plants compared to non-acclimated (NA) ones under cold, indicating metabolic/regulatory capacity along with a decrease in ELI content and enhanced defense activities. A significant decrease in these carbohydrates, particularly sucrose, under cold in NA plants showed an elevated level of cell damage (confirmed by ELI) compared to CA plants. On the other hand, an increase in hexose phosphates, particularly in NA plants, indicated sucrose degradation along with greater production of glucose and fructose compared to CA plants. Under such conditions, a significant increase in transcript levels of sucrose synthase and acidic invertase confirmed these results. Under cold, the high ABA-containing genotypes like Norstar and then Gerdish, which were obvious in CA plants, partly induced relative acclimation of cells for acquisition of CT compared to SRN. These results reveal an important role of carbohydrate metabolism in creating CT in durum wheats (particularly in Gerdish) as well as bread wheat with possible responsive components in metabolic and transcript levels.
Collapse
Affiliation(s)
- Negin Shahryar
- Department of Agronomy and Plant Breeding, University College of Agriculture and Natural Resources, University of Tehran, 31587-77871, Karaj, Iran; Department of Agronomy and Plant Breeding, Faculty of Agriculture, Science and Research Campus, Azad Islamic University, Karaj Branch, 31876-44511, Karaj, Iran
| | - Reza Maali-Amiri
- Department of Agronomy and Plant Breeding, University College of Agriculture and Natural Resources, University of Tehran, 31587-77871, Karaj, Iran.
| |
Collapse
|
47
|
Kuprian E, Tuong TD, Pfaller K, Wagner J, Livingston DP, Neuner G. Persistent Supercooling of Reproductive Shoots Is Enabled by Structural Ice Barriers Being Active Despite an Intact Xylem Connection. PLoS One 2016; 11:e0163160. [PMID: 27632365 PMCID: PMC5025027 DOI: 10.1371/journal.pone.0163160] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 09/02/2016] [Indexed: 11/30/2022] Open
Abstract
Extracellular ice nucleation usually occurs at mild subzero temperatures in most plants. For persistent supercooling of certain plant parts ice barriers are necessary to prevent the entry of ice from already frozen tissues. The reproductive shoot of Calluna vulgaris is able to supercool down to below -22°C throughout all developmental stages (shoot elongation, flowering, fruiting) despite an established xylem conductivity. After localization of the persistent ice barrier between the reproductive and vegetative shoot at the base of the pedicel by infrared differential thermal analysis, the currently unknown structural features of the ice barrier tissue were anatomically analyzed on cross and longitudinal sections. The ice barrier tissue was recognized as a 250 μm long constriction zone at the base of the pedicel that lacked pith tissue and intercellular spaces. Most cell walls in this region were thickened and contained hydrophobic substances (lignin, suberin, and cutin). A few cell walls had what appeared to be thicker cellulose inclusions. In the ice barrier tissue, the area of the xylem was as much as 5.7 times smaller than in vegetative shoots and consisted of tracheids only. The mean number of conducting units in the xylem per cross section was reduced to 3.5% of that in vegetative shoots. Diameter of conducting units and tracheid length were 70% and 60% (respectively) of that in vegetative shoots. From vegetative shoots water transport into the ice barrier must pass pit membranes that are likely impermeable to ice. Pit apertures were about 1.9 μm x 0.7 μm, which was significantly smaller than in the vegetative shoot. The peculiar anatomical features of the xylem at the base of the pedicel suggest that the diameter of pores in pit membranes could be the critical constriction for ice propagation into the persistently supercooled reproductive shoots of C. vulgaris.
Collapse
Affiliation(s)
- Edith Kuprian
- Institute of Botany, University of Innsbruck, Innsbruck, Austria
- * E-mail:
| | - Tan D. Tuong
- USDA-ARS and North Carolina State University, Raleigh, NC, United States of America
| | - Kristian Pfaller
- Division of Histology and Embryology, Innsbruck Medical University, Innsbruck, Austria
| | - Johanna Wagner
- Institute of Botany, University of Innsbruck, Innsbruck, Austria
| | - David P. Livingston
- USDA-ARS and North Carolina State University, Raleigh, NC, United States of America
| | - Gilbert Neuner
- Institute of Botany, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
48
|
Zhang M, Chavan RR, Smith BG, McArdle BH, Harris PJ. Tracheid cell-wall structures and locations of (1 → 4)-β-D-galactans and (1 → 3)-β-D-glucans in compression woods of radiata pine (Pinus radiata D. Don). BMC PLANT BIOLOGY 2016; 16:194. [PMID: 27604684 PMCID: PMC5015220 DOI: 10.1186/s12870-016-0884-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/25/2016] [Indexed: 05/12/2023]
Abstract
BACKGROUND Compression wood (CW) forms on the underside of tilted stems of coniferous gymnosperms and opposite wood (OW) on the upperside. The tracheid walls of these wood types differ structurally and chemically. Although much is known about the most severe form of CW, severe CW (SCW), mild CWs (MCWs), also occur, but less is known about them. In this study, tracheid wall structures and compositions of two grades of MCWs (1 and 2) and SCW were investigated and compared with OW in slightly tilted radiata pine (Pinus radiata) stems. RESULTS The four wood types were identified by the distribution of lignin in their tracheid walls. Only the tracheid walls of OW and MCW1 had a S3 layer and this was thin in MCW1. The tracheid walls of only SCW had a S2 layer with helical cavities in the inner region (S2i). Using immunomicroscopy, (1 → 4)-β-D-galactans and (1 → 3)-β-D-glucans were detected in the tracheid walls of all CWs, but in only trace amounts in OW. The (1 → 4)-β-D-galactans were located in the outer region of the S2 layer, whereas the (1 → 3)-β-D-glucans were in the inner S2i region. The areas and intensities of labelling increased with CW severity. The antibody for (1 → 4)-β-D-galactans was also used to identify the locations and relative amounts of these galactans in whole stem cross sections based on the formation of an insoluble dye. Areas containing the four wood types were clearly differentiated depending on colour intensity. The neutral monosaccharide compositions of the non-cellulosic polysaccharides of these wood types were determined on small, well defined discs, and showed the proportion of galactose was higher for CWs and increased with severity. CONCLUSION The presence of an S3 wall layer is a marker for very MCW and the presence of helical cavities in the S2 wall layer for SCW. The occurrence and proportions of (1 → 4)-β-D-galactans and (1 → 3)-β-D-glucans can be used as markers for CW and its severity. The proportions of galactose were consistent with the labelling results for (1 → 4)-β-D-galactans.
Collapse
Affiliation(s)
- Miao Zhang
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland, 1142 New Zealand
| | - Ramesh R. Chavan
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland, 1142 New Zealand
| | - Bronwen G. Smith
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland, 1142 New Zealand
| | - Brian H. McArdle
- Department of Statistics, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland, 1142 New Zealand
| | - Philip J. Harris
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland, 1142 New Zealand
| |
Collapse
|
49
|
Takahashi D, Kawamura Y, Uemura M. Cold acclimation is accompanied by complex responses of glycosylphosphatidylinositol (GPI)-anchored proteins in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5203-15. [PMID: 27471282 PMCID: PMC5014161 DOI: 10.1093/jxb/erw279] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Cold acclimation results in changes of the plasma membrane (PM) composition. The PM is considered to contain specific lipid/protein-enriched microdomains which can be extracted as detergent-resistant plasma membrane (DRM). Previous studies in animal cells have demonstrated that glycosylphosphatidylinositol-anchored proteins (GPI-APs) can be targeted to microdomains and/or the apoplast. However, the functional significance of GPI-APs during cold acclimation in plants is not yet fully understood. In this study, we aimed to investigate the responsiveness of GPI-APs to cold acclimation treatment in Arabidopsis We isolated the PM, DRM, and apoplast fractions separately and, in addition, GPI-AP-enriched fractions were prepared from the PM preparation. Label-free quantitative shotgun proteomics identified a number of GPI-APs (163 proteins). Among them, some GPI-APs such as fasciclin-like arabinogalactan proteins and glycerophosphoryldiester phosphodiesterase-like proteins predominantly increased in PM- and GPI-AP-enriched fractions while the changes of GPI-APs in the DRM and apoplast fractions during cold acclimation were considerably different from those of other fractions. These proteins are thought to be associated with cell wall structure and properties. Therefore, this study demonstrated that each GPI-AP responded to cold acclimation in a different manner, suggesting that these changes during cold acclimation are involved in rearrangement of the extracellular matrix including the cell wall towards acquisition of freezing tolerance.
Collapse
Affiliation(s)
- Daisuke Takahashi
- United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan Cryobiofrontier Research Center, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan Max-Planck-Institut für Molekulare Pflanzenphysiologie, D -14476 Potsdam, Germany
| | - Yukio Kawamura
- United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan Cryobiofrontier Research Center, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Matsuo Uemura
- United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan Cryobiofrontier Research Center, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| |
Collapse
|
50
|
Niinemets Ü. Does the touch of cold make evergreen leaves tougher? TREE PHYSIOLOGY 2016; 36:267-72. [PMID: 26917702 PMCID: PMC4885950 DOI: 10.1093/treephys/tpw007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 01/19/2016] [Indexed: 05/07/2023]
Affiliation(s)
- Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
| |
Collapse
|