1
|
Oye Mintsa Mi-Mba MF, Lebbadi M, Alata W, Julien C, Emond V, Tremblay C, Fortin S, Barrow CJ, Bilodeau JF, Calon F. Differential impact of eicosapentaenoic acid and docosahexaenoic acid in an animal model of Alzheimer's disease. J Lipid Res 2024; 65:100682. [PMID: 39490923 DOI: 10.1016/j.jlr.2024.100682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024] Open
Abstract
Dietary supplementation with n-3 polyunsaturated fatty acids improves cognitive performance in several animal models of Alzheimer's disease (AD), an effect often associated with reduced amyloid-beta and/or tau pathologies. However, it remains unclear to what extent eicosapentaenoic (EPA) provides additional benefits compared to docosahexaenoic acid (DHA). Here, male and female 3xTg-AD mice were fed for 3 months (13-16 months of age) the following diets: (1) control (no DHA/EPA), (2) DHA (1.1g/kg) and low EPA (0.4g/kg), or (3) DHA (0.9g/kg) with high EPA (9.2g/kg). The DHA and DHA + EPA diets respectively increased DHA by 19% and 8% in the frontal cortex of 3xTg-AD mice, compared to controls. Levels of EPA, which were below the detection limit after the control diet, reached 0.14% and 0.29% of total brain fatty acids after the DHA and DHA + EPA diet, respectively. DHA and DHA + EPA diets lowered brain arachidonic acid levels and the n-6:n-3 docosapentaenoic acid ratio. Brain uptake of free 14C-DHA measured through intracarotid brain perfusion, but not of 14C-EPA, was lower in 3xTg-AD than in NonTg mice. DHA and DHA + EPA diets in 3xTg-AD mice reduced cortical soluble phosphorylated tau (pS202) (-34% high-DHA, -34% DHA + EPA, P < 0.05) while increasing p21-activated kinase (+58% and +83%, P < 0.001; respectively). High EPA intake lowered insoluble phosphorylated tau (-31% vs. DHA, P < 0.05). No diet effect on amyloid-beta levels was observed. In conclusion, dietary intake of DHA and EPA leads to differential changes in brain PUFA while altering cerebral biomarkers consistent with beneficial effects against AD-like neuropathology.
Collapse
Affiliation(s)
- Méryl-Farelle Oye Mintsa Mi-Mba
- Faculty of Pharmacy, Laval University, Quebec, QC, Canada; Centre Hospitalier de l'Université Laval (CHUL) Research Center, Quebec, QC, Canada
| | - Meryem Lebbadi
- Faculty of Pharmacy, Laval University, Quebec, QC, Canada; Centre Hospitalier de l'Université Laval (CHUL) Research Center, Quebec, QC, Canada
| | - Waël Alata
- Faculty of Pharmacy, Laval University, Quebec, QC, Canada; Centre Hospitalier de l'Université Laval (CHUL) Research Center, Quebec, QC, Canada
| | - Carl Julien
- Faculty of Pharmacy, Laval University, Quebec, QC, Canada; Centre Hospitalier de l'Université Laval (CHUL) Research Center, Quebec, QC, Canada
| | - Vincent Emond
- Centre Hospitalier de l'Université Laval (CHUL) Research Center, Quebec, QC, Canada
| | - Cyntia Tremblay
- Centre Hospitalier de l'Université Laval (CHUL) Research Center, Quebec, QC, Canada
| | - Samuel Fortin
- Centre de recherche sur les biotechnologies marines, Rimouski, QC, Canada
| | - Colin J Barrow
- Centre for Sustainable Bioproducts, Deakin University Geelong, Victoria, Australia
| | - Jean-François Bilodeau
- Centre Hospitalier de l'Université Laval (CHUL) Research Center, Quebec, QC, Canada; Department of medicine, Faculty of Medecine, Laval University, Quebec, QC, Canada
| | - Frédéric Calon
- Faculty of Pharmacy, Laval University, Quebec, QC, Canada; Centre Hospitalier de l'Université Laval (CHUL) Research Center, Quebec, QC, Canada.
| |
Collapse
|
2
|
Rivers C, Farber C, Heath M, Gonzales E, Barrett DW, Gonzalez-Lima F, Lane MA. Dietary omega-3 polyunsaturated fatty acids reduce cytochrome c oxidase in brain white matter and sensorimotor regions while increasing functional interactions between neural systems related to escape behavior in postpartum rats. Front Syst Neurosci 2024; 18:1423966. [PMID: 39544360 PMCID: PMC11560429 DOI: 10.3389/fnsys.2024.1423966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024] Open
Abstract
Introduction Previously, we showed that omega-3 polyunsaturated fatty acid n-3 (PUFA) supplementation improved the performance of postpartum rats in the shuttle box escape test (SBET). Methods The brains of these rats were used in the current study which examined brain cytochrome c oxidase (CCO) activity in white matter bundles and 39 regions spanning sensorimotor, limbic, and cognitive areas to determine the effects of n-3 PUFAs on neural metabolic capacity and network interactions. Results We found that n-3 PUFA supplementation decreased CCO activity in white matter bundles, deep and superficial areas within the inferior colliculus, the anterior and barrel field regions of the primary somatic sensorimotor cortex, the secondary somatic sensorimotor cortex, the lateral, anterior regions of the secondary visual cortex and the ventral posterior nucleus of the thalamus, and the medial nucleus of the amygdala. Structural equation modeling revealed that animals consuming diets without n-3 PUFAs exhibited fewer inter-regional interactions when compared to those fed diets with n-3 PUFAs. Without n-3 PUFAs, inter-regional interactions were observed between the posterior cingulate cortex and amygdala as well as among amygdala subregions. With n-3 PUFAs, more inter-regional interactions were observed, particularly between regions associated with fear memory processing and escape. Correlations between regional CCO activity and SBET behavior were observed in rats lacking dietary n-3 PUFAs but not in those supplemented with these nutrients. Discussion In conclusion, consumption of n-3 PUFAs results in reduced CCO activity in white matter bundles and sensorimotor regions, reflecting more efficient neurotransmission, and an increase in inter-regional interactions, facilitating escape from footshock.
Collapse
Affiliation(s)
- Carley Rivers
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, San Marcos, TX, United States
| | - Christopher Farber
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, San Marcos, TX, United States
| | - Melissa Heath
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, San Marcos, TX, United States
| | - Elisa Gonzales
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, San Marcos, TX, United States
| | - Douglas W. Barrett
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
| | - F. Gonzalez-Lima
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
| | - Michelle A. Lane
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, San Marcos, TX, United States
| |
Collapse
|
3
|
Lamarre J, Wilson DR. Short-term dietary changes are reflected in the cerebral content of adult ring-billed gulls. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240616. [PMID: 39113770 PMCID: PMC11303033 DOI: 10.1098/rsos.240616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024]
Abstract
Omega-3 long-chain polyunsaturated fatty acids (n3-LCPUFAs) are produced primarily in aquatic ecosystems and are considered essential nutrients for predators given their structural role in vertebrates' cerebral tissues. Alarmingly, with urbanization, many aquatic animals now rely on anthropogenic foods lacking n3-LCPUFAs. In this study undertaken in Newfoundland (Canada), we tested whether recent or longer term diet explains the cerebral fatty acid composition of ring-billed gulls (Larus delawarensis), a seabird that now thrives in cities. During the breeding season, cerebral levels of n3-LCPUFAs were significantly higher for gulls nesting in a natural habitat and foraging on marine food (mean ± s.d.: 32 ± 1% of total identified fatty acids) than for urban nesters exploiting rubbish (27 ± 1%). Stable isotope analysis of blood and feathers showed that urban and natural nesters shared similar diets in autumn and winter, suggesting that the difference in cerebral n3-LCPUFAs during the breeding season was owing to concomitant and transient differences in diet. We also experimentally manipulated gulls' diets throughout incubation by supplementing them with fish oil rich in n3-LCPUFAs, a caloric control lacking n3-LCPUFAs, or nothing, and found evidence that fish oil increased urban nesters' cerebral n3-LCPUFAs. These complementary analyses provide evidence that the brain of this seabird remains plastic during adulthood and responds to short-term dietary changes.
Collapse
Affiliation(s)
- Jessika Lamarre
- Cognitive and Behavioural Ecology Program, Memorial University of Newfoundland, St John’s, Newfoundland and LabradorA1B 3X9, Canada
| | - David R. Wilson
- Department of Psychology, Memorial University of Newfoundland, St John’s, Newfoundland and LabradorA1B 3X9, Canada
| |
Collapse
|
4
|
Supti ST, Koehn LM, Newman SA, Pan Y, Nicolazzo JA. Iron Reduces the Trafficking of Fatty Acids from Human Immortalised Brain Microvascular Endothelial Cells Through Modulation of Fatty Acid Transport Protein 1 (FATP1/SLC27A1). Pharm Res 2024; 41:1631-1648. [PMID: 39044044 PMCID: PMC11362236 DOI: 10.1007/s11095-024-03743-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/07/2024] [Indexed: 07/25/2024]
Abstract
PURPOSE Alzheimer's disease (AD) is associated with brain accumulation of amyloid-beta (Aβ) and neurofibrillary tangle formation, in addition to reduced brain docosahexaenoic acid (DHA) and increased brain iron levels. DHA requires access across the blood-brain barrier (BBB) to enter the brain, and iron has been shown to affect the expression and function of a number of BBB transporters. Therefore, this study aimed to assess the effect of iron on the expression and function of fatty acid binding protein 5 (FABP5) and fatty acid transport protein 1 (FATP1), both which mediate brain endothelial cell trafficking of DHA. METHODS The mRNA and protein levels of FABP5 and FATP1 in human cerebral microvascular endothelial (hCMEC/D3) cells was assessed by RT-qPCR and Western blot, respectively following ferric ammonium citrate (FAC) treatment (up to 750 µM, 72 h). The function of FABP5 and FATP1 was assessed via uptake and efflux of radiolabelled 3H-oleic acid and 14C-DHA. RESULTS FAC (500 µM, 72 h) had no impact on the expression of FABP5 at the protein and mRNA level in hCMEC/D3 cells, which was associated with a lack of effect on the uptake of 14C-DHA. FAC led to a 19.7% reduction in FATP1 protein abundance in hCMEC/D3 cells with no impact on mRNA levels, and this was associated with up to a 32.6% reduction in efflux of 14C-DHA. CONCLUSIONS These studies demonstrate a role of iron in down-regulating FATP1 protein abundance and function at the BBB, which may have implications on fatty acid access to the brain.
Collapse
Affiliation(s)
- Showmika T Supti
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Liam M Koehn
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Stephanie A Newman
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Yijun Pan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
| |
Collapse
|
5
|
Díaz M. Multifactor Analyses of Frontal Cortex Lipids in the APP/PS1 Model of Familial Alzheimer's Disease Reveal Anomalies in Responses to Dietary n-3 PUFA and Estrogenic Treatments. Genes (Basel) 2024; 15:810. [PMID: 38927745 PMCID: PMC11202691 DOI: 10.3390/genes15060810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Brain lipid homeostasis is an absolute requirement for proper functionality of nerve cells and neurological performance. Current evidence demonstrates that lipid alterations are linked to neurodegenerative diseases, especially Alzheimer's disease (AD). The complexity of the brain lipidome and its metabolic regulation has hampered the identification of critical processes associated with the onset and progression of AD. While most experimental studies have focused on the effects of known factors on the development of pathological hallmarks in AD, e.g., amyloid deposition, tau protein and neurofibrillary tangles, neuroinflammation, etc., studies addressing the causative effects of lipid alterations remain largely unexplored. In the present study, we have used a multifactor approach combining diets containing different amounts of polyunsaturated fatty acids (PUFAs), estrogen availabilities, and genetic backgrounds, i.e., wild type (WT) and APP/PS1 (FAD), to analyze the lipid phenotype of the frontal cortex in middle-aged female mice. First, we observed that severe n-3 PUFA deficiency impacts the brain n-3 long-chain PUFA (LCPUFA) composition, yet it was notably mitigated by hepatic de novo synthesis. n-6 LCPUFAs, ether-linked fatty acids, and saturates were also changed by the dietary condition, but the extent of changes was dependent on the genetic background and hormonal condition. Likewise, brain cortex phospholipids were mostly modified by the genotype (FAD>WT) with nuanced effects from dietary treatment. Cholesterol (but not sterol esters) was modified by the genotype (WT>FAD) and dietary condition (higher in DHA-free conditions, especially in WT mice). However, the effects of estrogen treatment were mostly observed in relation to phospholipid remodeling in a genotype-dependent manner. Analyses of lipid-derived variables indicate that nerve cell membrane biophysics were significantly affected by the three factors, with lower membrane microviscosity (higher fluidity) values obtained for FAD animals. In conclusion, our multifactor analyses revealed that the genotype, diet, and estrogen status modulate the lipid phenotype of the frontal cortex, both as independent factors and through their interactions. Altogether, the outcomes point to potential strategies based on dietary and hormonal interventions aimed at stabilizing the brain cortex lipid composition in Alzheimer's disease neuropathology.
Collapse
Affiliation(s)
- Mario Díaz
- Membrane Physiology and Biophysics, Department of Physics, School of Sciences, University of La Laguna, 38206 Tenerife, Spain; or
- Instituto Universitario de Neurociencias (IUNE), University of La Laguna, 38206 Tenerife, Spain
| |
Collapse
|
6
|
Ali AH, Hachem M, Ahmmed MK. Docosahexaenoic acid-loaded nanoparticles: A state-of-the-art of preparation methods, characterization, functionality, and therapeutic applications. Heliyon 2024; 10:e30946. [PMID: 38774069 PMCID: PMC11107210 DOI: 10.1016/j.heliyon.2024.e30946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/24/2024] Open
Abstract
Docosahexaenoic acid (DHA, C22:6 n-3), an omega-3 polyunsaturated fatty acid, offers several beneficial effects. DHA helps in reducing depression, autoimmune diseases, rheumatoid arthritis, attention deficit hyperactivity syndrome, and cardiovascular diseases. It can stimulate the development of brain and nerve, alleviate lipids metabolism-related disorders, and enhance vision development. However, DHA susceptibility to chemical oxidation, poor water solubility, and unpleasant order could restrict its applications for nutritional and therapeutic purposes. To avoid these drawbacks and enhance its bioavailability, DHA can be encapsulated using an effective delivery system. Several encapsulation methods are recognized, and DHA-loaded nanoparticles have demonstrated numerous benefits. In clinical studies, positive influences on the development of several diseases have been reported, but some assumptions are conflicting and need more exploration, since DHA has a systemic and not a targeted release at the required level. This might cause the applications of nanoparticles that could allow DHA release at the required level and improve its efficiency, thus resulting in a better controlling of several diseases. In the current review, we focused on researches investigating the formulation and development of DHA-loaded nanoparticles using different delivery systems, including low-density lipoprotein, zinc oxide, silver, zein, and resveratrol-stearate. Silver-DHA nanoparticles presented a typical particle size of 24 nm with an incorporation level of 97.67 %, while the entrapment efficiency of zinc oxide-DHA nanoparticles represented 87.3 %. By using zein/Poly (lactic-co-glycolic acid) stabilized nanoparticles, DHA's encapsulation level reached 84.6 %. We have also highlighted the characteristics, functionality and medical implementation of these nanoparticles in the treatment of inflammations, brain disorders, diabetes as well as hepatocellular carcinoma.
Collapse
Affiliation(s)
- Abdelmoneim H. Ali
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Mayssa Hachem
- Department of Chemistry and Healthcare Engineering Innovation Group, Khalifa University of Sciences and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Mirja Kaizer Ahmmed
- Department of Fishing and Post-harvest Technology, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
- Riddet Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
7
|
Poxleitner M, Hoffmann SHL, Berezhnoy G, Ionescu TM, Gonzalez-Menendez I, Maier FC, Seyfried D, Ehrlichmann W, Quintanilla-Martinez L, Schmid AM, Reischl G, Trautwein C, Maurer A, Pichler BJ, Herfert K, Beziere N. Western diet increases brain metabolism and adaptive immune responses in a mouse model of amyloidosis. J Neuroinflammation 2024; 21:129. [PMID: 38745337 PMCID: PMC11092112 DOI: 10.1186/s12974-024-03080-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/29/2024] [Indexed: 05/16/2024] Open
Abstract
Diet-induced increase in body weight is a growing health concern worldwide. Often accompanied by a low-grade metabolic inflammation that changes systemic functions, diet-induced alterations may contribute to neurodegenerative disorder progression as well. This study aims to non-invasively investigate diet-induced metabolic and inflammatory effects in the brain of an APPPS1 mouse model of Alzheimer's disease. [18F]FDG, [18F]FTHA, and [18F]GE-180 were used for in vivo PET imaging in wild-type and APPPS1 mice. Ex vivo flow cytometry and histology in brains complemented the in vivo findings. 1H- magnetic resonance spectroscopy in the liver, plasma metabolomics and flow cytometry of the white adipose tissue were used to confirm metaflammatory condition in the periphery. We found disrupted glucose and fatty acid metabolism after Western diet consumption, with only small regional changes in glial-dependent neuroinflammation in the brains of APPPS1 mice. Further ex vivo investigations revealed cytotoxic T cell involvement in the brains of Western diet-fed mice and a disrupted plasma metabolome. 1H-magentic resonance spectroscopy and immunological results revealed diet-dependent inflammatory-like misbalance in livers and fatty tissue. Our multimodal imaging study highlights the role of the brain-liver-fat axis and the adaptive immune system in the disruption of brain homeostasis in amyloid models of Alzheimer's disease.
Collapse
Affiliation(s)
- Marilena Poxleitner
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Sabrina H L Hoffmann
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Georgy Berezhnoy
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Tudor M Ionescu
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Irene Gonzalez-Menendez
- Department of Pathology and Neuropathology, University Hospital Tübingen, Eberhard Karls University, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
| | - Florian C Maier
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Dominik Seyfried
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Walter Ehrlichmann
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Leticia Quintanilla-Martinez
- Department of Pathology and Neuropathology, University Hospital Tübingen, Eberhard Karls University, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
| | - Andreas M Schmid
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
| | - Gerald Reischl
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
| | - Christoph Trautwein
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
| | - Andreas Maurer
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
| | - Bernd J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
| | - Kristina Herfert
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany.
| | - Nicolas Beziere
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany.
- Cluster of Excellence CMFI (EXC 2124) "Controlling Microbes to Fight Infections", Eberhard Karls University, Tübingen, Germany.
| |
Collapse
|
8
|
Pariyani R, Zhang Y, Haraldsson GG, Chen K, Linderborg KM, Yang B. Metabolomic Investigation of Brain and Liver in Rats Fed Docosahexaenoic Acid in Regio- and Enantiopure Triacylglycerols. Mol Nutr Food Res 2024; 68:e2300341. [PMID: 38396161 DOI: 10.1002/mnfr.202300341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/30/2023] [Indexed: 02/25/2024]
Abstract
SCOPE N-3 polyunsaturated fatty acids (n-3 PUFAs) play important roles in cognitive functions. However, there is a lack of knowledge on the metabolic impact of regio- and stereo-specific positioning of n-3 PUFAs in dietary triacylglycerols. METHODS AND RESULTS Rats in a state of mild n-3 PUFA deficiency are fed daily with 360 mg triacylglycerols containing DHA (docosahexaenoic acid) at sn (stereospecific numbering)-1, 2, or 3 positions and 18:0 at remaining positions, or an equal amount of tristearin for 5 days. Groups fed with n-3 deficient diet and normal n-3 adequate diet are included as controls. The metabolic profiles of the brain and liver are studied using NMR (nuclear magnetic resonance)-based metabolomics. Several metabolites of significance in membrane integrity and neurotransmission, and glutamate, in particular, are significantly lower in the brain of the groups fed with sn-1 and sn-3 DHA compared to the sn-2 DHA group. Further, the tristearin and DHA groups show a lower lactate level compared to the groups fed on normal or n-3 deficient diet, suggesting a prominent role of C18:0 in regulating energy metabolism. CONCLUSION This study sheds light on the impact of stereospecific positioning of DHA in triacylglycerols and the role of dietary stearic acid on metabolism in the brain and liver.
Collapse
Affiliation(s)
- Raghunath Pariyani
- Food Sciences, Department of Life Technologies, University of Turku, Turku, 20014, Finland
| | - Yumei Zhang
- Department of Nutrition & Food Hygiene, School of Public Health, Peking University, Beijing, 100191, China
| | | | - Kang Chen
- Food Sciences, Department of Life Technologies, University of Turku, Turku, 20014, Finland
| | - Kaisa M Linderborg
- Food Sciences, Department of Life Technologies, University of Turku, Turku, 20014, Finland
| | - Baoru Yang
- Food Sciences, Department of Life Technologies, University of Turku, Turku, 20014, Finland
| |
Collapse
|
9
|
Dunn SB, Orchard TS, Andridge R, Rymut SM, Slesnick N, Hatsu IE. Mental health in society's margins: poor n-3 PUFA intake and psychological well-being of homeless youth. Br J Nutr 2024; 131:698-706. [PMID: 37737219 PMCID: PMC10803817 DOI: 10.1017/s000711452300212x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023]
Abstract
Dietary intake of long-chain n-3 PUFA (n-3 PUFA), particularly EPA and DHA, has been associated with psychological well-being, but little is known about the n-3 PUFA intake of homeless youth. The current study determined the association between depression and anxiety symptoms and n-3 PUFA intake and erythrocytes status in homeless youth. Totally, 114 homeless youth aged 18-24 years were recruited from a drop-in centre. n-3 PUFA dietary intake was assessed using an FFQ, and erythrocytes status was determined by gas chromatography (GC). Linear regression models were used to determine the relationship between psychological well-being and n-3 PUFA intake and status. The mean intakes of EPA and DHA for all participants (0·06 ± 0·13 g/d and 0·11 ± 0·24 g/d) were well below recommended levels, and mean erythrocytes EPA + DHA (n-3 index) in the cohort (2·42 %) was lower than reported for healthy, housed adolescents and those with clinical depression. There was no association of n-3 PUFA intake and erythrocytes status with either depression or anxiety. However, the relationships of depression with dietary EPA (P = 0·017) and DHA (P = 0·008), as well as erythrocytes DHA (P = 0·007) and n 3-index (P = 0·009), were significantly moderated by sex even after adjusting for confounders. Specifically, among females, as the intake and status of these n-3 PUFA decreased, depression increased. Our findings show poor dietary intake and low erythrocytes status of n-3 PUFA among homeless youth, which is associated with depressive symptoms among females.
Collapse
Affiliation(s)
- Sarah Beth Dunn
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH43210, USA
| | - Tonya S. Orchard
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH43210, USA
| | - Rebecca Andridge
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Susan M. Rymut
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH43210, USA
| | - Natasha Slesnick
- Human Development and Family Science Program, Department of Human Sciences, The Ohio State University, Columbus, OH, USA
| | - Irene E. Hatsu
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH43210, USA
- OSU Extension, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
10
|
Macura IJ, Djuricic I, Major T, Milanovic D, Sobajic S, Kanazir S, Ivkovic S. The supplementation of a high dose of fish oil during pregnancy and lactation led to an elevation in Mfsd2a expression without any changes in docosahexaenoic acid levels in the retina of healthy 2-month-old mouse offspring. Front Nutr 2024; 10:1330414. [PMID: 38328686 PMCID: PMC10847253 DOI: 10.3389/fnut.2023.1330414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/12/2023] [Indexed: 02/09/2024] Open
Abstract
Introduction During fetal development, the proper development of neural and visual systems relies on the maternal supplementation of omega-3 fatty acids through placental transfer. Pregnant women are strongly advised to augment their diet with additional sources of omega-3, such as fish oil (FO). This supplementation has been linked to a reduced risk of preterm birth, pre-eclampsia, and perinatal depression. Recently, higher doses of omega-3 supplementation have been recommended for pregnant women. Considering that omega-3 fatty acids, particularly docosahexaenoic acid (DHA), play a crucial role in maintaining the delicate homeostasis required for the proper functioning of the retina and photoreceptors the effects of high-dose fish oil (FO) supplementation during pregnancy and lactation on the retina and retinal pigmented epithelium (RPE) in healthy offspring warrant better understanding. Methods The fatty acid content and the changes in the expression of the genes regulating cholesterol homeostasis and DHA transport in the retina and RPE were evaluated following the high-dose FO supplementation. Results Our study demonstrated that despite the high-dose FO treatment during pregnancy and lactation, the rigorous DHA homeostasis in the retina and RPE of the two-month-old offspring remained balanced. Another significant finding of this study is the increase in the expression levels of major facilitator superfamily domain-containing protein (Mfsd2a), a primary DHA transporter. Mfsd2a also serves as a major regulator of transcytosis during development, and a reduction in Mfsd2a levels poses a major risk for the development of leaky blood vessels. Conclusion Impairment of the blood-retinal barrier (BRB) is associated with the development of numerous ocular diseases, and a better understanding of how to manipulate transcytosis in the BRB during development can enhance drug delivery through the BRB or contribute to the repair of central nervous system (CNS) barriers.
Collapse
Affiliation(s)
- Irena Jovanovic Macura
- Institute for Biological Research “Sinisa Stankovic”, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ivana Djuricic
- Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Tamara Major
- Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Desanka Milanovic
- Institute for Biological Research “Sinisa Stankovic”, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | | | - Selma Kanazir
- Institute for Biological Research “Sinisa Stankovic”, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Sanja Ivkovic
- Vinca Institute for Nuclear Sciences, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
11
|
Pausova Z, Sliz E. Large-Scale Population-Based Studies of Blood Metabolome and Brain Health. Curr Top Behav Neurosci 2024; 68:177-219. [PMID: 38509405 DOI: 10.1007/7854_2024_463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Metabolomics technologies enable the quantification of multiple metabolomic measures simultaneously, which provides novel insights into molecular aspects of human health and disease. In large-scale, population-based studies, blood is often the preferred biospecimen. Circulating metabolome may relate to brain health either by affecting or reflecting brain metabolism. Peripheral metabolites may act at or cross the blood-brain barrier and, subsequently, influence brain metabolism, or they may reflect brain metabolism if similar pathways are engaged. Peripheral metabolites may also include those penetrating the circulation from the brain, indicating, for example, brain damage. Most brain health-related metabolomics studies have been conducted in the context of neurodegenerative disorders and cognition, but some studies have also focused on neuroimaging markers of these disorders. Moreover, several metabolomics studies of neurodevelopmental disorders have been performed. Here, we provide a brief background on the types of blood metabolites commonly assessed, and we review the literature describing the relationships between human blood metabolome (n > 50 metabolites) and brain health reported in large-scale studies (n > 500 individuals).
Collapse
Affiliation(s)
- Zdenka Pausova
- Centre hospitalier universitaire Sainte-Justine and Department of Pediatrics, University of Montreal, Montreal, QC, Canada
| | - Eeva Sliz
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland.
| |
Collapse
|
12
|
Zhang Y, Kalpio M, Tao L, Haraldsson GG, Guðmundsson HG, Fang X, Linderborg KM, Zhang Y, Yang B. Metabolic fate of DHA from regio- and stereospecific positions of triacylglycerols in a long-term feeding trial in rats. Food Res Int 2023; 174:113626. [PMID: 37986478 DOI: 10.1016/j.foodres.2023.113626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 11/22/2023]
Abstract
This study investigated the impact of regio- and stereospecific position of docosahexaenoic acid (DHA) in dietary triacylglycerols (TAGs) on the fatty acid composition of tissues and organs in rats. Four-week feeding with TAGs containing DHA in sn-1, 2, or 3 position and palmitic acid in the remaining positions at a daily dosage of 500 mg TAG/kg body weight significantly increased the DHA content in all organs and tissues in rats, except in the brain, where the change in DHA level was not statistically significant. The group fed sn-1 DHA showed a significantly higher content of DHA in the plasma TAG than the group fed sn-3 DHA. The sn-3 DHA group had higher levels of DHA in the visceral fat compared to the sn-1, sn-2, as well as all other groups. This is the first study showing that DHA from sn-1 and sn-3 positions of dietary TAGs have differential accumulation in tissues. The new findings improved the current knowledge on the significance of TAG isomeric structure for the bioavailability and metabolic fate of DHA.
Collapse
Affiliation(s)
- Yuqing Zhang
- Food Sciences, Department of Life Technologies, University of Turku, Turku, Finland
| | - Marika Kalpio
- Food Sciences, Department of Life Technologies, University of Turku, Turku, Finland
| | - Lingwei Tao
- Department of Nutrition & Food Hygiene, School of Public Health, Peking University Health Science Center, Beijing, China
| | | | | | - Xiangrong Fang
- Food Sciences, Department of Life Technologies, University of Turku, Turku, Finland
| | - Kaisa M Linderborg
- Food Sciences, Department of Life Technologies, University of Turku, Turku, Finland
| | - Yumei Zhang
- Department of Nutrition & Food Hygiene, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Baoru Yang
- Food Sciences, Department of Life Technologies, University of Turku, Turku, Finland.
| |
Collapse
|
13
|
Bhat Agni M, Hegde PS, Ullal H, Damodara Gowda KM. Nutritional efficacy of Astaxanthin in modulating orexin peptides and fatty acid level during adult life of rats exposed to perinatal undernutrition stress. Nutr Neurosci 2023; 26:1045-1057. [PMID: 36154638 DOI: 10.1080/1028415x.2022.2123184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Perinatal undernutrition stress predisposes several disorders in adult life, which could be programed using nutraceuticals. However, the effect of perinatal undernutrition stress on orexin peptides, brain lipids, and its amelioration by a potent antioxidant (Astaxanthin) needs exploration. The present study focussed on the effect of perinatal undernutrition stress on brain fatty acid levels, Orexin peptides A and B, and its amelioration by Astaxanthin.Twenty-four male Wistar rats (Rattus norvegicus) were allocated to four groups (n = 6) as Normal, Perinatally Undernourished (UN), Astaxanthin treated (AsX, 12mg/kg), and perinatally Undernourished-but-Astaxanthin treated (UNA), and are allowed to grow for 1, 6 and 12 months. The fatty acid and orexin peptides A & B at different brain parts were measured and compared. Orexin peptides were assessed using an ELISA kit. Fatty acid levels were estimated using HP 5890 gas chromatograph. Data were analyzed by ANOVA followed by Tukey's posthoc test. P < 0.05 was considered significant.The hair cortisol, Orexin-A, and B were significantly increased (p < 0.001) in the UN group compared to normal and were modulated significantly by AsX in the UNA group. Undernutrition stress during the perinatal period altered the lipid profile, Total SFA, Total MUFA, Total n-3 PUFA, Total n-6 PUFA, n-3: n-6 PUFA, which Astaxanthin effectively modulated at 6 and 12 months of postnatal life. There was no difference between DHA and AA ratio. These results indicate that nutritional enrichment with Astaxanthin during the perinatal period positively contributes to adult health. Further, the mechanism of regulation of brain chemistry by Astaxanthin is warranted.
Collapse
Affiliation(s)
- Megha Bhat Agni
- Department of Physiology, Nitte (Deemed to be University), KS Hegde Medical Academy (KSHEMA), Mangalore, India
| | - Pramukh Subrahmanya Hegde
- Department of Physiology, Nitte (Deemed to be University), KS Hegde Medical Academy (KSHEMA), Mangalore, India
| | - Harshini Ullal
- Department of Biotechnology, Nitte (Deemed to be University), NMAM Institute of Technology (NMAMIT), Nitte, India
| | - K M Damodara Gowda
- Department of Physiology, Nitte (Deemed to be University), KS Hegde Medical Academy (KSHEMA), Mangalore, India
| |
Collapse
|
14
|
Rizzo G, Storz MA, Calapai G. The Role of Hemp ( Cannabis sativa L.) as a Functional Food in Vegetarian Nutrition. Foods 2023; 12:3505. [PMID: 37761214 PMCID: PMC10528039 DOI: 10.3390/foods12183505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Recently, there has been a renewed interest in Cannabis sativa and its uses. The recreational use of inflorescences as a source of THC has led to the legal restriction of C. sativa cultivation to limit the detrimental effects of psychotropic substance abuse on health. However, this has also limited the cultivation of textile/industrial varieties with a low content of THC used for textile and nutritional purposes. While previously the bans had significantly penalized the cultivation of C. sativa, today many countries discriminate between recreational use (marijuana) and industrial and food use (hemp). The stalks of industrial hemp (low in psychotropic substances) have been used extensively for textile purposes while the seeds are nutritionally versatile. From hemp seeds, it is possible to obtain flours applicable in the bakery sector, oils rich in essential fatty acids, proteins with a high biological value and derivatives for fortification, supplementation and nutraceutical purposes. Hemp seed properties seem relevant for vegetarian diets, due to their high nutritional value and underestimated employment in the food sector. Hemp seed and their derivatives are a valuable source of protein, essential fatty acids and minerals that could provide additional benefit to vegetarian nutrition. This document aims to explore the information available in the literature about hemp seeds from a nutritional point of view, highlighting possible beneficial effects for humans with particular attention to vegetarian nutrition as a supplemental option for a well-planned diet.
Collapse
Affiliation(s)
- Gianluca Rizzo
- Independent Researcher, Via Venezuela 66, 98121 Messina, Italy
| | - Maximilian Andreas Storz
- Department of Internal Medicine II, Centre for Complementary Medicine, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| | - Gioacchino Calapai
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy;
| |
Collapse
|
15
|
Srinivas V, Varma S, Kona SR, Ibrahim A, Duttaroy AK, Basak S. Dietary omega-3 fatty acid deficiency from pre-pregnancy to lactation affects expression of genes involved in hippocampal neurogenesis of the offspring. Prostaglandins Leukot Essent Fatty Acids 2023; 191:102566. [PMID: 36924605 DOI: 10.1016/j.plefa.2023.102566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023]
Abstract
Maternal n-3 PUFA (omega-3) deficiency can affect brain development in utero and postnatally. Despite the evidence, the impacts of n-3 PUFA deficiency on the expression of neurogenesis genes in the postnatal hippocampus remained elusive. Since postnatal brain development requires PUFAs via breast milk, we examined the fatty acid composition of breast milk and hippocampal expression of neurogenesis genes in n-3 PUFA deficient 21d mice. In addition, the expression of fatty acid desaturases, elongases, free fatty acids signaling receptors, insulin and leptin, and glucose transporters were measured. Among the genes involved in neurogenesis, the expression of brain-specific tenascin-R (TNR) was downregulated to a greater extent (∼31 fold), followed by adenosine A2A receptor (A2AAR), dopamine receptor D2 (DRD2), glial cell line-derived neurotrophic factor (GDNF) expression in the n-3 PUFA deficient hippocampus. Increasing dietary LA to ALA (50:1) elevated the ARA to DHA ratio by ∼8 fold in the n-3 PUFA deficient breast milk, with an overall increase of total n-6/n-3 PUFAs by ∼15:1 (p<0.05) compared to n-3 PUFA sufficient (LA to ALA: 2:1) diet. The n-3 PUFA deficient mice exhibited upregulation of FADS1, FADS2, ELOVL2, ELOVL5, ELOVL6, GPR40, GPR120, LEPR, IGF1 and downregulation of GLUT1, GLUT3, and GLUT4 mRNA expression in hippocampus (p<0.05). Maternal n-3 PUFA deficiency affects the hippocampal expression of key neurogenesis genes in the offspring with concomitant expression of desaturase and elongase genes, suggesting the importance of dietary n-3 PUFA for neurodevelopment.
Collapse
Affiliation(s)
- Vilasagaram Srinivas
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500 007, India
| | - Saikanth Varma
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500 007, India
| | - Suryam Reddy Kona
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500 007, India
| | - Ahamed Ibrahim
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500 007, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway
| | - Sanjay Basak
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500 007, India.
| |
Collapse
|
16
|
Ogawa T, Sawane K, Ookoshi K, Kawashima R. Supplementation with Flaxseed Oil Rich in Alpha-Linolenic Acid Improves Verbal Fluency in Healthy Older Adults. Nutrients 2023; 15:nu15061499. [PMID: 36986229 PMCID: PMC10056498 DOI: 10.3390/nu15061499] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
The effects of docosahexaenoic acid supplements on cognitive function have long been demonstrated, but the effects of alpha-linolenic acid, a precursor of docosahexaenoic acid, have not been fully tested. The search for functional foods that delay cognitive decline in the older adults is considered a very important area from a preventive perspective. The aim of this study was to conduct an exploratory evaluation of alpha-linolenic acid on various cognitive functions in healthy older subjects. Sixty healthy older adults aged 65 to 80 years, living in Miyagi prefecture, without cognitive impairment or depression, were included in the randomized, double-blinded, placebo-controlled clinical trial. Study subjects were randomly divided into two groups and received either 3.7 g/day of flaxseed oil containing 2.2 g of alpha-linolenic acid, or an isocaloric placebo (corn oil) containing 0.04 g of alpha-linolenic acid for 12 weeks. The primary endpoints were six cognitive functions closely related to everyday life: attention and concentration, executive function, perceptual reasoning, working memory, processing speed and memory function. After 12 weeks of intake, changes in verbal fluency scores on the frontal assessment battery at bedside, a neuropsychological test assessing executive function, in which participants are asked to answer as many words as possible in Japanese, were significantly greater in the intervention group (0.30 ± 0.53) than in the control group (0.03 ± 0.49, p < 0.05). All other cognitive test scores were not significantly different between the groups. In conclusion, daily consumption of flaxseed oil containing 2.2 g alpha-linolenic acid improved cognitive function, specifically verbal fluency, despite the age-related decline, in healthy individuals with no cognitive abnormalities. Further validation studies focusing on the effects of alpha-linolenic acid on verbal fluency and executive function in older adults are needed, as verbal fluency is a predictor of Alzheimer's disease development, important for cognitive health.
Collapse
Affiliation(s)
- Toshimi Ogawa
- Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
- Smart Aging Research Center, Tohoku University, Sendai 980-8575, Japan
| | - Kento Sawane
- Innovation Center, Central Research Laboratory, NIPPN Corporation, Atsugi 243-0041, Japan
| | - Kouta Ookoshi
- Innovation Center, Central Research Laboratory, NIPPN Corporation, Atsugi 243-0041, Japan
| | - Ryuta Kawashima
- Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
- Smart Aging Research Center, Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
17
|
Rizzo G, Baroni L, Lombardo M. Promising Sources of Plant-Derived Polyunsaturated Fatty Acids: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1683. [PMID: 36767052 PMCID: PMC9914036 DOI: 10.3390/ijerph20031683] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 06/01/2023]
Abstract
(1) Background: Polyunsaturated fatty acids (PUFAs) are known for their ability to protect against numerous metabolic disorders. The consumption of oily fish is the main source of PUFAs in human nutrition and is commonly used for supplement production. However, seafood is an overexploited source that cannot be guaranteed to cover the global demands. Furthermore, it is not consumed by everyone for ecological, economic, ethical, geographical and taste reasons. The growing demand for natural dietary sources of PUFAs suggests that current nutritional sources are insufficient to meet global needs, and less and less will be. Therefore, it is crucial to find sustainable sources that are acceptable to all, meeting the world population's needs. (2) Scope: This review aims to evaluate the recent evidence about alternative plant sources of essential fatty acids, focusing on long-chain omega-3 (n-3) PUFAs. (3) Method: A structured search was performed on the PubMed search engine to select available human data from interventional studies using omega-3 fatty acids of non-animal origin. (4) Results: Several promising sources have emerged from the literature, such as algae, microorganisms, plants rich in stearidonic acid and GM plants. However, the costs, acceptance and adequate formulation deserve further investigation.
Collapse
Affiliation(s)
- Gianluca Rizzo
- Independent Researcher, Via Venezuela 66, 98121 Messina, Italy
| | - Luciana Baroni
- Scientific Society for Vegetarian Nutrition, 30171 Venice, Italy
| | - Mauro Lombardo
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, 00166 Rome, Italy
| |
Collapse
|
18
|
Jové M, Mota-Martorell N, Obis È, Sol J, Martín-Garí M, Ferrer I, Portero-Otín M, Pamplona R. Lipid Adaptations against Oxidative Challenge in the Healthy Adult Human Brain. Antioxidants (Basel) 2023; 12:177. [PMID: 36671039 PMCID: PMC9855103 DOI: 10.3390/antiox12010177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
It is assumed that the human brain is especially susceptible to oxidative stress, based on specific traits such as a higher rate of mitochondrial free radical production, a high content in peroxidizable fatty acids, and a low antioxidant defense. However, it is also evident that human neurons, although they are post-mitotic cells, survive throughout an entire lifetime. Therefore, to reduce or avoid the impact of oxidative stress on neuron functionality and survival, they must have evolved several adaptive mechanisms to cope with the deleterious effects of oxidative stress. Several of these antioxidant features are derived from lipid adaptations. At least six lipid adaptations against oxidative challenge in the healthy human brain can be discerned. In this work, we explore the idea that neurons and, by extension, the human brain is endowed with an important arsenal of non-pro-oxidant and antioxidant measures to preserve neuronal function, refuting part of the initial premise.
Collapse
Affiliation(s)
- Mariona Jové
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), E-25198 Lleida, Spain
| | - Natàlia Mota-Martorell
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), E-25198 Lleida, Spain
| | - Èlia Obis
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), E-25198 Lleida, Spain
| | - Joaquim Sol
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), E-25198 Lleida, Spain
- Catalan Institute of Health (ICS), Research Support Unit (USR), Fundació Institut Universitari per a la Recerca en Atenció Primària de Salut Jordi Gol i Gurina (IDIAP JGol), E-25007 Lleida, Spain
| | - Meritxell Martín-Garí
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), E-25198 Lleida, Spain
| | - Isidre Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona (UB), E-08907 Barcelona, Spain
- Neuropathology Group, Institute of Biomedical Research of Bellvitge (IDIBELL), E-08907 Barcelona, Spain
- Network Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, E-08907 Barcelona, Spain
| | - Manuel Portero-Otín
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), E-25198 Lleida, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), E-25198 Lleida, Spain
| |
Collapse
|
19
|
Lacombe RJS, Smith ME, Perlman K, Turecki G, Mechawar N, Bazinet RP. Quantitative and carbon isotope ratio analysis of fatty acids isolated from human brain hemispheres. J Neurochem 2023; 164:44-56. [PMID: 36196762 DOI: 10.1111/jnc.15702] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/22/2022] [Accepted: 09/29/2022] [Indexed: 02/04/2023]
Abstract
Our knowledge surrounding the overall fatty acid profile of the adult human brain has been largely limited to extrapolations from brain regions in which the distribution of fatty acids varies. This is especially problematic when modeling brain fatty acid metabolism, therefore, an updated estimate of whole-brain fatty acid concentration is necessitated. Here, we sought to conduct a comprehensive quantitative analysis of fatty acids from entire well-characterized human brain hemispheres (n = 6) provided by the Douglas-Bell Canada Brain Bank. Additionally, exploratory natural abundance carbon isotope ratio (CIR; δ13 C, 13 C/12 C) analysis was performed to assess the origin of brain fatty acids. Brain fatty acid methyl esters (FAMEs) were quantified by gas chromatography (GC)-flame ionization detection and minor n-6 and n-3 polyunsaturated fatty acid pentafluorobenzyl esters by GC-mass spectrometry. Carbon isotope ratio values of identifiable FAMEs were measured by GC-combustion-isotope ratio mass spectrometry. Overall, the most abundant fatty acid in the human brain was oleic acid, followed by stearic acid (STA), palmitic acid (PAM), docosahexaenoic acid (DHA), and arachidonic acid (ARA). Interestingly, cholesterol as well as saturates including PAM and STA were most enriched in 13 C, while PUFAs including DHA and ARA were most depleted in 13 C. These findings suggest a contribution of endogenous synthesis utilizing dietary sugar substrates rich in 13 C, and a combination of marine, animal, and terrestrial PUFA sources more depleted in 13 C, respectively. These results provide novel insights on cerebral fatty acid origin and concentration, the latter serving as a valuable resource for future modeling of fatty acid metabolism in the human brain.
Collapse
Affiliation(s)
- R J Scott Lacombe
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Mackenzie E Smith
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Kelly Perlman
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec, Canada.,Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec, Canada.,Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Uc A, Strandvik B, Yao J, Liu X, Yi Y, Sun X, Welti R, Engelhardt J, Norris A. The fatty acid imbalance of cystic fibrosis exists at birth independent of feeding in pig and ferret models. Clin Sci (Lond) 2022; 136:1773-1791. [PMID: 36416119 PMCID: PMC9747517 DOI: 10.1042/cs20220450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
Persons with cystic fibrosis (CF) exhibit a unique alteration of fatty acid composition, marked especially among polyunsaturates by relative deficiency of linoleic acid and excess of Mead acid. Relative deficiency of docosahexaenoic acid is variably found. However, the initial development of these abnormalities is not understood. We examined fatty acid composition in young CF ferrets and pigs, finding abnormalities from the day of birth onward including relative deficiency of linoleic acid in both species. Fatty acid composition abnormalities were present in both liver and serum phospholipids of newborn CF piglets even prior to feeding, including reduced linoleic acid and increased Mead acid. Serum fatty acid composition evolved over the first weeks of life in both non-CF and CF ferrets, though differences between CF and non-CF persisted. Although red blood cell phospholipid fatty acid composition was normal in newborn animals, it became perturbed in juvenile CF ferrets including relative deficiencies of linoleic and docosahexaenoic acids and excess of Mead acid. In summary, fatty acid composition abnormalities in CF pigs and ferrets exist from a young age including at birth independent of feeding and overlap extensively with the abnormalities found in humans with CF. That the abnormalities exist prior to feeding implies that dietary measures alone will not address the mechanisms of imbalance.
Collapse
Affiliation(s)
- Aliye Uc
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, U.S.A
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, U.S.A
| | - Birgitta Strandvik
- Department of Biosciences and Nutrition, Karolinska Institutet NEO, Flemingsberg, Stockholm 14183, Sweden
| | - Jianrong Yao
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, U.S.A
| | - Xiaoming Liu
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, U.S.A
| | - Yaling Yi
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, U.S.A
| | - Xingshen Sun
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, U.S.A
| | - Ruth Welti
- Kansas Lipidomics Research Center, Kansas State University, Manhattan, KS 66506, U.S.A
| | - John F. Engelhardt
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, U.S.A
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, U.S.A
| | - Andrew W. Norris
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, U.S.A
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, U.S.A
| |
Collapse
|
21
|
Verdoodt F, Watanangura A, Bhatti SFM, Schmidt T, Suchodolski JS, Van Ham L, Meller S, Volk HA, Hesta M. The role of nutrition in canine idiopathic epilepsy management: Fact or fiction? Vet J 2022; 290:105917. [PMID: 36341888 DOI: 10.1016/j.tvjl.2022.105917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/05/2022]
Abstract
In the last decade, nutrition has gained interest in the management of canine idiopathic epilepsy (IE) based on growing scientific evidence. Diets can serve their functions through many pathways. One potential pathway includes the microbiota-gut-brain axis, which highlights the relationship between the brain and the intestines. Changing the brain's energy source and a number of dietary sourced anti-inflammatory and neuroprotective factors appears to be the basis for improved outcomes in IE. Selecting a diet with anti-seizure effects and avoiding risks of proconvulsant mediators as well as interference with anti-seizure drugs should all be considered in canine IE. This literature review provides information about preclinical and clinical evidence, including a systematic evaluation of the level of evidence, suggested mechanism of action and interaction with anti-seizure drugs as well as pros and cons of each potential dietary adaptation in canine IE.
Collapse
Affiliation(s)
- Fien Verdoodt
- Equine and Companion Animal Nutrition, Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium; Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Antja Watanangura
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany; Center for Systems Neuroscience (ZSN), Hannover, Germany; Veterinary Research and Academic Service, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, Thailand
| | - Sofie F M Bhatti
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Teresa Schmidt
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany; Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Luc Van Ham
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Sebastian Meller
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Holger A Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany; Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Myriam Hesta
- Equine and Companion Animal Nutrition, Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| |
Collapse
|
22
|
Dietary Fatty Acid Composition Impacts the Fatty Acid Profiles of Different Regions of the Bovine Brain. Animals (Basel) 2022; 12:ani12192696. [PMID: 36230437 PMCID: PMC9559283 DOI: 10.3390/ani12192696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022] Open
Abstract
Fatty acid composition across functional brain regions was determined in bovine brains collected from cattle that were provided supplements of calcium salts containing either palm or fish oil. The Angus cattle were divided into two groups, with one group offered the supplement of calcium salts of palm oil and the other offered the calcium salts of fish oil (n = 5 females and n = 5 males/supplement) for 220 days. These supplements to the basal forage diet were provided ad libitum as a suspension in dried molasses. The fish oil exclusively provided eicosapentaenoic acid (EPA, C20:5 n-3) and docosahexaenoic acid (DHA, C22:6 n-3). The functional regions were dissected from the entire brains following commercial harvest. While the cattle provided diets supplemented with the calcium salts of palm oil had increased (p < 0.01) liver concentrations of C18:1 n-9, C18:2 n-6, and arachidonic acid, the fish-oil-supplemented cattle had greater (p < 0.01) concentrations of liver EPA, DHA, and C18:3 n-3. In the brain, DHA was the most abundant polyunsaturated fatty acid. In the amygdala, pons, frontal lobe, internal capsule, and sensory cortex, DHA concentrations were greater (p < 0.05) in the brains of the cattle fed fish oil. Differences among the supplements were small, indicating that brain DHA content is resistant to dietary change. Arachidonic acid and C22:4 n-6 concentrations were greater across the regions for the palm-oil-supplemented cattle. EPA and C22:5 n-3 concentrations were low, but they were greater across the regions for the cattle fed fish oil. The effects of sex were inconsistent. The fatty acid profiles of the brain regions differed by diet, but they were similar to the contents reported for other species.
Collapse
|
23
|
Xing D, Su B, Li S, Bangs M, Creamer D, Coogan M, Wang J, Simora R, Ma X, Hettiarachchi D, Alston V, Wang W, Johnson A, Lu C, Hasin T, Qin Z, Dunham R. CRISPR/Cas9-Mediated Transgenesis of the Masu Salmon (Oncorhynchus masou) elovl2 Gene Improves n-3 Fatty Acid Content in Channel Catfish (Ictalurus punctatus). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:513-523. [PMID: 35416602 DOI: 10.1007/s10126-022-10110-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Omega-3 polyunsaturated fatty acids (n-3 PUFAs), particularly eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3), play a very important role in human health. Channel catfish (Ictalurus punctatus) is one of the leading freshwater aquaculture species in the USA, but has low levels of EPA and DHA compared to some fish such as salmon. To improve EPA and DHA content, a modification of the n-3 PUFA biosynthetic pathway was achieved through the insertion of an elovl2 transgene isolated from masu salmon (Oncorhynchus masou) driven by a carp β-actin promoter using a two-hit by gRNA and two oligos with a targeting plasmid (2H2OP) CRISPR/Cas9 approach. Integration rate of the transgene was high (37.5%) and detected in twelve different tissues of P1 transgenic fish with tissue-specific gene expression. Liver and muscle had relative high gene expression (13.4- and 9.2-fold change, respectively). Fatty acid analysis showed DHA content in the muscle from transgenic fish was 1.62-fold higher than in non-transgenic fish (P < 0.05). Additionally, total n-3 PUFAs and omega-6 polyunsaturated fatty acids (n-6 PUFAs) increased to 1.41-fold and 1.50-fold, respectively, suggesting the β-actin-elovl2 transgene improved biosynthesis of PUFAs in channel catfish as a whole. The n-9 fatty acid level decreased in the transgenic fish compared to the control. Morphometric analysis showed that there were significant differences between injected fish with sgRNAs (including positive and negative fish) and sham-injected controls (P < 0.001). Potential off-target effects are likely the major factor responsible for morphological deformities. Optimization of sgRNA design to maximize activity and reduce off-target effects of CRISPR/Cas9 should be examined in future transgenic research, but this research shows a promising first step in the improvement of n-3 PUFAs in channel catfish.
Collapse
Affiliation(s)
- De Xing
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Baofeng Su
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Shangjia Li
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Max Bangs
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Department of Biological Science, Florida State University, Tallahassee, FL, 32304, USA
| | - David Creamer
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Michael Coogan
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Jinhai Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Rhoda Simora
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- College of Fisheries and Ocean Sciences, University of the Philippines Visayas, 5023, Miagao, Iloilo, Philippines
| | - Xiaoli Ma
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Darshika Hettiarachchi
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Veronica Alston
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Wenwen Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Andrew Johnson
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Cuiyu Lu
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Tasnuba Hasin
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zhenkui Qin
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| | - Rex Dunham
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
24
|
Petermann AB, Reyna-Jeldes M, Ortega L, Coddou C, Yévenes GE. Roles of the Unsaturated Fatty Acid Docosahexaenoic Acid in the Central Nervous System: Molecular and Cellular Insights. Int J Mol Sci 2022; 23:5390. [PMID: 35628201 PMCID: PMC9141004 DOI: 10.3390/ijms23105390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 11/16/2022] Open
Abstract
Fatty acids (FAs) are essential components of the central nervous system (CNS), where they exert multiple roles in health and disease. Among the FAs, docosahexaenoic acid (DHA) has been widely recognized as a key molecule for neuronal function and cell signaling. Despite its relevance, the molecular pathways underlying the beneficial effects of DHA on the cells of the CNS are still unclear. Here, we summarize and discuss the molecular mechanisms underlying the actions of DHA in neural cells with a special focus on processes of survival, morphological development, and synaptic maturation. In addition, we examine the evidence supporting a potential therapeutic role of DHA against CNS tumor diseases and tumorigenesis. The current results suggest that DHA exerts its actions on neural cells mainly through the modulation of signaling cascades involving the activation of diverse types of receptors. In addition, we found evidence connecting brain DHA and ω-3 PUFA levels with CNS diseases, such as depression, autism spectrum disorders, obesity, and neurodegenerative diseases. In the context of cancer, the existing data have shown that DHA exerts positive actions as a coadjuvant in antitumoral therapy. Although many questions in the field remain only partially resolved, we hope that future research may soon define specific pathways and receptor systems involved in the beneficial effects of DHA in cells of the CNS, opening new avenues for innovative therapeutic strategies for CNS diseases.
Collapse
Affiliation(s)
- Ana B. Petermann
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070386, Chile;
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago 8330025, Chile; (M.R.-J.); (L.O.)
| | - Mauricio Reyna-Jeldes
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago 8330025, Chile; (M.R.-J.); (L.O.)
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica Del Norte, Coquimbo 1781421, Chile
- Núcleo para el Estudio del Cáncer a Nivel Básico, Aplicado y Clínico, Universidad Católica del Norte, Antofagasta 1270709, Chile
| | - Lorena Ortega
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago 8330025, Chile; (M.R.-J.); (L.O.)
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica Del Norte, Coquimbo 1781421, Chile
- Núcleo para el Estudio del Cáncer a Nivel Básico, Aplicado y Clínico, Universidad Católica del Norte, Antofagasta 1270709, Chile
| | - Claudio Coddou
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago 8330025, Chile; (M.R.-J.); (L.O.)
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica Del Norte, Coquimbo 1781421, Chile
- Núcleo para el Estudio del Cáncer a Nivel Básico, Aplicado y Clínico, Universidad Católica del Norte, Antofagasta 1270709, Chile
| | - Gonzalo E. Yévenes
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070386, Chile;
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago 8330025, Chile; (M.R.-J.); (L.O.)
| |
Collapse
|
25
|
Xie D, Guan J, Huang X, Xu C, Pan Q, Li Y. Tilapia can be a Beneficial n-3 LC-PUFA Source due to Its High Biosynthetic Capacity in the Liver and Intestine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2701-2711. [PMID: 35138848 DOI: 10.1021/acs.jafc.1c05755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
To assess whether farmed tilapia can be a beneficial n-3 long-chain polyunsaturated fatty acid (LC-PUFA) source for human health, four diets with linoleic acid (LA) to α-linolenic acid (ALA) ratios at 9, 6, 3, and 1 were prepared to feed juveniles for 10 weeks, and the LC-PUFA biosynthetic characteristics in the liver, intestine, and brain and the muscular quality were analyzed. It was shown that the n-3 LC-PUFA levels of the intestine and liver increased in a parallel pattern with the dietary ALA levels. Correspondingly, in the fish fed diet with high ALA levels, the mRNA levels of genes related to LC-PUFA biosynthesis including fads2, elovl5, and pparα in the intestine and elovl5 in the liver were increased, and the muscular n-3 LC-PUFA levels and textures were improved. The results demonstrated that tilapia intestine and liver possess high n-3 LC-PUFA biosynthetic capacity, which suggests that farmed tilapia can be a beneficial n-3 LC-PUFA source.
Collapse
Affiliation(s)
- Dizhi Xie
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences of South China Agricultural University, Guangzhou 510642, China
| | - Junfeng Guan
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences of South China Agricultural University, Guangzhou 510642, China
| | - Xiaoping Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences of South China Agricultural University, Guangzhou 510642, China
| | - Chao Xu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences of South China Agricultural University, Guangzhou 510642, China
| | - Qing Pan
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences of South China Agricultural University, Guangzhou 510642, China
| | - Yuanyou Li
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences of South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
26
|
Decoeur F, Picard K, St-Pierre MK, Greenhalgh AD, Delpech JC, Sere A, Layé S, Tremblay ME, Nadjar A. N-3 PUFA Deficiency Affects the Ultrastructural Organization and Density of White Matter Microglia in the Developing Brain of Male Mice. Front Cell Neurosci 2022; 16:802411. [PMID: 35221920 PMCID: PMC8866569 DOI: 10.3389/fncel.2022.802411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/17/2022] [Indexed: 02/03/2023] Open
Abstract
Over the last century, westernization of dietary habits has led to a dramatic reduction in dietary intake of n-3 polyunsaturated fatty acids (n-3 PUFAs). In particular, low maternal intake of n-3 PUFAs throughout gestation and lactation causes defects in brain myelination. Microglia are recognized for their critical contribution to neurodevelopmental processes, such as myelination. These cells invade the white matter in the first weeks of the post-natal period, where they participate in oligodendrocyte maturation and myelin production. Therefore, we investigated whether an alteration of white matter microglia accompanies the myelination deficits observed in the brain of n-3 PUFA-deficient animals. Macroscopic imaging analysis shows that maternal n-3 PUFA deficiency decreases the density of white matter microglia around post-natal day 10. Microscopic electron microscopy analyses also revealed alterations of microglial ultrastructure, a decrease in the number of contacts between microglia and myelin sheet, and a decreased amount of myelin debris in their cell body. White matter microglia further displayed increased mitochondrial abundance and network area under perinatal n-3 PUFA deficiency. Overall, our data suggest that maternal n-3 PUFA deficiency alters the structure and function of microglial cells located in the white matter of pups early in life, and this could be the key to understand myelination deficits during neurodevelopment.
Collapse
Affiliation(s)
- Fanny Decoeur
- INRAE, Bordeaux INP, NutriNeuro, Université de Bordeaux, Bordeaux, France
| | - Katherine Picard
- Axe Neurosciences, Centre de Recherche du CHU de Québec–Université Laval, Québec, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada
| | - Marie-Kim St-Pierre
- Axe Neurosciences, Centre de Recherche du CHU de Québec–Université Laval, Québec, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada
| | | | | | - Alexandra Sere
- INRAE, Bordeaux INP, NutriNeuro, Université de Bordeaux, Bordeaux, France
| | - Sophie Layé
- INRAE, Bordeaux INP, NutriNeuro, Université de Bordeaux, Bordeaux, France
| | - Marie-Eve Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec–Université Laval, Québec, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Agnès Nadjar
- INRAE, Bordeaux INP, NutriNeuro, Université de Bordeaux, Bordeaux, France
- Neurocentre Magendie, U1215, INSERM-Université de Bordeaux, Bordeaux, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
27
|
Fu SS, Wen M, Zhao YC, Shi HH, Wang YM, Xue CH, Wei ZH, Zhang TT. Short-term supplementation of EPA-enriched ethanolamine plasmalogen increases the level of DHA in the brain and liver of n-3 PUFA deficient mice in early life after weaning. Food Funct 2022; 13:1906-1920. [PMID: 35088775 DOI: 10.1039/d1fo03345j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A lack of n-3 polyunsaturated fatty acids (PUFAs) in mothers' diet significantly reduced the amount of docosahexaenoic acid (DHA) in the brains of offspring, which might affect their brain function. Our previous research has proven multiple benefits of eicosapentaenoic acid (EPA)-enriched ethanolamine plasmalogen (pPE) in enhancing the learning and memory ability. However, the effect of dietary supplementation with EPA-pPE on the DHA content in the brain and liver of offspring lacking n-3 PUFAs in early life is still unclear. Female ICR mice were fed with n-3 PUFA-deficient diets throughout the gestation and lactation periods to get n-3 PUFA-deficient offspring. The lipid profiles in the cerebral cortex and liver of offspring were analyzed using lipidomics after dietary supplementation with EPA-pPE (0.05%, w/w) and EPA-phosphatidylcholine (PC) (0.05%, w/w) for 2 weeks after weaning. Dietary supplementation with EPA could significantly change fatty acid composition in a variety of phospholipid molecular species compared with the n-3 deficient group. EPA-pPE and EPA-PC remarkably increased the DHA content in the brain PC, ether-linked phosphatidylcholine (ePC), and phosphatidylethanolamine plasmalogen (pPE) and liver triglyceride (TG), lyso-phosphatidylcholine (LPC), ePC, phosphatidylethanolamine (PE), and pPE molecular species, in which EPA-pPE showed more significant effects on the increase of DHA in cerebral cortex PC, ePC and liver PC compared with EPA-PC. Both EPA-phospholipids could effectively increase the DHA levels, and the pPE form was superior to PC in the contribution of DHA content in the cerebral cortex PC, ePC and liver PC molecular species. EPA-enriched ethanolamine plasmalogen might be a good nutritional supplement to increase DHA levels in the brains of n-3 PUFA-deficient offspring.
Collapse
Affiliation(s)
- Shuai-Shuai Fu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China.
| | - Min- Wen
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Ying-Cai Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China.
| | - Hao-Hao Shi
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China.
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China. .,Laboratory of Marine Drugs & Biological Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, Shandong, China
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China. .,Laboratory of Marine Drugs & Biological Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, Shandong, China
| | - Zi-Hao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China.
| | - Tian-Tian Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China.
| |
Collapse
|
28
|
Leyrolle Q, Decoeur F, Dejean C, Brière G, Leon S, Bakoyiannis I, Baroux E, Sterley TL, Bosch-Bouju C, Morel L, Amadieu C, Lecours C, St-Pierre MK, Bordeleau M, De Smedt-Peyrusse V, Séré A, Schwendimann L, Grégoire S, Bretillon L, Acar N, Joffre C, Ferreira G, Uricaru R, Thebault P, Gressens P, Tremblay ME, Layé S, Nadjar A. N-3 PUFA deficiency disrupts oligodendrocyte maturation and myelin integrity during brain development. Glia 2022; 70:50-70. [PMID: 34519378 DOI: 10.1002/glia.24088] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022]
Abstract
Westernization of dietary habits has led to a progressive reduction in dietary intake of n-3 polyunsaturated fatty acids (n-3 PUFAs). Low maternal intake of n-3 PUFAs has been linked to neurodevelopmental disorders, conditions in which myelination processes are abnormal, leading to defects in brain functional connectivity. Only little is known about the role of n-3 PUFAs in oligodendrocyte physiology and white matter development. Here, we show that lifelong n-3 PUFA deficiency disrupts oligodendrocytes maturation and myelination processes during the postnatal period in mice. This has long-term deleterious consequences on white matter organization and hippocampus-prefrontal functional connectivity in adults, associated with cognitive and emotional disorders. Promoting developmental myelination with clemastine, a first-generation histamine antagonist and enhancer of oligodendrocyte precursor cell differentiation, rescues memory deficits in n-3 PUFA deficient animals. Our findings identify a novel mechanism through which n-3 PUFA deficiency alters brain functions by disrupting oligodendrocyte maturation and brain myelination during the neurodevelopmental period.
Collapse
Affiliation(s)
- Quentin Leyrolle
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France.,Université de Paris, NeuroDiderot, Inserm, Paris, France
| | - Fanny Decoeur
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | - Cyril Dejean
- Université de Bordeaux, INSERM, Magendie, U1215, F-3300, Bordeaux, France
| | | | - Stephane Leon
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | | | - Emilie Baroux
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | - Tony-Lee Sterley
- Hotchkiss Brain Institute and the Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | | | - Lydie Morel
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | - Camille Amadieu
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | - Cynthia Lecours
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Marie-Kim St-Pierre
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Maude Bordeleau
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, Québec City, Québec, Canada
| | | | - Alexandran Séré
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | | | - Stephane Grégoire
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Lionel Bretillon
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Niyazi Acar
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Corinne Joffre
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | - Guillaume Ferreira
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | - Raluca Uricaru
- CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400, Talence, France
| | | | | | - Marie-Eve Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada.,Neurology and Neurosurgery Department, McGill University, Montreal, Québec City, Québec, Canada.,Department of Molecular Medicine, Université Laval, Québec City, Québec, Canada.,Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Sophie Layé
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | - Agnes Nadjar
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France.,Université de Bordeaux, INSERM, Magendie, U1215, F-3300, Bordeaux, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
29
|
Effect of Dams and Suckling Lamb Feeding Systems on the Fatty Acid Composition of Suckling Lamb Meat. Animals (Basel) 2021; 11:ani11113142. [PMID: 34827874 PMCID: PMC8614422 DOI: 10.3390/ani11113142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 01/02/2023] Open
Abstract
The effects of the dams and suckling lamb feeding systems on the fatty acid (FA) profile of lamb meat are reviewed in this article. The suckling lamb can be considered a functional monogastric, and therefore, its meat FA composition is strongly influenced by the FA composition of maternal milk. The major source of variation for ewe milk FA composition is represented by pasture amount and type. In the traditional sheep breeding system of the Mediterranean area, the main lambing period occurs in late autumn-early winter, and ewes are able to exploit the seasonal availability of the natural pastures at their best. Therefore, lambs start suckling when maternal milk concentrations of vaccenic, rumenic, and n-3 long-chain polyunsaturated FA in maternal milk are the highest. When maternal diet is mainly based on hay and concentrates, the use of vegetable oils can be considered a good strategy to improve the meat FA profile of suckling lambs.
Collapse
|
30
|
Heath RJ, Wood TR. Why Have the Benefits of DHA Not Been Borne Out in the Treatment and Prevention of Alzheimer's Disease? A Narrative Review Focused on DHA Metabolism and Adipose Tissue. Int J Mol Sci 2021; 22:11826. [PMID: 34769257 PMCID: PMC8584218 DOI: 10.3390/ijms222111826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 02/04/2023] Open
Abstract
Docosahexaenoic acid (DHA), an omega-3 fatty acid rich in seafood, is linked to Alzheimer's Disease via strong epidemiological and pre-clinical evidence, yet fish oil or other DHA supplementation has not consistently shown benefit to the prevention or treatment of Alzheimer's Disease. Furthermore, autopsy studies of Alzheimer's Disease brain show variable DHA status, demonstrating that the relationship between DHA and neurodegeneration is complex and not fully understood. Recently, it has been suggested that the forms of DHA in the diet and plasma have specific metabolic fates that may affect brain uptake; however, the effect of DHA form on brain uptake is less pronounced in studies of longer duration. One major confounder of studies relating dietary DHA and Alzheimer's Disease may be that adipose tissue acts as a long-term depot of DHA for the brain, but this is poorly understood in the context of neurodegeneration. Future work is required to develop biomarkers of brain DHA and better understand DHA-based therapies in the setting of altered brain DHA uptake to help determine whether brain DHA should remain an important target in the prevention of Alzheimer's Disease.
Collapse
Affiliation(s)
- Rory J. Heath
- Emergency Medicine Department, Derriford Hospital, University Hospitals Plymouth, Plymouth PL6 8DH, UK;
| | - Thomas R. Wood
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Center on Human Development and Disability, University of Washington, Seattle, WA 98195, USA
- Institute for Human and Machine Cognition, Pensacola, FL 32502, USA
| |
Collapse
|
31
|
Interaction between dietary total antioxidant capacity and BDNF Val66Met polymorphism on lipid profiles and atherogenic indices among diabetic patients. Sci Rep 2021; 11:19108. [PMID: 34580389 PMCID: PMC8476521 DOI: 10.1038/s41598-021-98663-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/13/2021] [Indexed: 12/25/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) belongs to the "neurotrophin" family of growth factors, and it has recently been associated to cardiovascular disease (CVD). We anticipated that BDNF Val66Met polymorphisms may alter CVD risk markers such as serum lipid profile differences, and interaction with total antioxidant capacity of diet (DTAC) could alter these clinical parameters. This cross-sectional study consisted of 667 diabetic patients (39.7% male and 60.3% female). DTAC was calculated by international databases. Biochemical markers including total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglyceride (TG), superoxide dismutase (SOD), C-reactive protein (CRP), total antioxidant capacity (TAC), pentraxin-3 (PTX3), isoprostaneF2α (PGF2α). interleukin 18 (IL18), leptin and ghrelin were measured by standard protocol. Atherogenic indices (AIP, AC, CR-I, CR-II) were calculated. Genotyping of the BDNF Val66Met polymorphisms was conducted by the real-time PCR-RFLP method. The gene-diet interactions were evaluated using a generalized linear mode (GLMs). Carriers of the Val/Met genotype who were in the higher median intake of FRAP had lower HDL (P:0.04) and higher TG (P:0.005), AIP (P:0.02) and AC (P:0.02) index compared to Val/Val genotypes with lower median intake. Moreover, diabetic patients with Val/Met genotype who consumed higher ORAC intake had increased odds for anthropometric indices (BMI (P:0.01) and WC (P:0.03)), lipid profiles (TG) (P:0.01), and atherogenic index (AIP) (P:0.02), also decreased odds for HDL (P:0.03) concentration compared to reference group whit lower ORAC intake. Individuals with Val/Met genotype who consumed higher TRAP intake had increased odds for WC (P:0.04), TC (P:0.001), TG (P < 0.001), AIP (P < 0.001) and AC (P < 0.001). Finally, Val/Met patients with a higher median intake of TEAC had higher TG (P:0.02), AIP (P:0.009) and AC (P:0.03) compared to the reference group whit lower TEAC intake. Our study showed that Val/Met genotype had also the highest lipid profile and atherogenic indices even in the highest adherence to DTAC. While it seems that the presence of the Val/Val wild-type and BDNF Met/Met homozygotes in diabetic patients with a high DTAC is a protective factor.
Collapse
|
32
|
Low YL, Pan Y, Short JL, Nicolazzo JA. Profiling the expression of fatty acid-binding proteins and fatty acid transporters in mouse microglia and assessing their role in docosahexaenoic acid-d5 uptake. Prostaglandins Leukot Essent Fatty Acids 2021; 171:102303. [PMID: 34098488 DOI: 10.1016/j.plefa.2021.102303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 01/19/2023]
Abstract
While the processes governing docosahexaenoic acid (DHA) trafficking across the blood-brain barrier have been elucidated, factors governing DHA uptake into microglia, an essential step for this fatty acid to exert its anti-inflammatory effects, are unknown. This study assessed the mRNA and protein expression of fatty acid-binding proteins (FABPs) and fatty acid transport proteins (FATPs) in mouse BV-2 cells and their mRNA expression in primary mouse microglia. The microglial uptake of DHA-d5, a surrogate of DHA, was assessed by LC-MS/MS following interventions including temperature reduction, silencing of various FABP isoforms, competition with DHA, and metabolic inhibition. It was found that DHA-d5 uptake at 4°C was 39.6% lower than at 37°C, suggesting that microglial uptake of DHA-d5 likely involves passive and/or active uptake mechanisms. Of all FABP and FATP isoforms probed, only FABP3, FABP4, FABP5, FATP1, and FATP4 were expressed at both the mRNA and protein level. Silencing of FABP3, FABP4, and FABP5 resulted in no change in cellular DHA-d5 uptake, nor did concomitant DHA administration or the presence of 0.1% sodium azide/50 mM 2-deoxy-D-glucose. This study is the first to identify the presence of FABPs and FATPs in mouse microglia, albeit these proteins are not involved in the microglial uptake of DHA-d5.
Collapse
Affiliation(s)
- Y L Low
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, Victoria 3052, Australia
| | - Y Pan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, Victoria 3052, Australia
| | - J L Short
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - J A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, Victoria 3052, Australia.
| |
Collapse
|
33
|
Tiencheu B, Claudia Egbe A, Achidi AU, Ngongang EFT, Tenyang N, Tonfack Djikeng F, Tatsinkou Fossi B. Effect of oven and sun drying on the chemical properties, lipid profile of soursop ( Annona muricata) seed oil, and the functional properties of the defatted flour. Food Sci Nutr 2021; 9:4156-4168. [PMID: 34401067 PMCID: PMC8358340 DOI: 10.1002/fsn3.2380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/03/2021] [Accepted: 05/16/2021] [Indexed: 11/21/2022] Open
Abstract
Soursop seeds present a potential source of edible oil production. This work was aimed at determining the effect of oven and sun drying on the chemical properties and lipid profile of soursop seed oil as well as the functional properties of the defatted seed flour. The chemical properties, lipid profiles, and functional properties of soursop seeds dried for 0, 6, 12, 18, 24, and 30 hr, and 0, 1, 3, and 5 days, respectively, in the oven and on the sun using time T0 as the control sample were determined using oil quality indices, gas phase chromatography, and functionality tests for flours, respectively, with a view of highlighting the potentials of the defatted seed. The result of the study revealed that the chemical properties of oils for oven-dried and sun-dried seeds changed with drying technique and time, with iodine value being the more affected parameter, and peroxide value (PV) being the least. The control exhibited the highest free fatty acids (FFAs), peroxide value (PV), thiobarbituric acid (TBA) value, and saponification value compared with dried samples. The fatty acid profiling showed that the predominant fatty acids were C18:1n-9, C18:2n-6, and C16:0 and that unsaturated fatty acids (UFA), monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), and omega-fats were not significantly affected by the oven drying time. The mean PUFA content ranged from 31.72% with sundried seeds to 30.92% after 30 hr of oven-drying and was not significantly affected by the drying technique. The oils contained more n-6 (30.60%) fatty acids than n-3 (1.12%). The PUFA/SFA ratios [1.14-1.37] as well as the Atherogenic index (AI) [0.25-0.27] were acceptable because of the recommended range of FAO/WHO. PUFA/SFA, n-6/n-3, and Atherogenic index (AI) did not change much with the sun-drying technique compared with oven-drying. Flours from sun-dried seeds had better functional properties than oven-dried and more than 3 different types of proteins (based on isoelectric points of proteins). It can be concluded that soursop seed contains good quality oil, which can be exploited to improve nutrition. Manufacturers of animal feeds should explore the agro-industrial use of its oil and defatted seed flour.
Collapse
Affiliation(s)
- Bernard Tiencheu
- Department of Biochemistry and Molecular BiologyFaculty of ScienceUniversity of BueaBueaCameroon
| | - Agbor Claudia Egbe
- Department of Biochemistry and Molecular BiologyFaculty of ScienceUniversity of BueaBueaCameroon
| | - Aduni Ufuan Achidi
- Department of Biochemistry and Molecular BiologyFaculty of ScienceUniversity of BueaBueaCameroon
| | | | - Noel Tenyang
- Department of Biological scienceFaculty of ScienceUniversity of MarouaMarouaCameroon
| | - Fabrice Tonfack Djikeng
- School of Agriculture and Natural ResourcesCatholic University Institute of BueaBueaCameroon
| | | |
Collapse
|
34
|
Tkachev A, Stekolshchikova E, Bobrovskiy DM, Anikanov N, Ogurtsova P, Park DI, Horn AKE, Petrova D, Khrameeva E, Golub MS, Turck CW, Khaitovich P. Long-Term Fluoxetine Administration Causes Substantial Lipidome Alteration of the Juvenile Macaque Brain. Int J Mol Sci 2021; 22:ijms22158089. [PMID: 34360852 PMCID: PMC8348031 DOI: 10.3390/ijms22158089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/13/2022] Open
Abstract
Fluoxetine is an antidepressant commonly prescribed not only to adults but also to children for the treatment of depression, obsessive-compulsive disorder, and neurodevelopmental disorders. The adverse effects of the long-term treatment reported in some patients, especially in younger individuals, call for a detailed investigation of molecular alterations induced by fluoxetine treatment. Two-year fluoxetine administration to juvenile macaques revealed effects on impulsivity, sleep, social interaction, and peripheral metabolites. Here, we built upon this work by assessing residual effects of fluoxetine administration on the expression of genes and abundance of lipids and polar metabolites in the prelimbic cortex of 10 treated and 11 control macaques representing two monoamine oxidase A (MAOA) genotypes. Analysis of 8871 mRNA transcripts, 3608 lipids, and 1829 polar metabolites revealed substantial alterations of the brain lipid content, including significant abundance changes of 106 lipid features, accompanied by subtle changes in gene expression. Lipid alterations in the drug-treated animals were most evident for polyunsaturated fatty acids (PUFAs). A decrease in PUFAs levels was observed in all quantified lipid classes excluding sphingolipids, which do not usually contain PUFAs, suggesting systemic changes in fatty acid metabolism. Furthermore, the residual effect of the drug on lipid abundances was more pronounced in macaques carrying the MAOA-L genotype, mirroring reported behavioral effects of the treatment. We speculate that a decrease in PUFAs may be associated with adverse effects in depressive patients and could potentially account for the variation in individual response to fluoxetine in young people.
Collapse
Affiliation(s)
- Anna Tkachev
- V. Zelman Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (A.T.); (E.S.); (N.A.); (P.O.); (D.P.)
| | - Elena Stekolshchikova
- V. Zelman Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (A.T.); (E.S.); (N.A.); (P.O.); (D.P.)
| | - Daniil M. Bobrovskiy
- Faculty of Bioengineering and Bioinformatics, Moscow State University, 119234 Moscow, Russia;
| | - Nickolay Anikanov
- V. Zelman Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (A.T.); (E.S.); (N.A.); (P.O.); (D.P.)
| | - Polina Ogurtsova
- V. Zelman Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (A.T.); (E.S.); (N.A.); (P.O.); (D.P.)
| | - Dong Ik Park
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, 80804 Munich, Germany;
| | - Anja K. E. Horn
- Institute of Anatomy and Cell Biology, Ludwig-Maximilians University, 80336 Munich, Germany;
| | - Daria Petrova
- V. Zelman Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (A.T.); (E.S.); (N.A.); (P.O.); (D.P.)
| | - Ekaterina Khrameeva
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
- Correspondence: (E.K.); (M.S.G.); (C.W.T.); (P.K.)
| | - Mari S. Golub
- California National Primate Research Center, University of California, Davis, CA 95616, USA
- Correspondence: (E.K.); (M.S.G.); (C.W.T.); (P.K.)
| | - Christoph W. Turck
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, 80804 Munich, Germany;
- Correspondence: (E.K.); (M.S.G.); (C.W.T.); (P.K.)
| | - Philipp Khaitovich
- V. Zelman Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (A.T.); (E.S.); (N.A.); (P.O.); (D.P.)
- Correspondence: (E.K.); (M.S.G.); (C.W.T.); (P.K.)
| |
Collapse
|
35
|
Cheng A, Jia W, Kawahata I, Fukunaga K. Impact of Fatty Acid-Binding Proteins in α-Synuclein-Induced Mitochondrial Injury in Synucleinopathy. Biomedicines 2021; 9:biomedicines9050560. [PMID: 34067791 PMCID: PMC8156290 DOI: 10.3390/biomedicines9050560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023] Open
Abstract
Synucleinopathies are diverse diseases with motor and cognitive dysfunction due to progressive neuronal loss or demyelination, due to oligodendrocyte loss in the brain. While the etiology of neurodegenerative disorders (NDDs) is likely multifactorial, mitochondrial injury is one of the most vital factors in neuronal loss and oligodendrocyte dysfunction, especially in Parkinson’s disease, dementia with Lewy body, multiple system atrophy, and Krabbe disease. In recent years, the abnormal accumulation of highly neurotoxic α-synuclein in the mitochondrial membrane, which leads to mitochondrial dysfunction, was well studied. Furthermore, fatty acid-binding proteins (FABPs), which are members of a superfamily and are essential in fatty acid trafficking, were reported to trigger α-synuclein oligomerization in neurons and glial cells and to target the mitochondrial outer membrane, thereby causing mitochondrial loss. Here, we provide an updated overview of recent findings on FABP and α-synuclein interactions and mitochondrial injury in NDDs.
Collapse
Affiliation(s)
- An Cheng
- Departments of Pharmacology, Graduate School of Pharmaceutical Science, Tohoku University, Sendai 980-8578, Japan; (A.C.); (W.J.); (I.K.)
| | - Wenbin Jia
- Departments of Pharmacology, Graduate School of Pharmaceutical Science, Tohoku University, Sendai 980-8578, Japan; (A.C.); (W.J.); (I.K.)
| | - Ichiro Kawahata
- Departments of Pharmacology, Graduate School of Pharmaceutical Science, Tohoku University, Sendai 980-8578, Japan; (A.C.); (W.J.); (I.K.)
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Science, Tohoku University, Sendai 980-8578, Japan
| | - Kohji Fukunaga
- Departments of Pharmacology, Graduate School of Pharmaceutical Science, Tohoku University, Sendai 980-8578, Japan; (A.C.); (W.J.); (I.K.)
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Science, Tohoku University, Sendai 980-8578, Japan
- Correspondence: ; Tel.: +81-(22)-795-6837
| |
Collapse
|
36
|
Lavandera JV, Reus V, Saín J, Bernal CA, González MA. Dietary n-9, n-6 and n-3 fatty acids modulate the oxidative stress in brain and liver of mice. Effect of trans fatty acids supplementation. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2021. [DOI: 10.3233/mnm-200508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND: Arachidonic (20:4n-6) and docosahexaenoic (22:6n-3) acids interaction affects brain structure and function. Unsaturated fatty acids (UFAs) generate oxygenated lipid-derived eicosanoids which modulate the inflammatory response. The presence of trans fatty acids (TFA) in neuronal membranes can favor to generation of pro-oxidant metabolites. OBJECTIVE: This study evaluated the effect of supplementation with TFA to diets containing different proportions of FA, on the oxidative stress (OS) generation and the inflammatory response in mice brain and liver. METHODS: CF1 mice were fed diets (16 weeks) with olive (O), corn (C) or rapeseed (R) oils. OS parameters and gene expression of some key liver and brain enzymes involved in OS production were evaluated. RESULTS: In brain and liver, lipoperoxidation was increased and catalase activity was decreased in C. In brain, glutathione was diminished by supplementation with TFA in all diets and histological sections showed lymphocytes in O and C. In liver, decreased amount of lipid vacuoles and increased of cyclooxygenase-1 (COX-1) and PPARγ mRNA levels were observed in R and Rt. IL-1b and IL-6 in serum were augmented in O and Ot. CONCLUSIONS: Rapeseed oil could have protective effects on the development of OS and inflammation, while TFA supplementation did not showed marked effects on these parameters.
Collapse
Affiliation(s)
- Jimena Verónica Lavandera
- Cátedra de Bromatología y Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Verónica Reus
- Facultad de Ciencias Médicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Juliana Saín
- Cátedra de Bromatología y Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Claudio Adrian Bernal
- Cátedra de Bromatología y Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Marcela Aida González
- Cátedra de Bromatología y Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
37
|
Different Dietary N-3 Polyunsaturated Fatty Acid Formulations Distinctively Modify Tissue Fatty Acid and N-Acylethanolamine Profiles. Nutrients 2021; 13:nu13020625. [PMID: 33671938 PMCID: PMC7919039 DOI: 10.3390/nu13020625] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 01/08/2023] Open
Abstract
We investigated the influence of different dietary formulation of n-3 polyunsaturated fatty acids (PUFA) on rat tissue fatty acid (FA) incorporation and consequent modulation of their bioactive metabolite N-acylethanolamines (NAE). For 10 weeks, rats were fed diets with 12% of fat from milk + 4% soybean oil and 4% of oils with different n-3 PUFA species: soybean oil as control, linseed oil rich in α-linolenic (ALA), Buglossoides arvensis oil rich in ALA and stearidonic acid (SDA), fish oil rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), Nannochloropsis microalga oil rich in EPA or Schizochytrium microalga oil rich in DHA. FA and NAE profiles were determined in plasma, liver, brain and adipose tissues. Different dietary n-3 PUFA distinctively influenced tissue FA profiles and consequently NAE tissue concentrations. Interestingly, in visceral adipose tissue the levels of N-arachidonoylethanolamide (AEA) and N-docosahexaenoylethanolamide (DHEA), NAE derived from arachidonic acid (AA) and DHA, respectively, significantly correlated with NAE in plasma, and circulating DHEA levels were also correlated with those in liver and brain. Circulating NAE derived from stearic acid, stearoylethanolamide (SEA), palmitic acid and palmitoylethanolamide (PEA) correlated with their liver concentrations. Our data indicate that dietary n-3 PUFA are not all the same in terms of altering tissue FA and NAE concentrations. In addition, correlation analyses suggest that NAE levels in plasma may reflect their concentration in specific tissues. Given the receptor-mediated tissue specific metabolic role of each NAE, a personalized formulation of dietary n-3 PUFA might potentially produce tailored metabolic effects in different pathophysiological conditions.
Collapse
|
38
|
Abidizadegan M, Peltomaa E, Blomster J. The Potential of Cryptophyte Algae in Biomedical and Pharmaceutical Applications. Front Pharmacol 2021; 11:618836. [PMID: 33603668 PMCID: PMC7884888 DOI: 10.3389/fphar.2020.618836] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/31/2020] [Indexed: 01/28/2023] Open
Abstract
Microalgae produce a variety of bioactive components that provide benefits to human and animal health. Cryptophytes are one of the major groups of microalgae, with more than 20 genera comprised of 200 species. Recently, cryptophytes have attracted scientific attention because of their characteristics and biotechnological potential. For example, they are rich in a number of chemical compounds, such as fatty acids, carotenoids, phycobiliproteins and polysaccharides, which are mainly used for food, medicine, cosmetics and pharmaceuticals. This paper provides a review of studies that assess protective algal compounds and introduce cryptophytes as a remarkable source of bioactive components that may be usable in biomedical and pharmaceutical sciences.
Collapse
Affiliation(s)
- Maryam Abidizadegan
- Environmental Laboratory, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Elina Peltomaa
- Institute of Atmospheric and Earth System Research (INAR)/Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Jaanika Blomster
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
39
|
Peng S, Peng Z, Qin M, Huang L, Zhao B, Wei L, Ning J, Tuo QH, Yuan TF, Shi Z, Liao DF. Targeting neuroinflammation: The therapeutic potential of ω-3 PUFAs in substance abuse. Nutrition 2020; 83:111058. [PMID: 33360033 DOI: 10.1016/j.nut.2020.111058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/23/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022]
Abstract
Substance abuse is a chronic relapsing disorder that results in serious health and socioeconomic issues worldwide. Addictive drugs induce long-lasting morphologic and functional changes in brain circuits and account for the formation of compulsive drug-seeking and drug-taking behaviors. Yet, there remains a lack of reliable therapy. In recent years, accumulating evidence indicated that neuroinflammation was implicated in the development of drug addiction. Findings from both our and other laboratories suggest that ω-3 polyunsaturated fatty acids (PUFAs) are effective in treating neuroinflammation-related mental diseases, and indicate that they could exert positive effects in treating drug addiction. Thus, in the present review, we summarized and evaluated recently published articles reporting the neuroinflammation mechanism in drug addiction and the immune regulatory ability of ω-3 PUFAs. We also sought to identify some of the challenges ahead in the translation of ω-3 PUFAs into addiction treatment.
Collapse
Affiliation(s)
- Sha Peng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Hunan, China
| | - Zhuang Peng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Hunan, China
| | - Meng Qin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lu Huang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Bin Zhao
- Xinxiang Key Laboratory of Forensic Toxicology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, China
| | - Lai Wei
- Xinxiang Key Laboratory of Forensic Toxicology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, China
| | - Jie Ning
- Department of Metabolic Endocrinology, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Qin-Hui Tuo
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Hunan, China
| | - Ti-Fei Yuan
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Zhe Shi
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Hunan, China.
| | - Duan-Fang Liao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Hunan, China.
| |
Collapse
|
40
|
Low YL, Pan Y, Short JL, Nicolazzo JA. Development and validation of a LC-MS/MS assay for quantifying the uptake of docosahexaenoic acid-d5 into mouse microglia. J Pharm Biomed Anal 2020; 191:113575. [DOI: 10.1016/j.jpba.2020.113575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023]
|
41
|
Desale SE, Dubey T, Chinnathambi S. α-Linolenic acid inhibits Tau aggregation and modulates Tau conformation. Int J Biol Macromol 2020; 166:687-693. [PMID: 33130263 DOI: 10.1016/j.ijbiomac.2020.10.226] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/14/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease is characterized by important patho-proteins, which being composed of Amyloid-β plaques and intracellular neurofibrillary tangles of Tau. Intrinsically disordered protein tau has several interacting partners, which are necessary for its normal functioning. Tau has been shown to interact with various proteins, nucleic acid, and lipids. α-Linolenic acid (ALA) a plant-based omega-3 fatty acid has been studied for its role as neuroprotective and beneficial fatty acid in the brain. In this study, we are focusing on the ability of ALA to induce spontaneous assembly in tau protein. ALA inhibited the Tau aggregation as indicated by reduced ThS fluorescence kinetics, which indicates no aggregation of Tau. Similarly, SDS-PAGE analysis supported that ALA exposure inhibited the aggregation as no higher-order tau species were observed. Along with its ability to impede the aggregation of Tau, ALA also maintains a native random coiled structure, which was estimated by CD spectroscopy. Finally, TEM analysis showed that the formation of Tau fibrils was found to be discouraged by ALA. Hence, conclusion of the study suggested that ALA profoundly inhibited aggregation of Tau and maintained it's the random-coil structure.
Collapse
Affiliation(s)
- Smita Eknath Desale
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008 Pune, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Tushar Dubey
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008 Pune, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008 Pune, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
42
|
Acute EPA-induced learning and memory impairment in mice is prevented by DHA. Nat Commun 2020; 11:5465. [PMID: 33122660 PMCID: PMC7596714 DOI: 10.1038/s41467-020-19255-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 09/30/2020] [Indexed: 12/15/2022] Open
Abstract
Eicosapentaenoic acid (EPA), an omega-3 fatty acid, has been widely used to prevent cardiovascular disease (CVD) and treat brain diseases alone or in combination with docosahexaenoic acid (DHA). However, the impact of EPA and DHA supplementation on normal cognitive function and the molecular targets of EPA and DHA are still unknown. We show that acute administration of EPA impairs learning and memory and hippocampal LTP in adult and prepubescent mice. Similar deficits are duplicated by endogenously elevating EPA in the hippocampus in the transgenic fat-1 mouse. Furthermore, the damaging effects of EPA are mediated through enhancing GABAergic transmission via the 5-HT6R. Interestingly, DHA can prevent EPA-induced impairments at a ratio of EPA to DHA similar to that in marine fish oil via the 5-HT2CR. We conclude that EPA exhibits an unexpected detrimental impact on cognitive functions, suggesting that caution must be exercised in omega-3 fatty acid supplementation and the combination of EPA and DHA at a natural ratio is critical for learning and memory and synaptic plasticity. Acute administration of EPA impairs learning and memory and hippocampal LTP in mice that was mediated through enhancing GABAergic transmission via the 5-HT6R. DHA can prevent EPA-induced impairments at a ratio of EPA to DHA similar to that in marine fish oil via the 5-HT2CR.
Collapse
|
43
|
Santos HO, Price JC, Bueno AA. Beyond Fish Oil Supplementation: The Effects of Alternative Plant Sources of Omega-3 Polyunsaturated Fatty Acids upon Lipid Indexes and Cardiometabolic Biomarkers-An Overview. Nutrients 2020; 12:E3159. [PMID: 33081119 PMCID: PMC7602731 DOI: 10.3390/nu12103159] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular diseases remain a global challenge, and lipid-associated biomarkers can predict cardiovascular events. Extensive research on cardiovascular benefits of omega-3 polyunsaturated fatty acids (n3-PUFAs) is geared towards fish oil supplementation and fish-rich diets. Nevertheless, vegetarianism and veganism are becoming more popular across all segments of society, due to reasons as varied as personal, ethical and religious values, individual preferences and environment-related principles, amongst others. Due to the essentiality of PUFAs, plant sources of n3-PUFAs warrant further consideration. In this review, we have critically appraised the efficacy of plant-derived n3-PUFAs from foodstuffs and supplements upon lipid profile and selected cardiometabolic markers. Walnuts and flaxseed are the most common plant sources of n3-PUFAs, mainly alpha-linolenic acid (ALA), and feature the strongest scientific rationale for applicability into clinical practice. Furthermore, walnuts and flaxseed are sources of fibre, potassium, magnesium, and non-essential substances, including polyphenols and sterols, which in conjunction are known to ameliorate cardiovascular metabolism. ALA levels in rapeseed and soybean oils are only slight when compared to flaxseed oil. Spirulina and Chlorella, biomasses of cyanobacteria and green algae, are important sources of n3-PUFAs; however, their benefits upon cardiometabolic markers are plausibly driven by their antioxidant potential combined with their n3-PUFA content. In humans, ALA is not sufficiently bioconverted into eicosapentaenoic and docosahexaenoic acids. However, evidence suggests that plant sources of ALA are associated with favourable cardiometabolic status. ALA supplementation, or increased consumption of ALA-rich foodstuffs, combined with reduced omega-6 (n6) PUFAs intake, could improve the n3/n6 ratio and improve cardiometabolic and lipid profile.
Collapse
Affiliation(s)
- Heitor O. Santos
- School of Medicine, Federal University of Uberlandia (UFU), Uberlandia 38408-100, Brazil
| | - James C. Price
- College of Health, Life and Environmental Sciences, University of Worcester, Worcester WR2 6AJ, UK; (J.C.P.); (A.A.B.)
| | - Allain A. Bueno
- College of Health, Life and Environmental Sciences, University of Worcester, Worcester WR2 6AJ, UK; (J.C.P.); (A.A.B.)
| |
Collapse
|
44
|
van Vliet S, Kronberg SL, Provenza FD. Plant-Based Meats, Human Health, and Climate Change. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00128] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
45
|
Hsu MC, Huang YS, Ouyang WC. Beneficial effects of omega-3 fatty acid supplementation in schizophrenia: possible mechanisms. Lipids Health Dis 2020; 19:159. [PMID: 32620164 PMCID: PMC7333328 DOI: 10.1186/s12944-020-01337-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/24/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Schizophrenia is a serious long-term psychotic disorder marked by positive and negative symptoms, severe behavioral problems and cognitive function deficits. The cause of this disorder is not completely clear, but is suggested to be multifactorial, involving both inherited and environmental factors. Since human brain regulates all behaviour, studies have focused on identifying changes in neurobiology and biochemistry of brain in schizophrenia. Brain is the most lipid rich organ (approximately 50% of brain dry weight). Total brain lipids is constituted of more than 60% of phospholipids, in which docosahexaenoic acid (DHA, 22:6n-3) is the most abundant (more than 40%) polyunsaturated fatty acid (PUFA) in brain membrane phospholipids. Results from numerous studies have shown significant decreases of PUFAs, in particular, DHA in peripheral blood (plasma and erythrocyte membranes) as well as brain of schizophrenia patients at different developmental phases of the disorder. PUFA deficiency has been associated to psychotic symptoms and cognitive deficits in schizophrenia. These findings have led to a number of clinical trials examining whether dietary omega-3 fatty acid supplementation could improve the course of illness in patients with schizophrenia. Results are inconsistent. Some report beneficial whereas others show not effective. The discrepancy can be attributed to the heterogeneity of patient population. METHODS In this review, results from recent experimental and clinical studies, which focus on illustrating the role of PUFAs in the development of schizophrenia were examined. The rationale why omega-3 supplementation was beneficial on symptoms (presented by subscales of the positive and negative symptom scale (PANSS), and cognitive functions in certain patients but not others was reviewed. The potential mechanisms underlying the beneficial effects were discussed. RESULTS Omega-3 fatty acid supplementation reduced the conversion rate to psychosis and improved both positive and negative symptoms and global functions in adolescents at ultra-high risk for psychosis. Omega-3 fatty acid supplementation could also improve negative symptoms and global functions in the first-episode patients with schizophrenia, but improve mainly total or general PANSS subscales in chronic patients. Patients with low PUFA (particularly DHA) baseline in blood were more responsive to the omega-3 fatty acid intervention. CONCLUSION Omega-3 supplementation is more effective in reducing psychotic symptom severity in young adults or adolescents in the prodromal phase of schizophrenia who have low omega-3 baseline. Omega-3 supplementation was more effective in patients with low PUFA baseline. It suggests that patients with predefined lipid levels might benefit from lipid treatments, but more controlled clinical trials are warranted.
Collapse
Affiliation(s)
- Mei-Chi Hsu
- Department of Nursing, I-Shou University, No.8, Yida Road, Jiaosu Village Yanchao District, Kaohsiung, 82445 Taiwan
| | - Yung-Sheng Huang
- College of Medicine, I-Shou University, No.8, Yida Road, Jiaosu Village Yanchao District, Kaohsiung, 82445 Taiwan
| | - Wen-Chen Ouyang
- Department of Geriatric Psychiatry, Jianan Psychiatric Center, Ministry of Health and Welfare, No.539, Yuzhong Rd., Rende Dist., Tainan City, 71742 Taiwan
- Department of Nursing, Shu-Zen Junior College of Medicine and Management, No.452, Huanqiu Rd. Luzhu Dist, Kaohsiung, 82144 Taiwan
- Department of Psychiatry, College of Medicine, Kaohsiung Medical University, No.100, Shin-Chuan 1st Road, Sanmin Dist., Kaohsiung, 80708 Taiwan
| |
Collapse
|
46
|
Horman T, Fernandes MF, Tache MC, Hucik B, Mutch DM, Leri F. Dietary n-6/ n-3 Ratio Influences Brain Fatty Acid Composition in Adult Rats. Nutrients 2020; 12:nu12061847. [PMID: 32575852 PMCID: PMC7353285 DOI: 10.3390/nu12061847] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/12/2020] [Accepted: 06/17/2020] [Indexed: 11/16/2022] Open
Abstract
There is mounting evidence that diets supplemented with polyunsaturated fatty acids (PUFA) can impact brain biology and functions. This study investigated whether moderately high-fat diets differing in n-6/n-3 fatty acid ratio could impact fatty acid composition in regions of the brain linked to various psychopathologies. Adult male Sprague Dawley rats consumed isocaloric diets (35% kcal from fat) containing different ratios of linoleic acid (n-6) and alpha-linolenic acid (n-3) for 2 months. It was found that the profiles of PUFA in the prefrontal cortex, hippocampus, and hypothalamus reflected the fatty acid composition of the diet. In addition, region-specific changes in saturated fatty acids and monounsaturated fatty acids were detected in the hypothalamus, but not in the hippocampus or prefrontal cortex. This study in adult rats demonstrates that fatty acid remodeling in the brain by diet can occur within months and provides additional evidence for the suggestion that diet could impact mental health.
Collapse
Affiliation(s)
- Thomas Horman
- Department of Psychology and Neuroscience, University of Guelph, Guelph, ON N1G 2W1, Canada; (T.H.); (M.F.F.)
| | - Maria F. Fernandes
- Department of Psychology and Neuroscience, University of Guelph, Guelph, ON N1G 2W1, Canada; (T.H.); (M.F.F.)
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.C.T.); (B.H.); (D.M.M.)
| | - Maria C. Tache
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.C.T.); (B.H.); (D.M.M.)
| | - Barbora Hucik
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.C.T.); (B.H.); (D.M.M.)
| | - David M. Mutch
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.C.T.); (B.H.); (D.M.M.)
| | - Francesco Leri
- Department of Psychology and Neuroscience, University of Guelph, Guelph, ON N1G 2W1, Canada; (T.H.); (M.F.F.)
- Correspondence:
| |
Collapse
|
47
|
Ricca I, Tessa A, Trovato R, Bacci GM, Santorelli FM. Docosahexaenoic acid in ARSACS: observations in two patients. BMC Neurol 2020; 20:215. [PMID: 32466761 PMCID: PMC7254735 DOI: 10.1186/s12883-020-01803-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/21/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Spastic ataxia of Charlevoix-Saguenay is a neurodegenerative condition due to mutations in the SACS gene and without a cure. Attempts to treatments are scarce and limited to symptomatic drugs. CASE PRESENTATION Two siblings harboring biallelic variants in SACS underwent oral supplementation (600 mg/die) with docosahexaenoic acid (DHA), a well-tolerated dietary supplement currently used in SCA38 patients. We assessed over a 20 month-period clinical progression using disease-specific rating scales. CONCLUSIONS DHA was safe over a long period and well-tolerated by the two patients; both showed a stabilization of clinical symptoms, rather than the expected deterioration, warranting additional investigations in patients with mutations in SACS.
Collapse
Affiliation(s)
- Ivana Ricca
- Molecular Medicine, IRCCS Fondazione Stella Maris, via dei Giacinti 2- 56128 Calambrone-, Pisa, Italy
| | - Alessandra Tessa
- Molecular Medicine, IRCCS Fondazione Stella Maris, via dei Giacinti 2- 56128 Calambrone-, Pisa, Italy
| | - Rosanna Trovato
- Molecular Medicine, IRCCS Fondazione Stella Maris, via dei Giacinti 2- 56128 Calambrone-, Pisa, Italy
| | - Giacomo Maria Bacci
- Pediatric Ophthalmology Unit, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Filippo Maria Santorelli
- Molecular Medicine, IRCCS Fondazione Stella Maris, via dei Giacinti 2- 56128 Calambrone-, Pisa, Italy.
| |
Collapse
|
48
|
Joensuu M, Wallis TP, Saber SH, Meunier FA. Phospholipases in neuronal function: A role in learning and memory? J Neurochem 2020; 153:300-333. [PMID: 31745996 DOI: 10.1111/jnc.14918] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/29/2019] [Accepted: 11/15/2019] [Indexed: 12/20/2022]
Abstract
Despite the human brain being made of nearly 60% fat, the vast majority of studies on the mechanisms of neuronal communication which underpin cognition, memory and learning, primarily focus on proteins and/or (epi)genetic mechanisms. Phospholipids are the main component of all cellular membranes and function as substrates for numerous phospholipid-modifying enzymes, including phospholipases, which release free fatty acids (FFAs) and other lipid metabolites that can alter the intrinsic properties of the membranes, recruit and activate critical proteins, and act as lipid signalling molecules. Here, we will review brain specific phospholipases, their roles in membrane remodelling, neuronal function, learning and memory, as well as their disease implications. In particular, we will highlight key roles of unsaturated FFAs, particularly arachidonic acid, in neurotransmitter release, neuroinflammation and memory. In light of recent findings, we will also discuss the emerging role of phospholipase A1 and the creation of saturated FFAs in the brain.
Collapse
Affiliation(s)
- Merja Joensuu
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Qld, Australia.,Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Tristan P Wallis
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Qld, Australia
| | - Saber H Saber
- Laboratory of Molecular Cell Biology, Department of Zoology, Faculty of Science, Assiut University, Assiut, Egypt
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Qld, Australia
| |
Collapse
|
49
|
Low YL, Jin L, Morris ER, Pan Y, Nicolazzo JA. Pioglitazone Increases Blood-Brain Barrier Expression of Fatty Acid-Binding Protein 5 and Docosahexaenoic Acid Trafficking into the Brain. Mol Pharm 2020; 17:873-884. [PMID: 31944767 DOI: 10.1021/acs.molpharmaceut.9b01131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Brain levels of docosahexaenoic acid (DHA), an essential cognitively beneficial fatty acid, are reduced in Alzheimer's disease (AD). We have demonstrated in an AD mouse model that this is associated with reduced blood-brain barrier (BBB) transport of DHA and lower expression of the key DHA-trafficking protein, fatty acid-binding protein 5 (FABP5). This study focused on assessing the impact of activating peroxisome proliferator-activated receptor (PPAR) isoforms on FABP5 expression and function at the BBB. Using immortalized human brain endothelial (hCMEC/D3) cells, a 72 h treatment with the PPARα agonist clofibrate (100 μM), and PPARβ/δ agonists GW0742 (1 μM) and GW501506 (0.5 μM), did not affect FABP5 protein expression. In contrast, the PPARγ agonists rosiglitazone (5 μM), pioglitazone (25 μM), and troglitazone (1 μM) increased FABP5 protein expression by 1.15-, 1.18-, and 1.24-fold in hCMEC/D3 cells, respectively, with rosiglitazone and pioglitazone also increasing mRNA expression of FABP5. In line with an increase in FABP5 expression, pioglitazone increased 14C-DHA uptake into hCMEC/D3 cells 1.20- to 1.33-fold over a 2 min period, and this was not associated with increased expression of membrane transporters involved in DHA uptake. Furthermore, treating male C57BL/6J mice with pioglitazone (40 mg/kg/day for 7 days) led to a 1.79-fold increase in BBB transport of 14C-DHA over 1 min, using an in situ transcardiac perfusion technique, which was associated with a 1.82-fold increase in brain microvascular FABP5 protein expression. Overall, this study demonstrated that PPARγ can regulate FABP5 at the BBB and facilitate DHA transport across the BBB, important in restoring brain levels of DHA in AD.
Collapse
Affiliation(s)
- Yi Ling Low
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Liang Jin
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Elonie R Morris
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Yijun Pan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
50
|
Tanprasertsuk J, Mohn ES, Matthan NR, Lichtenstein AH, Barger K, Vishwanathan R, Johnson MA, Poon LW, Johnson EJ. Serum Carotenoids, Tocopherols, Total n-3 Polyunsaturated Fatty Acids, and n-6/n-3 Polyunsaturated Fatty Acid Ratio Reflect Brain Concentrations in a Cohort of Centenarians. J Gerontol A Biol Sci Med Sci 2019; 74:306-314. [PMID: 29893813 DOI: 10.1093/gerona/gly125] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Indexed: 02/01/2023] Open
Abstract
Investigating the role of nutrition on cognitive health is challenging. Human brain tissue is inaccessible in living humans and is often limited in deceased individuals. Therefore, biomarkers of brain nutrient levels are of interest. The objective of this study was to characterize the relationships between levels of fat-soluble nutrients in serum and matched brain tissues from the frontal and temporal cortices of participants in the Georgia Centenarian Study (n = 47). After adjusting for sex, race, cognitive status (Global Deterioration Scale), body mass index, and presence of hypertension and/or diabetes, there was a significant relationship (p < 0.05) between serum and brain levels of carotenoids (lutein, zeaxanthin, cryptoxanthin, β-carotene), α-, γ-tocopherols, total n-3 polyunsaturated fatty acids (PUFAs), and n-6/n-3 PUFA ratio. The relationship between serum and brain total n-6 PUFAs was inconsistent among the two brain regions. No significant relationship was identified between serum and brain retinol, total saturated fatty acid, total monounsaturated fatty acid, and trans-fatty acid levels. These findings suggest that serum carotenoids, tocopherols, total n-3 PUFAs, and n-6/n-3 PUFA ratio reflect levels in brain and can be used as surrogate biomarkers in older population.
Collapse
Affiliation(s)
- Jirayu Tanprasertsuk
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts
| | - Emily S Mohn
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts
| | - Nirupa R Matthan
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts
| | - Alice H Lichtenstein
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts
| | - Kathryn Barger
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts
| | - Rohini Vishwanathan
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts
| | - Mary Ann Johnson
- Department of Foods and Nutrition, University of Georgia, Athens, Georgia.,Institute of Gerontology, University of Georgia, Athens, Georgia
| | - Leonard W Poon
- Institute of Gerontology, University of Georgia, Athens, Georgia
| | - Elizabeth J Johnson
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts
| |
Collapse
|